Merge branch 'misc.poll' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-block.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         lockdep_assert_irqs_disabled();
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         lockdep_assert_irqs_disabled();
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610         struct perf_event *leader = event->group_leader;
611
612         if (leader->state <= PERF_EVENT_STATE_OFF)
613                 return leader->state;
614
615         return event->state;
616 }
617
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621         enum perf_event_state state = __perf_effective_state(event);
622         u64 delta = now - event->tstamp;
623
624         *enabled = event->total_time_enabled;
625         if (state >= PERF_EVENT_STATE_INACTIVE)
626                 *enabled += delta;
627
628         *running = event->total_time_running;
629         if (state >= PERF_EVENT_STATE_ACTIVE)
630                 *running += delta;
631 }
632
633 static void perf_event_update_time(struct perf_event *event)
634 {
635         u64 now = perf_event_time(event);
636
637         __perf_update_times(event, now, &event->total_time_enabled,
638                                         &event->total_time_running);
639         event->tstamp = now;
640 }
641
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644         struct perf_event *sibling;
645
646         list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647                 perf_event_update_time(sibling);
648 }
649
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653         if (event->state == state)
654                 return;
655
656         perf_event_update_time(event);
657         /*
658          * If a group leader gets enabled/disabled all its siblings
659          * are affected too.
660          */
661         if ((event->state < 0) ^ (state < 0))
662                 perf_event_update_sibling_time(event);
663
664         WRITE_ONCE(event->state, state);
665 }
666
667 #ifdef CONFIG_CGROUP_PERF
668
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672         struct perf_event_context *ctx = event->ctx;
673         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
675         /* @event doesn't care about cgroup */
676         if (!event->cgrp)
677                 return true;
678
679         /* wants specific cgroup scope but @cpuctx isn't associated with any */
680         if (!cpuctx->cgrp)
681                 return false;
682
683         /*
684          * Cgroup scoping is recursive.  An event enabled for a cgroup is
685          * also enabled for all its descendant cgroups.  If @cpuctx's
686          * cgroup is a descendant of @event's (the test covers identity
687          * case), it's a match.
688          */
689         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690                                     event->cgrp->css.cgroup);
691 }
692
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695         css_put(&event->cgrp->css);
696         event->cgrp = NULL;
697 }
698
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701         return event->cgrp != NULL;
702 }
703
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706         struct perf_cgroup_info *t;
707
708         t = per_cpu_ptr(event->cgrp->info, event->cpu);
709         return t->time;
710 }
711
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714         struct perf_cgroup_info *info;
715         u64 now;
716
717         now = perf_clock();
718
719         info = this_cpu_ptr(cgrp->info);
720
721         info->time += now - info->timestamp;
722         info->timestamp = now;
723 }
724
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728         if (cgrp_out)
729                 __update_cgrp_time(cgrp_out);
730 }
731
732 static inline void update_cgrp_time_from_event(struct perf_event *event)
733 {
734         struct perf_cgroup *cgrp;
735
736         /*
737          * ensure we access cgroup data only when needed and
738          * when we know the cgroup is pinned (css_get)
739          */
740         if (!is_cgroup_event(event))
741                 return;
742
743         cgrp = perf_cgroup_from_task(current, event->ctx);
744         /*
745          * Do not update time when cgroup is not active
746          */
747        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
748                 __update_cgrp_time(event->cgrp);
749 }
750
751 static inline void
752 perf_cgroup_set_timestamp(struct task_struct *task,
753                           struct perf_event_context *ctx)
754 {
755         struct perf_cgroup *cgrp;
756         struct perf_cgroup_info *info;
757
758         /*
759          * ctx->lock held by caller
760          * ensure we do not access cgroup data
761          * unless we have the cgroup pinned (css_get)
762          */
763         if (!task || !ctx->nr_cgroups)
764                 return;
765
766         cgrp = perf_cgroup_from_task(task, ctx);
767         info = this_cpu_ptr(cgrp->info);
768         info->timestamp = ctx->timestamp;
769 }
770
771 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772
773 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
774 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
775
776 /*
777  * reschedule events based on the cgroup constraint of task.
778  *
779  * mode SWOUT : schedule out everything
780  * mode SWIN : schedule in based on cgroup for next
781  */
782 static void perf_cgroup_switch(struct task_struct *task, int mode)
783 {
784         struct perf_cpu_context *cpuctx;
785         struct list_head *list;
786         unsigned long flags;
787
788         /*
789          * Disable interrupts and preemption to avoid this CPU's
790          * cgrp_cpuctx_entry to change under us.
791          */
792         local_irq_save(flags);
793
794         list = this_cpu_ptr(&cgrp_cpuctx_list);
795         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
797
798                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799                 perf_pmu_disable(cpuctx->ctx.pmu);
800
801                 if (mode & PERF_CGROUP_SWOUT) {
802                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803                         /*
804                          * must not be done before ctxswout due
805                          * to event_filter_match() in event_sched_out()
806                          */
807                         cpuctx->cgrp = NULL;
808                 }
809
810                 if (mode & PERF_CGROUP_SWIN) {
811                         WARN_ON_ONCE(cpuctx->cgrp);
812                         /*
813                          * set cgrp before ctxsw in to allow
814                          * event_filter_match() to not have to pass
815                          * task around
816                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
817                          * because cgorup events are only per-cpu
818                          */
819                         cpuctx->cgrp = perf_cgroup_from_task(task,
820                                                              &cpuctx->ctx);
821                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
822                 }
823                 perf_pmu_enable(cpuctx->ctx.pmu);
824                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
825         }
826
827         local_irq_restore(flags);
828 }
829
830 static inline void perf_cgroup_sched_out(struct task_struct *task,
831                                          struct task_struct *next)
832 {
833         struct perf_cgroup *cgrp1;
834         struct perf_cgroup *cgrp2 = NULL;
835
836         rcu_read_lock();
837         /*
838          * we come here when we know perf_cgroup_events > 0
839          * we do not need to pass the ctx here because we know
840          * we are holding the rcu lock
841          */
842         cgrp1 = perf_cgroup_from_task(task, NULL);
843         cgrp2 = perf_cgroup_from_task(next, NULL);
844
845         /*
846          * only schedule out current cgroup events if we know
847          * that we are switching to a different cgroup. Otherwise,
848          * do no touch the cgroup events.
849          */
850         if (cgrp1 != cgrp2)
851                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
852
853         rcu_read_unlock();
854 }
855
856 static inline void perf_cgroup_sched_in(struct task_struct *prev,
857                                         struct task_struct *task)
858 {
859         struct perf_cgroup *cgrp1;
860         struct perf_cgroup *cgrp2 = NULL;
861
862         rcu_read_lock();
863         /*
864          * we come here when we know perf_cgroup_events > 0
865          * we do not need to pass the ctx here because we know
866          * we are holding the rcu lock
867          */
868         cgrp1 = perf_cgroup_from_task(task, NULL);
869         cgrp2 = perf_cgroup_from_task(prev, NULL);
870
871         /*
872          * only need to schedule in cgroup events if we are changing
873          * cgroup during ctxsw. Cgroup events were not scheduled
874          * out of ctxsw out if that was not the case.
875          */
876         if (cgrp1 != cgrp2)
877                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
878
879         rcu_read_unlock();
880 }
881
882 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883                                       struct perf_event_attr *attr,
884                                       struct perf_event *group_leader)
885 {
886         struct perf_cgroup *cgrp;
887         struct cgroup_subsys_state *css;
888         struct fd f = fdget(fd);
889         int ret = 0;
890
891         if (!f.file)
892                 return -EBADF;
893
894         css = css_tryget_online_from_dir(f.file->f_path.dentry,
895                                          &perf_event_cgrp_subsys);
896         if (IS_ERR(css)) {
897                 ret = PTR_ERR(css);
898                 goto out;
899         }
900
901         cgrp = container_of(css, struct perf_cgroup, css);
902         event->cgrp = cgrp;
903
904         /*
905          * all events in a group must monitor
906          * the same cgroup because a task belongs
907          * to only one perf cgroup at a time
908          */
909         if (group_leader && group_leader->cgrp != cgrp) {
910                 perf_detach_cgroup(event);
911                 ret = -EINVAL;
912         }
913 out:
914         fdput(f);
915         return ret;
916 }
917
918 static inline void
919 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920 {
921         struct perf_cgroup_info *t;
922         t = per_cpu_ptr(event->cgrp->info, event->cpu);
923         event->shadow_ctx_time = now - t->timestamp;
924 }
925
926 /*
927  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928  * cleared when last cgroup event is removed.
929  */
930 static inline void
931 list_update_cgroup_event(struct perf_event *event,
932                          struct perf_event_context *ctx, bool add)
933 {
934         struct perf_cpu_context *cpuctx;
935         struct list_head *cpuctx_entry;
936
937         if (!is_cgroup_event(event))
938                 return;
939
940         if (add && ctx->nr_cgroups++)
941                 return;
942         else if (!add && --ctx->nr_cgroups)
943                 return;
944         /*
945          * Because cgroup events are always per-cpu events,
946          * this will always be called from the right CPU.
947          */
948         cpuctx = __get_cpu_context(ctx);
949         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950         /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951         if (add) {
952                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
953
954                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
955                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956                         cpuctx->cgrp = cgrp;
957         } else {
958                 list_del(cpuctx_entry);
959                 cpuctx->cgrp = NULL;
960         }
961 }
962
963 #else /* !CONFIG_CGROUP_PERF */
964
965 static inline bool
966 perf_cgroup_match(struct perf_event *event)
967 {
968         return true;
969 }
970
971 static inline void perf_detach_cgroup(struct perf_event *event)
972 {}
973
974 static inline int is_cgroup_event(struct perf_event *event)
975 {
976         return 0;
977 }
978
979 static inline void update_cgrp_time_from_event(struct perf_event *event)
980 {
981 }
982
983 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
984 {
985 }
986
987 static inline void perf_cgroup_sched_out(struct task_struct *task,
988                                          struct task_struct *next)
989 {
990 }
991
992 static inline void perf_cgroup_sched_in(struct task_struct *prev,
993                                         struct task_struct *task)
994 {
995 }
996
997 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998                                       struct perf_event_attr *attr,
999                                       struct perf_event *group_leader)
1000 {
1001         return -EINVAL;
1002 }
1003
1004 static inline void
1005 perf_cgroup_set_timestamp(struct task_struct *task,
1006                           struct perf_event_context *ctx)
1007 {
1008 }
1009
1010 void
1011 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1012 {
1013 }
1014
1015 static inline void
1016 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1017 {
1018 }
1019
1020 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1021 {
1022         return 0;
1023 }
1024
1025 static inline void
1026 list_update_cgroup_event(struct perf_event *event,
1027                          struct perf_event_context *ctx, bool add)
1028 {
1029 }
1030
1031 #endif
1032
1033 /*
1034  * set default to be dependent on timer tick just
1035  * like original code
1036  */
1037 #define PERF_CPU_HRTIMER (1000 / HZ)
1038 /*
1039  * function must be called with interrupts disabled
1040  */
1041 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1042 {
1043         struct perf_cpu_context *cpuctx;
1044         int rotations = 0;
1045
1046         lockdep_assert_irqs_disabled();
1047
1048         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1049         rotations = perf_rotate_context(cpuctx);
1050
1051         raw_spin_lock(&cpuctx->hrtimer_lock);
1052         if (rotations)
1053                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1054         else
1055                 cpuctx->hrtimer_active = 0;
1056         raw_spin_unlock(&cpuctx->hrtimer_lock);
1057
1058         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1059 }
1060
1061 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1062 {
1063         struct hrtimer *timer = &cpuctx->hrtimer;
1064         struct pmu *pmu = cpuctx->ctx.pmu;
1065         u64 interval;
1066
1067         /* no multiplexing needed for SW PMU */
1068         if (pmu->task_ctx_nr == perf_sw_context)
1069                 return;
1070
1071         /*
1072          * check default is sane, if not set then force to
1073          * default interval (1/tick)
1074          */
1075         interval = pmu->hrtimer_interval_ms;
1076         if (interval < 1)
1077                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1078
1079         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1080
1081         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1083         timer->function = perf_mux_hrtimer_handler;
1084 }
1085
1086 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1087 {
1088         struct hrtimer *timer = &cpuctx->hrtimer;
1089         struct pmu *pmu = cpuctx->ctx.pmu;
1090         unsigned long flags;
1091
1092         /* not for SW PMU */
1093         if (pmu->task_ctx_nr == perf_sw_context)
1094                 return 0;
1095
1096         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097         if (!cpuctx->hrtimer_active) {
1098                 cpuctx->hrtimer_active = 1;
1099                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1101         }
1102         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1103
1104         return 0;
1105 }
1106
1107 void perf_pmu_disable(struct pmu *pmu)
1108 {
1109         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110         if (!(*count)++)
1111                 pmu->pmu_disable(pmu);
1112 }
1113
1114 void perf_pmu_enable(struct pmu *pmu)
1115 {
1116         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117         if (!--(*count))
1118                 pmu->pmu_enable(pmu);
1119 }
1120
1121 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1122
1123 /*
1124  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125  * perf_event_task_tick() are fully serialized because they're strictly cpu
1126  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127  * disabled, while perf_event_task_tick is called from IRQ context.
1128  */
1129 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1130 {
1131         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1132
1133         lockdep_assert_irqs_disabled();
1134
1135         WARN_ON(!list_empty(&ctx->active_ctx_list));
1136
1137         list_add(&ctx->active_ctx_list, head);
1138 }
1139
1140 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1141 {
1142         lockdep_assert_irqs_disabled();
1143
1144         WARN_ON(list_empty(&ctx->active_ctx_list));
1145
1146         list_del_init(&ctx->active_ctx_list);
1147 }
1148
1149 static void get_ctx(struct perf_event_context *ctx)
1150 {
1151         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1152 }
1153
1154 static void free_ctx(struct rcu_head *head)
1155 {
1156         struct perf_event_context *ctx;
1157
1158         ctx = container_of(head, struct perf_event_context, rcu_head);
1159         kfree(ctx->task_ctx_data);
1160         kfree(ctx);
1161 }
1162
1163 static void put_ctx(struct perf_event_context *ctx)
1164 {
1165         if (atomic_dec_and_test(&ctx->refcount)) {
1166                 if (ctx->parent_ctx)
1167                         put_ctx(ctx->parent_ctx);
1168                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1169                         put_task_struct(ctx->task);
1170                 call_rcu(&ctx->rcu_head, free_ctx);
1171         }
1172 }
1173
1174 /*
1175  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176  * perf_pmu_migrate_context() we need some magic.
1177  *
1178  * Those places that change perf_event::ctx will hold both
1179  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1180  *
1181  * Lock ordering is by mutex address. There are two other sites where
1182  * perf_event_context::mutex nests and those are:
1183  *
1184  *  - perf_event_exit_task_context()    [ child , 0 ]
1185  *      perf_event_exit_event()
1186  *        put_event()                   [ parent, 1 ]
1187  *
1188  *  - perf_event_init_context()         [ parent, 0 ]
1189  *      inherit_task_group()
1190  *        inherit_group()
1191  *          inherit_event()
1192  *            perf_event_alloc()
1193  *              perf_init_event()
1194  *                perf_try_init_event() [ child , 1 ]
1195  *
1196  * While it appears there is an obvious deadlock here -- the parent and child
1197  * nesting levels are inverted between the two. This is in fact safe because
1198  * life-time rules separate them. That is an exiting task cannot fork, and a
1199  * spawning task cannot (yet) exit.
1200  *
1201  * But remember that that these are parent<->child context relations, and
1202  * migration does not affect children, therefore these two orderings should not
1203  * interact.
1204  *
1205  * The change in perf_event::ctx does not affect children (as claimed above)
1206  * because the sys_perf_event_open() case will install a new event and break
1207  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208  * concerned with cpuctx and that doesn't have children.
1209  *
1210  * The places that change perf_event::ctx will issue:
1211  *
1212  *   perf_remove_from_context();
1213  *   synchronize_rcu();
1214  *   perf_install_in_context();
1215  *
1216  * to affect the change. The remove_from_context() + synchronize_rcu() should
1217  * quiesce the event, after which we can install it in the new location. This
1218  * means that only external vectors (perf_fops, prctl) can perturb the event
1219  * while in transit. Therefore all such accessors should also acquire
1220  * perf_event_context::mutex to serialize against this.
1221  *
1222  * However; because event->ctx can change while we're waiting to acquire
1223  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224  * function.
1225  *
1226  * Lock order:
1227  *    cred_guard_mutex
1228  *      task_struct::perf_event_mutex
1229  *        perf_event_context::mutex
1230  *          perf_event::child_mutex;
1231  *            perf_event_context::lock
1232  *          perf_event::mmap_mutex
1233  *          mmap_sem
1234  *
1235  *    cpu_hotplug_lock
1236  *      pmus_lock
1237  *        cpuctx->mutex / perf_event_context::mutex
1238  */
1239 static struct perf_event_context *
1240 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1241 {
1242         struct perf_event_context *ctx;
1243
1244 again:
1245         rcu_read_lock();
1246         ctx = READ_ONCE(event->ctx);
1247         if (!atomic_inc_not_zero(&ctx->refcount)) {
1248                 rcu_read_unlock();
1249                 goto again;
1250         }
1251         rcu_read_unlock();
1252
1253         mutex_lock_nested(&ctx->mutex, nesting);
1254         if (event->ctx != ctx) {
1255                 mutex_unlock(&ctx->mutex);
1256                 put_ctx(ctx);
1257                 goto again;
1258         }
1259
1260         return ctx;
1261 }
1262
1263 static inline struct perf_event_context *
1264 perf_event_ctx_lock(struct perf_event *event)
1265 {
1266         return perf_event_ctx_lock_nested(event, 0);
1267 }
1268
1269 static void perf_event_ctx_unlock(struct perf_event *event,
1270                                   struct perf_event_context *ctx)
1271 {
1272         mutex_unlock(&ctx->mutex);
1273         put_ctx(ctx);
1274 }
1275
1276 /*
1277  * This must be done under the ctx->lock, such as to serialize against
1278  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1279  * calling scheduler related locks and ctx->lock nests inside those.
1280  */
1281 static __must_check struct perf_event_context *
1282 unclone_ctx(struct perf_event_context *ctx)
1283 {
1284         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1285
1286         lockdep_assert_held(&ctx->lock);
1287
1288         if (parent_ctx)
1289                 ctx->parent_ctx = NULL;
1290         ctx->generation++;
1291
1292         return parent_ctx;
1293 }
1294
1295 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1296                                 enum pid_type type)
1297 {
1298         u32 nr;
1299         /*
1300          * only top level events have the pid namespace they were created in
1301          */
1302         if (event->parent)
1303                 event = event->parent;
1304
1305         nr = __task_pid_nr_ns(p, type, event->ns);
1306         /* avoid -1 if it is idle thread or runs in another ns */
1307         if (!nr && !pid_alive(p))
1308                 nr = -1;
1309         return nr;
1310 }
1311
1312 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1313 {
1314         return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1315 }
1316
1317 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1318 {
1319         return perf_event_pid_type(event, p, PIDTYPE_PID);
1320 }
1321
1322 /*
1323  * If we inherit events we want to return the parent event id
1324  * to userspace.
1325  */
1326 static u64 primary_event_id(struct perf_event *event)
1327 {
1328         u64 id = event->id;
1329
1330         if (event->parent)
1331                 id = event->parent->id;
1332
1333         return id;
1334 }
1335
1336 /*
1337  * Get the perf_event_context for a task and lock it.
1338  *
1339  * This has to cope with with the fact that until it is locked,
1340  * the context could get moved to another task.
1341  */
1342 static struct perf_event_context *
1343 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1344 {
1345         struct perf_event_context *ctx;
1346
1347 retry:
1348         /*
1349          * One of the few rules of preemptible RCU is that one cannot do
1350          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1351          * part of the read side critical section was irqs-enabled -- see
1352          * rcu_read_unlock_special().
1353          *
1354          * Since ctx->lock nests under rq->lock we must ensure the entire read
1355          * side critical section has interrupts disabled.
1356          */
1357         local_irq_save(*flags);
1358         rcu_read_lock();
1359         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1360         if (ctx) {
1361                 /*
1362                  * If this context is a clone of another, it might
1363                  * get swapped for another underneath us by
1364                  * perf_event_task_sched_out, though the
1365                  * rcu_read_lock() protects us from any context
1366                  * getting freed.  Lock the context and check if it
1367                  * got swapped before we could get the lock, and retry
1368                  * if so.  If we locked the right context, then it
1369                  * can't get swapped on us any more.
1370                  */
1371                 raw_spin_lock(&ctx->lock);
1372                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1373                         raw_spin_unlock(&ctx->lock);
1374                         rcu_read_unlock();
1375                         local_irq_restore(*flags);
1376                         goto retry;
1377                 }
1378
1379                 if (ctx->task == TASK_TOMBSTONE ||
1380                     !atomic_inc_not_zero(&ctx->refcount)) {
1381                         raw_spin_unlock(&ctx->lock);
1382                         ctx = NULL;
1383                 } else {
1384                         WARN_ON_ONCE(ctx->task != task);
1385                 }
1386         }
1387         rcu_read_unlock();
1388         if (!ctx)
1389                 local_irq_restore(*flags);
1390         return ctx;
1391 }
1392
1393 /*
1394  * Get the context for a task and increment its pin_count so it
1395  * can't get swapped to another task.  This also increments its
1396  * reference count so that the context can't get freed.
1397  */
1398 static struct perf_event_context *
1399 perf_pin_task_context(struct task_struct *task, int ctxn)
1400 {
1401         struct perf_event_context *ctx;
1402         unsigned long flags;
1403
1404         ctx = perf_lock_task_context(task, ctxn, &flags);
1405         if (ctx) {
1406                 ++ctx->pin_count;
1407                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1408         }
1409         return ctx;
1410 }
1411
1412 static void perf_unpin_context(struct perf_event_context *ctx)
1413 {
1414         unsigned long flags;
1415
1416         raw_spin_lock_irqsave(&ctx->lock, flags);
1417         --ctx->pin_count;
1418         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1419 }
1420
1421 /*
1422  * Update the record of the current time in a context.
1423  */
1424 static void update_context_time(struct perf_event_context *ctx)
1425 {
1426         u64 now = perf_clock();
1427
1428         ctx->time += now - ctx->timestamp;
1429         ctx->timestamp = now;
1430 }
1431
1432 static u64 perf_event_time(struct perf_event *event)
1433 {
1434         struct perf_event_context *ctx = event->ctx;
1435
1436         if (is_cgroup_event(event))
1437                 return perf_cgroup_event_time(event);
1438
1439         return ctx ? ctx->time : 0;
1440 }
1441
1442 static enum event_type_t get_event_type(struct perf_event *event)
1443 {
1444         struct perf_event_context *ctx = event->ctx;
1445         enum event_type_t event_type;
1446
1447         lockdep_assert_held(&ctx->lock);
1448
1449         /*
1450          * It's 'group type', really, because if our group leader is
1451          * pinned, so are we.
1452          */
1453         if (event->group_leader != event)
1454                 event = event->group_leader;
1455
1456         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1457         if (!ctx->task)
1458                 event_type |= EVENT_CPU;
1459
1460         return event_type;
1461 }
1462
1463 static struct list_head *
1464 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1465 {
1466         if (event->attr.pinned)
1467                 return &ctx->pinned_groups;
1468         else
1469                 return &ctx->flexible_groups;
1470 }
1471
1472 /*
1473  * Add a event from the lists for its context.
1474  * Must be called with ctx->mutex and ctx->lock held.
1475  */
1476 static void
1477 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1478 {
1479         lockdep_assert_held(&ctx->lock);
1480
1481         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1482         event->attach_state |= PERF_ATTACH_CONTEXT;
1483
1484         event->tstamp = perf_event_time(event);
1485
1486         /*
1487          * If we're a stand alone event or group leader, we go to the context
1488          * list, group events are kept attached to the group so that
1489          * perf_group_detach can, at all times, locate all siblings.
1490          */
1491         if (event->group_leader == event) {
1492                 struct list_head *list;
1493
1494                 event->group_caps = event->event_caps;
1495
1496                 list = ctx_group_list(event, ctx);
1497                 list_add_tail(&event->group_entry, list);
1498         }
1499
1500         list_update_cgroup_event(event, ctx, true);
1501
1502         list_add_rcu(&event->event_entry, &ctx->event_list);
1503         ctx->nr_events++;
1504         if (event->attr.inherit_stat)
1505                 ctx->nr_stat++;
1506
1507         ctx->generation++;
1508 }
1509
1510 /*
1511  * Initialize event state based on the perf_event_attr::disabled.
1512  */
1513 static inline void perf_event__state_init(struct perf_event *event)
1514 {
1515         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1516                                               PERF_EVENT_STATE_INACTIVE;
1517 }
1518
1519 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1520 {
1521         int entry = sizeof(u64); /* value */
1522         int size = 0;
1523         int nr = 1;
1524
1525         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1526                 size += sizeof(u64);
1527
1528         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1529                 size += sizeof(u64);
1530
1531         if (event->attr.read_format & PERF_FORMAT_ID)
1532                 entry += sizeof(u64);
1533
1534         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1535                 nr += nr_siblings;
1536                 size += sizeof(u64);
1537         }
1538
1539         size += entry * nr;
1540         event->read_size = size;
1541 }
1542
1543 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1544 {
1545         struct perf_sample_data *data;
1546         u16 size = 0;
1547
1548         if (sample_type & PERF_SAMPLE_IP)
1549                 size += sizeof(data->ip);
1550
1551         if (sample_type & PERF_SAMPLE_ADDR)
1552                 size += sizeof(data->addr);
1553
1554         if (sample_type & PERF_SAMPLE_PERIOD)
1555                 size += sizeof(data->period);
1556
1557         if (sample_type & PERF_SAMPLE_WEIGHT)
1558                 size += sizeof(data->weight);
1559
1560         if (sample_type & PERF_SAMPLE_READ)
1561                 size += event->read_size;
1562
1563         if (sample_type & PERF_SAMPLE_DATA_SRC)
1564                 size += sizeof(data->data_src.val);
1565
1566         if (sample_type & PERF_SAMPLE_TRANSACTION)
1567                 size += sizeof(data->txn);
1568
1569         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1570                 size += sizeof(data->phys_addr);
1571
1572         event->header_size = size;
1573 }
1574
1575 /*
1576  * Called at perf_event creation and when events are attached/detached from a
1577  * group.
1578  */
1579 static void perf_event__header_size(struct perf_event *event)
1580 {
1581         __perf_event_read_size(event,
1582                                event->group_leader->nr_siblings);
1583         __perf_event_header_size(event, event->attr.sample_type);
1584 }
1585
1586 static void perf_event__id_header_size(struct perf_event *event)
1587 {
1588         struct perf_sample_data *data;
1589         u64 sample_type = event->attr.sample_type;
1590         u16 size = 0;
1591
1592         if (sample_type & PERF_SAMPLE_TID)
1593                 size += sizeof(data->tid_entry);
1594
1595         if (sample_type & PERF_SAMPLE_TIME)
1596                 size += sizeof(data->time);
1597
1598         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1599                 size += sizeof(data->id);
1600
1601         if (sample_type & PERF_SAMPLE_ID)
1602                 size += sizeof(data->id);
1603
1604         if (sample_type & PERF_SAMPLE_STREAM_ID)
1605                 size += sizeof(data->stream_id);
1606
1607         if (sample_type & PERF_SAMPLE_CPU)
1608                 size += sizeof(data->cpu_entry);
1609
1610         event->id_header_size = size;
1611 }
1612
1613 static bool perf_event_validate_size(struct perf_event *event)
1614 {
1615         /*
1616          * The values computed here will be over-written when we actually
1617          * attach the event.
1618          */
1619         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1620         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1621         perf_event__id_header_size(event);
1622
1623         /*
1624          * Sum the lot; should not exceed the 64k limit we have on records.
1625          * Conservative limit to allow for callchains and other variable fields.
1626          */
1627         if (event->read_size + event->header_size +
1628             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1629                 return false;
1630
1631         return true;
1632 }
1633
1634 static void perf_group_attach(struct perf_event *event)
1635 {
1636         struct perf_event *group_leader = event->group_leader, *pos;
1637
1638         lockdep_assert_held(&event->ctx->lock);
1639
1640         /*
1641          * We can have double attach due to group movement in perf_event_open.
1642          */
1643         if (event->attach_state & PERF_ATTACH_GROUP)
1644                 return;
1645
1646         event->attach_state |= PERF_ATTACH_GROUP;
1647
1648         if (group_leader == event)
1649                 return;
1650
1651         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1652
1653         group_leader->group_caps &= event->event_caps;
1654
1655         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1656         group_leader->nr_siblings++;
1657
1658         perf_event__header_size(group_leader);
1659
1660         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1661                 perf_event__header_size(pos);
1662 }
1663
1664 /*
1665  * Remove a event from the lists for its context.
1666  * Must be called with ctx->mutex and ctx->lock held.
1667  */
1668 static void
1669 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1670 {
1671         WARN_ON_ONCE(event->ctx != ctx);
1672         lockdep_assert_held(&ctx->lock);
1673
1674         /*
1675          * We can have double detach due to exit/hot-unplug + close.
1676          */
1677         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1678                 return;
1679
1680         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1681
1682         list_update_cgroup_event(event, ctx, false);
1683
1684         ctx->nr_events--;
1685         if (event->attr.inherit_stat)
1686                 ctx->nr_stat--;
1687
1688         list_del_rcu(&event->event_entry);
1689
1690         if (event->group_leader == event)
1691                 list_del_init(&event->group_entry);
1692
1693         /*
1694          * If event was in error state, then keep it
1695          * that way, otherwise bogus counts will be
1696          * returned on read(). The only way to get out
1697          * of error state is by explicit re-enabling
1698          * of the event
1699          */
1700         if (event->state > PERF_EVENT_STATE_OFF)
1701                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1702
1703         ctx->generation++;
1704 }
1705
1706 static void perf_group_detach(struct perf_event *event)
1707 {
1708         struct perf_event *sibling, *tmp;
1709         struct list_head *list = NULL;
1710
1711         lockdep_assert_held(&event->ctx->lock);
1712
1713         /*
1714          * We can have double detach due to exit/hot-unplug + close.
1715          */
1716         if (!(event->attach_state & PERF_ATTACH_GROUP))
1717                 return;
1718
1719         event->attach_state &= ~PERF_ATTACH_GROUP;
1720
1721         /*
1722          * If this is a sibling, remove it from its group.
1723          */
1724         if (event->group_leader != event) {
1725                 list_del_init(&event->group_entry);
1726                 event->group_leader->nr_siblings--;
1727                 goto out;
1728         }
1729
1730         if (!list_empty(&event->group_entry))
1731                 list = &event->group_entry;
1732
1733         /*
1734          * If this was a group event with sibling events then
1735          * upgrade the siblings to singleton events by adding them
1736          * to whatever list we are on.
1737          */
1738         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1739                 if (list)
1740                         list_move_tail(&sibling->group_entry, list);
1741                 sibling->group_leader = sibling;
1742
1743                 /* Inherit group flags from the previous leader */
1744                 sibling->group_caps = event->group_caps;
1745
1746                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1747         }
1748
1749 out:
1750         perf_event__header_size(event->group_leader);
1751
1752         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1753                 perf_event__header_size(tmp);
1754 }
1755
1756 static bool is_orphaned_event(struct perf_event *event)
1757 {
1758         return event->state == PERF_EVENT_STATE_DEAD;
1759 }
1760
1761 static inline int __pmu_filter_match(struct perf_event *event)
1762 {
1763         struct pmu *pmu = event->pmu;
1764         return pmu->filter_match ? pmu->filter_match(event) : 1;
1765 }
1766
1767 /*
1768  * Check whether we should attempt to schedule an event group based on
1769  * PMU-specific filtering. An event group can consist of HW and SW events,
1770  * potentially with a SW leader, so we must check all the filters, to
1771  * determine whether a group is schedulable:
1772  */
1773 static inline int pmu_filter_match(struct perf_event *event)
1774 {
1775         struct perf_event *child;
1776
1777         if (!__pmu_filter_match(event))
1778                 return 0;
1779
1780         list_for_each_entry(child, &event->sibling_list, group_entry) {
1781                 if (!__pmu_filter_match(child))
1782                         return 0;
1783         }
1784
1785         return 1;
1786 }
1787
1788 static inline int
1789 event_filter_match(struct perf_event *event)
1790 {
1791         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1792                perf_cgroup_match(event) && pmu_filter_match(event);
1793 }
1794
1795 static void
1796 event_sched_out(struct perf_event *event,
1797                   struct perf_cpu_context *cpuctx,
1798                   struct perf_event_context *ctx)
1799 {
1800         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1801
1802         WARN_ON_ONCE(event->ctx != ctx);
1803         lockdep_assert_held(&ctx->lock);
1804
1805         if (event->state != PERF_EVENT_STATE_ACTIVE)
1806                 return;
1807
1808         perf_pmu_disable(event->pmu);
1809
1810         event->pmu->del(event, 0);
1811         event->oncpu = -1;
1812
1813         if (event->pending_disable) {
1814                 event->pending_disable = 0;
1815                 state = PERF_EVENT_STATE_OFF;
1816         }
1817         perf_event_set_state(event, state);
1818
1819         if (!is_software_event(event))
1820                 cpuctx->active_oncpu--;
1821         if (!--ctx->nr_active)
1822                 perf_event_ctx_deactivate(ctx);
1823         if (event->attr.freq && event->attr.sample_freq)
1824                 ctx->nr_freq--;
1825         if (event->attr.exclusive || !cpuctx->active_oncpu)
1826                 cpuctx->exclusive = 0;
1827
1828         perf_pmu_enable(event->pmu);
1829 }
1830
1831 static void
1832 group_sched_out(struct perf_event *group_event,
1833                 struct perf_cpu_context *cpuctx,
1834                 struct perf_event_context *ctx)
1835 {
1836         struct perf_event *event;
1837
1838         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1839                 return;
1840
1841         perf_pmu_disable(ctx->pmu);
1842
1843         event_sched_out(group_event, cpuctx, ctx);
1844
1845         /*
1846          * Schedule out siblings (if any):
1847          */
1848         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1849                 event_sched_out(event, cpuctx, ctx);
1850
1851         perf_pmu_enable(ctx->pmu);
1852
1853         if (group_event->attr.exclusive)
1854                 cpuctx->exclusive = 0;
1855 }
1856
1857 #define DETACH_GROUP    0x01UL
1858
1859 /*
1860  * Cross CPU call to remove a performance event
1861  *
1862  * We disable the event on the hardware level first. After that we
1863  * remove it from the context list.
1864  */
1865 static void
1866 __perf_remove_from_context(struct perf_event *event,
1867                            struct perf_cpu_context *cpuctx,
1868                            struct perf_event_context *ctx,
1869                            void *info)
1870 {
1871         unsigned long flags = (unsigned long)info;
1872
1873         if (ctx->is_active & EVENT_TIME) {
1874                 update_context_time(ctx);
1875                 update_cgrp_time_from_cpuctx(cpuctx);
1876         }
1877
1878         event_sched_out(event, cpuctx, ctx);
1879         if (flags & DETACH_GROUP)
1880                 perf_group_detach(event);
1881         list_del_event(event, ctx);
1882
1883         if (!ctx->nr_events && ctx->is_active) {
1884                 ctx->is_active = 0;
1885                 if (ctx->task) {
1886                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1887                         cpuctx->task_ctx = NULL;
1888                 }
1889         }
1890 }
1891
1892 /*
1893  * Remove the event from a task's (or a CPU's) list of events.
1894  *
1895  * If event->ctx is a cloned context, callers must make sure that
1896  * every task struct that event->ctx->task could possibly point to
1897  * remains valid.  This is OK when called from perf_release since
1898  * that only calls us on the top-level context, which can't be a clone.
1899  * When called from perf_event_exit_task, it's OK because the
1900  * context has been detached from its task.
1901  */
1902 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1903 {
1904         struct perf_event_context *ctx = event->ctx;
1905
1906         lockdep_assert_held(&ctx->mutex);
1907
1908         event_function_call(event, __perf_remove_from_context, (void *)flags);
1909
1910         /*
1911          * The above event_function_call() can NO-OP when it hits
1912          * TASK_TOMBSTONE. In that case we must already have been detached
1913          * from the context (by perf_event_exit_event()) but the grouping
1914          * might still be in-tact.
1915          */
1916         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1917         if ((flags & DETACH_GROUP) &&
1918             (event->attach_state & PERF_ATTACH_GROUP)) {
1919                 /*
1920                  * Since in that case we cannot possibly be scheduled, simply
1921                  * detach now.
1922                  */
1923                 raw_spin_lock_irq(&ctx->lock);
1924                 perf_group_detach(event);
1925                 raw_spin_unlock_irq(&ctx->lock);
1926         }
1927 }
1928
1929 /*
1930  * Cross CPU call to disable a performance event
1931  */
1932 static void __perf_event_disable(struct perf_event *event,
1933                                  struct perf_cpu_context *cpuctx,
1934                                  struct perf_event_context *ctx,
1935                                  void *info)
1936 {
1937         if (event->state < PERF_EVENT_STATE_INACTIVE)
1938                 return;
1939
1940         if (ctx->is_active & EVENT_TIME) {
1941                 update_context_time(ctx);
1942                 update_cgrp_time_from_event(event);
1943         }
1944
1945         if (event == event->group_leader)
1946                 group_sched_out(event, cpuctx, ctx);
1947         else
1948                 event_sched_out(event, cpuctx, ctx);
1949
1950         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1951 }
1952
1953 /*
1954  * Disable a event.
1955  *
1956  * If event->ctx is a cloned context, callers must make sure that
1957  * every task struct that event->ctx->task could possibly point to
1958  * remains valid.  This condition is satisifed when called through
1959  * perf_event_for_each_child or perf_event_for_each because they
1960  * hold the top-level event's child_mutex, so any descendant that
1961  * goes to exit will block in perf_event_exit_event().
1962  *
1963  * When called from perf_pending_event it's OK because event->ctx
1964  * is the current context on this CPU and preemption is disabled,
1965  * hence we can't get into perf_event_task_sched_out for this context.
1966  */
1967 static void _perf_event_disable(struct perf_event *event)
1968 {
1969         struct perf_event_context *ctx = event->ctx;
1970
1971         raw_spin_lock_irq(&ctx->lock);
1972         if (event->state <= PERF_EVENT_STATE_OFF) {
1973                 raw_spin_unlock_irq(&ctx->lock);
1974                 return;
1975         }
1976         raw_spin_unlock_irq(&ctx->lock);
1977
1978         event_function_call(event, __perf_event_disable, NULL);
1979 }
1980
1981 void perf_event_disable_local(struct perf_event *event)
1982 {
1983         event_function_local(event, __perf_event_disable, NULL);
1984 }
1985
1986 /*
1987  * Strictly speaking kernel users cannot create groups and therefore this
1988  * interface does not need the perf_event_ctx_lock() magic.
