mm: move MAP_SYNC to asm-generic/mman-common.h
[linux-2.6-block.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fs.h>
38 #include <linux/file.h>
39 #include <linux/jhash.h>
40 #include <linux/init.h>
41 #include <linux/futex.h>
42 #include <linux/mount.h>
43 #include <linux/pagemap.h>
44 #include <linux/syscalls.h>
45 #include <linux/signal.h>
46 #include <linux/export.h>
47 #include <linux/magic.h>
48 #include <linux/pid.h>
49 #include <linux/nsproxy.h>
50 #include <linux/ptrace.h>
51 #include <linux/sched/rt.h>
52 #include <linux/sched/wake_q.h>
53 #include <linux/sched/mm.h>
54 #include <linux/hugetlb.h>
55 #include <linux/freezer.h>
56 #include <linux/memblock.h>
57 #include <linux/fault-inject.h>
58 #include <linux/refcount.h>
59
60 #include <asm/futex.h>
61
62 #include "locking/rtmutex_common.h"
63
64 /*
65  * READ this before attempting to hack on futexes!
66  *
67  * Basic futex operation and ordering guarantees
68  * =============================================
69  *
70  * The waiter reads the futex value in user space and calls
71  * futex_wait(). This function computes the hash bucket and acquires
72  * the hash bucket lock. After that it reads the futex user space value
73  * again and verifies that the data has not changed. If it has not changed
74  * it enqueues itself into the hash bucket, releases the hash bucket lock
75  * and schedules.
76  *
77  * The waker side modifies the user space value of the futex and calls
78  * futex_wake(). This function computes the hash bucket and acquires the
79  * hash bucket lock. Then it looks for waiters on that futex in the hash
80  * bucket and wakes them.
81  *
82  * In futex wake up scenarios where no tasks are blocked on a futex, taking
83  * the hb spinlock can be avoided and simply return. In order for this
84  * optimization to work, ordering guarantees must exist so that the waiter
85  * being added to the list is acknowledged when the list is concurrently being
86  * checked by the waker, avoiding scenarios like the following:
87  *
88  * CPU 0                               CPU 1
89  * val = *futex;
90  * sys_futex(WAIT, futex, val);
91  *   futex_wait(futex, val);
92  *   uval = *futex;
93  *                                     *futex = newval;
94  *                                     sys_futex(WAKE, futex);
95  *                                       futex_wake(futex);
96  *                                       if (queue_empty())
97  *                                         return;
98  *   if (uval == val)
99  *      lock(hash_bucket(futex));
100  *      queue();
101  *     unlock(hash_bucket(futex));
102  *     schedule();
103  *
104  * This would cause the waiter on CPU 0 to wait forever because it
105  * missed the transition of the user space value from val to newval
106  * and the waker did not find the waiter in the hash bucket queue.
107  *
108  * The correct serialization ensures that a waiter either observes
109  * the changed user space value before blocking or is woken by a
110  * concurrent waker:
111  *
112  * CPU 0                                 CPU 1
113  * val = *futex;
114  * sys_futex(WAIT, futex, val);
115  *   futex_wait(futex, val);
116  *
117  *   waiters++; (a)
118  *   smp_mb(); (A) <-- paired with -.
119  *                                  |
120  *   lock(hash_bucket(futex));      |
121  *                                  |
122  *   uval = *futex;                 |
123  *                                  |        *futex = newval;
124  *                                  |        sys_futex(WAKE, futex);
125  *                                  |          futex_wake(futex);
126  *                                  |
127  *                                  `--------> smp_mb(); (B)
128  *   if (uval == val)
129  *     queue();
130  *     unlock(hash_bucket(futex));
131  *     schedule();                         if (waiters)
132  *                                           lock(hash_bucket(futex));
133  *   else                                    wake_waiters(futex);
134  *     waiters--; (b)                        unlock(hash_bucket(futex));
135  *
136  * Where (A) orders the waiters increment and the futex value read through
137  * atomic operations (see hb_waiters_inc) and where (B) orders the write
138  * to futex and the waiters read -- this is done by the barriers for both
139  * shared and private futexes in get_futex_key_refs().
140  *
141  * This yields the following case (where X:=waiters, Y:=futex):
142  *
143  *      X = Y = 0
144  *
145  *      w[X]=1          w[Y]=1
146  *      MB              MB
147  *      r[Y]=y          r[X]=x
148  *
149  * Which guarantees that x==0 && y==0 is impossible; which translates back into
150  * the guarantee that we cannot both miss the futex variable change and the
151  * enqueue.
152  *
153  * Note that a new waiter is accounted for in (a) even when it is possible that
154  * the wait call can return error, in which case we backtrack from it in (b).
155  * Refer to the comment in queue_lock().
156  *
157  * Similarly, in order to account for waiters being requeued on another
158  * address we always increment the waiters for the destination bucket before
159  * acquiring the lock. It then decrements them again  after releasing it -
160  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
161  * will do the additional required waiter count housekeeping. This is done for
162  * double_lock_hb() and double_unlock_hb(), respectively.
163  */
164
165 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
166 #define futex_cmpxchg_enabled 1
167 #else
168 static int  __read_mostly futex_cmpxchg_enabled;
169 #endif
170
171 /*
172  * Futex flags used to encode options to functions and preserve them across
173  * restarts.
174  */
175 #ifdef CONFIG_MMU
176 # define FLAGS_SHARED           0x01
177 #else
178 /*
179  * NOMMU does not have per process address space. Let the compiler optimize
180  * code away.
181  */
182 # define FLAGS_SHARED           0x00
183 #endif
184 #define FLAGS_CLOCKRT           0x02
185 #define FLAGS_HAS_TIMEOUT       0x04
186
187 /*
188  * Priority Inheritance state:
189  */
190 struct futex_pi_state {
191         /*
192          * list of 'owned' pi_state instances - these have to be
193          * cleaned up in do_exit() if the task exits prematurely:
194          */
195         struct list_head list;
196
197         /*
198          * The PI object:
199          */
200         struct rt_mutex pi_mutex;
201
202         struct task_struct *owner;
203         refcount_t refcount;
204
205         union futex_key key;
206 } __randomize_layout;
207
208 /**
209  * struct futex_q - The hashed futex queue entry, one per waiting task
210  * @list:               priority-sorted list of tasks waiting on this futex
211  * @task:               the task waiting on the futex
212  * @lock_ptr:           the hash bucket lock
213  * @key:                the key the futex is hashed on
214  * @pi_state:           optional priority inheritance state
215  * @rt_waiter:          rt_waiter storage for use with requeue_pi
216  * @requeue_pi_key:     the requeue_pi target futex key
217  * @bitset:             bitset for the optional bitmasked wakeup
218  *
219  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
220  * we can wake only the relevant ones (hashed queues may be shared).
221  *
222  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
223  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
224  * The order of wakeup is always to make the first condition true, then
225  * the second.
226  *
227  * PI futexes are typically woken before they are removed from the hash list via
228  * the rt_mutex code. See unqueue_me_pi().
229  */
230 struct futex_q {
231         struct plist_node list;
232
233         struct task_struct *task;
234         spinlock_t *lock_ptr;
235         union futex_key key;
236         struct futex_pi_state *pi_state;
237         struct rt_mutex_waiter *rt_waiter;
238         union futex_key *requeue_pi_key;
239         u32 bitset;
240 } __randomize_layout;
241
242 static const struct futex_q futex_q_init = {
243         /* list gets initialized in queue_me()*/
244         .key = FUTEX_KEY_INIT,
245         .bitset = FUTEX_BITSET_MATCH_ANY
246 };
247
248 /*
249  * Hash buckets are shared by all the futex_keys that hash to the same
250  * location.  Each key may have multiple futex_q structures, one for each task
251  * waiting on a futex.
252  */
253 struct futex_hash_bucket {
254         atomic_t waiters;
255         spinlock_t lock;
256         struct plist_head chain;
257 } ____cacheline_aligned_in_smp;
258
259 /*
260  * The base of the bucket array and its size are always used together
261  * (after initialization only in hash_futex()), so ensure that they
262  * reside in the same cacheline.
263  */
264 static struct {
265         struct futex_hash_bucket *queues;
266         unsigned long            hashsize;
267 } __futex_data __read_mostly __aligned(2*sizeof(long));
268 #define futex_queues   (__futex_data.queues)
269 #define futex_hashsize (__futex_data.hashsize)
270
271
272 /*
273  * Fault injections for futexes.
274  */
275 #ifdef CONFIG_FAIL_FUTEX
276
277 static struct {
278         struct fault_attr attr;
279
280         bool ignore_private;
281 } fail_futex = {
282         .attr = FAULT_ATTR_INITIALIZER,
283         .ignore_private = false,
284 };
285
286 static int __init setup_fail_futex(char *str)
287 {
288         return setup_fault_attr(&fail_futex.attr, str);
289 }
290 __setup("fail_futex=", setup_fail_futex);
291
292 static bool should_fail_futex(bool fshared)
293 {
294         if (fail_futex.ignore_private && !fshared)
295                 return false;
296
297         return should_fail(&fail_futex.attr, 1);
298 }
299
300 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301
302 static int __init fail_futex_debugfs(void)
303 {
304         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
305         struct dentry *dir;
306
307         dir = fault_create_debugfs_attr("fail_futex", NULL,
308                                         &fail_futex.attr);
309         if (IS_ERR(dir))
310                 return PTR_ERR(dir);
311
312         debugfs_create_bool("ignore-private", mode, dir,
313                             &fail_futex.ignore_private);
314         return 0;
315 }
316
317 late_initcall(fail_futex_debugfs);
318
319 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
320
321 #else
322 static inline bool should_fail_futex(bool fshared)
323 {
324         return false;
325 }
326 #endif /* CONFIG_FAIL_FUTEX */
327
328 static inline void futex_get_mm(union futex_key *key)
329 {
330         mmgrab(key->private.mm);
331         /*
332          * Ensure futex_get_mm() implies a full barrier such that
333          * get_futex_key() implies a full barrier. This is relied upon
334          * as smp_mb(); (B), see the ordering comment above.
335          */
336         smp_mb__after_atomic();
337 }
338
339 /*
340  * Reflects a new waiter being added to the waitqueue.
341  */
342 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
343 {
344 #ifdef CONFIG_SMP
345         atomic_inc(&hb->waiters);
346         /*
347          * Full barrier (A), see the ordering comment above.
348          */
349         smp_mb__after_atomic();
350 #endif
351 }
352
353 /*
354  * Reflects a waiter being removed from the waitqueue by wakeup
355  * paths.
356  */
357 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
358 {
359 #ifdef CONFIG_SMP
360         atomic_dec(&hb->waiters);
361 #endif
362 }
363
364 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
365 {
366 #ifdef CONFIG_SMP
367         return atomic_read(&hb->waiters);
368 #else
369         return 1;
370 #endif
371 }
372
373 /**
374  * hash_futex - Return the hash bucket in the global hash
375  * @key:        Pointer to the futex key for which the hash is calculated
376  *
377  * We hash on the keys returned from get_futex_key (see below) and return the
378  * corresponding hash bucket in the global hash.
379  */
380 static struct futex_hash_bucket *hash_futex(union futex_key *key)
381 {
382         u32 hash = jhash2((u32*)&key->both.word,
383                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
384                           key->both.offset);
385         return &futex_queues[hash & (futex_hashsize - 1)];
386 }
387
388
389 /**
390  * match_futex - Check whether two futex keys are equal
391  * @key1:       Pointer to key1
392  * @key2:       Pointer to key2
393  *
394  * Return 1 if two futex_keys are equal, 0 otherwise.
395  */
396 static inline int match_futex(union futex_key *key1, union futex_key *key2)
397 {
398         return (key1 && key2
399                 && key1->both.word == key2->both.word
400                 && key1->both.ptr == key2->both.ptr
401                 && key1->both.offset == key2->both.offset);
402 }
403
404 /*
405  * Take a reference to the resource addressed by a key.
406  * Can be called while holding spinlocks.
407  *
408  */
409 static void get_futex_key_refs(union futex_key *key)
410 {
411         if (!key->both.ptr)
412                 return;
413
414         /*
415          * On MMU less systems futexes are always "private" as there is no per
416          * process address space. We need the smp wmb nevertheless - yes,
417          * arch/blackfin has MMU less SMP ...
418          */
419         if (!IS_ENABLED(CONFIG_MMU)) {
420                 smp_mb(); /* explicit smp_mb(); (B) */
421                 return;
422         }
423
424         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
425         case FUT_OFF_INODE:
426                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
427                 break;
428         case FUT_OFF_MMSHARED:
429                 futex_get_mm(key); /* implies smp_mb(); (B) */
430                 break;
431         default:
432                 /*
433                  * Private futexes do not hold reference on an inode or
434                  * mm, therefore the only purpose of calling get_futex_key_refs
435                  * is because we need the barrier for the lockless waiter check.
436                  */
437                 smp_mb(); /* explicit smp_mb(); (B) */
438         }
439 }
440
441 /*
442  * Drop a reference to the resource addressed by a key.
443  * The hash bucket spinlock must not be held. This is
444  * a no-op for private futexes, see comment in the get
445  * counterpart.
446  */
447 static void drop_futex_key_refs(union futex_key *key)
448 {
449         if (!key->both.ptr) {
450                 /* If we're here then we tried to put a key we failed to get */
451                 WARN_ON_ONCE(1);
452                 return;
453         }
454
455         if (!IS_ENABLED(CONFIG_MMU))
456                 return;
457
458         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
459         case FUT_OFF_INODE:
460                 iput(key->shared.inode);
461                 break;
462         case FUT_OFF_MMSHARED:
463                 mmdrop(key->private.mm);
464                 break;
465         }
466 }
467
468 enum futex_access {
469         FUTEX_READ,
470         FUTEX_WRITE
471 };
472
473 /**
474  * futex_setup_timer - set up the sleeping hrtimer.
475  * @time:       ptr to the given timeout value
476  * @timeout:    the hrtimer_sleeper structure to be set up
477  * @flags:      futex flags
478  * @range_ns:   optional range in ns
479  *
480  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
481  *         value given
482  */
483 static inline struct hrtimer_sleeper *
484 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
485                   int flags, u64 range_ns)
486 {
487         if (!time)
488                 return NULL;
489
490         hrtimer_init_on_stack(&timeout->timer, (flags & FLAGS_CLOCKRT) ?
491                               CLOCK_REALTIME : CLOCK_MONOTONIC,
492                               HRTIMER_MODE_ABS);
493         hrtimer_init_sleeper(timeout, current);
494
495         /*
496          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
497          * effectively the same as calling hrtimer_set_expires().
498          */
499         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
500
501         return timeout;
502 }
503
504 /**
505  * get_futex_key() - Get parameters which are the keys for a futex
506  * @uaddr:      virtual address of the futex
507  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
508  * @key:        address where result is stored.
