x86/speculation: Fix redundant MDS mitigation message
[linux-2.6-block.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52
53 #include "internal.h"
54
55 #include <asm/irq_regs.h>
56
57 typedef int (*remote_function_f)(void *);
58
59 struct remote_function_call {
60         struct task_struct      *p;
61         remote_function_f       func;
62         void                    *info;
63         int                     ret;
64 };
65
66 static void remote_function(void *data)
67 {
68         struct remote_function_call *tfc = data;
69         struct task_struct *p = tfc->p;
70
71         if (p) {
72                 /* -EAGAIN */
73                 if (task_cpu(p) != smp_processor_id())
74                         return;
75
76                 /*
77                  * Now that we're on right CPU with IRQs disabled, we can test
78                  * if we hit the right task without races.
79                  */
80
81                 tfc->ret = -ESRCH; /* No such (running) process */
82                 if (p != current)
83                         return;
84         }
85
86         tfc->ret = tfc->func(tfc->info);
87 }
88
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:          the task to evaluate
92  * @func:       the function to be called
93  * @info:       the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *          -ESRCH  - when the process isn't running
100  *          -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105         struct remote_function_call data = {
106                 .p      = p,
107                 .func   = func,
108                 .info   = info,
109                 .ret    = -EAGAIN,
110         };
111         int ret;
112
113         do {
114                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115                 if (!ret)
116                         ret = data.ret;
117         } while (ret == -EAGAIN);
118
119         return ret;
120 }
121
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:       the function to be called
125  * @info:       the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133         struct remote_function_call data = {
134                 .p      = NULL,
135                 .func   = func,
136                 .info   = info,
137                 .ret    = -ENXIO, /* No such CPU */
138         };
139
140         smp_call_function_single(cpu, remote_function, &data, 1);
141
142         return data.ret;
143 }
144
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152                           struct perf_event_context *ctx)
153 {
154         raw_spin_lock(&cpuctx->ctx.lock);
155         if (ctx)
156                 raw_spin_lock(&ctx->lock);
157 }
158
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160                             struct perf_event_context *ctx)
161 {
162         if (ctx)
163                 raw_spin_unlock(&ctx->lock);
164         raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166
167 #define TASK_TOMBSTONE ((void *)-1L)
168
169 static bool is_kernel_event(struct perf_event *event)
170 {
171         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194                         struct perf_event_context *, void *);
195
196 struct event_function_struct {
197         struct perf_event *event;
198         event_f func;
199         void *data;
200 };
201
202 static int event_function(void *info)
203 {
204         struct event_function_struct *efs = info;
205         struct perf_event *event = efs->event;
206         struct perf_event_context *ctx = event->ctx;
207         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208         struct perf_event_context *task_ctx = cpuctx->task_ctx;
209         int ret = 0;
210
211         lockdep_assert_irqs_disabled();
212
213         perf_ctx_lock(cpuctx, task_ctx);
214         /*
215          * Since we do the IPI call without holding ctx->lock things can have
216          * changed, double check we hit the task we set out to hit.
217          */
218         if (ctx->task) {
219                 if (ctx->task != current) {
220                         ret = -ESRCH;
221                         goto unlock;
222                 }
223
224                 /*
225                  * We only use event_function_call() on established contexts,
226                  * and event_function() is only ever called when active (or
227                  * rather, we'll have bailed in task_function_call() or the
228                  * above ctx->task != current test), therefore we must have
229                  * ctx->is_active here.
230                  */
231                 WARN_ON_ONCE(!ctx->is_active);
232                 /*
233                  * And since we have ctx->is_active, cpuctx->task_ctx must
234                  * match.
235                  */
236                 WARN_ON_ONCE(task_ctx != ctx);
237         } else {
238                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
239         }
240
241         efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243         perf_ctx_unlock(cpuctx, task_ctx);
244
245         return ret;
246 }
247
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250         struct perf_event_context *ctx = event->ctx;
251         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252         struct event_function_struct efs = {
253                 .event = event,
254                 .func = func,
255                 .data = data,
256         };
257
258         if (!event->parent) {
259                 /*
260                  * If this is a !child event, we must hold ctx::mutex to
261                  * stabilize the the event->ctx relation. See
262                  * perf_event_ctx_lock().
263                  */
264                 lockdep_assert_held(&ctx->mutex);
265         }
266
267         if (!task) {
268                 cpu_function_call(event->cpu, event_function, &efs);
269                 return;
270         }
271
272         if (task == TASK_TOMBSTONE)
273                 return;
274
275 again:
276         if (!task_function_call(task, event_function, &efs))
277                 return;
278
279         raw_spin_lock_irq(&ctx->lock);
280         /*
281          * Reload the task pointer, it might have been changed by
282          * a concurrent perf_event_context_sched_out().
283          */
284         task = ctx->task;
285         if (task == TASK_TOMBSTONE) {
286                 raw_spin_unlock_irq(&ctx->lock);
287                 return;
288         }
289         if (ctx->is_active) {
290                 raw_spin_unlock_irq(&ctx->lock);
291                 goto again;
292         }
293         func(event, NULL, ctx, data);
294         raw_spin_unlock_irq(&ctx->lock);
295 }
296
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303         struct perf_event_context *ctx = event->ctx;
304         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305         struct task_struct *task = READ_ONCE(ctx->task);
306         struct perf_event_context *task_ctx = NULL;
307
308         lockdep_assert_irqs_disabled();
309
310         if (task) {
311                 if (task == TASK_TOMBSTONE)
312                         return;
313
314                 task_ctx = ctx;
315         }
316
317         perf_ctx_lock(cpuctx, task_ctx);
318
319         task = ctx->task;
320         if (task == TASK_TOMBSTONE)
321                 goto unlock;
322
323         if (task) {
324                 /*
325                  * We must be either inactive or active and the right task,
326                  * otherwise we're screwed, since we cannot IPI to somewhere
327                  * else.
328                  */
329                 if (ctx->is_active) {
330                         if (WARN_ON_ONCE(task != current))
331                                 goto unlock;
332
333                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334                                 goto unlock;
335                 }
336         } else {
337                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338         }
339
340         func(event, cpuctx, ctx, data);
341 unlock:
342         perf_ctx_unlock(cpuctx, task_ctx);
343 }
344
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346                        PERF_FLAG_FD_OUTPUT  |\
347                        PERF_FLAG_PID_CGROUP |\
348                        PERF_FLAG_FD_CLOEXEC)
349
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354         (PERF_SAMPLE_BRANCH_KERNEL |\
355          PERF_SAMPLE_BRANCH_HV)
356
357 enum event_type_t {
358         EVENT_FLEXIBLE = 0x1,
359         EVENT_PINNED = 0x2,
360         EVENT_TIME = 0x4,
361         /* see ctx_resched() for details */
362         EVENT_CPU = 0x8,
363         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE         100000
411 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
413
414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
418
419 static int perf_sample_allowed_ns __read_mostly =
420         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421
422 static void update_perf_cpu_limits(void)
423 {
424         u64 tmp = perf_sample_period_ns;
425
426         tmp *= sysctl_perf_cpu_time_max_percent;
427         tmp = div_u64(tmp, 100);
428         if (!tmp)
429                 tmp = 1;
430
431         WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437                 void __user *buffer, size_t *lenp,
438                 loff_t *ppos)
439 {
440         int ret;
441         int perf_cpu = sysctl_perf_cpu_time_max_percent;
442         /*
443          * If throttling is disabled don't allow the write:
444          */
445         if (write && (perf_cpu == 100 || perf_cpu == 0))
446                 return -EINVAL;
447
448         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449         if (ret || !write)
450                 return ret;
451
452         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454         update_perf_cpu_limits();
455
456         return 0;
457 }
458
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462                                 void __user *buffer, size_t *lenp,
463                                 loff_t *ppos)
464 {
465         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466
467         if (ret || !write)
468                 return ret;
469
470         if (sysctl_perf_cpu_time_max_percent == 100 ||
471             sysctl_perf_cpu_time_max_percent == 0) {
472                 printk(KERN_WARNING
473                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474                 WRITE_ONCE(perf_sample_allowed_ns, 0);
475         } else {
476                 update_perf_cpu_limits();
477         }
478
479         return 0;
480 }
481
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490
491 static u64 __report_avg;
492 static u64 __report_allowed;
493
494 static void perf_duration_warn(struct irq_work *w)
495 {
496         printk_ratelimited(KERN_INFO
497                 "perf: interrupt took too long (%lld > %lld), lowering "
498                 "kernel.perf_event_max_sample_rate to %d\n",
499                 __report_avg, __report_allowed,
500                 sysctl_perf_event_sample_rate);
501 }
502
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508         u64 running_len;
509         u64 avg_len;
510         u32 max;
511
512         if (max_len == 0)
513                 return;
514
515         /* Decay the counter by 1 average sample. */
516         running_len = __this_cpu_read(running_sample_length);
517         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518         running_len += sample_len_ns;
519         __this_cpu_write(running_sample_length, running_len);
520
521         /*
522          * Note: this will be biased artifically low until we have
523          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524          * from having to maintain a count.