1989  */
1990 void perf_event_disable(struct perf_event *event)
1991 {
1992         struct perf_event_context *ctx;
1993
1994         ctx = perf_event_ctx_lock(event);
1995         _perf_event_disable(event);
1996         perf_event_ctx_unlock(event, ctx);
1997 }
1998 EXPORT_SYMBOL_GPL(perf_event_disable);
1999
2000 void perf_event_disable_inatomic(struct perf_event *event)
2001 {
2002         event->pending_disable = 1;
2003         irq_work_queue(&event->pending);
2004 }
2005
2006 static void perf_set_shadow_time(struct perf_event *event,
2007                                  struct perf_event_context *ctx)
2008 {
2009         /*
2010          * use the correct time source for the time snapshot
2011          *
2012          * We could get by without this by leveraging the
2013          * fact that to get to this function, the caller
2014          * has most likely already called update_context_time()
2015          * and update_cgrp_time_xx() and thus both timestamp
2016          * are identical (or very close). Given that tstamp is,
2017          * already adjusted for cgroup, we could say that:
2018          *    tstamp - ctx->timestamp
2019          * is equivalent to
2020          *    tstamp - cgrp->timestamp.
2021          *
2022          * Then, in perf_output_read(), the calculation would
2023          * work with no changes because:
2024          * - event is guaranteed scheduled in
2025          * - no scheduled out in between
2026          * - thus the timestamp would be the same
2027          *
2028          * But this is a bit hairy.
2029          *
2030          * So instead, we have an explicit cgroup call to remain
2031          * within the time time source all along. We believe it
2032          * is cleaner and simpler to understand.
2033          */
2034         if (is_cgroup_event(event))
2035                 perf_cgroup_set_shadow_time(event, event->tstamp);
2036         else
2037                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2038 }
2039
2040 #define MAX_INTERRUPTS (~0ULL)
2041
2042 static void perf_log_throttle(struct perf_event *event, int enable);
2043 static void perf_log_itrace_start(struct perf_event *event);
2044
2045 static int
2046 event_sched_in(struct perf_event *event,
2047                  struct perf_cpu_context *cpuctx,
2048                  struct perf_event_context *ctx)
2049 {
2050         int ret = 0;
2051
2052         lockdep_assert_held(&ctx->lock);
2053
2054         if (event->state <= PERF_EVENT_STATE_OFF)
2055                 return 0;
2056
2057         WRITE_ONCE(event->oncpu, smp_processor_id());
2058         /*
2059          * Order event::oncpu write to happen before the ACTIVE state is
2060          * visible. This allows perf_event_{stop,read}() to observe the correct
2061          * ->oncpu if it sees ACTIVE.
2062          */
2063         smp_wmb();
2064         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2065
2066         /*
2067          * Unthrottle events, since we scheduled we might have missed several
2068          * ticks already, also for a heavily scheduling task there is little
2069          * guarantee it'll get a tick in a timely manner.
2070          */
2071         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072                 perf_log_throttle(event, 1);
2073                 event->hw.interrupts = 0;
2074         }
2075
2076         perf_pmu_disable(event->pmu);
2077
2078         perf_set_shadow_time(event, ctx);
2079
2080         perf_log_itrace_start(event);
2081
2082         if (event->pmu->add(event, PERF_EF_START)) {
2083                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2084                 event->oncpu = -1;
2085                 ret = -EAGAIN;
2086                 goto out;
2087         }
2088
2089         if (!is_software_event(event))
2090                 cpuctx->active_oncpu++;
2091         if (!ctx->nr_active++)
2092                 perf_event_ctx_activate(ctx);
2093         if (event->attr.freq && event->attr.sample_freq)
2094                 ctx->nr_freq++;
2095
2096         if (event->attr.exclusive)
2097                 cpuctx->exclusive = 1;
2098
2099 out:
2100         perf_pmu_enable(event->pmu);
2101
2102         return ret;
2103 }
2104
2105 static int
2106 group_sched_in(struct perf_event *group_event,
2107                struct perf_cpu_context *cpuctx,
2108                struct perf_event_context *ctx)
2109 {
2110         struct perf_event *event, *partial_group = NULL;
2111         struct pmu *pmu = ctx->pmu;
2112
2113         if (group_event->state == PERF_EVENT_STATE_OFF)
2114                 return 0;
2115
2116         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2117
2118         if (event_sched_in(group_event, cpuctx, ctx)) {
2119                 pmu->cancel_txn(pmu);
2120                 perf_mux_hrtimer_restart(cpuctx);
2121                 return -EAGAIN;
2122         }
2123
2124         /*
2125          * Schedule in siblings as one group (if any):
2126          */
2127         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2128                 if (event_sched_in(event, cpuctx, ctx)) {
2129                         partial_group = event;
2130                         goto group_error;
2131                 }
2132         }
2133
2134         if (!pmu->commit_txn(pmu))
2135                 return 0;
2136
2137 group_error:
2138         /*
2139          * Groups can be scheduled in as one unit only, so undo any
2140          * partial group before returning:
2141          * The events up to the failed event are scheduled out normally.
2142          */
2143         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2144                 if (event == partial_group)
2145                         break;
2146
2147                 event_sched_out(event, cpuctx, ctx);
2148         }
2149         event_sched_out(group_event, cpuctx, ctx);
2150
2151         pmu->cancel_txn(pmu);
2152
2153         perf_mux_hrtimer_restart(cpuctx);
2154
2155         return -EAGAIN;
2156 }
2157
2158 /*
2159  * Work out whether we can put this event group on the CPU now.
2160  */
2161 static int group_can_go_on(struct perf_event *event,
2162                            struct perf_cpu_context *cpuctx,
2163                            int can_add_hw)
2164 {
2165         /*
2166          * Groups consisting entirely of software events can always go on.
2167          */
2168         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2169                 return 1;
2170         /*
2171          * If an exclusive group is already on, no other hardware
2172          * events can go on.
2173          */
2174         if (cpuctx->exclusive)
2175                 return 0;
2176         /*
2177          * If this group is exclusive and there are already
2178          * events on the CPU, it can't go on.
2179          */
2180         if (event->attr.exclusive && cpuctx->active_oncpu)
2181                 return 0;
2182         /*
2183          * Otherwise, try to add it if all previous groups were able
2184          * to go on.
2185          */
2186         return can_add_hw;
2187 }
2188
2189 static void add_event_to_ctx(struct perf_event *event,
2190                                struct perf_event_context *ctx)
2191 {
2192         list_add_event(event, ctx);
2193         perf_group_attach(event);
2194 }
2195
2196 static void ctx_sched_out(struct perf_event_context *ctx,
2197                           struct perf_cpu_context *cpuctx,
2198                           enum event_type_t event_type);
2199 static void
2200 ctx_sched_in(struct perf_event_context *ctx,
2201              struct perf_cpu_context *cpuctx,
2202              enum event_type_t event_type,
2203              struct task_struct *task);
2204
2205 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2206                                struct perf_event_context *ctx,
2207                                enum event_type_t event_type)
2208 {
2209         if (!cpuctx->task_ctx)
2210                 return;
2211
2212         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2213                 return;
2214
2215         ctx_sched_out(ctx, cpuctx, event_type);
2216 }
2217
2218 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2219                                 struct perf_event_context *ctx,
2220                                 struct task_struct *task)
2221 {
2222         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2223         if (ctx)
2224                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2225         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2226         if (ctx)
2227                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2228 }
2229
2230 /*
2231  * We want to maintain the following priority of scheduling:
2232  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2233  *  - task pinned (EVENT_PINNED)
2234  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2235  *  - task flexible (EVENT_FLEXIBLE).
2236  *
2237  * In order to avoid unscheduling and scheduling back in everything every
2238  * time an event is added, only do it for the groups of equal priority and
2239  * below.
2240  *
2241  * This can be called after a batch operation on task events, in which case
2242  * event_type is a bit mask of the types of events involved. For CPU events,
2243  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2244  */
2245 static void ctx_resched(struct perf_cpu_context *cpuctx,
2246                         struct perf_event_context *task_ctx,
2247                         enum event_type_t event_type)
2248 {
2249         enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2250         bool cpu_event = !!(event_type & EVENT_CPU);
2251
2252         /*
2253          * If pinned groups are involved, flexible groups also need to be
2254          * scheduled out.
2255          */
2256         if (event_type & EVENT_PINNED)
2257                 event_type |= EVENT_FLEXIBLE;
2258
2259         perf_pmu_disable(cpuctx->ctx.pmu);
2260         if (task_ctx)
2261                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2262
2263         /*
2264          * Decide which cpu ctx groups to schedule out based on the types
2265          * of events that caused rescheduling:
2266          *  - EVENT_CPU: schedule out corresponding groups;
2267          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2268          *  - otherwise, do nothing more.
2269          */
2270         if (cpu_event)
2271                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2272         else if (ctx_event_type & EVENT_PINNED)
2273                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2274
2275         perf_event_sched_in(cpuctx, task_ctx, current);
2276         perf_pmu_enable(cpuctx->ctx.pmu);
2277 }
2278
2279 /*
2280  * Cross CPU call to install and enable a performance event
2281  *
2282  * Very similar to remote_function() + event_function() but cannot assume that
2283  * things like ctx->is_active and cpuctx->task_ctx are set.
2284  */
2285 static int  __perf_install_in_context(void *info)
2286 {
2287         struct perf_event *event = info;
2288         struct perf_event_context *ctx = event->ctx;
2289         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2290         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2291         bool reprogram = true;
2292         int ret = 0;
2293
2294         raw_spin_lock(&cpuctx->ctx.lock);
2295         if (ctx->task) {
2296                 raw_spin_lock(&ctx->lock);
2297                 task_ctx = ctx;
2298
2299                 reprogram = (ctx->task == current);
2300
2301                 /*
2302                  * If the task is running, it must be running on this CPU,
2303                  * otherwise we cannot reprogram things.
2304                  *
2305                  * If its not running, we don't care, ctx->lock will
2306                  * serialize against it becoming runnable.
2307                  */
2308                 if (task_curr(ctx->task) && !reprogram) {
2309                         ret = -ESRCH;
2310                         goto unlock;
2311                 }
2312
2313                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2314         } else if (task_ctx) {
2315                 raw_spin_lock(&task_ctx->lock);
2316         }
2317
2318         if (reprogram) {
2319                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2320                 add_event_to_ctx(event, ctx);
2321                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2322         } else {
2323                 add_event_to_ctx(event, ctx);
2324         }
2325
2326 unlock:
2327         perf_ctx_unlock(cpuctx, task_ctx);
2328
2329         return ret;
2330 }
2331
2332 /*
2333  * Attach a performance event to a context.
2334  *
2335  * Very similar to event_function_call, see comment there.
2336  */
2337 static void
2338 perf_install_in_context(struct perf_event_context *ctx,
2339                         struct perf_event *event,
2340                         int cpu)
2341 {
2342         struct task_struct *task = READ_ONCE(ctx->task);
2343
2344         lockdep_assert_held(&ctx->mutex);
2345
2346         if (event->cpu != -1)
2347                 event->cpu = cpu;
2348
2349         /*
2350          * Ensures that if we can observe event->ctx, both the event and ctx
2351          * will be 'complete'. See perf_iterate_sb_cpu().
2352          */
2353         smp_store_release(&event->ctx, ctx);
2354
2355         if (!task) {
2356                 cpu_function_call(cpu, __perf_install_in_context, event);
2357                 return;
2358         }
2359
2360         /*
2361          * Should not happen, we validate the ctx is still alive before calling.
2362          */
2363         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2364                 return;
2365
2366         /*
2367          * Installing events is tricky because we cannot rely on ctx->is_active
2368          * to be set in case this is the nr_events 0 -> 1 transition.
2369          *
2370          * Instead we use task_curr(), which tells us if the task is running.
2371          * However, since we use task_curr() outside of rq::lock, we can race
2372          * against the actual state. This means the result can be wrong.
2373          *
2374          * If we get a false positive, we retry, this is harmless.
2375          *
2376          * If we get a false negative, things are complicated. If we are after
2377          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2378          * value must be correct. If we're before, it doesn't matter since
2379          * perf_event_context_sched_in() will program the counter.
2380          *
2381          * However, this hinges on the remote context switch having observed
2382          * our task->perf_event_ctxp[] store, such that it will in fact take
2383          * ctx::lock in perf_event_context_sched_in().
2384          *
2385          * We do this by task_function_call(), if the IPI fails to hit the task
2386          * we know any future context switch of task must see the
2387          * perf_event_ctpx[] store.
2388          */
2389
2390         /*
2391          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2392          * task_cpu() load, such that if the IPI then does not find the task
2393          * running, a future context switch of that task must observe the
2394          * store.
2395          */
2396         smp_mb();
2397 again:
2398         if (!task_function_call(task, __perf_install_in_context, event))
2399                 return;
2400
2401         raw_spin_lock_irq(&ctx->lock);
2402         task = ctx->task;
2403         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2404                 /*
2405                  * Cannot happen because we already checked above (which also
2406                  * cannot happen), and we hold ctx->mutex, which serializes us
2407                  * against perf_event_exit_task_context().
2408                  */
2409                 raw_spin_unlock_irq(&ctx->lock);
2410                 return;
2411         }
2412         /*
2413          * If the task is not running, ctx->lock will avoid it becoming so,
2414          * thus we can safely install the event.
2415          */
2416         if (task_curr(task)) {
2417                 raw_spin_unlock_irq(&ctx->lock);
2418                 goto again;
2419         }
2420         add_event_to_ctx(event, ctx);
2421         raw_spin_unlock_irq(&ctx->lock);
2422 }
2423
2424 /*
2425  * Cross CPU call to enable a performance event
2426  */
2427 static void __perf_event_enable(struct perf_event *event,
2428                                 struct perf_cpu_context *cpuctx,
2429                                 struct perf_event_context *ctx,
2430                                 void *info)
2431 {
2432         struct perf_event *leader = event->group_leader;
2433         struct perf_event_context *task_ctx;
2434
2435         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2436             event->state <= PERF_EVENT_STATE_ERROR)
2437                 return;
2438
2439         if (ctx->is_active)
2440                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2441
2442         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2443
2444         if (!ctx->is_active)
2445                 return;
2446
2447         if (!event_filter_match(event)) {
2448                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2449                 return;
2450         }
2451
2452         /*
2453          * If the event is in a group and isn't the group leader,
2454          * then don't put it on unless the group is on.
2455          */
2456         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2457                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2458                 return;
2459         }
2460
2461         task_ctx = cpuctx->task_ctx;
2462         if (ctx->task)
2463                 WARN_ON_ONCE(task_ctx != ctx);
2464
2465         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2466 }
2467
2468 /*
2469  * Enable a event.
2470  *
2471  * If event->ctx is a cloned context, callers must make sure that
2472  * every task struct that event->ctx->task could possibly point to
2473  * remains valid.  This condition is satisfied when called through
2474  * perf_event_for_each_child or perf_event_for_each as described
2475  * for perf_event_disable.
2476  */
2477 static void _perf_event_enable(struct perf_event *event)
2478 {
2479         struct perf_event_context *ctx = event->ctx;
2480
2481         raw_spin_lock_irq(&ctx->lock);
2482         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2483             event->state <  PERF_EVENT_STATE_ERROR) {
2484                 raw_spin_unlock_irq(&ctx->lock);
2485                 return;
2486         }
2487
2488         /*
2489          * If the event is in error state, clear that first.
2490          *
2491          * That way, if we see the event in error state below, we know that it
2492          * has gone back into error state, as distinct from the task having
2493          * been scheduled away before the cross-call arrived.
2494          */
2495         if (event->state == PERF_EVENT_STATE_ERROR)
2496                 event->state = PERF_EVENT_STATE_OFF;
2497         raw_spin_unlock_irq(&ctx->lock);
2498
2499         event_function_call(event, __perf_event_enable, NULL);
2500 }
2501
2502 /*
2503  * See perf_event_disable();
2504  */
2505 void perf_event_enable(struct perf_event *event)
2506 {
2507         struct perf_event_context *ctx;
2508
2509         ctx = perf_event_ctx_lock(event);
2510         _perf_event_enable(event);
2511         perf_event_ctx_unlock(event, ctx);
2512 }
2513 EXPORT_SYMBOL_GPL(perf_event_enable);
2514
2515 struct stop_event_data {
2516         struct perf_event       *event;
2517         unsigned int            restart;
2518 };
2519
2520 static int __perf_event_stop(void *info)
2521 {
2522         struct stop_event_data *sd = info;
2523         struct perf_event *event = sd->event;
2524
2525         /* if it's already INACTIVE, do nothing */
2526         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2527                 return 0;
2528
2529         /* matches smp_wmb() in event_sched_in() */
2530         smp_rmb();
2531
2532         /*
2533          * There is a window with interrupts enabled before we get here,
2534          * so we need to check again lest we try to stop another CPU's event.
2535          */
2536         if (READ_ONCE(event->oncpu) != smp_processor_id())
2537                 return -EAGAIN;
2538
2539         event->pmu->stop(event, PERF_EF_UPDATE);
2540
2541         /*
2542          * May race with the actual stop (through perf_pmu_output_stop()),
2543          * but it is only used for events with AUX ring buffer, and such
2544          * events will refuse to restart because of rb::aux_mmap_count==0,
2545          * see comments in perf_aux_output_begin().
2546          *
2547          * Since this is happening on a event-local CPU, no trace is lost
2548          * while restarting.
2549          */
2550         if (sd->restart)
2551                 event->pmu->start(event, 0);
2552
2553         return 0;
2554 }
2555
2556 static int perf_event_stop(struct perf_event *event, int restart)
2557 {
2558         struct stop_event_data sd = {
2559                 .event          = event,
2560                 .restart        = restart,
2561         };
2562         int ret = 0;
2563
2564         do {
2565                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2566                         return 0;
2567
2568                 /* matches smp_wmb() in event_sched_in() */
2569                 smp_rmb();
2570
2571                 /*
2572                  * We only want to restart ACTIVE events, so if the event goes
2573                  * inactive here (event->oncpu==-1), there's nothing more to do;
2574                  * fall through with ret==-ENXIO.
2575                  */
2576                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2577                                         __perf_event_stop, &sd);
2578         } while (ret == -EAGAIN);
2579
2580         return ret;
2581 }
2582
2583 /*
2584  * In order to contain the amount of racy and tricky in the address filter
2585  * configuration management, it is a two part process:
2586  *
2587  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2588  *      we update the addresses of corresponding vmas in
2589  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2590  * (p2) when an event is scheduled in (pmu::add), it calls
2591  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2592  *      if the generation has changed since the previous call.
2593  *
2594  * If (p1) happens while the event is active, we restart it to force (p2).
2595  *
2596  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2597  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2598  *     ioctl;
2599  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2600  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2601  *     for reading;
2602  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2603  *     of exec.
2604  */
2605 void perf_event_addr_filters_sync(struct perf_event *event)
2606 {
2607         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2608
2609         if (!has_addr_filter(event))
2610                 return;
2611
2612         raw_spin_lock(&ifh->lock);
2613         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2614                 event->pmu->addr_filters_sync(event);
2615                 event->hw.addr_filters_gen = event->addr_filters_gen;
2616         }
2617         raw_spin_unlock(&ifh->lock);
2618 }
2619 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2620
2621 static int _perf_event_refresh(struct perf_event *event, int refresh)
2622 {
2623         /*
2624          * not supported on inherited events
2625          */
2626         if (event->attr.inherit || !is_sampling_event(event))
2627                 return -EINVAL;
2628
2629         atomic_add(refresh, &event->event_limit);
2630         _perf_event_enable(event);
2631
2632         return 0;
2633 }
2634
2635 /*
2636  * See perf_event_disable()
2637  */
2638 int perf_event_refresh(struct perf_event *event, int refresh)
2639 {
2640         struct perf_event_context *ctx;
2641         int ret;
2642
2643         ctx = perf_event_ctx_lock(event);
2644         ret = _perf_event_refresh(event, refresh);
2645         perf_event_ctx_unlock(event, ctx);
2646
2647         return ret;
2648 }
2649 EXPORT_SYMBOL_GPL(perf_event_refresh);
2650
2651 static void ctx_sched_out(struct perf_event_context *ctx,
2652                           struct perf_cpu_context *cpuctx,
2653                           enum event_type_t event_type)
2654 {
2655         int is_active = ctx->is_active;
2656         struct perf_event *event;
2657
2658         lockdep_assert_held(&ctx->lock);
2659
2660         if (likely(!ctx->nr_events)) {
2661                 /*
2662                  * See __perf_remove_from_context().
2663                  */
2664                 WARN_ON_ONCE(ctx->is_active);
2665                 if (ctx->task)
2666                         WARN_ON_ONCE(cpuctx->task_ctx);
2667                 return;
2668         }
2669
2670         ctx->is_active &= ~event_type;
2671         if (!(ctx->is_active & EVENT_ALL))
2672                 ctx->is_active = 0;
2673
2674         if (ctx->task) {
2675                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2676                 if (!ctx->is_active)
2677                         cpuctx->task_ctx = NULL;
2678         }
2679
2680         /*
2681          * Always update time if it was set; not only when it changes.
2682          * Otherwise we can 'forget' to update time for any but the last
2683          * context we sched out. For example:
2684          *
2685          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2686          *   ctx_sched_out(.event_type = EVENT_PINNED)
2687          *
2688          * would only update time for the pinned events.
2689          */
2690         if (is_active & EVENT_TIME) {
2691                 /* update (and stop) ctx time */
2692                 update_context_time(ctx);
2693                 update_cgrp_time_from_cpuctx(cpuctx);
2694         }
2695
2696         is_active ^= ctx->is_active; /* changed bits */
2697
2698         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2699                 return;
2700
2701         perf_pmu_disable(ctx->pmu);
2702         if (is_active & EVENT_PINNED) {
2703                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2704                         group_sched_out(event, cpuctx, ctx);
2705         }
2706
2707         if (is_active & EVENT_FLEXIBLE) {
2708                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2709                         group_sched_out(event, cpuctx, ctx);
2710         }
2711         perf_pmu_enable(ctx->pmu);
2712 }
2713
2714 /*
2715  * Test whether two contexts are equivalent, i.e. whether they have both been
2716  * cloned from the same version of the same context.
2717  *
2718  * Equivalence is measured using a generation number in the context that is
2719  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2720  * and list_del_event().
2721  */
2722 static int context_equiv(struct perf_event_context *ctx1,
2723                          struct perf_event_context *ctx2)
2724 {
2725         lockdep_assert_held(&ctx1->lock);
2726         lockdep_assert_held(&ctx2->lock);
2727
2728         /* Pinning disables the swap optimization */
2729         if (ctx1->pin_count || ctx2->pin_count)
2730                 return 0;
2731
2732         /* If ctx1 is the parent of ctx2 */
2733         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2734                 return 1;
2735
2736         /* If ctx2 is the parent of ctx1 */
2737         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2738                 return 1;
2739
2740         /*
2741          * If ctx1 and ctx2 have the same parent; we flatten the parent
2742          * hierarchy, see perf_event_init_context().
2743          */
2744         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2745                         ctx1->parent_gen == ctx2->parent_gen)
2746                 return 1;
2747
2748         /* Unmatched */
2749         return 0;
2750 }
2751
2752 static void __perf_event_sync_stat(struct perf_event *event,
2753                                      struct perf_event *next_event)
2754 {
2755         u64 value;
2756
2757         if (!event->attr.inherit_stat)
2758                 return;
2759
2760         /*
2761          * Update the event value, we cannot use perf_event_read()
2762          * because we're in the middle of a context switch and have IRQs
2763          * disabled, which upsets smp_call_function_single(), however
2764          * we know the event must be on the current CPU, therefore we
2765          * don't need to use it.
2766          */
2767         if (event->state == PERF_EVENT_STATE_ACTIVE)
2768                 event->pmu->read(event);
2769
2770         perf_event_update_time(event);
2771
2772         /*
2773          * In order to keep per-task stats reliable we need to flip the event
2774          * values when we flip the contexts.
2775          */
2776         value = local64_read(&next_event->count);
2777         value = local64_xchg(&event->count, value);
2778         local64_set(&next_event->count, value);
2779
2780         swap(event->total_time_enabled, next_event->total_time_enabled);
2781         swap(event->total_time_running, next_event->total_time_running);
2782
2783         /*
2784          * Since we swizzled the values, update the user visible data too.
2785          */
2786         perf_event_update_userpage(event);
2787         perf_event_update_userpage(next_event);
2788 }
2789
2790 static void perf_event_sync_stat(struct perf_event_context *ctx,
2791                                    struct perf_event_context *next_ctx)
2792 {
2793         struct perf_event *event, *next_event;
2794
2795         if (!ctx->nr_stat)
2796                 return;
2797
2798         update_context_time(ctx);
2799
2800         event = list_first_entry(&ctx->event_list,
2801                                    struct perf_event, event_entry);
2802
2803         next_event = list_first_entry(&next_ctx->event_list,
2804                                         struct perf_event, event_entry);
2805
2806         while (&event->event_entry != &ctx->event_list &&
2807                &next_event->event_entry != &next_ctx->event_list) {
2808
2809                 __perf_event_sync_stat(event, next_event);
2810
2811                 event = list_next_entry(event, event_entry);
2812                 next_event = list_next_entry(next_event, event_entry);
2813         }
2814 }
2815
2816 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2817                                          struct task_struct *next)
2818 {
2819         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2820         struct perf_event_context *next_ctx;
2821         struct perf_event_context *parent, *next_parent;
2822         struct perf_cpu_context *cpuctx;
2823         int do_switch = 1;
2824
2825         if (likely(!ctx))
2826                 return;
2827
2828         cpuctx = __get_cpu_context(ctx);
2829         if (!cpuctx->task_ctx)
2830                 return;
2831
2832         rcu_read_lock();
2833         next_ctx = next->perf_event_ctxp[ctxn];
2834         if (!next_ctx)
2835                 goto unlock;
2836
2837         parent = rcu_dereference(ctx->parent_ctx);
2838         next_parent = rcu_dereference(next_ctx->parent_ctx);
2839
2840         /* If neither context have a parent context; they cannot be clones. */
2841         if (!parent && !next_parent)
2842                 goto unlock;
2843
2844         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2845                 /*
2846                  * Looks like the two contexts are clones, so we might be
2847                  * able to optimize the context switch.  We lock both
2848                  * contexts and check that they are clones under the
2849                  * lock (including re-checking that neither has been
2850                  * uncloned in the meantime).  It doesn't matter which
2851                  * order we take the locks because no other cpu could
2852                  * be trying to lock both of these tasks.
2853                  */
2854                 raw_spin_lock(&ctx->lock);
2855                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2856                 if (context_equiv(ctx, next_ctx)) {
2857                         WRITE_ONCE(ctx->task, next);
2858                         WRITE_ONCE(next_ctx->task, task);
2859
2860                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2861
2862                         /*
2863                          * RCU_INIT_POINTER here is safe because we've not
2864                          * modified the ctx and the above modification of
2865                          * ctx->task and ctx->task_ctx_data are immaterial
2866                          * since those values are always verified under
2867                          * ctx->lock which we're now holding.
2868                          */
2869                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2870                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2871
2872                         do_switch = 0;
2873
2874                         perf_event_sync_stat(ctx, next_ctx);
2875                 }
2876                 raw_spin_unlock(&next_ctx->lock);
2877                 raw_spin_unlock(&ctx->lock);
2878         }
2879 unlock:
2880         rcu_read_unlock();
2881
2882         if (do_switch) {
2883                 raw_spin_lock(&ctx->lock);
2884                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2885                 raw_spin_unlock(&ctx->lock);
2886         }
2887 }
2888
2889 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2890
2891 void perf_sched_cb_dec(struct pmu *pmu)
2892 {
2893         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2894
2895         this_cpu_dec(perf_sched_cb_usages);
2896
2897         if (!--cpuctx->sched_cb_usage)
2898                 list_del(&cpuctx->sched_cb_entry);
2899 }
2900
2901
2902 void perf_sched_cb_inc(struct pmu *pmu)
2903 {
2904         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2905
2906         if (!cpuctx->sched_cb_usage++)
2907                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2908
2909         this_cpu_inc(perf_sched_cb_usages);
2910 }
2911
2912 /*
2913  * This function provides the context switch callback to the lower code
2914  * layer. It is invoked ONLY when the context switch callback is enabled.
2915  *
2916  * This callback is relevant even to per-cpu events; for example multi event
2917  * PEBS requires this to provide PID/TID information. This requires we flush
2918  * all queued PEBS records before we context switch to a new task.
2919  */
2920 static void perf_pmu_sched_task(struct task_struct *prev,
2921                                 struct task_struct *next,
2922                                 bool sched_in)
2923 {
2924         struct perf_cpu_context *cpuctx;
2925         struct pmu *pmu;
2926
2927         if (prev == next)
2928                 return;
2929
2930         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2931                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2932
2933                 if (WARN_ON_ONCE(!pmu->sched_task))
2934                         continue;
2935
2936                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2937                 perf_pmu_disable(pmu);
2938
2939                 pmu->sched_task(cpuctx->task_ctx, sched_in);
2940
2941                 perf_pmu_enable(pmu);
2942                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2943         }
2944 }
2945
2946 static void perf_event_switch(struct task_struct *task,
2947                               struct task_struct *next_prev, bool sched_in);
2948
2949 #define for_each_task_context_nr(ctxn)                                  \
2950         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2951
2952 /*
2953  * Called from scheduler to remove the events of the current task,
2954  * with interrupts disabled.
2955  *
2956  * We stop each event and update the event value in event->count.
2957  *
2958  * This does not protect us against NMI, but disable()
2959  * sets the disabled bit in the control field of event _before_
2960  * accessing the event control register. If a NMI hits, then it will
2961  * not restart the event.
2962  */
2963 void __perf_event_task_sched_out(struct task_struct *task,
2964                                  struct task_struct *next)
2965 {
2966         int ctxn;
2967
2968         if (__this_cpu_read(perf_sched_cb_usages))
2969                 perf_pmu_sched_task(task, next, false);
2970
2971         if (atomic_read(&nr_switch_events))
2972                 perf_event_switch(task, next, false);
2973
2974         for_each_task_context_nr(ctxn)
2975                 perf_event_context_sched_out(task, ctxn, next);
2976
2977         /*
2978          * if cgroup events exist on this CPU, then we need
2979          * to check if we have to switch out PMU state.
2980          * cgroup event are system-wide mode only
2981          */
2982         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2983                 perf_cgroup_sched_out(task, next);
2984 }
2985
2986 /*
2987  * Called with IRQs disabled
2988  */
2989 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2990                               enum event_type_t event_type)
2991 {
2992         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2993 }
2994
2995 static void
2996 ctx_pinned_sched_in(struct perf_event_context *ctx,
2997                     struct perf_cpu_context *cpuctx)
2998 {
2999         struct perf_event *event;
3000
3001         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3002                 if (event->state <= PERF_EVENT_STATE_OFF)
3003                         continue;
3004                 if (!event_filter_match(event))
3005                         continue;
3006
3007                 if (group_can_go_on(event, cpuctx, 1))
3008                         group_sched_in(event, cpuctx, ctx);
3009
3010                 /*
3011                  * If this pinned group hasn't been scheduled,
3012                  * put it in error state.
3013                  */
3014                 if (event->state == PERF_EVENT_STATE_INACTIVE)
3015                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3016         }
3017 }
3018
3019 static void
3020 ctx_flexible_sched_in(struct perf_event_context *ctx,
3021                       struct perf_cpu_context *cpuctx)
3022 {
3023         struct perf_event *event;
3024         int can_add_hw = 1;
3025
3026         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3027                 /* Ignore events in OFF or ERROR state */
3028                 if (event->state <= PERF_EVENT_STATE_OFF)
3029                         continue;
3030                 /*
3031                  * Listen to the 'cpu' scheduling filter constraint
3032                  * of events:
3033                  */
3034                 if (!event_filter_match(event))
3035                         continue;
3036
3037                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3038                         if (group_sched_in(event, cpuctx, ctx))
3039                                 can_add_hw = 0;
3040                 }
3041         }
3042 }
3043
3044 static void
3045 ctx_sched_in(struct perf_event_context *ctx,
3046              struct perf_cpu_context *cpuctx,
3047              enum event_type_t event_type,
3048              struct task_struct *task)
3049 {
3050         int is_active = ctx->is_active;
3051         u64 now;
3052
3053         lockdep_assert_held(&ctx->lock);
3054
3055         if (likely(!ctx->nr_events))
3056                 return;
3057
3058         ctx->is_active |= (event_type | EVENT_TIME);
3059         if (ctx->task) {
3060                 if (!is_active)
3061                         cpuctx->task_ctx = ctx;
3062                 else
3063                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3064         }
3065
3066         is_active ^= ctx->is_active; /* changed bits */
3067
3068         if (is_active & EVENT_TIME) {
3069                 /* start ctx time */
3070                 now = perf_clock();
3071                 ctx->timestamp = now;
3072                 perf_cgroup_set_timestamp(task, ctx);
3073         }
3074
3075         /*
3076          * First go through the list and put on any pinned groups
3077          * in order to give them the best chance of going on.
3078          */
3079         if (is_active & EVENT_PINNED)
3080                 ctx_pinned_sched_in(ctx, cpuctx);
3081
3082         /* Then walk through the lower prio flexible groups */
3083         if (is_active & EVENT_FLEXIBLE)
3084                 ctx_flexible_sched_in(ctx, cpuctx);
3085 }
3086
3087 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3088                              enum event_type_t event_type,
3089                              struct task_struct *task)
3090 {
3091         struct perf_event_context *ctx = &cpuctx->ctx;
3092
3093         ctx_sched_in(ctx, cpuctx, event_type, task);
3094 }
3095
3096 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3097                                         struct task_struct *task)
3098 {
3099         struct perf_cpu_context *cpuctx;
3100
3101         cpuctx = __get_cpu_context(ctx);
3102         if (cpuctx->task_ctx == ctx)
3103                 return;
3104
3105         perf_ctx_lock(cpuctx, ctx);
3106         /*
3107          * We must check ctx->nr_events while holding ctx->lock, such
3108          * that we serialize against perf_install_in_context().
3109          */
3110         if (!ctx->nr_events)
3111                 goto unlock;
3112
3113         perf_pmu_disable(ctx->pmu);
3114         /*
3115          * We want to keep the following priority order:
3116          * cpu pinned (that don't need to move), task pinned,
3117          * cpu flexible, task flexible.
3118          *
3119          * However, if task's ctx is not carrying any pinned
3120          * events, no need to flip the cpuctx's events around.
3121          */
3122         if (!list_empty(&ctx->pinned_groups))
3123                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3124         perf_event_sched_in(cpuctx, ctx, task);
3125         perf_pmu_enable(ctx->pmu);
3126
3127 unlock:
3128         perf_ctx_unlock(cpuctx, ctx);
3129 }
3130
3131 /*
3132  * Called from scheduler to add the events of the current task
3133  * with interrupts disabled.
3134  *
3135  * We restore the event value and then enable it.
3136  *
3137  * This does not protect us against NMI, but enable()
3138  * sets the enabled bit in the control field of event _before_
3139  * accessing the event control register. If a NMI hits, then it will
3140  * keep the event running.
3141  */
3142 void __perf_event_task_sched_in(struct task_struct *prev,
3143                                 struct task_struct *task)
3144 {
3145         struct perf_event_context *ctx;
3146         int ctxn;
3147
3148         /*
3149          * If cgroup events exist on this CPU, then we need to check if we have
3150          * to switch in PMU state; cgroup event are system-wide mode only.
3151          *
3152          * Since cgroup events are CPU events, we must schedule these in before
3153          * we schedule in the task events.
3154          */
3155         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3156                 perf_cgroup_sched_in(prev, task);
3157
3158         for_each_task_context_nr(ctxn) {
3159                 ctx = task->perf_event_ctxp[ctxn];
3160                 if (likely(!ctx))
3161                         continue;
3162
3163                 perf_event_context_sched_in(ctx, task);
3164         }
3165
3166         if (atomic_read(&nr_switch_events))
3167                 perf_event_switch(task, prev, true);
3168
3169         if (__this_cpu_read(perf_sched_cb_usages))
3170                 perf_pmu_sched_task(prev, task, true);
3171 }
3172
3173 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3174 {
3175         u64 frequency = event->attr.sample_freq;
3176         u64 sec = NSEC_PER_SEC;
3177         u64 divisor, dividend;
3178
3179         int count_fls, nsec_fls, frequency_fls, sec_fls;
3180
3181         count_fls = fls64(count);
3182         nsec_fls = fls64(nsec);
3183         frequency_fls = fls64(frequency);
3184         sec_fls = 30;
3185
3186         /*
3187          * We got @count in @nsec, with a target of sample_freq HZ
3188          * the target period becomes:
3189          *
3190          *             @count * 10^9
3191          * period = -------------------
3192          *          @nsec * sample_freq
3193          *
3194          */
3195
3196         /*
3197          * Reduce accuracy by one bit such that @a and @b converge
3198          * to a similar magnitude.
3199          */
3200 #define REDUCE_FLS(a, b)                \
3201 do {                                    \
3202         if (a##_fls > b##_fls) {        \
3203                 a >>= 1;                \
3204                 a##_fls--;              \
3205         } else {                        \
3206                 b >>= 1;                \
3207                 b##_fls--;              \
3208         }                               \
3209 } while (0)
3210
3211         /*
3212          * Reduce accuracy until either term fits in a u64, then proceed with
3213          * the other, so that finally we can do a u64/u64 division.
3214          */
3215         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3216                 REDUCE_FLS(nsec, frequency);
3217                 REDUCE_FLS(sec, count);
3218         }
3219
3220         if (count_fls + sec_fls > 64) {
3221                 divisor = nsec * frequency;
3222
3223                 while (count_fls + sec_fls > 64) {
3224                         REDUCE_FLS(count, sec);
3225                         divisor >>= 1;
3226                 }
3227
3228                 dividend = count * sec;
3229         } else {
3230                 dividend = count * sec;
3231
3232                 while (nsec_fls + frequency_fls > 64) {
3233                         REDUCE_FLS(nsec, frequency);
3234                         dividend >>= 1;
3235                 }
3236
3237                 divisor = nsec * frequency;
3238         }
3239
3240         if (!divisor)
3241                 return dividend;
3242
3243         return div64_u64(dividend, divisor);
3244 }
3245
3246 static DEFINE_PER_CPU(int, perf_throttled_count);
3247 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3248
3249 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3250 {
3251         struct hw_perf_event *hwc = &event->hw;
3252         s64 period, sample_period;
3253         s64 delta;
3254
3255         period = perf_calculate_period(event, nsec, count);
3256
3257         delta = (s64)(period - hwc->sample_period);
3258         delta = (delta + 7) / 8; /* low pass filter */
3259
3260         sample_period = hwc->sample_period + delta;
3261
3262         if (!sample_period)
3263                 sample_period = 1;
3264
3265         hwc->sample_period = sample_period;
3266
3267         if (local64_read(&hwc->period_left) > 8*sample_period) {
3268                 if (disable)
3269                         event->pmu->stop(event, PERF_EF_UPDATE);
3270
3271                 local64_set(&hwc->period_left, 0);
3272
3273                 if (disable)
3274                         event->pmu->start(event, PERF_EF_RELOAD);
3275         }
3276 }
3277
3278 /*
3279  * combine freq adjustment with unthrottling to avoid two passes over the
3280  * events. At the same time, make sure, having freq events does not change
3281  * the rate of unthrottling as that would introduce bias.