509  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
510  *              FUTEX_WRITE)
511  *
512  * Return: a negative error code or 0
513  *
514  * The key words are stored in @key on success.
515  *
516  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
517  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
518  * We can usually work out the index without swapping in the page.
519  *
520  * lock_page() might sleep, the caller should not hold a spinlock.
521  */
522 static int
523 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
524 {
525         unsigned long address = (unsigned long)uaddr;
526         struct mm_struct *mm = current->mm;
527         struct page *page, *tail;
528         struct address_space *mapping;
529         int err, ro = 0;
530
531         /*
532          * The futex address must be "naturally" aligned.
533          */
534         key->both.offset = address % PAGE_SIZE;
535         if (unlikely((address % sizeof(u32)) != 0))
536                 return -EINVAL;
537         address -= key->both.offset;
538
539         if (unlikely(!access_ok(uaddr, sizeof(u32))))
540                 return -EFAULT;
541
542         if (unlikely(should_fail_futex(fshared)))
543                 return -EFAULT;
544
545         /*
546          * PROCESS_PRIVATE futexes are fast.
547          * As the mm cannot disappear under us and the 'key' only needs
548          * virtual address, we dont even have to find the underlying vma.
549          * Note : We do have to check 'uaddr' is a valid user address,
550          *        but access_ok() should be faster than find_vma()
551          */
552         if (!fshared) {
553                 key->private.mm = mm;
554                 key->private.address = address;
555                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
556                 return 0;
557         }
558
559 again:
560         /* Ignore any VERIFY_READ mapping (futex common case) */
561         if (unlikely(should_fail_futex(fshared)))
562                 return -EFAULT;
563
564         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
565         /*
566          * If write access is not required (eg. FUTEX_WAIT), try
567          * and get read-only access.
568          */
569         if (err == -EFAULT && rw == FUTEX_READ) {
570                 err = get_user_pages_fast(address, 1, 0, &page);
571                 ro = 1;
572         }
573         if (err < 0)
574                 return err;
575         else
576                 err = 0;
577
578         /*
579          * The treatment of mapping from this point on is critical. The page
580          * lock protects many things but in this context the page lock
581          * stabilizes mapping, prevents inode freeing in the shared
582          * file-backed region case and guards against movement to swap cache.
583          *
584          * Strictly speaking the page lock is not needed in all cases being
585          * considered here and page lock forces unnecessarily serialization
586          * From this point on, mapping will be re-verified if necessary and
587          * page lock will be acquired only if it is unavoidable
588          *
589          * Mapping checks require the head page for any compound page so the
590          * head page and mapping is looked up now. For anonymous pages, it
591          * does not matter if the page splits in the future as the key is
592          * based on the address. For filesystem-backed pages, the tail is
593          * required as the index of the page determines the key. For
594          * base pages, there is no tail page and tail == page.
595          */
596         tail = page;
597         page = compound_head(page);
598         mapping = READ_ONCE(page->mapping);
599
600         /*
601          * If page->mapping is NULL, then it cannot be a PageAnon
602          * page; but it might be the ZERO_PAGE or in the gate area or
603          * in a special mapping (all cases which we are happy to fail);
604          * or it may have been a good file page when get_user_pages_fast
605          * found it, but truncated or holepunched or subjected to
606          * invalidate_complete_page2 before we got the page lock (also
607          * cases which we are happy to fail).  And we hold a reference,
608          * so refcount care in invalidate_complete_page's remove_mapping
609          * prevents drop_caches from setting mapping to NULL beneath us.
610          *
611          * The case we do have to guard against is when memory pressure made
612          * shmem_writepage move it from filecache to swapcache beneath us:
613          * an unlikely race, but we do need to retry for page->mapping.
614          */
615         if (unlikely(!mapping)) {
616                 int shmem_swizzled;
617
618                 /*
619                  * Page lock is required to identify which special case above
620                  * applies. If this is really a shmem page then the page lock
621                  * will prevent unexpected transitions.
622                  */
623                 lock_page(page);
624                 shmem_swizzled = PageSwapCache(page) || page->mapping;
625                 unlock_page(page);
626                 put_page(page);
627
628                 if (shmem_swizzled)
629                         goto again;
630
631                 return -EFAULT;
632         }
633
634         /*
635          * Private mappings are handled in a simple way.
636          *
637          * If the futex key is stored on an anonymous page, then the associated
638          * object is the mm which is implicitly pinned by the calling process.
639          *
640          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
641          * it's a read-only handle, it's expected that futexes attach to
642          * the object not the particular process.
643          */
644         if (PageAnon(page)) {
645                 /*
646                  * A RO anonymous page will never change and thus doesn't make
647                  * sense for futex operations.
648                  */
649                 if (unlikely(should_fail_futex(fshared)) || ro) {
650                         err = -EFAULT;
651                         goto out;
652                 }
653
654                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
655                 key->private.mm = mm;
656                 key->private.address = address;
657
658                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
659
660         } else {
661                 struct inode *inode;
662
663                 /*
664                  * The associated futex object in this case is the inode and
665                  * the page->mapping must be traversed. Ordinarily this should
666                  * be stabilised under page lock but it's not strictly
667                  * necessary in this case as we just want to pin the inode, not
668                  * update the radix tree or anything like that.
669                  *
670                  * The RCU read lock is taken as the inode is finally freed
671                  * under RCU. If the mapping still matches expectations then the
672                  * mapping->host can be safely accessed as being a valid inode.
673                  */
674                 rcu_read_lock();
675
676                 if (READ_ONCE(page->mapping) != mapping) {
677                         rcu_read_unlock();
678                         put_page(page);
679
680                         goto again;
681                 }
682
683                 inode = READ_ONCE(mapping->host);
684                 if (!inode) {
685                         rcu_read_unlock();
686                         put_page(page);
687
688                         goto again;
689                 }
690
691                 /*
692                  * Take a reference unless it is about to be freed. Previously
693                  * this reference was taken by ihold under the page lock
694                  * pinning the inode in place so i_lock was unnecessary. The
695                  * only way for this check to fail is if the inode was
696                  * truncated in parallel which is almost certainly an
697                  * application bug. In such a case, just retry.
698                  *
699                  * We are not calling into get_futex_key_refs() in file-backed
700                  * cases, therefore a successful atomic_inc return below will
701                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
702                  */
703                 if (!atomic_inc_not_zero(&inode->i_count)) {
704                         rcu_read_unlock();
705                         put_page(page);
706
707                         goto again;
708                 }
709
710                 /* Should be impossible but lets be paranoid for now */
711                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
712                         err = -EFAULT;
713                         rcu_read_unlock();
714                         iput(inode);
715
716                         goto out;
717                 }
718
719                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
720                 key->shared.inode = inode;
721                 key->shared.pgoff = basepage_index(tail);
722                 rcu_read_unlock();
723         }
724
725 out:
726         put_page(page);
727         return err;
728 }
729
730 static inline void put_futex_key(union futex_key *key)
731 {
732         drop_futex_key_refs(key);
733 }
734
735 /**
736  * fault_in_user_writeable() - Fault in user address and verify RW access
737  * @uaddr:      pointer to faulting user space address
738  *
739  * Slow path to fixup the fault we just took in the atomic write
740  * access to @uaddr.
741  *
742  * We have no generic implementation of a non-destructive write to the
743  * user address. We know that we faulted in the atomic pagefault
744  * disabled section so we can as well avoid the #PF overhead by
745  * calling get_user_pages() right away.
746  */
747 static int fault_in_user_writeable(u32 __user *uaddr)
748 {
749         struct mm_struct *mm = current->mm;
750         int ret;
751
752         down_read(&mm->mmap_sem);
753         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
754                                FAULT_FLAG_WRITE, NULL);
755         up_read(&mm->mmap_sem);
756
757         return ret < 0 ? ret : 0;
758 }
759
760 /**
761  * futex_top_waiter() - Return the highest priority waiter on a futex
762  * @hb:         the hash bucket the futex_q's reside in
763  * @key:        the futex key (to distinguish it from other futex futex_q's)
764  *
765  * Must be called with the hb lock held.
766  */
767 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
768                                         union futex_key *key)
769 {
770         struct futex_q *this;
771
772         plist_for_each_entry(this, &hb->chain, list) {
773                 if (match_futex(&this->key, key))
774                         return this;
775         }
776         return NULL;
777 }
778
779 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
780                                       u32 uval, u32 newval)
781 {
782         int ret;
783
784         pagefault_disable();
785         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
786         pagefault_enable();
787
788         return ret;
789 }
790
791 static int get_futex_value_locked(u32 *dest, u32 __user *from)
792 {
793         int ret;
794
795         pagefault_disable();
796         ret = __get_user(*dest, from);
797         pagefault_enable();
798
799         return ret ? -EFAULT : 0;
800 }
801
802
803 /*
804  * PI code:
805  */
806 static int refill_pi_state_cache(void)
807 {
808         struct futex_pi_state *pi_state;
809
810         if (likely(current->pi_state_cache))
811                 return 0;
812
813         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
814
815         if (!pi_state)
816                 return -ENOMEM;
817
818         INIT_LIST_HEAD(&pi_state->list);
819         /* pi_mutex gets initialized later */
820         pi_state->owner = NULL;
821         refcount_set(&pi_state->refcount, 1);
822         pi_state->key = FUTEX_KEY_INIT;
823
824         current->pi_state_cache = pi_state;
825
826         return 0;
827 }
828
829 static struct futex_pi_state *alloc_pi_state(void)
830 {
831         struct futex_pi_state *pi_state = current->pi_state_cache;
832
833         WARN_ON(!pi_state);
834         current->pi_state_cache = NULL;
835
836         return pi_state;
837 }
838
839 static void get_pi_state(struct futex_pi_state *pi_state)
840 {
841         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
842 }
843
844 /*
845  * Drops a reference to the pi_state object and frees or caches it
846  * when the last reference is gone.
847  */
848 static void put_pi_state(struct futex_pi_state *pi_state)
849 {
850         if (!pi_state)
851                 return;
852
853         if (!refcount_dec_and_test(&pi_state->refcount))
854                 return;
855
856         /*
857          * If pi_state->owner is NULL, the owner is most probably dying
858          * and has cleaned up the pi_state already
859          */
860         if (pi_state->owner) {
861                 struct task_struct *owner;
862
863                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
864                 owner = pi_state->owner;
865                 if (owner) {
866                         raw_spin_lock(&owner->pi_lock);
867                         list_del_init(&pi_state->list);
868                         raw_spin_unlock(&owner->pi_lock);
869                 }
870                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
871                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
872         }
873
874         if (current->pi_state_cache) {
875                 kfree(pi_state);
876         } else {
877                 /*
878                  * pi_state->list is already empty.
879                  * clear pi_state->owner.
880                  * refcount is at 0 - put it back to 1.
881                  */
882                 pi_state->owner = NULL;
883                 refcount_set(&pi_state->refcount, 1);
884                 current->pi_state_cache = pi_state;
885         }
886 }
887
888 #ifdef CONFIG_FUTEX_PI
889
890 /*
891  * This task is holding PI mutexes at exit time => bad.
892  * Kernel cleans up PI-state, but userspace is likely hosed.
893  * (Robust-futex cleanup is separate and might save the day for userspace.)
894  */
895 void exit_pi_state_list(struct task_struct *curr)
896 {
897         struct list_head *next, *head = &curr->pi_state_list;
898         struct futex_pi_state *pi_state;
899         struct futex_hash_bucket *hb;
900         union futex_key key = FUTEX_KEY_INIT;
901
902         if (!futex_cmpxchg_enabled)
903                 return;
904         /*
905          * We are a ZOMBIE and nobody can enqueue itself on
906          * pi_state_list anymore, but we have to be careful
907          * versus waiters unqueueing themselves:
908          */
909         raw_spin_lock_irq(&curr->pi_lock);
910         while (!list_empty(head)) {
911                 next = head->next;
912                 pi_state = list_entry(next, struct futex_pi_state, list);
913                 key = pi_state->key;
914                 hb = hash_futex(&key);
915
916                 /*
917                  * We can race against put_pi_state() removing itself from the
918                  * list (a waiter going away). put_pi_state() will first
919                  * decrement the reference count and then modify the list, so
920                  * its possible to see the list entry but fail this reference
921                  * acquire.
922                  *
923                  * In that case; drop the locks to let put_pi_state() make
924                  * progress and retry the loop.
925                  */
926                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
927                         raw_spin_unlock_irq(&curr->pi_lock);
928                         cpu_relax();
929                         raw_spin_lock_irq(&curr->pi_lock);
930                         continue;
931                 }
932                 raw_spin_unlock_irq(&curr->pi_lock);
933
934                 spin_lock(&hb->lock);
935                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
936                 raw_spin_lock(&curr->pi_lock);
937                 /*
938                  * We dropped the pi-lock, so re-check whether this
939                  * task still owns the PI-state:
940                  */
941                 if (head->next != next) {
942                         /* retain curr->pi_lock for the loop invariant */
943                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
944                         spin_unlock(&hb->lock);
945                         put_pi_state(pi_state);
946                         continue;
947                 }
948
949                 WARN_ON(pi_state->owner != curr);
950                 WARN_ON(list_empty(&pi_state->list));
951                 list_del_init(&pi_state->list);
952                 pi_state->owner = NULL;
953
954                 raw_spin_unlock(&curr->pi_lock);
955                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
956                 spin_unlock(&hb->lock);
957
958                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
959                 put_pi_state(pi_state);
960
961                 raw_spin_lock_irq(&curr->pi_lock);
962         }
963         raw_spin_unlock_irq(&curr->pi_lock);
964 }
965
966 #endif
967
968 /*
969  * We need to check the following states:
970  *
971  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
972  *
973  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
974  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
975  *
976  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
977  *
978  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
979  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
980  *
981  * [6]  Found  | Found    | task      | 0         | 1      | Valid
982  *
983  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
984  *
985  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
986  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
987  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
988  *
989  * [1]  Indicates that the kernel can acquire the futex atomically. We
990  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
991  *
992  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
993  *      thread is found then it indicates that the owner TID has died.
994  *
995  * [3]  Invalid. The waiter is queued on a non PI futex
996  *
997  * [4]  Valid state after exit_robust_list(), which sets the user space
998  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
999  *
1000  * [5]  The user space value got manipulated between exit_robust_list()
1001  *      and exit_pi_state_list()
1002  *
1003  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
1004  *      the pi_state but cannot access the user space value.
1005  *
1006  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1007  *
1008  * [8]  Owner and user space value match
1009  *
1010  * [9]  There is no transient state which sets the user space TID to 0
1011  *      except exit_robust_list(), but this is indicated by the
1012  *      FUTEX_OWNER_DIED bit. See [4]
1013  *
1014  * [10] There is no transient state which leaves owner and user space
1015  *      TID out of sync.