525          */
526         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527         if (avg_len <= max_len)
528                 return;
529
530         __report_avg = avg_len;
531         __report_allowed = max_len;
532
533         /*
534          * Compute a throttle threshold 25% below the current duration.
535          */
536         avg_len += avg_len / 4;
537         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538         if (avg_len < max)
539                 max /= (u32)avg_len;
540         else
541                 max = 1;
542
543         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544         WRITE_ONCE(max_samples_per_tick, max);
545
546         sysctl_perf_event_sample_rate = max * HZ;
547         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548
549         if (!irq_work_queue(&perf_duration_work)) {
550                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551                              "kernel.perf_event_max_sample_rate to %d\n",
552                              __report_avg, __report_allowed,
553                              sysctl_perf_event_sample_rate);
554         }
555 }
556
557 static atomic64_t perf_event_id;
558
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560                               enum event_type_t event_type);
561
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563                              enum event_type_t event_type,
564                              struct task_struct *task);
565
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568
569 void __weak perf_event_print_debug(void)        { }
570
571 extern __weak const char *perf_pmu_name(void)
572 {
573         return "pmu";
574 }
575
576 static inline u64 perf_clock(void)
577 {
578         return local_clock();
579 }
580
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583         return event->clock();
584 }
585
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611         struct perf_event *leader = event->group_leader;
612
613         if (leader->state <= PERF_EVENT_STATE_OFF)
614                 return leader->state;
615
616         return event->state;
617 }
618
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622         enum perf_event_state state = __perf_effective_state(event);
623         u64 delta = now - event->tstamp;
624
625         *enabled = event->total_time_enabled;
626         if (state >= PERF_EVENT_STATE_INACTIVE)
627                 *enabled += delta;
628
629         *running = event->total_time_running;
630         if (state >= PERF_EVENT_STATE_ACTIVE)
631                 *running += delta;
632 }
633
634 static void perf_event_update_time(struct perf_event *event)
635 {
636         u64 now = perf_event_time(event);
637
638         __perf_update_times(event, now, &event->total_time_enabled,
639                                         &event->total_time_running);
640         event->tstamp = now;
641 }
642
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645         struct perf_event *sibling;
646
647         for_each_sibling_event(sibling, leader)
648                 perf_event_update_time(sibling);
649 }
650
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654         if (event->state == state)
655                 return;
656
657         perf_event_update_time(event);
658         /*
659          * If a group leader gets enabled/disabled all its siblings
660          * are affected too.
661          */
662         if ((event->state < 0) ^ (state < 0))
663                 perf_event_update_sibling_time(event);
664
665         WRITE_ONCE(event->state, state);
666 }
667
668 #ifdef CONFIG_CGROUP_PERF
669
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673         struct perf_event_context *ctx = event->ctx;
674         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
676         /* @event doesn't care about cgroup */
677         if (!event->cgrp)
678                 return true;
679
680         /* wants specific cgroup scope but @cpuctx isn't associated with any */
681         if (!cpuctx->cgrp)
682                 return false;
683
684         /*
685          * Cgroup scoping is recursive.  An event enabled for a cgroup is
686          * also enabled for all its descendant cgroups.  If @cpuctx's
687          * cgroup is a descendant of @event's (the test covers identity
688          * case), it's a match.
689          */
690         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691                                     event->cgrp->css.cgroup);
692 }
693
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696         css_put(&event->cgrp->css);
697         event->cgrp = NULL;
698 }
699
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702         return event->cgrp != NULL;
703 }
704
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707         struct perf_cgroup_info *t;
708
709         t = per_cpu_ptr(event->cgrp->info, event->cpu);
710         return t->time;
711 }
712
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715         struct perf_cgroup_info *info;
716         u64 now;
717
718         now = perf_clock();
719
720         info = this_cpu_ptr(cgrp->info);
721
722         info->time += now - info->timestamp;
723         info->timestamp = now;
724 }
725
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728         struct perf_cgroup *cgrp = cpuctx->cgrp;
729         struct cgroup_subsys_state *css;
730
731         if (cgrp) {
732                 for (css = &cgrp->css; css; css = css->parent) {
733                         cgrp = container_of(css, struct perf_cgroup, css);
734                         __update_cgrp_time(cgrp);
735                 }
736         }
737 }
738
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741         struct perf_cgroup *cgrp;
742
743         /*
744          * ensure we access cgroup data only when needed and
745          * when we know the cgroup is pinned (css_get)
746          */
747         if (!is_cgroup_event(event))
748                 return;
749
750         cgrp = perf_cgroup_from_task(current, event->ctx);
751         /*
752          * Do not update time when cgroup is not active
753          */
754         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755                 __update_cgrp_time(event->cgrp);
756 }
757
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760                           struct perf_event_context *ctx)
761 {
762         struct perf_cgroup *cgrp;
763         struct perf_cgroup_info *info;
764         struct cgroup_subsys_state *css;
765
766         /*
767          * ctx->lock held by caller
768          * ensure we do not access cgroup data
769          * unless we have the cgroup pinned (css_get)
770          */
771         if (!task || !ctx->nr_cgroups)
772                 return;
773
774         cgrp = perf_cgroup_from_task(task, ctx);
775
776         for (css = &cgrp->css; css; css = css->parent) {
777                 cgrp = container_of(css, struct perf_cgroup, css);
778                 info = this_cpu_ptr(cgrp->info);
779                 info->timestamp = ctx->timestamp;
780         }
781 }
782
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
785 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
787
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796         struct perf_cpu_context *cpuctx;
797         struct list_head *list;
798         unsigned long flags;
799
800         /*
801          * Disable interrupts and preemption to avoid this CPU's
802          * cgrp_cpuctx_entry to change under us.
803          */
804         local_irq_save(flags);
805
806         list = this_cpu_ptr(&cgrp_cpuctx_list);
807         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809
810                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811                 perf_pmu_disable(cpuctx->ctx.pmu);
812
813                 if (mode & PERF_CGROUP_SWOUT) {
814                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815                         /*
816                          * must not be done before ctxswout due
817                          * to event_filter_match() in event_sched_out()
818                          */
819                         cpuctx->cgrp = NULL;
820                 }
821
822                 if (mode & PERF_CGROUP_SWIN) {
823                         WARN_ON_ONCE(cpuctx->cgrp);
824                         /*
825                          * set cgrp before ctxsw in to allow
826                          * event_filter_match() to not have to pass
827                          * task around
828                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
829                          * because cgorup events are only per-cpu
830                          */
831                         cpuctx->cgrp = perf_cgroup_from_task(task,
832                                                              &cpuctx->ctx);
833                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834                 }
835                 perf_pmu_enable(cpuctx->ctx.pmu);
836                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837         }
838
839         local_irq_restore(flags);
840 }
841
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843                                          struct task_struct *next)
844 {
845         struct perf_cgroup *cgrp1;
846         struct perf_cgroup *cgrp2 = NULL;
847
848         rcu_read_lock();
849         /*
850          * we come here when we know perf_cgroup_events > 0
851          * we do not need to pass the ctx here because we know
852          * we are holding the rcu lock
853          */
854         cgrp1 = perf_cgroup_from_task(task, NULL);
855         cgrp2 = perf_cgroup_from_task(next, NULL);
856
857         /*
858          * only schedule out current cgroup events if we know
859          * that we are switching to a different cgroup. Otherwise,
860          * do no touch the cgroup events.
861          */
862         if (cgrp1 != cgrp2)
863                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864
865         rcu_read_unlock();
866 }
867
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869                                         struct task_struct *task)
870 {
871         struct perf_cgroup *cgrp1;
872         struct perf_cgroup *cgrp2 = NULL;
873
874         rcu_read_lock();
875         /*
876          * we come here when we know perf_cgroup_events > 0
877          * we do not need to pass the ctx here because we know
878          * we are holding the rcu lock
879          */
880         cgrp1 = perf_cgroup_from_task(task, NULL);
881         cgrp2 = perf_cgroup_from_task(prev, NULL);
882
883         /*
884          * only need to schedule in cgroup events if we are changing
885          * cgroup during ctxsw. Cgroup events were not scheduled
886          * out of ctxsw out if that was not the case.
887          */
888         if (cgrp1 != cgrp2)
889                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890
891         rcu_read_unlock();
892 }
893
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895                                       struct perf_event_attr *attr,
896                                       struct perf_event *group_leader)
897 {
898         struct perf_cgroup *cgrp;
899         struct cgroup_subsys_state *css;
900         struct fd f = fdget(fd);
901         int ret = 0;
902
903         if (!f.file)
904                 return -EBADF;
905
906         css = css_tryget_online_from_dir(f.file->f_path.dentry,
907                                          &perf_event_cgrp_subsys);
908         if (IS_ERR(css)) {
909                 ret = PTR_ERR(css);
910                 goto out;
911         }
912
913         cgrp = container_of(css, struct perf_cgroup, css);
914         event->cgrp = cgrp;
915
916         /*
917          * all events in a group must monitor
918          * the same cgroup because a task belongs
919          * to only one perf cgroup at a time
920          */
921         if (group_leader && group_leader->cgrp != cgrp) {
922                 perf_detach_cgroup(event);
923                 ret = -EINVAL;
924         }
925 out:
926         fdput(f);
927         return ret;
928 }
929
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933         struct perf_cgroup_info *t;
934         t = per_cpu_ptr(event->cgrp->info, event->cpu);
935         event->shadow_ctx_time = now - t->timestamp;
936 }
937
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944                          struct perf_event_context *ctx, bool add)
945 {
946         struct perf_cpu_context *cpuctx;
947         struct list_head *cpuctx_entry;
948
949         if (!is_cgroup_event(event))
950                 return;
951
952         /*
953          * Because cgroup events are always per-cpu events,
954          * this will always be called from the right CPU.