3282  */
3283 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3284                                            int needs_unthr)
3285 {
3286         struct perf_event *event;
3287         struct hw_perf_event *hwc;
3288         u64 now, period = TICK_NSEC;
3289         s64 delta;
3290
3291         /*
3292          * only need to iterate over all events iff:
3293          * - context have events in frequency mode (needs freq adjust)
3294          * - there are events to unthrottle on this cpu
3295          */
3296         if (!(ctx->nr_freq || needs_unthr))
3297                 return;
3298
3299         raw_spin_lock(&ctx->lock);
3300         perf_pmu_disable(ctx->pmu);
3301
3302         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3303                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3304                         continue;
3305
3306                 if (!event_filter_match(event))
3307                         continue;
3308
3309                 perf_pmu_disable(event->pmu);
3310
3311                 hwc = &event->hw;
3312
3313                 if (hwc->interrupts == MAX_INTERRUPTS) {
3314                         hwc->interrupts = 0;
3315                         perf_log_throttle(event, 1);
3316                         event->pmu->start(event, 0);
3317                 }
3318
3319                 if (!event->attr.freq || !event->attr.sample_freq)
3320                         goto next;
3321
3322                 /*
3323                  * stop the event and update event->count
3324                  */
3325                 event->pmu->stop(event, PERF_EF_UPDATE);
3326
3327                 now = local64_read(&event->count);
3328                 delta = now - hwc->freq_count_stamp;
3329                 hwc->freq_count_stamp = now;
3330
3331                 /*
3332                  * restart the event
3333                  * reload only if value has changed
3334                  * we have stopped the event so tell that
3335                  * to perf_adjust_period() to avoid stopping it
3336                  * twice.
3337                  */
3338                 if (delta > 0)
3339                         perf_adjust_period(event, period, delta, false);
3340
3341                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3342         next:
3343                 perf_pmu_enable(event->pmu);
3344         }
3345
3346         perf_pmu_enable(ctx->pmu);
3347         raw_spin_unlock(&ctx->lock);
3348 }
3349
3350 /*
3351  * Round-robin a context's events:
3352  */
3353 static void rotate_ctx(struct perf_event_context *ctx)
3354 {
3355         /*
3356          * Rotate the first entry last of non-pinned groups. Rotation might be
3357          * disabled by the inheritance code.
3358          */
3359         if (!ctx->rotate_disable)
3360                 list_rotate_left(&ctx->flexible_groups);
3361 }
3362
3363 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3364 {
3365         struct perf_event_context *ctx = NULL;
3366         int rotate = 0;
3367
3368         if (cpuctx->ctx.nr_events) {
3369                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3370                         rotate = 1;
3371         }
3372
3373         ctx = cpuctx->task_ctx;
3374         if (ctx && ctx->nr_events) {
3375                 if (ctx->nr_events != ctx->nr_active)
3376                         rotate = 1;
3377         }
3378
3379         if (!rotate)
3380                 goto done;
3381
3382         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3383         perf_pmu_disable(cpuctx->ctx.pmu);
3384
3385         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3386         if (ctx)
3387                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3388
3389         rotate_ctx(&cpuctx->ctx);
3390         if (ctx)
3391                 rotate_ctx(ctx);
3392
3393         perf_event_sched_in(cpuctx, ctx, current);
3394
3395         perf_pmu_enable(cpuctx->ctx.pmu);
3396         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3397 done:
3398
3399         return rotate;
3400 }
3401
3402 void perf_event_task_tick(void)
3403 {
3404         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3405         struct perf_event_context *ctx, *tmp;
3406         int throttled;
3407
3408         lockdep_assert_irqs_disabled();
3409
3410         __this_cpu_inc(perf_throttled_seq);
3411         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3412         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3413
3414         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3415                 perf_adjust_freq_unthr_context(ctx, throttled);
3416 }
3417
3418 static int event_enable_on_exec(struct perf_event *event,
3419                                 struct perf_event_context *ctx)
3420 {
3421         if (!event->attr.enable_on_exec)
3422                 return 0;
3423
3424         event->attr.enable_on_exec = 0;
3425         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3426                 return 0;
3427
3428         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3429
3430         return 1;
3431 }
3432
3433 /*
3434  * Enable all of a task's events that have been marked enable-on-exec.
3435  * This expects task == current.
3436  */
3437 static void perf_event_enable_on_exec(int ctxn)
3438 {
3439         struct perf_event_context *ctx, *clone_ctx = NULL;
3440         enum event_type_t event_type = 0;
3441         struct perf_cpu_context *cpuctx;
3442         struct perf_event *event;
3443         unsigned long flags;
3444         int enabled = 0;
3445
3446         local_irq_save(flags);
3447         ctx = current->perf_event_ctxp[ctxn];
3448         if (!ctx || !ctx->nr_events)
3449                 goto out;
3450
3451         cpuctx = __get_cpu_context(ctx);
3452         perf_ctx_lock(cpuctx, ctx);
3453         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3454         list_for_each_entry(event, &ctx->event_list, event_entry) {
3455                 enabled |= event_enable_on_exec(event, ctx);
3456                 event_type |= get_event_type(event);
3457         }
3458
3459         /*
3460          * Unclone and reschedule this context if we enabled any event.
3461          */
3462         if (enabled) {
3463                 clone_ctx = unclone_ctx(ctx);
3464                 ctx_resched(cpuctx, ctx, event_type);
3465         } else {
3466                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3467         }
3468         perf_ctx_unlock(cpuctx, ctx);
3469
3470 out:
3471         local_irq_restore(flags);
3472
3473         if (clone_ctx)
3474                 put_ctx(clone_ctx);
3475 }
3476
3477 struct perf_read_data {
3478         struct perf_event *event;
3479         bool group;
3480         int ret;
3481 };
3482
3483 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3484 {
3485         u16 local_pkg, event_pkg;
3486
3487         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3488                 int local_cpu = smp_processor_id();
3489
3490                 event_pkg = topology_physical_package_id(event_cpu);
3491                 local_pkg = topology_physical_package_id(local_cpu);
3492
3493                 if (event_pkg == local_pkg)
3494                         return local_cpu;
3495         }
3496
3497         return event_cpu;
3498 }
3499
3500 /*
3501  * Cross CPU call to read the hardware event
3502  */
3503 static void __perf_event_read(void *info)
3504 {
3505         struct perf_read_data *data = info;
3506         struct perf_event *sub, *event = data->event;
3507         struct perf_event_context *ctx = event->ctx;
3508         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3509         struct pmu *pmu = event->pmu;
3510
3511         /*
3512          * If this is a task context, we need to check whether it is
3513          * the current task context of this cpu.  If not it has been
3514          * scheduled out before the smp call arrived.  In that case
3515          * event->count would have been updated to a recent sample
3516          * when the event was scheduled out.
3517          */
3518         if (ctx->task && cpuctx->task_ctx != ctx)
3519                 return;
3520
3521         raw_spin_lock(&ctx->lock);
3522         if (ctx->is_active & EVENT_TIME) {
3523                 update_context_time(ctx);
3524                 update_cgrp_time_from_event(event);
3525         }
3526
3527         perf_event_update_time(event);
3528         if (data->group)
3529                 perf_event_update_sibling_time(event);
3530
3531         if (event->state != PERF_EVENT_STATE_ACTIVE)
3532                 goto unlock;
3533
3534         if (!data->group) {
3535                 pmu->read(event);
3536                 data->ret = 0;
3537                 goto unlock;
3538         }
3539
3540         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3541
3542         pmu->read(event);
3543
3544         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3545                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3546                         /*
3547                          * Use sibling's PMU rather than @event's since
3548                          * sibling could be on different (eg: software) PMU.
3549                          */
3550                         sub->pmu->read(sub);
3551                 }
3552         }
3553
3554         data->ret = pmu->commit_txn(pmu);
3555
3556 unlock:
3557         raw_spin_unlock(&ctx->lock);
3558 }
3559
3560 static inline u64 perf_event_count(struct perf_event *event)
3561 {
3562         return local64_read(&event->count) + atomic64_read(&event->child_count);
3563 }
3564
3565 /*
3566  * NMI-safe method to read a local event, that is an event that
3567  * is:
3568  *   - either for the current task, or for this CPU
3569  *   - does not have inherit set, for inherited task events
3570  *     will not be local and we cannot read them atomically
3571  *   - must not have a pmu::count method
3572  */
3573 int perf_event_read_local(struct perf_event *event, u64 *value,
3574                           u64 *enabled, u64 *running)
3575 {
3576         unsigned long flags;
3577         int ret = 0;
3578
3579         /*
3580          * Disabling interrupts avoids all counter scheduling (context
3581          * switches, timer based rotation and IPIs).
3582          */
3583         local_irq_save(flags);
3584
3585         /*
3586          * It must not be an event with inherit set, we cannot read
3587          * all child counters from atomic context.
3588          */
3589         if (event->attr.inherit) {
3590                 ret = -EOPNOTSUPP;
3591                 goto out;
3592         }
3593
3594         /* If this is a per-task event, it must be for current */
3595         if ((event->attach_state & PERF_ATTACH_TASK) &&
3596             event->hw.target != current) {
3597                 ret = -EINVAL;
3598                 goto out;
3599         }
3600
3601         /* If this is a per-CPU event, it must be for this CPU */
3602         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3603             event->cpu != smp_processor_id()) {
3604                 ret = -EINVAL;
3605                 goto out;
3606         }
3607
3608         /*
3609          * If the event is currently on this CPU, its either a per-task event,
3610          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3611          * oncpu == -1).
3612          */
3613         if (event->oncpu == smp_processor_id())
3614                 event->pmu->read(event);
3615
3616         *value = local64_read(&event->count);
3617         if (enabled || running) {
3618                 u64 now = event->shadow_ctx_time + perf_clock();
3619                 u64 __enabled, __running;
3620
3621                 __perf_update_times(event, now, &__enabled, &__running);
3622                 if (enabled)
3623                         *enabled = __enabled;
3624                 if (running)
3625                         *running = __running;
3626         }
3627 out:
3628         local_irq_restore(flags);
3629
3630         return ret;
3631 }
3632
3633 static int perf_event_read(struct perf_event *event, bool group)
3634 {
3635         enum perf_event_state state = READ_ONCE(event->state);
3636         int event_cpu, ret = 0;
3637
3638         /*
3639          * If event is enabled and currently active on a CPU, update the
3640          * value in the event structure:
3641          */
3642 again:
3643         if (state == PERF_EVENT_STATE_ACTIVE) {
3644                 struct perf_read_data data;
3645
3646                 /*
3647                  * Orders the ->state and ->oncpu loads such that if we see
3648                  * ACTIVE we must also see the right ->oncpu.
3649                  *
3650                  * Matches the smp_wmb() from event_sched_in().
3651                  */
3652                 smp_rmb();
3653
3654                 event_cpu = READ_ONCE(event->oncpu);
3655                 if ((unsigned)event_cpu >= nr_cpu_ids)
3656                         return 0;
3657
3658                 data = (struct perf_read_data){
3659                         .event = event,
3660                         .group = group,
3661                         .ret = 0,
3662                 };
3663
3664                 preempt_disable();
3665                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3666
3667                 /*
3668                  * Purposely ignore the smp_call_function_single() return
3669                  * value.
3670                  *
3671                  * If event_cpu isn't a valid CPU it means the event got
3672                  * scheduled out and that will have updated the event count.
3673                  *
3674                  * Therefore, either way, we'll have an up-to-date event count
3675                  * after this.
3676                  */
3677                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3678                 preempt_enable();
3679                 ret = data.ret;
3680
3681         } else if (state == PERF_EVENT_STATE_INACTIVE) {
3682                 struct perf_event_context *ctx = event->ctx;
3683                 unsigned long flags;
3684
3685                 raw_spin_lock_irqsave(&ctx->lock, flags);
3686                 state = event->state;
3687                 if (state != PERF_EVENT_STATE_INACTIVE) {
3688                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
3689                         goto again;
3690                 }
3691
3692                 /*
3693                  * May read while context is not active (e.g., thread is
3694                  * blocked), in that case we cannot update context time
3695                  */
3696                 if (ctx->is_active & EVENT_TIME) {
3697                         update_context_time(ctx);
3698                         update_cgrp_time_from_event(event);
3699                 }
3700
3701                 perf_event_update_time(event);
3702                 if (group)
3703                         perf_event_update_sibling_time(event);
3704                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3705         }
3706
3707         return ret;
3708 }
3709
3710 /*
3711  * Initialize the perf_event context in a task_struct:
3712  */
3713 static void __perf_event_init_context(struct perf_event_context *ctx)
3714 {
3715         raw_spin_lock_init(&ctx->lock);
3716         mutex_init(&ctx->mutex);
3717         INIT_LIST_HEAD(&ctx->active_ctx_list);
3718         INIT_LIST_HEAD(&ctx->pinned_groups);
3719         INIT_LIST_HEAD(&ctx->flexible_groups);
3720         INIT_LIST_HEAD(&ctx->event_list);
3721         atomic_set(&ctx->refcount, 1);
3722 }
3723
3724 static struct perf_event_context *
3725 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3726 {
3727         struct perf_event_context *ctx;
3728
3729         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3730         if (!ctx)
3731                 return NULL;
3732
3733         __perf_event_init_context(ctx);
3734         if (task) {
3735                 ctx->task = task;
3736                 get_task_struct(task);
3737         }
3738         ctx->pmu = pmu;
3739
3740         return ctx;
3741 }
3742
3743 static struct task_struct *
3744 find_lively_task_by_vpid(pid_t vpid)
3745 {
3746         struct task_struct *task;
3747
3748         rcu_read_lock();
3749         if (!vpid)
3750                 task = current;
3751         else
3752                 task = find_task_by_vpid(vpid);
3753         if (task)
3754                 get_task_struct(task);
3755         rcu_read_unlock();
3756
3757         if (!task)
3758                 return ERR_PTR(-ESRCH);
3759
3760         return task;
3761 }
3762
3763 /*
3764  * Returns a matching context with refcount and pincount.
3765  */
3766 static struct perf_event_context *
3767 find_get_context(struct pmu *pmu, struct task_struct *task,
3768                 struct perf_event *event)
3769 {
3770         struct perf_event_context *ctx, *clone_ctx = NULL;
3771         struct perf_cpu_context *cpuctx;
3772         void *task_ctx_data = NULL;
3773         unsigned long flags;
3774         int ctxn, err;
3775         int cpu = event->cpu;
3776
3777         if (!task) {
3778                 /* Must be root to operate on a CPU event: */
3779                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3780                         return ERR_PTR(-EACCES);
3781
3782                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3783                 ctx = &cpuctx->ctx;
3784                 get_ctx(ctx);
3785                 ++ctx->pin_count;
3786
3787                 return ctx;
3788         }
3789
3790         err = -EINVAL;
3791         ctxn = pmu->task_ctx_nr;
3792         if (ctxn < 0)
3793                 goto errout;
3794
3795         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3796                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3797                 if (!task_ctx_data) {
3798                         err = -ENOMEM;
3799                         goto errout;
3800                 }
3801         }
3802
3803 retry:
3804         ctx = perf_lock_task_context(task, ctxn, &flags);
3805         if (ctx) {
3806                 clone_ctx = unclone_ctx(ctx);
3807                 ++ctx->pin_count;
3808
3809                 if (task_ctx_data && !ctx->task_ctx_data) {
3810                         ctx->task_ctx_data = task_ctx_data;
3811                         task_ctx_data = NULL;
3812                 }
3813                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3814
3815                 if (clone_ctx)
3816                         put_ctx(clone_ctx);
3817         } else {
3818                 ctx = alloc_perf_context(pmu, task);
3819                 err = -ENOMEM;
3820                 if (!ctx)
3821                         goto errout;
3822
3823                 if (task_ctx_data) {
3824                         ctx->task_ctx_data = task_ctx_data;
3825                         task_ctx_data = NULL;
3826                 }
3827
3828                 err = 0;
3829                 mutex_lock(&task->perf_event_mutex);
3830                 /*
3831                  * If it has already passed perf_event_exit_task().
3832                  * we must see PF_EXITING, it takes this mutex too.
3833                  */
3834                 if (task->flags & PF_EXITING)
3835                         err = -ESRCH;
3836                 else if (task->perf_event_ctxp[ctxn])
3837                         err = -EAGAIN;
3838                 else {
3839                         get_ctx(ctx);
3840                         ++ctx->pin_count;
3841                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3842                 }
3843                 mutex_unlock(&task->perf_event_mutex);
3844
3845                 if (unlikely(err)) {
3846                         put_ctx(ctx);
3847
3848                         if (err == -EAGAIN)
3849                                 goto retry;
3850                         goto errout;
3851                 }
3852         }
3853
3854         kfree(task_ctx_data);
3855         return ctx;
3856
3857 errout:
3858         kfree(task_ctx_data);
3859         return ERR_PTR(err);
3860 }
3861
3862 static void perf_event_free_filter(struct perf_event *event);
3863 static void perf_event_free_bpf_prog(struct perf_event *event);
3864
3865 static void free_event_rcu(struct rcu_head *head)
3866 {
3867         struct perf_event *event;
3868
3869         event = container_of(head, struct perf_event, rcu_head);
3870         if (event->ns)
3871                 put_pid_ns(event->ns);
3872         perf_event_free_filter(event);
3873         kfree(event);
3874 }
3875
3876 static void ring_buffer_attach(struct perf_event *event,
3877                                struct ring_buffer *rb);
3878
3879 static void detach_sb_event(struct perf_event *event)
3880 {
3881         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3882
3883         raw_spin_lock(&pel->lock);
3884         list_del_rcu(&event->sb_list);
3885         raw_spin_unlock(&pel->lock);
3886 }
3887
3888 static bool is_sb_event(struct perf_event *event)
3889 {
3890         struct perf_event_attr *attr = &event->attr;
3891
3892         if (event->parent)
3893                 return false;
3894
3895         if (event->attach_state & PERF_ATTACH_TASK)
3896                 return false;
3897
3898         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3899             attr->comm || attr->comm_exec ||
3900             attr->task ||
3901             attr->context_switch)
3902                 return true;
3903         return false;
3904 }
3905
3906 static void unaccount_pmu_sb_event(struct perf_event *event)
3907 {
3908         if (is_sb_event(event))
3909                 detach_sb_event(event);
3910 }
3911
3912 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3913 {
3914         if (event->parent)
3915                 return;
3916
3917         if (is_cgroup_event(event))
3918                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3919 }
3920
3921 #ifdef CONFIG_NO_HZ_FULL
3922 static DEFINE_SPINLOCK(nr_freq_lock);
3923 #endif
3924
3925 static void unaccount_freq_event_nohz(void)
3926 {
3927 #ifdef CONFIG_NO_HZ_FULL
3928         spin_lock(&nr_freq_lock);
3929         if (atomic_dec_and_test(&nr_freq_events))
3930                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3931         spin_unlock(&nr_freq_lock);
3932 #endif
3933 }
3934
3935 static void unaccount_freq_event(void)
3936 {
3937         if (tick_nohz_full_enabled())
3938                 unaccount_freq_event_nohz();
3939         else
3940                 atomic_dec(&nr_freq_events);
3941 }
3942
3943 static void unaccount_event(struct perf_event *event)
3944 {
3945         bool dec = false;
3946
3947         if (event->parent)
3948                 return;
3949
3950         if (event->attach_state & PERF_ATTACH_TASK)
3951                 dec = true;
3952         if (event->attr.mmap || event->attr.mmap_data)
3953                 atomic_dec(&nr_mmap_events);
3954         if (event->attr.comm)
3955                 atomic_dec(&nr_comm_events);
3956         if (event->attr.namespaces)
3957                 atomic_dec(&nr_namespaces_events);
3958         if (event->attr.task)
3959                 atomic_dec(&nr_task_events);
3960         if (event->attr.freq)
3961                 unaccount_freq_event();
3962         if (event->attr.context_switch) {
3963                 dec = true;
3964                 atomic_dec(&nr_switch_events);
3965         }
3966         if (is_cgroup_event(event))
3967                 dec = true;
3968         if (has_branch_stack(event))
3969                 dec = true;
3970
3971         if (dec) {
3972                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3973                         schedule_delayed_work(&perf_sched_work, HZ);
3974         }
3975
3976         unaccount_event_cpu(event, event->cpu);
3977
3978         unaccount_pmu_sb_event(event);
3979 }
3980
3981 static void perf_sched_delayed(struct work_struct *work)
3982 {
3983         mutex_lock(&perf_sched_mutex);
3984         if (atomic_dec_and_test(&perf_sched_count))
3985                 static_branch_disable(&perf_sched_events);
3986         mutex_unlock(&perf_sched_mutex);
3987 }
3988
3989 /*
3990  * The following implement mutual exclusion of events on "exclusive" pmus
3991  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3992  * at a time, so we disallow creating events that might conflict, namely:
3993  *
3994  *  1) cpu-wide events in the presence of per-task events,
3995  *  2) per-task events in the presence of cpu-wide events,
3996  *  3) two matching events on the same context.
3997  *
3998  * The former two cases are handled in the allocation path (perf_event_alloc(),
3999  * _free_event()), the latter -- before the first perf_install_in_context().
4000  */
4001 static int exclusive_event_init(struct perf_event *event)
4002 {
4003         struct pmu *pmu = event->pmu;
4004
4005         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4006                 return 0;
4007
4008         /*
4009          * Prevent co-existence of per-task and cpu-wide events on the
4010          * same exclusive pmu.
4011          *
4012          * Negative pmu::exclusive_cnt means there are cpu-wide
4013          * events on this "exclusive" pmu, positive means there are
4014          * per-task events.
4015          *
4016          * Since this is called in perf_event_alloc() path, event::ctx
4017          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4018          * to mean "per-task event", because unlike other attach states it
4019          * never gets cleared.
4020          */
4021         if (event->attach_state & PERF_ATTACH_TASK) {
4022                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4023                         return -EBUSY;
4024         } else {
4025                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4026                         return -EBUSY;
4027         }
4028
4029         return 0;
4030 }
4031
4032 static void exclusive_event_destroy(struct perf_event *event)
4033 {
4034         struct pmu *pmu = event->pmu;
4035
4036         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4037                 return;
4038
4039         /* see comment in exclusive_event_init() */
4040         if (event->attach_state & PERF_ATTACH_TASK)
4041                 atomic_dec(&pmu->exclusive_cnt);
4042         else
4043                 atomic_inc(&pmu->exclusive_cnt);
4044 }
4045
4046 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4047 {
4048         if ((e1->pmu == e2->pmu) &&
4049             (e1->cpu == e2->cpu ||
4050              e1->cpu == -1 ||
4051              e2->cpu == -1))
4052                 return true;
4053         return false;
4054 }
4055
4056 /* Called under the same ctx::mutex as perf_install_in_context() */
4057 static bool exclusive_event_installable(struct perf_event *event,
4058                                         struct perf_event_context *ctx)
4059 {
4060         struct perf_event *iter_event;
4061         struct pmu *pmu = event->pmu;
4062
4063         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4064                 return true;
4065
4066         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4067                 if (exclusive_event_match(iter_event, event))
4068                         return false;
4069         }
4070
4071         return true;
4072 }
4073
4074 static void perf_addr_filters_splice(struct perf_event *event,
4075                                        struct list_head *head);
4076
4077 static void _free_event(struct perf_event *event)
4078 {
4079         irq_work_sync(&event->pending);
4080
4081         unaccount_event(event);
4082
4083         if (event->rb) {
4084                 /*
4085                  * Can happen when we close an event with re-directed output.
4086                  *
4087                  * Since we have a 0 refcount, perf_mmap_close() will skip
4088                  * over us; possibly making our ring_buffer_put() the last.
4089                  */
4090                 mutex_lock(&event->mmap_mutex);
4091                 ring_buffer_attach(event, NULL);
4092                 mutex_unlock(&event->mmap_mutex);
4093         }
4094
4095         if (is_cgroup_event(event))
4096                 perf_detach_cgroup(event);
4097
4098         if (!event->parent) {
4099                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4100                         put_callchain_buffers();
4101         }
4102
4103         perf_event_free_bpf_prog(event);
4104         perf_addr_filters_splice(event, NULL);
4105         kfree(event->addr_filters_offs);
4106
4107         if (event->destroy)
4108                 event->destroy(event);
4109
4110         if (event->ctx)
4111                 put_ctx(event->ctx);
4112
4113         exclusive_event_destroy(event);
4114         module_put(event->pmu->module);
4115
4116         call_rcu(&event->rcu_head, free_event_rcu);
4117 }
4118
4119 /*
4120  * Used to free events which have a known refcount of 1, such as in error paths
4121  * where the event isn't exposed yet and inherited events.
4122  */
4123 static void free_event(struct perf_event *event)
4124 {
4125         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4126                                 "unexpected event refcount: %ld; ptr=%p\n",
4127                                 atomic_long_read(&event->refcount), event)) {
4128                 /* leak to avoid use-after-free */
4129                 return;
4130         }
4131
4132         _free_event(event);
4133 }
4134
4135 /*
4136  * Remove user event from the owner task.
4137  */
4138 static void perf_remove_from_owner(struct perf_event *event)
4139 {
4140         struct task_struct *owner;
4141
4142         rcu_read_lock();
4143         /*
4144          * Matches the smp_store_release() in perf_event_exit_task(). If we
4145          * observe !owner it means the list deletion is complete and we can
4146          * indeed free this event, otherwise we need to serialize on
4147          * owner->perf_event_mutex.
4148          */
4149         owner = READ_ONCE(event->owner);
4150         if (owner) {
4151                 /*
4152                  * Since delayed_put_task_struct() also drops the last
4153                  * task reference we can safely take a new reference
4154                  * while holding the rcu_read_lock().
4155                  */
4156                 get_task_struct(owner);
4157         }
4158         rcu_read_unlock();
4159
4160         if (owner) {
4161                 /*
4162                  * If we're here through perf_event_exit_task() we're already
4163                  * holding ctx->mutex which would be an inversion wrt. the
4164                  * normal lock order.
4165                  *
4166                  * However we can safely take this lock because its the child
4167                  * ctx->mutex.
4168                  */
4169                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4170
4171                 /*
4172                  * We have to re-check the event->owner field, if it is cleared
4173                  * we raced with perf_event_exit_task(), acquiring the mutex
4174                  * ensured they're done, and we can proceed with freeing the
4175                  * event.
4176                  */
4177                 if (event->owner) {
4178                         list_del_init(&event->owner_entry);
4179                         smp_store_release(&event->owner, NULL);
4180                 }
4181                 mutex_unlock(&owner->perf_event_mutex);
4182                 put_task_struct(owner);
4183         }
4184 }
4185
4186 static void put_event(struct perf_event *event)
4187 {
4188         if (!atomic_long_dec_and_test(&event->refcount))
4189                 return;
4190
4191         _free_event(event);
4192 }
4193
4194 /*
4195  * Kill an event dead; while event:refcount will preserve the event
4196  * object, it will not preserve its functionality. Once the last 'user'
4197  * gives up the object, we'll destroy the thing.
4198  */
4199 int perf_event_release_kernel(struct perf_event *event)
4200 {
4201         struct perf_event_context *ctx = event->ctx;
4202         struct perf_event *child, *tmp;
4203         LIST_HEAD(free_list);
4204
4205         /*
4206          * If we got here through err_file: fput(event_file); we will not have
4207          * attached to a context yet.
4208          */
4209         if (!ctx) {
4210                 WARN_ON_ONCE(event->attach_state &
4211                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4212                 goto no_ctx;
4213         }
4214
4215         if (!is_kernel_event(event))
4216                 perf_remove_from_owner(event);
4217
4218         ctx = perf_event_ctx_lock(event);
4219         WARN_ON_ONCE(ctx->parent_ctx);
4220         perf_remove_from_context(event, DETACH_GROUP);
4221
4222         raw_spin_lock_irq(&ctx->lock);
4223         /*
4224          * Mark this event as STATE_DEAD, there is no external reference to it
4225          * anymore.
4226          *
4227          * Anybody acquiring event->child_mutex after the below loop _must_
4228          * also see this, most importantly inherit_event() which will avoid
4229          * placing more children on the list.
4230          *
4231          * Thus this guarantees that we will in fact observe and kill _ALL_
4232          * child events.
4233          */
4234         event->state = PERF_EVENT_STATE_DEAD;
4235         raw_spin_unlock_irq(&ctx->lock);
4236
4237         perf_event_ctx_unlock(event, ctx);
4238
4239 again:
4240         mutex_lock(&event->child_mutex);
4241         list_for_each_entry(child, &event->child_list, child_list) {
4242
4243                 /*
4244                  * Cannot change, child events are not migrated, see the
4245                  * comment with perf_event_ctx_lock_nested().
4246                  */
4247                 ctx = READ_ONCE(child->ctx);
4248                 /*
4249                  * Since child_mutex nests inside ctx::mutex, we must jump
4250                  * through hoops. We start by grabbing a reference on the ctx.
4251                  *
4252                  * Since the event cannot get freed while we hold the
4253                  * child_mutex, the context must also exist and have a !0
4254                  * reference count.
4255                  */
4256                 get_ctx(ctx);
4257
4258                 /*
4259                  * Now that we have a ctx ref, we can drop child_mutex, and
4260                  * acquire ctx::mutex without fear of it going away. Then we
4261                  * can re-acquire child_mutex.
4262                  */
4263                 mutex_unlock(&event->child_mutex);
4264                 mutex_lock(&ctx->mutex);
4265                 mutex_lock(&event->child_mutex);
4266
4267                 /*
4268                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4269                  * state, if child is still the first entry, it didn't get freed
4270                  * and we can continue doing so.
4271                  */
4272                 tmp = list_first_entry_or_null(&event->child_list,
4273                                                struct perf_event, child_list);
4274                 if (tmp == child) {
4275                         perf_remove_from_context(child, DETACH_GROUP);
4276                         list_move(&child->child_list, &free_list);
4277                         /*
4278                          * This matches the refcount bump in inherit_event();
4279                          * this can't be the last reference.
4280                          */
4281                         put_event(event);
4282                 }
4283
4284                 mutex_unlock(&event->child_mutex);
4285                 mutex_unlock(&ctx->mutex);
4286                 put_ctx(ctx);
4287                 goto again;
4288         }
4289         mutex_unlock(&event->child_mutex);
4290
4291         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4292                 list_del(&child->child_list);
4293                 free_event(child);
4294         }
4295
4296 no_ctx:
4297         put_event(event); /* Must be the 'last' reference */
4298         return 0;
4299 }
4300 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4301
4302 /*
4303  * Called when the last reference to the file is gone.
4304  */
4305 static int perf_release(struct inode *inode, struct file *file)
4306 {
4307         perf_event_release_kernel(file->private_data);
4308         return 0;
4309 }
4310
4311 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4312 {
4313         struct perf_event *child;
4314         u64 total = 0;
4315
4316         *enabled = 0;
4317         *running = 0;
4318
4319         mutex_lock(&event->child_mutex);
4320
4321         (void)perf_event_read(event, false);
4322         total += perf_event_count(event);
4323
4324         *enabled += event->total_time_enabled +
4325                         atomic64_read(&event->child_total_time_enabled);
4326         *running += event->total_time_running +
4327                         atomic64_read(&event->child_total_time_running);
4328
4329         list_for_each_entry(child, &event->child_list, child_list) {
4330                 (void)perf_event_read(child, false);
4331                 total += perf_event_count(child);
4332                 *enabled += child->total_time_enabled;
4333                 *running += child->total_time_running;
4334         }
4335         mutex_unlock(&event->child_mutex);
4336
4337         return total;
4338 }
4339
4340 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4341 {
4342         struct perf_event_context *ctx;
4343         u64 count;
4344
4345         ctx = perf_event_ctx_lock(event);
4346         count = __perf_event_read_value(event, enabled, running);
4347         perf_event_ctx_unlock(event, ctx);
4348
4349         return count;
4350 }
4351 EXPORT_SYMBOL_GPL(perf_event_read_value);
4352
4353 static int __perf_read_group_add(struct perf_event *leader,
4354                                         u64 read_format, u64 *values)
4355 {
4356         struct perf_event_context *ctx = leader->ctx;
4357         struct perf_event *sub;
4358         unsigned long flags;
4359         int n = 1; /* skip @nr */
4360         int ret;
4361
4362         ret = perf_event_read(leader, true);
4363         if (ret)
4364                 return ret;
4365
4366         raw_spin_lock_irqsave(&ctx->lock, flags);
4367
4368         /*
4369          * Since we co-schedule groups, {enabled,running} times of siblings
4370          * will be identical to those of the leader, so we only publish one
4371          * set.
4372          */
4373         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4374                 values[n++] += leader->total_time_enabled +
4375                         atomic64_read(&leader->child_total_time_enabled);
4376         }
4377
4378         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4379                 values[n++] += leader->total_time_running +
4380                         atomic64_read(&leader->child_total_time_running);
4381         }
4382
4383         /*
4384          * Write {count,id} tuples for every sibling.
4385          */
4386         values[n++] += perf_event_count(leader);
4387         if (read_format & PERF_FORMAT_ID)
4388                 values[n++] = primary_event_id(leader);
4389
4390         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4391                 values[n++] += perf_event_count(sub);
4392                 if (read_format & PERF_FORMAT_ID)
4393                         values[n++] = primary_event_id(sub);
4394         }
4395
4396         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4397         return 0;
4398 }
4399
4400 static int perf_read_group(struct perf_event *event,
4401                                    u64 read_format, char __user *buf)
4402 {
4403         struct perf_event *leader = event->group_leader, *child;
4404         struct perf_event_context *ctx = leader->ctx;
4405         int ret;
4406         u64 *values;
4407
4408         lockdep_assert_held(&ctx->mutex);
4409
4410         values = kzalloc(event->read_size, GFP_KERNEL);
4411         if (!values)
4412                 return -ENOMEM;
4413
4414         values[0] = 1 + leader->nr_siblings;
4415
4416         /*
4417          * By locking the child_mutex of the leader we effectively
4418          * lock the child list of all siblings.. XXX explain how.
4419          */
4420         mutex_lock(&leader->child_mutex);
4421
4422         ret = __perf_read_group_add(leader, read_format, values);
4423         if (ret)
4424                 goto unlock;
4425
4426         list_for_each_entry(child, &leader->child_list, child_list) {
4427                 ret = __perf_read_group_add(child, read_format, values);
4428                 if (ret)
4429                         goto unlock;
4430         }
4431
4432         mutex_unlock(&leader->child_mutex);
4433
4434         ret = event->read_size;
4435         if (copy_to_user(buf, values, event->read_size))
4436                 ret = -EFAULT;
4437         goto out;
4438
4439 unlock:
4440         mutex_unlock(&leader->child_mutex);
4441 out:
4442         kfree(values);
4443         return ret;
4444 }
4445
4446 static int perf_read_one(struct perf_event *event,
4447                                  u64 read_format, char __user *buf)
4448 {
4449         u64 enabled, running;
4450         u64 values[4];
4451         int n = 0;
4452
4453         values[n++] = __perf_event_read_value(event, &enabled, &running);
4454         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4455                 values[n++] = enabled;
4456         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4457                 values[n++] = running;
4458         if (read_format & PERF_FORMAT_ID)
4459                 values[n++] = primary_event_id(event);
4460
4461         if (copy_to_user(buf, values, n * sizeof(u64)))
4462                 return -EFAULT;
4463
4464         return n * sizeof(u64);
4465 }
4466
4467 static bool is_event_hup(struct perf_event *event)
4468 {
4469         bool no_children;
4470
4471         if (event->state > PERF_EVENT_STATE_EXIT)
4472                 return false;
4473
4474         mutex_lock(&event->child_mutex);
4475         no_children = list_empty(&event->child_list);
4476         mutex_unlock(&event->child_mutex);
4477         return no_children;
4478 }
4479
4480 /*
4481  * Read the performance event - simple non blocking version for now
4482  */
4483 static ssize_t
4484 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4485 {
4486         u64 read_format = event->attr.read_format;
4487         int ret;
4488
4489         /*
4490          * Return end-of-file for a read on a event that is in
4491          * error state (i.e. because it was pinned but it couldn't be
4492          * scheduled on to the CPU at some point).
4493          */
4494         if (event->state == PERF_EVENT_STATE_ERROR)
4495                 return 0;
4496
4497         if (count < event->read_size)
4498                 return -ENOSPC;
4499
4500         WARN_ON_ONCE(event->ctx->parent_ctx);
4501         if (read_format & PERF_FORMAT_GROUP)
4502                 ret = perf_read_group(event, read_format, buf);
4503         else
4504                 ret = perf_read_one(event, read_format, buf);
4505
4506         return ret;
4507 }
4508
4509 static ssize_t
4510 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4511 {
4512         struct perf_event *event = file->private_data;
4513         struct perf_event_context *ctx;
4514         int ret;
4515
4516         ctx = perf_event_ctx_lock(event);
4517         ret = __perf_read(event, buf, count);
4518         perf_event_ctx_unlock(event, ctx);
4519
4520         return ret;
4521 }
4522
4523 static __poll_t perf_poll(struct file *file, poll_table *wait)
4524 {
4525         struct perf_event *event = file->private_data;
4526         struct ring_buffer *rb;
4527         __poll_t events = POLLHUP;
4528
4529         poll_wait(file, &event->waitq, wait);
4530
4531         if (is_event_hup(event))
4532                 return events;
4533
4534         /*
4535          * Pin the event->rb by taking event->mmap_mutex; otherwise
4536          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4537          */
4538         mutex_lock(&event->mmap_mutex);
4539         rb = event->rb;
4540         if (rb)
4541                 events = atomic_xchg(&rb->poll, 0);
4542         mutex_unlock(&event->mmap_mutex);
4543         return events;
4544 }
4545
4546 static void _perf_event_reset(struct perf_event *event)
4547 {
4548         (void)perf_event_read(event, false);
4549         local64_set(&event->count, 0);
4550         perf_event_update_userpage(event);
4551 }
4552
4553 /*
4554  * Holding the top-level event's child_mutex means that any
4555  * descendant process that has inherited this event will block
4556  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4557  * task existence requirements of perf_event_enable/disable.