1016  *
1017  *
1018  * Serialization and lifetime rules:
1019  *
1020  * hb->lock:
1021  *
1022  *      hb -> futex_q, relation
1023  *      futex_q -> pi_state, relation
1024  *
1025  *      (cannot be raw because hb can contain arbitrary amount
1026  *       of futex_q's)
1027  *
1028  * pi_mutex->wait_lock:
1029  *
1030  *      {uval, pi_state}
1031  *
1032  *      (and pi_mutex 'obviously')
1033  *
1034  * p->pi_lock:
1035  *
1036  *      p->pi_state_list -> pi_state->list, relation
1037  *
1038  * pi_state->refcount:
1039  *
1040  *      pi_state lifetime
1041  *
1042  *
1043  * Lock order:
1044  *
1045  *   hb->lock
1046  *     pi_mutex->wait_lock
1047  *       p->pi_lock
1048  *
1049  */
1050
1051 /*
1052  * Validate that the existing waiter has a pi_state and sanity check
1053  * the pi_state against the user space value. If correct, attach to
1054  * it.
1055  */
1056 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1057                               struct futex_pi_state *pi_state,
1058                               struct futex_pi_state **ps)
1059 {
1060         pid_t pid = uval & FUTEX_TID_MASK;
1061         u32 uval2;
1062         int ret;
1063
1064         /*
1065          * Userspace might have messed up non-PI and PI futexes [3]
1066          */
1067         if (unlikely(!pi_state))
1068                 return -EINVAL;
1069
1070         /*
1071          * We get here with hb->lock held, and having found a
1072          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1073          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1074          * which in turn means that futex_lock_pi() still has a reference on
1075          * our pi_state.
1076          *
1077          * The waiter holding a reference on @pi_state also protects against
1078          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1079          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1080          * free pi_state before we can take a reference ourselves.
1081          */
1082         WARN_ON(!refcount_read(&pi_state->refcount));
1083
1084         /*
1085          * Now that we have a pi_state, we can acquire wait_lock
1086          * and do the state validation.
1087          */
1088         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1089
1090         /*
1091          * Since {uval, pi_state} is serialized by wait_lock, and our current
1092          * uval was read without holding it, it can have changed. Verify it
1093          * still is what we expect it to be, otherwise retry the entire
1094          * operation.
1095          */
1096         if (get_futex_value_locked(&uval2, uaddr))
1097                 goto out_efault;
1098
1099         if (uval != uval2)
1100                 goto out_eagain;
1101
1102         /*
1103          * Handle the owner died case:
1104          */
1105         if (uval & FUTEX_OWNER_DIED) {
1106                 /*
1107                  * exit_pi_state_list sets owner to NULL and wakes the
1108                  * topmost waiter. The task which acquires the
1109                  * pi_state->rt_mutex will fixup owner.
1110                  */
1111                 if (!pi_state->owner) {
1112                         /*
1113                          * No pi state owner, but the user space TID
1114                          * is not 0. Inconsistent state. [5]
1115                          */
1116                         if (pid)
1117                                 goto out_einval;
1118                         /*
1119                          * Take a ref on the state and return success. [4]
1120                          */
1121                         goto out_attach;
1122                 }
1123
1124                 /*
1125                  * If TID is 0, then either the dying owner has not
1126                  * yet executed exit_pi_state_list() or some waiter
1127                  * acquired the rtmutex in the pi state, but did not
1128                  * yet fixup the TID in user space.
1129                  *
1130                  * Take a ref on the state and return success. [6]
1131                  */
1132                 if (!pid)
1133                         goto out_attach;
1134         } else {
1135                 /*
1136                  * If the owner died bit is not set, then the pi_state
1137                  * must have an owner. [7]
1138                  */
1139                 if (!pi_state->owner)
1140                         goto out_einval;
1141         }
1142
1143         /*
1144          * Bail out if user space manipulated the futex value. If pi
1145          * state exists then the owner TID must be the same as the
1146          * user space TID. [9/10]
1147          */
1148         if (pid != task_pid_vnr(pi_state->owner))
1149                 goto out_einval;
1150
1151 out_attach:
1152         get_pi_state(pi_state);
1153         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1154         *ps = pi_state;
1155         return 0;
1156
1157 out_einval:
1158         ret = -EINVAL;
1159         goto out_error;
1160
1161 out_eagain:
1162         ret = -EAGAIN;
1163         goto out_error;
1164
1165 out_efault:
1166         ret = -EFAULT;
1167         goto out_error;
1168
1169 out_error:
1170         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1171         return ret;
1172 }
1173
1174 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1175                             struct task_struct *tsk)
1176 {
1177         u32 uval2;
1178
1179         /*
1180          * If PF_EXITPIDONE is not yet set, then try again.
1181          */
1182         if (tsk && !(tsk->flags & PF_EXITPIDONE))
1183                 return -EAGAIN;
1184
1185         /*
1186          * Reread the user space value to handle the following situation:
1187          *
1188          * CPU0                         CPU1
1189          *
1190          * sys_exit()                   sys_futex()
1191          *  do_exit()                    futex_lock_pi()
1192          *                                futex_lock_pi_atomic()
1193          *   exit_signals(tsk)              No waiters:
1194          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1195          *  mm_release(tsk)                 Set waiter bit
1196          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1197          *      Set owner died              attach_to_pi_owner() {
1198          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1199          *   }                               if (!tsk->flags & PF_EXITING) {
1200          *  ...                                attach();
1201          *  tsk->flags |= PF_EXITPIDONE;     } else {
1202          *                                     if (!(tsk->flags & PF_EXITPIDONE))
1203          *                                       return -EAGAIN;
1204          *                                     return -ESRCH; <--- FAIL
1205          *                                   }
1206          *
1207          * Returning ESRCH unconditionally is wrong here because the
1208          * user space value has been changed by the exiting task.
1209          *
1210          * The same logic applies to the case where the exiting task is
1211          * already gone.
1212          */
1213         if (get_futex_value_locked(&uval2, uaddr))
1214                 return -EFAULT;
1215
1216         /* If the user space value has changed, try again. */
1217         if (uval2 != uval)
1218                 return -EAGAIN;
1219
1220         /*
1221          * The exiting task did not have a robust list, the robust list was
1222          * corrupted or the user space value in *uaddr is simply bogus.
1223          * Give up and tell user space.
1224          */
1225         return -ESRCH;
1226 }
1227
1228 /*
1229  * Lookup the task for the TID provided from user space and attach to
1230  * it after doing proper sanity checks.
1231  */
1232 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1233                               struct futex_pi_state **ps)
1234 {
1235         pid_t pid = uval & FUTEX_TID_MASK;
1236         struct futex_pi_state *pi_state;
1237         struct task_struct *p;
1238
1239         /*
1240          * We are the first waiter - try to look up the real owner and attach
1241          * the new pi_state to it, but bail out when TID = 0 [1]
1242          *
1243          * The !pid check is paranoid. None of the call sites should end up
1244          * with pid == 0, but better safe than sorry. Let the caller retry
1245          */
1246         if (!pid)
1247                 return -EAGAIN;
1248         p = find_get_task_by_vpid(pid);
1249         if (!p)
1250                 return handle_exit_race(uaddr, uval, NULL);
1251
1252         if (unlikely(p->flags & PF_KTHREAD)) {
1253                 put_task_struct(p);
1254                 return -EPERM;
1255         }
1256
1257         /*
1258          * We need to look at the task state flags to figure out,
1259          * whether the task is exiting. To protect against the do_exit
1260          * change of the task flags, we do this protected by
1261          * p->pi_lock:
1262          */
1263         raw_spin_lock_irq(&p->pi_lock);
1264         if (unlikely(p->flags & PF_EXITING)) {
1265                 /*
1266                  * The task is on the way out. When PF_EXITPIDONE is
1267                  * set, we know that the task has finished the
1268                  * cleanup:
1269                  */
1270                 int ret = handle_exit_race(uaddr, uval, p);
1271
1272                 raw_spin_unlock_irq(&p->pi_lock);
1273                 put_task_struct(p);
1274                 return ret;
1275         }
1276
1277         /*
1278          * No existing pi state. First waiter. [2]
1279          *
1280          * This creates pi_state, we have hb->lock held, this means nothing can
1281          * observe this state, wait_lock is irrelevant.
1282          */
1283         pi_state = alloc_pi_state();
1284
1285         /*
1286          * Initialize the pi_mutex in locked state and make @p
1287          * the owner of it:
1288          */
1289         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1290
1291         /* Store the key for possible exit cleanups: */
1292         pi_state->key = *key;
1293
1294         WARN_ON(!list_empty(&pi_state->list));
1295         list_add(&pi_state->list, &p->pi_state_list);
1296         /*
1297          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1298          * because there is no concurrency as the object is not published yet.
1299          */
1300         pi_state->owner = p;
1301         raw_spin_unlock_irq(&p->pi_lock);
1302
1303         put_task_struct(p);
1304
1305         *ps = pi_state;
1306
1307         return 0;
1308 }
1309
1310 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1311                            struct futex_hash_bucket *hb,
1312                            union futex_key *key, struct futex_pi_state **ps)
1313 {
1314         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1315
1316         /*
1317          * If there is a waiter on that futex, validate it and
1318          * attach to the pi_state when the validation succeeds.
1319          */
1320         if (top_waiter)
1321                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1322
1323         /*
1324          * We are the first waiter - try to look up the owner based on
1325          * @uval and attach to it.
1326          */
1327         return attach_to_pi_owner(uaddr, uval, key, ps);
1328 }
1329
1330 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1331 {
1332         int err;
1333         u32 uninitialized_var(curval);
1334
1335         if (unlikely(should_fail_futex(true)))
1336                 return -EFAULT;
1337
1338         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1339         if (unlikely(err))
1340                 return err;
1341
1342         /* If user space value changed, let the caller retry */
1343         return curval != uval ? -EAGAIN : 0;
1344 }
1345
1346 /**
1347  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1348  * @uaddr:              the pi futex user address
1349  * @hb:                 the pi futex hash bucket
1350  * @key:                the futex key associated with uaddr and hb
1351  * @ps:                 the pi_state pointer where we store the result of the
1352  *                      lookup
1353  * @task:               the task to perform the atomic lock work for.  This will
1354  *                      be "current" except in the case of requeue pi.
1355  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1356  *
1357  * Return:
1358  *  -  0 - ready to wait;
1359  *  -  1 - acquired the lock;
1360  *  - <0 - error
1361  *
1362  * The hb->lock and futex_key refs shall be held by the caller.
1363  */
1364 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1365                                 union futex_key *key,
1366                                 struct futex_pi_state **ps,
1367                                 struct task_struct *task, int set_waiters)
1368 {
1369         u32 uval, newval, vpid = task_pid_vnr(task);
1370         struct futex_q *top_waiter;
1371         int ret;
1372
1373         /*
1374          * Read the user space value first so we can validate a few
1375          * things before proceeding further.
1376          */
1377         if (get_futex_value_locked(&uval, uaddr))
1378                 return -EFAULT;
1379
1380         if (unlikely(should_fail_futex(true)))
1381                 return -EFAULT;
1382
1383         /*
1384          * Detect deadlocks.
1385          */
1386         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1387                 return -EDEADLK;
1388
1389         if ((unlikely(should_fail_futex(true))))
1390                 return -EDEADLK;
1391
1392         /*
1393          * Lookup existing state first. If it exists, try to attach to
1394          * its pi_state.
1395          */
1396         top_waiter = futex_top_waiter(hb, key);
1397         if (top_waiter)
1398                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1399
1400         /*
1401          * No waiter and user TID is 0. We are here because the
1402          * waiters or the owner died bit is set or called from
1403          * requeue_cmp_pi or for whatever reason something took the
1404          * syscall.
1405          */
1406         if (!(uval & FUTEX_TID_MASK)) {
1407                 /*
1408                  * We take over the futex. No other waiters and the user space
1409                  * TID is 0. We preserve the owner died bit.
1410                  */
1411                 newval = uval & FUTEX_OWNER_DIED;
1412                 newval |= vpid;
1413
1414                 /* The futex requeue_pi code can enforce the waiters bit */
1415                 if (set_waiters)
1416                         newval |= FUTEX_WAITERS;
1417
1418                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1419                 /* If the take over worked, return 1 */
1420                 return ret < 0 ? ret : 1;
1421         }
1422
1423         /*
1424          * First waiter. Set the waiters bit before attaching ourself to
1425          * the owner. If owner tries to unlock, it will be forced into
1426          * the kernel and blocked on hb->lock.
1427          */
1428         newval = uval | FUTEX_WAITERS;
1429         ret = lock_pi_update_atomic(uaddr, uval, newval);
1430         if (ret)
1431                 return ret;
1432         /*
1433          * If the update of the user space value succeeded, we try to
1434          * attach to the owner. If that fails, no harm done, we only
1435          * set the FUTEX_WAITERS bit in the user space variable.
1436          */
1437         return attach_to_pi_owner(uaddr, newval, key, ps);
1438 }
1439
1440 /**
1441  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1442  * @q:  The futex_q to unqueue
1443  *
1444  * The q->lock_ptr must not be NULL and must be held by the caller.
1445  */
1446 static void __unqueue_futex(struct futex_q *q)
1447 {
1448         struct futex_hash_bucket *hb;
1449
1450         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1451                 return;
1452         lockdep_assert_held(q->lock_ptr);
1453
1454         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1455         plist_del(&q->list, &hb->chain);
1456         hb_waiters_dec(hb);
1457 }
1458
1459 /*
1460  * The hash bucket lock must be held when this is called.
1461  * Afterwards, the futex_q must not be accessed. Callers
1462  * must ensure to later call wake_up_q() for the actual
1463  * wakeups to occur.
1464  */
1465 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1466 {
1467         struct task_struct *p = q->task;
1468
1469         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1470                 return;
1471
1472         get_task_struct(p);
1473         __unqueue_futex(q);
1474         /*
1475          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1476          * is written, without taking any locks. This is possible in the event
1477          * of a spurious wakeup, for example. A memory barrier is required here
1478          * to prevent the following store to lock_ptr from getting ahead of the
1479          * plist_del in __unqueue_futex().
1480          */
1481         smp_store_release(&q->lock_ptr, NULL);
1482
1483         /*
1484          * Queue the task for later wakeup for after we've released
1485          * the hb->lock. wake_q_add() grabs reference to p.
1486          */
1487         wake_q_add_safe(wake_q, p);
1488 }
1489
1490 /*
1491  * Caller must hold a reference on @pi_state.
1492  */
1493 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1494 {
1495         u32 uninitialized_var(curval), newval;
1496         struct task_struct *new_owner;
1497         bool postunlock = false;
1498         DEFINE_WAKE_Q(wake_q);
1499         int ret = 0;
1500
1501         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1502         if (WARN_ON_ONCE(!new_owner)) {
1503                 /*
1504                  * As per the comment in futex_unlock_pi() this should not happen.