955          */
956         cpuctx = __get_cpu_context(ctx);
957
958         /*
959          * Since setting cpuctx->cgrp is conditional on the current @cgrp
960          * matching the event's cgroup, we must do this for every new event,
961          * because if the first would mismatch, the second would not try again
962          * and we would leave cpuctx->cgrp unset.
963          */
964         if (add && !cpuctx->cgrp) {
965                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
967                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968                         cpuctx->cgrp = cgrp;
969         }
970
971         if (add && ctx->nr_cgroups++)
972                 return;
973         else if (!add && --ctx->nr_cgroups)
974                 return;
975
976         /* no cgroup running */
977         if (!add)
978                 cpuctx->cgrp = NULL;
979
980         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981         if (add)
982                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983         else
984                 list_del(cpuctx_entry);
985 }
986
987 #else /* !CONFIG_CGROUP_PERF */
988
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992         return true;
993 }
994
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000         return 0;
1001 }
1002
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012                                          struct task_struct *next)
1013 {
1014 }
1015
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017                                         struct task_struct *task)
1018 {
1019 }
1020
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022                                       struct perf_event_attr *attr,
1023                                       struct perf_event *group_leader)
1024 {
1025         return -EINVAL;
1026 }
1027
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030                           struct perf_event_context *ctx)
1031 {
1032 }
1033
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046         return 0;
1047 }
1048
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051                          struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054
1055 #endif
1056
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067         struct perf_cpu_context *cpuctx;
1068         bool rotations;
1069
1070         lockdep_assert_irqs_disabled();
1071
1072         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073         rotations = perf_rotate_context(cpuctx);
1074
1075         raw_spin_lock(&cpuctx->hrtimer_lock);
1076         if (rotations)
1077                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078         else
1079                 cpuctx->hrtimer_active = 0;
1080         raw_spin_unlock(&cpuctx->hrtimer_lock);
1081
1082         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087         struct hrtimer *timer = &cpuctx->hrtimer;
1088         struct pmu *pmu = cpuctx->ctx.pmu;
1089         u64 interval;
1090
1091         /* no multiplexing needed for SW PMU */
1092         if (pmu->task_ctx_nr == perf_sw_context)
1093                 return;
1094
1095         /*
1096          * check default is sane, if not set then force to
1097          * default interval (1/tick)
1098          */
1099         interval = pmu->hrtimer_interval_ms;
1100         if (interval < 1)
1101                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102
1103         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104
1105         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1107         timer->function = perf_mux_hrtimer_handler;
1108 }
1109
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112         struct hrtimer *timer = &cpuctx->hrtimer;
1113         struct pmu *pmu = cpuctx->ctx.pmu;
1114         unsigned long flags;
1115
1116         /* not for SW PMU */
1117         if (pmu->task_ctx_nr == perf_sw_context)
1118                 return 0;
1119
1120         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121         if (!cpuctx->hrtimer_active) {
1122                 cpuctx->hrtimer_active = 1;
1123                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1125         }
1126         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127
1128         return 0;
1129 }
1130
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134         if (!(*count)++)
1135                 pmu->pmu_disable(pmu);
1136 }
1137
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141         if (!--(*count))
1142                 pmu->pmu_enable(pmu);
1143 }
1144
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156
1157         lockdep_assert_irqs_disabled();
1158
1159         WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161         list_add(&ctx->active_ctx_list, head);
1162 }
1163
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166         lockdep_assert_irqs_disabled();
1167
1168         WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170         list_del_init(&ctx->active_ctx_list);
1171 }
1172
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175         refcount_inc(&ctx->refcount);
1176 }
1177
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180         struct perf_event_context *ctx;
1181
1182         ctx = container_of(head, struct perf_event_context, rcu_head);
1183         kfree(ctx->task_ctx_data);
1184         kfree(ctx);
1185 }
1186
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189         if (refcount_dec_and_test(&ctx->refcount)) {
1190                 if (ctx->parent_ctx)
1191                         put_ctx(ctx->parent_ctx);
1192                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193                         put_task_struct(ctx->task);
1194                 call_rcu(&ctx->rcu_head, free_ctx);
1195         }
1196 }
1197
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()    [ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()                   [ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()         [ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event() [ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *      task_struct::perf_event_mutex
1253  *        perf_event_context::mutex
1254  *          perf_event::child_mutex;
1255  *            perf_event_context::lock
1256  *          perf_event::mmap_mutex
1257  *          mmap_sem
1258  *            perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *        cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267         struct perf_event_context *ctx;
1268
1269 again:
1270         rcu_read_lock();
1271         ctx = READ_ONCE(event->ctx);
1272         if (!refcount_inc_not_zero(&ctx->refcount)) {
1273                 rcu_read_unlock();
1274                 goto again;
1275         }
1276         rcu_read_unlock();
1277
1278         mutex_lock_nested(&ctx->mutex, nesting);
1279         if (event->ctx != ctx) {
1280                 mutex_unlock(&ctx->mutex);
1281                 put_ctx(ctx);
1282                 goto again;
1283         }
1284
1285         return ctx;
1286 }
1287
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291         return perf_event_ctx_lock_nested(event, 0);
1292 }
1293
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295                                   struct perf_event_context *ctx)
1296 {
1297         mutex_unlock(&ctx->mutex);
1298         put_ctx(ctx);
1299 }
1300
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311         lockdep_assert_held(&ctx->lock);
1312
1313         if (parent_ctx)
1314                 ctx->parent_ctx = NULL;
1315         ctx->generation++;
1316
1317         return parent_ctx;
1318 }
1319
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321                                 enum pid_type type)
1322 {
1323         u32 nr;
1324         /*
1325          * only top level events have the pid namespace they were created in
1326          */
1327         if (event->parent)
1328                 event = event->parent;
1329
1330         nr = __task_pid_nr_ns(p, type, event->ns);
1331         /* avoid -1 if it is idle thread or runs in another ns */
1332         if (!nr && !pid_alive(p))
1333                 nr = -1;
1334         return nr;
1335 }
1336
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344         return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353         u64 id = event->id;
1354
1355         if (event->parent)
1356                 id = event->parent->id;
1357
1358         return id;
1359 }
1360
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370         struct perf_event_context *ctx;
1371
1372 retry:
1373         /*
1374          * One of the few rules of preemptible RCU is that one cannot do
1375          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376          * part of the read side critical section was irqs-enabled -- see
1377          * rcu_read_unlock_special().
1378          *
1379          * Since ctx->lock nests under rq->lock we must ensure the entire read
1380          * side critical section has interrupts disabled.
1381          */
1382         local_irq_save(*flags);
1383         rcu_read_lock();
1384         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385         if (ctx) {
1386                 /*
1387                  * If this context is a clone of another, it might
1388                  * get swapped for another underneath us by
1389                  * perf_event_task_sched_out, though the
1390                  * rcu_read_lock() protects us from any context
1391                  * getting freed.  Lock the context and check if it
1392                  * got swapped before we could get the lock, and retry
1393                  * if so.  If we locked the right context, then it
1394                  * can't get swapped on us any more.
1395                  */
1396                 raw_spin_lock(&ctx->lock);
1397                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398                         raw_spin_unlock(&ctx->lock);
1399                         rcu_read_unlock();
1400                         local_irq_restore(*flags);
1401                         goto retry;
1402                 }
1403
1404                 if (ctx->task == TASK_TOMBSTONE ||
1405                     !refcount_inc_not_zero(&ctx->refcount)) {
1406                         raw_spin_unlock(&ctx->lock);
1407                         ctx = NULL;
1408                 } else {
1409                         WARN_ON_ONCE(ctx->task != task);
1410                 }
1411         }
1412         rcu_read_unlock();
1413         if (!ctx)
1414                 local_irq_restore(*flags);
1415         return ctx;
1416 }
1417
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426         struct perf_event_context *ctx;
1427         unsigned long flags;
1428
1429         ctx = perf_lock_task_context(task, ctxn, &flags);
1430         if (ctx) {
1431                 ++ctx->pin_count;
1432                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433         }
1434         return ctx;
1435 }
1436
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439         unsigned long flags;
1440
1441         raw_spin_lock_irqsave(&ctx->lock, flags);
1442         --ctx->pin_count;
1443         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451         u64 now = perf_clock();
1452
1453         ctx->time += now - ctx->timestamp;
1454         ctx->timestamp = now;
1455 }
1456
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459         struct perf_event_context *ctx = event->ctx;
1460
1461         if (is_cgroup_event(event))
1462                 return perf_cgroup_event_time(event);
1463
1464         return ctx ? ctx->time : 0;
1465 }
1466
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469         struct perf_event_context *ctx = event->ctx;
1470         enum event_type_t event_type;
1471
1472         lockdep_assert_held(&ctx->lock);
1473
1474         /*
1475          * It's 'group type', really, because if our group leader is
1476          * pinned, so are we.