4558  */
4559 static void perf_event_for_each_child(struct perf_event *event,
4560                                         void (*func)(struct perf_event *))
4561 {
4562         struct perf_event *child;
4563
4564         WARN_ON_ONCE(event->ctx->parent_ctx);
4565
4566         mutex_lock(&event->child_mutex);
4567         func(event);
4568         list_for_each_entry(child, &event->child_list, child_list)
4569                 func(child);
4570         mutex_unlock(&event->child_mutex);
4571 }
4572
4573 static void perf_event_for_each(struct perf_event *event,
4574                                   void (*func)(struct perf_event *))
4575 {
4576         struct perf_event_context *ctx = event->ctx;
4577         struct perf_event *sibling;
4578
4579         lockdep_assert_held(&ctx->mutex);
4580
4581         event = event->group_leader;
4582
4583         perf_event_for_each_child(event, func);
4584         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4585                 perf_event_for_each_child(sibling, func);
4586 }
4587
4588 static void __perf_event_period(struct perf_event *event,
4589                                 struct perf_cpu_context *cpuctx,
4590                                 struct perf_event_context *ctx,
4591                                 void *info)
4592 {
4593         u64 value = *((u64 *)info);
4594         bool active;
4595
4596         if (event->attr.freq) {
4597                 event->attr.sample_freq = value;
4598         } else {
4599                 event->attr.sample_period = value;
4600                 event->hw.sample_period = value;
4601         }
4602
4603         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4604         if (active) {
4605                 perf_pmu_disable(ctx->pmu);
4606                 /*
4607                  * We could be throttled; unthrottle now to avoid the tick
4608                  * trying to unthrottle while we already re-started the event.
4609                  */
4610                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4611                         event->hw.interrupts = 0;
4612                         perf_log_throttle(event, 1);
4613                 }
4614                 event->pmu->stop(event, PERF_EF_UPDATE);
4615         }
4616
4617         local64_set(&event->hw.period_left, 0);
4618
4619         if (active) {
4620                 event->pmu->start(event, PERF_EF_RELOAD);
4621                 perf_pmu_enable(ctx->pmu);
4622         }
4623 }
4624
4625 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4626 {
4627         u64 value;
4628
4629         if (!is_sampling_event(event))
4630                 return -EINVAL;
4631
4632         if (copy_from_user(&value, arg, sizeof(value)))
4633                 return -EFAULT;
4634
4635         if (!value)
4636                 return -EINVAL;
4637
4638         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4639                 return -EINVAL;
4640
4641         event_function_call(event, __perf_event_period, &value);
4642
4643         return 0;
4644 }
4645
4646 static const struct file_operations perf_fops;
4647
4648 static inline int perf_fget_light(int fd, struct fd *p)
4649 {
4650         struct fd f = fdget(fd);
4651         if (!f.file)
4652                 return -EBADF;
4653
4654         if (f.file->f_op != &perf_fops) {
4655                 fdput(f);
4656                 return -EBADF;
4657         }
4658         *p = f;
4659         return 0;
4660 }
4661
4662 static int perf_event_set_output(struct perf_event *event,
4663                                  struct perf_event *output_event);
4664 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4665 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4666
4667 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4668 {
4669         void (*func)(struct perf_event *);
4670         u32 flags = arg;
4671
4672         switch (cmd) {
4673         case PERF_EVENT_IOC_ENABLE:
4674                 func = _perf_event_enable;
4675                 break;
4676         case PERF_EVENT_IOC_DISABLE:
4677                 func = _perf_event_disable;
4678                 break;
4679         case PERF_EVENT_IOC_RESET:
4680                 func = _perf_event_reset;
4681                 break;
4682
4683         case PERF_EVENT_IOC_REFRESH:
4684                 return _perf_event_refresh(event, arg);
4685
4686         case PERF_EVENT_IOC_PERIOD:
4687                 return perf_event_period(event, (u64 __user *)arg);
4688
4689         case PERF_EVENT_IOC_ID:
4690         {
4691                 u64 id = primary_event_id(event);
4692
4693                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4694                         return -EFAULT;
4695                 return 0;
4696         }
4697
4698         case PERF_EVENT_IOC_SET_OUTPUT:
4699         {
4700                 int ret;
4701                 if (arg != -1) {
4702                         struct perf_event *output_event;
4703                         struct fd output;
4704                         ret = perf_fget_light(arg, &output);
4705                         if (ret)
4706                                 return ret;
4707                         output_event = output.file->private_data;
4708                         ret = perf_event_set_output(event, output_event);
4709                         fdput(output);
4710                 } else {
4711                         ret = perf_event_set_output(event, NULL);
4712                 }
4713                 return ret;
4714         }
4715
4716         case PERF_EVENT_IOC_SET_FILTER:
4717                 return perf_event_set_filter(event, (void __user *)arg);
4718
4719         case PERF_EVENT_IOC_SET_BPF:
4720                 return perf_event_set_bpf_prog(event, arg);
4721
4722         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4723                 struct ring_buffer *rb;
4724
4725                 rcu_read_lock();
4726                 rb = rcu_dereference(event->rb);
4727                 if (!rb || !rb->nr_pages) {
4728                         rcu_read_unlock();
4729                         return -EINVAL;
4730                 }
4731                 rb_toggle_paused(rb, !!arg);
4732                 rcu_read_unlock();
4733                 return 0;
4734         }
4735         default:
4736                 return -ENOTTY;
4737         }
4738
4739         if (flags & PERF_IOC_FLAG_GROUP)
4740                 perf_event_for_each(event, func);
4741         else
4742                 perf_event_for_each_child(event, func);
4743
4744         return 0;
4745 }
4746
4747 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4748 {
4749         struct perf_event *event = file->private_data;
4750         struct perf_event_context *ctx;
4751         long ret;
4752
4753         ctx = perf_event_ctx_lock(event);
4754         ret = _perf_ioctl(event, cmd, arg);
4755         perf_event_ctx_unlock(event, ctx);
4756
4757         return ret;
4758 }
4759
4760 #ifdef CONFIG_COMPAT
4761 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4762                                 unsigned long arg)
4763 {
4764         switch (_IOC_NR(cmd)) {
4765         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4766         case _IOC_NR(PERF_EVENT_IOC_ID):
4767                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4768                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4769                         cmd &= ~IOCSIZE_MASK;
4770                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4771                 }
4772                 break;
4773         }
4774         return perf_ioctl(file, cmd, arg);
4775 }
4776 #else
4777 # define perf_compat_ioctl NULL
4778 #endif
4779
4780 int perf_event_task_enable(void)
4781 {
4782         struct perf_event_context *ctx;
4783         struct perf_event *event;
4784
4785         mutex_lock(&current->perf_event_mutex);
4786         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4787                 ctx = perf_event_ctx_lock(event);
4788                 perf_event_for_each_child(event, _perf_event_enable);
4789                 perf_event_ctx_unlock(event, ctx);
4790         }
4791         mutex_unlock(&current->perf_event_mutex);
4792
4793         return 0;
4794 }
4795
4796 int perf_event_task_disable(void)
4797 {
4798         struct perf_event_context *ctx;
4799         struct perf_event *event;
4800
4801         mutex_lock(&current->perf_event_mutex);
4802         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4803                 ctx = perf_event_ctx_lock(event);
4804                 perf_event_for_each_child(event, _perf_event_disable);
4805                 perf_event_ctx_unlock(event, ctx);
4806         }
4807         mutex_unlock(&current->perf_event_mutex);
4808
4809         return 0;
4810 }
4811
4812 static int perf_event_index(struct perf_event *event)
4813 {
4814         if (event->hw.state & PERF_HES_STOPPED)
4815                 return 0;
4816
4817         if (event->state != PERF_EVENT_STATE_ACTIVE)
4818                 return 0;
4819
4820         return event->pmu->event_idx(event);
4821 }
4822
4823 static void calc_timer_values(struct perf_event *event,
4824                                 u64 *now,
4825                                 u64 *enabled,
4826                                 u64 *running)
4827 {
4828         u64 ctx_time;
4829
4830         *now = perf_clock();
4831         ctx_time = event->shadow_ctx_time + *now;
4832         __perf_update_times(event, ctx_time, enabled, running);
4833 }
4834
4835 static void perf_event_init_userpage(struct perf_event *event)
4836 {
4837         struct perf_event_mmap_page *userpg;
4838         struct ring_buffer *rb;
4839
4840         rcu_read_lock();
4841         rb = rcu_dereference(event->rb);
4842         if (!rb)
4843                 goto unlock;
4844
4845         userpg = rb->user_page;
4846
4847         /* Allow new userspace to detect that bit 0 is deprecated */
4848         userpg->cap_bit0_is_deprecated = 1;
4849         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4850         userpg->data_offset = PAGE_SIZE;
4851         userpg->data_size = perf_data_size(rb);
4852
4853 unlock:
4854         rcu_read_unlock();
4855 }
4856
4857 void __weak arch_perf_update_userpage(
4858         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4859 {
4860 }
4861
4862 /*
4863  * Callers need to ensure there can be no nesting of this function, otherwise
4864  * the seqlock logic goes bad. We can not serialize this because the arch
4865  * code calls this from NMI context.
4866  */
4867 void perf_event_update_userpage(struct perf_event *event)
4868 {
4869         struct perf_event_mmap_page *userpg;
4870         struct ring_buffer *rb;
4871         u64 enabled, running, now;
4872
4873         rcu_read_lock();
4874         rb = rcu_dereference(event->rb);
4875         if (!rb)
4876                 goto unlock;
4877
4878         /*
4879          * compute total_time_enabled, total_time_running
4880          * based on snapshot values taken when the event
4881          * was last scheduled in.
4882          *
4883          * we cannot simply called update_context_time()
4884          * because of locking issue as we can be called in
4885          * NMI context
4886          */
4887         calc_timer_values(event, &now, &enabled, &running);
4888
4889         userpg = rb->user_page;
4890         /*
4891          * Disable preemption so as to not let the corresponding user-space
4892          * spin too long if we get preempted.
4893          */
4894         preempt_disable();
4895         ++userpg->lock;
4896         barrier();
4897         userpg->index = perf_event_index(event);
4898         userpg->offset = perf_event_count(event);
4899         if (userpg->index)
4900                 userpg->offset -= local64_read(&event->hw.prev_count);
4901
4902         userpg->time_enabled = enabled +
4903                         atomic64_read(&event->child_total_time_enabled);
4904
4905         userpg->time_running = running +
4906                         atomic64_read(&event->child_total_time_running);
4907
4908         arch_perf_update_userpage(event, userpg, now);
4909
4910         barrier();
4911         ++userpg->lock;
4912         preempt_enable();
4913 unlock:
4914         rcu_read_unlock();
4915 }
4916 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
4917
4918 static int perf_mmap_fault(struct vm_fault *vmf)
4919 {
4920         struct perf_event *event = vmf->vma->vm_file->private_data;
4921         struct ring_buffer *rb;
4922         int ret = VM_FAULT_SIGBUS;
4923
4924         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4925                 if (vmf->pgoff == 0)
4926                         ret = 0;
4927                 return ret;
4928         }
4929
4930         rcu_read_lock();
4931         rb = rcu_dereference(event->rb);
4932         if (!rb)
4933                 goto unlock;
4934
4935         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4936                 goto unlock;
4937
4938         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4939         if (!vmf->page)
4940                 goto unlock;
4941
4942         get_page(vmf->page);
4943         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4944         vmf->page->index   = vmf->pgoff;
4945
4946         ret = 0;
4947 unlock:
4948         rcu_read_unlock();
4949
4950         return ret;
4951 }
4952
4953 static void ring_buffer_attach(struct perf_event *event,
4954                                struct ring_buffer *rb)
4955 {
4956         struct ring_buffer *old_rb = NULL;
4957         unsigned long flags;
4958
4959         if (event->rb) {
4960                 /*
4961                  * Should be impossible, we set this when removing
4962                  * event->rb_entry and wait/clear when adding event->rb_entry.
4963                  */
4964                 WARN_ON_ONCE(event->rcu_pending);
4965
4966                 old_rb = event->rb;
4967                 spin_lock_irqsave(&old_rb->event_lock, flags);
4968                 list_del_rcu(&event->rb_entry);
4969                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4970
4971                 event->rcu_batches = get_state_synchronize_rcu();
4972                 event->rcu_pending = 1;
4973         }
4974
4975         if (rb) {
4976                 if (event->rcu_pending) {
4977                         cond_synchronize_rcu(event->rcu_batches);
4978                         event->rcu_pending = 0;
4979                 }
4980
4981                 spin_lock_irqsave(&rb->event_lock, flags);
4982                 list_add_rcu(&event->rb_entry, &rb->event_list);
4983                 spin_unlock_irqrestore(&rb->event_lock, flags);
4984         }
4985
4986         /*
4987          * Avoid racing with perf_mmap_close(AUX): stop the event
4988          * before swizzling the event::rb pointer; if it's getting
4989          * unmapped, its aux_mmap_count will be 0 and it won't
4990          * restart. See the comment in __perf_pmu_output_stop().
4991          *
4992          * Data will inevitably be lost when set_output is done in
4993          * mid-air, but then again, whoever does it like this is
4994          * not in for the data anyway.
4995          */
4996         if (has_aux(event))
4997                 perf_event_stop(event, 0);
4998
4999         rcu_assign_pointer(event->rb, rb);
5000
5001         if (old_rb) {
5002                 ring_buffer_put(old_rb);
5003                 /*
5004                  * Since we detached before setting the new rb, so that we
5005                  * could attach the new rb, we could have missed a wakeup.
5006                  * Provide it now.
5007                  */
5008                 wake_up_all(&event->waitq);
5009         }
5010 }
5011
5012 static void ring_buffer_wakeup(struct perf_event *event)
5013 {
5014         struct ring_buffer *rb;
5015
5016         rcu_read_lock();
5017         rb = rcu_dereference(event->rb);
5018         if (rb) {
5019                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5020                         wake_up_all(&event->waitq);
5021         }
5022         rcu_read_unlock();
5023 }
5024
5025 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5026 {
5027         struct ring_buffer *rb;
5028
5029         rcu_read_lock();
5030         rb = rcu_dereference(event->rb);
5031         if (rb) {
5032                 if (!atomic_inc_not_zero(&rb->refcount))
5033                         rb = NULL;
5034         }
5035         rcu_read_unlock();
5036
5037         return rb;
5038 }
5039
5040 void ring_buffer_put(struct ring_buffer *rb)
5041 {
5042         if (!atomic_dec_and_test(&rb->refcount))
5043                 return;
5044
5045         WARN_ON_ONCE(!list_empty(&rb->event_list));
5046
5047         call_rcu(&rb->rcu_head, rb_free_rcu);
5048 }
5049
5050 static void perf_mmap_open(struct vm_area_struct *vma)
5051 {
5052         struct perf_event *event = vma->vm_file->private_data;
5053
5054         atomic_inc(&event->mmap_count);
5055         atomic_inc(&event->rb->mmap_count);
5056
5057         if (vma->vm_pgoff)
5058                 atomic_inc(&event->rb->aux_mmap_count);
5059
5060         if (event->pmu->event_mapped)
5061                 event->pmu->event_mapped(event, vma->vm_mm);
5062 }
5063
5064 static void perf_pmu_output_stop(struct perf_event *event);
5065
5066 /*
5067  * A buffer can be mmap()ed multiple times; either directly through the same
5068  * event, or through other events by use of perf_event_set_output().
5069  *
5070  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5071  * the buffer here, where we still have a VM context. This means we need
5072  * to detach all events redirecting to us.
5073  */
5074 static void perf_mmap_close(struct vm_area_struct *vma)
5075 {
5076         struct perf_event *event = vma->vm_file->private_data;
5077
5078         struct ring_buffer *rb = ring_buffer_get(event);
5079         struct user_struct *mmap_user = rb->mmap_user;
5080         int mmap_locked = rb->mmap_locked;
5081         unsigned long size = perf_data_size(rb);
5082
5083         if (event->pmu->event_unmapped)
5084                 event->pmu->event_unmapped(event, vma->vm_mm);
5085
5086         /*
5087          * rb->aux_mmap_count will always drop before rb->mmap_count and
5088          * event->mmap_count, so it is ok to use event->mmap_mutex to
5089          * serialize with perf_mmap here.
5090          */
5091         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5092             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5093                 /*
5094                  * Stop all AUX events that are writing to this buffer,
5095                  * so that we can free its AUX pages and corresponding PMU
5096                  * data. Note that after rb::aux_mmap_count dropped to zero,
5097                  * they won't start any more (see perf_aux_output_begin()).
5098                  */
5099                 perf_pmu_output_stop(event);
5100
5101                 /* now it's safe to free the pages */
5102                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5103                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5104
5105                 /* this has to be the last one */
5106                 rb_free_aux(rb);
5107                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5108
5109                 mutex_unlock(&event->mmap_mutex);
5110         }
5111
5112         atomic_dec(&rb->mmap_count);
5113
5114         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5115                 goto out_put;
5116
5117         ring_buffer_attach(event, NULL);
5118         mutex_unlock(&event->mmap_mutex);
5119
5120         /* If there's still other mmap()s of this buffer, we're done. */
5121         if (atomic_read(&rb->mmap_count))
5122                 goto out_put;
5123
5124         /*
5125          * No other mmap()s, detach from all other events that might redirect
5126          * into the now unreachable buffer. Somewhat complicated by the
5127          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5128          */
5129 again:
5130         rcu_read_lock();
5131         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5132                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5133                         /*
5134                          * This event is en-route to free_event() which will
5135                          * detach it and remove it from the list.
5136                          */
5137                         continue;
5138                 }
5139                 rcu_read_unlock();
5140
5141                 mutex_lock(&event->mmap_mutex);
5142                 /*
5143                  * Check we didn't race with perf_event_set_output() which can
5144                  * swizzle the rb from under us while we were waiting to
5145                  * acquire mmap_mutex.
5146                  *
5147                  * If we find a different rb; ignore this event, a next
5148                  * iteration will no longer find it on the list. We have to
5149                  * still restart the iteration to make sure we're not now
5150                  * iterating the wrong list.
5151                  */
5152                 if (event->rb == rb)
5153                         ring_buffer_attach(event, NULL);
5154
5155                 mutex_unlock(&event->mmap_mutex);
5156                 put_event(event);
5157
5158                 /*
5159                  * Restart the iteration; either we're on the wrong list or
5160                  * destroyed its integrity by doing a deletion.
5161                  */
5162                 goto again;
5163         }
5164         rcu_read_unlock();
5165
5166         /*
5167          * It could be there's still a few 0-ref events on the list; they'll
5168          * get cleaned up by free_event() -- they'll also still have their
5169          * ref on the rb and will free it whenever they are done with it.
5170          *
5171          * Aside from that, this buffer is 'fully' detached and unmapped,
5172          * undo the VM accounting.
5173          */
5174
5175         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5176         vma->vm_mm->pinned_vm -= mmap_locked;
5177         free_uid(mmap_user);
5178
5179 out_put:
5180         ring_buffer_put(rb); /* could be last */
5181 }
5182
5183 static const struct vm_operations_struct perf_mmap_vmops = {
5184         .open           = perf_mmap_open,
5185         .close          = perf_mmap_close, /* non mergable */
5186         .fault          = perf_mmap_fault,
5187         .page_mkwrite   = perf_mmap_fault,
5188 };
5189
5190 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5191 {
5192         struct perf_event *event = file->private_data;
5193         unsigned long user_locked, user_lock_limit;
5194         struct user_struct *user = current_user();
5195         unsigned long locked, lock_limit;
5196         struct ring_buffer *rb = NULL;
5197         unsigned long vma_size;
5198         unsigned long nr_pages;
5199         long user_extra = 0, extra = 0;
5200         int ret = 0, flags = 0;
5201
5202         /*
5203          * Don't allow mmap() of inherited per-task counters. This would
5204          * create a performance issue due to all children writing to the
5205          * same rb.
5206          */
5207         if (event->cpu == -1 && event->attr.inherit)
5208                 return -EINVAL;
5209
5210         if (!(vma->vm_flags & VM_SHARED))
5211                 return -EINVAL;
5212
5213         vma_size = vma->vm_end - vma->vm_start;
5214
5215         if (vma->vm_pgoff == 0) {
5216                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5217         } else {
5218                 /*
5219                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5220                  * mapped, all subsequent mappings should have the same size
5221                  * and offset. Must be above the normal perf buffer.
5222                  */
5223                 u64 aux_offset, aux_size;
5224
5225                 if (!event->rb)
5226                         return -EINVAL;
5227
5228                 nr_pages = vma_size / PAGE_SIZE;
5229
5230                 mutex_lock(&event->mmap_mutex);
5231                 ret = -EINVAL;
5232
5233                 rb = event->rb;
5234                 if (!rb)
5235                         goto aux_unlock;
5236
5237                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5238                 aux_size = READ_ONCE(rb->user_page->aux_size);
5239
5240                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5241                         goto aux_unlock;
5242
5243                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5244                         goto aux_unlock;
5245
5246                 /* already mapped with a different offset */
5247                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5248                         goto aux_unlock;
5249
5250                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5251                         goto aux_unlock;
5252
5253                 /* already mapped with a different size */
5254                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5255                         goto aux_unlock;
5256
5257                 if (!is_power_of_2(nr_pages))
5258                         goto aux_unlock;
5259
5260                 if (!atomic_inc_not_zero(&rb->mmap_count))
5261                         goto aux_unlock;
5262
5263                 if (rb_has_aux(rb)) {
5264                         atomic_inc(&rb->aux_mmap_count);
5265                         ret = 0;
5266                         goto unlock;
5267                 }
5268
5269                 atomic_set(&rb->aux_mmap_count, 1);
5270                 user_extra = nr_pages;
5271
5272                 goto accounting;
5273         }
5274
5275         /*
5276          * If we have rb pages ensure they're a power-of-two number, so we
5277          * can do bitmasks instead of modulo.
5278          */
5279         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5280                 return -EINVAL;
5281
5282         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5283                 return -EINVAL;
5284
5285         WARN_ON_ONCE(event->ctx->parent_ctx);
5286 again:
5287         mutex_lock(&event->mmap_mutex);
5288         if (event->rb) {
5289                 if (event->rb->nr_pages != nr_pages) {
5290                         ret = -EINVAL;
5291                         goto unlock;
5292                 }
5293
5294                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5295                         /*
5296                          * Raced against perf_mmap_close() through
5297                          * perf_event_set_output(). Try again, hope for better
5298                          * luck.
5299                          */
5300                         mutex_unlock(&event->mmap_mutex);
5301                         goto again;
5302                 }
5303
5304                 goto unlock;
5305         }
5306
5307         user_extra = nr_pages + 1;
5308
5309 accounting:
5310         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5311
5312         /*
5313          * Increase the limit linearly with more CPUs:
5314          */
5315         user_lock_limit *= num_online_cpus();
5316
5317         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5318
5319         if (user_locked > user_lock_limit)
5320                 extra = user_locked - user_lock_limit;
5321
5322         lock_limit = rlimit(RLIMIT_MEMLOCK);
5323         lock_limit >>= PAGE_SHIFT;
5324         locked = vma->vm_mm->pinned_vm + extra;
5325
5326         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5327                 !capable(CAP_IPC_LOCK)) {
5328                 ret = -EPERM;
5329                 goto unlock;
5330         }
5331
5332         WARN_ON(!rb && event->rb);
5333
5334         if (vma->vm_flags & VM_WRITE)
5335                 flags |= RING_BUFFER_WRITABLE;
5336
5337         if (!rb) {
5338                 rb = rb_alloc(nr_pages,
5339                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5340                               event->cpu, flags);
5341
5342                 if (!rb) {
5343                         ret = -ENOMEM;
5344                         goto unlock;
5345                 }
5346
5347                 atomic_set(&rb->mmap_count, 1);
5348                 rb->mmap_user = get_current_user();
5349                 rb->mmap_locked = extra;
5350
5351                 ring_buffer_attach(event, rb);
5352
5353                 perf_event_init_userpage(event);
5354                 perf_event_update_userpage(event);
5355         } else {
5356                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5357                                    event->attr.aux_watermark, flags);
5358                 if (!ret)
5359                         rb->aux_mmap_locked = extra;
5360         }
5361
5362 unlock:
5363         if (!ret) {
5364                 atomic_long_add(user_extra, &user->locked_vm);
5365                 vma->vm_mm->pinned_vm += extra;
5366
5367                 atomic_inc(&event->mmap_count);
5368         } else if (rb) {
5369                 atomic_dec(&rb->mmap_count);
5370         }
5371 aux_unlock:
5372         mutex_unlock(&event->mmap_mutex);
5373
5374         /*
5375          * Since pinned accounting is per vm we cannot allow fork() to copy our
5376          * vma.
5377          */
5378         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5379         vma->vm_ops = &perf_mmap_vmops;
5380
5381         if (event->pmu->event_mapped)
5382                 event->pmu->event_mapped(event, vma->vm_mm);
5383
5384         return ret;
5385 }
5386
5387 static int perf_fasync(int fd, struct file *filp, int on)
5388 {
5389         struct inode *inode = file_inode(filp);
5390         struct perf_event *event = filp->private_data;
5391         int retval;
5392
5393         inode_lock(inode);
5394         retval = fasync_helper(fd, filp, on, &event->fasync);
5395         inode_unlock(inode);
5396
5397         if (retval < 0)
5398                 return retval;
5399
5400         return 0;
5401 }
5402
5403 static const struct file_operations perf_fops = {
5404         .llseek                 = no_llseek,
5405         .release                = perf_release,
5406         .read                   = perf_read,
5407         .poll                   = perf_poll,
5408         .unlocked_ioctl         = perf_ioctl,
5409         .compat_ioctl           = perf_compat_ioctl,
5410         .mmap                   = perf_mmap,
5411         .fasync                 = perf_fasync,
5412 };
5413
5414 /*
5415  * Perf event wakeup
5416  *
5417  * If there's data, ensure we set the poll() state and publish everything
5418  * to user-space before waking everybody up.
5419  */
5420
5421 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5422 {
5423         /* only the parent has fasync state */
5424         if (event->parent)
5425                 event = event->parent;
5426         return &event->fasync;
5427 }
5428
5429 void perf_event_wakeup(struct perf_event *event)
5430 {
5431         ring_buffer_wakeup(event);
5432
5433         if (event->pending_kill) {
5434                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5435                 event->pending_kill = 0;
5436         }
5437 }
5438
5439 static void perf_pending_event(struct irq_work *entry)
5440 {
5441         struct perf_event *event = container_of(entry,
5442                         struct perf_event, pending);
5443         int rctx;
5444
5445         rctx = perf_swevent_get_recursion_context();
5446         /*
5447          * If we 'fail' here, that's OK, it means recursion is already disabled
5448          * and we won't recurse 'further'.
5449          */
5450
5451         if (event->pending_disable) {
5452                 event->pending_disable = 0;
5453                 perf_event_disable_local(event);
5454         }
5455
5456         if (event->pending_wakeup) {
5457                 event->pending_wakeup = 0;
5458                 perf_event_wakeup(event);
5459         }
5460
5461         if (rctx >= 0)
5462                 perf_swevent_put_recursion_context(rctx);
5463 }
5464
5465 /*
5466  * We assume there is only KVM supporting the callbacks.
5467  * Later on, we might change it to a list if there is
5468  * another virtualization implementation supporting the callbacks.
5469  */
5470 struct perf_guest_info_callbacks *perf_guest_cbs;
5471
5472 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5473 {
5474         perf_guest_cbs = cbs;
5475         return 0;
5476 }
5477 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5478
5479 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5480 {
5481         perf_guest_cbs = NULL;
5482         return 0;
5483 }
5484 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5485
5486 static void
5487 perf_output_sample_regs(struct perf_output_handle *handle,
5488                         struct pt_regs *regs, u64 mask)
5489 {
5490         int bit;
5491         DECLARE_BITMAP(_mask, 64);
5492
5493         bitmap_from_u64(_mask, mask);
5494         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5495                 u64 val;
5496
5497                 val = perf_reg_value(regs, bit);
5498                 perf_output_put(handle, val);
5499         }
5500 }
5501
5502 static void perf_sample_regs_user(struct perf_regs *regs_user,
5503                                   struct pt_regs *regs,
5504                                   struct pt_regs *regs_user_copy)
5505 {
5506         if (user_mode(regs)) {
5507                 regs_user->abi = perf_reg_abi(current);
5508                 regs_user->regs = regs;
5509         } else if (current->mm) {
5510                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5511         } else {
5512                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5513                 regs_user->regs = NULL;
5514         }
5515 }
5516
5517 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5518                                   struct pt_regs *regs)
5519 {
5520         regs_intr->regs = regs;
5521         regs_intr->abi  = perf_reg_abi(current);
5522 }
5523
5524
5525 /*
5526  * Get remaining task size from user stack pointer.
5527  *
5528  * It'd be better to take stack vma map and limit this more
5529  * precisly, but there's no way to get it safely under interrupt,
5530  * so using TASK_SIZE as limit.
5531  */
5532 static u64 perf_ustack_task_size(struct pt_regs *regs)
5533 {
5534         unsigned long addr = perf_user_stack_pointer(regs);
5535
5536         if (!addr || addr >= TASK_SIZE)
5537                 return 0;
5538
5539         return TASK_SIZE - addr;
5540 }
5541
5542 static u16
5543 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5544                         struct pt_regs *regs)
5545 {
5546         u64 task_size;
5547
5548         /* No regs, no stack pointer, no dump. */
5549         if (!regs)
5550                 return 0;
5551
5552         /*
5553          * Check if we fit in with the requested stack size into the:
5554          * - TASK_SIZE
5555          *   If we don't, we limit the size to the TASK_SIZE.
5556          *
5557          * - remaining sample size
5558          *   If we don't, we customize the stack size to
5559          *   fit in to the remaining sample size.
5560          */
5561
5562         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5563         stack_size = min(stack_size, (u16) task_size);
5564
5565         /* Current header size plus static size and dynamic size. */
5566         header_size += 2 * sizeof(u64);
5567
5568         /* Do we fit in with the current stack dump size? */
5569         if ((u16) (header_size + stack_size) < header_size) {
5570                 /*
5571                  * If we overflow the maximum size for the sample,
5572                  * we customize the stack dump size to fit in.
5573                  */
5574                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5575                 stack_size = round_up(stack_size, sizeof(u64));
5576         }
5577
5578         return stack_size;
5579 }
5580
5581 static void
5582 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5583                           struct pt_regs *regs)
5584 {
5585         /* Case of a kernel thread, nothing to dump */
5586         if (!regs) {
5587                 u64 size = 0;
5588                 perf_output_put(handle, size);
5589         } else {
5590                 unsigned long sp;
5591                 unsigned int rem;
5592                 u64 dyn_size;
5593
5594                 /*
5595                  * We dump:
5596                  * static size
5597                  *   - the size requested by user or the best one we can fit
5598                  *     in to the sample max size
5599                  * data
5600                  *   - user stack dump data
5601                  * dynamic size
5602                  *   - the actual dumped size
5603                  */
5604
5605                 /* Static size. */
5606                 perf_output_put(handle, dump_size);
5607
5608                 /* Data. */
5609                 sp = perf_user_stack_pointer(regs);
5610                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5611                 dyn_size = dump_size - rem;
5612
5613                 perf_output_skip(handle, rem);
5614
5615                 /* Dynamic size. */
5616                 perf_output_put(handle, dyn_size);
5617         }
5618 }
5619
5620 static void __perf_event_header__init_id(struct perf_event_header *header,
5621                                          struct perf_sample_data *data,
5622                                          struct perf_event *event)
5623 {
5624         u64 sample_type = event->attr.sample_type;
5625
5626         data->type = sample_type;
5627         header->size += event->id_header_size;
5628
5629         if (sample_type & PERF_SAMPLE_TID) {
5630                 /* namespace issues */
5631                 data->tid_entry.pid = perf_event_pid(event, current);
5632                 data->tid_entry.tid = perf_event_tid(event, current);
5633         }
5634
5635         if (sample_type & PERF_SAMPLE_TIME)
5636                 data->time = perf_event_clock(event);
5637
5638         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5639                 data->id = primary_event_id(event);
5640
5641         if (sample_type & PERF_SAMPLE_STREAM_ID)
5642                 data->stream_id = event->id;
5643
5644         if (sample_type & PERF_SAMPLE_CPU) {
5645                 data->cpu_entry.cpu      = raw_smp_processor_id();
5646                 data->cpu_entry.reserved = 0;
5647         }
5648 }
5649
5650 void perf_event_header__init_id(struct perf_event_header *header,
5651                                 struct perf_sample_data *data,
5652                                 struct perf_event *event)
5653 {
5654         if (event->attr.sample_id_all)
5655                 __perf_event_header__init_id(header, data, event);
5656 }
5657
5658 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5659                                            struct perf_sample_data *data)
5660 {
5661         u64 sample_type = data->type;
5662
5663         if (sample_type & PERF_SAMPLE_TID)
5664                 perf_output_put(handle, data->tid_entry);
5665
5666         if (sample_type & PERF_SAMPLE_TIME)
5667                 perf_output_put(handle, data->time);
5668
5669         if (sample_type & PERF_SAMPLE_ID)
5670                 perf_output_put(handle, data->id);
5671
5672         if (sample_type & PERF_SAMPLE_STREAM_ID)
5673                 perf_output_put(handle, data->stream_id);
5674
5675         if (sample_type & PERF_SAMPLE_CPU)
5676                 perf_output_put(handle, data->cpu_entry);
5677
5678         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5679                 perf_output_put(handle, data->id);
5680 }
5681
5682 void perf_event__output_id_sample(struct perf_event *event,
5683                                   struct perf_output_handle *handle,
5684                                   struct perf_sample_data *sample)
5685 {
5686         if (event->attr.sample_id_all)
5687                 __perf_event__output_id_sample(handle, sample);
5688 }
5689
5690 static void perf_output_read_one(struct perf_output_handle *handle,
5691                                  struct perf_event *event,
5692                                  u64 enabled, u64 running)
5693 {
5694         u64 read_format = event->attr.read_format;
5695         u64 values[4];
5696         int n = 0;
5697
5698         values[n++] = perf_event_count(event);
5699         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5700                 values[n++] = enabled +
5701                         atomic64_read(&event->child_total_time_enabled);
5702         }
5703         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5704                 values[n++] = running +
5705                         atomic64_read(&event->child_total_time_running);
5706         }
5707         if (read_format & PERF_FORMAT_ID)
5708                 values[n++] = primary_event_id(event);
5709
5710         __output_copy(handle, values, n * sizeof(u64));
5711 }
5712
5713 static void perf_output_read_group(struct perf_output_handle *handle,
5714                             struct perf_event *event,
5715                             u64 enabled, u64 running)
5716 {
5717         struct perf_event *leader = event->group_leader, *sub;
5718         u64 read_format = event->attr.read_format;
5719         u64 values[5];
5720         int n = 0;
5721
5722         values[n++] = 1 + leader->nr_siblings;
5723
5724         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5725                 values[n++] = enabled;
5726
5727         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5728                 values[n++] = running;
5729
5730         if (leader != event)
5731                 leader->pmu->read(leader);
5732
5733         values[n++] = perf_event_count(leader);
5734         if (read_format & PERF_FORMAT_ID)
5735                 values[n++] = primary_event_id(leader);
5736
5737         __output_copy(handle, values, n * sizeof(u64));
5738
5739         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5740                 n = 0;
5741
5742                 if ((sub != event) &&
5743                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5744                         sub->pmu->read(sub);
5745
5746                 values[n++] = perf_event_count(sub);
5747                 if (read_format & PERF_FORMAT_ID)
5748                         values[n++] = primary_event_id(sub);
5749
5750                 __output_copy(handle, values, n * sizeof(u64));
5751         }
5752 }
5753
5754 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5755                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5756
5757 /*
5758  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5759  *
5760  * The problem is that its both hard and excessively expensive to iterate the
5761  * child list, not to mention that its impossible to IPI the children running
5762  * on another CPU, from interrupt/NMI context.
5763  */
5764 static void perf_output_read(struct perf_output_handle *handle,
5765                              struct perf_event *event)
5766 {
5767         u64 enabled = 0, running = 0, now;
5768         u64 read_format = event->attr.read_format;
5769
5770         /*
5771          * compute total_time_enabled, total_time_running
5772          * based on snapshot values taken when the event
5773          * was last scheduled in.
5774          *
5775          * we cannot simply called update_context_time()
5776          * because of locking issue as we are called in
5777          * NMI context
5778          */
5779         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5780                 calc_timer_values(event, &now, &enabled, &running);
5781
5782         if (event->attr.read_format & PERF_FORMAT_GROUP)
5783                 perf_output_read_group(handle, event, enabled, running);
5784         else
5785                 perf_output_read_one(handle, event, enabled, running);
5786 }
5787
5788 void perf_output_sample(struct perf_output_handle *handle,
5789                         struct perf_event_header *header,
5790                         struct perf_sample_data *data,
5791                         struct perf_event *event)
5792 {
5793         u64 sample_type = data->type;
5794
5795         perf_output_put(handle, *header);
5796
5797         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5798                 perf_output_put(handle, data->id);
5799
5800         if (sample_type & PERF_SAMPLE_IP)
5801                 perf_output_put(handle, data->ip);
5802
5803         if (sample_type & PERF_SAMPLE_TID)
5804                 perf_output_put(handle, data->tid_entry);
5805
5806         if (sample_type & PERF_SAMPLE_TIME)
5807                 perf_output_put(handle, data->time);
5808
5809         if (sample_type & PERF_SAMPLE_ADDR)
5810                 perf_output_put(handle, data->addr);
5811
5812         if (sample_type & PERF_SAMPLE_ID)
5813                 perf_output_put(handle, data->id);
5814
5815         if (sample_type & PERF_SAMPLE_STREAM_ID)
5816                 perf_output_put(handle, data->stream_id);
5817
5818         if (sample_type & PERF_SAMPLE_CPU)
5819                 perf_output_put(handle, data->cpu_entry);
5820
5821         if (sample_type & PERF_SAMPLE_PERIOD)
5822                 perf_output_put(handle, data->period);
5823
5824         if (sample_type & PERF_SAMPLE_READ)
5825                 perf_output_read(handle, event);
5826
5827         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5828                 int size = 1;
5829
5830                 size += data->callchain->nr;
5831                 size *= sizeof(u64);
5832                 __output_copy(handle, data->callchain, size);
5833         }
5834
5835         if (sample_type & PERF_SAMPLE_RAW) {
5836                 struct perf_raw_record *raw = data->raw;
5837
5838                 if (raw) {
5839                         struct perf_raw_frag *frag = &raw->frag;
5840
5841                         perf_output_put(handle, raw->size);
5842                         do {
5843                                 if (frag->copy) {
5844                                         __output_custom(handle, frag->copy,
5845                                                         frag->data, frag->size);
5846                                 } else {
5847                                         __output_copy(handle, frag->data,
5848                                                       frag->size);
5849                                 }
5850                                 if (perf_raw_frag_last(frag))
5851                                         break;
5852                                 frag = frag->next;
5853                         } while (1);
5854                         if (frag->pad)
5855                                 __output_skip(handle, NULL, frag->pad);
5856                 } else {
5857                         struct {
5858                                 u32     size;
5859                                 u32     data;
5860                         } raw = {
5861                                 .size = sizeof(u32),
5862                                 .data = 0,
5863                         };
5864                         perf_output_put(handle, raw);
5865                 }
5866         }
5867
5868         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5869                 if (data->br_stack) {
5870                         size_t size;
5871
5872                         size = data->br_stack->nr
5873                              * sizeof(struct perf_branch_entry);
5874
5875                         perf_output_put(handle, data->br_stack->nr);
5876                         perf_output_copy(handle, data->br_stack->entries, size);
5877                 } else {
5878                         /*
5879                          * we always store at least the value of nr
5880                          */
5881                         u64 nr = 0;
5882                         perf_output_put(handle, nr);
5883                 }
5884         }
5885
5886         if (sample_type & PERF_SAMPLE_REGS_USER) {
5887                 u64 abi = data->regs_user.abi;
5888
5889                 /*
5890                  * If there are no regs to dump, notice it through
5891                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5892                  */
5893                 perf_output_put(handle, abi);
5894
5895                 if (abi) {
5896                         u64 mask = event->attr.sample_regs_user;
5897                         perf_output_sample_regs(handle,
5898                                                 data->regs_user.regs,
5899                                                 mask);
5900                 }
5901         }
5902
5903         if (sample_type & PERF_SAMPLE_STACK_USER) {
5904                 perf_output_sample_ustack(handle,
5905                                           data->stack_user_size,
5906                                           data->regs_user.regs);
5907         }
5908
5909         if (sample_type & PERF_SAMPLE_WEIGHT)
5910                 perf_output_put(handle, data->weight);
5911
5912         if (sample_type & PERF_SAMPLE_DATA_SRC)
5913                 perf_output_put(handle, data->data_src.val);
5914
5915         if (sample_type & PERF_SAMPLE_TRANSACTION)
5916                 perf_output_put(handle, data->txn);
5917
5918         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5919                 u64 abi = data->regs_intr.abi;
5920                 /*
5921                  * If there are no regs to dump, notice it through
5922                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5923                  */
5924                 perf_output_put(handle, abi);
5925
5926                 if (abi) {
5927                         u64 mask = event->attr.sample_regs_intr;
5928
5929                         perf_output_sample_regs(handle,
5930                                                 data->regs_intr.regs,
5931                                                 mask);
5932                 }
5933         }
5934
5935         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5936                 perf_output_put(handle, data->phys_addr);
5937
5938         if (!event->attr.watermark) {
5939                 int wakeup_events = event->attr.wakeup_events;
5940
5941                 if (wakeup_events) {
5942                         struct ring_buffer *rb = handle->rb;
5943                         int events = local_inc_return(&rb->events);
5944
5945                         if (events >= wakeup_events) {
5946                                 local_sub(wakeup_events, &rb->events);
5947                                 local_inc(&rb->wakeup);
5948                         }
5949                 }
5950         }
5951 }
5952
5953 static u64 perf_virt_to_phys(u64 virt)
5954 {
5955         u64 phys_addr = 0;
5956         struct page *p = NULL;
5957
5958         if (!virt)
5959                 return 0;
5960
5961         if (virt >= TASK_SIZE) {
5962                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
5963                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
5964                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
5965                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5966         } else {
5967                 /*
5968                  * Walking the pages tables for user address.