1505                  *
1506                  * When this happens, give up our locks and try again, giving
1507                  * the futex_lock_pi() instance time to complete, either by
1508                  * waiting on the rtmutex or removing itself from the futex
1509                  * queue.
1510                  */
1511                 ret = -EAGAIN;
1512                 goto out_unlock;
1513         }
1514
1515         /*
1516          * We pass it to the next owner. The WAITERS bit is always kept
1517          * enabled while there is PI state around. We cleanup the owner
1518          * died bit, because we are the owner.
1519          */
1520         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1521
1522         if (unlikely(should_fail_futex(true)))
1523                 ret = -EFAULT;
1524
1525         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1526         if (!ret && (curval != uval)) {
1527                 /*
1528                  * If a unconditional UNLOCK_PI operation (user space did not
1529                  * try the TID->0 transition) raced with a waiter setting the
1530                  * FUTEX_WAITERS flag between get_user() and locking the hash
1531                  * bucket lock, retry the operation.
1532                  */
1533                 if ((FUTEX_TID_MASK & curval) == uval)
1534                         ret = -EAGAIN;
1535                 else
1536                         ret = -EINVAL;
1537         }
1538
1539         if (ret)
1540                 goto out_unlock;
1541
1542         /*
1543          * This is a point of no return; once we modify the uval there is no
1544          * going back and subsequent operations must not fail.
1545          */
1546
1547         raw_spin_lock(&pi_state->owner->pi_lock);
1548         WARN_ON(list_empty(&pi_state->list));
1549         list_del_init(&pi_state->list);
1550         raw_spin_unlock(&pi_state->owner->pi_lock);
1551
1552         raw_spin_lock(&new_owner->pi_lock);
1553         WARN_ON(!list_empty(&pi_state->list));
1554         list_add(&pi_state->list, &new_owner->pi_state_list);
1555         pi_state->owner = new_owner;
1556         raw_spin_unlock(&new_owner->pi_lock);
1557
1558         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1559
1560 out_unlock:
1561         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1562
1563         if (postunlock)
1564                 rt_mutex_postunlock(&wake_q);
1565
1566         return ret;
1567 }
1568
1569 /*
1570  * Express the locking dependencies for lockdep:
1571  */
1572 static inline void
1573 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1574 {
1575         if (hb1 <= hb2) {
1576                 spin_lock(&hb1->lock);
1577                 if (hb1 < hb2)
1578                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1579         } else { /* hb1 > hb2 */
1580                 spin_lock(&hb2->lock);
1581                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1582         }
1583 }
1584
1585 static inline void
1586 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1587 {
1588         spin_unlock(&hb1->lock);
1589         if (hb1 != hb2)
1590                 spin_unlock(&hb2->lock);
1591 }
1592
1593 /*
1594  * Wake up waiters matching bitset queued on this futex (uaddr).
1595  */
1596 static int
1597 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1598 {
1599         struct futex_hash_bucket *hb;
1600         struct futex_q *this, *next;
1601         union futex_key key = FUTEX_KEY_INIT;
1602         int ret;
1603         DEFINE_WAKE_Q(wake_q);
1604
1605         if (!bitset)
1606                 return -EINVAL;
1607
1608         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1609         if (unlikely(ret != 0))
1610                 goto out;
1611
1612         hb = hash_futex(&key);
1613
1614         /* Make sure we really have tasks to wakeup */
1615         if (!hb_waiters_pending(hb))
1616                 goto out_put_key;
1617
1618         spin_lock(&hb->lock);
1619
1620         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1621                 if (match_futex (&this->key, &key)) {
1622                         if (this->pi_state || this->rt_waiter) {
1623                                 ret = -EINVAL;
1624                                 break;
1625                         }
1626
1627                         /* Check if one of the bits is set in both bitsets */
1628                         if (!(this->bitset & bitset))
1629                                 continue;
1630
1631                         mark_wake_futex(&wake_q, this);
1632                         if (++ret >= nr_wake)
1633                                 break;
1634                 }
1635         }
1636
1637         spin_unlock(&hb->lock);
1638         wake_up_q(&wake_q);
1639 out_put_key:
1640         put_futex_key(&key);
1641 out:
1642         return ret;
1643 }
1644
1645 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1646 {
1647         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1648         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1649         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1650         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1651         int oldval, ret;
1652
1653         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1654                 if (oparg < 0 || oparg > 31) {
1655                         char comm[sizeof(current->comm)];
1656                         /*
1657                          * kill this print and return -EINVAL when userspace
1658                          * is sane again
1659                          */
1660                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1661                                         get_task_comm(comm, current), oparg);
1662                         oparg &= 31;
1663                 }
1664                 oparg = 1 << oparg;
1665         }
1666
1667         if (!access_ok(uaddr, sizeof(u32)))
1668                 return -EFAULT;
1669
1670         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1671         if (ret)
1672                 return ret;
1673
1674         switch (cmp) {
1675         case FUTEX_OP_CMP_EQ:
1676                 return oldval == cmparg;
1677         case FUTEX_OP_CMP_NE:
1678                 return oldval != cmparg;
1679         case FUTEX_OP_CMP_LT:
1680                 return oldval < cmparg;
1681         case FUTEX_OP_CMP_GE:
1682                 return oldval >= cmparg;
1683         case FUTEX_OP_CMP_LE:
1684                 return oldval <= cmparg;
1685         case FUTEX_OP_CMP_GT:
1686                 return oldval > cmparg;
1687         default:
1688                 return -ENOSYS;
1689         }
1690 }
1691
1692 /*
1693  * Wake up all waiters hashed on the physical page that is mapped
1694  * to this virtual address:
1695  */
1696 static int
1697 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1698               int nr_wake, int nr_wake2, int op)
1699 {
1700         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1701         struct futex_hash_bucket *hb1, *hb2;
1702         struct futex_q *this, *next;
1703         int ret, op_ret;
1704         DEFINE_WAKE_Q(wake_q);
1705
1706 retry:
1707         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1708         if (unlikely(ret != 0))
1709                 goto out;
1710         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1711         if (unlikely(ret != 0))
1712                 goto out_put_key1;
1713
1714         hb1 = hash_futex(&key1);
1715         hb2 = hash_futex(&key2);
1716
1717 retry_private:
1718         double_lock_hb(hb1, hb2);
1719         op_ret = futex_atomic_op_inuser(op, uaddr2);
1720         if (unlikely(op_ret < 0)) {
1721                 double_unlock_hb(hb1, hb2);
1722
1723                 if (!IS_ENABLED(CONFIG_MMU) ||
1724                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1725                         /*
1726                          * we don't get EFAULT from MMU faults if we don't have
1727                          * an MMU, but we might get them from range checking
1728                          */
1729                         ret = op_ret;
1730                         goto out_put_keys;
1731                 }
1732
1733                 if (op_ret == -EFAULT) {
1734                         ret = fault_in_user_writeable(uaddr2);
1735                         if (ret)
1736                                 goto out_put_keys;
1737                 }
1738
1739                 if (!(flags & FLAGS_SHARED)) {
1740                         cond_resched();
1741                         goto retry_private;
1742                 }
1743
1744                 put_futex_key(&key2);
1745                 put_futex_key(&key1);
1746                 cond_resched();
1747                 goto retry;
1748         }
1749
1750         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1751                 if (match_futex (&this->key, &key1)) {
1752                         if (this->pi_state || this->rt_waiter) {
1753                                 ret = -EINVAL;
1754                                 goto out_unlock;
1755                         }
1756                         mark_wake_futex(&wake_q, this);
1757                         if (++ret >= nr_wake)
1758                                 break;
1759                 }
1760         }
1761
1762         if (op_ret > 0) {
1763                 op_ret = 0;
1764                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1765                         if (match_futex (&this->key, &key2)) {
1766                                 if (this->pi_state || this->rt_waiter) {
1767                                         ret = -EINVAL;
1768                                         goto out_unlock;
1769                                 }
1770                                 mark_wake_futex(&wake_q, this);
1771                                 if (++op_ret >= nr_wake2)
1772                                         break;
1773                         }
1774                 }
1775                 ret += op_ret;
1776         }
1777
1778 out_unlock:
1779         double_unlock_hb(hb1, hb2);
1780         wake_up_q(&wake_q);
1781 out_put_keys:
1782         put_futex_key(&key2);
1783 out_put_key1:
1784         put_futex_key(&key1);
1785 out:
1786         return ret;
1787 }
1788
1789 /**
1790  * requeue_futex() - Requeue a futex_q from one hb to another
1791  * @q:          the futex_q to requeue
1792  * @hb1:        the source hash_bucket
1793  * @hb2:        the target hash_bucket
1794  * @key2:       the new key for the requeued futex_q
1795  */
1796 static inline
1797 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1798                    struct futex_hash_bucket *hb2, union futex_key *key2)
1799 {
1800
1801         /*
1802          * If key1 and key2 hash to the same bucket, no need to
1803          * requeue.
1804          */
1805         if (likely(&hb1->chain != &hb2->chain)) {
1806                 plist_del(&q->list, &hb1->chain);
1807                 hb_waiters_dec(hb1);
1808                 hb_waiters_inc(hb2);
1809                 plist_add(&q->list, &hb2->chain);
1810                 q->lock_ptr = &hb2->lock;
1811         }
1812         get_futex_key_refs(key2);
1813         q->key = *key2;
1814 }
1815
1816 /**
1817  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1818  * @q:          the futex_q
1819  * @key:        the key of the requeue target futex
1820  * @hb:         the hash_bucket of the requeue target futex
1821  *
1822  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1823  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1824  * to the requeue target futex so the waiter can detect the wakeup on the right
1825  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1826  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1827  * to protect access to the pi_state to fixup the owner later.  Must be called
1828  * with both q->lock_ptr and hb->lock held.
1829  */
1830 static inline
1831 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1832                            struct futex_hash_bucket *hb)
1833 {
1834         get_futex_key_refs(key);
1835         q->key = *key;
1836
1837         __unqueue_futex(q);
1838
1839         WARN_ON(!q->rt_waiter);
1840         q->rt_waiter = NULL;
1841
1842         q->lock_ptr = &hb->lock;
1843
1844         wake_up_state(q->task, TASK_NORMAL);
1845 }
1846
1847 /**
1848  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1849  * @pifutex:            the user address of the to futex
1850  * @hb1:                the from futex hash bucket, must be locked by the caller
1851  * @hb2:                the to futex hash bucket, must be locked by the caller
1852  * @key1:               the from futex key
1853  * @key2:               the to futex key
1854  * @ps:                 address to store the pi_state pointer
1855  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1856  *
1857  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1858  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1859  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1860  * hb1 and hb2 must be held by the caller.
1861  *
1862  * Return:
1863  *  -  0 - failed to acquire the lock atomically;
1864  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1865  *  - <0 - error
1866  */
1867 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1868                                  struct futex_hash_bucket *hb1,
1869                                  struct futex_hash_bucket *hb2,
1870                                  union futex_key *key1, union futex_key *key2,
1871                                  struct futex_pi_state **ps, int set_waiters)
1872 {
1873         struct futex_q *top_waiter = NULL;
1874         u32 curval;
1875         int ret, vpid;
1876
1877         if (get_futex_value_locked(&curval, pifutex))
1878                 return -EFAULT;
1879
1880         if (unlikely(should_fail_futex(true)))
1881                 return -EFAULT;
1882
1883         /*
1884          * Find the top_waiter and determine if there are additional waiters.
1885          * If the caller intends to requeue more than 1 waiter to pifutex,
1886          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1887          * as we have means to handle the possible fault.  If not, don't set
1888          * the bit unecessarily as it will force the subsequent unlock to enter
1889          * the kernel.
1890          */
1891         top_waiter = futex_top_waiter(hb1, key1);
1892
1893         /* There are no waiters, nothing for us to do. */
1894         if (!top_waiter)
1895                 return 0;
1896
1897         /* Ensure we requeue to the expected futex. */
1898         if (!match_futex(top_waiter->requeue_pi_key, key2))
1899                 return -EINVAL;
1900
1901         /*
1902          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1903          * the contended case or if set_waiters is 1.  The pi_state is returned
1904          * in ps in contended cases.
1905          */
1906         vpid = task_pid_vnr(top_waiter->task);
1907         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1908                                    set_waiters);
1909         if (ret == 1) {
1910                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1911                 return vpid;
1912         }
1913         return ret;
1914 }
1915
1916 /**
1917  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1918  * @uaddr1:     source futex user address
1919  * @flags:      futex flags (FLAGS_SHARED, etc.)
1920  * @uaddr2:     target futex user address
1921  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1922  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1923  * @cmpval:     @uaddr1 expected value (or %NULL)
1924  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1925  *              pi futex (pi to pi requeue is not supported)
1926  *
1927  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1928  * uaddr2 atomically on behalf of the top waiter.
1929  *
1930  * Return:
1931  *  - >=0 - on success, the number of tasks requeued or woken;
1932  *  -  <0 - on error
1933  */
1934 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1935                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1936                          u32 *cmpval, int requeue_pi)
1937 {
1938         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1939         int drop_count = 0, task_count = 0, ret;
1940         struct futex_pi_state *pi_state = NULL;
1941         struct futex_hash_bucket *hb1, *hb2;
1942         struct futex_q *this, *next;
1943         DEFINE_WAKE_Q(wake_q);
1944
1945         if (nr_wake < 0 || nr_requeue < 0)
1946                 return -EINVAL;
1947
1948         /*
1949          * When PI not supported: return -ENOSYS if requeue_pi is true,
1950          * consequently the compiler knows requeue_pi is always false past
1951          * this point which will optimize away all the conditional code
1952          * further down.
1953          */
1954         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1955                 return -ENOSYS;
1956
1957         if (requeue_pi) {
1958                 /*
1959                  * Requeue PI only works on two distinct uaddrs. This
1960                  * check is only valid for private futexes. See below.
1961                  */
1962                 if (uaddr1 == uaddr2)
1963                         return -EINVAL;
1964
1965                 /*
1966                  * requeue_pi requires a pi_state, try to allocate it now
1967                  * without any locks in case it fails.
1968                  */
1969                 if (refill_pi_state_cache())
1970                         return -ENOMEM;
1971                 /*
1972                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1973                  * + nr_requeue, since it acquires the rt_mutex prior to
1974                  * returning to userspace, so as to not leave the rt_mutex with
1975                  * waiters and no owner.  However, second and third wake-ups
1976                  * cannot be predicted as they involve race conditions with the
1977                  * first wake and a fault while looking up the pi_state.  Both
1978                  * pthread_cond_signal() and pthread_cond_broadcast() should
1979                  * use nr_wake=1.