1477          */
1478         if (event->group_leader != event)
1479                 event = event->group_leader;
1480
1481         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482         if (!ctx->task)
1483                 event_type |= EVENT_CPU;
1484
1485         return event_type;
1486 }
1487
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493         RB_CLEAR_NODE(&event->group_node);
1494         event->group_index = 0;
1495 }
1496
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504         if (event->attr.pinned)
1505                 return &ctx->pinned_groups;
1506         else
1507                 return &ctx->flexible_groups;
1508 }
1509
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515         groups->tree = RB_ROOT;
1516         groups->index = 0;
1517 }
1518
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528         if (left->cpu < right->cpu)
1529                 return true;
1530         if (left->cpu > right->cpu)
1531                 return false;
1532
1533         if (left->group_index < right->group_index)
1534                 return true;
1535         if (left->group_index > right->group_index)
1536                 return false;
1537
1538         return false;
1539 }
1540
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548                          struct perf_event *event)
1549 {
1550         struct perf_event *node_event;
1551         struct rb_node *parent;
1552         struct rb_node **node;
1553
1554         event->group_index = ++groups->index;
1555
1556         node = &groups->tree.rb_node;
1557         parent = *node;
1558
1559         while (*node) {
1560                 parent = *node;
1561                 node_event = container_of(*node, struct perf_event, group_node);
1562
1563                 if (perf_event_groups_less(event, node_event))
1564                         node = &parent->rb_left;
1565                 else
1566                         node = &parent->rb_right;
1567         }
1568
1569         rb_link_node(&event->group_node, parent, node);
1570         rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579         struct perf_event_groups *groups;
1580
1581         groups = get_event_groups(event, ctx);
1582         perf_event_groups_insert(groups, event);
1583 }
1584
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590                          struct perf_event *event)
1591 {
1592         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593                      RB_EMPTY_ROOT(&groups->tree));
1594
1595         rb_erase(&event->group_node, &groups->tree);
1596         init_event_group(event);
1597 }
1598
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605         struct perf_event_groups *groups;
1606
1607         groups = get_event_groups(event, ctx);
1608         perf_event_groups_delete(groups, event);
1609 }
1610
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617         struct perf_event *node_event = NULL, *match = NULL;
1618         struct rb_node *node = groups->tree.rb_node;
1619
1620         while (node) {
1621                 node_event = container_of(node, struct perf_event, group_node);
1622
1623                 if (cpu < node_event->cpu) {
1624                         node = node->rb_left;
1625                 } else if (cpu > node_event->cpu) {
1626                         node = node->rb_right;
1627                 } else {
1628                         match = node_event;
1629                         node = node->rb_left;
1630                 }
1631         }
1632
1633         return match;
1634 }
1635
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642         struct perf_event *next;
1643
1644         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645         if (next && next->cpu == event->cpu)
1646                 return next;
1647
1648         return NULL;
1649 }
1650
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)                       \
1655         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1656                                 typeof(*event), group_node); event;     \
1657                 event = rb_entry_safe(rb_next(&event->group_node),      \
1658                                 typeof(*event), group_node))
1659
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667         lockdep_assert_held(&ctx->lock);
1668
1669         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670         event->attach_state |= PERF_ATTACH_CONTEXT;
1671
1672         event->tstamp = perf_event_time(event);
1673
1674         /*
1675          * If we're a stand alone event or group leader, we go to the context
1676          * list, group events are kept attached to the group so that
1677          * perf_group_detach can, at all times, locate all siblings.
1678          */
1679         if (event->group_leader == event) {
1680                 event->group_caps = event->event_caps;
1681                 add_event_to_groups(event, ctx);
1682         }
1683
1684         list_update_cgroup_event(event, ctx, true);
1685
1686         list_add_rcu(&event->event_entry, &ctx->event_list);
1687         ctx->nr_events++;
1688         if (event->attr.inherit_stat)
1689                 ctx->nr_stat++;
1690
1691         ctx->generation++;
1692 }
1693
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700                                               PERF_EVENT_STATE_INACTIVE;
1701 }
1702
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705         int entry = sizeof(u64); /* value */
1706         int size = 0;
1707         int nr = 1;
1708
1709         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710                 size += sizeof(u64);
1711
1712         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713                 size += sizeof(u64);
1714
1715         if (event->attr.read_format & PERF_FORMAT_ID)
1716                 entry += sizeof(u64);
1717
1718         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719                 nr += nr_siblings;
1720                 size += sizeof(u64);
1721         }
1722
1723         size += entry * nr;
1724         event->read_size = size;
1725 }
1726
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729         struct perf_sample_data *data;
1730         u16 size = 0;
1731
1732         if (sample_type & PERF_SAMPLE_IP)
1733                 size += sizeof(data->ip);
1734
1735         if (sample_type & PERF_SAMPLE_ADDR)
1736                 size += sizeof(data->addr);
1737
1738         if (sample_type & PERF_SAMPLE_PERIOD)
1739                 size += sizeof(data->period);
1740
1741         if (sample_type & PERF_SAMPLE_WEIGHT)
1742                 size += sizeof(data->weight);
1743
1744         if (sample_type & PERF_SAMPLE_READ)
1745                 size += event->read_size;
1746
1747         if (sample_type & PERF_SAMPLE_DATA_SRC)
1748                 size += sizeof(data->data_src.val);
1749
1750         if (sample_type & PERF_SAMPLE_TRANSACTION)
1751                 size += sizeof(data->txn);
1752
1753         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754                 size += sizeof(data->phys_addr);
1755
1756         event->header_size = size;
1757 }
1758
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765         __perf_event_read_size(event,
1766                                event->group_leader->nr_siblings);
1767         __perf_event_header_size(event, event->attr.sample_type);
1768 }
1769
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772         struct perf_sample_data *data;
1773         u64 sample_type = event->attr.sample_type;
1774         u16 size = 0;
1775
1776         if (sample_type & PERF_SAMPLE_TID)
1777                 size += sizeof(data->tid_entry);
1778
1779         if (sample_type & PERF_SAMPLE_TIME)
1780                 size += sizeof(data->time);
1781
1782         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783                 size += sizeof(data->id);
1784
1785         if (sample_type & PERF_SAMPLE_ID)
1786                 size += sizeof(data->id);
1787
1788         if (sample_type & PERF_SAMPLE_STREAM_ID)
1789                 size += sizeof(data->stream_id);
1790
1791         if (sample_type & PERF_SAMPLE_CPU)
1792                 size += sizeof(data->cpu_entry);
1793
1794         event->id_header_size = size;
1795 }
1796
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799         /*
1800          * The values computed here will be over-written when we actually
1801          * attach the event.
1802          */
1803         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805         perf_event__id_header_size(event);
1806
1807         /*
1808          * Sum the lot; should not exceed the 64k limit we have on records.
1809          * Conservative limit to allow for callchains and other variable fields.
1810          */
1811         if (event->read_size + event->header_size +
1812             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813                 return false;
1814
1815         return true;
1816 }
1817
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820         struct perf_event *group_leader = event->group_leader, *pos;
1821
1822         lockdep_assert_held(&event->ctx->lock);
1823
1824         /*
1825          * We can have double attach due to group movement in perf_event_open.
1826          */
1827         if (event->attach_state & PERF_ATTACH_GROUP)
1828                 return;
1829
1830         event->attach_state |= PERF_ATTACH_GROUP;
1831
1832         if (group_leader == event)
1833                 return;
1834
1835         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
1837         group_leader->group_caps &= event->event_caps;
1838
1839         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840         group_leader->nr_siblings++;
1841
1842         perf_event__header_size(group_leader);
1843
1844         for_each_sibling_event(pos, group_leader)
1845                 perf_event__header_size(pos);
1846 }
1847
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855         WARN_ON_ONCE(event->ctx != ctx);
1856         lockdep_assert_held(&ctx->lock);
1857
1858         /*
1859          * We can have double detach due to exit/hot-unplug + close.
1860          */
1861         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862                 return;
1863
1864         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
1866         list_update_cgroup_event(event, ctx, false);
1867
1868         ctx->nr_events--;
1869         if (event->attr.inherit_stat)
1870                 ctx->nr_stat--;
1871
1872         list_del_rcu(&event->event_entry);
1873
1874         if (event->group_leader == event)
1875                 del_event_from_groups(event, ctx);
1876
1877         /*
1878          * If event was in error state, then keep it
1879          * that way, otherwise bogus counts will be
1880          * returned on read(). The only way to get out
1881          * of error state is by explicit re-enabling
1882          * of the event
1883          */
1884         if (event->state > PERF_EVENT_STATE_OFF)
1885                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886
1887         ctx->generation++;
1888 }
1889
1890 static int
1891 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1892 {
1893         if (!has_aux(aux_event))
1894                 return 0;
1895
1896         if (!event->pmu->aux_output_match)
1897                 return 0;
1898
1899         return event->pmu->aux_output_match(aux_event);
1900 }
1901
1902 static void put_event(struct perf_event *event);
1903 static void event_sched_out(struct perf_event *event,
1904                             struct perf_cpu_context *cpuctx,
1905                             struct perf_event_context *ctx);
1906
1907 static void perf_put_aux_event(struct perf_event *event)
1908 {
1909         struct perf_event_context *ctx = event->ctx;
1910         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1911         struct perf_event *iter;
1912
1913         /*
1914          * If event uses aux_event tear down the link
1915          */
1916         if (event->aux_event) {
1917                 iter = event->aux_event;
1918                 event->aux_event = NULL;
1919                 put_event(iter);
1920                 return;
1921         }
1922
1923         /*
1924          * If the event is an aux_event, tear down all links to
1925          * it from other events.
