Merge tag 'perf-tools-for-v6.10-1-2024-05-21' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 #include <linux/uaccess.h>
73
74 #include <uapi/linux/wait.h>
75
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
78
79 #include "exit.h"
80
81 /*
82  * The default value should be high enough to not crash a system that randomly
83  * crashes its kernel from time to time, but low enough to at least not permit
84  * overflowing 32-bit refcounts or the ldsem writer count.
85  */
86 static unsigned int oops_limit = 10000;
87
88 #ifdef CONFIG_SYSCTL
89 static struct ctl_table kern_exit_table[] = {
90         {
91                 .procname       = "oops_limit",
92                 .data           = &oops_limit,
93                 .maxlen         = sizeof(oops_limit),
94                 .mode           = 0644,
95                 .proc_handler   = proc_douintvec,
96         },
97 };
98
99 static __init int kernel_exit_sysctls_init(void)
100 {
101         register_sysctl_init("kernel", kern_exit_table);
102         return 0;
103 }
104 late_initcall(kernel_exit_sysctls_init);
105 #endif
106
107 static atomic_t oops_count = ATOMIC_INIT(0);
108
109 #ifdef CONFIG_SYSFS
110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
111                                char *page)
112 {
113         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
114 }
115
116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
117
118 static __init int kernel_exit_sysfs_init(void)
119 {
120         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
121         return 0;
122 }
123 late_initcall(kernel_exit_sysfs_init);
124 #endif
125
126 static void __unhash_process(struct task_struct *p, bool group_dead)
127 {
128         nr_threads--;
129         detach_pid(p, PIDTYPE_PID);
130         if (group_dead) {
131                 detach_pid(p, PIDTYPE_TGID);
132                 detach_pid(p, PIDTYPE_PGID);
133                 detach_pid(p, PIDTYPE_SID);
134
135                 list_del_rcu(&p->tasks);
136                 list_del_init(&p->sibling);
137                 __this_cpu_dec(process_counts);
138         }
139         list_del_rcu(&p->thread_node);
140 }
141
142 /*
143  * This function expects the tasklist_lock write-locked.
144  */
145 static void __exit_signal(struct task_struct *tsk)
146 {
147         struct signal_struct *sig = tsk->signal;
148         bool group_dead = thread_group_leader(tsk);
149         struct sighand_struct *sighand;
150         struct tty_struct *tty;
151         u64 utime, stime;
152
153         sighand = rcu_dereference_check(tsk->sighand,
154                                         lockdep_tasklist_lock_is_held());
155         spin_lock(&sighand->siglock);
156
157 #ifdef CONFIG_POSIX_TIMERS
158         posix_cpu_timers_exit(tsk);
159         if (group_dead)
160                 posix_cpu_timers_exit_group(tsk);
161 #endif
162
163         if (group_dead) {
164                 tty = sig->tty;
165                 sig->tty = NULL;
166         } else {
167                 /*
168                  * If there is any task waiting for the group exit
169                  * then notify it:
170                  */
171                 if (sig->notify_count > 0 && !--sig->notify_count)
172                         wake_up_process(sig->group_exec_task);
173
174                 if (tsk == sig->curr_target)
175                         sig->curr_target = next_thread(tsk);
176         }
177
178         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
179                               sizeof(unsigned long long));
180
181         /*
182          * Accumulate here the counters for all threads as they die. We could
183          * skip the group leader because it is the last user of signal_struct,
184          * but we want to avoid the race with thread_group_cputime() which can
185          * see the empty ->thread_head list.
186          */
187         task_cputime(tsk, &utime, &stime);
188         write_seqlock(&sig->stats_lock);
189         sig->utime += utime;
190         sig->stime += stime;
191         sig->gtime += task_gtime(tsk);
192         sig->min_flt += tsk->min_flt;
193         sig->maj_flt += tsk->maj_flt;
194         sig->nvcsw += tsk->nvcsw;
195         sig->nivcsw += tsk->nivcsw;
196         sig->inblock += task_io_get_inblock(tsk);
197         sig->oublock += task_io_get_oublock(tsk);
198         task_io_accounting_add(&sig->ioac, &tsk->ioac);
199         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
200         sig->nr_threads--;
201         __unhash_process(tsk, group_dead);
202         write_sequnlock(&sig->stats_lock);
203
204         /*
205          * Do this under ->siglock, we can race with another thread
206          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
207          */
208         flush_sigqueue(&tsk->pending);
209         tsk->sighand = NULL;
210         spin_unlock(&sighand->siglock);
211
212         __cleanup_sighand(sighand);
213         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
214         if (group_dead) {
215                 flush_sigqueue(&sig->shared_pending);
216                 tty_kref_put(tty);
217         }
218 }
219
220 static void delayed_put_task_struct(struct rcu_head *rhp)
221 {
222         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
223
224         kprobe_flush_task(tsk);
225         rethook_flush_task(tsk);
226         perf_event_delayed_put(tsk);
227         trace_sched_process_free(tsk);
228         put_task_struct(tsk);
229 }
230
231 void put_task_struct_rcu_user(struct task_struct *task)
232 {
233         if (refcount_dec_and_test(&task->rcu_users))
234                 call_rcu(&task->rcu, delayed_put_task_struct);
235 }
236
237 void __weak release_thread(struct task_struct *dead_task)
238 {
239 }
240
241 void release_task(struct task_struct *p)
242 {
243         struct task_struct *leader;
244         struct pid *thread_pid;
245         int zap_leader;
246 repeat:
247         /* don't need to get the RCU readlock here - the process is dead and
248          * can't be modifying its own credentials. But shut RCU-lockdep up */
249         rcu_read_lock();
250         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
251         rcu_read_unlock();
252
253         cgroup_release(p);
254
255         write_lock_irq(&tasklist_lock);
256         ptrace_release_task(p);
257         thread_pid = get_pid(p->thread_pid);
258         __exit_signal(p);
259
260         /*
261          * If we are the last non-leader member of the thread
262          * group, and the leader is zombie, then notify the
263          * group leader's parent process. (if it wants notification.)
264          */
265         zap_leader = 0;
266         leader = p->group_leader;
267         if (leader != p && thread_group_empty(leader)
268                         && leader->exit_state == EXIT_ZOMBIE) {
269                 /*
270                  * If we were the last child thread and the leader has
271                  * exited already, and the leader's parent ignores SIGCHLD,
272                  * then we are the one who should release the leader.
273                  */
274                 zap_leader = do_notify_parent(leader, leader->exit_signal);
275                 if (zap_leader)
276                         leader->exit_state = EXIT_DEAD;
277         }
278
279         write_unlock_irq(&tasklist_lock);
280         seccomp_filter_release(p);
281         proc_flush_pid(thread_pid);
282         put_pid(thread_pid);
283         release_thread(p);
284         put_task_struct_rcu_user(p);
285
286         p = leader;
287         if (unlikely(zap_leader))
288                 goto repeat;
289 }
290
291 int rcuwait_wake_up(struct rcuwait *w)
292 {
293         int ret = 0;
294         struct task_struct *task;
295
296         rcu_read_lock();
297
298         /*
299          * Order condition vs @task, such that everything prior to the load
300          * of @task is visible. This is the condition as to why the user called
301          * rcuwait_wake() in the first place. Pairs with set_current_state()
302          * barrier (A) in rcuwait_wait_event().