1980                  */
1981                 if (nr_wake != 1)
1982                         return -EINVAL;
1983         }
1984
1985 retry:
1986         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1987         if (unlikely(ret != 0))
1988                 goto out;
1989         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1990                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1991         if (unlikely(ret != 0))
1992                 goto out_put_key1;
1993
1994         /*
1995          * The check above which compares uaddrs is not sufficient for
1996          * shared futexes. We need to compare the keys:
1997          */
1998         if (requeue_pi && match_futex(&key1, &key2)) {
1999                 ret = -EINVAL;
2000                 goto out_put_keys;
2001         }
2002
2003         hb1 = hash_futex(&key1);
2004         hb2 = hash_futex(&key2);
2005
2006 retry_private:
2007         hb_waiters_inc(hb2);
2008         double_lock_hb(hb1, hb2);
2009
2010         if (likely(cmpval != NULL)) {
2011                 u32 curval;
2012
2013                 ret = get_futex_value_locked(&curval, uaddr1);
2014
2015                 if (unlikely(ret)) {
2016                         double_unlock_hb(hb1, hb2);
2017                         hb_waiters_dec(hb2);
2018
2019                         ret = get_user(curval, uaddr1);
2020                         if (ret)
2021                                 goto out_put_keys;
2022
2023                         if (!(flags & FLAGS_SHARED))
2024                                 goto retry_private;
2025
2026                         put_futex_key(&key2);
2027                         put_futex_key(&key1);
2028                         goto retry;
2029                 }
2030                 if (curval != *cmpval) {
2031                         ret = -EAGAIN;
2032                         goto out_unlock;
2033                 }
2034         }
2035
2036         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2037                 /*
2038                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2039                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2040                  * bit.  We force this here where we are able to easily handle
2041                  * faults rather in the requeue loop below.
2042                  */
2043                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2044                                                  &key2, &pi_state, nr_requeue);
2045
2046                 /*
2047                  * At this point the top_waiter has either taken uaddr2 or is
2048                  * waiting on it.  If the former, then the pi_state will not
2049                  * exist yet, look it up one more time to ensure we have a
2050                  * reference to it. If the lock was taken, ret contains the
2051                  * vpid of the top waiter task.
2052                  * If the lock was not taken, we have pi_state and an initial
2053                  * refcount on it. In case of an error we have nothing.
2054                  */
2055                 if (ret > 0) {
2056                         WARN_ON(pi_state);
2057                         drop_count++;
2058                         task_count++;
2059                         /*
2060                          * If we acquired the lock, then the user space value
2061                          * of uaddr2 should be vpid. It cannot be changed by
2062                          * the top waiter as it is blocked on hb2 lock if it
2063                          * tries to do so. If something fiddled with it behind
2064                          * our back the pi state lookup might unearth it. So
2065                          * we rather use the known value than rereading and
2066                          * handing potential crap to lookup_pi_state.
2067                          *
2068                          * If that call succeeds then we have pi_state and an
2069                          * initial refcount on it.
2070                          */
2071                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2072                 }
2073
2074                 switch (ret) {
2075                 case 0:
2076                         /* We hold a reference on the pi state. */
2077                         break;
2078
2079                         /* If the above failed, then pi_state is NULL */
2080                 case -EFAULT:
2081                         double_unlock_hb(hb1, hb2);
2082                         hb_waiters_dec(hb2);
2083                         put_futex_key(&key2);
2084                         put_futex_key(&key1);
2085                         ret = fault_in_user_writeable(uaddr2);
2086                         if (!ret)
2087                                 goto retry;
2088                         goto out;
2089                 case -EAGAIN:
2090                         /*
2091                          * Two reasons for this:
2092                          * - Owner is exiting and we just wait for the
2093                          *   exit to complete.
2094                          * - The user space value changed.
2095                          */
2096                         double_unlock_hb(hb1, hb2);
2097                         hb_waiters_dec(hb2);
2098                         put_futex_key(&key2);
2099                         put_futex_key(&key1);
2100                         cond_resched();
2101                         goto retry;
2102                 default:
2103                         goto out_unlock;
2104                 }
2105         }
2106
2107         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2108                 if (task_count - nr_wake >= nr_requeue)
2109                         break;
2110
2111                 if (!match_futex(&this->key, &key1))
2112                         continue;
2113
2114                 /*
2115                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2116                  * be paired with each other and no other futex ops.
2117                  *
2118                  * We should never be requeueing a futex_q with a pi_state,
2119                  * which is awaiting a futex_unlock_pi().
2120                  */
2121                 if ((requeue_pi && !this->rt_waiter) ||
2122                     (!requeue_pi && this->rt_waiter) ||
2123                     this->pi_state) {
2124                         ret = -EINVAL;
2125                         break;
2126                 }
2127
2128                 /*
2129                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2130                  * lock, we already woke the top_waiter.  If not, it will be
2131                  * woken by futex_unlock_pi().
2132                  */
2133                 if (++task_count <= nr_wake && !requeue_pi) {
2134                         mark_wake_futex(&wake_q, this);
2135                         continue;
2136                 }
2137
2138                 /* Ensure we requeue to the expected futex for requeue_pi. */
2139                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2140                         ret = -EINVAL;
2141                         break;
2142                 }
2143
2144                 /*
2145                  * Requeue nr_requeue waiters and possibly one more in the case
2146                  * of requeue_pi if we couldn't acquire the lock atomically.
2147                  */
2148                 if (requeue_pi) {
2149                         /*
2150                          * Prepare the waiter to take the rt_mutex. Take a
2151                          * refcount on the pi_state and store the pointer in
2152                          * the futex_q object of the waiter.
2153                          */
2154                         get_pi_state(pi_state);
2155                         this->pi_state = pi_state;
2156                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2157                                                         this->rt_waiter,
2158                                                         this->task);
2159                         if (ret == 1) {
2160                                 /*
2161                                  * We got the lock. We do neither drop the
2162                                  * refcount on pi_state nor clear
2163                                  * this->pi_state because the waiter needs the
2164                                  * pi_state for cleaning up the user space
2165                                  * value. It will drop the refcount after
2166                                  * doing so.
2167                                  */
2168                                 requeue_pi_wake_futex(this, &key2, hb2);
2169                                 drop_count++;
2170                                 continue;
2171                         } else if (ret) {
2172                                 /*
2173                                  * rt_mutex_start_proxy_lock() detected a
2174                                  * potential deadlock when we tried to queue
2175                                  * that waiter. Drop the pi_state reference
2176                                  * which we took above and remove the pointer
2177                                  * to the state from the waiters futex_q
2178                                  * object.
2179                                  */
2180                                 this->pi_state = NULL;
2181                                 put_pi_state(pi_state);
2182                                 /*
2183                                  * We stop queueing more waiters and let user
2184                                  * space deal with the mess.
2185                                  */
2186                                 break;
2187                         }
2188                 }
2189                 requeue_futex(this, hb1, hb2, &key2);
2190                 drop_count++;
2191         }
2192
2193         /*
2194          * We took an extra initial reference to the pi_state either
2195          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2196          * need to drop it here again.
2197          */
2198         put_pi_state(pi_state);
2199
2200 out_unlock:
2201         double_unlock_hb(hb1, hb2);
2202         wake_up_q(&wake_q);
2203         hb_waiters_dec(hb2);
2204
2205         /*
2206          * drop_futex_key_refs() must be called outside the spinlocks. During
2207          * the requeue we moved futex_q's from the hash bucket at key1 to the
2208          * one at key2 and updated their key pointer.  We no longer need to
2209          * hold the references to key1.
2210          */
2211         while (--drop_count >= 0)
2212                 drop_futex_key_refs(&key1);
2213
2214 out_put_keys:
2215         put_futex_key(&key2);
2216 out_put_key1:
2217         put_futex_key(&key1);
2218 out:
2219         return ret ? ret : task_count;
2220 }
2221
2222 /* The key must be already stored in q->key. */
2223 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2224         __acquires(&hb->lock)
2225 {
2226         struct futex_hash_bucket *hb;
2227
2228         hb = hash_futex(&q->key);
2229
2230         /*
2231          * Increment the counter before taking the lock so that
2232          * a potential waker won't miss a to-be-slept task that is
2233          * waiting for the spinlock. This is safe as all queue_lock()
2234          * users end up calling queue_me(). Similarly, for housekeeping,
2235          * decrement the counter at queue_unlock() when some error has
2236          * occurred and we don't end up adding the task to the list.
2237          */
2238         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2239
2240         q->lock_ptr = &hb->lock;
2241
2242         spin_lock(&hb->lock);
2243         return hb;
2244 }
2245
2246 static inline void
2247 queue_unlock(struct futex_hash_bucket *hb)
2248         __releases(&hb->lock)
2249 {
2250         spin_unlock(&hb->lock);
2251         hb_waiters_dec(hb);
2252 }
2253
2254 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2255 {
2256         int prio;
2257
2258         /*
2259          * The priority used to register this element is
2260          * - either the real thread-priority for the real-time threads
2261          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2262          * - or MAX_RT_PRIO for non-RT threads.
2263          * Thus, all RT-threads are woken first in priority order, and
2264          * the others are woken last, in FIFO order.
2265          */
2266         prio = min(current->normal_prio, MAX_RT_PRIO);
2267
2268         plist_node_init(&q->list, prio);
2269         plist_add(&q->list, &hb->chain);
2270         q->task = current;
2271 }
2272
2273 /**
2274  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2275  * @q:  The futex_q to enqueue
2276  * @hb: The destination hash bucket
2277  *
2278  * The hb->lock must be held by the caller, and is released here. A call to
2279  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2280  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2281  * or nothing if the unqueue is done as part of the wake process and the unqueue
2282  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2283  * an example).
2284  */
2285 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2286         __releases(&hb->lock)
2287 {
2288         __queue_me(q, hb);
2289         spin_unlock(&hb->lock);
2290 }
2291
2292 /**
2293  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2294  * @q:  The futex_q to unqueue
2295  *
2296  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2297  * be paired with exactly one earlier call to queue_me().
2298  *
2299  * Return:
2300  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2301  *  - 0 - if the futex_q was already removed by the waking thread
2302  */
2303 static int unqueue_me(struct futex_q *q)
2304 {
2305         spinlock_t *lock_ptr;
2306         int ret = 0;
2307
2308         /* In the common case we don't take the spinlock, which is nice. */
2309 retry:
2310         /*
2311          * q->lock_ptr can change between this read and the following spin_lock.
2312          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2313          * optimizing lock_ptr out of the logic below.
2314          */
2315         lock_ptr = READ_ONCE(q->lock_ptr);
2316         if (lock_ptr != NULL) {
2317                 spin_lock(lock_ptr);
2318                 /*
2319                  * q->lock_ptr can change between reading it and
2320                  * spin_lock(), causing us to take the wrong lock.  This
2321                  * corrects the race condition.
2322                  *
2323                  * Reasoning goes like this: if we have the wrong lock,
2324                  * q->lock_ptr must have changed (maybe several times)
2325                  * between reading it and the spin_lock().  It can
2326                  * change again after the spin_lock() but only if it was
2327                  * already changed before the spin_lock().  It cannot,
2328                  * however, change back to the original value.  Therefore
2329                  * we can detect whether we acquired the correct lock.
2330                  */
2331                 if (unlikely(lock_ptr != q->lock_ptr)) {
2332                         spin_unlock(lock_ptr);
2333                         goto retry;
2334                 }
2335                 __unqueue_futex(q);
2336
2337                 BUG_ON(q->pi_state);
2338
2339                 spin_unlock(lock_ptr);
2340                 ret = 1;
2341         }
2342
2343         drop_futex_key_refs(&q->key);
2344         return ret;
2345 }
2346
2347 /*
2348  * PI futexes can not be requeued and must remove themself from the
2349  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2350  * and dropped here.
2351  */
2352 static void unqueue_me_pi(struct futex_q *q)
2353         __releases(q->lock_ptr)
2354 {
2355         __unqueue_futex(q);
2356
2357         BUG_ON(!q->pi_state);
2358         put_pi_state(q->pi_state);
2359         q->pi_state = NULL;
2360
2361         spin_unlock(q->lock_ptr);
2362 }
2363
2364 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2365                                 struct task_struct *argowner)
2366 {
2367         struct futex_pi_state *pi_state = q->pi_state;
2368         u32 uval, uninitialized_var(curval), newval;
2369         struct task_struct *oldowner, *newowner;
2370         u32 newtid;
2371         int ret, err = 0;
2372
2373         lockdep_assert_held(q->lock_ptr);
2374
2375         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2376
2377         oldowner = pi_state->owner;
2378
2379         /*
2380          * We are here because either:
2381          *
2382          *  - we stole the lock and pi_state->owner needs updating to reflect
2383          *    that (@argowner == current),
2384          *
2385          * or:
2386          *
2387          *  - someone stole our lock and we need to fix things to point to the
2388          *    new owner (@argowner == NULL).
2389          *
2390          * Either way, we have to replace the TID in the user space variable.
2391          * This must be atomic as we have to preserve the owner died bit here.
2392          *
2393          * Note: We write the user space value _before_ changing the pi_state
2394          * because we can fault here. Imagine swapped out pages or a fork
2395          * that marked all the anonymous memory readonly for cow.
2396          *
2397          * Modifying pi_state _before_ the user space value would leave the
2398          * pi_state in an inconsistent state when we fault here, because we
2399          * need to drop the locks to handle the fault. This might be observed
2400          * in the PID check in lookup_pi_state.
2401          */
2402 retry:
2403         if (!argowner) {
2404                 if (oldowner != current) {
2405                         /*
2406                          * We raced against a concurrent self; things are
2407                          * already fixed up. Nothing to do.
2408                          */
2409                         ret = 0;
2410                         goto out_unlock;
2411                 }
2412
2413                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2414                         /* We got the lock after all, nothing to fix. */
2415                         ret = 0;
2416                         goto out_unlock;
2417                 }
2418
2419                 /*
2420                  * Since we just failed the trylock; there must be an owner.
2421                  */
2422                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2423                 BUG_ON(!newowner);
2424         } else {
2425                 WARN_ON_ONCE(argowner != current);
2426                 if (oldowner == current) {
2427                         /*
2428                          * We raced against a concurrent self; things are
2429                          * already fixed up. Nothing to do.
2430                          */
2431                         ret = 0;
2432                         goto out_unlock;
2433                 }
2434                 newowner = argowner;
2435         }
2436
2437         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2438         /* Owner died? */
2439         if (!pi_state->owner)
2440                 newtid |= FUTEX_OWNER_DIED;
2441
2442         err = get_futex_value_locked(&uval, uaddr);
2443         if (err)
2444                 goto handle_err;
2445
2446         for (;;) {
2447                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2448
2449                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2450                 if (err)
2451                         goto handle_err;
2452
2453                 if (curval == uval)
2454                         break;
2455                 uval = curval;
2456         }
2457
2458         /*
2459          * We fixed up user space. Now we need to fix the pi_state
2460          * itself.