1926          */
1927         for_each_sibling_event(iter, event->group_leader) {
1928                 if (iter->aux_event != event)
1929                         continue;
1930
1931                 iter->aux_event = NULL;
1932                 put_event(event);
1933
1934                 /*
1935                  * If it's ACTIVE, schedule it out and put it into ERROR
1936                  * state so that we don't try to schedule it again. Note
1937                  * that perf_event_enable() will clear the ERROR status.
1938                  */
1939                 event_sched_out(iter, cpuctx, ctx);
1940                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1941         }
1942 }
1943
1944 static int perf_get_aux_event(struct perf_event *event,
1945                               struct perf_event *group_leader)
1946 {
1947         /*
1948          * Our group leader must be an aux event if we want to be
1949          * an aux_output. This way, the aux event will precede its
1950          * aux_output events in the group, and therefore will always
1951          * schedule first.
1952          */
1953         if (!group_leader)
1954                 return 0;
1955
1956         if (!perf_aux_output_match(event, group_leader))
1957                 return 0;
1958
1959         if (!atomic_long_inc_not_zero(&group_leader->refcount))
1960                 return 0;
1961
1962         /*
1963          * Link aux_outputs to their aux event; this is undone in
1964          * perf_group_detach() by perf_put_aux_event(). When the
1965          * group in torn down, the aux_output events loose their
1966          * link to the aux_event and can't schedule any more.
1967          */
1968         event->aux_event = group_leader;
1969
1970         return 1;
1971 }
1972
1973 static void perf_group_detach(struct perf_event *event)
1974 {
1975         struct perf_event *sibling, *tmp;
1976         struct perf_event_context *ctx = event->ctx;
1977
1978         lockdep_assert_held(&ctx->lock);
1979
1980         /*
1981          * We can have double detach due to exit/hot-unplug + close.
1982          */
1983         if (!(event->attach_state & PERF_ATTACH_GROUP))
1984                 return;
1985
1986         event->attach_state &= ~PERF_ATTACH_GROUP;
1987
1988         perf_put_aux_event(event);
1989
1990         /*
1991          * If this is a sibling, remove it from its group.
1992          */
1993         if (event->group_leader != event) {
1994                 list_del_init(&event->sibling_list);
1995                 event->group_leader->nr_siblings--;
1996                 goto out;
1997         }
1998
1999         /*
2000          * If this was a group event with sibling events then
2001          * upgrade the siblings to singleton events by adding them
2002          * to whatever list we are on.
2003          */
2004         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2005
2006                 sibling->group_leader = sibling;
2007                 list_del_init(&sibling->sibling_list);
2008
2009                 /* Inherit group flags from the previous leader */
2010                 sibling->group_caps = event->group_caps;
2011
2012                 if (!RB_EMPTY_NODE(&event->group_node)) {
2013                         add_event_to_groups(sibling, event->ctx);
2014
2015                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2016                                 struct list_head *list = sibling->attr.pinned ?
2017                                         &ctx->pinned_active : &ctx->flexible_active;
2018
2019                                 list_add_tail(&sibling->active_list, list);
2020                         }
2021                 }
2022
2023                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2024         }
2025
2026 out:
2027         perf_event__header_size(event->group_leader);
2028
2029         for_each_sibling_event(tmp, event->group_leader)
2030                 perf_event__header_size(tmp);
2031 }
2032
2033 static bool is_orphaned_event(struct perf_event *event)
2034 {
2035         return event->state == PERF_EVENT_STATE_DEAD;
2036 }
2037
2038 static inline int __pmu_filter_match(struct perf_event *event)
2039 {
2040         struct pmu *pmu = event->pmu;
2041         return pmu->filter_match ? pmu->filter_match(event) : 1;
2042 }
2043
2044 /*
2045  * Check whether we should attempt to schedule an event group based on
2046  * PMU-specific filtering. An event group can consist of HW and SW events,
2047  * potentially with a SW leader, so we must check all the filters, to
2048  * determine whether a group is schedulable:
2049  */
2050 static inline int pmu_filter_match(struct perf_event *event)
2051 {
2052         struct perf_event *sibling;
2053
2054         if (!__pmu_filter_match(event))
2055                 return 0;
2056
2057         for_each_sibling_event(sibling, event) {
2058                 if (!__pmu_filter_match(sibling))
2059                         return 0;
2060         }
2061
2062         return 1;
2063 }
2064
2065 static inline int
2066 event_filter_match(struct perf_event *event)
2067 {
2068         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2069                perf_cgroup_match(event) && pmu_filter_match(event);
2070 }
2071
2072 static void
2073 event_sched_out(struct perf_event *event,
2074                   struct perf_cpu_context *cpuctx,
2075                   struct perf_event_context *ctx)
2076 {
2077         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2078
2079         WARN_ON_ONCE(event->ctx != ctx);
2080         lockdep_assert_held(&ctx->lock);
2081
2082         if (event->state != PERF_EVENT_STATE_ACTIVE)
2083                 return;
2084
2085         /*
2086          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2087          * we can schedule events _OUT_ individually through things like
2088          * __perf_remove_from_context().
2089          */
2090         list_del_init(&event->active_list);
2091
2092         perf_pmu_disable(event->pmu);
2093
2094         event->pmu->del(event, 0);
2095         event->oncpu = -1;
2096
2097         if (READ_ONCE(event->pending_disable) >= 0) {
2098                 WRITE_ONCE(event->pending_disable, -1);
2099                 state = PERF_EVENT_STATE_OFF;
2100         }
2101         perf_event_set_state(event, state);
2102
2103         if (!is_software_event(event))
2104                 cpuctx->active_oncpu--;
2105         if (!--ctx->nr_active)
2106                 perf_event_ctx_deactivate(ctx);
2107         if (event->attr.freq && event->attr.sample_freq)
2108                 ctx->nr_freq--;
2109         if (event->attr.exclusive || !cpuctx->active_oncpu)
2110                 cpuctx->exclusive = 0;
2111
2112         perf_pmu_enable(event->pmu);
2113 }
2114
2115 static void
2116 group_sched_out(struct perf_event *group_event,
2117                 struct perf_cpu_context *cpuctx,
2118                 struct perf_event_context *ctx)
2119 {
2120         struct perf_event *event;
2121
2122         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2123                 return;
2124
2125         perf_pmu_disable(ctx->pmu);
2126
2127         event_sched_out(group_event, cpuctx, ctx);
2128
2129         /*
2130          * Schedule out siblings (if any):
2131          */
2132         for_each_sibling_event(event, group_event)
2133                 event_sched_out(event, cpuctx, ctx);
2134
2135         perf_pmu_enable(ctx->pmu);
2136
2137         if (group_event->attr.exclusive)
2138                 cpuctx->exclusive = 0;
2139 }
2140
2141 #define DETACH_GROUP    0x01UL
2142
2143 /*
2144  * Cross CPU call to remove a performance event
2145  *
2146  * We disable the event on the hardware level first. After that we
2147  * remove it from the context list.
2148  */
2149 static void
2150 __perf_remove_from_context(struct perf_event *event,
2151                            struct perf_cpu_context *cpuctx,
2152                            struct perf_event_context *ctx,
2153                            void *info)
2154 {
2155         unsigned long flags = (unsigned long)info;
2156
2157         if (ctx->is_active & EVENT_TIME) {
2158                 update_context_time(ctx);
2159                 update_cgrp_time_from_cpuctx(cpuctx);
2160         }
2161
2162         event_sched_out(event, cpuctx, ctx);
2163         if (flags & DETACH_GROUP)
2164                 perf_group_detach(event);
2165         list_del_event(event, ctx);
2166
2167         if (!ctx->nr_events && ctx->is_active) {
2168                 ctx->is_active = 0;
2169                 if (ctx->task) {
2170                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2171                         cpuctx->task_ctx = NULL;
2172                 }
2173         }
2174 }
2175
2176 /*
2177  * Remove the event from a task's (or a CPU's) list of events.
2178  *
2179  * If event->ctx is a cloned context, callers must make sure that
2180  * every task struct that event->ctx->task could possibly point to
2181  * remains valid.  This is OK when called from perf_release since
2182  * that only calls us on the top-level context, which can't be a clone.
2183  * When called from perf_event_exit_task, it's OK because the
2184  * context has been detached from its task.
2185  */
2186 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2187 {
2188         struct perf_event_context *ctx = event->ctx;
2189
2190         lockdep_assert_held(&ctx->mutex);
2191
2192         event_function_call(event, __perf_remove_from_context, (void *)flags);
2193
2194         /*
2195          * The above event_function_call() can NO-OP when it hits
2196          * TASK_TOMBSTONE. In that case we must already have been detached
2197          * from the context (by perf_event_exit_event()) but the grouping
2198          * might still be in-tact.