303          *
304          *    WAIT                WAKE
305          *    [S] tsk = current   [S] cond = true
306          *        MB (A)              MB (B)
307          *    [L] cond            [L] tsk
308          */
309         smp_mb(); /* (B) */
310
311         task = rcu_dereference(w->task);
312         if (task)
313                 ret = wake_up_process(task);
314         rcu_read_unlock();
315
316         return ret;
317 }
318 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
319
320 /*
321  * Determine if a process group is "orphaned", according to the POSIX
322  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
323  * by terminal-generated stop signals.  Newly orphaned process groups are
324  * to receive a SIGHUP and a SIGCONT.
325  *
326  * "I ask you, have you ever known what it is to be an orphan?"
327  */
328 static int will_become_orphaned_pgrp(struct pid *pgrp,
329                                         struct task_struct *ignored_task)
330 {
331         struct task_struct *p;
332
333         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
334                 if ((p == ignored_task) ||
335                     (p->exit_state && thread_group_empty(p)) ||
336                     is_global_init(p->real_parent))
337                         continue;
338
339                 if (task_pgrp(p->real_parent) != pgrp &&
340                     task_session(p->real_parent) == task_session(p))
341                         return 0;
342         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
343
344         return 1;
345 }
346
347 int is_current_pgrp_orphaned(void)
348 {
349         int retval;
350
351         read_lock(&tasklist_lock);
352         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
353         read_unlock(&tasklist_lock);
354
355         return retval;
356 }
357
358 static bool has_stopped_jobs(struct pid *pgrp)
359 {
360         struct task_struct *p;
361
362         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
363                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
364                         return true;
365         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
366
367         return false;
368 }
369
370 /*
371  * Check to see if any process groups have become orphaned as
372  * a result of our exiting, and if they have any stopped jobs,
373  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
374  */
375 static void
376 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
377 {
378         struct pid *pgrp = task_pgrp(tsk);
379         struct task_struct *ignored_task = tsk;
380
381         if (!parent)
382                 /* exit: our father is in a different pgrp than
383                  * we are and we were the only connection outside.
384                  */
385                 parent = tsk->real_parent;
386         else
387                 /* reparent: our child is in a different pgrp than
388                  * we are, and it was the only connection outside.
389                  */
390                 ignored_task = NULL;
391
392         if (task_pgrp(parent) != pgrp &&
393             task_session(parent) == task_session(tsk) &&
394             will_become_orphaned_pgrp(pgrp, ignored_task) &&
395             has_stopped_jobs(pgrp)) {
396                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
397                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
398         }
399 }
400
401 static void coredump_task_exit(struct task_struct *tsk)
402 {
403         struct core_state *core_state;
404
405         /*
406          * Serialize with any possible pending coredump.
407          * We must hold siglock around checking core_state
408          * and setting PF_POSTCOREDUMP.  The core-inducing thread
409          * will increment ->nr_threads for each thread in the
410          * group without PF_POSTCOREDUMP set.
411          */
412         spin_lock_irq(&tsk->sighand->siglock);
413         tsk->flags |= PF_POSTCOREDUMP;
414         core_state = tsk->signal->core_state;
415         spin_unlock_irq(&tsk->sighand->siglock);
416
417         /* The vhost_worker does not particpate in coredumps */
418         if (core_state &&
419             ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
420                 struct core_thread self;
421
422                 self.task = current;
423                 if (self.task->flags & PF_SIGNALED)
424                         self.next = xchg(&core_state->dumper.next, &self);
425                 else
426                         self.task = NULL;
427                 /*
428                  * Implies mb(), the result of xchg() must be visible
429                  * to core_state->dumper.
430                  */
431                 if (atomic_dec_and_test(&core_state->nr_threads))
432                         complete(&core_state->startup);
433
434                 for (;;) {
435                         set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
436                         if (!self.task) /* see coredump_finish() */
437                                 break;
438                         schedule();
439                 }
440                 __set_current_state(TASK_RUNNING);
441         }
442 }
443
444 #ifdef CONFIG_MEMCG
445 /*
446  * A task is exiting.   If it owned this mm, find a new owner for the mm.
447  */
448 void mm_update_next_owner(struct mm_struct *mm)
449 {
450         struct task_struct *c, *g, *p = current;
451
452 retry:
453         /*
454          * If the exiting or execing task is not the owner, it's
455          * someone else's problem.
456          */
457         if (mm->owner != p)
458                 return;
459         /*
460          * The current owner is exiting/execing and there are no other
461          * candidates.  Do not leave the mm pointing to a possibly
462          * freed task structure.
463          */
464         if (atomic_read(&mm->mm_users) <= 1) {
465                 WRITE_ONCE(mm->owner, NULL);
466                 return;
467         }
468
469         read_lock(&tasklist_lock);
470         /*
471          * Search in the children
472          */
473         list_for_each_entry(c, &p->children, sibling) {
474                 if (c->mm == mm)
475                         goto assign_new_owner;
476         }
477
478         /*
479          * Search in the siblings
480          */
481         list_for_each_entry(c, &p->real_parent->children, sibling) {
482                 if (c->mm == mm)
483                         goto assign_new_owner;
484         }
485
486         /*
487          * Search through everything else, we should not get here often.
488          */
489         for_each_process(g) {
490                 if (g->flags & PF_KTHREAD)
491                         continue;
492                 for_each_thread(g, c) {
493                         if (c->mm == mm)
494                                 goto assign_new_owner;
495                         if (c->mm)
496                                 break;
497                 }
498         }
499         read_unlock(&tasklist_lock);
500         /*
501          * We found no owner yet mm_users > 1: this implies that we are
502          * most likely racing with swapoff (try_to_unuse()) or /proc or
503          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
504          */
505         WRITE_ONCE(mm->owner, NULL);
506         return;
507
508 assign_new_owner:
509         BUG_ON(c == p);
510         get_task_struct(c);
511         /*
512          * The task_lock protects c->mm from changing.
513          * We always want mm->owner->mm == mm
514          */
515         task_lock(c);
516         /*
517          * Delay read_unlock() till we have the task_lock()
518          * to ensure that c does not slip away underneath us
519          */
520         read_unlock(&tasklist_lock);
521         if (c->mm != mm) {
522                 task_unlock(c);
523                 put_task_struct(c);
524                 goto retry;
525         }
526         WRITE_ONCE(mm->owner, c);
527         lru_gen_migrate_mm(mm);
528         task_unlock(c);
529         put_task_struct(c);
530 }
531 #endif /* CONFIG_MEMCG */
532
533 /*
534  * Turn us into a lazy TLB process if we
535  * aren't already..