2461          */
2462         if (pi_state->owner != NULL) {
2463                 raw_spin_lock(&pi_state->owner->pi_lock);
2464                 WARN_ON(list_empty(&pi_state->list));
2465                 list_del_init(&pi_state->list);
2466                 raw_spin_unlock(&pi_state->owner->pi_lock);
2467         }
2468
2469         pi_state->owner = newowner;
2470
2471         raw_spin_lock(&newowner->pi_lock);
2472         WARN_ON(!list_empty(&pi_state->list));
2473         list_add(&pi_state->list, &newowner->pi_state_list);
2474         raw_spin_unlock(&newowner->pi_lock);
2475         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2476
2477         return 0;
2478
2479         /*
2480          * In order to reschedule or handle a page fault, we need to drop the
2481          * locks here. In the case of a fault, this gives the other task
2482          * (either the highest priority waiter itself or the task which stole
2483          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2484          * are back from handling the fault we need to check the pi_state after
2485          * reacquiring the locks and before trying to do another fixup. When
2486          * the fixup has been done already we simply return.
2487          *
2488          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2489          * drop hb->lock since the caller owns the hb -> futex_q relation.
2490          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2491          */
2492 handle_err:
2493         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2494         spin_unlock(q->lock_ptr);
2495
2496         switch (err) {
2497         case -EFAULT:
2498                 ret = fault_in_user_writeable(uaddr);
2499                 break;
2500
2501         case -EAGAIN:
2502                 cond_resched();
2503                 ret = 0;
2504                 break;
2505
2506         default:
2507                 WARN_ON_ONCE(1);
2508                 ret = err;
2509                 break;
2510         }
2511
2512         spin_lock(q->lock_ptr);
2513         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2514
2515         /*
2516          * Check if someone else fixed it for us:
2517          */
2518         if (pi_state->owner != oldowner) {
2519                 ret = 0;
2520                 goto out_unlock;
2521         }
2522
2523         if (ret)
2524                 goto out_unlock;
2525
2526         goto retry;
2527
2528 out_unlock:
2529         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2530         return ret;
2531 }
2532
2533 static long futex_wait_restart(struct restart_block *restart);
2534
2535 /**
2536  * fixup_owner() - Post lock pi_state and corner case management
2537  * @uaddr:      user address of the futex
2538  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2539  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2540  *
2541  * After attempting to lock an rt_mutex, this function is called to cleanup
2542  * the pi_state owner as well as handle race conditions that may allow us to
2543  * acquire the lock. Must be called with the hb lock held.
2544  *
2545  * Return:
2546  *  -  1 - success, lock taken;
2547  *  -  0 - success, lock not taken;
2548  *  - <0 - on error (-EFAULT)
2549  */
2550 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2551 {
2552         int ret = 0;
2553
2554         if (locked) {
2555                 /*
2556                  * Got the lock. We might not be the anticipated owner if we
2557                  * did a lock-steal - fix up the PI-state in that case:
2558                  *
2559                  * Speculative pi_state->owner read (we don't hold wait_lock);
2560                  * since we own the lock pi_state->owner == current is the
2561                  * stable state, anything else needs more attention.
2562                  */
2563                 if (q->pi_state->owner != current)
2564                         ret = fixup_pi_state_owner(uaddr, q, current);
2565                 goto out;
2566         }
2567
2568         /*
2569          * If we didn't get the lock; check if anybody stole it from us. In
2570          * that case, we need to fix up the uval to point to them instead of
2571          * us, otherwise bad things happen. [10]
2572          *
2573          * Another speculative read; pi_state->owner == current is unstable
2574          * but needs our attention.
2575          */
2576         if (q->pi_state->owner == current) {
2577                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2578                 goto out;
2579         }
2580
2581         /*
2582          * Paranoia check. If we did not take the lock, then we should not be
2583          * the owner of the rt_mutex.
2584          */
2585         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2586                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2587                                 "pi-state %p\n", ret,
2588                                 q->pi_state->pi_mutex.owner,
2589                                 q->pi_state->owner);
2590         }
2591
2592 out:
2593         return ret ? ret : locked;
2594 }
2595
2596 /**
2597  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2598  * @hb:         the futex hash bucket, must be locked by the caller
2599  * @q:          the futex_q to queue up on
2600  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2601  */
2602 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2603                                 struct hrtimer_sleeper *timeout)
2604 {
2605         /*
2606          * The task state is guaranteed to be set before another task can
2607          * wake it. set_current_state() is implemented using smp_store_mb() and
2608          * queue_me() calls spin_unlock() upon completion, both serializing
2609          * access to the hash list and forcing another memory barrier.
2610          */
2611         set_current_state(TASK_INTERRUPTIBLE);
2612         queue_me(q, hb);
2613
2614         /* Arm the timer */
2615         if (timeout)
2616                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2617
2618         /*
2619          * If we have been removed from the hash list, then another task
2620          * has tried to wake us, and we can skip the call to schedule().
2621          */
2622         if (likely(!plist_node_empty(&q->list))) {
2623                 /*
2624                  * If the timer has already expired, current will already be
2625                  * flagged for rescheduling. Only call schedule if there
2626                  * is no timeout, or if it has yet to expire.
2627                  */
2628                 if (!timeout || timeout->task)
2629                         freezable_schedule();
2630         }
2631         __set_current_state(TASK_RUNNING);
2632 }
2633
2634 /**
2635  * futex_wait_setup() - Prepare to wait on a futex
2636  * @uaddr:      the futex userspace address
2637  * @val:        the expected value
2638  * @flags:      futex flags (FLAGS_SHARED, etc.)
2639  * @q:          the associated futex_q
2640  * @hb:         storage for hash_bucket pointer to be returned to caller
2641  *
2642  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2643  * compare it with the expected value.  Handle atomic faults internally.
2644  * Return with the hb lock held and a q.key reference on success, and unlocked
2645  * with no q.key reference on failure.
2646  *
2647  * Return:
2648  *  -  0 - uaddr contains val and hb has been locked;
2649  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2650  */
2651 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2652                            struct futex_q *q, struct futex_hash_bucket **hb)
2653 {
2654         u32 uval;
2655         int ret;
2656
2657         /*
2658          * Access the page AFTER the hash-bucket is locked.
2659          * Order is important:
2660          *
2661          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2662          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2663          *
2664          * The basic logical guarantee of a futex is that it blocks ONLY
2665          * if cond(var) is known to be true at the time of blocking, for
2666          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2667          * would open a race condition where we could block indefinitely with
2668          * cond(var) false, which would violate the guarantee.
2669          *
2670          * On the other hand, we insert q and release the hash-bucket only
2671          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2672          * absorb a wakeup if *uaddr does not match the desired values
2673          * while the syscall executes.
2674          */
2675 retry:
2676         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2677         if (unlikely(ret != 0))
2678                 return ret;
2679
2680 retry_private:
2681         *hb = queue_lock(q);
2682
2683         ret = get_futex_value_locked(&uval, uaddr);
2684
2685         if (ret) {
2686                 queue_unlock(*hb);
2687
2688                 ret = get_user(uval, uaddr);
2689                 if (ret)
2690                         goto out;
2691
2692                 if (!(flags & FLAGS_SHARED))
2693                         goto retry_private;
2694
2695                 put_futex_key(&q->key);
2696                 goto retry;
2697         }
2698
2699         if (uval != val) {
2700                 queue_unlock(*hb);
2701                 ret = -EWOULDBLOCK;
2702         }
2703
2704 out:
2705         if (ret)
2706                 put_futex_key(&q->key);
2707         return ret;
2708 }
2709
2710 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2711                       ktime_t *abs_time, u32 bitset)
2712 {
2713         struct hrtimer_sleeper timeout, *to;
2714         struct restart_block *restart;
2715         struct futex_hash_bucket *hb;
2716         struct futex_q q = futex_q_init;
2717         int ret;
2718
2719         if (!bitset)
2720                 return -EINVAL;
2721         q.bitset = bitset;
2722
2723         to = futex_setup_timer(abs_time, &timeout, flags,
2724                                current->timer_slack_ns);
2725 retry:
2726         /*
2727          * Prepare to wait on uaddr. On success, holds hb lock and increments
2728          * q.key refs.
2729          */
2730         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2731         if (ret)
2732                 goto out;
2733
2734         /* queue_me and wait for wakeup, timeout, or a signal. */
2735         futex_wait_queue_me(hb, &q, to);
2736
2737         /* If we were woken (and unqueued), we succeeded, whatever. */
2738         ret = 0;
2739         /* unqueue_me() drops q.key ref */
2740         if (!unqueue_me(&q))
2741                 goto out;
2742         ret = -ETIMEDOUT;
2743         if (to && !to->task)
2744                 goto out;
2745
2746         /*
2747          * We expect signal_pending(current), but we might be the
2748          * victim of a spurious wakeup as well.
2749          */
2750         if (!signal_pending(current))
2751                 goto retry;
2752
2753         ret = -ERESTARTSYS;
2754         if (!abs_time)
2755                 goto out;
2756
2757         restart = &current->restart_block;
2758         restart->fn = futex_wait_restart;
2759         restart->futex.uaddr = uaddr;
2760         restart->futex.val = val;
2761         restart->futex.time = *abs_time;
2762         restart->futex.bitset = bitset;
2763         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2764
2765         ret = -ERESTART_RESTARTBLOCK;
2766
2767 out:
2768         if (to) {
2769                 hrtimer_cancel(&to->timer);
2770                 destroy_hrtimer_on_stack(&to->timer);
2771         }
2772         return ret;
2773 }
2774
2775
2776 static long futex_wait_restart(struct restart_block *restart)
2777 {
2778         u32 __user *uaddr = restart->futex.uaddr;
2779         ktime_t t, *tp = NULL;
2780
2781         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2782                 t = restart->futex.time;
2783                 tp = &t;
2784         }
2785         restart->fn = do_no_restart_syscall;
2786
2787         return (long)futex_wait(uaddr, restart->futex.flags,
2788                                 restart->futex.val, tp, restart->futex.bitset);
2789 }
2790
2791
2792 /*
2793  * Userspace tried a 0 -> TID atomic transition of the futex value
2794  * and failed. The kernel side here does the whole locking operation:
2795  * if there are waiters then it will block as a consequence of relying
2796  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2797  * a 0 value of the futex too.).
2798  *
2799  * Also serves as futex trylock_pi()'ing, and due semantics.
2800  */
2801 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2802                          ktime_t *time, int trylock)
2803 {
2804         struct hrtimer_sleeper timeout, *to;
2805         struct futex_pi_state *pi_state = NULL;
2806         struct rt_mutex_waiter rt_waiter;
2807         struct futex_hash_bucket *hb;
2808         struct futex_q q = futex_q_init;
2809         int res, ret;
2810
2811         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2812                 return -ENOSYS;
2813
2814         if (refill_pi_state_cache())
2815                 return -ENOMEM;
2816
2817         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2818
2819 retry:
2820         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2821         if (unlikely(ret != 0))
2822                 goto out;
2823
2824 retry_private:
2825         hb = queue_lock(&q);
2826
2827         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2828         if (unlikely(ret)) {
2829                 /*
2830                  * Atomic work succeeded and we got the lock,
2831                  * or failed. Either way, we do _not_ block.
2832                  */
2833                 switch (ret) {
2834                 case 1:
2835                         /* We got the lock. */
2836                         ret = 0;
2837                         goto out_unlock_put_key;
2838                 case -EFAULT:
2839                         goto uaddr_faulted;
2840                 case -EAGAIN:
2841                         /*
2842                          * Two reasons for this:
2843                          * - Task is exiting and we just wait for the
2844                          *   exit to complete.
2845                          * - The user space value changed.
2846                          */
2847                         queue_unlock(hb);
2848                         put_futex_key(&q.key);
2849                         cond_resched();
2850                         goto retry;
2851                 default:
2852                         goto out_unlock_put_key;
2853                 }
2854         }
2855
2856         WARN_ON(!q.pi_state);
2857
2858         /*
2859          * Only actually queue now that the atomic ops are done:
2860          */
2861         __queue_me(&q, hb);
2862
2863         if (trylock) {
2864                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2865                 /* Fixup the trylock return value: */
2866                 ret = ret ? 0 : -EWOULDBLOCK;
2867                 goto no_block;
2868         }
2869
2870         rt_mutex_init_waiter(&rt_waiter);
2871
2872         /*
2873          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2874          * hold it while doing rt_mutex_start_proxy(), because then it will
2875          * include hb->lock in the blocking chain, even through we'll not in
2876          * fact hold it while blocking. This will lead it to report -EDEADLK
2877          * and BUG when futex_unlock_pi() interleaves with this.
2878          *
2879          * Therefore acquire wait_lock while holding hb->lock, but drop the
2880          * latter before calling __rt_mutex_start_proxy_lock(). This
2881          * interleaves with futex_unlock_pi() -- which does a similar lock
2882          * handoff -- such that the latter can observe the futex_q::pi_state
2883          * before __rt_mutex_start_proxy_lock() is done.
2884          */
2885         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2886         spin_unlock(q.lock_ptr);
2887         /*
2888          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2889          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2890          * it sees the futex_q::pi_state.
2891          */
2892         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2893         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2894
2895         if (ret) {
2896                 if (ret == 1)
2897                         ret = 0;
2898                 goto cleanup;
2899         }
2900
2901         if (unlikely(to))
2902                 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2903
2904         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2905
2906 cleanup:
2907         spin_lock(q.lock_ptr);
2908         /*
2909          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2910          * first acquire the hb->lock before removing the lock from the
2911          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2912          * lists consistent.
2913          *
2914          * In particular; it is important that futex_unlock_pi() can not
2915          * observe this inconsistency.
2916          */
2917         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2918                 ret = 0;
2919
2920 no_block:
2921         /*
2922          * Fixup the pi_state owner and possibly acquire the lock if we
2923          * haven't already.
2924          */
2925         res = fixup_owner(uaddr, &q, !ret);
2926         /*
2927          * If fixup_owner() returned an error, proprogate that.  If it acquired
2928          * the lock, clear our -ETIMEDOUT or -EINTR.
2929          */
2930         if (res)
2931                 ret = (res < 0) ? res : 0;
2932
2933         /*
2934          * If fixup_owner() faulted and was unable to handle the fault, unlock
2935          * it and return the fault to userspace.
2936          */
2937         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2938                 pi_state = q.pi_state;
2939                 get_pi_state(pi_state);
2940         }
2941
2942         /* Unqueue and drop the lock */
2943         unqueue_me_pi(&q);
2944
2945         if (pi_state) {
2946                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2947                 put_pi_state(pi_state);
2948         }
2949
2950         goto out_put_key;
2951
2952 out_unlock_put_key:
2953         queue_unlock(hb);
2954
2955 out_put_key:
2956         put_futex_key(&q.key);
2957 out:
2958         if (to) {
2959                 hrtimer_cancel(&to->timer);
2960                 destroy_hrtimer_on_stack(&to->timer);
2961         }
2962         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2963
2964 uaddr_faulted:
2965         queue_unlock(hb);
2966
2967         ret = fault_in_user_writeable(uaddr);
2968         if (ret)
2969                 goto out_put_key;
2970
2971         if (!(flags & FLAGS_SHARED))
2972                 goto retry_private;
2973
2974         put_futex_key(&q.key);
2975         goto retry;
2976 }
2977
2978 /*
2979  * Userspace attempted a TID -> 0 atomic transition, and failed.