2199          */
2200         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2201         if ((flags & DETACH_GROUP) &&
2202             (event->attach_state & PERF_ATTACH_GROUP)) {
2203                 /*
2204                  * Since in that case we cannot possibly be scheduled, simply
2205                  * detach now.
2206                  */
2207                 raw_spin_lock_irq(&ctx->lock);
2208                 perf_group_detach(event);
2209                 raw_spin_unlock_irq(&ctx->lock);
2210         }
2211 }
2212
2213 /*
2214  * Cross CPU call to disable a performance event
2215  */
2216 static void __perf_event_disable(struct perf_event *event,
2217                                  struct perf_cpu_context *cpuctx,
2218                                  struct perf_event_context *ctx,
2219                                  void *info)
2220 {
2221         if (event->state < PERF_EVENT_STATE_INACTIVE)
2222                 return;
2223
2224         if (ctx->is_active & EVENT_TIME) {
2225                 update_context_time(ctx);
2226                 update_cgrp_time_from_event(event);
2227         }
2228
2229         if (event == event->group_leader)
2230                 group_sched_out(event, cpuctx, ctx);
2231         else
2232                 event_sched_out(event, cpuctx, ctx);
2233
2234         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2235 }
2236
2237 /*
2238  * Disable an event.
2239  *
2240  * If event->ctx is a cloned context, callers must make sure that
2241  * every task struct that event->ctx->task could possibly point to
2242  * remains valid.  This condition is satisfied when called through
2243  * perf_event_for_each_child or perf_event_for_each because they
2244  * hold the top-level event's child_mutex, so any descendant that
2245  * goes to exit will block in perf_event_exit_event().
2246  *
2247  * When called from perf_pending_event it's OK because event->ctx
2248  * is the current context on this CPU and preemption is disabled,
2249  * hence we can't get into perf_event_task_sched_out for this context.
2250  */
2251 static void _perf_event_disable(struct perf_event *event)
2252 {
2253         struct perf_event_context *ctx = event->ctx;
2254
2255         raw_spin_lock_irq(&ctx->lock);
2256         if (event->state <= PERF_EVENT_STATE_OFF) {
2257                 raw_spin_unlock_irq(&ctx->lock);
2258                 return;
2259         }
2260         raw_spin_unlock_irq(&ctx->lock);
2261
2262         event_function_call(event, __perf_event_disable, NULL);
2263 }
2264
2265 void perf_event_disable_local(struct perf_event *event)
2266 {
2267         event_function_local(event, __perf_event_disable, NULL);
2268 }
2269
2270 /*
2271  * Strictly speaking kernel users cannot create groups and therefore this
2272  * interface does not need the perf_event_ctx_lock() magic.
2273  */
2274 void perf_event_disable(struct perf_event *event)
2275 {
2276         struct perf_event_context *ctx;
2277
2278         ctx = perf_event_ctx_lock(event);
2279         _perf_event_disable(event);
2280         perf_event_ctx_unlock(event, ctx);
2281 }
2282 EXPORT_SYMBOL_GPL(perf_event_disable);
2283
2284 void perf_event_disable_inatomic(struct perf_event *event)
2285 {
2286         WRITE_ONCE(event->pending_disable, smp_processor_id());
2287         /* can fail, see perf_pending_event_disable() */
2288         irq_work_queue(&event->pending);
2289 }
2290
2291 static void perf_set_shadow_time(struct perf_event *event,
2292                                  struct perf_event_context *ctx)
2293 {
2294         /*
2295          * use the correct time source for the time snapshot
2296          *
2297          * We could get by without this by leveraging the
2298          * fact that to get to this function, the caller
2299          * has most likely already called update_context_time()
2300          * and update_cgrp_time_xx() and thus both timestamp
2301          * are identical (or very close). Given that tstamp is,
2302          * already adjusted for cgroup, we could say that:
2303          *    tstamp - ctx->timestamp
2304          * is equivalent to
2305          *    tstamp - cgrp->timestamp.
2306          *
2307          * Then, in perf_output_read(), the calculation would
2308          * work with no changes because:
2309          * - event is guaranteed scheduled in
2310          * - no scheduled out in between
2311          * - thus the timestamp would be the same
2312          *
2313          * But this is a bit hairy.
2314          *
2315          * So instead, we have an explicit cgroup call to remain
2316          * within the time time source all along. We believe it
2317          * is cleaner and simpler to understand.
2318          */
2319         if (is_cgroup_event(event))
2320                 perf_cgroup_set_shadow_time(event, event->tstamp);
2321         else
2322                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2323 }
2324
2325 #define MAX_INTERRUPTS (~0ULL)
2326
2327 static void perf_log_throttle(struct perf_event *event, int enable);
2328 static void perf_log_itrace_start(struct perf_event *event);
2329
2330 static int
2331 event_sched_in(struct perf_event *event,
2332                  struct perf_cpu_context *cpuctx,
2333                  struct perf_event_context *ctx)
2334 {
2335         int ret = 0;
2336
2337         lockdep_assert_held(&ctx->lock);
2338
2339         if (event->state <= PERF_EVENT_STATE_OFF)
2340                 return 0;
2341
2342         WRITE_ONCE(event->oncpu, smp_processor_id());
2343         /*
2344          * Order event::oncpu write to happen before the ACTIVE state is
2345          * visible. This allows perf_event_{stop,read}() to observe the correct
2346          * ->oncpu if it sees ACTIVE.
2347          */
2348         smp_wmb();
2349         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2350
2351         /*
2352          * Unthrottle events, since we scheduled we might have missed several
2353          * ticks already, also for a heavily scheduling task there is little
2354          * guarantee it'll get a tick in a timely manner.
2355          */
2356         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2357                 perf_log_throttle(event, 1);
2358                 event->hw.interrupts = 0;
2359         }
2360
2361         perf_pmu_disable(event->pmu);
2362
2363         perf_set_shadow_time(event, ctx);
2364
2365         perf_log_itrace_start(event);
2366
2367         if (event->pmu->add(event, PERF_EF_START)) {
2368                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2369                 event->oncpu = -1;
2370                 ret = -EAGAIN;
2371                 goto out;
2372         }
2373
2374         if (!is_software_event(event))
2375                 cpuctx->active_oncpu++;
2376         if (!ctx->nr_active++)
2377                 perf_event_ctx_activate(ctx);
2378         if (event->attr.freq && event->attr.sample_freq)
2379                 ctx->nr_freq++;
2380
2381         if (event->attr.exclusive)
2382                 cpuctx->exclusive = 1;
2383
2384 out:
2385         perf_pmu_enable(event->pmu);
2386
2387         return ret;
2388 }
2389
2390 static int
2391 group_sched_in(struct perf_event *group_event,
2392                struct perf_cpu_context *cpuctx,
2393                struct perf_event_context *ctx)
2394 {
2395         struct perf_event *event, *partial_group = NULL;
2396         struct pmu *pmu = ctx->pmu;
2397
2398         if (group_event->state == PERF_EVENT_STATE_OFF)
2399                 return 0;
2400
2401         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2402
2403         if (event_sched_in(group_event, cpuctx, ctx)) {
2404                 pmu->cancel_txn(pmu);
2405                 perf_mux_hrtimer_restart(cpuctx);
2406                 return -EAGAIN;
2407         }
2408
2409         /*
2410          * Schedule in siblings as one group (if any):
2411          */
2412         for_each_sibling_event(event, group_event) {
2413                 if (event_sched_in(event, cpuctx, ctx)) {
2414                         partial_group = event;
2415                         goto group_error;
2416                 }
2417         }
2418
2419         if (!pmu->commit_txn(pmu))
2420                 return 0;
2421
2422 group_error:
2423         /*
2424          * Groups can be scheduled in as one unit only, so undo any
2425          * partial group before returning:
2426          * The events up to the failed event are scheduled out normally.
2427          */
2428         for_each_sibling_event(event, group_event) {
2429                 if (event == partial_group)
2430                         break;
2431
2432                 event_sched_out(event, cpuctx, ctx);
2433         }
2434         event_sched_out(group_event, cpuctx, ctx);
2435
2436         pmu->cancel_txn(pmu);
2437
2438         perf_mux_hrtimer_restart(cpuctx);
2439
2440         return -EAGAIN;
2441 }
2442
2443 /*
2444  * Work out whether we can put this event group on the CPU now.
2445  */
2446 static int group_can_go_on(struct perf_event *event,
2447                            struct perf_cpu_context *cpuctx,
2448                            int can_add_hw)
2449 {
2450         /*
2451          * Groups consisting entirely of software events can always go on.
2452          */
2453         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2454                 return 1;
2455         /*
2456          * If an exclusive group is already on, no other hardware
2457          * events can go on.
2458          */
2459         if (cpuctx->exclusive)
2460                 return 0;
2461         /*
2462          * If this group is exclusive and there are already
2463          * events on the CPU, it can't go on.
2464          */
2465         if (event->attr.exclusive && cpuctx->active_oncpu)
2466                 return 0;
2467         /*
2468          * Otherwise, try to add it if all previous groups were able
2469          * to go on.