5969                  * Interrupts are disabled, so it prevents any tear down
5970                  * of the page tables.
5971                  * Try IRQ-safe __get_user_pages_fast first.
5972                  * If failed, leave phys_addr as 0.
5973                  */
5974                 if ((current->mm != NULL) &&
5975                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5976                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5977
5978                 if (p)
5979                         put_page(p);
5980         }
5981
5982         return phys_addr;
5983 }
5984
5985 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
5986
5987 static struct perf_callchain_entry *
5988 perf_callchain(struct perf_event *event, struct pt_regs *regs)
5989 {
5990         bool kernel = !event->attr.exclude_callchain_kernel;
5991         bool user   = !event->attr.exclude_callchain_user;
5992         /* Disallow cross-task user callchains. */
5993         bool crosstask = event->ctx->task && event->ctx->task != current;
5994         const u32 max_stack = event->attr.sample_max_stack;
5995         struct perf_callchain_entry *callchain;
5996
5997         if (!kernel && !user)
5998                 return &__empty_callchain;
5999
6000         callchain = get_perf_callchain(regs, 0, kernel, user,
6001                                        max_stack, crosstask, true);
6002         return callchain ?: &__empty_callchain;
6003 }
6004
6005 void perf_prepare_sample(struct perf_event_header *header,
6006                          struct perf_sample_data *data,
6007                          struct perf_event *event,
6008                          struct pt_regs *regs)
6009 {
6010         u64 sample_type = event->attr.sample_type;
6011
6012         header->type = PERF_RECORD_SAMPLE;
6013         header->size = sizeof(*header) + event->header_size;
6014
6015         header->misc = 0;
6016         header->misc |= perf_misc_flags(regs);
6017
6018         __perf_event_header__init_id(header, data, event);
6019
6020         if (sample_type & PERF_SAMPLE_IP)
6021                 data->ip = perf_instruction_pointer(regs);
6022
6023         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6024                 int size = 1;
6025
6026                 data->callchain = perf_callchain(event, regs);
6027                 size += data->callchain->nr;
6028
6029                 header->size += size * sizeof(u64);
6030         }
6031
6032         if (sample_type & PERF_SAMPLE_RAW) {
6033                 struct perf_raw_record *raw = data->raw;
6034                 int size;
6035
6036                 if (raw) {
6037                         struct perf_raw_frag *frag = &raw->frag;
6038                         u32 sum = 0;
6039
6040                         do {
6041                                 sum += frag->size;
6042                                 if (perf_raw_frag_last(frag))
6043                                         break;
6044                                 frag = frag->next;
6045                         } while (1);
6046
6047                         size = round_up(sum + sizeof(u32), sizeof(u64));
6048                         raw->size = size - sizeof(u32);
6049                         frag->pad = raw->size - sum;
6050                 } else {
6051                         size = sizeof(u64);
6052                 }
6053
6054                 header->size += size;
6055         }
6056
6057         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6058                 int size = sizeof(u64); /* nr */
6059                 if (data->br_stack) {
6060                         size += data->br_stack->nr
6061                               * sizeof(struct perf_branch_entry);
6062                 }
6063                 header->size += size;
6064         }
6065
6066         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6067                 perf_sample_regs_user(&data->regs_user, regs,
6068                                       &data->regs_user_copy);
6069
6070         if (sample_type & PERF_SAMPLE_REGS_USER) {
6071                 /* regs dump ABI info */
6072                 int size = sizeof(u64);
6073
6074                 if (data->regs_user.regs) {
6075                         u64 mask = event->attr.sample_regs_user;
6076                         size += hweight64(mask) * sizeof(u64);
6077                 }
6078
6079                 header->size += size;
6080         }
6081
6082         if (sample_type & PERF_SAMPLE_STACK_USER) {
6083                 /*
6084                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6085                  * processed as the last one or have additional check added
6086                  * in case new sample type is added, because we could eat
6087                  * up the rest of the sample size.
6088                  */
6089                 u16 stack_size = event->attr.sample_stack_user;
6090                 u16 size = sizeof(u64);
6091
6092                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6093                                                      data->regs_user.regs);
6094
6095                 /*
6096                  * If there is something to dump, add space for the dump
6097                  * itself and for the field that tells the dynamic size,
6098                  * which is how many have been actually dumped.
6099                  */
6100                 if (stack_size)
6101                         size += sizeof(u64) + stack_size;
6102
6103                 data->stack_user_size = stack_size;
6104                 header->size += size;
6105         }
6106
6107         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6108                 /* regs dump ABI info */
6109                 int size = sizeof(u64);
6110
6111                 perf_sample_regs_intr(&data->regs_intr, regs);
6112
6113                 if (data->regs_intr.regs) {
6114                         u64 mask = event->attr.sample_regs_intr;
6115
6116                         size += hweight64(mask) * sizeof(u64);
6117                 }
6118
6119                 header->size += size;
6120         }
6121
6122         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6123                 data->phys_addr = perf_virt_to_phys(data->addr);
6124 }
6125
6126 static void __always_inline
6127 __perf_event_output(struct perf_event *event,
6128                     struct perf_sample_data *data,
6129                     struct pt_regs *regs,
6130                     int (*output_begin)(struct perf_output_handle *,
6131                                         struct perf_event *,
6132                                         unsigned int))
6133 {
6134         struct perf_output_handle handle;
6135         struct perf_event_header header;
6136
6137         /* protect the callchain buffers */
6138         rcu_read_lock();
6139
6140         perf_prepare_sample(&header, data, event, regs);
6141
6142         if (output_begin(&handle, event, header.size))
6143                 goto exit;
6144
6145         perf_output_sample(&handle, &header, data, event);
6146
6147         perf_output_end(&handle);
6148
6149 exit:
6150         rcu_read_unlock();
6151 }
6152
6153 void
6154 perf_event_output_forward(struct perf_event *event,
6155                          struct perf_sample_data *data,
6156                          struct pt_regs *regs)
6157 {
6158         __perf_event_output(event, data, regs, perf_output_begin_forward);
6159 }
6160
6161 void
6162 perf_event_output_backward(struct perf_event *event,
6163                            struct perf_sample_data *data,
6164                            struct pt_regs *regs)
6165 {
6166         __perf_event_output(event, data, regs, perf_output_begin_backward);
6167 }
6168
6169 void
6170 perf_event_output(struct perf_event *event,
6171                   struct perf_sample_data *data,
6172                   struct pt_regs *regs)
6173 {
6174         __perf_event_output(event, data, regs, perf_output_begin);
6175 }
6176
6177 /*
6178  * read event_id
6179  */
6180
6181 struct perf_read_event {
6182         struct perf_event_header        header;
6183
6184         u32                             pid;
6185         u32                             tid;
6186 };
6187
6188 static void
6189 perf_event_read_event(struct perf_event *event,
6190                         struct task_struct *task)
6191 {
6192         struct perf_output_handle handle;
6193         struct perf_sample_data sample;
6194         struct perf_read_event read_event = {
6195                 .header = {
6196                         .type = PERF_RECORD_READ,
6197                         .misc = 0,
6198                         .size = sizeof(read_event) + event->read_size,
6199                 },
6200                 .pid = perf_event_pid(event, task),
6201                 .tid = perf_event_tid(event, task),
6202         };
6203         int ret;
6204
6205         perf_event_header__init_id(&read_event.header, &sample, event);
6206         ret = perf_output_begin(&handle, event, read_event.header.size);
6207         if (ret)
6208                 return;
6209
6210         perf_output_put(&handle, read_event);
6211         perf_output_read(&handle, event);
6212         perf_event__output_id_sample(event, &handle, &sample);
6213
6214         perf_output_end(&handle);
6215 }
6216
6217 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6218
6219 static void
6220 perf_iterate_ctx(struct perf_event_context *ctx,
6221                    perf_iterate_f output,
6222                    void *data, bool all)
6223 {
6224         struct perf_event *event;
6225
6226         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6227                 if (!all) {
6228                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6229                                 continue;
6230                         if (!event_filter_match(event))
6231                                 continue;
6232                 }
6233
6234                 output(event, data);
6235         }
6236 }
6237
6238 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6239 {
6240         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6241         struct perf_event *event;
6242
6243         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6244                 /*
6245                  * Skip events that are not fully formed yet; ensure that
6246                  * if we observe event->ctx, both event and ctx will be
6247                  * complete enough. See perf_install_in_context().
6248                  */
6249                 if (!smp_load_acquire(&event->ctx))
6250                         continue;
6251
6252                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6253                         continue;
6254                 if (!event_filter_match(event))
6255                         continue;
6256                 output(event, data);
6257         }
6258 }
6259
6260 /*
6261  * Iterate all events that need to receive side-band events.
6262  *
6263  * For new callers; ensure that account_pmu_sb_event() includes
6264  * your event, otherwise it might not get delivered.
6265  */
6266 static void
6267 perf_iterate_sb(perf_iterate_f output, void *data,
6268                struct perf_event_context *task_ctx)
6269 {
6270         struct perf_event_context *ctx;
6271         int ctxn;
6272
6273         rcu_read_lock();
6274         preempt_disable();
6275
6276         /*
6277          * If we have task_ctx != NULL we only notify the task context itself.
6278          * The task_ctx is set only for EXIT events before releasing task
6279          * context.
6280          */
6281         if (task_ctx) {
6282                 perf_iterate_ctx(task_ctx, output, data, false);
6283                 goto done;
6284         }
6285
6286         perf_iterate_sb_cpu(output, data);
6287
6288         for_each_task_context_nr(ctxn) {
6289                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6290                 if (ctx)
6291                         perf_iterate_ctx(ctx, output, data, false);
6292         }
6293 done:
6294         preempt_enable();
6295         rcu_read_unlock();
6296 }
6297
6298 /*
6299  * Clear all file-based filters at exec, they'll have to be
6300  * re-instated when/if these objects are mmapped again.
6301  */
6302 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6303 {
6304         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6305         struct perf_addr_filter *filter;
6306         unsigned int restart = 0, count = 0;
6307         unsigned long flags;
6308
6309         if (!has_addr_filter(event))
6310                 return;
6311
6312         raw_spin_lock_irqsave(&ifh->lock, flags);
6313         list_for_each_entry(filter, &ifh->list, entry) {
6314                 if (filter->inode) {
6315                         event->addr_filters_offs[count] = 0;
6316                         restart++;
6317                 }
6318
6319                 count++;
6320         }
6321
6322         if (restart)
6323                 event->addr_filters_gen++;
6324         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6325
6326         if (restart)
6327                 perf_event_stop(event, 1);
6328 }
6329
6330 void perf_event_exec(void)
6331 {
6332         struct perf_event_context *ctx;
6333         int ctxn;
6334
6335         rcu_read_lock();
6336         for_each_task_context_nr(ctxn) {
6337                 ctx = current->perf_event_ctxp[ctxn];
6338                 if (!ctx)
6339                         continue;
6340
6341                 perf_event_enable_on_exec(ctxn);
6342
6343                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6344                                    true);
6345         }
6346         rcu_read_unlock();
6347 }
6348
6349 struct remote_output {
6350         struct ring_buffer      *rb;
6351         int                     err;
6352 };
6353
6354 static void __perf_event_output_stop(struct perf_event *event, void *data)
6355 {
6356         struct perf_event *parent = event->parent;
6357         struct remote_output *ro = data;
6358         struct ring_buffer *rb = ro->rb;
6359         struct stop_event_data sd = {
6360                 .event  = event,
6361         };
6362
6363         if (!has_aux(event))
6364                 return;
6365
6366         if (!parent)
6367                 parent = event;
6368
6369         /*
6370          * In case of inheritance, it will be the parent that links to the
6371          * ring-buffer, but it will be the child that's actually using it.
6372          *
6373          * We are using event::rb to determine if the event should be stopped,
6374          * however this may race with ring_buffer_attach() (through set_output),
6375          * which will make us skip the event that actually needs to be stopped.
6376          * So ring_buffer_attach() has to stop an aux event before re-assigning
6377          * its rb pointer.
6378          */
6379         if (rcu_dereference(parent->rb) == rb)
6380                 ro->err = __perf_event_stop(&sd);
6381 }
6382
6383 static int __perf_pmu_output_stop(void *info)
6384 {
6385         struct perf_event *event = info;
6386         struct pmu *pmu = event->pmu;
6387         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6388         struct remote_output ro = {
6389                 .rb     = event->rb,
6390         };
6391
6392         rcu_read_lock();
6393         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6394         if (cpuctx->task_ctx)
6395                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6396                                    &ro, false);
6397         rcu_read_unlock();
6398
6399         return ro.err;
6400 }
6401
6402 static void perf_pmu_output_stop(struct perf_event *event)
6403 {
6404         struct perf_event *iter;
6405         int err, cpu;
6406
6407 restart:
6408         rcu_read_lock();
6409         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6410                 /*
6411                  * For per-CPU events, we need to make sure that neither they
6412                  * nor their children are running; for cpu==-1 events it's
6413                  * sufficient to stop the event itself if it's active, since
6414                  * it can't have children.
6415                  */
6416                 cpu = iter->cpu;
6417                 if (cpu == -1)
6418                         cpu = READ_ONCE(iter->oncpu);
6419
6420                 if (cpu == -1)
6421                         continue;
6422
6423                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6424                 if (err == -EAGAIN) {
6425                         rcu_read_unlock();
6426                         goto restart;
6427                 }
6428         }
6429         rcu_read_unlock();
6430 }
6431
6432 /*
6433  * task tracking -- fork/exit
6434  *
6435  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6436  */
6437
6438 struct perf_task_event {
6439         struct task_struct              *task;
6440         struct perf_event_context       *task_ctx;
6441
6442         struct {
6443                 struct perf_event_header        header;
6444
6445                 u32                             pid;
6446                 u32                             ppid;
6447                 u32                             tid;
6448                 u32                             ptid;
6449                 u64                             time;
6450         } event_id;
6451 };
6452
6453 static int perf_event_task_match(struct perf_event *event)
6454 {
6455         return event->attr.comm  || event->attr.mmap ||
6456                event->attr.mmap2 || event->attr.mmap_data ||
6457                event->attr.task;
6458 }
6459
6460 static void perf_event_task_output(struct perf_event *event,
6461                                    void *data)
6462 {
6463         struct perf_task_event *task_event = data;
6464         struct perf_output_handle handle;
6465         struct perf_sample_data sample;
6466         struct task_struct *task = task_event->task;
6467         int ret, size = task_event->event_id.header.size;
6468
6469         if (!perf_event_task_match(event))
6470                 return;
6471
6472         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6473
6474         ret = perf_output_begin(&handle, event,
6475                                 task_event->event_id.header.size);
6476         if (ret)
6477                 goto out;
6478
6479         task_event->event_id.pid = perf_event_pid(event, task);
6480         task_event->event_id.ppid = perf_event_pid(event, current);
6481
6482         task_event->event_id.tid = perf_event_tid(event, task);
6483         task_event->event_id.ptid = perf_event_tid(event, current);
6484
6485         task_event->event_id.time = perf_event_clock(event);
6486
6487         perf_output_put(&handle, task_event->event_id);
6488
6489         perf_event__output_id_sample(event, &handle, &sample);
6490
6491         perf_output_end(&handle);
6492 out:
6493         task_event->event_id.header.size = size;
6494 }
6495
6496 static void perf_event_task(struct task_struct *task,
6497                               struct perf_event_context *task_ctx,
6498                               int new)
6499 {
6500         struct perf_task_event task_event;
6501
6502         if (!atomic_read(&nr_comm_events) &&
6503             !atomic_read(&nr_mmap_events) &&
6504             !atomic_read(&nr_task_events))
6505                 return;
6506
6507         task_event = (struct perf_task_event){
6508                 .task     = task,
6509                 .task_ctx = task_ctx,
6510                 .event_id    = {
6511                         .header = {
6512                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6513                                 .misc = 0,
6514                                 .size = sizeof(task_event.event_id),
6515                         },
6516                         /* .pid  */
6517                         /* .ppid */
6518                         /* .tid  */
6519                         /* .ptid */
6520                         /* .time */
6521                 },
6522         };
6523
6524         perf_iterate_sb(perf_event_task_output,
6525                        &task_event,
6526                        task_ctx);
6527 }
6528
6529 void perf_event_fork(struct task_struct *task)
6530 {
6531         perf_event_task(task, NULL, 1);
6532         perf_event_namespaces(task);
6533 }
6534
6535 /*
6536  * comm tracking
6537  */
6538
6539 struct perf_comm_event {
6540         struct task_struct      *task;
6541         char                    *comm;
6542         int                     comm_size;
6543
6544         struct {
6545                 struct perf_event_header        header;
6546
6547                 u32                             pid;
6548                 u32                             tid;
6549         } event_id;
6550 };
6551
6552 static int perf_event_comm_match(struct perf_event *event)
6553 {
6554         return event->attr.comm;
6555 }
6556
6557 static void perf_event_comm_output(struct perf_event *event,
6558                                    void *data)
6559 {
6560         struct perf_comm_event *comm_event = data;
6561         struct perf_output_handle handle;
6562         struct perf_sample_data sample;
6563         int size = comm_event->event_id.header.size;
6564         int ret;
6565
6566         if (!perf_event_comm_match(event))
6567                 return;
6568
6569         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6570         ret = perf_output_begin(&handle, event,
6571                                 comm_event->event_id.header.size);
6572
6573         if (ret)
6574                 goto out;
6575
6576         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6577         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6578
6579         perf_output_put(&handle, comm_event->event_id);
6580         __output_copy(&handle, comm_event->comm,
6581                                    comm_event->comm_size);
6582
6583         perf_event__output_id_sample(event, &handle, &sample);
6584
6585         perf_output_end(&handle);
6586 out:
6587         comm_event->event_id.header.size = size;
6588 }
6589
6590 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6591 {
6592         char comm[TASK_COMM_LEN];
6593         unsigned int size;
6594
6595         memset(comm, 0, sizeof(comm));
6596         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6597         size = ALIGN(strlen(comm)+1, sizeof(u64));
6598
6599         comm_event->comm = comm;
6600         comm_event->comm_size = size;
6601
6602         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6603
6604         perf_iterate_sb(perf_event_comm_output,
6605                        comm_event,
6606                        NULL);
6607 }
6608
6609 void perf_event_comm(struct task_struct *task, bool exec)
6610 {
6611         struct perf_comm_event comm_event;
6612
6613         if (!atomic_read(&nr_comm_events))
6614                 return;
6615
6616         comm_event = (struct perf_comm_event){
6617                 .task   = task,
6618                 /* .comm      */
6619                 /* .comm_size */
6620                 .event_id  = {
6621                         .header = {
6622                                 .type = PERF_RECORD_COMM,
6623                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6624                                 /* .size */
6625                         },
6626                         /* .pid */
6627                         /* .tid */
6628                 },
6629         };
6630
6631         perf_event_comm_event(&comm_event);
6632 }
6633
6634 /*
6635  * namespaces tracking
6636  */
6637
6638 struct perf_namespaces_event {
6639         struct task_struct              *task;
6640
6641         struct {
6642                 struct perf_event_header        header;
6643
6644                 u32                             pid;
6645                 u32                             tid;
6646                 u64                             nr_namespaces;
6647                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
6648         } event_id;
6649 };
6650
6651 static int perf_event_namespaces_match(struct perf_event *event)
6652 {
6653         return event->attr.namespaces;
6654 }
6655
6656 static void perf_event_namespaces_output(struct perf_event *event,
6657                                          void *data)
6658 {
6659         struct perf_namespaces_event *namespaces_event = data;
6660         struct perf_output_handle handle;
6661         struct perf_sample_data sample;
6662         u16 header_size = namespaces_event->event_id.header.size;
6663         int ret;
6664
6665         if (!perf_event_namespaces_match(event))
6666                 return;
6667
6668         perf_event_header__init_id(&namespaces_event->event_id.header,
6669                                    &sample, event);
6670         ret = perf_output_begin(&handle, event,
6671                                 namespaces_event->event_id.header.size);
6672         if (ret)
6673                 goto out;
6674
6675         namespaces_event->event_id.pid = perf_event_pid(event,
6676                                                         namespaces_event->task);
6677         namespaces_event->event_id.tid = perf_event_tid(event,
6678                                                         namespaces_event->task);
6679
6680         perf_output_put(&handle, namespaces_event->event_id);
6681
6682         perf_event__output_id_sample(event, &handle, &sample);
6683
6684         perf_output_end(&handle);
6685 out:
6686         namespaces_event->event_id.header.size = header_size;
6687 }
6688
6689 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6690                                    struct task_struct *task,
6691                                    const struct proc_ns_operations *ns_ops)
6692 {
6693         struct path ns_path;
6694         struct inode *ns_inode;
6695         void *error;
6696
6697         error = ns_get_path(&ns_path, task, ns_ops);
6698         if (!error) {
6699                 ns_inode = ns_path.dentry->d_inode;
6700                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6701                 ns_link_info->ino = ns_inode->i_ino;
6702                 path_put(&ns_path);
6703         }
6704 }
6705
6706 void perf_event_namespaces(struct task_struct *task)
6707 {
6708         struct perf_namespaces_event namespaces_event;
6709         struct perf_ns_link_info *ns_link_info;
6710
6711         if (!atomic_read(&nr_namespaces_events))
6712                 return;
6713
6714         namespaces_event = (struct perf_namespaces_event){
6715                 .task   = task,
6716                 .event_id  = {
6717                         .header = {
6718                                 .type = PERF_RECORD_NAMESPACES,
6719                                 .misc = 0,
6720                                 .size = sizeof(namespaces_event.event_id),
6721                         },
6722                         /* .pid */
6723                         /* .tid */
6724                         .nr_namespaces = NR_NAMESPACES,
6725                         /* .link_info[NR_NAMESPACES] */
6726                 },
6727         };
6728
6729         ns_link_info = namespaces_event.event_id.link_info;
6730
6731         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6732                                task, &mntns_operations);
6733
6734 #ifdef CONFIG_USER_NS
6735         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6736                                task, &userns_operations);
6737 #endif
6738 #ifdef CONFIG_NET_NS
6739         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6740                                task, &netns_operations);
6741 #endif
6742 #ifdef CONFIG_UTS_NS
6743         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6744                                task, &utsns_operations);
6745 #endif
6746 #ifdef CONFIG_IPC_NS
6747         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6748                                task, &ipcns_operations);
6749 #endif
6750 #ifdef CONFIG_PID_NS
6751         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6752                                task, &pidns_operations);
6753 #endif
6754 #ifdef CONFIG_CGROUPS
6755         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6756                                task, &cgroupns_operations);
6757 #endif
6758
6759         perf_iterate_sb(perf_event_namespaces_output,
6760                         &namespaces_event,
6761                         NULL);
6762 }
6763
6764 /*
6765  * mmap tracking
6766  */
6767
6768 struct perf_mmap_event {
6769         struct vm_area_struct   *vma;
6770
6771         const char              *file_name;
6772         int                     file_size;
6773         int                     maj, min;
6774         u64                     ino;
6775         u64                     ino_generation;
6776         u32                     prot, flags;
6777
6778         struct {
6779                 struct perf_event_header        header;
6780
6781                 u32                             pid;
6782                 u32                             tid;
6783                 u64                             start;
6784                 u64                             len;
6785                 u64                             pgoff;
6786         } event_id;
6787 };
6788
6789 static int perf_event_mmap_match(struct perf_event *event,
6790                                  void *data)
6791 {
6792         struct perf_mmap_event *mmap_event = data;
6793         struct vm_area_struct *vma = mmap_event->vma;
6794         int executable = vma->vm_flags & VM_EXEC;
6795
6796         return (!executable && event->attr.mmap_data) ||
6797                (executable && (event->attr.mmap || event->attr.mmap2));
6798 }
6799
6800 static void perf_event_mmap_output(struct perf_event *event,
6801                                    void *data)
6802 {
6803         struct perf_mmap_event *mmap_event = data;
6804         struct perf_output_handle handle;
6805         struct perf_sample_data sample;
6806         int size = mmap_event->event_id.header.size;
6807         int ret;
6808
6809         if (!perf_event_mmap_match(event, data))
6810                 return;
6811
6812         if (event->attr.mmap2) {
6813                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6814                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6815                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6816                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6817                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6818                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6819                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6820         }
6821
6822         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6823         ret = perf_output_begin(&handle, event,
6824                                 mmap_event->event_id.header.size);
6825         if (ret)
6826                 goto out;
6827
6828         mmap_event->event_id.pid = perf_event_pid(event, current);
6829         mmap_event->event_id.tid = perf_event_tid(event, current);
6830
6831         perf_output_put(&handle, mmap_event->event_id);
6832
6833         if (event->attr.mmap2) {
6834                 perf_output_put(&handle, mmap_event->maj);
6835                 perf_output_put(&handle, mmap_event->min);
6836                 perf_output_put(&handle, mmap_event->ino);
6837                 perf_output_put(&handle, mmap_event->ino_generation);
6838                 perf_output_put(&handle, mmap_event->prot);
6839                 perf_output_put(&handle, mmap_event->flags);
6840         }
6841
6842         __output_copy(&handle, mmap_event->file_name,
6843                                    mmap_event->file_size);
6844
6845         perf_event__output_id_sample(event, &handle, &sample);
6846
6847         perf_output_end(&handle);
6848 out:
6849         mmap_event->event_id.header.size = size;
6850 }
6851
6852 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6853 {
6854         struct vm_area_struct *vma = mmap_event->vma;
6855         struct file *file = vma->vm_file;
6856         int maj = 0, min = 0;
6857         u64 ino = 0, gen = 0;
6858         u32 prot = 0, flags = 0;
6859         unsigned int size;
6860         char tmp[16];
6861         char *buf = NULL;
6862         char *name;
6863
6864         if (vma->vm_flags & VM_READ)
6865                 prot |= PROT_READ;
6866         if (vma->vm_flags & VM_WRITE)
6867                 prot |= PROT_WRITE;
6868         if (vma->vm_flags & VM_EXEC)
6869                 prot |= PROT_EXEC;
6870
6871         if (vma->vm_flags & VM_MAYSHARE)
6872                 flags = MAP_SHARED;
6873         else
6874                 flags = MAP_PRIVATE;
6875
6876         if (vma->vm_flags & VM_DENYWRITE)
6877                 flags |= MAP_DENYWRITE;
6878         if (vma->vm_flags & VM_MAYEXEC)
6879                 flags |= MAP_EXECUTABLE;
6880         if (vma->vm_flags & VM_LOCKED)
6881                 flags |= MAP_LOCKED;
6882         if (vma->vm_flags & VM_HUGETLB)
6883                 flags |= MAP_HUGETLB;
6884
6885         if (file) {
6886                 struct inode *inode;
6887                 dev_t dev;
6888
6889                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6890                 if (!buf) {
6891                         name = "//enomem";
6892                         goto cpy_name;
6893                 }
6894                 /*
6895                  * d_path() works from the end of the rb backwards, so we
6896                  * need to add enough zero bytes after the string to handle
6897                  * the 64bit alignment we do later.
6898                  */
6899                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6900                 if (IS_ERR(name)) {
6901                         name = "//toolong";
6902                         goto cpy_name;
6903                 }
6904                 inode = file_inode(vma->vm_file);
6905                 dev = inode->i_sb->s_dev;
6906                 ino = inode->i_ino;
6907                 gen = inode->i_generation;
6908                 maj = MAJOR(dev);
6909                 min = MINOR(dev);
6910
6911                 goto got_name;
6912         } else {
6913                 if (vma->vm_ops && vma->vm_ops->name) {
6914                         name = (char *) vma->vm_ops->name(vma);
6915                         if (name)
6916                                 goto cpy_name;
6917                 }
6918
6919                 name = (char *)arch_vma_name(vma);
6920                 if (name)
6921                         goto cpy_name;
6922
6923                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6924                                 vma->vm_end >= vma->vm_mm->brk) {
6925                         name = "[heap]";
6926                         goto cpy_name;
6927                 }
6928                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6929                                 vma->vm_end >= vma->vm_mm->start_stack) {
6930                         name = "[stack]";
6931                         goto cpy_name;
6932                 }
6933
6934                 name = "//anon";
6935                 goto cpy_name;
6936         }
6937
6938 cpy_name:
6939         strlcpy(tmp, name, sizeof(tmp));
6940         name = tmp;
6941 got_name:
6942         /*
6943          * Since our buffer works in 8 byte units we need to align our string
6944          * size to a multiple of 8. However, we must guarantee the tail end is
6945          * zero'd out to avoid leaking random bits to userspace.
6946          */
6947         size = strlen(name)+1;
6948         while (!IS_ALIGNED(size, sizeof(u64)))
6949                 name[size++] = '\0';
6950
6951         mmap_event->file_name = name;
6952         mmap_event->file_size = size;
6953         mmap_event->maj = maj;
6954         mmap_event->min = min;
6955         mmap_event->ino = ino;
6956         mmap_event->ino_generation = gen;
6957         mmap_event->prot = prot;
6958         mmap_event->flags = flags;
6959
6960         if (!(vma->vm_flags & VM_EXEC))
6961                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6962
6963         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6964
6965         perf_iterate_sb(perf_event_mmap_output,
6966                        mmap_event,
6967                        NULL);
6968
6969         kfree(buf);
6970 }
6971
6972 /*
6973  * Check whether inode and address range match filter criteria.
6974  */
6975 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6976                                      struct file *file, unsigned long offset,
6977                                      unsigned long size)
6978 {
6979         if (filter->inode != file_inode(file))
6980                 return false;
6981
6982         if (filter->offset > offset + size)
6983                 return false;
6984
6985         if (filter->offset + filter->size < offset)
6986                 return false;
6987
6988         return true;
6989 }
6990
6991 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6992 {
6993         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6994         struct vm_area_struct *vma = data;
6995         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6996         struct file *file = vma->vm_file;
6997         struct perf_addr_filter *filter;
6998         unsigned int restart = 0, count = 0;
6999
7000         if (!has_addr_filter(event))
7001                 return;
7002
7003         if (!file)
7004                 return;
7005
7006         raw_spin_lock_irqsave(&ifh->lock, flags);
7007         list_for_each_entry(filter, &ifh->list, entry) {
7008                 if (perf_addr_filter_match(filter, file, off,
7009                                              vma->vm_end - vma->vm_start)) {
7010                         event->addr_filters_offs[count] = vma->vm_start;
7011                         restart++;
7012                 }
7013
7014                 count++;
7015         }
7016
7017         if (restart)
7018                 event->addr_filters_gen++;
7019         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7020
7021         if (restart)
7022                 perf_event_stop(event, 1);
7023 }
7024
7025 /*
7026  * Adjust all task's events' filters to the new vma
7027  */
7028 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7029 {
7030         struct perf_event_context *ctx;
7031         int ctxn;
7032
7033         /*
7034          * Data tracing isn't supported yet and as such there is no need
7035          * to keep track of anything that isn't related to executable code:
7036          */
7037         if (!(vma->vm_flags & VM_EXEC))
7038                 return;
7039
7040         rcu_read_lock();
7041         for_each_task_context_nr(ctxn) {
7042                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7043                 if (!ctx)
7044                         continue;
7045
7046                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7047         }
7048         rcu_read_unlock();
7049 }
7050
7051 void perf_event_mmap(struct vm_area_struct *vma)
7052 {
7053         struct perf_mmap_event mmap_event;
7054
7055         if (!atomic_read(&nr_mmap_events))
7056                 return;
7057
7058         mmap_event = (struct perf_mmap_event){
7059                 .vma    = vma,
7060                 /* .file_name */
7061                 /* .file_size */
7062                 .event_id  = {
7063                         .header = {
7064                                 .type = PERF_RECORD_MMAP,
7065                                 .misc = PERF_RECORD_MISC_USER,
7066                                 /* .size */
7067                         },
7068                         /* .pid */
7069                         /* .tid */
7070                         .start  = vma->vm_start,
7071                         .len    = vma->vm_end - vma->vm_start,
7072                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7073                 },
7074                 /* .maj (attr_mmap2 only) */
7075                 /* .min (attr_mmap2 only) */
7076                 /* .ino (attr_mmap2 only) */
7077                 /* .ino_generation (attr_mmap2 only) */
7078                 /* .prot (attr_mmap2 only) */
7079                 /* .flags (attr_mmap2 only) */
7080         };
7081
7082         perf_addr_filters_adjust(vma);
7083         perf_event_mmap_event(&mmap_event);
7084 }
7085
7086 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7087                           unsigned long size, u64 flags)
7088 {
7089         struct perf_output_handle handle;
7090         struct perf_sample_data sample;
7091         struct perf_aux_event {
7092                 struct perf_event_header        header;
7093                 u64                             offset;
7094                 u64                             size;
7095                 u64                             flags;
7096         } rec = {
7097                 .header = {
7098                         .type = PERF_RECORD_AUX,
7099                         .misc = 0,
7100                         .size = sizeof(rec),
7101                 },
7102                 .offset         = head,
7103                 .size           = size,
7104                 .flags          = flags,
7105         };
7106         int ret;
7107
7108         perf_event_header__init_id(&rec.header, &sample, event);
7109         ret = perf_output_begin(&handle, event, rec.header.size);
7110
7111         if (ret)
7112                 return;
7113
7114         perf_output_put(&handle, rec);
7115         perf_event__output_id_sample(event, &handle, &sample);
7116
7117         perf_output_end(&handle);
7118 }
7119
7120 /*
7121  * Lost/dropped samples logging
7122  */
7123 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7124 {
7125         struct perf_output_handle handle;
7126         struct perf_sample_data sample;
7127         int ret;
7128
7129         struct {
7130                 struct perf_event_header        header;
7131                 u64                             lost;
7132         } lost_samples_event = {
7133                 .header = {
7134                         .type = PERF_RECORD_LOST_SAMPLES,
7135                         .misc = 0,
7136                         .size = sizeof(lost_samples_event),
7137                 },
7138                 .lost           = lost,
7139         };
7140
7141         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7142
7143         ret = perf_output_begin(&handle, event,
7144                                 lost_samples_event.header.size);
7145         if (ret)
7146                 return;
7147
7148         perf_output_put(&handle, lost_samples_event);
7149         perf_event__output_id_sample(event, &handle, &sample);
7150         perf_output_end(&handle);
7151 }
7152
7153 /*
7154  * context_switch tracking
7155  */
7156
7157 struct perf_switch_event {
7158         struct task_struct      *task;
7159         struct task_struct      *next_prev;
7160
7161         struct {
7162                 struct perf_event_header        header;
7163                 u32                             next_prev_pid;
7164                 u32                             next_prev_tid;
7165         } event_id;
7166 };
7167
7168 static int perf_event_switch_match(struct perf_event *event)
7169 {
7170         return event->attr.context_switch;
7171 }
7172
7173 static void perf_event_switch_output(struct perf_event *event, void *data)
7174 {
7175         struct perf_switch_event *se = data;
7176         struct perf_output_handle handle;
7177         struct perf_sample_data sample;
7178         int ret;
7179
7180         if (!perf_event_switch_match(event))
7181                 return;
7182
7183         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7184         if (event->ctx->task) {
7185                 se->event_id.header.type = PERF_RECORD_SWITCH;
7186                 se->event_id.header.size = sizeof(se->event_id.header);
7187         } else {
7188                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7189                 se->event_id.header.size = sizeof(se->event_id);
7190                 se->event_id.next_prev_pid =
7191                                         perf_event_pid(event, se->next_prev);
7192                 se->event_id.next_prev_tid =
7193                                         perf_event_tid(event, se->next_prev);
7194         }
7195
7196         perf_event_header__init_id(&se->event_id.header, &sample, event);
7197
7198         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7199         if (ret)
7200                 return;
7201
7202         if (event->ctx->task)
7203                 perf_output_put(&handle, se->event_id.header);
7204         else
7205                 perf_output_put(&handle, se->event_id);
7206
7207         perf_event__output_id_sample(event, &handle, &sample);
7208
7209         perf_output_end(&handle);
7210 }
7211
7212 static void perf_event_switch(struct task_struct *task,
7213                               struct task_struct *next_prev, bool sched_in)
7214 {
7215         struct perf_switch_event switch_event;
7216
7217         /* N.B. caller checks nr_switch_events != 0 */
7218
7219         switch_event = (struct perf_switch_event){
7220                 .task           = task,
7221                 .next_prev      = next_prev,
7222                 .event_id       = {
7223                         .header = {
7224                                 /* .type */
7225                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7226                                 /* .size */
7227                         },
7228                         /* .next_prev_pid */
7229                         /* .next_prev_tid */
7230                 },
7231         };
7232
7233         perf_iterate_sb(perf_event_switch_output,
7234                        &switch_event,
7235                        NULL);
7236 }
7237
7238 /*
7239  * IRQ throttle logging
7240  */
7241
7242 static void perf_log_throttle(struct perf_event *event, int enable)
7243 {
7244         struct perf_output_handle handle;
7245         struct perf_sample_data sample;
7246         int ret;
7247
7248         struct {
7249                 struct perf_event_header        header;
7250                 u64                             time;
7251                 u64                             id;
7252                 u64                             stream_id;
7253         } throttle_event = {
7254                 .header = {
7255                         .type = PERF_RECORD_THROTTLE,
7256                         .misc = 0,
7257                         .size = sizeof(throttle_event),
7258                 },
7259                 .time           = perf_event_clock(event),
7260                 .id             = primary_event_id(event),
7261                 .stream_id      = event->id,
7262         };
7263
7264         if (enable)
7265                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7266
7267         perf_event_header__init_id(&throttle_event.header, &sample, event);
7268
7269         ret = perf_output_begin(&handle, event,
7270                                 throttle_event.header.size);
7271         if (ret)
7272                 return;
7273
7274         perf_output_put(&handle, throttle_event);
7275         perf_event__output_id_sample(event, &handle, &sample);
7276         perf_output_end(&handle);
7277 }
7278
7279 void perf_event_itrace_started(struct perf_event *event)
7280 {
7281         event->attach_state |= PERF_ATTACH_ITRACE;
7282 }
7283
7284 static void perf_log_itrace_start(struct perf_event *event)
7285 {
7286         struct perf_output_handle handle;
7287         struct perf_sample_data sample;
7288         struct perf_aux_event {
7289                 struct perf_event_header        header;
7290                 u32                             pid;
7291                 u32                             tid;
7292         } rec;
7293         int ret;
7294
7295         if (event->parent)
7296                 event = event->parent;
7297
7298         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7299             event->attach_state & PERF_ATTACH_ITRACE)
7300                 return;
7301
7302         rec.header.type = PERF_RECORD_ITRACE_START;
7303         rec.header.misc = 0;
7304         rec.header.size = sizeof(rec);
7305         rec.pid = perf_event_pid(event, current);
7306         rec.tid = perf_event_tid(event, current);
7307
7308         perf_event_header__init_id(&rec.header, &sample, event);
7309         ret = perf_output_begin(&handle, event, rec.header.size);
7310
7311         if (ret)
7312                 return;
7313
7314         perf_output_put(&handle, rec);
7315         perf_event__output_id_sample(event, &handle, &sample);
7316
7317         perf_output_end(&handle);
7318 }
7319
7320 static int
7321 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7322 {
7323         struct hw_perf_event *hwc = &event->hw;
7324         int ret = 0;
7325         u64 seq;
7326
7327         seq = __this_cpu_read(perf_throttled_seq);
7328         if (seq != hwc->interrupts_seq) {
7329                 hwc->interrupts_seq = seq;
7330                 hwc->interrupts = 1;
7331         } else {
7332                 hwc->interrupts++;
7333                 if (unlikely(throttle
7334                              && hwc->interrupts >= max_samples_per_tick)) {
7335                         __this_cpu_inc(perf_throttled_count);
7336                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7337                         hwc->interrupts = MAX_INTERRUPTS;
7338                         perf_log_throttle(event, 0);
7339                         ret = 1;
7340                 }
7341         }
7342
7343         if (event->attr.freq) {
7344                 u64 now = perf_clock();
7345                 s64 delta = now - hwc->freq_time_stamp;
7346
7347                 hwc->freq_time_stamp = now;
7348
7349                 if (delta > 0 && delta < 2*TICK_NSEC)
7350                         perf_adjust_period(event, delta, hwc->last_period, true);
7351         }
7352
7353         return ret;
7354 }
7355
7356 int perf_event_account_interrupt(struct perf_event *event)
7357 {
7358         return __perf_event_account_interrupt(event, 1);
7359 }
7360
7361 /*
7362  * Generic event overflow handling, sampling.