536  */
537 static void exit_mm(void)
538 {
539         struct mm_struct *mm = current->mm;
540
541         exit_mm_release(current, mm);
542         if (!mm)
543                 return;
544         mmap_read_lock(mm);
545         mmgrab_lazy_tlb(mm);
546         BUG_ON(mm != current->active_mm);
547         /* more a memory barrier than a real lock */
548         task_lock(current);
549         /*
550          * When a thread stops operating on an address space, the loop
551          * in membarrier_private_expedited() may not observe that
552          * tsk->mm, and the loop in membarrier_global_expedited() may
553          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
554          * rq->membarrier_state, so those would not issue an IPI.
555          * Membarrier requires a memory barrier after accessing
556          * user-space memory, before clearing tsk->mm or the
557          * rq->membarrier_state.
558          */
559         smp_mb__after_spinlock();
560         local_irq_disable();
561         current->mm = NULL;
562         membarrier_update_current_mm(NULL);
563         enter_lazy_tlb(mm, current);
564         local_irq_enable();
565         task_unlock(current);
566         mmap_read_unlock(mm);
567         mm_update_next_owner(mm);
568         mmput(mm);
569         if (test_thread_flag(TIF_MEMDIE))
570                 exit_oom_victim();
571 }
572
573 static struct task_struct *find_alive_thread(struct task_struct *p)
574 {
575         struct task_struct *t;
576
577         for_each_thread(p, t) {
578                 if (!(t->flags & PF_EXITING))
579                         return t;
580         }
581         return NULL;
582 }
583
584 static struct task_struct *find_child_reaper(struct task_struct *father,
585                                                 struct list_head *dead)
586         __releases(&tasklist_lock)
587         __acquires(&tasklist_lock)
588 {
589         struct pid_namespace *pid_ns = task_active_pid_ns(father);
590         struct task_struct *reaper = pid_ns->child_reaper;
591         struct task_struct *p, *n;
592
593         if (likely(reaper != father))
594                 return reaper;
595
596         reaper = find_alive_thread(father);
597         if (reaper) {
598                 pid_ns->child_reaper = reaper;
599                 return reaper;
600         }
601
602         write_unlock_irq(&tasklist_lock);
603
604         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
605                 list_del_init(&p->ptrace_entry);
606                 release_task(p);
607         }
608
609         zap_pid_ns_processes(pid_ns);
610         write_lock_irq(&tasklist_lock);
611
612         return father;
613 }
614
615 /*
616  * When we die, we re-parent all our children, and try to:
617  * 1. give them to another thread in our thread group, if such a member exists
618  * 2. give it to the first ancestor process which prctl'd itself as a
619  *    child_subreaper for its children (like a service manager)
620  * 3. give it to the init process (PID 1) in our pid namespace
621  */
622 static struct task_struct *find_new_reaper(struct task_struct *father,
623                                            struct task_struct *child_reaper)
624 {
625         struct task_struct *thread, *reaper;
626
627         thread = find_alive_thread(father);
628         if (thread)
629                 return thread;
630
631         if (father->signal->has_child_subreaper) {
632                 unsigned int ns_level = task_pid(father)->level;
633                 /*
634                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
635                  * We can't check reaper != child_reaper to ensure we do not
636                  * cross the namespaces, the exiting parent could be injected
637                  * by setns() + fork().
638                  * We check pid->level, this is slightly more efficient than
639                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
640                  */
641                 for (reaper = father->real_parent;
642                      task_pid(reaper)->level == ns_level;
643                      reaper = reaper->real_parent) {
644                         if (reaper == &init_task)
645                                 break;
646                         if (!reaper->signal->is_child_subreaper)
647                                 continue;
648                         thread = find_alive_thread(reaper);
649                         if (thread)
650                                 return thread;
651                 }
652         }
653
654         return child_reaper;
655 }
656
657 /*
658 * Any that need to be release_task'd are put on the @dead list.
659  */
660 static void reparent_leader(struct task_struct *father, struct task_struct *p,
661                                 struct list_head *dead)
662 {
663         if (unlikely(p->exit_state == EXIT_DEAD))
664                 return;
665
666         /* We don't want people slaying init. */
667         p->exit_signal = SIGCHLD;
668
669         /* If it has exited notify the new parent about this child's death. */
670         if (!p->ptrace &&
671             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
672                 if (do_notify_parent(p, p->exit_signal)) {
673                         p->exit_state = EXIT_DEAD;
674                         list_add(&p->ptrace_entry, dead);
675                 }
676         }
677
678         kill_orphaned_pgrp(p, father);
679 }
680
681 /*
682  * This does two things:
683  *
684  * A.  Make init inherit all the child processes
685  * B.  Check to see if any process groups have become orphaned
686  *      as a result of our exiting, and if they have any stopped
687  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
688  */
689 static void forget_original_parent(struct task_struct *father,
690                                         struct list_head *dead)
691 {
692         struct task_struct *p, *t, *reaper;
693
694         if (unlikely(!list_empty(&father->ptraced)))
695                 exit_ptrace(father, dead);
696
697         /* Can drop and reacquire tasklist_lock */
698         reaper = find_child_reaper(father, dead);
699         if (list_empty(&father->children))
700                 return;
701
702         reaper = find_new_reaper(father, reaper);
703         list_for_each_entry(p, &father->children, sibling) {
704                 for_each_thread(p, t) {
705                         RCU_INIT_POINTER(t->real_parent, reaper);
706                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
707                         if (likely(!t->ptrace))
708                                 t->parent = t->real_parent;
709                         if (t->pdeath_signal)
710                                 group_send_sig_info(t->pdeath_signal,
711                                                     SEND_SIG_NOINFO, t,
712                                                     PIDTYPE_TGID);
713                 }
714                 /*
715                  * If this is a threaded reparent there is no need to
716                  * notify anyone anything has happened.
717                  */
718                 if (!same_thread_group(reaper, father))
719                         reparent_leader(father, p, dead);
720         }
721         list_splice_tail_init(&father->children, &reaper->children);
722 }
723
724 /*
725  * Send signals to all our closest relatives so that they know
726  * to properly mourn us..
727  */
728 static void exit_notify(struct task_struct *tsk, int group_dead)
729 {
730         bool autoreap;
731         struct task_struct *p, *n;
732         LIST_HEAD(dead);
733
734         write_lock_irq(&tasklist_lock);
735         forget_original_parent(tsk, &dead);
736
737         if (group_dead)
738                 kill_orphaned_pgrp(tsk->group_leader, NULL);
739
740         tsk->exit_state = EXIT_ZOMBIE;
741         /*
742          * sub-thread or delay_group_leader(), wake up the
743          * PIDFD_THREAD waiters.
744          */
745         if (!thread_group_empty(tsk))
746                 do_notify_pidfd(tsk);
747
748         if (unlikely(tsk->ptrace)) {
749                 int sig = thread_group_leader(tsk) &&
750                                 thread_group_empty(tsk) &&
751                                 !ptrace_reparented(tsk) ?