2470          */
2471         return can_add_hw;
2472 }
2473
2474 static void add_event_to_ctx(struct perf_event *event,
2475                                struct perf_event_context *ctx)
2476 {
2477         list_add_event(event, ctx);
2478         perf_group_attach(event);
2479 }
2480
2481 static void ctx_sched_out(struct perf_event_context *ctx,
2482                           struct perf_cpu_context *cpuctx,
2483                           enum event_type_t event_type);
2484 static void
2485 ctx_sched_in(struct perf_event_context *ctx,
2486              struct perf_cpu_context *cpuctx,
2487              enum event_type_t event_type,
2488              struct task_struct *task);
2489
2490 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2491                                struct perf_event_context *ctx,
2492                                enum event_type_t event_type)
2493 {
2494         if (!cpuctx->task_ctx)
2495                 return;
2496
2497         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2498                 return;
2499
2500         ctx_sched_out(ctx, cpuctx, event_type);
2501 }
2502
2503 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2504                                 struct perf_event_context *ctx,
2505                                 struct task_struct *task)
2506 {
2507         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2508         if (ctx)
2509                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2510         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2511         if (ctx)
2512                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2513 }
2514
2515 /*
2516  * We want to maintain the following priority of scheduling:
2517  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2518  *  - task pinned (EVENT_PINNED)
2519  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2520  *  - task flexible (EVENT_FLEXIBLE).
2521  *
2522  * In order to avoid unscheduling and scheduling back in everything every
2523  * time an event is added, only do it for the groups of equal priority and
2524  * below.
2525  *
2526  * This can be called after a batch operation on task events, in which case
2527  * event_type is a bit mask of the types of events involved. For CPU events,
2528  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2529  */
2530 static void ctx_resched(struct perf_cpu_context *cpuctx,
2531                         struct perf_event_context *task_ctx,
2532                         enum event_type_t event_type)
2533 {
2534         enum event_type_t ctx_event_type;
2535         bool cpu_event = !!(event_type & EVENT_CPU);
2536
2537         /*
2538          * If pinned groups are involved, flexible groups also need to be
2539          * scheduled out.
2540          */
2541         if (event_type & EVENT_PINNED)
2542                 event_type |= EVENT_FLEXIBLE;
2543
2544         ctx_event_type = event_type & EVENT_ALL;
2545
2546         perf_pmu_disable(cpuctx->ctx.pmu);
2547         if (task_ctx)
2548                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2549
2550         /*
2551          * Decide which cpu ctx groups to schedule out based on the types
2552          * of events that caused rescheduling:
2553          *  - EVENT_CPU: schedule out corresponding groups;
2554          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2555          *  - otherwise, do nothing more.
2556          */
2557         if (cpu_event)
2558                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2559         else if (ctx_event_type & EVENT_PINNED)
2560                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2561
2562         perf_event_sched_in(cpuctx, task_ctx, current);
2563         perf_pmu_enable(cpuctx->ctx.pmu);
2564 }
2565
2566 void perf_pmu_resched(struct pmu *pmu)
2567 {
2568         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2569         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2570
2571         perf_ctx_lock(cpuctx, task_ctx);
2572         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2573         perf_ctx_unlock(cpuctx, task_ctx);
2574 }
2575
2576 /*
2577  * Cross CPU call to install and enable a performance event
2578  *
2579  * Very similar to remote_function() + event_function() but cannot assume that
2580  * things like ctx->is_active and cpuctx->task_ctx are set.
2581  */
2582 static int  __perf_install_in_context(void *info)
2583 {
2584         struct perf_event *event = info;
2585         struct perf_event_context *ctx = event->ctx;
2586         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2587         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2588         bool reprogram = true;
2589         int ret = 0;
2590
2591         raw_spin_lock(&cpuctx->ctx.lock);
2592         if (ctx->task) {
2593                 raw_spin_lock(&ctx->lock);
2594                 task_ctx = ctx;
2595
2596                 reprogram = (ctx->task == current);
2597
2598                 /*
2599                  * If the task is running, it must be running on this CPU,
2600                  * otherwise we cannot reprogram things.
2601                  *
2602                  * If its not running, we don't care, ctx->lock will
2603                  * serialize against it becoming runnable.
2604                  */
2605                 if (task_curr(ctx->task) && !reprogram) {
2606                         ret = -ESRCH;
2607                         goto unlock;
2608                 }
2609
2610                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2611         } else if (task_ctx) {
2612                 raw_spin_lock(&task_ctx->lock);
2613         }
2614
2615 #ifdef CONFIG_CGROUP_PERF
2616         if (is_cgroup_event(event)) {
2617                 /*
2618                  * If the current cgroup doesn't match the event's
2619                  * cgroup, we should not try to schedule it.
2620                  */
2621                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2622                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2623                                         event->cgrp->css.cgroup);
2624         }
2625 #endif
2626
2627         if (reprogram) {
2628                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2629                 add_event_to_ctx(event, ctx);
2630                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2631         } else {
2632                 add_event_to_ctx(event, ctx);
2633         }
2634
2635 unlock:
2636         perf_ctx_unlock(cpuctx, task_ctx);
2637
2638         return ret;
2639 }
2640
2641 static bool exclusive_event_installable(struct perf_event *event,
2642                                         struct perf_event_context *ctx);
2643
2644 /*
2645  * Attach a performance event to a context.
2646  *
2647  * Very similar to event_function_call, see comment there.
2648  */
2649 static void
2650 perf_install_in_context(struct perf_event_context *ctx,
2651                         struct perf_event *event,
2652                         int cpu)
2653 {
2654         struct task_struct *task = READ_ONCE(ctx->task);
2655
2656         lockdep_assert_held(&ctx->mutex);
2657
2658         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2659
2660         if (event->cpu != -1)
2661                 event->cpu = cpu;
2662
2663         /*
2664          * Ensures that if we can observe event->ctx, both the event and ctx
2665          * will be 'complete'. See perf_iterate_sb_cpu().
2666          */
2667         smp_store_release(&event->ctx, ctx);
2668
2669         if (!task) {
2670                 cpu_function_call(cpu, __perf_install_in_context, event);
2671                 return;
2672         }
2673
2674         /*
2675          * Should not happen, we validate the ctx is still alive before calling.
2676          */
2677         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2678                 return;
2679
2680         /*
2681          * Installing events is tricky because we cannot rely on ctx->is_active
2682          * to be set in case this is the nr_events 0 -> 1 transition.
2683          *
2684          * Instead we use task_curr(), which tells us if the task is running.
2685          * However, since we use task_curr() outside of rq::lock, we can race
2686          * against the actual state. This means the result can be wrong.
2687          *
2688          * If we get a false positive, we retry, this is harmless.
2689          *
2690          * If we get a false negative, things are complicated. If we are after
2691          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2692          * value must be correct. If we're before, it doesn't matter since
2693          * perf_event_context_sched_in() will program the counter.
2694          *
2695          * However, this hinges on the remote context switch having observed
2696          * our task->perf_event_ctxp[] store, such that it will in fact take
2697          * ctx::lock in perf_event_context_sched_in().
2698          *
2699          * We do this by task_function_call(), if the IPI fails to hit the task
2700          * we know any future context switch of task must see the
2701          * perf_event_ctpx[] store.
2702          */
2703
2704         /*
2705          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2706          * task_cpu() load, such that if the IPI then does not find the task
2707          * running, a future context switch of that task must observe the
2708          * store.
2709          */
2710         smp_mb();
2711 again:
2712         if (!task_function_call(task, __perf_install_in_context, event))
2713                 return;
2714
2715         raw_spin_lock_irq(&ctx->lock);
2716         task = ctx->task;
2717         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2718                 /*
2719                  * Cannot happen because we already checked above (which also
2720                  * cannot happen), and we hold ctx->mutex, which serializes us
2721                  * against perf_event_exit_task_context().
2722                  */
2723                 raw_spin_unlock_irq(&ctx->lock);
2724                 return;
2725         }
2726         /*
2727          * If the task is not running, ctx->lock will avoid it becoming so,
2728          * thus we can safely install the event.
2729          */
2730         if (task_curr(task)) {
2731                 raw_spin_unlock_irq(&ctx->lock);
2732                 goto again;
2733         }
2734         add_event_to_ctx(event, ctx);
2735         raw_spin_unlock_irq(&ctx->lock);
2736 }
2737
2738 /*
2739  * Cross CPU call to enable a performance event
2740  */
2741 static void __perf_event_enable(struct perf_event *event,
2742                                 struct perf_cpu_context *cpuctx,
2743                                 struct perf_event_context *ctx,
2744                                 void *info)
2745 {
2746         struct perf_event *leader = event->group_leader;
2747         struct perf_event_context *task_ctx;
2748
2749         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2750             event->state <= PERF_EVENT_STATE_ERROR)
2751                 return;
2752
2753         if (ctx->is_active)
2754                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2755
2756         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2757
2758         if (!ctx->is_active)
2759                 return;
2760
2761         if (!event_filter_match(event)) {
2762                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2763                 return;
2764         }
2765
2766         /*
2767          * If the event is in a group and isn't the group leader,
2768          * then don't put it on unless the group is on.