7363  */
7364
7365 static int __perf_event_overflow(struct perf_event *event,
7366                                    int throttle, struct perf_sample_data *data,
7367                                    struct pt_regs *regs)
7368 {
7369         int events = atomic_read(&event->event_limit);
7370         int ret = 0;
7371
7372         /*
7373          * Non-sampling counters might still use the PMI to fold short
7374          * hardware counters, ignore those.
7375          */
7376         if (unlikely(!is_sampling_event(event)))
7377                 return 0;
7378
7379         ret = __perf_event_account_interrupt(event, throttle);
7380
7381         /*
7382          * XXX event_limit might not quite work as expected on inherited
7383          * events
7384          */
7385
7386         event->pending_kill = POLL_IN;
7387         if (events && atomic_dec_and_test(&event->event_limit)) {
7388                 ret = 1;
7389                 event->pending_kill = POLL_HUP;
7390
7391                 perf_event_disable_inatomic(event);
7392         }
7393
7394         READ_ONCE(event->overflow_handler)(event, data, regs);
7395
7396         if (*perf_event_fasync(event) && event->pending_kill) {
7397                 event->pending_wakeup = 1;
7398                 irq_work_queue(&event->pending);
7399         }
7400
7401         return ret;
7402 }
7403
7404 int perf_event_overflow(struct perf_event *event,
7405                           struct perf_sample_data *data,
7406                           struct pt_regs *regs)
7407 {
7408         return __perf_event_overflow(event, 1, data, regs);
7409 }
7410
7411 /*
7412  * Generic software event infrastructure
7413  */
7414
7415 struct swevent_htable {
7416         struct swevent_hlist            *swevent_hlist;
7417         struct mutex                    hlist_mutex;
7418         int                             hlist_refcount;
7419
7420         /* Recursion avoidance in each contexts */
7421         int                             recursion[PERF_NR_CONTEXTS];
7422 };
7423
7424 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7425
7426 /*
7427  * We directly increment event->count and keep a second value in
7428  * event->hw.period_left to count intervals. This period event
7429  * is kept in the range [-sample_period, 0] so that we can use the
7430  * sign as trigger.
7431  */
7432
7433 u64 perf_swevent_set_period(struct perf_event *event)
7434 {
7435         struct hw_perf_event *hwc = &event->hw;
7436         u64 period = hwc->last_period;
7437         u64 nr, offset;
7438         s64 old, val;
7439
7440         hwc->last_period = hwc->sample_period;
7441
7442 again:
7443         old = val = local64_read(&hwc->period_left);
7444         if (val < 0)
7445                 return 0;
7446
7447         nr = div64_u64(period + val, period);
7448         offset = nr * period;
7449         val -= offset;
7450         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7451                 goto again;
7452
7453         return nr;
7454 }
7455
7456 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7457                                     struct perf_sample_data *data,
7458                                     struct pt_regs *regs)
7459 {
7460         struct hw_perf_event *hwc = &event->hw;
7461         int throttle = 0;
7462
7463         if (!overflow)
7464                 overflow = perf_swevent_set_period(event);
7465
7466         if (hwc->interrupts == MAX_INTERRUPTS)
7467                 return;
7468
7469         for (; overflow; overflow--) {
7470                 if (__perf_event_overflow(event, throttle,
7471                                             data, regs)) {
7472                         /*
7473                          * We inhibit the overflow from happening when
7474                          * hwc->interrupts == MAX_INTERRUPTS.
7475                          */
7476                         break;
7477                 }
7478                 throttle = 1;
7479         }
7480 }
7481
7482 static void perf_swevent_event(struct perf_event *event, u64 nr,
7483                                struct perf_sample_data *data,
7484                                struct pt_regs *regs)
7485 {
7486         struct hw_perf_event *hwc = &event->hw;
7487
7488         local64_add(nr, &event->count);
7489
7490         if (!regs)
7491                 return;
7492
7493         if (!is_sampling_event(event))
7494                 return;
7495
7496         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7497                 data->period = nr;
7498                 return perf_swevent_overflow(event, 1, data, regs);
7499         } else
7500                 data->period = event->hw.last_period;
7501
7502         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7503                 return perf_swevent_overflow(event, 1, data, regs);
7504
7505         if (local64_add_negative(nr, &hwc->period_left))
7506                 return;
7507
7508         perf_swevent_overflow(event, 0, data, regs);
7509 }
7510
7511 static int perf_exclude_event(struct perf_event *event,
7512                               struct pt_regs *regs)
7513 {
7514         if (event->hw.state & PERF_HES_STOPPED)
7515                 return 1;
7516
7517         if (regs) {
7518                 if (event->attr.exclude_user && user_mode(regs))
7519                         return 1;
7520
7521                 if (event->attr.exclude_kernel && !user_mode(regs))
7522                         return 1;
7523         }
7524
7525         return 0;
7526 }
7527
7528 static int perf_swevent_match(struct perf_event *event,
7529                                 enum perf_type_id type,
7530                                 u32 event_id,
7531                                 struct perf_sample_data *data,
7532                                 struct pt_regs *regs)
7533 {
7534         if (event->attr.type != type)
7535                 return 0;
7536
7537         if (event->attr.config != event_id)
7538                 return 0;
7539
7540         if (perf_exclude_event(event, regs))
7541                 return 0;
7542
7543         return 1;
7544 }
7545
7546 static inline u64 swevent_hash(u64 type, u32 event_id)
7547 {
7548         u64 val = event_id | (type << 32);
7549
7550         return hash_64(val, SWEVENT_HLIST_BITS);
7551 }
7552
7553 static inline struct hlist_head *
7554 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7555 {
7556         u64 hash = swevent_hash(type, event_id);
7557
7558         return &hlist->heads[hash];
7559 }
7560
7561 /* For the read side: events when they trigger */
7562 static inline struct hlist_head *
7563 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7564 {
7565         struct swevent_hlist *hlist;
7566
7567         hlist = rcu_dereference(swhash->swevent_hlist);
7568         if (!hlist)
7569                 return NULL;
7570
7571         return __find_swevent_head(hlist, type, event_id);
7572 }
7573
7574 /* For the event head insertion and removal in the hlist */
7575 static inline struct hlist_head *
7576 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7577 {
7578         struct swevent_hlist *hlist;
7579         u32 event_id = event->attr.config;
7580         u64 type = event->attr.type;
7581
7582         /*
7583          * Event scheduling is always serialized against hlist allocation
7584          * and release. Which makes the protected version suitable here.
7585          * The context lock guarantees that.
7586          */
7587         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7588                                           lockdep_is_held(&event->ctx->lock));
7589         if (!hlist)
7590                 return NULL;
7591
7592         return __find_swevent_head(hlist, type, event_id);
7593 }
7594
7595 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7596                                     u64 nr,
7597                                     struct perf_sample_data *data,
7598                                     struct pt_regs *regs)
7599 {
7600         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7601         struct perf_event *event;
7602         struct hlist_head *head;
7603
7604         rcu_read_lock();
7605         head = find_swevent_head_rcu(swhash, type, event_id);
7606         if (!head)
7607                 goto end;
7608
7609         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7610                 if (perf_swevent_match(event, type, event_id, data, regs))
7611                         perf_swevent_event(event, nr, data, regs);
7612         }
7613 end:
7614         rcu_read_unlock();
7615 }
7616
7617 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7618
7619 int perf_swevent_get_recursion_context(void)
7620 {
7621         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7622
7623         return get_recursion_context(swhash->recursion);
7624 }
7625 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7626
7627 void perf_swevent_put_recursion_context(int rctx)
7628 {
7629         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7630
7631         put_recursion_context(swhash->recursion, rctx);
7632 }
7633
7634 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7635 {
7636         struct perf_sample_data data;
7637
7638         if (WARN_ON_ONCE(!regs))
7639                 return;
7640
7641         perf_sample_data_init(&data, addr, 0);
7642         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7643 }
7644
7645 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7646 {
7647         int rctx;
7648
7649         preempt_disable_notrace();
7650         rctx = perf_swevent_get_recursion_context();
7651         if (unlikely(rctx < 0))
7652                 goto fail;
7653
7654         ___perf_sw_event(event_id, nr, regs, addr);
7655
7656         perf_swevent_put_recursion_context(rctx);
7657 fail:
7658         preempt_enable_notrace();
7659 }
7660
7661 static void perf_swevent_read(struct perf_event *event)
7662 {
7663 }
7664
7665 static int perf_swevent_add(struct perf_event *event, int flags)
7666 {
7667         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7668         struct hw_perf_event *hwc = &event->hw;
7669         struct hlist_head *head;
7670
7671         if (is_sampling_event(event)) {
7672                 hwc->last_period = hwc->sample_period;
7673                 perf_swevent_set_period(event);
7674         }
7675
7676         hwc->state = !(flags & PERF_EF_START);
7677
7678         head = find_swevent_head(swhash, event);
7679         if (WARN_ON_ONCE(!head))
7680                 return -EINVAL;
7681
7682         hlist_add_head_rcu(&event->hlist_entry, head);
7683         perf_event_update_userpage(event);
7684
7685         return 0;
7686 }
7687
7688 static void perf_swevent_del(struct perf_event *event, int flags)
7689 {
7690         hlist_del_rcu(&event->hlist_entry);
7691 }
7692
7693 static void perf_swevent_start(struct perf_event *event, int flags)
7694 {
7695         event->hw.state = 0;
7696 }
7697
7698 static void perf_swevent_stop(struct perf_event *event, int flags)
7699 {
7700         event->hw.state = PERF_HES_STOPPED;
7701 }
7702
7703 /* Deref the hlist from the update side */
7704 static inline struct swevent_hlist *
7705 swevent_hlist_deref(struct swevent_htable *swhash)
7706 {
7707         return rcu_dereference_protected(swhash->swevent_hlist,
7708                                          lockdep_is_held(&swhash->hlist_mutex));
7709 }
7710
7711 static void swevent_hlist_release(struct swevent_htable *swhash)
7712 {
7713         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7714
7715         if (!hlist)
7716                 return;
7717
7718         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7719         kfree_rcu(hlist, rcu_head);
7720 }
7721
7722 static void swevent_hlist_put_cpu(int cpu)
7723 {
7724         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7725
7726         mutex_lock(&swhash->hlist_mutex);
7727
7728         if (!--swhash->hlist_refcount)
7729                 swevent_hlist_release(swhash);
7730
7731         mutex_unlock(&swhash->hlist_mutex);
7732 }
7733
7734 static void swevent_hlist_put(void)
7735 {
7736         int cpu;
7737
7738         for_each_possible_cpu(cpu)
7739                 swevent_hlist_put_cpu(cpu);
7740 }
7741
7742 static int swevent_hlist_get_cpu(int cpu)
7743 {
7744         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7745         int err = 0;
7746
7747         mutex_lock(&swhash->hlist_mutex);
7748         if (!swevent_hlist_deref(swhash) &&
7749             cpumask_test_cpu(cpu, perf_online_mask)) {
7750                 struct swevent_hlist *hlist;
7751
7752                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7753                 if (!hlist) {
7754                         err = -ENOMEM;
7755                         goto exit;
7756                 }
7757                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7758         }
7759         swhash->hlist_refcount++;
7760 exit:
7761         mutex_unlock(&swhash->hlist_mutex);
7762
7763         return err;
7764 }
7765
7766 static int swevent_hlist_get(void)
7767 {
7768         int err, cpu, failed_cpu;
7769
7770         mutex_lock(&pmus_lock);
7771         for_each_possible_cpu(cpu) {
7772                 err = swevent_hlist_get_cpu(cpu);
7773                 if (err) {
7774                         failed_cpu = cpu;
7775                         goto fail;
7776                 }
7777         }
7778         mutex_unlock(&pmus_lock);
7779         return 0;
7780 fail:
7781         for_each_possible_cpu(cpu) {
7782                 if (cpu == failed_cpu)
7783                         break;
7784                 swevent_hlist_put_cpu(cpu);
7785         }
7786         mutex_unlock(&pmus_lock);
7787         return err;
7788 }
7789
7790 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7791
7792 static void sw_perf_event_destroy(struct perf_event *event)
7793 {
7794         u64 event_id = event->attr.config;
7795
7796         WARN_ON(event->parent);
7797
7798         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7799         swevent_hlist_put();
7800 }
7801
7802 static int perf_swevent_init(struct perf_event *event)
7803 {
7804         u64 event_id = event->attr.config;
7805
7806         if (event->attr.type != PERF_TYPE_SOFTWARE)
7807                 return -ENOENT;
7808
7809         /*
7810          * no branch sampling for software events
7811          */
7812         if (has_branch_stack(event))
7813                 return -EOPNOTSUPP;
7814
7815         switch (event_id) {
7816         case PERF_COUNT_SW_CPU_CLOCK:
7817         case PERF_COUNT_SW_TASK_CLOCK:
7818                 return -ENOENT;
7819
7820         default:
7821                 break;
7822         }
7823
7824         if (event_id >= PERF_COUNT_SW_MAX)
7825                 return -ENOENT;
7826
7827         if (!event->parent) {
7828                 int err;
7829
7830                 err = swevent_hlist_get();
7831                 if (err)
7832                         return err;
7833
7834                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7835                 event->destroy = sw_perf_event_destroy;
7836         }
7837
7838         return 0;
7839 }
7840
7841 static struct pmu perf_swevent = {
7842         .task_ctx_nr    = perf_sw_context,
7843
7844         .capabilities   = PERF_PMU_CAP_NO_NMI,
7845
7846         .event_init     = perf_swevent_init,
7847         .add            = perf_swevent_add,
7848         .del            = perf_swevent_del,
7849         .start          = perf_swevent_start,
7850         .stop           = perf_swevent_stop,
7851         .read           = perf_swevent_read,
7852 };
7853
7854 #ifdef CONFIG_EVENT_TRACING
7855
7856 static int perf_tp_filter_match(struct perf_event *event,
7857                                 struct perf_sample_data *data)
7858 {
7859         void *record = data->raw->frag.data;
7860
7861         /* only top level events have filters set */
7862         if (event->parent)
7863                 event = event->parent;
7864
7865         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7866                 return 1;
7867         return 0;
7868 }
7869
7870 static int perf_tp_event_match(struct perf_event *event,
7871                                 struct perf_sample_data *data,
7872                                 struct pt_regs *regs)
7873 {
7874         if (event->hw.state & PERF_HES_STOPPED)
7875                 return 0;
7876         /*
7877          * All tracepoints are from kernel-space.
7878          */
7879         if (event->attr.exclude_kernel)
7880                 return 0;
7881
7882         if (!perf_tp_filter_match(event, data))
7883                 return 0;
7884
7885         return 1;
7886 }
7887
7888 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7889                                struct trace_event_call *call, u64 count,
7890                                struct pt_regs *regs, struct hlist_head *head,
7891                                struct task_struct *task)
7892 {
7893         if (bpf_prog_array_valid(call)) {
7894                 *(struct pt_regs **)raw_data = regs;
7895                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7896                         perf_swevent_put_recursion_context(rctx);
7897                         return;
7898                 }
7899         }
7900         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7901                       rctx, task);
7902 }
7903 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7904
7905 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7906                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7907                    struct task_struct *task)
7908 {
7909         struct perf_sample_data data;
7910         struct perf_event *event;
7911
7912         struct perf_raw_record raw = {
7913                 .frag = {
7914                         .size = entry_size,
7915                         .data = record,
7916                 },
7917         };
7918
7919         perf_sample_data_init(&data, 0, 0);
7920         data.raw = &raw;
7921
7922         perf_trace_buf_update(record, event_type);
7923
7924         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7925                 if (perf_tp_event_match(event, &data, regs))
7926                         perf_swevent_event(event, count, &data, regs);
7927         }
7928
7929         /*
7930          * If we got specified a target task, also iterate its context and
7931          * deliver this event there too.
7932          */
7933         if (task && task != current) {
7934                 struct perf_event_context *ctx;
7935                 struct trace_entry *entry = record;
7936
7937                 rcu_read_lock();
7938                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7939                 if (!ctx)
7940                         goto unlock;
7941
7942                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7943                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7944                                 continue;
7945                         if (event->attr.config != entry->type)
7946                                 continue;
7947                         if (perf_tp_event_match(event, &data, regs))
7948                                 perf_swevent_event(event, count, &data, regs);
7949                 }
7950 unlock:
7951                 rcu_read_unlock();
7952         }
7953
7954         perf_swevent_put_recursion_context(rctx);
7955 }
7956 EXPORT_SYMBOL_GPL(perf_tp_event);
7957
7958 static void tp_perf_event_destroy(struct perf_event *event)
7959 {
7960         perf_trace_destroy(event);
7961 }
7962
7963 static int perf_tp_event_init(struct perf_event *event)
7964 {
7965         int err;
7966
7967         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7968                 return -ENOENT;
7969
7970         /*
7971          * no branch sampling for tracepoint events
7972          */
7973         if (has_branch_stack(event))
7974                 return -EOPNOTSUPP;
7975
7976         err = perf_trace_init(event);
7977         if (err)
7978                 return err;
7979
7980         event->destroy = tp_perf_event_destroy;
7981
7982         return 0;
7983 }
7984
7985 static struct pmu perf_tracepoint = {
7986         .task_ctx_nr    = perf_sw_context,
7987
7988         .event_init     = perf_tp_event_init,
7989         .add            = perf_trace_add,
7990         .del            = perf_trace_del,
7991         .start          = perf_swevent_start,
7992         .stop           = perf_swevent_stop,
7993         .read           = perf_swevent_read,
7994 };
7995
7996 static inline void perf_tp_register(void)
7997 {
7998         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7999 }
8000
8001 static void perf_event_free_filter(struct perf_event *event)
8002 {
8003         ftrace_profile_free_filter(event);
8004 }
8005
8006 #ifdef CONFIG_BPF_SYSCALL
8007 static void bpf_overflow_handler(struct perf_event *event,
8008                                  struct perf_sample_data *data,
8009                                  struct pt_regs *regs)
8010 {
8011         struct bpf_perf_event_data_kern ctx = {
8012                 .data = data,
8013                 .event = event,
8014         };
8015         int ret = 0;
8016
8017         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8018         preempt_disable();
8019         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8020                 goto out;
8021         rcu_read_lock();
8022         ret = BPF_PROG_RUN(event->prog, &ctx);
8023         rcu_read_unlock();
8024 out:
8025         __this_cpu_dec(bpf_prog_active);
8026         preempt_enable();
8027         if (!ret)
8028                 return;
8029
8030         event->orig_overflow_handler(event, data, regs);
8031 }
8032
8033 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8034 {
8035         struct bpf_prog *prog;
8036
8037         if (event->overflow_handler_context)
8038                 /* hw breakpoint or kernel counter */
8039                 return -EINVAL;
8040
8041         if (event->prog)
8042                 return -EEXIST;
8043
8044         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8045         if (IS_ERR(prog))
8046                 return PTR_ERR(prog);
8047
8048         event->prog = prog;
8049         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8050         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8051         return 0;
8052 }
8053
8054 static void perf_event_free_bpf_handler(struct perf_event *event)
8055 {
8056         struct bpf_prog *prog = event->prog;
8057
8058         if (!prog)
8059                 return;
8060
8061         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8062         event->prog = NULL;
8063         bpf_prog_put(prog);
8064 }
8065 #else
8066 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8067 {
8068         return -EOPNOTSUPP;
8069 }
8070 static void perf_event_free_bpf_handler(struct perf_event *event)
8071 {
8072 }
8073 #endif
8074
8075 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8076 {
8077         bool is_kprobe, is_tracepoint, is_syscall_tp;
8078         struct bpf_prog *prog;
8079         int ret;
8080
8081         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8082                 return perf_event_set_bpf_handler(event, prog_fd);
8083
8084         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8085         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8086         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8087         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8088                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8089                 return -EINVAL;
8090
8091         prog = bpf_prog_get(prog_fd);
8092         if (IS_ERR(prog))
8093                 return PTR_ERR(prog);
8094
8095         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8096             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8097             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8098                 /* valid fd, but invalid bpf program type */
8099                 bpf_prog_put(prog);
8100                 return -EINVAL;
8101         }
8102
8103         if (is_tracepoint || is_syscall_tp) {
8104                 int off = trace_event_get_offsets(event->tp_event);
8105
8106                 if (prog->aux->max_ctx_offset > off) {
8107                         bpf_prog_put(prog);
8108                         return -EACCES;
8109                 }
8110         }
8111
8112         ret = perf_event_attach_bpf_prog(event, prog);
8113         if (ret)
8114                 bpf_prog_put(prog);
8115         return ret;
8116 }
8117
8118 static void perf_event_free_bpf_prog(struct perf_event *event)
8119 {
8120         if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8121                 perf_event_free_bpf_handler(event);
8122                 return;
8123         }
8124         perf_event_detach_bpf_prog(event);
8125 }
8126
8127 #else
8128
8129 static inline void perf_tp_register(void)
8130 {
8131 }
8132
8133 static void perf_event_free_filter(struct perf_event *event)
8134 {
8135 }
8136
8137 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8138 {
8139         return -ENOENT;
8140 }
8141
8142 static void perf_event_free_bpf_prog(struct perf_event *event)
8143 {
8144 }
8145 #endif /* CONFIG_EVENT_TRACING */
8146
8147 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8148 void perf_bp_event(struct perf_event *bp, void *data)
8149 {
8150         struct perf_sample_data sample;
8151         struct pt_regs *regs = data;
8152
8153         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8154
8155         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8156                 perf_swevent_event(bp, 1, &sample, regs);
8157 }
8158 #endif
8159
8160 /*
8161  * Allocate a new address filter
8162  */
8163 static struct perf_addr_filter *
8164 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8165 {
8166         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8167         struct perf_addr_filter *filter;
8168
8169         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8170         if (!filter)
8171                 return NULL;
8172
8173         INIT_LIST_HEAD(&filter->entry);
8174         list_add_tail(&filter->entry, filters);
8175
8176         return filter;
8177 }
8178
8179 static void free_filters_list(struct list_head *filters)
8180 {
8181         struct perf_addr_filter *filter, *iter;
8182
8183         list_for_each_entry_safe(filter, iter, filters, entry) {
8184                 if (filter->inode)
8185                         iput(filter->inode);
8186                 list_del(&filter->entry);
8187                 kfree(filter);
8188         }
8189 }
8190
8191 /*
8192  * Free existing address filters and optionally install new ones
8193  */
8194 static void perf_addr_filters_splice(struct perf_event *event,
8195                                      struct list_head *head)
8196 {
8197         unsigned long flags;
8198         LIST_HEAD(list);
8199
8200         if (!has_addr_filter(event))
8201                 return;
8202
8203         /* don't bother with children, they don't have their own filters */
8204         if (event->parent)
8205                 return;
8206
8207         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8208
8209         list_splice_init(&event->addr_filters.list, &list);
8210         if (head)
8211                 list_splice(head, &event->addr_filters.list);
8212
8213         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8214
8215         free_filters_list(&list);
8216 }
8217
8218 /*
8219  * Scan through mm's vmas and see if one of them matches the
8220  * @filter; if so, adjust filter's address range.
8221  * Called with mm::mmap_sem down for reading.
8222  */
8223 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8224                                             struct mm_struct *mm)
8225 {
8226         struct vm_area_struct *vma;
8227
8228         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8229                 struct file *file = vma->vm_file;
8230                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8231                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8232
8233                 if (!file)
8234                         continue;
8235
8236                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8237                         continue;
8238
8239                 return vma->vm_start;
8240         }
8241
8242         return 0;
8243 }
8244
8245 /*
8246  * Update event's address range filters based on the
8247  * task's existing mappings, if any.
8248  */
8249 static void perf_event_addr_filters_apply(struct perf_event *event)
8250 {
8251         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8252         struct task_struct *task = READ_ONCE(event->ctx->task);
8253         struct perf_addr_filter *filter;
8254         struct mm_struct *mm = NULL;
8255         unsigned int count = 0;
8256         unsigned long flags;
8257
8258         /*
8259          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8260          * will stop on the parent's child_mutex that our caller is also holding
8261          */
8262         if (task == TASK_TOMBSTONE)
8263                 return;
8264
8265         if (!ifh->nr_file_filters)
8266                 return;
8267
8268         mm = get_task_mm(event->ctx->task);
8269         if (!mm)
8270                 goto restart;
8271
8272         down_read(&mm->mmap_sem);
8273
8274         raw_spin_lock_irqsave(&ifh->lock, flags);
8275         list_for_each_entry(filter, &ifh->list, entry) {
8276                 event->addr_filters_offs[count] = 0;
8277
8278                 /*
8279                  * Adjust base offset if the filter is associated to a binary
8280                  * that needs to be mapped:
8281                  */
8282                 if (filter->inode)
8283                         event->addr_filters_offs[count] =
8284                                 perf_addr_filter_apply(filter, mm);
8285
8286                 count++;
8287         }
8288
8289         event->addr_filters_gen++;
8290         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8291
8292         up_read(&mm->mmap_sem);
8293
8294         mmput(mm);
8295
8296 restart:
8297         perf_event_stop(event, 1);
8298 }
8299
8300 /*
8301  * Address range filtering: limiting the data to certain
8302  * instruction address ranges. Filters are ioctl()ed to us from
8303  * userspace as ascii strings.
8304  *
8305  * Filter string format:
8306  *
8307  * ACTION RANGE_SPEC
8308  * where ACTION is one of the
8309  *  * "filter": limit the trace to this region
8310  *  * "start": start tracing from this address
8311  *  * "stop": stop tracing at this address/region;
8312  * RANGE_SPEC is
8313  *  * for kernel addresses: <start address>[/<size>]
8314  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8315  *
8316  * if <size> is not specified, the range is treated as a single address.
8317  */
8318 enum {
8319         IF_ACT_NONE = -1,
8320         IF_ACT_FILTER,
8321         IF_ACT_START,
8322         IF_ACT_STOP,
8323         IF_SRC_FILE,
8324         IF_SRC_KERNEL,
8325         IF_SRC_FILEADDR,
8326         IF_SRC_KERNELADDR,
8327 };
8328
8329 enum {
8330         IF_STATE_ACTION = 0,
8331         IF_STATE_SOURCE,
8332         IF_STATE_END,
8333 };
8334
8335 static const match_table_t if_tokens = {
8336         { IF_ACT_FILTER,        "filter" },
8337         { IF_ACT_START,         "start" },
8338         { IF_ACT_STOP,          "stop" },
8339         { IF_SRC_FILE,          "%u/%u@%s" },
8340         { IF_SRC_KERNEL,        "%u/%u" },
8341         { IF_SRC_FILEADDR,      "%u@%s" },
8342         { IF_SRC_KERNELADDR,    "%u" },
8343         { IF_ACT_NONE,          NULL },
8344 };
8345
8346 /*
8347  * Address filter string parser
8348  */
8349 static int
8350 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8351                              struct list_head *filters)
8352 {
8353         struct perf_addr_filter *filter = NULL;
8354         char *start, *orig, *filename = NULL;
8355         struct path path;
8356         substring_t args[MAX_OPT_ARGS];
8357         int state = IF_STATE_ACTION, token;
8358         unsigned int kernel = 0;
8359         int ret = -EINVAL;
8360
8361         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8362         if (!fstr)
8363                 return -ENOMEM;
8364
8365         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8366                 ret = -EINVAL;
8367
8368                 if (!*start)
8369                         continue;
8370
8371                 /* filter definition begins */
8372                 if (state == IF_STATE_ACTION) {
8373                         filter = perf_addr_filter_new(event, filters);
8374                         if (!filter)
8375                                 goto fail;
8376                 }
8377
8378                 token = match_token(start, if_tokens, args);
8379                 switch (token) {
8380                 case IF_ACT_FILTER:
8381                 case IF_ACT_START:
8382                         filter->filter = 1;
8383
8384                 case IF_ACT_STOP:
8385                         if (state != IF_STATE_ACTION)
8386                                 goto fail;
8387
8388                         state = IF_STATE_SOURCE;
8389                         break;
8390
8391                 case IF_SRC_KERNELADDR:
8392                 case IF_SRC_KERNEL:
8393                         kernel = 1;
8394
8395                 case IF_SRC_FILEADDR:
8396                 case IF_SRC_FILE:
8397                         if (state != IF_STATE_SOURCE)
8398                                 goto fail;
8399
8400                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8401                                 filter->range = 1;
8402
8403                         *args[0].to = 0;
8404                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8405                         if (ret)
8406                                 goto fail;
8407
8408                         if (filter->range) {
8409                                 *args[1].to = 0;
8410                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8411                                 if (ret)
8412                                         goto fail;
8413                         }
8414
8415                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8416                                 int fpos = filter->range ? 2 : 1;
8417
8418                                 filename = match_strdup(&args[fpos]);
8419                                 if (!filename) {
8420                                         ret = -ENOMEM;
8421                                         goto fail;
8422                                 }
8423                         }
8424
8425                         state = IF_STATE_END;
8426                         break;
8427
8428                 default:
8429                         goto fail;
8430                 }
8431
8432                 /*
8433                  * Filter definition is fully parsed, validate and install it.
8434                  * Make sure that it doesn't contradict itself or the event's
8435                  * attribute.
8436                  */
8437                 if (state == IF_STATE_END) {
8438                         ret = -EINVAL;
8439                         if (kernel && event->attr.exclude_kernel)
8440                                 goto fail;
8441
8442                         if (!kernel) {
8443                                 if (!filename)
8444                                         goto fail;
8445
8446                                 /*
8447                                  * For now, we only support file-based filters
8448                                  * in per-task events; doing so for CPU-wide
8449                                  * events requires additional context switching
8450                                  * trickery, since same object code will be
8451                                  * mapped at different virtual addresses in
8452                                  * different processes.
8453                                  */
8454                                 ret = -EOPNOTSUPP;
8455                                 if (!event->ctx->task)
8456                                         goto fail_free_name;
8457
8458                                 /* look up the path and grab its inode */
8459                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8460                                 if (ret)
8461                                         goto fail_free_name;
8462
8463                                 filter->inode = igrab(d_inode(path.dentry));
8464                                 path_put(&path);
8465                                 kfree(filename);
8466                                 filename = NULL;
8467
8468                                 ret = -EINVAL;
8469                                 if (!filter->inode ||
8470                                     !S_ISREG(filter->inode->i_mode))
8471                                         /* free_filters_list() will iput() */
8472                                         goto fail;
8473
8474                                 event->addr_filters.nr_file_filters++;
8475                         }
8476
8477                         /* ready to consume more filters */
8478                         state = IF_STATE_ACTION;
8479                         filter = NULL;
8480                 }
8481         }
8482
8483         if (state != IF_STATE_ACTION)
8484                 goto fail;
8485
8486         kfree(orig);
8487
8488         return 0;
8489
8490 fail_free_name:
8491         kfree(filename);
8492 fail:
8493         free_filters_list(filters);
8494         kfree(orig);
8495
8496         return ret;
8497 }
8498
8499 static int
8500 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8501 {
8502         LIST_HEAD(filters);
8503         int ret;
8504
8505         /*
8506          * Since this is called in perf_ioctl() path, we're already holding
8507          * ctx::mutex.
8508          */
8509         lockdep_assert_held(&event->ctx->mutex);
8510
8511         if (WARN_ON_ONCE(event->parent))
8512                 return -EINVAL;
8513
8514         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8515         if (ret)
8516                 goto fail_clear_files;
8517
8518         ret = event->pmu->addr_filters_validate(&filters);
8519         if (ret)
8520                 goto fail_free_filters;
8521
8522         /* remove existing filters, if any */
8523         perf_addr_filters_splice(event, &filters);
8524
8525         /* install new filters */
8526         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8527
8528         return ret;
8529
8530 fail_free_filters:
8531         free_filters_list(&filters);
8532
8533 fail_clear_files:
8534         event->addr_filters.nr_file_filters = 0;
8535
8536         return ret;
8537 }
8538
8539 static int
8540 perf_tracepoint_set_filter(struct perf_event *event, char *filter_str)
8541 {
8542         struct perf_event_context *ctx = event->ctx;
8543         int ret;
8544
8545         /*
8546          * Beware, here be dragons!!
8547          *
8548          * the tracepoint muck will deadlock against ctx->mutex, but the tracepoint
8549          * stuff does not actually need it. So temporarily drop ctx->mutex. As per
8550          * perf_event_ctx_lock() we already have a reference on ctx.
8551          *
8552          * This can result in event getting moved to a different ctx, but that
8553          * does not affect the tracepoint state.
8554          */
8555         mutex_unlock(&ctx->mutex);
8556         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
8557         mutex_lock(&ctx->mutex);
8558
8559         return ret;
8560 }
8561
8562 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8563 {
8564         char *filter_str;
8565         int ret = -EINVAL;
8566
8567         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8568             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8569             !has_addr_filter(event))
8570                 return -EINVAL;
8571
8572         filter_str = strndup_user(arg, PAGE_SIZE);
8573         if (IS_ERR(filter_str))
8574                 return PTR_ERR(filter_str);
8575
8576         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8577             event->attr.type == PERF_TYPE_TRACEPOINT)
8578                 ret = perf_tracepoint_set_filter(event, filter_str);
8579         else if (has_addr_filter(event))
8580                 ret = perf_event_set_addr_filter(event, filter_str);
8581
8582         kfree(filter_str);
8583         return ret;
8584 }
8585
8586 /*
8587  * hrtimer based swevent callback
8588  */
8589
8590 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8591 {
8592         enum hrtimer_restart ret = HRTIMER_RESTART;
8593         struct perf_sample_data data;
8594         struct pt_regs *regs;
8595         struct perf_event *event;
8596         u64 period;
8597
8598         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8599
8600         if (event->state != PERF_EVENT_STATE_ACTIVE)
8601                 return HRTIMER_NORESTART;
8602
8603         event->pmu->read(event);
8604
8605         perf_sample_data_init(&data, 0, event->hw.last_period);
8606         regs = get_irq_regs();
8607
8608         if (regs && !perf_exclude_event(event, regs)) {
8609                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8610                         if (__perf_event_overflow(event, 1, &data, regs))
8611                                 ret = HRTIMER_NORESTART;
8612         }
8613
8614         period = max_t(u64, 10000, event->hw.sample_period);
8615         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8616
8617         return ret;
8618 }
8619
8620 static void perf_swevent_start_hrtimer(struct perf_event *event)
8621 {
8622         struct hw_perf_event *hwc = &event->hw;
8623         s64 period;
8624
8625         if (!is_sampling_event(event))
8626                 return;
8627
8628         period = local64_read(&hwc->period_left);
8629         if (period) {
8630                 if (period < 0)
8631                         period = 10000;
8632
8633                 local64_set(&hwc->period_left, 0);
8634         } else {
8635                 period = max_t(u64, 10000, hwc->sample_period);
8636         }
8637         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8638                       HRTIMER_MODE_REL_PINNED);
8639 }
8640
8641 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8642 {
8643         struct hw_perf_event *hwc = &event->hw;
8644
8645         if (is_sampling_event(event)) {
8646                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8647                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8648
8649                 hrtimer_cancel(&hwc->hrtimer);
8650         }
8651 }
8652
8653 static void perf_swevent_init_hrtimer(struct perf_event *event)
8654 {
8655         struct hw_perf_event *hwc = &event->hw;
8656
8657         if (!is_sampling_event(event))
8658                 return;
8659
8660         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8661         hwc->hrtimer.function = perf_swevent_hrtimer;
8662
8663         /*
8664          * Since hrtimers have a fixed rate, we can do a static freq->period
8665          * mapping and avoid the whole period adjust feedback stuff.