752                         tsk->exit_signal : SIGCHLD;
753                 autoreap = do_notify_parent(tsk, sig);
754         } else if (thread_group_leader(tsk)) {
755                 autoreap = thread_group_empty(tsk) &&
756                         do_notify_parent(tsk, tsk->exit_signal);
757         } else {
758                 autoreap = true;
759         }
760
761         if (autoreap) {
762                 tsk->exit_state = EXIT_DEAD;
763                 list_add(&tsk->ptrace_entry, &dead);
764         }
765
766         /* mt-exec, de_thread() is waiting for group leader */
767         if (unlikely(tsk->signal->notify_count < 0))
768                 wake_up_process(tsk->signal->group_exec_task);
769         write_unlock_irq(&tasklist_lock);
770
771         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
772                 list_del_init(&p->ptrace_entry);
773                 release_task(p);
774         }
775 }
776
777 #ifdef CONFIG_DEBUG_STACK_USAGE
778 static void check_stack_usage(void)
779 {
780         static DEFINE_SPINLOCK(low_water_lock);
781         static int lowest_to_date = THREAD_SIZE;
782         unsigned long free;
783
784         free = stack_not_used(current);
785
786         if (free >= lowest_to_date)
787                 return;
788
789         spin_lock(&low_water_lock);
790         if (free < lowest_to_date) {
791                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
792                         current->comm, task_pid_nr(current), free);
793                 lowest_to_date = free;
794         }
795         spin_unlock(&low_water_lock);
796 }
797 #else
798 static inline void check_stack_usage(void) {}
799 #endif
800
801 static void synchronize_group_exit(struct task_struct *tsk, long code)
802 {
803         struct sighand_struct *sighand = tsk->sighand;
804         struct signal_struct *signal = tsk->signal;
805
806         spin_lock_irq(&sighand->siglock);
807         signal->quick_threads--;
808         if ((signal->quick_threads == 0) &&
809             !(signal->flags & SIGNAL_GROUP_EXIT)) {
810                 signal->flags = SIGNAL_GROUP_EXIT;
811                 signal->group_exit_code = code;
812                 signal->group_stop_count = 0;
813         }
814         spin_unlock_irq(&sighand->siglock);
815 }
816
817 void __noreturn do_exit(long code)
818 {
819         struct task_struct *tsk = current;
820         int group_dead;
821
822         WARN_ON(irqs_disabled());
823
824         synchronize_group_exit(tsk, code);
825
826         WARN_ON(tsk->plug);
827
828         kcov_task_exit(tsk);
829         kmsan_task_exit(tsk);
830
831         coredump_task_exit(tsk);
832         ptrace_event(PTRACE_EVENT_EXIT, code);
833         user_events_exit(tsk);
834
835         io_uring_files_cancel();
836         exit_signals(tsk);  /* sets PF_EXITING */
837
838         acct_update_integrals(tsk);
839         group_dead = atomic_dec_and_test(&tsk->signal->live);
840         if (group_dead) {
841                 /*
842                  * If the last thread of global init has exited, panic
843                  * immediately to get a useable coredump.
844                  */
845                 if (unlikely(is_global_init(tsk)))
846                         panic("Attempted to kill init! exitcode=0x%08x\n",
847                                 tsk->signal->group_exit_code ?: (int)code);
848
849 #ifdef CONFIG_POSIX_TIMERS
850                 hrtimer_cancel(&tsk->signal->real_timer);
851                 exit_itimers(tsk);
852 #endif
853                 if (tsk->mm)
854                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
855         }
856         acct_collect(code, group_dead);
857         if (group_dead)
858                 tty_audit_exit();
859         audit_free(tsk);
860
861         tsk->exit_code = code;
862         taskstats_exit(tsk, group_dead);
863
864         exit_mm();
865
866         if (group_dead)
867                 acct_process();
868         trace_sched_process_exit(tsk);
869
870         exit_sem(tsk);
871         exit_shm(tsk);
872         exit_files(tsk);
873         exit_fs(tsk);
874         if (group_dead)
875                 disassociate_ctty(1);
876         exit_task_namespaces(tsk);
877         exit_task_work(tsk);
878         exit_thread(tsk);
879
880         /*
881          * Flush inherited counters to the parent - before the parent
882          * gets woken up by child-exit notifications.
883          *
884          * because of cgroup mode, must be called before cgroup_exit()
885          */
886         perf_event_exit_task(tsk);
887
888         sched_autogroup_exit_task(tsk);
889         cgroup_exit(tsk);
890
891         /*
892          * FIXME: do that only when needed, using sched_exit tracepoint
893          */
894         flush_ptrace_hw_breakpoint(tsk);
895
896         exit_tasks_rcu_start();
897         exit_notify(tsk, group_dead);
898         proc_exit_connector(tsk);
899         mpol_put_task_policy(tsk);
900 #ifdef CONFIG_FUTEX
901         if (unlikely(current->pi_state_cache))
902                 kfree(current->pi_state_cache);
903 #endif
904         /*
905          * Make sure we are holding no locks:
906          */
907         debug_check_no_locks_held();
908
909         if (tsk->io_context)
910                 exit_io_context(tsk);
911
912         if (tsk->splice_pipe)
913                 free_pipe_info(tsk->splice_pipe);
914
915         if (tsk->task_frag.page)
916                 put_page(tsk->task_frag.page);
917
918         exit_task_stack_account(tsk);
919
920         check_stack_usage();
921         preempt_disable();
922         if (tsk->nr_dirtied)
923                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
924         exit_rcu();
925         exit_tasks_rcu_finish();
926
927         lockdep_free_task(tsk);
928         do_task_dead();
929 }
930
931 void __noreturn make_task_dead(int signr)
932 {
933         /*
934          * Take the task off the cpu after something catastrophic has
935          * happened.
936          *
937          * We can get here from a kernel oops, sometimes with preemption off.
938          * Start by checking for critical errors.
939          * Then fix up important state like USER_DS and preemption.
940          * Then do everything else.
941          */
942         struct task_struct *tsk = current;
943         unsigned int limit;
944
945         if (unlikely(in_interrupt()))
946                 panic("Aiee, killing interrupt handler!");
947         if (unlikely(!tsk->pid))
948                 panic("Attempted to kill the idle task!");
949
950         if (unlikely(irqs_disabled())) {
951                 pr_info("note: %s[%d] exited with irqs disabled\n",
952                         current->comm, task_pid_nr(current));
953                 local_irq_enable();
954         }
955         if (unlikely(in_atomic())) {
956                 pr_info("note: %s[%d] exited with preempt_count %d\n",
957                         current->comm, task_pid_nr(current),
958                         preempt_count());
959                 preempt_count_set(PREEMPT_ENABLED);
960         }
961
962         /*
963          * Every time the system oopses, if the oops happens while a reference
964          * to an object was held, the reference leaks.
965          * If the oops doesn't also leak memory, repeated oopsing can cause
966          * reference counters to wrap around (if they're not using refcount_t).
967          * This means that repeated oopsing can make unexploitable-looking bugs
968          * exploitable through repeated oopsing.
969          * To make sure this can't happen, place an upper bound on how often the
970          * kernel may oops without panic().
971          */
972         limit = READ_ONCE(oops_limit);
973         if (atomic_inc_return(&oops_count) >= limit && limit)
974                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
975
976         /*
977          * We're taking recursive faults here in make_task_dead. Safest is to just
978          * leave this task alone and wait for reboot.