2980  * This is the in-kernel slowpath: we look up the PI state (if any),
2981  * and do the rt-mutex unlock.
2982  */
2983 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2984 {
2985         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2986         union futex_key key = FUTEX_KEY_INIT;
2987         struct futex_hash_bucket *hb;
2988         struct futex_q *top_waiter;
2989         int ret;
2990
2991         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2992                 return -ENOSYS;
2993
2994 retry:
2995         if (get_user(uval, uaddr))
2996                 return -EFAULT;
2997         /*
2998          * We release only a lock we actually own:
2999          */
3000         if ((uval & FUTEX_TID_MASK) != vpid)
3001                 return -EPERM;
3002
3003         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3004         if (ret)
3005                 return ret;
3006
3007         hb = hash_futex(&key);
3008         spin_lock(&hb->lock);
3009
3010         /*
3011          * Check waiters first. We do not trust user space values at
3012          * all and we at least want to know if user space fiddled
3013          * with the futex value instead of blindly unlocking.
3014          */
3015         top_waiter = futex_top_waiter(hb, &key);
3016         if (top_waiter) {
3017                 struct futex_pi_state *pi_state = top_waiter->pi_state;
3018
3019                 ret = -EINVAL;
3020                 if (!pi_state)
3021                         goto out_unlock;
3022
3023                 /*
3024                  * If current does not own the pi_state then the futex is
3025                  * inconsistent and user space fiddled with the futex value.
3026                  */
3027                 if (pi_state->owner != current)
3028                         goto out_unlock;
3029
3030                 get_pi_state(pi_state);
3031                 /*
3032                  * By taking wait_lock while still holding hb->lock, we ensure
3033                  * there is no point where we hold neither; and therefore
3034                  * wake_futex_pi() must observe a state consistent with what we
3035                  * observed.
3036                  *
3037                  * In particular; this forces __rt_mutex_start_proxy() to
3038                  * complete such that we're guaranteed to observe the
3039                  * rt_waiter. Also see the WARN in wake_futex_pi().
3040                  */
3041                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3042                 spin_unlock(&hb->lock);
3043
3044                 /* drops pi_state->pi_mutex.wait_lock */
3045                 ret = wake_futex_pi(uaddr, uval, pi_state);
3046
3047                 put_pi_state(pi_state);
3048
3049                 /*
3050                  * Success, we're done! No tricky corner cases.
3051                  */
3052                 if (!ret)
3053                         goto out_putkey;
3054                 /*
3055                  * The atomic access to the futex value generated a
3056                  * pagefault, so retry the user-access and the wakeup:
3057                  */
3058                 if (ret == -EFAULT)
3059                         goto pi_faulted;
3060                 /*
3061                  * A unconditional UNLOCK_PI op raced against a waiter
3062                  * setting the FUTEX_WAITERS bit. Try again.
3063                  */
3064                 if (ret == -EAGAIN)
3065                         goto pi_retry;
3066                 /*
3067                  * wake_futex_pi has detected invalid state. Tell user
3068                  * space.
3069                  */
3070                 goto out_putkey;
3071         }
3072
3073         /*
3074          * We have no kernel internal state, i.e. no waiters in the
3075          * kernel. Waiters which are about to queue themselves are stuck
3076          * on hb->lock. So we can safely ignore them. We do neither
3077          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3078          * owner.
3079          */
3080         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3081                 spin_unlock(&hb->lock);
3082                 switch (ret) {
3083                 case -EFAULT:
3084                         goto pi_faulted;
3085
3086                 case -EAGAIN:
3087                         goto pi_retry;
3088
3089                 default:
3090                         WARN_ON_ONCE(1);
3091                         goto out_putkey;
3092                 }
3093         }
3094
3095         /*
3096          * If uval has changed, let user space handle it.
3097          */
3098         ret = (curval == uval) ? 0 : -EAGAIN;
3099
3100 out_unlock:
3101         spin_unlock(&hb->lock);
3102 out_putkey:
3103         put_futex_key(&key);
3104         return ret;
3105
3106 pi_retry:
3107         put_futex_key(&key);
3108         cond_resched();
3109         goto retry;
3110
3111 pi_faulted:
3112         put_futex_key(&key);
3113
3114         ret = fault_in_user_writeable(uaddr);
3115         if (!ret)
3116                 goto retry;
3117
3118         return ret;
3119 }
3120
3121 /**
3122  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3123  * @hb:         the hash_bucket futex_q was original enqueued on
3124  * @q:          the futex_q woken while waiting to be requeued
3125  * @key2:       the futex_key of the requeue target futex
3126  * @timeout:    the timeout associated with the wait (NULL if none)
3127  *
3128  * Detect if the task was woken on the initial futex as opposed to the requeue
3129  * target futex.  If so, determine if it was a timeout or a signal that caused
3130  * the wakeup and return the appropriate error code to the caller.  Must be
3131  * called with the hb lock held.
3132  *
3133  * Return:
3134  *  -  0 = no early wakeup detected;
3135  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3136  */
3137 static inline
3138 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3139                                    struct futex_q *q, union futex_key *key2,
3140                                    struct hrtimer_sleeper *timeout)
3141 {
3142         int ret = 0;
3143
3144         /*
3145          * With the hb lock held, we avoid races while we process the wakeup.
3146          * We only need to hold hb (and not hb2) to ensure atomicity as the
3147          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3148          * It can't be requeued from uaddr2 to something else since we don't
3149          * support a PI aware source futex for requeue.
3150          */
3151         if (!match_futex(&q->key, key2)) {
3152                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3153                 /*
3154                  * We were woken prior to requeue by a timeout or a signal.
3155                  * Unqueue the futex_q and determine which it was.
3156                  */
3157                 plist_del(&q->list, &hb->chain);
3158                 hb_waiters_dec(hb);
3159
3160                 /* Handle spurious wakeups gracefully */
3161                 ret = -EWOULDBLOCK;
3162                 if (timeout && !timeout->task)
3163                         ret = -ETIMEDOUT;
3164                 else if (signal_pending(current))
3165                         ret = -ERESTARTNOINTR;
3166         }
3167         return ret;
3168 }
3169
3170 /**
3171  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3172  * @uaddr:      the futex we initially wait on (non-pi)
3173  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3174  *              the same type, no requeueing from private to shared, etc.
3175  * @val:        the expected value of uaddr
3176  * @abs_time:   absolute timeout
3177  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3178  * @uaddr2:     the pi futex we will take prior to returning to user-space
3179  *
3180  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3181  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3182  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3183  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3184  * without one, the pi logic would not know which task to boost/deboost, if
3185  * there was a need to.
3186  *
3187  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3188  * via the following--
3189  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3190  * 2) wakeup on uaddr2 after a requeue
3191  * 3) signal
3192  * 4) timeout
3193  *
3194  * If 3, cleanup and return -ERESTARTNOINTR.
3195  *
3196  * If 2, we may then block on trying to take the rt_mutex and return via:
3197  * 5) successful lock
3198  * 6) signal
3199  * 7) timeout
3200  * 8) other lock acquisition failure
3201  *
3202  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3203  *
3204  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3205  *
3206  * Return:
3207  *  -  0 - On success;
3208  *  - <0 - On error
3209  */
3210 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3211                                  u32 val, ktime_t *abs_time, u32 bitset,
3212                                  u32 __user *uaddr2)
3213 {
3214         struct hrtimer_sleeper timeout, *to;
3215         struct futex_pi_state *pi_state = NULL;
3216         struct rt_mutex_waiter rt_waiter;
3217         struct futex_hash_bucket *hb;
3218         union futex_key key2 = FUTEX_KEY_INIT;
3219         struct futex_q q = futex_q_init;
3220         int res, ret;
3221
3222         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3223                 return -ENOSYS;
3224
3225         if (uaddr == uaddr2)
3226                 return -EINVAL;
3227
3228         if (!bitset)
3229                 return -EINVAL;
3230
3231         to = futex_setup_timer(abs_time, &timeout, flags,
3232                                current->timer_slack_ns);
3233
3234         /*
3235          * The waiter is allocated on our stack, manipulated by the requeue
3236          * code while we sleep on uaddr.
3237          */
3238         rt_mutex_init_waiter(&rt_waiter);
3239
3240         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3241         if (unlikely(ret != 0))
3242                 goto out;
3243
3244         q.bitset = bitset;
3245         q.rt_waiter = &rt_waiter;
3246         q.requeue_pi_key = &key2;
3247
3248         /*
3249          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3250          * count.
3251          */
3252         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3253         if (ret)
3254                 goto out_key2;
3255
3256         /*
3257          * The check above which compares uaddrs is not sufficient for
3258          * shared futexes. We need to compare the keys:
3259          */
3260         if (match_futex(&q.key, &key2)) {
3261                 queue_unlock(hb);
3262                 ret = -EINVAL;
3263                 goto out_put_keys;
3264         }
3265
3266         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3267         futex_wait_queue_me(hb, &q, to);
3268
3269         spin_lock(&hb->lock);
3270         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3271         spin_unlock(&hb->lock);
3272         if (ret)
3273                 goto out_put_keys;
3274
3275         /*
3276          * In order for us to be here, we know our q.key == key2, and since
3277          * we took the hb->lock above, we also know that futex_requeue() has
3278          * completed and we no longer have to concern ourselves with a wakeup
3279          * race with the atomic proxy lock acquisition by the requeue code. The
3280          * futex_requeue dropped our key1 reference and incremented our key2
3281          * reference count.
3282          */
3283
3284         /* Check if the requeue code acquired the second futex for us. */
3285         if (!q.rt_waiter) {
3286                 /*
3287                  * Got the lock. We might not be the anticipated owner if we
3288                  * did a lock-steal - fix up the PI-state in that case.
3289                  */
3290                 if (q.pi_state && (q.pi_state->owner != current)) {
3291                         spin_lock(q.lock_ptr);
3292                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3293                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3294                                 pi_state = q.pi_state;
3295                                 get_pi_state(pi_state);
3296                         }
3297                         /*
3298                          * Drop the reference to the pi state which
3299                          * the requeue_pi() code acquired for us.
3300                          */
3301                         put_pi_state(q.pi_state);
3302                         spin_unlock(q.lock_ptr);
3303                 }
3304         } else {
3305                 struct rt_mutex *pi_mutex;
3306
3307                 /*
3308                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3309                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3310                  * the pi_state.
3311                  */
3312                 WARN_ON(!q.pi_state);
3313                 pi_mutex = &q.pi_state->pi_mutex;
3314                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3315
3316                 spin_lock(q.lock_ptr);
3317                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3318                         ret = 0;
3319
3320                 debug_rt_mutex_free_waiter(&rt_waiter);
3321                 /*
3322                  * Fixup the pi_state owner and possibly acquire the lock if we
3323                  * haven't already.
3324                  */
3325                 res = fixup_owner(uaddr2, &q, !ret);
3326                 /*
3327                  * If fixup_owner() returned an error, proprogate that.  If it
3328                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3329                  */
3330                 if (res)
3331                         ret = (res < 0) ? res : 0;
3332
3333                 /*
3334                  * If fixup_pi_state_owner() faulted and was unable to handle
3335                  * the fault, unlock the rt_mutex and return the fault to
3336                  * userspace.
3337                  */
3338                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3339                         pi_state = q.pi_state;
3340                         get_pi_state(pi_state);
3341                 }
3342
3343                 /* Unqueue and drop the lock. */
3344                 unqueue_me_pi(&q);
3345         }
3346
3347         if (pi_state) {
3348                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3349                 put_pi_state(pi_state);
3350         }
3351
3352         if (ret == -EINTR) {
3353                 /*
3354                  * We've already been requeued, but cannot restart by calling
3355                  * futex_lock_pi() directly. We could restart this syscall, but
3356                  * it would detect that the user space "val" changed and return
3357                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3358                  * -EWOULDBLOCK directly.
3359                  */
3360                 ret = -EWOULDBLOCK;
3361         }
3362
3363 out_put_keys:
3364         put_futex_key(&q.key);
3365 out_key2:
3366         put_futex_key(&key2);
3367
3368 out:
3369         if (to) {
3370                 hrtimer_cancel(&to->timer);
3371                 destroy_hrtimer_on_stack(&to->timer);
3372         }
3373         return ret;
3374 }
3375
3376 /*
3377  * Support for robust futexes: the kernel cleans up held futexes at
3378  * thread exit time.
3379  *
3380  * Implementation: user-space maintains a per-thread list of locks it
3381  * is holding. Upon do_exit(), the kernel carefully walks this list,
3382  * and marks all locks that are owned by this thread with the
3383  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3384  * always manipulated with the lock held, so the list is private and
3385  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3386  * field, to allow the kernel to clean up if the thread dies after
3387  * acquiring the lock, but just before it could have added itself to
3388  * the list. There can only be one such pending lock.
3389  */
3390
3391 /**
3392  * sys_set_robust_list() - Set the robust-futex list head of a task
3393  * @head:       pointer to the list-head
3394  * @len:        length of the list-head, as userspace expects
3395  */
3396 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3397                 size_t, len)
3398 {
3399         if (!futex_cmpxchg_enabled)
3400                 return -ENOSYS;
3401         /*
3402          * The kernel knows only one size for now:
3403          */
3404         if (unlikely(len != sizeof(*head)))
3405                 return -EINVAL;
3406
3407         current->robust_list = head;
3408
3409         return 0;
3410 }
3411
3412 /**
3413  * sys_get_robust_list() - Get the robust-futex list head of a task
3414  * @pid:        pid of the process [zero for current task]
3415  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3416  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3417  */
3418 SYSCALL_DEFINE3(get_robust_list, int, pid,
3419                 struct robust_list_head __user * __user *, head_ptr,
3420                 size_t __user *, len_ptr)
3421 {
3422         struct robust_list_head __user *head;
3423         unsigned long ret;
3424         struct task_struct *p;
3425
3426         if (!futex_cmpxchg_enabled)
3427                 return -ENOSYS;
3428
3429         rcu_read_lock();
3430
3431         ret = -ESRCH;
3432         if (!pid)
3433                 p = current;
3434         else {
3435                 p = find_task_by_vpid(pid);
3436                 if (!p)
3437                         goto err_unlock;
3438         }
3439
3440         ret = -EPERM;
3441         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3442                 goto err_unlock;
3443
3444         head = p->robust_list;
3445         rcu_read_unlock();
3446
3447         if (put_user(sizeof(*head), len_ptr))
3448                 return -EFAULT;
3449         return put_user(head, head_ptr);
3450
3451 err_unlock:
3452         rcu_read_unlock();
3453
3454         return ret;
3455 }
3456
3457 /*
3458  * Process a futex-list entry, check whether it's owned by the
3459  * dying task, and do notification if so:
3460  */
3461 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3462 {
3463         u32 uval, uninitialized_var(nval), mval;
3464         int err;
3465
3466         /* Futex address must be 32bit aligned */
3467         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3468                 return -1;
3469
3470 retry:
3471         if (get_user(uval, uaddr))
3472                 return -1;
3473
3474         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3475                 return 0;
3476
3477         /*
3478          * Ok, this dying thread is truly holding a futex
3479          * of interest. Set the OWNER_DIED bit atomically
3480          * via cmpxchg, and if the value had FUTEX_WAITERS
3481          * set, wake up a waiter (if any). (We have to do a
3482          * futex_wake() even if OWNER_DIED is already set -
3483          * to handle the rare but possible case of recursive
3484          * thread-death.) The rest of the cleanup is done in
3485          * userspace.