8666          */
8667         if (event->attr.freq) {
8668                 long freq = event->attr.sample_freq;
8669
8670                 event->attr.sample_period = NSEC_PER_SEC / freq;
8671                 hwc->sample_period = event->attr.sample_period;
8672                 local64_set(&hwc->period_left, hwc->sample_period);
8673                 hwc->last_period = hwc->sample_period;
8674                 event->attr.freq = 0;
8675         }
8676 }
8677
8678 /*
8679  * Software event: cpu wall time clock
8680  */
8681
8682 static void cpu_clock_event_update(struct perf_event *event)
8683 {
8684         s64 prev;
8685         u64 now;
8686
8687         now = local_clock();
8688         prev = local64_xchg(&event->hw.prev_count, now);
8689         local64_add(now - prev, &event->count);
8690 }
8691
8692 static void cpu_clock_event_start(struct perf_event *event, int flags)
8693 {
8694         local64_set(&event->hw.prev_count, local_clock());
8695         perf_swevent_start_hrtimer(event);
8696 }
8697
8698 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8699 {
8700         perf_swevent_cancel_hrtimer(event);
8701         cpu_clock_event_update(event);
8702 }
8703
8704 static int cpu_clock_event_add(struct perf_event *event, int flags)
8705 {
8706         if (flags & PERF_EF_START)
8707                 cpu_clock_event_start(event, flags);
8708         perf_event_update_userpage(event);
8709
8710         return 0;
8711 }
8712
8713 static void cpu_clock_event_del(struct perf_event *event, int flags)
8714 {
8715         cpu_clock_event_stop(event, flags);
8716 }
8717
8718 static void cpu_clock_event_read(struct perf_event *event)
8719 {
8720         cpu_clock_event_update(event);
8721 }
8722
8723 static int cpu_clock_event_init(struct perf_event *event)
8724 {
8725         if (event->attr.type != PERF_TYPE_SOFTWARE)
8726                 return -ENOENT;
8727
8728         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8729                 return -ENOENT;
8730
8731         /*
8732          * no branch sampling for software events
8733          */
8734         if (has_branch_stack(event))
8735                 return -EOPNOTSUPP;
8736
8737         perf_swevent_init_hrtimer(event);
8738
8739         return 0;
8740 }
8741
8742 static struct pmu perf_cpu_clock = {
8743         .task_ctx_nr    = perf_sw_context,
8744
8745         .capabilities   = PERF_PMU_CAP_NO_NMI,
8746
8747         .event_init     = cpu_clock_event_init,
8748         .add            = cpu_clock_event_add,
8749         .del            = cpu_clock_event_del,
8750         .start          = cpu_clock_event_start,
8751         .stop           = cpu_clock_event_stop,
8752         .read           = cpu_clock_event_read,
8753 };
8754
8755 /*
8756  * Software event: task time clock
8757  */
8758
8759 static void task_clock_event_update(struct perf_event *event, u64 now)
8760 {
8761         u64 prev;
8762         s64 delta;
8763
8764         prev = local64_xchg(&event->hw.prev_count, now);
8765         delta = now - prev;
8766         local64_add(delta, &event->count);
8767 }
8768
8769 static void task_clock_event_start(struct perf_event *event, int flags)
8770 {
8771         local64_set(&event->hw.prev_count, event->ctx->time);
8772         perf_swevent_start_hrtimer(event);
8773 }
8774
8775 static void task_clock_event_stop(struct perf_event *event, int flags)
8776 {
8777         perf_swevent_cancel_hrtimer(event);
8778         task_clock_event_update(event, event->ctx->time);
8779 }
8780
8781 static int task_clock_event_add(struct perf_event *event, int flags)
8782 {
8783         if (flags & PERF_EF_START)
8784                 task_clock_event_start(event, flags);
8785         perf_event_update_userpage(event);
8786
8787         return 0;
8788 }
8789
8790 static void task_clock_event_del(struct perf_event *event, int flags)
8791 {
8792         task_clock_event_stop(event, PERF_EF_UPDATE);
8793 }
8794
8795 static void task_clock_event_read(struct perf_event *event)
8796 {
8797         u64 now = perf_clock();
8798         u64 delta = now - event->ctx->timestamp;
8799         u64 time = event->ctx->time + delta;
8800
8801         task_clock_event_update(event, time);
8802 }
8803
8804 static int task_clock_event_init(struct perf_event *event)
8805 {
8806         if (event->attr.type != PERF_TYPE_SOFTWARE)
8807                 return -ENOENT;
8808
8809         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8810                 return -ENOENT;
8811
8812         /*
8813          * no branch sampling for software events
8814          */
8815         if (has_branch_stack(event))
8816                 return -EOPNOTSUPP;
8817
8818         perf_swevent_init_hrtimer(event);
8819
8820         return 0;
8821 }
8822
8823 static struct pmu perf_task_clock = {
8824         .task_ctx_nr    = perf_sw_context,
8825
8826         .capabilities   = PERF_PMU_CAP_NO_NMI,
8827
8828         .event_init     = task_clock_event_init,
8829         .add            = task_clock_event_add,
8830         .del            = task_clock_event_del,
8831         .start          = task_clock_event_start,
8832         .stop           = task_clock_event_stop,
8833         .read           = task_clock_event_read,
8834 };
8835
8836 static void perf_pmu_nop_void(struct pmu *pmu)
8837 {
8838 }
8839
8840 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8841 {
8842 }
8843
8844 static int perf_pmu_nop_int(struct pmu *pmu)
8845 {
8846         return 0;
8847 }
8848
8849 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8850
8851 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8852 {
8853         __this_cpu_write(nop_txn_flags, flags);
8854
8855         if (flags & ~PERF_PMU_TXN_ADD)
8856                 return;
8857
8858         perf_pmu_disable(pmu);
8859 }
8860
8861 static int perf_pmu_commit_txn(struct pmu *pmu)
8862 {
8863         unsigned int flags = __this_cpu_read(nop_txn_flags);
8864
8865         __this_cpu_write(nop_txn_flags, 0);
8866
8867         if (flags & ~PERF_PMU_TXN_ADD)
8868                 return 0;
8869
8870         perf_pmu_enable(pmu);
8871         return 0;
8872 }
8873
8874 static void perf_pmu_cancel_txn(struct pmu *pmu)
8875 {
8876         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8877
8878         __this_cpu_write(nop_txn_flags, 0);
8879
8880         if (flags & ~PERF_PMU_TXN_ADD)
8881                 return;
8882
8883         perf_pmu_enable(pmu);
8884 }
8885
8886 static int perf_event_idx_default(struct perf_event *event)
8887 {
8888         return 0;
8889 }
8890
8891 /*
8892  * Ensures all contexts with the same task_ctx_nr have the same
8893  * pmu_cpu_context too.
8894  */
8895 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8896 {
8897         struct pmu *pmu;
8898
8899         if (ctxn < 0)
8900                 return NULL;
8901
8902         list_for_each_entry(pmu, &pmus, entry) {
8903                 if (pmu->task_ctx_nr == ctxn)
8904                         return pmu->pmu_cpu_context;
8905         }
8906
8907         return NULL;
8908 }
8909
8910 static void free_pmu_context(struct pmu *pmu)
8911 {
8912         /*
8913          * Static contexts such as perf_sw_context have a global lifetime
8914          * and may be shared between different PMUs. Avoid freeing them
8915          * when a single PMU is going away.
8916          */
8917         if (pmu->task_ctx_nr > perf_invalid_context)
8918                 return;
8919
8920         mutex_lock(&pmus_lock);
8921         free_percpu(pmu->pmu_cpu_context);
8922         mutex_unlock(&pmus_lock);
8923 }
8924
8925 /*
8926  * Let userspace know that this PMU supports address range filtering:
8927  */
8928 static ssize_t nr_addr_filters_show(struct device *dev,
8929                                     struct device_attribute *attr,
8930                                     char *page)
8931 {
8932         struct pmu *pmu = dev_get_drvdata(dev);
8933
8934         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8935 }
8936 DEVICE_ATTR_RO(nr_addr_filters);
8937
8938 static struct idr pmu_idr;
8939
8940 static ssize_t
8941 type_show(struct device *dev, struct device_attribute *attr, char *page)
8942 {
8943         struct pmu *pmu = dev_get_drvdata(dev);
8944
8945         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8946 }
8947 static DEVICE_ATTR_RO(type);
8948
8949 static ssize_t
8950 perf_event_mux_interval_ms_show(struct device *dev,
8951                                 struct device_attribute *attr,
8952                                 char *page)
8953 {
8954         struct pmu *pmu = dev_get_drvdata(dev);
8955
8956         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8957 }
8958
8959 static DEFINE_MUTEX(mux_interval_mutex);
8960
8961 static ssize_t
8962 perf_event_mux_interval_ms_store(struct device *dev,
8963                                  struct device_attribute *attr,
8964                                  const char *buf, size_t count)
8965 {
8966         struct pmu *pmu = dev_get_drvdata(dev);
8967         int timer, cpu, ret;
8968
8969         ret = kstrtoint(buf, 0, &timer);
8970         if (ret)
8971                 return ret;
8972
8973         if (timer < 1)
8974                 return -EINVAL;
8975
8976         /* same value, noting to do */
8977         if (timer == pmu->hrtimer_interval_ms)
8978                 return count;
8979
8980         mutex_lock(&mux_interval_mutex);
8981         pmu->hrtimer_interval_ms = timer;
8982
8983         /* update all cpuctx for this PMU */
8984         cpus_read_lock();
8985         for_each_online_cpu(cpu) {
8986                 struct perf_cpu_context *cpuctx;
8987                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8988                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8989
8990                 cpu_function_call(cpu,
8991                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8992         }
8993         cpus_read_unlock();
8994         mutex_unlock(&mux_interval_mutex);
8995
8996         return count;
8997 }
8998 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8999
9000 static struct attribute *pmu_dev_attrs[] = {
9001         &dev_attr_type.attr,
9002         &dev_attr_perf_event_mux_interval_ms.attr,
9003         NULL,
9004 };
9005 ATTRIBUTE_GROUPS(pmu_dev);
9006
9007 static int pmu_bus_running;
9008 static struct bus_type pmu_bus = {
9009         .name           = "event_source",
9010         .dev_groups     = pmu_dev_groups,
9011 };
9012
9013 static void pmu_dev_release(struct device *dev)
9014 {
9015         kfree(dev);
9016 }
9017
9018 static int pmu_dev_alloc(struct pmu *pmu)
9019 {
9020         int ret = -ENOMEM;
9021
9022         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9023         if (!pmu->dev)
9024                 goto out;
9025
9026         pmu->dev->groups = pmu->attr_groups;
9027         device_initialize(pmu->dev);
9028         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9029         if (ret)
9030                 goto free_dev;
9031
9032         dev_set_drvdata(pmu->dev, pmu);
9033         pmu->dev->bus = &pmu_bus;
9034         pmu->dev->release = pmu_dev_release;
9035         ret = device_add(pmu->dev);
9036         if (ret)
9037                 goto free_dev;
9038
9039         /* For PMUs with address filters, throw in an extra attribute: */
9040         if (pmu->nr_addr_filters)
9041                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9042
9043         if (ret)
9044                 goto del_dev;
9045
9046 out:
9047         return ret;
9048
9049 del_dev:
9050         device_del(pmu->dev);
9051
9052 free_dev:
9053         put_device(pmu->dev);
9054         goto out;
9055 }
9056
9057 static struct lock_class_key cpuctx_mutex;
9058 static struct lock_class_key cpuctx_lock;
9059
9060 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9061 {
9062         int cpu, ret;
9063
9064         mutex_lock(&pmus_lock);
9065         ret = -ENOMEM;
9066         pmu->pmu_disable_count = alloc_percpu(int);
9067         if (!pmu->pmu_disable_count)
9068                 goto unlock;
9069
9070         pmu->type = -1;
9071         if (!name)
9072                 goto skip_type;
9073         pmu->name = name;
9074
9075         if (type < 0) {
9076                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9077                 if (type < 0) {
9078                         ret = type;
9079                         goto free_pdc;
9080                 }
9081         }
9082         pmu->type = type;
9083
9084         if (pmu_bus_running) {
9085                 ret = pmu_dev_alloc(pmu);
9086                 if (ret)
9087                         goto free_idr;
9088         }
9089
9090 skip_type:
9091         if (pmu->task_ctx_nr == perf_hw_context) {
9092                 static int hw_context_taken = 0;
9093
9094                 /*
9095                  * Other than systems with heterogeneous CPUs, it never makes
9096                  * sense for two PMUs to share perf_hw_context. PMUs which are
9097                  * uncore must use perf_invalid_context.
9098                  */
9099                 if (WARN_ON_ONCE(hw_context_taken &&
9100                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9101                         pmu->task_ctx_nr = perf_invalid_context;
9102
9103                 hw_context_taken = 1;
9104         }
9105
9106         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9107         if (pmu->pmu_cpu_context)
9108                 goto got_cpu_context;
9109
9110         ret = -ENOMEM;
9111         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9112         if (!pmu->pmu_cpu_context)
9113                 goto free_dev;
9114
9115         for_each_possible_cpu(cpu) {
9116                 struct perf_cpu_context *cpuctx;
9117
9118                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9119                 __perf_event_init_context(&cpuctx->ctx);
9120                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9121                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9122                 cpuctx->ctx.pmu = pmu;
9123                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9124
9125                 __perf_mux_hrtimer_init(cpuctx, cpu);
9126         }
9127
9128 got_cpu_context:
9129         if (!pmu->start_txn) {
9130                 if (pmu->pmu_enable) {
9131                         /*
9132                          * If we have pmu_enable/pmu_disable calls, install
9133                          * transaction stubs that use that to try and batch
9134                          * hardware accesses.
9135                          */
9136                         pmu->start_txn  = perf_pmu_start_txn;
9137                         pmu->commit_txn = perf_pmu_commit_txn;
9138                         pmu->cancel_txn = perf_pmu_cancel_txn;
9139                 } else {
9140                         pmu->start_txn  = perf_pmu_nop_txn;
9141                         pmu->commit_txn = perf_pmu_nop_int;
9142                         pmu->cancel_txn = perf_pmu_nop_void;
9143                 }
9144         }
9145
9146         if (!pmu->pmu_enable) {
9147                 pmu->pmu_enable  = perf_pmu_nop_void;
9148                 pmu->pmu_disable = perf_pmu_nop_void;
9149         }
9150
9151         if (!pmu->event_idx)
9152                 pmu->event_idx = perf_event_idx_default;
9153
9154         list_add_rcu(&pmu->entry, &pmus);
9155         atomic_set(&pmu->exclusive_cnt, 0);
9156         ret = 0;
9157 unlock:
9158         mutex_unlock(&pmus_lock);
9159
9160         return ret;
9161
9162 free_dev:
9163         device_del(pmu->dev);
9164         put_device(pmu->dev);
9165
9166 free_idr:
9167         if (pmu->type >= PERF_TYPE_MAX)
9168                 idr_remove(&pmu_idr, pmu->type);
9169
9170 free_pdc:
9171         free_percpu(pmu->pmu_disable_count);
9172         goto unlock;
9173 }
9174 EXPORT_SYMBOL_GPL(perf_pmu_register);
9175
9176 void perf_pmu_unregister(struct pmu *pmu)
9177 {
9178         int remove_device;
9179
9180         mutex_lock(&pmus_lock);
9181         remove_device = pmu_bus_running;
9182         list_del_rcu(&pmu->entry);
9183         mutex_unlock(&pmus_lock);
9184
9185         /*
9186          * We dereference the pmu list under both SRCU and regular RCU, so
9187          * synchronize against both of those.
9188          */
9189         synchronize_srcu(&pmus_srcu);
9190         synchronize_rcu();
9191
9192         free_percpu(pmu->pmu_disable_count);
9193         if (pmu->type >= PERF_TYPE_MAX)
9194                 idr_remove(&pmu_idr, pmu->type);
9195         if (remove_device) {
9196                 if (pmu->nr_addr_filters)
9197                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9198                 device_del(pmu->dev);
9199                 put_device(pmu->dev);
9200         }
9201         free_pmu_context(pmu);
9202 }
9203 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9204
9205 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9206 {
9207         struct perf_event_context *ctx = NULL;
9208         int ret;
9209
9210         if (!try_module_get(pmu->module))
9211                 return -ENODEV;
9212
9213         /*
9214          * A number of pmu->event_init() methods iterate the sibling_list to,
9215          * for example, validate if the group fits on the PMU. Therefore,
9216          * if this is a sibling event, acquire the ctx->mutex to protect
9217          * the sibling_list.
9218          */
9219         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9220                 /*
9221                  * This ctx->mutex can nest when we're called through
9222                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9223                  */
9224                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9225                                                  SINGLE_DEPTH_NESTING);
9226                 BUG_ON(!ctx);
9227         }
9228
9229         event->pmu = pmu;
9230         ret = pmu->event_init(event);
9231
9232         if (ctx)
9233                 perf_event_ctx_unlock(event->group_leader, ctx);
9234
9235         if (ret)
9236                 module_put(pmu->module);
9237
9238         return ret;
9239 }
9240
9241 static struct pmu *perf_init_event(struct perf_event *event)
9242 {
9243         struct pmu *pmu;
9244         int idx;
9245         int ret;
9246
9247         idx = srcu_read_lock(&pmus_srcu);
9248
9249         /* Try parent's PMU first: */
9250         if (event->parent && event->parent->pmu) {
9251                 pmu = event->parent->pmu;
9252                 ret = perf_try_init_event(pmu, event);
9253                 if (!ret)
9254                         goto unlock;
9255         }
9256
9257         rcu_read_lock();
9258         pmu = idr_find(&pmu_idr, event->attr.type);
9259         rcu_read_unlock();
9260         if (pmu) {
9261                 ret = perf_try_init_event(pmu, event);
9262                 if (ret)
9263                         pmu = ERR_PTR(ret);
9264                 goto unlock;
9265         }
9266
9267         list_for_each_entry_rcu(pmu, &pmus, entry) {
9268                 ret = perf_try_init_event(pmu, event);
9269                 if (!ret)
9270                         goto unlock;
9271
9272                 if (ret != -ENOENT) {
9273                         pmu = ERR_PTR(ret);
9274                         goto unlock;
9275                 }
9276         }
9277         pmu = ERR_PTR(-ENOENT);
9278 unlock:
9279         srcu_read_unlock(&pmus_srcu, idx);
9280
9281         return pmu;
9282 }
9283
9284 static void attach_sb_event(struct perf_event *event)
9285 {
9286         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9287
9288         raw_spin_lock(&pel->lock);
9289         list_add_rcu(&event->sb_list, &pel->list);
9290         raw_spin_unlock(&pel->lock);
9291 }
9292
9293 /*
9294  * We keep a list of all !task (and therefore per-cpu) events
9295  * that need to receive side-band records.
9296  *
9297  * This avoids having to scan all the various PMU per-cpu contexts
9298  * looking for them.
9299  */
9300 static void account_pmu_sb_event(struct perf_event *event)
9301 {
9302         if (is_sb_event(event))
9303                 attach_sb_event(event);
9304 }
9305
9306 static void account_event_cpu(struct perf_event *event, int cpu)
9307 {
9308         if (event->parent)
9309                 return;
9310
9311         if (is_cgroup_event(event))
9312                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9313 }
9314
9315 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9316 static void account_freq_event_nohz(void)
9317 {
9318 #ifdef CONFIG_NO_HZ_FULL
9319         /* Lock so we don't race with concurrent unaccount */
9320         spin_lock(&nr_freq_lock);
9321         if (atomic_inc_return(&nr_freq_events) == 1)
9322                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9323         spin_unlock(&nr_freq_lock);
9324 #endif
9325 }
9326
9327 static void account_freq_event(void)
9328 {
9329         if (tick_nohz_full_enabled())
9330                 account_freq_event_nohz();
9331         else
9332                 atomic_inc(&nr_freq_events);
9333 }
9334
9335
9336 static void account_event(struct perf_event *event)
9337 {
9338         bool inc = false;
9339
9340         if (event->parent)
9341                 return;
9342
9343         if (event->attach_state & PERF_ATTACH_TASK)
9344                 inc = true;
9345         if (event->attr.mmap || event->attr.mmap_data)
9346                 atomic_inc(&nr_mmap_events);
9347         if (event->attr.comm)
9348                 atomic_inc(&nr_comm_events);
9349         if (event->attr.namespaces)
9350                 atomic_inc(&nr_namespaces_events);
9351         if (event->attr.task)
9352                 atomic_inc(&nr_task_events);
9353         if (event->attr.freq)
9354                 account_freq_event();
9355         if (event->attr.context_switch) {
9356                 atomic_inc(&nr_switch_events);
9357                 inc = true;
9358         }
9359         if (has_branch_stack(event))
9360                 inc = true;
9361         if (is_cgroup_event(event))
9362                 inc = true;
9363
9364         if (inc) {
9365                 /*
9366                  * We need the mutex here because static_branch_enable()
9367                  * must complete *before* the perf_sched_count increment
9368                  * becomes visible.
9369                  */
9370                 if (atomic_inc_not_zero(&perf_sched_count))
9371                         goto enabled;
9372
9373                 mutex_lock(&perf_sched_mutex);
9374                 if (!atomic_read(&perf_sched_count)) {
9375                         static_branch_enable(&perf_sched_events);
9376                         /*
9377                          * Guarantee that all CPUs observe they key change and
9378                          * call the perf scheduling hooks before proceeding to
9379                          * install events that need them.
9380                          */
9381                         synchronize_sched();
9382                 }
9383                 /*
9384                  * Now that we have waited for the sync_sched(), allow further
9385                  * increments to by-pass the mutex.
9386                  */
9387                 atomic_inc(&perf_sched_count);
9388                 mutex_unlock(&perf_sched_mutex);
9389         }
9390 enabled:
9391
9392         account_event_cpu(event, event->cpu);
9393
9394         account_pmu_sb_event(event);
9395 }
9396
9397 /*
9398  * Allocate and initialize a event structure
9399  */
9400 static struct perf_event *
9401 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9402                  struct task_struct *task,
9403                  struct perf_event *group_leader,
9404                  struct perf_event *parent_event,
9405                  perf_overflow_handler_t overflow_handler,
9406                  void *context, int cgroup_fd)
9407 {
9408         struct pmu *pmu;
9409         struct perf_event *event;
9410         struct hw_perf_event *hwc;
9411         long err = -EINVAL;
9412
9413         if ((unsigned)cpu >= nr_cpu_ids) {
9414                 if (!task || cpu != -1)
9415                         return ERR_PTR(-EINVAL);
9416         }
9417
9418         event = kzalloc(sizeof(*event), GFP_KERNEL);
9419         if (!event)
9420                 return ERR_PTR(-ENOMEM);
9421
9422         /*
9423          * Single events are their own group leaders, with an
9424          * empty sibling list:
9425          */
9426         if (!group_leader)
9427                 group_leader = event;
9428
9429         mutex_init(&event->child_mutex);
9430         INIT_LIST_HEAD(&event->child_list);
9431
9432         INIT_LIST_HEAD(&event->group_entry);
9433         INIT_LIST_HEAD(&event->event_entry);
9434         INIT_LIST_HEAD(&event->sibling_list);
9435         INIT_LIST_HEAD(&event->rb_entry);
9436         INIT_LIST_HEAD(&event->active_entry);
9437         INIT_LIST_HEAD(&event->addr_filters.list);
9438         INIT_HLIST_NODE(&event->hlist_entry);
9439
9440
9441         init_waitqueue_head(&event->waitq);
9442         init_irq_work(&event->pending, perf_pending_event);
9443
9444         mutex_init(&event->mmap_mutex);
9445         raw_spin_lock_init(&event->addr_filters.lock);
9446
9447         atomic_long_set(&event->refcount, 1);
9448         event->cpu              = cpu;
9449         event->attr             = *attr;
9450         event->group_leader     = group_leader;
9451         event->pmu              = NULL;
9452         event->oncpu            = -1;
9453
9454         event->parent           = parent_event;
9455
9456         event->ns               = get_pid_ns(task_active_pid_ns(current));
9457         event->id               = atomic64_inc_return(&perf_event_id);
9458
9459         event->state            = PERF_EVENT_STATE_INACTIVE;
9460
9461         if (task) {
9462                 event->attach_state = PERF_ATTACH_TASK;
9463                 /*
9464                  * XXX pmu::event_init needs to know what task to account to
9465                  * and we cannot use the ctx information because we need the
9466                  * pmu before we get a ctx.
9467                  */
9468                 event->hw.target = task;
9469         }
9470
9471         event->clock = &local_clock;
9472         if (parent_event)
9473                 event->clock = parent_event->clock;
9474
9475         if (!overflow_handler && parent_event) {
9476                 overflow_handler = parent_event->overflow_handler;
9477                 context = parent_event->overflow_handler_context;
9478 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9479                 if (overflow_handler == bpf_overflow_handler) {
9480                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9481
9482                         if (IS_ERR(prog)) {
9483                                 err = PTR_ERR(prog);
9484                                 goto err_ns;
9485                         }
9486                         event->prog = prog;
9487                         event->orig_overflow_handler =
9488                                 parent_event->orig_overflow_handler;
9489                 }
9490 #endif
9491         }
9492
9493         if (overflow_handler) {
9494                 event->overflow_handler = overflow_handler;
9495                 event->overflow_handler_context = context;
9496         } else if (is_write_backward(event)){
9497                 event->overflow_handler = perf_event_output_backward;
9498                 event->overflow_handler_context = NULL;
9499         } else {
9500                 event->overflow_handler = perf_event_output_forward;
9501                 event->overflow_handler_context = NULL;
9502         }
9503
9504         perf_event__state_init(event);
9505
9506         pmu = NULL;
9507
9508         hwc = &event->hw;
9509         hwc->sample_period = attr->sample_period;
9510         if (attr->freq && attr->sample_freq)
9511                 hwc->sample_period = 1;
9512         hwc->last_period = hwc->sample_period;
9513
9514         local64_set(&hwc->period_left, hwc->sample_period);
9515
9516         /*
9517          * We currently do not support PERF_SAMPLE_READ on inherited events.
9518          * See perf_output_read().
9519          */
9520         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9521                 goto err_ns;
9522
9523         if (!has_branch_stack(event))
9524                 event->attr.branch_sample_type = 0;
9525
9526         if (cgroup_fd != -1) {
9527                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9528                 if (err)
9529                         goto err_ns;
9530         }
9531
9532         pmu = perf_init_event(event);
9533         if (IS_ERR(pmu)) {
9534                 err = PTR_ERR(pmu);
9535                 goto err_ns;
9536         }
9537
9538         err = exclusive_event_init(event);
9539         if (err)
9540                 goto err_pmu;
9541
9542         if (has_addr_filter(event)) {
9543                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9544                                                    sizeof(unsigned long),
9545                                                    GFP_KERNEL);
9546                 if (!event->addr_filters_offs) {
9547                         err = -ENOMEM;
9548                         goto err_per_task;
9549                 }
9550
9551                 /* force hw sync on the address filters */
9552                 event->addr_filters_gen = 1;
9553         }
9554
9555         if (!event->parent) {
9556                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9557                         err = get_callchain_buffers(attr->sample_max_stack);
9558                         if (err)
9559                                 goto err_addr_filters;
9560                 }
9561         }
9562
9563         /* symmetric to unaccount_event() in _free_event() */
9564         account_event(event);
9565
9566         return event;
9567
9568 err_addr_filters:
9569         kfree(event->addr_filters_offs);
9570
9571 err_per_task:
9572         exclusive_event_destroy(event);
9573
9574 err_pmu:
9575         if (event->destroy)
9576                 event->destroy(event);
9577         module_put(pmu->module);
9578 err_ns:
9579         if (is_cgroup_event(event))
9580                 perf_detach_cgroup(event);
9581         if (event->ns)
9582                 put_pid_ns(event->ns);
9583         kfree(event);
9584
9585         return ERR_PTR(err);
9586 }
9587
9588 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9589                           struct perf_event_attr *attr)
9590 {
9591         u32 size;
9592         int ret;
9593
9594         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9595                 return -EFAULT;
9596
9597         /*
9598          * zero the full structure, so that a short copy will be nice.
9599          */
9600         memset(attr, 0, sizeof(*attr));
9601
9602         ret = get_user(size, &uattr->size);
9603         if (ret)
9604                 return ret;
9605
9606         if (size > PAGE_SIZE)   /* silly large */
9607                 goto err_size;
9608
9609         if (!size)              /* abi compat */
9610                 size = PERF_ATTR_SIZE_VER0;
9611
9612         if (size < PERF_ATTR_SIZE_VER0)
9613                 goto err_size;
9614
9615         /*
9616          * If we're handed a bigger struct than we know of,
9617          * ensure all the unknown bits are 0 - i.e. new
9618          * user-space does not rely on any kernel feature
9619          * extensions we dont know about yet.
9620          */
9621         if (size > sizeof(*attr)) {
9622                 unsigned char __user *addr;
9623                 unsigned char __user *end;
9624                 unsigned char val;
9625
9626                 addr = (void __user *)uattr + sizeof(*attr);
9627                 end  = (void __user *)uattr + size;
9628
9629                 for (; addr < end; addr++) {
9630                         ret = get_user(val, addr);
9631                         if (ret)
9632                                 return ret;
9633                         if (val)
9634                                 goto err_size;
9635                 }
9636                 size = sizeof(*attr);
9637         }
9638
9639         ret = copy_from_user(attr, uattr, size);
9640         if (ret)
9641                 return -EFAULT;
9642
9643         attr->size = size;
9644
9645         if (attr->__reserved_1)
9646                 return -EINVAL;
9647
9648         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9649                 return -EINVAL;
9650
9651         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9652                 return -EINVAL;
9653
9654         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9655                 u64 mask = attr->branch_sample_type;
9656
9657                 /* only using defined bits */
9658                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9659                         return -EINVAL;
9660
9661                 /* at least one branch bit must be set */
9662                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9663                         return -EINVAL;
9664
9665                 /* propagate priv level, when not set for branch */
9666                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9667
9668                         /* exclude_kernel checked on syscall entry */
9669                         if (!attr->exclude_kernel)
9670                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9671
9672                         if (!attr->exclude_user)
9673                                 mask |= PERF_SAMPLE_BRANCH_USER;
9674
9675                         if (!attr->exclude_hv)
9676                                 mask |= PERF_SAMPLE_BRANCH_HV;
9677                         /*
9678                          * adjust user setting (for HW filter setup)
9679                          */
9680                         attr->branch_sample_type = mask;
9681                 }
9682                 /* privileged levels capture (kernel, hv): check permissions */
9683                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9684                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9685                         return -EACCES;
9686         }
9687
9688         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9689                 ret = perf_reg_validate(attr->sample_regs_user);
9690                 if (ret)
9691                         return ret;
9692         }
9693
9694         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9695                 if (!arch_perf_have_user_stack_dump())
9696                         return -ENOSYS;
9697
9698                 /*
9699                  * We have __u32 type for the size, but so far
9700                  * we can only use __u16 as maximum due to the
9701                  * __u16 sample size limit.
9702                  */
9703                 if (attr->sample_stack_user >= USHRT_MAX)
9704                         ret = -EINVAL;
9705                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9706                         ret = -EINVAL;
9707         }
9708
9709         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9710                 ret = perf_reg_validate(attr->sample_regs_intr);
9711 out:
9712         return ret;
9713
9714 err_size:
9715         put_user(sizeof(*attr), &uattr->size);
9716         ret = -E2BIG;
9717         goto out;
9718 }
9719
9720 static int
9721 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9722 {
9723         struct ring_buffer *rb = NULL;
9724         int ret = -EINVAL;
9725
9726         if (!output_event)
9727                 goto set;
9728
9729         /* don't allow circular references */
9730         if (event == output_event)
9731                 goto out;
9732
9733         /*
9734          * Don't allow cross-cpu buffers
9735          */
9736         if (output_event->cpu != event->cpu)
9737                 goto out;
9738
9739         /*
9740          * If its not a per-cpu rb, it must be the same task.
9741          */
9742         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9743                 goto out;
9744
9745         /*
9746          * Mixing clocks in the same buffer is trouble you don't need.
9747          */
9748         if (output_event->clock != event->clock)
9749                 goto out;
9750
9751         /*
9752          * Either writing ring buffer from beginning or from end.
9753          * Mixing is not allowed.
9754          */
9755         if (is_write_backward(output_event) != is_write_backward(event))
9756                 goto out;
9757
9758         /*
9759          * If both events generate aux data, they must be on the same PMU
9760          */
9761         if (has_aux(event) && has_aux(output_event) &&
9762             event->pmu != output_event->pmu)
9763                 goto out;
9764
9765 set:
9766         mutex_lock(&event->mmap_mutex);
9767         /* Can't redirect output if we've got an active mmap() */
9768         if (atomic_read(&event->mmap_count))
9769                 goto unlock;
9770
9771         if (output_event) {
9772                 /* get the rb we want to redirect to */
9773                 rb = ring_buffer_get(output_event);
9774                 if (!rb)
9775                         goto unlock;
9776         }
9777
9778         ring_buffer_attach(event, rb);
9779
9780         ret = 0;
9781 unlock:
9782         mutex_unlock(&event->mmap_mutex);
9783
9784 out:
9785         return ret;
9786 }
9787
9788 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9789 {
9790         if (b < a)
9791                 swap(a, b);
9792
9793         mutex_lock(a);
9794         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9795 }
9796
9797 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9798 {
9799         bool nmi_safe = false;
9800
9801         switch (clk_id) {
9802         case CLOCK_MONOTONIC:
9803                 event->clock = &ktime_get_mono_fast_ns;
9804                 nmi_safe = true;
9805                 break;
9806
9807         case CLOCK_MONOTONIC_RAW:
9808                 event->clock = &ktime_get_raw_fast_ns;
9809                 nmi_safe = true;
9810                 break;
9811
9812         case CLOCK_REALTIME:
9813                 event->clock = &ktime_get_real_ns;
9814                 break;
9815
9816         case CLOCK_BOOTTIME:
9817                 event->clock = &ktime_get_boot_ns;
9818                 break;
9819
9820         case CLOCK_TAI:
9821                 event->clock = &ktime_get_tai_ns;
9822                 break;
9823
9824         default:
9825                 return -EINVAL;
9826         }
9827
9828         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9829                 return -EINVAL;
9830
9831         return 0;
9832 }
9833
9834 /*
9835  * Variation on perf_event_ctx_lock_nested(), except we take two context
9836  * mutexes.
9837  */
9838 static struct perf_event_context *
9839 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9840                              struct perf_event_context *ctx)
9841 {
9842         struct perf_event_context *gctx;
9843
9844 again:
9845         rcu_read_lock();
9846         gctx = READ_ONCE(group_leader->ctx);
9847         if (!atomic_inc_not_zero(&gctx->refcount)) {
9848                 rcu_read_unlock();
9849                 goto again;
9850         }
9851         rcu_read_unlock();
9852
9853         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9854
9855         if (group_leader->ctx != gctx) {
9856                 mutex_unlock(&ctx->mutex);
9857                 mutex_unlock(&gctx->mutex);
9858                 put_ctx(gctx);
9859                 goto again;
9860         }
9861
9862         return gctx;
9863 }
9864
9865 /**
9866  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9867  *
9868  * @attr_uptr:  event_id type attributes for monitoring/sampling
9869  * @pid:                target pid
9870  * @cpu:                target cpu
9871  * @group_fd:           group leader event fd
9872  */
9873 SYSCALL_DEFINE5(perf_event_open,
9874                 struct perf_event_attr __user *, attr_uptr,
9875                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9876 {
9877         struct perf_event *group_leader = NULL, *output_event = NULL;
9878         struct perf_event *event, *sibling;
9879         struct perf_event_attr attr;
9880         struct perf_event_context *ctx, *uninitialized_var(gctx);
9881         struct file *event_file = NULL;
9882         struct fd group = {NULL, 0};
9883         struct task_struct *task = NULL;
9884         struct pmu *pmu;
9885         int event_fd;
9886         int move_group = 0;
9887         int err;
9888         int f_flags = O_RDWR;
9889         int cgroup_fd = -1;
9890
9891         /* for future expandability... */
9892         if (flags & ~PERF_FLAG_ALL)
9893                 return -EINVAL;
9894
9895         err = perf_copy_attr(attr_uptr, &attr);
9896         if (err)
9897                 return err;
9898
9899         if (!attr.exclude_kernel) {
9900                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9901                         return -EACCES;
9902         }
9903
9904         if (attr.namespaces) {
9905                 if (!capable(CAP_SYS_ADMIN))
9906                         return -EACCES;
9907         }
9908
9909         if (attr.freq) {
9910                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9911                         return -EINVAL;
9912         } else {
9913                 if (attr.sample_period & (1ULL << 63))
9914                         return -EINVAL;
9915         }
9916
9917         /* Only privileged users can get physical addresses */
9918         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9919             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9920                 return -EACCES;
9921
9922         if (!attr.sample_max_stack)
9923                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9924
9925         /*
9926          * In cgroup mode, the pid argument is used to pass the fd
9927          * opened to the cgroup directory in cgroupfs. The cpu argument
9928          * designates the cpu on which to monitor threads from that
9929          * cgroup.
9930          */
9931         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9932                 return -EINVAL;
9933
9934         if (flags & PERF_FLAG_FD_CLOEXEC)
9935                 f_flags |= O_CLOEXEC;
9936
9937         event_fd = get_unused_fd_flags(f_flags);
9938         if (event_fd < 0)
9939                 return event_fd;
9940
9941         if (group_fd != -1) {
9942                 err = perf_fget_light(group_fd, &group);
9943                 if (err)
9944                         goto err_fd;
9945                 group_leader = group.file->private_data;
9946                 if (flags & PERF_FLAG_FD_OUTPUT)
9947                         output_event = group_leader;
9948                 if (flags & PERF_FLAG_FD_NO_GROUP)
9949                         group_leader = NULL;
9950         }
9951
9952         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9953                 task = find_lively_task_by_vpid(pid);
9954                 if (IS_ERR(task)) {
9955                         err = PTR_ERR(task);
9956                         goto err_group_fd;
9957                 }
9958         }
9959
9960         if (task && group_leader &&
9961             group_leader->attr.inherit != attr.inherit) {
9962                 err = -EINVAL;
9963                 goto err_task;
9964         }
9965
9966         if (task) {
9967                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9968                 if (err)
9969                         goto err_task;
9970
9971                 /*
9972                  * Reuse ptrace permission checks for now.
9973                  *
9974                  * We must hold cred_guard_mutex across this and any potential
9975                  * perf_install_in_context() call for this new event to
9976                  * serialize against exec() altering our credentials (and the
9977                  * perf_event_exit_task() that could imply).