979          */
980         if (unlikely(tsk->flags & PF_EXITING)) {
981                 pr_alert("Fixing recursive fault but reboot is needed!\n");
982                 futex_exit_recursive(tsk);
983                 tsk->exit_state = EXIT_DEAD;
984                 refcount_inc(&tsk->rcu_users);
985                 do_task_dead();
986         }
987
988         do_exit(signr);
989 }
990
991 SYSCALL_DEFINE1(exit, int, error_code)
992 {
993         do_exit((error_code&0xff)<<8);
994 }
995
996 /*
997  * Take down every thread in the group.  This is called by fatal signals
998  * as well as by sys_exit_group (below).
999  */
1000 void __noreturn
1001 do_group_exit(int exit_code)
1002 {
1003         struct signal_struct *sig = current->signal;
1004
1005         if (sig->flags & SIGNAL_GROUP_EXIT)
1006                 exit_code = sig->group_exit_code;
1007         else if (sig->group_exec_task)
1008                 exit_code = 0;
1009         else {
1010                 struct sighand_struct *const sighand = current->sighand;
1011
1012                 spin_lock_irq(&sighand->siglock);
1013                 if (sig->flags & SIGNAL_GROUP_EXIT)
1014                         /* Another thread got here before we took the lock.  */
1015                         exit_code = sig->group_exit_code;
1016                 else if (sig->group_exec_task)
1017                         exit_code = 0;
1018                 else {
1019                         sig->group_exit_code = exit_code;
1020                         sig->flags = SIGNAL_GROUP_EXIT;
1021                         zap_other_threads(current);
1022                 }
1023                 spin_unlock_irq(&sighand->siglock);
1024         }
1025
1026         do_exit(exit_code);
1027         /* NOTREACHED */
1028 }
1029
1030 /*
1031  * this kills every thread in the thread group. Note that any externally
1032  * wait4()-ing process will get the correct exit code - even if this
1033  * thread is not the thread group leader.
1034  */
1035 SYSCALL_DEFINE1(exit_group, int, error_code)
1036 {
1037         do_group_exit((error_code & 0xff) << 8);
1038         /* NOTREACHED */
1039         return 0;
1040 }
1041
1042 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1043 {
1044         return  wo->wo_type == PIDTYPE_MAX ||
1045                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1046 }
1047
1048 static int
1049 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1050 {
1051         if (!eligible_pid(wo, p))
1052                 return 0;
1053
1054         /*
1055          * Wait for all children (clone and not) if __WALL is set or
1056          * if it is traced by us.
1057          */
1058         if (ptrace || (wo->wo_flags & __WALL))
1059                 return 1;
1060
1061         /*
1062          * Otherwise, wait for clone children *only* if __WCLONE is set;
1063          * otherwise, wait for non-clone children *only*.
1064          *
1065          * Note: a "clone" child here is one that reports to its parent
1066          * using a signal other than SIGCHLD, or a non-leader thread which
1067          * we can only see if it is traced by us.
1068          */
1069         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1070                 return 0;
1071
1072         return 1;
1073 }
1074
1075 /*
1076  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1077  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1078  * the lock and this task is uninteresting.  If we return nonzero, we have
1079  * released the lock and the system call should return.
1080  */
1081 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1082 {
1083         int state, status;
1084         pid_t pid = task_pid_vnr(p);
1085         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1086         struct waitid_info *infop;
1087
1088         if (!likely(wo->wo_flags & WEXITED))
1089                 return 0;
1090
1091         if (unlikely(wo->wo_flags & WNOWAIT)) {
1092                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1093                         ? p->signal->group_exit_code : p->exit_code;
1094                 get_task_struct(p);
1095                 read_unlock(&tasklist_lock);
1096                 sched_annotate_sleep();
1097                 if (wo->wo_rusage)
1098                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1099                 put_task_struct(p);
1100                 goto out_info;
1101         }
1102         /*
1103          * Move the task's state to DEAD/TRACE, only one thread can do this.
1104          */
1105         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1106                 EXIT_TRACE : EXIT_DEAD;
1107         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1108                 return 0;
1109         /*
1110          * We own this thread, nobody else can reap it.
1111          */
1112         read_unlock(&tasklist_lock);
1113         sched_annotate_sleep();
1114
1115         /*
1116          * Check thread_group_leader() to exclude the traced sub-threads.
1117          */
1118         if (state == EXIT_DEAD && thread_group_leader(p)) {
1119                 struct signal_struct *sig = p->signal;
1120                 struct signal_struct *psig = current->signal;
1121                 unsigned long maxrss;
1122                 u64 tgutime, tgstime;
1123
1124                 /*
1125                  * The resource counters for the group leader are in its
1126                  * own task_struct.  Those for dead threads in the group
1127                  * are in its signal_struct, as are those for the child
1128                  * processes it has previously reaped.  All these
1129                  * accumulate in the parent's signal_struct c* fields.
1130                  *
1131                  * We don't bother to take a lock here to protect these
1132                  * p->signal fields because the whole thread group is dead
1133                  * and nobody can change them.
1134                  *
1135                  * psig->stats_lock also protects us from our sub-threads
1136                  * which can reap other children at the same time.
1137                  *
1138                  * We use thread_group_cputime_adjusted() to get times for
1139                  * the thread group, which consolidates times for all threads
1140                  * in the group including the group leader.
1141                  */
1142                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1143                 write_seqlock_irq(&psig->stats_lock);
1144                 psig->cutime += tgutime + sig->cutime;
1145                 psig->cstime += tgstime + sig->cstime;
1146                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1147                 psig->cmin_flt +=
1148                         p->min_flt + sig->min_flt + sig->cmin_flt;
1149                 psig->cmaj_flt +=
1150                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1151                 psig->cnvcsw +=
1152                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1153                 psig->cnivcsw +=
1154                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1155                 psig->cinblock +=
1156                         task_io_get_inblock(p) +
1157                         sig->inblock + sig->cinblock;
1158                 psig->coublock +=
1159                         task_io_get_oublock(p) +
1160                         sig->oublock + sig->coublock;
1161                 maxrss = max(sig->maxrss, sig->cmaxrss);
1162                 if (psig->cmaxrss < maxrss)
1163                         psig->cmaxrss = maxrss;
1164                 task_io_accounting_add(&psig->ioac, &p->ioac);
1165                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1166                 write_sequnlock_irq(&psig->stats_lock);
1167         }
1168
1169         if (wo->wo_rusage)
1170                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1171         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1172                 ? p->signal->group_exit_code : p->exit_code;
1173         wo->wo_stat = status;
1174
1175         if (state == EXIT_TRACE) {
1176                 write_lock_irq(&tasklist_lock);
1177                 /* We dropped tasklist, ptracer could die and untrace */
1178                 ptrace_unlink(p);
1179
1180                 /* If parent wants a zombie, don't release it now */
1181                 state = EXIT_ZOMBIE;
1182                 if (do_notify_parent(p, p->exit_signal))
1183                         state = EXIT_DEAD;
1184                 p->exit_state = state;
1185                 write_unlock_irq(&tasklist_lock);
1186         }
1187         if (state == EXIT_DEAD)
1188                 release_task(p);
1189
1190 out_info:
1191         infop = wo->wo_info;
1192         if (infop) {
1193                 if ((status & 0x7f) == 0) {
1194                         infop->cause = CLD_EXITED;
1195                         infop->status = status >> 8;
1196                 } else {
1197                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1198                         infop->status = status & 0x7f;
1199                 }
1200                 infop->pid = pid;
1201                 infop->uid = uid;
1202         }
1203
1204         return pid;
1205 }
1206
1207 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1208 {
1209         if (ptrace) {
1210                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1211                         return &p->exit_code;
1212         } else {
1213                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1214                         return &p->signal->group_exit_code;
1215         }
1216         return NULL;
1217 }
1218
1219 /**
1220  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1221  * @wo: wait options
1222  * @ptrace: is the wait for ptrace
1223  * @p: task to wait for
1224  *
1225  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1226  *
1227  * CONTEXT:
1228  * read_lock(&tasklist_lock), which is released if return value is
1229  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1230  *
1231  * RETURNS:
1232  * 0 if wait condition didn't exist and search for other wait conditions
1233  * should continue.  Non-zero return, -errno on failure and @p's pid on
1234  * success, implies that tasklist_lock is released and wait condition
1235  * search should terminate.