3486          */
3487         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3488
3489         /*
3490          * We are not holding a lock here, but we want to have
3491          * the pagefault_disable/enable() protection because
3492          * we want to handle the fault gracefully. If the
3493          * access fails we try to fault in the futex with R/W
3494          * verification via get_user_pages. get_user() above
3495          * does not guarantee R/W access. If that fails we
3496          * give up and leave the futex locked.
3497          */
3498         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3499                 switch (err) {
3500                 case -EFAULT:
3501                         if (fault_in_user_writeable(uaddr))
3502                                 return -1;
3503                         goto retry;
3504
3505                 case -EAGAIN:
3506                         cond_resched();
3507                         goto retry;
3508
3509                 default:
3510                         WARN_ON_ONCE(1);
3511                         return err;
3512                 }
3513         }
3514
3515         if (nval != uval)
3516                 goto retry;
3517
3518         /*
3519          * Wake robust non-PI futexes here. The wakeup of
3520          * PI futexes happens in exit_pi_state():
3521          */
3522         if (!pi && (uval & FUTEX_WAITERS))
3523                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3524
3525         return 0;
3526 }
3527
3528 /*
3529  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3530  */
3531 static inline int fetch_robust_entry(struct robust_list __user **entry,
3532                                      struct robust_list __user * __user *head,
3533                                      unsigned int *pi)
3534 {
3535         unsigned long uentry;
3536
3537         if (get_user(uentry, (unsigned long __user *)head))
3538                 return -EFAULT;
3539
3540         *entry = (void __user *)(uentry & ~1UL);
3541         *pi = uentry & 1;
3542
3543         return 0;
3544 }
3545
3546 /*
3547  * Walk curr->robust_list (very carefully, it's a userspace list!)
3548  * and mark any locks found there dead, and notify any waiters.
3549  *
3550  * We silently return on any sign of list-walking problem.
3551  */
3552 void exit_robust_list(struct task_struct *curr)
3553 {
3554         struct robust_list_head __user *head = curr->robust_list;
3555         struct robust_list __user *entry, *next_entry, *pending;
3556         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3557         unsigned int uninitialized_var(next_pi);
3558         unsigned long futex_offset;
3559         int rc;
3560
3561         if (!futex_cmpxchg_enabled)
3562                 return;
3563
3564         /*
3565          * Fetch the list head (which was registered earlier, via
3566          * sys_set_robust_list()):
3567          */
3568         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3569                 return;
3570         /*
3571          * Fetch the relative futex offset:
3572          */
3573         if (get_user(futex_offset, &head->futex_offset))
3574                 return;
3575         /*
3576          * Fetch any possibly pending lock-add first, and handle it
3577          * if it exists:
3578          */
3579         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3580                 return;
3581
3582         next_entry = NULL;      /* avoid warning with gcc */
3583         while (entry != &head->list) {
3584                 /*
3585                  * Fetch the next entry in the list before calling
3586                  * handle_futex_death:
3587                  */
3588                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3589                 /*
3590                  * A pending lock might already be on the list, so
3591                  * don't process it twice:
3592                  */
3593                 if (entry != pending)
3594                         if (handle_futex_death((void __user *)entry + futex_offset,
3595                                                 curr, pi))
3596                                 return;
3597                 if (rc)
3598                         return;
3599                 entry = next_entry;
3600                 pi = next_pi;
3601                 /*
3602                  * Avoid excessively long or circular lists:
3603                  */
3604                 if (!--limit)
3605                         break;
3606
3607                 cond_resched();
3608         }
3609
3610         if (pending)
3611                 handle_futex_death((void __user *)pending + futex_offset,
3612                                    curr, pip);
3613 }
3614
3615 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3616                 u32 __user *uaddr2, u32 val2, u32 val3)
3617 {
3618         int cmd = op & FUTEX_CMD_MASK;
3619         unsigned int flags = 0;
3620
3621         if (!(op & FUTEX_PRIVATE_FLAG))
3622                 flags |= FLAGS_SHARED;
3623
3624         if (op & FUTEX_CLOCK_REALTIME) {
3625                 flags |= FLAGS_CLOCKRT;
3626                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3627                     cmd != FUTEX_WAIT_REQUEUE_PI)
3628                         return -ENOSYS;
3629         }
3630
3631         switch (cmd) {
3632         case FUTEX_LOCK_PI:
3633         case FUTEX_UNLOCK_PI:
3634         case FUTEX_TRYLOCK_PI:
3635         case FUTEX_WAIT_REQUEUE_PI:
3636         case FUTEX_CMP_REQUEUE_PI:
3637                 if (!futex_cmpxchg_enabled)
3638                         return -ENOSYS;
3639         }
3640
3641         switch (cmd) {
3642         case FUTEX_WAIT:
3643                 val3 = FUTEX_BITSET_MATCH_ANY;
3644                 /* fall through */
3645         case FUTEX_WAIT_BITSET:
3646                 return futex_wait(uaddr, flags, val, timeout, val3);
3647         case FUTEX_WAKE:
3648                 val3 = FUTEX_BITSET_MATCH_ANY;
3649                 /* fall through */
3650         case FUTEX_WAKE_BITSET:
3651                 return futex_wake(uaddr, flags, val, val3);
3652         case FUTEX_REQUEUE:
3653                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3654         case FUTEX_CMP_REQUEUE:
3655                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3656         case FUTEX_WAKE_OP:
3657                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3658         case FUTEX_LOCK_PI:
3659                 return futex_lock_pi(uaddr, flags, timeout, 0);
3660         case FUTEX_UNLOCK_PI:
3661                 return futex_unlock_pi(uaddr, flags);
3662         case FUTEX_TRYLOCK_PI:
3663                 return futex_lock_pi(uaddr, flags, NULL, 1);
3664         case FUTEX_WAIT_REQUEUE_PI:
3665                 val3 = FUTEX_BITSET_MATCH_ANY;
3666                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3667                                              uaddr2);
3668         case FUTEX_CMP_REQUEUE_PI:
3669                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3670         }
3671         return -ENOSYS;
3672 }
3673
3674
3675 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3676                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3677                 u32, val3)
3678 {
3679         struct timespec64 ts;
3680         ktime_t t, *tp = NULL;
3681         u32 val2 = 0;
3682         int cmd = op & FUTEX_CMD_MASK;
3683
3684         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3685                       cmd == FUTEX_WAIT_BITSET ||
3686                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3687                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3688                         return -EFAULT;
3689                 if (get_timespec64(&ts, utime))
3690                         return -EFAULT;
3691                 if (!timespec64_valid(&ts))
3692                         return -EINVAL;
3693
3694                 t = timespec64_to_ktime(ts);
3695                 if (cmd == FUTEX_WAIT)
3696                         t = ktime_add_safe(ktime_get(), t);
3697                 tp = &t;
3698         }
3699         /*
3700          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3701          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3702          */
3703         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3704             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3705                 val2 = (u32) (unsigned long) utime;
3706
3707         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3708 }
3709
3710 #ifdef CONFIG_COMPAT
3711 /*
3712  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3713  */
3714 static inline int
3715 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3716                    compat_uptr_t __user *head, unsigned int *pi)
3717 {
3718         if (get_user(*uentry, head))
3719                 return -EFAULT;
3720
3721         *entry = compat_ptr((*uentry) & ~1);
3722         *pi = (unsigned int)(*uentry) & 1;
3723
3724         return 0;
3725 }
3726
3727 static void __user *futex_uaddr(struct robust_list __user *entry,
3728                                 compat_long_t futex_offset)
3729 {
3730         compat_uptr_t base = ptr_to_compat(entry);
3731         void __user *uaddr = compat_ptr(base + futex_offset);
3732
3733         return uaddr;
3734 }
3735
3736 /*
3737  * Walk curr->robust_list (very carefully, it's a userspace list!)
3738  * and mark any locks found there dead, and notify any waiters.
3739  *
3740  * We silently return on any sign of list-walking problem.
3741  */
3742 void compat_exit_robust_list(struct task_struct *curr)
3743 {
3744         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3745         struct robust_list __user *entry, *next_entry, *pending;
3746         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3747         unsigned int uninitialized_var(next_pi);
3748         compat_uptr_t uentry, next_uentry, upending;
3749         compat_long_t futex_offset;
3750         int rc;
3751
3752         if (!futex_cmpxchg_enabled)
3753                 return;
3754
3755         /*
3756          * Fetch the list head (which was registered earlier, via
3757          * sys_set_robust_list()):
3758          */
3759         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3760                 return;
3761         /*
3762          * Fetch the relative futex offset:
3763          */
3764         if (get_user(futex_offset, &head->futex_offset))
3765                 return;
3766         /*
3767          * Fetch any possibly pending lock-add first, and handle it
3768          * if it exists:
3769          */
3770         if (compat_fetch_robust_entry(&upending, &pending,
3771                                &head->list_op_pending, &pip))
3772                 return;
3773
3774         next_entry = NULL;      /* avoid warning with gcc */
3775         while (entry != (struct robust_list __user *) &head->list) {
3776                 /*
3777                  * Fetch the next entry in the list before calling
3778                  * handle_futex_death:
3779                  */
3780                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3781                         (compat_uptr_t __user *)&entry->next, &next_pi);
3782                 /*
3783                  * A pending lock might already be on the list, so
3784                  * dont process it twice:
3785                  */
3786                 if (entry != pending) {
3787                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3788
3789                         if (handle_futex_death(uaddr, curr, pi))
3790                                 return;
3791                 }
3792                 if (rc)
3793                         return;
3794                 uentry = next_uentry;
3795                 entry = next_entry;
3796                 pi = next_pi;
3797                 /*
3798                  * Avoid excessively long or circular lists:
3799                  */
3800                 if (!--limit)
3801                         break;
3802
3803                 cond_resched();
3804         }
3805         if (pending) {
3806                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3807
3808                 handle_futex_death(uaddr, curr, pip);
3809         }
3810 }
3811
3812 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3813                 struct compat_robust_list_head __user *, head,
3814                 compat_size_t, len)
3815 {
3816         if (!futex_cmpxchg_enabled)
3817                 return -ENOSYS;
3818
3819         if (unlikely(len != sizeof(*head)))
3820                 return -EINVAL;
3821
3822         current->compat_robust_list = head;
3823
3824         return 0;
3825 }
3826
3827 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3828                         compat_uptr_t __user *, head_ptr,
3829                         compat_size_t __user *, len_ptr)
3830 {
3831         struct compat_robust_list_head __user *head;
3832         unsigned long ret;
3833         struct task_struct *p;
3834
3835         if (!futex_cmpxchg_enabled)
3836                 return -ENOSYS;
3837
3838         rcu_read_lock();
3839
3840         ret = -ESRCH;
3841         if (!pid)
3842                 p = current;
3843         else {
3844                 p = find_task_by_vpid(pid);
3845                 if (!p)
3846                         goto err_unlock;
3847         }
3848
3849         ret = -EPERM;
3850         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3851                 goto err_unlock;
3852
3853         head = p->compat_robust_list;
3854         rcu_read_unlock();
3855
3856         if (put_user(sizeof(*head), len_ptr))
3857                 return -EFAULT;
3858         return put_user(ptr_to_compat(head), head_ptr);
3859
3860 err_unlock:
3861         rcu_read_unlock();
3862
3863         return ret;
3864 }
3865 #endif /* CONFIG_COMPAT */
3866
3867 #ifdef CONFIG_COMPAT_32BIT_TIME
3868 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3869                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3870                 u32, val3)
3871 {
3872         struct timespec64 ts;
3873         ktime_t t, *tp = NULL;
3874         int val2 = 0;
3875         int cmd = op & FUTEX_CMD_MASK;
3876
3877         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3878                       cmd == FUTEX_WAIT_BITSET ||
3879                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3880                 if (get_old_timespec32(&ts, utime))
3881                         return -EFAULT;
3882                 if (!timespec64_valid(&ts))
3883                         return -EINVAL;
3884
3885                 t = timespec64_to_ktime(ts);
3886                 if (cmd == FUTEX_WAIT)
3887                         t = ktime_add_safe(ktime_get(), t);
3888                 tp = &t;
3889         }
3890         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3891             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3892                 val2 = (int) (unsigned long) utime;
3893
3894         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3895 }
3896 #endif /* CONFIG_COMPAT_32BIT_TIME */
3897
3898 static void __init futex_detect_cmpxchg(void)
3899 {
3900 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3901         u32 curval;
3902
3903         /*
3904          * This will fail and we want it. Some arch implementations do
3905          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3906          * functionality. We want to know that before we call in any
3907          * of the complex code paths. Also we want to prevent
3908          * registration of robust lists in that case. NULL is
3909          * guaranteed to fault and we get -EFAULT on functional
3910          * implementation, the non-functional ones will return
3911          * -ENOSYS.
3912          */
3913         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3914                 futex_cmpxchg_enabled = 1;
3915 #endif
3916 }
3917
3918 static int __init futex_init(void)
3919 {
3920         unsigned int futex_shift;
3921         unsigned long i;
3922
3923 #if CONFIG_BASE_SMALL
3924         futex_hashsize = 16;
3925 #else
3926         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3927 #endif
3928
3929         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3930                                                futex_hashsize, 0,
3931                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3932                                                &futex_shift, NULL,
3933                                                futex_hashsize, futex_hashsize);
3934         futex_hashsize = 1UL << futex_shift;
3935
3936         futex_detect_cmpxchg();
3937
3938         for (i = 0; i < futex_hashsize; i++) {
3939                 atomic_set(&futex_queues[i].waiters, 0);
3940                 plist_head_init(&futex_queues[i].chain);
3941                 spin_lock_init(&futex_queues[i].lock);
3942         }
3943
3944         return 0;
3945 }
3946 core_initcall(futex_init);