9978                  */
9979                 err = -EACCES;
9980                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9981                         goto err_cred;
9982         }
9983
9984         if (flags & PERF_FLAG_PID_CGROUP)
9985                 cgroup_fd = pid;
9986
9987         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9988                                  NULL, NULL, cgroup_fd);
9989         if (IS_ERR(event)) {
9990                 err = PTR_ERR(event);
9991                 goto err_cred;
9992         }
9993
9994         if (is_sampling_event(event)) {
9995                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9996                         err = -EOPNOTSUPP;
9997                         goto err_alloc;
9998                 }
9999         }
10000
10001         /*
10002          * Special case software events and allow them to be part of
10003          * any hardware group.
10004          */
10005         pmu = event->pmu;
10006
10007         if (attr.use_clockid) {
10008                 err = perf_event_set_clock(event, attr.clockid);
10009                 if (err)
10010                         goto err_alloc;
10011         }
10012
10013         if (pmu->task_ctx_nr == perf_sw_context)
10014                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10015
10016         if (group_leader &&
10017             (is_software_event(event) != is_software_event(group_leader))) {
10018                 if (is_software_event(event)) {
10019                         /*
10020                          * If event and group_leader are not both a software
10021                          * event, and event is, then group leader is not.
10022                          *
10023                          * Allow the addition of software events to !software
10024                          * groups, this is safe because software events never
10025                          * fail to schedule.
10026                          */
10027                         pmu = group_leader->pmu;
10028                 } else if (is_software_event(group_leader) &&
10029                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10030                         /*
10031                          * In case the group is a pure software group, and we
10032                          * try to add a hardware event, move the whole group to
10033                          * the hardware context.
10034                          */
10035                         move_group = 1;
10036                 }
10037         }
10038
10039         /*
10040          * Get the target context (task or percpu):
10041          */
10042         ctx = find_get_context(pmu, task, event);
10043         if (IS_ERR(ctx)) {
10044                 err = PTR_ERR(ctx);
10045                 goto err_alloc;
10046         }
10047
10048         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10049                 err = -EBUSY;
10050                 goto err_context;
10051         }
10052
10053         /*
10054          * Look up the group leader (we will attach this event to it):
10055          */
10056         if (group_leader) {
10057                 err = -EINVAL;
10058
10059                 /*
10060                  * Do not allow a recursive hierarchy (this new sibling
10061                  * becoming part of another group-sibling):
10062                  */
10063                 if (group_leader->group_leader != group_leader)
10064                         goto err_context;
10065
10066                 /* All events in a group should have the same clock */
10067                 if (group_leader->clock != event->clock)
10068                         goto err_context;
10069
10070                 /*
10071                  * Make sure we're both events for the same CPU;
10072                  * grouping events for different CPUs is broken; since
10073                  * you can never concurrently schedule them anyhow.
10074                  */
10075                 if (group_leader->cpu != event->cpu)
10076                         goto err_context;
10077
10078                 /*
10079                  * Make sure we're both on the same task, or both
10080                  * per-CPU events.
10081                  */
10082                 if (group_leader->ctx->task != ctx->task)
10083                         goto err_context;
10084
10085                 /*
10086                  * Do not allow to attach to a group in a different task
10087                  * or CPU context. If we're moving SW events, we'll fix
10088                  * this up later, so allow that.
10089                  */
10090                 if (!move_group && group_leader->ctx != ctx)
10091                         goto err_context;
10092
10093                 /*
10094                  * Only a group leader can be exclusive or pinned
10095                  */
10096                 if (attr.exclusive || attr.pinned)
10097                         goto err_context;
10098         }
10099
10100         if (output_event) {
10101                 err = perf_event_set_output(event, output_event);
10102                 if (err)
10103                         goto err_context;
10104         }
10105
10106         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10107                                         f_flags);
10108         if (IS_ERR(event_file)) {
10109                 err = PTR_ERR(event_file);
10110                 event_file = NULL;
10111                 goto err_context;
10112         }
10113
10114         if (move_group) {
10115                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10116
10117                 if (gctx->task == TASK_TOMBSTONE) {
10118                         err = -ESRCH;
10119                         goto err_locked;
10120                 }
10121
10122                 /*
10123                  * Check if we raced against another sys_perf_event_open() call
10124                  * moving the software group underneath us.
10125                  */
10126                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10127                         /*
10128                          * If someone moved the group out from under us, check
10129                          * if this new event wound up on the same ctx, if so
10130                          * its the regular !move_group case, otherwise fail.
10131                          */
10132                         if (gctx != ctx) {
10133                                 err = -EINVAL;
10134                                 goto err_locked;
10135                         } else {
10136                                 perf_event_ctx_unlock(group_leader, gctx);
10137                                 move_group = 0;
10138                         }
10139                 }
10140         } else {
10141                 mutex_lock(&ctx->mutex);
10142         }
10143
10144         if (ctx->task == TASK_TOMBSTONE) {
10145                 err = -ESRCH;
10146                 goto err_locked;
10147         }
10148
10149         if (!perf_event_validate_size(event)) {
10150                 err = -E2BIG;
10151                 goto err_locked;
10152         }
10153
10154         if (!task) {
10155                 /*
10156                  * Check if the @cpu we're creating an event for is online.
10157                  *
10158                  * We use the perf_cpu_context::ctx::mutex to serialize against
10159                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10160                  */
10161                 struct perf_cpu_context *cpuctx =
10162                         container_of(ctx, struct perf_cpu_context, ctx);
10163
10164                 if (!cpuctx->online) {
10165                         err = -ENODEV;
10166                         goto err_locked;
10167                 }
10168         }
10169
10170
10171         /*
10172          * Must be under the same ctx::mutex as perf_install_in_context(),
10173          * because we need to serialize with concurrent event creation.
10174          */
10175         if (!exclusive_event_installable(event, ctx)) {
10176                 /* exclusive and group stuff are assumed mutually exclusive */
10177                 WARN_ON_ONCE(move_group);
10178
10179                 err = -EBUSY;
10180                 goto err_locked;
10181         }
10182
10183         WARN_ON_ONCE(ctx->parent_ctx);
10184
10185         /*
10186          * This is the point on no return; we cannot fail hereafter. This is
10187          * where we start modifying current state.
10188          */
10189
10190         if (move_group) {
10191                 /*
10192                  * See perf_event_ctx_lock() for comments on the details
10193                  * of swizzling perf_event::ctx.
10194                  */
10195                 perf_remove_from_context(group_leader, 0);
10196                 put_ctx(gctx);
10197
10198                 list_for_each_entry(sibling, &group_leader->sibling_list,
10199                                     group_entry) {
10200                         perf_remove_from_context(sibling, 0);
10201                         put_ctx(gctx);
10202                 }
10203
10204                 /*
10205                  * Wait for everybody to stop referencing the events through
10206                  * the old lists, before installing it on new lists.
10207                  */
10208                 synchronize_rcu();
10209
10210                 /*
10211                  * Install the group siblings before the group leader.
10212                  *
10213                  * Because a group leader will try and install the entire group
10214                  * (through the sibling list, which is still in-tact), we can
10215                  * end up with siblings installed in the wrong context.
10216                  *
10217                  * By installing siblings first we NO-OP because they're not
10218                  * reachable through the group lists.
10219                  */
10220                 list_for_each_entry(sibling, &group_leader->sibling_list,
10221                                     group_entry) {
10222                         perf_event__state_init(sibling);
10223                         perf_install_in_context(ctx, sibling, sibling->cpu);
10224                         get_ctx(ctx);
10225                 }
10226
10227                 /*
10228                  * Removing from the context ends up with disabled
10229                  * event. What we want here is event in the initial
10230                  * startup state, ready to be add into new context.
10231                  */
10232                 perf_event__state_init(group_leader);
10233                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10234                 get_ctx(ctx);
10235         }
10236
10237         /*
10238          * Precalculate sample_data sizes; do while holding ctx::mutex such
10239          * that we're serialized against further additions and before
10240          * perf_install_in_context() which is the point the event is active and
10241          * can use these values.
10242          */
10243         perf_event__header_size(event);
10244         perf_event__id_header_size(event);
10245
10246         event->owner = current;
10247
10248         perf_install_in_context(ctx, event, event->cpu);
10249         perf_unpin_context(ctx);
10250
10251         if (move_group)
10252                 perf_event_ctx_unlock(group_leader, gctx);
10253         mutex_unlock(&ctx->mutex);
10254
10255         if (task) {
10256                 mutex_unlock(&task->signal->cred_guard_mutex);
10257                 put_task_struct(task);
10258         }
10259
10260         mutex_lock(&current->perf_event_mutex);
10261         list_add_tail(&event->owner_entry, &current->perf_event_list);
10262         mutex_unlock(&current->perf_event_mutex);
10263
10264         /*
10265          * Drop the reference on the group_event after placing the
10266          * new event on the sibling_list. This ensures destruction
10267          * of the group leader will find the pointer to itself in
10268          * perf_group_detach().
10269          */
10270         fdput(group);
10271         fd_install(event_fd, event_file);
10272         return event_fd;
10273
10274 err_locked:
10275         if (move_group)
10276                 perf_event_ctx_unlock(group_leader, gctx);
10277         mutex_unlock(&ctx->mutex);
10278 /* err_file: */
10279         fput(event_file);
10280 err_context:
10281         perf_unpin_context(ctx);
10282         put_ctx(ctx);
10283 err_alloc:
10284         /*
10285          * If event_file is set, the fput() above will have called ->release()
10286          * and that will take care of freeing the event.
10287          */
10288         if (!event_file)
10289                 free_event(event);
10290 err_cred:
10291         if (task)
10292                 mutex_unlock(&task->signal->cred_guard_mutex);
10293 err_task:
10294         if (task)
10295                 put_task_struct(task);
10296 err_group_fd:
10297         fdput(group);
10298 err_fd:
10299         put_unused_fd(event_fd);
10300         return err;
10301 }
10302
10303 /**
10304  * perf_event_create_kernel_counter
10305  *
10306  * @attr: attributes of the counter to create
10307  * @cpu: cpu in which the counter is bound
10308  * @task: task to profile (NULL for percpu)
10309  */
10310 struct perf_event *
10311 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10312                                  struct task_struct *task,
10313                                  perf_overflow_handler_t overflow_handler,
10314                                  void *context)
10315 {
10316         struct perf_event_context *ctx;
10317         struct perf_event *event;
10318         int err;
10319
10320         /*
10321          * Get the target context (task or percpu):
10322          */
10323
10324         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10325                                  overflow_handler, context, -1);
10326         if (IS_ERR(event)) {
10327                 err = PTR_ERR(event);
10328                 goto err;
10329         }
10330
10331         /* Mark owner so we could distinguish it from user events. */
10332         event->owner = TASK_TOMBSTONE;
10333
10334         ctx = find_get_context(event->pmu, task, event);
10335         if (IS_ERR(ctx)) {
10336                 err = PTR_ERR(ctx);
10337                 goto err_free;
10338         }
10339
10340         WARN_ON_ONCE(ctx->parent_ctx);
10341         mutex_lock(&ctx->mutex);
10342         if (ctx->task == TASK_TOMBSTONE) {
10343                 err = -ESRCH;
10344                 goto err_unlock;
10345         }
10346
10347         if (!task) {
10348                 /*
10349                  * Check if the @cpu we're creating an event for is online.
10350                  *
10351                  * We use the perf_cpu_context::ctx::mutex to serialize against
10352                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10353                  */
10354                 struct perf_cpu_context *cpuctx =
10355                         container_of(ctx, struct perf_cpu_context, ctx);
10356                 if (!cpuctx->online) {
10357                         err = -ENODEV;
10358                         goto err_unlock;
10359                 }
10360         }
10361
10362         if (!exclusive_event_installable(event, ctx)) {
10363                 err = -EBUSY;
10364                 goto err_unlock;
10365         }
10366
10367         perf_install_in_context(ctx, event, cpu);
10368         perf_unpin_context(ctx);
10369         mutex_unlock(&ctx->mutex);
10370
10371         return event;
10372
10373 err_unlock:
10374         mutex_unlock(&ctx->mutex);
10375         perf_unpin_context(ctx);
10376         put_ctx(ctx);
10377 err_free:
10378         free_event(event);
10379 err:
10380         return ERR_PTR(err);
10381 }
10382 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10383
10384 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10385 {
10386         struct perf_event_context *src_ctx;
10387         struct perf_event_context *dst_ctx;
10388         struct perf_event *event, *tmp;
10389         LIST_HEAD(events);
10390
10391         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10392         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10393
10394         /*
10395          * See perf_event_ctx_lock() for comments on the details
10396          * of swizzling perf_event::ctx.
10397          */
10398         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10399         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10400                                  event_entry) {
10401                 perf_remove_from_context(event, 0);
10402                 unaccount_event_cpu(event, src_cpu);
10403                 put_ctx(src_ctx);
10404                 list_add(&event->migrate_entry, &events);
10405         }
10406
10407         /*
10408          * Wait for the events to quiesce before re-instating them.
10409          */
10410         synchronize_rcu();
10411
10412         /*
10413          * Re-instate events in 2 passes.
10414          *
10415          * Skip over group leaders and only install siblings on this first
10416          * pass, siblings will not get enabled without a leader, however a
10417          * leader will enable its siblings, even if those are still on the old
10418          * context.
10419          */
10420         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10421                 if (event->group_leader == event)
10422                         continue;
10423
10424                 list_del(&event->migrate_entry);
10425                 if (event->state >= PERF_EVENT_STATE_OFF)
10426                         event->state = PERF_EVENT_STATE_INACTIVE;
10427                 account_event_cpu(event, dst_cpu);
10428                 perf_install_in_context(dst_ctx, event, dst_cpu);
10429                 get_ctx(dst_ctx);
10430         }
10431
10432         /*
10433          * Once all the siblings are setup properly, install the group leaders
10434          * to make it go.
10435          */
10436         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10437                 list_del(&event->migrate_entry);
10438                 if (event->state >= PERF_EVENT_STATE_OFF)
10439                         event->state = PERF_EVENT_STATE_INACTIVE;
10440                 account_event_cpu(event, dst_cpu);
10441                 perf_install_in_context(dst_ctx, event, dst_cpu);
10442                 get_ctx(dst_ctx);
10443         }
10444         mutex_unlock(&dst_ctx->mutex);
10445         mutex_unlock(&src_ctx->mutex);
10446 }
10447 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10448
10449 static void sync_child_event(struct perf_event *child_event,
10450                                struct task_struct *child)
10451 {
10452         struct perf_event *parent_event = child_event->parent;
10453         u64 child_val;
10454
10455         if (child_event->attr.inherit_stat)
10456                 perf_event_read_event(child_event, child);
10457
10458         child_val = perf_event_count(child_event);
10459
10460         /*
10461          * Add back the child's count to the parent's count:
10462          */
10463         atomic64_add(child_val, &parent_event->child_count);
10464         atomic64_add(child_event->total_time_enabled,
10465                      &parent_event->child_total_time_enabled);
10466         atomic64_add(child_event->total_time_running,
10467                      &parent_event->child_total_time_running);
10468 }
10469
10470 static void
10471 perf_event_exit_event(struct perf_event *child_event,
10472                       struct perf_event_context *child_ctx,
10473                       struct task_struct *child)
10474 {
10475         struct perf_event *parent_event = child_event->parent;
10476
10477         /*
10478          * Do not destroy the 'original' grouping; because of the context
10479          * switch optimization the original events could've ended up in a
10480          * random child task.
10481          *
10482          * If we were to destroy the original group, all group related
10483          * operations would cease to function properly after this random
10484          * child dies.
10485          *
10486          * Do destroy all inherited groups, we don't care about those
10487          * and being thorough is better.
10488          */
10489         raw_spin_lock_irq(&child_ctx->lock);
10490         WARN_ON_ONCE(child_ctx->is_active);
10491
10492         if (parent_event)
10493                 perf_group_detach(child_event);
10494         list_del_event(child_event, child_ctx);
10495         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10496         raw_spin_unlock_irq(&child_ctx->lock);
10497
10498         /*
10499          * Parent events are governed by their filedesc, retain them.
10500          */
10501         if (!parent_event) {
10502                 perf_event_wakeup(child_event);
10503                 return;
10504         }
10505         /*
10506          * Child events can be cleaned up.
10507          */
10508
10509         sync_child_event(child_event, child);
10510
10511         /*
10512          * Remove this event from the parent's list
10513          */
10514         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10515         mutex_lock(&parent_event->child_mutex);
10516         list_del_init(&child_event->child_list);
10517         mutex_unlock(&parent_event->child_mutex);
10518
10519         /*
10520          * Kick perf_poll() for is_event_hup().
10521          */
10522         perf_event_wakeup(parent_event);
10523         free_event(child_event);
10524         put_event(parent_event);
10525 }
10526
10527 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10528 {
10529         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10530         struct perf_event *child_event, *next;
10531
10532         WARN_ON_ONCE(child != current);
10533
10534         child_ctx = perf_pin_task_context(child, ctxn);
10535         if (!child_ctx)
10536                 return;
10537
10538         /*
10539          * In order to reduce the amount of tricky in ctx tear-down, we hold
10540          * ctx::mutex over the entire thing. This serializes against almost
10541          * everything that wants to access the ctx.
10542          *
10543          * The exception is sys_perf_event_open() /
10544          * perf_event_create_kernel_count() which does find_get_context()
10545          * without ctx::mutex (it cannot because of the move_group double mutex
10546          * lock thing). See the comments in perf_install_in_context().
10547          */
10548         mutex_lock(&child_ctx->mutex);
10549
10550         /*
10551          * In a single ctx::lock section, de-schedule the events and detach the
10552          * context from the task such that we cannot ever get it scheduled back
10553          * in.
10554          */
10555         raw_spin_lock_irq(&child_ctx->lock);
10556         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10557
10558         /*
10559          * Now that the context is inactive, destroy the task <-> ctx relation
10560          * and mark the context dead.
10561          */
10562         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10563         put_ctx(child_ctx); /* cannot be last */
10564         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10565         put_task_struct(current); /* cannot be last */
10566
10567         clone_ctx = unclone_ctx(child_ctx);
10568         raw_spin_unlock_irq(&child_ctx->lock);
10569
10570         if (clone_ctx)
10571                 put_ctx(clone_ctx);
10572
10573         /*
10574          * Report the task dead after unscheduling the events so that we
10575          * won't get any samples after PERF_RECORD_EXIT. We can however still
10576          * get a few PERF_RECORD_READ events.
10577          */
10578         perf_event_task(child, child_ctx, 0);
10579
10580         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10581                 perf_event_exit_event(child_event, child_ctx, child);
10582
10583         mutex_unlock(&child_ctx->mutex);
10584
10585         put_ctx(child_ctx);
10586 }
10587
10588 /*
10589  * When a child task exits, feed back event values to parent events.
10590  *
10591  * Can be called with cred_guard_mutex held when called from
10592  * install_exec_creds().
10593  */
10594 void perf_event_exit_task(struct task_struct *child)
10595 {
10596         struct perf_event *event, *tmp;
10597         int ctxn;
10598
10599         mutex_lock(&child->perf_event_mutex);
10600         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10601                                  owner_entry) {
10602                 list_del_init(&event->owner_entry);
10603
10604                 /*
10605                  * Ensure the list deletion is visible before we clear
10606                  * the owner, closes a race against perf_release() where
10607                  * we need to serialize on the owner->perf_event_mutex.
10608                  */
10609                 smp_store_release(&event->owner, NULL);
10610         }
10611         mutex_unlock(&child->perf_event_mutex);
10612
10613         for_each_task_context_nr(ctxn)
10614                 perf_event_exit_task_context(child, ctxn);
10615
10616         /*
10617          * The perf_event_exit_task_context calls perf_event_task
10618          * with child's task_ctx, which generates EXIT events for
10619          * child contexts and sets child->perf_event_ctxp[] to NULL.
10620          * At this point we need to send EXIT events to cpu contexts.
10621          */
10622         perf_event_task(child, NULL, 0);
10623 }
10624
10625 static void perf_free_event(struct perf_event *event,
10626                             struct perf_event_context *ctx)
10627 {
10628         struct perf_event *parent = event->parent;
10629
10630         if (WARN_ON_ONCE(!parent))
10631                 return;
10632
10633         mutex_lock(&parent->child_mutex);
10634         list_del_init(&event->child_list);
10635         mutex_unlock(&parent->child_mutex);
10636
10637         put_event(parent);
10638
10639         raw_spin_lock_irq(&ctx->lock);
10640         perf_group_detach(event);
10641         list_del_event(event, ctx);
10642         raw_spin_unlock_irq(&ctx->lock);
10643         free_event(event);
10644 }
10645
10646 /*
10647  * Free an unexposed, unused context as created by inheritance by
10648  * perf_event_init_task below, used by fork() in case of fail.
10649  *
10650  * Not all locks are strictly required, but take them anyway to be nice and
10651  * help out with the lockdep assertions.
10652  */
10653 void perf_event_free_task(struct task_struct *task)
10654 {
10655         struct perf_event_context *ctx;
10656         struct perf_event *event, *tmp;
10657         int ctxn;
10658
10659         for_each_task_context_nr(ctxn) {
10660                 ctx = task->perf_event_ctxp[ctxn];
10661                 if (!ctx)
10662                         continue;
10663
10664                 mutex_lock(&ctx->mutex);
10665                 raw_spin_lock_irq(&ctx->lock);
10666                 /*
10667                  * Destroy the task <-> ctx relation and mark the context dead.
10668                  *
10669                  * This is important because even though the task hasn't been
10670                  * exposed yet the context has been (through child_list).
10671                  */
10672                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10673                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10674                 put_task_struct(task); /* cannot be last */
10675                 raw_spin_unlock_irq(&ctx->lock);
10676
10677                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10678                         perf_free_event(event, ctx);
10679
10680                 mutex_unlock(&ctx->mutex);
10681                 put_ctx(ctx);
10682         }
10683 }
10684
10685 void perf_event_delayed_put(struct task_struct *task)
10686 {
10687         int ctxn;
10688
10689         for_each_task_context_nr(ctxn)
10690                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10691 }
10692
10693 struct file *perf_event_get(unsigned int fd)
10694 {
10695         struct file *file;
10696
10697         file = fget_raw(fd);
10698         if (!file)
10699                 return ERR_PTR(-EBADF);
10700
10701         if (file->f_op != &perf_fops) {
10702                 fput(file);
10703                 return ERR_PTR(-EBADF);
10704         }
10705
10706         return file;
10707 }
10708
10709 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10710 {
10711         if (!event)
10712                 return ERR_PTR(-EINVAL);
10713
10714         return &event->attr;
10715 }
10716
10717 /*
10718  * Inherit a event from parent task to child task.
10719  *
10720  * Returns:
10721  *  - valid pointer on success
10722  *  - NULL for orphaned events
10723  *  - IS_ERR() on error
10724  */
10725 static struct perf_event *
10726 inherit_event(struct perf_event *parent_event,
10727               struct task_struct *parent,
10728               struct perf_event_context *parent_ctx,
10729               struct task_struct *child,
10730               struct perf_event *group_leader,
10731               struct perf_event_context *child_ctx)
10732 {
10733         enum perf_event_state parent_state = parent_event->state;
10734         struct perf_event *child_event;
10735         unsigned long flags;
10736
10737         /*
10738          * Instead of creating recursive hierarchies of events,
10739          * we link inherited events back to the original parent,
10740          * which has a filp for sure, which we use as the reference
10741          * count:
10742          */
10743         if (parent_event->parent)
10744                 parent_event = parent_event->parent;
10745
10746         child_event = perf_event_alloc(&parent_event->attr,
10747                                            parent_event->cpu,
10748                                            child,
10749                                            group_leader, parent_event,
10750                                            NULL, NULL, -1);
10751         if (IS_ERR(child_event))
10752                 return child_event;
10753
10754
10755         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
10756             !child_ctx->task_ctx_data) {
10757                 struct pmu *pmu = child_event->pmu;
10758
10759                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
10760                                                    GFP_KERNEL);
10761                 if (!child_ctx->task_ctx_data) {
10762                         free_event(child_event);
10763                         return NULL;
10764                 }
10765         }
10766
10767         /*
10768          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10769          * must be under the same lock in order to serialize against
10770          * perf_event_release_kernel(), such that either we must observe
10771          * is_orphaned_event() or they will observe us on the child_list.
10772          */
10773         mutex_lock(&parent_event->child_mutex);
10774         if (is_orphaned_event(parent_event) ||
10775             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10776                 mutex_unlock(&parent_event->child_mutex);
10777                 /* task_ctx_data is freed with child_ctx */
10778                 free_event(child_event);
10779                 return NULL;
10780         }
10781
10782         get_ctx(child_ctx);
10783
10784         /*
10785          * Make the child state follow the state of the parent event,
10786          * not its attr.disabled bit.  We hold the parent's mutex,
10787          * so we won't race with perf_event_{en, dis}able_family.
10788          */
10789         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10790                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10791         else
10792                 child_event->state = PERF_EVENT_STATE_OFF;
10793
10794         if (parent_event->attr.freq) {
10795                 u64 sample_period = parent_event->hw.sample_period;
10796                 struct hw_perf_event *hwc = &child_event->hw;
10797
10798                 hwc->sample_period = sample_period;
10799                 hwc->last_period   = sample_period;
10800
10801                 local64_set(&hwc->period_left, sample_period);
10802         }
10803
10804         child_event->ctx = child_ctx;
10805         child_event->overflow_handler = parent_event->overflow_handler;
10806         child_event->overflow_handler_context
10807                 = parent_event->overflow_handler_context;
10808
10809         /*
10810          * Precalculate sample_data sizes
10811          */
10812         perf_event__header_size(child_event);
10813         perf_event__id_header_size(child_event);
10814
10815         /*
10816          * Link it up in the child's context:
10817          */
10818         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10819         add_event_to_ctx(child_event, child_ctx);
10820         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10821
10822         /*
10823          * Link this into the parent event's child list
10824          */
10825         list_add_tail(&child_event->child_list, &parent_event->child_list);
10826         mutex_unlock(&parent_event->child_mutex);
10827
10828         return child_event;
10829 }
10830
10831 /*
10832  * Inherits an event group.
10833  *
10834  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10835  * This matches with perf_event_release_kernel() removing all child events.
10836  *
10837  * Returns:
10838  *  - 0 on success
10839  *  - <0 on error
10840  */
10841 static int inherit_group(struct perf_event *parent_event,
10842               struct task_struct *parent,
10843               struct perf_event_context *parent_ctx,
10844               struct task_struct *child,
10845               struct perf_event_context *child_ctx)
10846 {
10847         struct perf_event *leader;
10848         struct perf_event *sub;
10849         struct perf_event *child_ctr;
10850
10851         leader = inherit_event(parent_event, parent, parent_ctx,
10852                                  child, NULL, child_ctx);
10853         if (IS_ERR(leader))
10854                 return PTR_ERR(leader);
10855         /*
10856          * @leader can be NULL here because of is_orphaned_event(). In this
10857          * case inherit_event() will create individual events, similar to what
10858          * perf_group_detach() would do anyway.
10859          */
10860         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10861                 child_ctr = inherit_event(sub, parent, parent_ctx,
10862                                             child, leader, child_ctx);
10863                 if (IS_ERR(child_ctr))
10864                         return PTR_ERR(child_ctr);
10865         }
10866         return 0;
10867 }
10868
10869 /*
10870  * Creates the child task context and tries to inherit the event-group.
10871  *
10872  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10873  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10874  * consistent with perf_event_release_kernel() removing all child events.
10875  *
10876  * Returns:
10877  *  - 0 on success
10878  *  - <0 on error
10879  */
10880 static int
10881 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10882                    struct perf_event_context *parent_ctx,
10883                    struct task_struct *child, int ctxn,
10884                    int *inherited_all)
10885 {
10886         int ret;
10887         struct perf_event_context *child_ctx;
10888
10889         if (!event->attr.inherit) {
10890                 *inherited_all = 0;
10891                 return 0;
10892         }
10893
10894         child_ctx = child->perf_event_ctxp[ctxn];
10895         if (!child_ctx) {
10896                 /*
10897                  * This is executed from the parent task context, so
10898                  * inherit events that have been marked for cloning.
10899                  * First allocate and initialize a context for the
10900                  * child.
10901                  */
10902                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10903                 if (!child_ctx)
10904                         return -ENOMEM;
10905
10906                 child->perf_event_ctxp[ctxn] = child_ctx;
10907         }
10908
10909         ret = inherit_group(event, parent, parent_ctx,
10910                             child, child_ctx);
10911
10912         if (ret)
10913                 *inherited_all = 0;
10914
10915         return ret;
10916 }
10917
10918 /*
10919  * Initialize the perf_event context in task_struct
10920  */
10921 static int perf_event_init_context(struct task_struct *child, int ctxn)
10922 {
10923         struct perf_event_context *child_ctx, *parent_ctx;
10924         struct perf_event_context *cloned_ctx;
10925         struct perf_event *event;
10926         struct task_struct *parent = current;
10927         int inherited_all = 1;
10928         unsigned long flags;
10929         int ret = 0;
10930
10931         if (likely(!parent->perf_event_ctxp[ctxn]))
10932                 return 0;
10933
10934         /*
10935          * If the parent's context is a clone, pin it so it won't get
10936          * swapped under us.
10937          */
10938         parent_ctx = perf_pin_task_context(parent, ctxn);
10939         if (!parent_ctx)
10940                 return 0;
10941
10942         /*
10943          * No need to check if parent_ctx != NULL here; since we saw
10944          * it non-NULL earlier, the only reason for it to become NULL
10945          * is if we exit, and since we're currently in the middle of
10946          * a fork we can't be exiting at the same time.
10947          */
10948
10949         /*
10950          * Lock the parent list. No need to lock the child - not PID
10951          * hashed yet and not running, so nobody can access it.
10952          */
10953         mutex_lock(&parent_ctx->mutex);
10954
10955         /*
10956          * We dont have to disable NMIs - we are only looking at
10957          * the list, not manipulating it:
10958          */
10959         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10960                 ret = inherit_task_group(event, parent, parent_ctx,
10961                                          child, ctxn, &inherited_all);
10962                 if (ret)
10963                         goto out_unlock;
10964         }
10965
10966         /*
10967          * We can't hold ctx->lock when iterating the ->flexible_group list due
10968          * to allocations, but we need to prevent rotation because
10969          * rotate_ctx() will change the list from interrupt context.
10970          */
10971         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10972         parent_ctx->rotate_disable = 1;
10973         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10974
10975         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10976                 ret = inherit_task_group(event, parent, parent_ctx,
10977                                          child, ctxn, &inherited_all);
10978                 if (ret)
10979                         goto out_unlock;
10980         }
10981
10982         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10983         parent_ctx->rotate_disable = 0;
10984
10985         child_ctx = child->perf_event_ctxp[ctxn];
10986
10987         if (child_ctx && inherited_all) {
10988                 /*
10989                  * Mark the child context as a clone of the parent
10990                  * context, or of whatever the parent is a clone of.
10991                  *
10992                  * Note that if the parent is a clone, the holding of
10993                  * parent_ctx->lock avoids it from being uncloned.
10994                  */
10995                 cloned_ctx = parent_ctx->parent_ctx;
10996                 if (cloned_ctx) {
10997                         child_ctx->parent_ctx = cloned_ctx;
10998                         child_ctx->parent_gen = parent_ctx->parent_gen;
10999                 } else {
11000                         child_ctx->parent_ctx = parent_ctx;
11001                         child_ctx->parent_gen = parent_ctx->generation;
11002                 }
11003                 get_ctx(child_ctx->parent_ctx);
11004         }
11005
11006         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11007 out_unlock:
11008         mutex_unlock(&parent_ctx->mutex);
11009
11010         perf_unpin_context(parent_ctx);
11011         put_ctx(parent_ctx);
11012
11013         return ret;
11014 }
11015
11016 /*
11017  * Initialize the perf_event context in task_struct
11018  */
11019 int perf_event_init_task(struct task_struct *child)
11020 {
11021         int ctxn, ret;
11022
11023         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11024         mutex_init(&child->perf_event_mutex);
11025         INIT_LIST_HEAD(&child->perf_event_list);
11026
11027         for_each_task_context_nr(ctxn) {
11028                 ret = perf_event_init_context(child, ctxn);
11029                 if (ret) {
11030                         perf_event_free_task(child);
11031                         return ret;
11032                 }
11033         }
11034
11035         return 0;
11036 }
11037
11038 static void __init perf_event_init_all_cpus(void)
11039 {
11040         struct swevent_htable *swhash;
11041         int cpu;
11042
11043         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11044
11045         for_each_possible_cpu(cpu) {
11046                 swhash = &per_cpu(swevent_htable, cpu);
11047                 mutex_init(&swhash->hlist_mutex);
11048                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11049
11050                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11051                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11052
11053 #ifdef CONFIG_CGROUP_PERF
11054                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11055 #endif
11056                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11057         }
11058 }
11059
11060 void perf_swevent_init_cpu(unsigned int cpu)
11061 {
11062         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11063
11064         mutex_lock(&swhash->hlist_mutex);
11065         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11066                 struct swevent_hlist *hlist;
11067
11068                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11069                 WARN_ON(!hlist);
11070                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11071         }
11072         mutex_unlock(&swhash->hlist_mutex);
11073 }
11074
11075 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11076 static void __perf_event_exit_context(void *__info)
11077 {
11078         struct perf_event_context *ctx = __info;
11079         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11080         struct perf_event *event;
11081
11082         raw_spin_lock(&ctx->lock);
11083         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11084         list_for_each_entry(event, &ctx->event_list, event_entry)
11085                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11086         raw_spin_unlock(&ctx->lock);
11087 }
11088
11089 static void perf_event_exit_cpu_context(int cpu)
11090 {
11091         struct perf_cpu_context *cpuctx;
11092         struct perf_event_context *ctx;
11093         struct pmu *pmu;
11094
11095         mutex_lock(&pmus_lock);
11096         list_for_each_entry(pmu, &pmus, entry) {
11097                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11098                 ctx = &cpuctx->ctx;
11099
11100                 mutex_lock(&ctx->mutex);
11101                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11102                 cpuctx->online = 0;
11103                 mutex_unlock(&ctx->mutex);
11104         }
11105         cpumask_clear_cpu(cpu, perf_online_mask);
11106         mutex_unlock(&pmus_lock);
11107 }
11108 #else
11109
11110 static void perf_event_exit_cpu_context(int cpu) { }
11111
11112 #endif
11113
11114 int perf_event_init_cpu(unsigned int cpu)
11115 {
11116         struct perf_cpu_context *cpuctx;
11117         struct perf_event_context *ctx;
11118         struct pmu *pmu;
11119
11120         perf_swevent_init_cpu(cpu);
11121
11122         mutex_lock(&pmus_lock);
11123         cpumask_set_cpu(cpu, perf_online_mask);
11124         list_for_each_entry(pmu, &pmus, entry) {
11125                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11126                 ctx = &cpuctx->ctx;
11127
11128                 mutex_lock(&ctx->mutex);
11129                 cpuctx->online = 1;
11130                 mutex_unlock(&ctx->mutex);
11131         }
11132         mutex_unlock(&pmus_lock);
11133
11134         return 0;
11135 }
11136
11137 int perf_event_exit_cpu(unsigned int cpu)
11138 {
11139         perf_event_exit_cpu_context(cpu);
11140         return 0;
11141 }
11142
11143 static int
11144 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11145 {
11146         int cpu;
11147
11148         for_each_online_cpu(cpu)
11149                 perf_event_exit_cpu(cpu);
11150
11151         return NOTIFY_OK;
11152 }
11153
11154 /*
11155  * Run the perf reboot notifier at the very last possible moment so that
11156  * the generic watchdog code runs as long as possible.
11157  */
11158 static struct notifier_block perf_reboot_notifier = {
11159         .notifier_call = perf_reboot,
11160         .priority = INT_MIN,
11161 };
11162
11163 void __init perf_event_init(void)
11164 {
11165         int ret;
11166
11167         idr_init(&pmu_idr);
11168
11169         perf_event_init_all_cpus();
11170         init_srcu_struct(&pmus_srcu);
11171         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11172         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11173         perf_pmu_register(&perf_task_clock, NULL, -1);
11174         perf_tp_register();
11175         perf_event_init_cpu(smp_processor_id());
11176         register_reboot_notifier(&perf_reboot_notifier);
11177
11178         ret = init_hw_breakpoint();
11179         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11180
11181         /*
11182          * Build time assertion that we keep the data_head at the intended
11183          * location.  IOW, validation we got the __reserved[] size right.
11184          */
11185         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11186                      != 1024);
11187 }
11188
11189 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11190                               char *page)
11191 {
11192         struct perf_pmu_events_attr *pmu_attr =
11193                 container_of(attr, struct perf_pmu_events_attr, attr);
11194
11195         if (pmu_attr->event_str)
11196                 return sprintf(page, "%s\n", pmu_attr->event_str);
11197
11198         return 0;
11199 }
11200 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11201
11202 static int __init perf_event_sysfs_init(void)
11203 {
11204         struct pmu *pmu;
11205         int ret;
11206
11207         mutex_lock(&pmus_lock);
11208
11209         ret = bus_register(&pmu_bus);
11210         if (ret)
11211                 goto unlock;
11212
11213         list_for_each_entry(pmu, &pmus, entry) {
11214                 if (!pmu->name || pmu->type < 0)
11215                         continue;
11216
11217                 ret = pmu_dev_alloc(pmu);
11218                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11219         }
11220         pmu_bus_running = 1;
11221         ret = 0;
11222
11223 unlock:
11224         mutex_unlock(&pmus_lock);
11225
11226         return ret;
11227 }
11228 device_initcall(perf_event_sysfs_init);
11229
11230 #ifdef CONFIG_CGROUP_PERF
11231 static struct cgroup_subsys_state *
11232 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11233 {
11234         struct perf_cgroup *jc;
11235
11236         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11237         if (!jc)
11238                 return ERR_PTR(-ENOMEM);
11239
11240         jc->info = alloc_percpu(struct perf_cgroup_info);
11241         if (!jc->info) {
11242                 kfree(jc);
11243                 return ERR_PTR(-ENOMEM);
11244         }
11245
11246         return &jc->css;
11247 }
11248
11249 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11250 {
11251         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11252
11253         free_percpu(jc->info);
11254         kfree(jc);
11255 }
11256
11257 static int __perf_cgroup_move(void *info)
11258 {
11259         struct task_struct *task = info;
11260         rcu_read_lock();
11261         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11262         rcu_read_unlock();
11263         return 0;
11264 }
11265
11266 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11267 {
11268         struct task_struct *task;
11269         struct cgroup_subsys_state *css;
11270
11271         cgroup_taskset_for_each(task, css, tset)
11272                 task_function_call(task, __perf_cgroup_move, task);
11273 }
11274
11275 struct cgroup_subsys perf_event_cgrp_subsys = {
11276         .css_alloc      = perf_cgroup_css_alloc,
11277         .css_free       = perf_cgroup_css_free,
11278         .attach         = perf_cgroup_attach,
11279         /*
11280          * Implicitly enable on dfl hierarchy so that perf events can
11281          * always be filtered by cgroup2 path as long as perf_event
11282          * controller is not mounted on a legacy hierarchy.
11283          */
11284         .implicit_on_dfl = true,
11285         .threaded       = true,
11286 };
11287 #endif /* CONFIG_CGROUP_PERF */