1236  */
1237 static int wait_task_stopped(struct wait_opts *wo,
1238                                 int ptrace, struct task_struct *p)
1239 {
1240         struct waitid_info *infop;
1241         int exit_code, *p_code, why;
1242         uid_t uid = 0; /* unneeded, required by compiler */
1243         pid_t pid;
1244
1245         /*
1246          * Traditionally we see ptrace'd stopped tasks regardless of options.
1247          */
1248         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1249                 return 0;
1250
1251         if (!task_stopped_code(p, ptrace))
1252                 return 0;
1253
1254         exit_code = 0;
1255         spin_lock_irq(&p->sighand->siglock);
1256
1257         p_code = task_stopped_code(p, ptrace);
1258         if (unlikely(!p_code))
1259                 goto unlock_sig;
1260
1261         exit_code = *p_code;
1262         if (!exit_code)
1263                 goto unlock_sig;
1264
1265         if (!unlikely(wo->wo_flags & WNOWAIT))
1266                 *p_code = 0;
1267
1268         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1269 unlock_sig:
1270         spin_unlock_irq(&p->sighand->siglock);
1271         if (!exit_code)
1272                 return 0;
1273
1274         /*
1275          * Now we are pretty sure this task is interesting.
1276          * Make sure it doesn't get reaped out from under us while we
1277          * give up the lock and then examine it below.  We don't want to
1278          * keep holding onto the tasklist_lock while we call getrusage and
1279          * possibly take page faults for user memory.
1280          */
1281         get_task_struct(p);
1282         pid = task_pid_vnr(p);
1283         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1284         read_unlock(&tasklist_lock);
1285         sched_annotate_sleep();
1286         if (wo->wo_rusage)
1287                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1288         put_task_struct(p);
1289
1290         if (likely(!(wo->wo_flags & WNOWAIT)))
1291                 wo->wo_stat = (exit_code << 8) | 0x7f;
1292
1293         infop = wo->wo_info;
1294         if (infop) {
1295                 infop->cause = why;
1296                 infop->status = exit_code;
1297                 infop->pid = pid;
1298                 infop->uid = uid;
1299         }
1300         return pid;
1301 }
1302
1303 /*
1304  * Handle do_wait work for one task in a live, non-stopped state.
1305  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1306  * the lock and this task is uninteresting.  If we return nonzero, we have
1307  * released the lock and the system call should return.
1308  */
1309 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1310 {
1311         struct waitid_info *infop;
1312         pid_t pid;
1313         uid_t uid;
1314
1315         if (!unlikely(wo->wo_flags & WCONTINUED))
1316                 return 0;
1317
1318         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1319                 return 0;
1320
1321         spin_lock_irq(&p->sighand->siglock);
1322         /* Re-check with the lock held.  */
1323         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1324                 spin_unlock_irq(&p->sighand->siglock);
1325                 return 0;
1326         }
1327         if (!unlikely(wo->wo_flags & WNOWAIT))
1328                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1329         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1330         spin_unlock_irq(&p->sighand->siglock);
1331
1332         pid = task_pid_vnr(p);
1333         get_task_struct(p);
1334         read_unlock(&tasklist_lock);
1335         sched_annotate_sleep();
1336         if (wo->wo_rusage)
1337                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1338         put_task_struct(p);
1339
1340         infop = wo->wo_info;
1341         if (!infop) {
1342                 wo->wo_stat = 0xffff;
1343         } else {
1344                 infop->cause = CLD_CONTINUED;
1345                 infop->pid = pid;
1346                 infop->uid = uid;
1347                 infop->status = SIGCONT;
1348         }
1349         return pid;
1350 }
1351
1352 /*
1353  * Consider @p for a wait by @parent.
1354  *
1355  * -ECHILD should be in ->notask_error before the first call.
1356  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1357  * Returns zero if the search for a child should continue;
1358  * then ->notask_error is 0 if @p is an eligible child,
1359  * or still -ECHILD.
1360  */
1361 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1362                                 struct task_struct *p)
1363 {
1364         /*
1365          * We can race with wait_task_zombie() from another thread.
1366          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1367          * can't confuse the checks below.
1368          */
1369         int exit_state = READ_ONCE(p->exit_state);
1370         int ret;
1371
1372         if (unlikely(exit_state == EXIT_DEAD))
1373                 return 0;
1374
1375         ret = eligible_child(wo, ptrace, p);
1376         if (!ret)
1377                 return ret;
1378
1379         if (unlikely(exit_state == EXIT_TRACE)) {
1380                 /*
1381                  * ptrace == 0 means we are the natural parent. In this case
1382                  * we should clear notask_error, debugger will notify us.
1383                  */
1384                 if (likely(!ptrace))
1385                         wo->notask_error = 0;
1386                 return 0;
1387         }
1388
1389         if (likely(!ptrace) && unlikely(p->ptrace)) {
1390                 /*
1391                  * If it is traced by its real parent's group, just pretend
1392                  * the caller is ptrace_do_wait() and reap this child if it
1393                  * is zombie.
1394                  *
1395                  * This also hides group stop state from real parent; otherwise
1396                  * a single stop can be reported twice as group and ptrace stop.
1397                  * If a ptracer wants to distinguish these two events for its
1398                  * own children it should create a separate process which takes
1399                  * the role of real parent.
1400                  */
1401                 if (!ptrace_reparented(p))
1402                         ptrace = 1;
1403         }
1404
1405         /* slay zombie? */
1406         if (exit_state == EXIT_ZOMBIE) {
1407                 /* we don't reap group leaders with subthreads */
1408                 if (!delay_group_leader(p)) {
1409                         /*
1410                          * A zombie ptracee is only visible to its ptracer.
1411                          * Notification and reaping will be cascaded to the
1412                          * real parent when the ptracer detaches.
1413                          */
1414                         if (unlikely(ptrace) || likely(!p->ptrace))
1415                                 return wait_task_zombie(wo, p);
1416                 }
1417
1418                 /*
1419                  * Allow access to stopped/continued state via zombie by
1420                  * falling through.  Clearing of notask_error is complex.
1421                  *
1422                  * When !@ptrace:
1423                  *
1424                  * If WEXITED is set, notask_error should naturally be
1425                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1426                  * so, if there are live subthreads, there are events to
1427                  * wait for.  If all subthreads are dead, it's still safe
1428                  * to clear - this function will be called again in finite
1429                  * amount time once all the subthreads are released and
1430                  * will then return without clearing.
1431                  *
1432                  * When @ptrace:
1433                  *
1434                  * Stopped state is per-task and thus can't change once the
1435                  * target task dies.  Only continued and exited can happen.
1436                  * Clear notask_error if WCONTINUED | WEXITED.
1437                  */
1438                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1439                         wo->notask_error = 0;
1440         } else {
1441                 /*
1442                  * @p is alive and it's gonna stop, continue or exit, so
1443                  * there always is something to wait for.
1444                  */
1445                 wo->notask_error = 0;
1446         }
1447
1448         /*
1449          * Wait for stopped.  Depending on @ptrace, different stopped state
1450          * is used and the two don't interact with each other.
1451          */
1452         ret = wait_task_stopped(wo, ptrace, p);
1453         if (ret)
1454                 return ret;
1455
1456         /*
1457          * Wait for continued.  There's only one continued state and the
1458          * ptracer can consume it which can confuse the real parent.  Don't
1459          * use WCONTINUED from ptracer.  You don't need or want it.
1460          */
1461         return wait_task_continued(wo, p);
1462 }
1463
1464 /*
1465  * Do the work of do_wait() for one thread in the group, @tsk.
1466  *
1467  * -ECHILD should be in ->notask_error before the first call.
1468  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1469  * Returns zero if the search for a child should continue; then
1470  * ->notask_error is 0 if there were any eligible children,
1471  * or still -ECHILD.
1472  */
1473 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1474 {
1475         struct task_struct *p;
1476
1477         list_for_each_entry(p, &tsk->children, sibling) {
1478                 int ret = wait_consider_task(wo, 0, p);
1479
1480                 if (ret)
1481                         return ret;
1482         }
1483
1484         return 0;
1485 }
1486
1487 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1488 {
1489         struct task_struct *p;
1490
1491         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1492                 int ret = wait_consider_task(wo, 1, p);
1493
1494                 if (ret)
1495                         return ret;
1496         }
1497
1498         return 0;
1499 }
1500
1501 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1502 {
1503         if (!eligible_pid(wo, p))
1504                 return false;
1505
1506         if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1507                 return false;
1508
1509         return true;
1510 }
1511
1512 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1513                                 int sync, void *key)
1514 {
1515         struct wait_opts *wo = container_of(wait, struct wait_opts,
1516                                                 child_wait);
1517         struct task_struct *p = key;
1518
1519         if (pid_child_should_wake(wo, p))
1520                 return default_wake_function(wait, mode, sync, key);
1521
1522         return 0;
1523 }
1524
1525 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1526 {
1527         __wake_up_sync_key(&parent->signal->wait_chldexit,
1528                            TASK_INTERRUPTIBLE, p);
1529 }
1530
1531 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1532                                  struct task_struct *target)
1533 {
1534         struct task_struct *parent =
1535                 !ptrace ? target->real_parent : target->parent;
1536
1537         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1538                                      same_thread_group(current, parent));
1539 }
1540
1541 /*
1542  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1543  * and tracee lists to find the target task.
1544  */
1545 static int do_wait_pid(struct wait_opts *wo)
1546 {
1547         bool ptrace;
1548         struct task_struct *target;
1549         int retval;
1550
1551         ptrace = false;
1552         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1553         if (target && is_effectively_child(wo, ptrace, target)) {
1554                 retval = wait_consider_task(wo, ptrace, target);
1555                 if (retval)
1556                         return retval;
1557         }
1558
1559         ptrace = true;
1560         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1561         if (target && target->ptrace &&
1562             is_effectively_child(wo, ptrace, target)) {
1563                 retval = wait_consider_task(wo, ptrace, target);
1564                 if (retval)
1565                         return retval;
1566         }
1567
1568         return 0;
1569 }
1570
1571 long __do_wait(struct wait_opts *wo)
1572 {
1573         long retval;
1574
1575         /*
1576          * If there is nothing that can match our criteria, just get out.
1577          * We will clear ->notask_error to zero if we see any child that
1578          * might later match our criteria, even if we are not able to reap
1579          * it yet.
1580          */
1581         wo->notask_error = -ECHILD;
1582         if ((wo->wo_type < PIDTYPE_MAX) &&
1583            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1584                 goto notask;
1585
1586         read_lock(&tasklist_lock);
1587
1588         if (wo->wo_type == PIDTYPE_PID) {
1589                 retval = do_wait_pid(wo);
1590                 if (retval)
1591                         return retval;
1592         } else {
1593                 struct task_struct *tsk = current;
1594
1595                 do {
1596                         retval = do_wait_thread(wo, tsk);
1597                         if (retval)
1598                                 return retval;
1599
1600                         retval = ptrace_do_wait(wo, tsk);
1601                         if (retval)
1602                                 return retval;
1603
1604                         if (wo->wo_flags & __WNOTHREAD)
1605                                 break;
1606                 } while_each_thread(current, tsk);
1607         }
1608         read_unlock(&tasklist_lock);
1609
1610 notask:
1611         retval = wo->notask_error;
1612         if (!retval && !(wo->wo_flags & WNOHANG))
1613                 return -ERESTARTSYS;
1614
1615         return retval;
1616 }
1617
1618 static long do_wait(struct wait_opts *wo)
1619 {
1620         int retval;
1621
1622         trace_sched_process_wait(wo->wo_pid);
1623
1624         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1625         wo->child_wait.private = current;
1626         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1627
1628         do {
1629                 set_current_state(TASK_INTERRUPTIBLE);
1630                 retval = __do_wait(wo);
1631                 if (retval != -ERESTARTSYS)
1632                         break;
1633                 if (signal_pending(current))
1634                         break;
1635                 schedule();
1636         } while (1);
1637
1638         __set_current_state(TASK_RUNNING);
1639         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1640         return retval;
1641 }
1642
1643 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1644                           struct waitid_info *infop, int options,
1645                           struct rusage *ru)
1646 {
1647         unsigned int f_flags = 0;
1648         struct pid *pid = NULL;
1649         enum pid_type type;
1650
1651         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1652                         __WNOTHREAD|__WCLONE|__WALL))
1653                 return -EINVAL;
1654         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1655                 return -EINVAL;
1656
1657         switch (which) {
1658         case P_ALL:
1659                 type = PIDTYPE_MAX;
1660                 break;
1661         case P_PID:
1662                 type = PIDTYPE_PID;
1663                 if (upid <= 0)
1664                         return -EINVAL;
1665
1666                 pid = find_get_pid(upid);
1667                 break;
1668         case P_PGID:
1669                 type = PIDTYPE_PGID;
1670                 if (upid < 0)
1671                         return -EINVAL;
1672
1673                 if (upid)
1674                         pid = find_get_pid(upid);
1675                 else
1676                         pid = get_task_pid(current, PIDTYPE_PGID);
1677                 break;
1678         case P_PIDFD:
1679                 type = PIDTYPE_PID;
1680                 if (upid < 0)
1681                         return -EINVAL;
1682
1683                 pid = pidfd_get_pid(upid, &f_flags);
1684                 if (IS_ERR(pid))
1685                         return PTR_ERR(pid);
1686
1687                 break;
1688         default:
1689                 return -EINVAL;
1690         }
1691
1692         wo->wo_type     = type;
1693         wo->wo_pid      = pid;
1694         wo->wo_flags    = options;
1695         wo->wo_info     = infop;
1696         wo->wo_rusage   = ru;
1697         if (f_flags & O_NONBLOCK)
1698                 wo->wo_flags |= WNOHANG;
1699
1700         return 0;
1701 }
1702
1703 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1704                           int options, struct rusage *ru)
1705 {
1706         struct wait_opts wo;
1707         long ret;
1708
1709         ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1710         if (ret)
1711                 return ret;
1712
1713         ret = do_wait(&wo);
1714         if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1715                 ret = -EAGAIN;
1716
1717         put_pid(wo.wo_pid);
1718         return ret;
1719 }
1720
1721 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1722                 infop, int, options, struct rusage __user *, ru)
1723 {
1724         struct rusage r;
1725         struct waitid_info info = {.status = 0};
1726         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1727         int signo = 0;
1728
1729         if (err > 0) {
1730                 signo = SIGCHLD;
1731                 err = 0;
1732                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1733                         return -EFAULT;
1734         }
1735         if (!infop)
1736                 return err;
1737
1738         if (!user_write_access_begin(infop, sizeof(*infop)))
1739                 return -EFAULT;
1740
1741         unsafe_put_user(signo, &infop->si_signo, Efault);
1742         unsafe_put_user(0, &infop->si_errno, Efault);
1743         unsafe_put_user(info.cause, &infop->si_code, Efault);
1744         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1745         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1746         unsafe_put_user(info.status, &infop->si_status, Efault);
1747         user_write_access_end();
1748         return err;
1749 Efault:
1750         user_write_access_end();
1751         return -EFAULT;
1752 }
1753
1754 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1755                   struct rusage *ru)
1756 {
1757         struct wait_opts wo;
1758         struct pid *pid = NULL;
1759         enum pid_type type;
1760         long ret;
1761
1762         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1763                         __WNOTHREAD|__WCLONE|__WALL))
1764                 return -EINVAL;
1765
1766         /* -INT_MIN is not defined */
1767         if (upid == INT_MIN)
1768                 return -ESRCH;
1769
1770         if (upid == -1)
1771                 type = PIDTYPE_MAX;
1772         else if (upid < 0) {
1773                 type = PIDTYPE_PGID;
1774                 pid = find_get_pid(-upid);
1775         } else if (upid == 0) {
1776                 type = PIDTYPE_PGID;
1777                 pid = get_task_pid(current, PIDTYPE_PGID);
1778         } else /* upid > 0 */ {
1779                 type = PIDTYPE_PID;
1780                 pid = find_get_pid(upid);
1781         }
1782
1783         wo.wo_type      = type;
1784         wo.wo_pid       = pid;
1785         wo.wo_flags     = options | WEXITED;
1786         wo.wo_info      = NULL;
1787         wo.wo_stat      = 0;
1788         wo.wo_rusage    = ru;
1789         ret = do_wait(&wo);
1790         put_pid(pid);
1791         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1792                 ret = -EFAULT;
1793
1794         return ret;
1795 }
1796
1797 int kernel_wait(pid_t pid, int *stat)
1798 {
1799         struct wait_opts wo = {
1800                 .wo_type        = PIDTYPE_PID,
1801                 .wo_pid         = find_get_pid(pid),
1802                 .wo_flags       = WEXITED,
1803         };
1804         int ret;
1805
1806         ret = do_wait(&wo);
1807         if (ret > 0 && wo.wo_stat)
1808                 *stat = wo.wo_stat;
1809         put_pid(wo.wo_pid);
1810         return ret;
1811 }
1812
1813 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1814                 int, options, struct rusage __user *, ru)
1815 {
1816         struct rusage r;
1817         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1818
1819         if (err > 0) {
1820                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1821                         return -EFAULT;
1822         }
1823         return err;
1824 }
1825
1826 #ifdef __ARCH_WANT_SYS_WAITPID
1827
1828 /*
1829  * sys_waitpid() remains for compatibility. waitpid() should be
1830  * implemented by calling sys_wait4() from libc.a.
1831  */
1832 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1833 {
1834         return kernel_wait4(pid, stat_addr, options, NULL);
1835 }
1836
1837 #endif
1838
1839 #ifdef CONFIG_COMPAT
1840 COMPAT_SYSCALL_DEFINE4(wait4,
1841         compat_pid_t, pid,
1842         compat_uint_t __user *, stat_addr,
1843         int, options,
1844         struct compat_rusage __user *, ru)
1845 {
1846         struct rusage r;
1847         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1848         if (err > 0) {
1849                 if (ru && put_compat_rusage(&r, ru))
1850                         return -EFAULT;
1851         }
1852         return err;
1853 }
1854
1855 COMPAT_SYSCALL_DEFINE5(waitid,
1856                 int, which, compat_pid_t, pid,
1857                 struct compat_siginfo __user *, infop, int, options,
1858                 struct compat_rusage __user *, uru)
1859 {
1860         struct rusage ru;
1861         struct waitid_info info = {.status = 0};
1862         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1863         int signo = 0;
1864         if (err > 0) {
1865                 signo = SIGCHLD;
1866                 err = 0;
1867                 if (uru) {
1868                         /* kernel_waitid() overwrites everything in ru */
1869                         if (COMPAT_USE_64BIT_TIME)
1870                                 err = copy_to_user(uru, &ru, sizeof(ru));
1871                         else
1872                                 err = put_compat_rusage(&ru, uru);
1873                         if (err)
1874                                 return -EFAULT;
1875                 }
1876         }
1877
1878         if (!infop)
1879                 return err;
1880
1881         if (!user_write_access_begin(infop, sizeof(*infop)))
1882                 return -EFAULT;
1883
1884         unsafe_put_user(signo, &infop->si_signo, Efault);
1885         unsafe_put_user(0, &infop->si_errno, Efault);
1886         unsafe_put_user(info.cause, &infop->si_code, Efault);
1887         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1888         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1889         unsafe_put_user(info.status, &infop->si_status, Efault);
1890         user_write_access_end();
1891         return err;
1892 Efault:
1893         user_write_access_end();
1894         return -EFAULT;
1895 }
1896 #endif
1897
1898 /*
1899  * This needs to be __function_aligned as GCC implicitly makes any
1900  * implementation of abort() cold and drops alignment specified by
1901  * -falign-functions=N.
1902  *
1903  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1904  */
1905 __weak __function_aligned void abort(void)
1906 {
1907         BUG();
1908
1909         /* if that doesn't kill us, halt */
1910         panic("Oops failed to kill thread");
1911 }
1912 EXPORT_SYMBOL(abort);