2769          */
2770         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2771                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2772                 return;
2773         }
2774
2775         task_ctx = cpuctx->task_ctx;
2776         if (ctx->task)
2777                 WARN_ON_ONCE(task_ctx != ctx);
2778
2779         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2780 }
2781
2782 /*
2783  * Enable an event.
2784  *
2785  * If event->ctx is a cloned context, callers must make sure that
2786  * every task struct that event->ctx->task could possibly point to
2787  * remains valid.  This condition is satisfied when called through
2788  * perf_event_for_each_child or perf_event_for_each as described
2789  * for perf_event_disable.
2790  */
2791 static void _perf_event_enable(struct perf_event *event)
2792 {
2793         struct perf_event_context *ctx = event->ctx;
2794
2795         raw_spin_lock_irq(&ctx->lock);
2796         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2797             event->state <  PERF_EVENT_STATE_ERROR) {
2798                 raw_spin_unlock_irq(&ctx->lock);
2799                 return;
2800         }
2801
2802         /*
2803          * If the event is in error state, clear that first.
2804          *
2805          * That way, if we see the event in error state below, we know that it
2806          * has gone back into error state, as distinct from the task having
2807          * been scheduled away before the cross-call arrived.
2808          */
2809         if (event->state == PERF_EVENT_STATE_ERROR)
2810                 event->state = PERF_EVENT_STATE_OFF;
2811         raw_spin_unlock_irq(&ctx->lock);
2812
2813         event_function_call(event, __perf_event_enable, NULL);
2814 }
2815
2816 /*
2817  * See perf_event_disable();
2818  */
2819 void perf_event_enable(struct perf_event *event)
2820 {
2821         struct perf_event_context *ctx;
2822
2823         ctx = perf_event_ctx_lock(event);
2824         _perf_event_enable(event);
2825         perf_event_ctx_unlock(event, ctx);
2826 }
2827 EXPORT_SYMBOL_GPL(perf_event_enable);
2828
2829 struct stop_event_data {
2830         struct perf_event       *event;
2831         unsigned int            restart;
2832 };
2833
2834 static int __perf_event_stop(void *info)
2835 {
2836         struct stop_event_data *sd = info;
2837         struct perf_event *event = sd->event;
2838
2839         /* if it's already INACTIVE, do nothing */
2840         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2841                 return 0;
2842
2843         /* matches smp_wmb() in event_sched_in() */
2844         smp_rmb();
2845
2846         /*
2847          * There is a window with interrupts enabled before we get here,
2848          * so we need to check again lest we try to stop another CPU's event.
2849          */
2850         if (READ_ONCE(event->oncpu) != smp_processor_id())
2851                 return -EAGAIN;
2852
2853         event->pmu->stop(event, PERF_EF_UPDATE);
2854
2855         /*
2856          * May race with the actual stop (through perf_pmu_output_stop()),
2857          * but it is only used for events with AUX ring buffer, and such
2858          * events will refuse to restart because of rb::aux_mmap_count==0,
2859          * see comments in perf_aux_output_begin().
2860          *
2861          * Since this is happening on an event-local CPU, no trace is lost
2862          * while restarting.
2863          */
2864         if (sd->restart)
2865                 event->pmu->start(event, 0);
2866
2867         return 0;
2868 }
2869
2870 static int perf_event_stop(struct perf_event *event, int restart)
2871 {
2872         struct stop_event_data sd = {
2873                 .event          = event,
2874                 .restart        = restart,
2875         };
2876         int ret = 0;
2877
2878         do {
2879                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2880                         return 0;
2881
2882                 /* matches smp_wmb() in event_sched_in() */
2883                 smp_rmb();
2884
2885                 /*
2886                  * We only want to restart ACTIVE events, so if the event goes
2887                  * inactive here (event->oncpu==-1), there's nothing more to do;
2888                  * fall through with ret==-ENXIO.
2889                  */
2890                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2891                                         __perf_event_stop, &sd);
2892         } while (ret == -EAGAIN);
2893
2894         return ret;
2895 }
2896
2897 /*
2898  * In order to contain the amount of racy and tricky in the address filter
2899  * configuration management, it is a two part process:
2900  *
2901  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2902  *      we update the addresses of corresponding vmas in
2903  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
2904  * (p2) when an event is scheduled in (pmu::add), it calls
2905  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2906  *      if the generation has changed since the previous call.
2907  *
2908  * If (p1) happens while the event is active, we restart it to force (p2).
2909  *
2910  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2911  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2912  *     ioctl;
2913  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2914  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2915  *     for reading;
2916  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2917  *     of exec.
2918  */
2919 void perf_event_addr_filters_sync(struct perf_event *event)
2920 {
2921         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2922
2923         if (!has_addr_filter(event))
2924                 return;
2925
2926         raw_spin_lock(&ifh->lock);
2927         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2928                 event->pmu->addr_filters_sync(event);
2929                 event->hw.addr_filters_gen = event->addr_filters_gen;
2930         }
2931         raw_spin_unlock(&ifh->lock);
2932 }
2933 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2934
2935 static int _perf_event_refresh(struct perf_event *event, int refresh)
2936 {
2937         /*
2938          * not supported on inherited events
2939          */
2940         if (event->attr.inherit || !is_sampling_event(event))
2941                 return -EINVAL;
2942
2943         atomic_add(refresh, &event->event_limit);
2944         _perf_event_enable(event);
2945
2946         return 0;
2947 }
2948
2949 /*
2950  * See perf_event_disable()
2951  */
2952 int perf_event_refresh(struct perf_event *event, int refresh)
2953 {
2954         struct perf_event_context *ctx;
2955         int ret;
2956
2957         ctx = perf_event_ctx_lock(event);
2958         ret = _perf_event_refresh(event, refresh);
2959         perf_event_ctx_unlock(event, ctx);
2960
2961         return ret;
2962 }
2963 EXPORT_SYMBOL_GPL(perf_event_refresh);
2964
2965 static int perf_event_modify_breakpoint(struct perf_event *bp,
2966                                          struct perf_event_attr *attr)
2967 {
2968         int err;
2969
2970         _perf_event_disable(bp);
2971
2972         err = modify_user_hw_breakpoint_check(bp, attr, true);
2973
2974         if (!bp->attr.disabled)
2975                 _perf_event_enable(bp);
2976
2977         return err;
2978 }
2979
2980 static int perf_event_modify_attr(struct perf_event *event,
2981                                   struct perf_event_attr *attr)
2982 {
2983         if (event->attr.type != attr->type)
2984                 return -EINVAL;
2985
2986         switch (event->attr.type) {
2987         case PERF_TYPE_BREAKPOINT:
2988                 return perf_event_modify_breakpoint(event, attr);
2989         default:
2990                 /* Place holder for future additions. */
2991                 return -EOPNOTSUPP;
2992         }
2993 }
2994
2995 static void ctx_sched_out(struct perf_event_context *ctx,
2996                           struct perf_cpu_context *cpuctx,
2997                           enum event_type_t event_type)
2998 {
2999         struct perf_event *event, *tmp;
3000         int is_active = ctx->is_active;
3001
3002         lockdep_assert_held(&ctx->lock);
3003
3004         if (likely(!ctx->nr_events)) {
3005                 /*
3006                  * See __perf_remove_from_context().
3007                  */
3008                 WARN_ON_ONCE(ctx->is_active);
3009                 if (ctx->task)
3010                         WARN_ON_ONCE(cpuctx->task_ctx);
3011                 return;
3012         }
3013
3014         ctx->is_active &= ~event_type;
3015         if (!(ctx->is_active & EVENT_ALL))
3016                 ctx->is_active = 0;
3017
3018         if (ctx->task) {
3019                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3020                 if (!ctx->is_active)
3021                         cpuctx->task_ctx = NULL;
3022         }
3023
3024         /*
3025          * Always update time if it was set; not only when it changes.
3026          * Otherwise we can 'forget' to update time for any but the last
3027          * context we sched out. For example:
3028          *
3029          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3030          *   ctx_sched_out(.event_type = EVENT_PINNED)
3031          *
3032          * would only update time for the pinned events.
3033          */
3034         if (is_active & EVENT_TIME) {
3035                 /* update (and stop) ctx time */
3036                 update_context_time(ctx);
3037                 update_cgrp_time_from_cpuctx(cpuctx);
3038         }
3039
3040         is_active ^= ctx->is_active; /* changed bits */
3041
3042         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3043                 return;
3044
3045         /*
3046          * If we had been multiplexing, no rotations are necessary, now no events
3047          * are active.
3048          */
3049         ctx->rotate_necessary = 0;
3050
3051         perf_pmu_disable(ctx->pmu);
3052         if (is_active & EVENT_PINNED) {
3053                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3054                         group_sched_out(event, cpuctx, ctx);
3055         }
3056
3057         if (is_active & EVENT_FLEXIBLE) {
3058                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3059                         group_sched_out(event, cpuctx, ctx);
3060         }
3061         perf_pmu_enable(ctx->pmu);
3062 }
3063
3064 /*
3065  * Test whether two contexts are equivalent, i.e. whether they have both been
3066  * cloned from the same version of the same context.
3067  *
3068  * Equivalence is measured using a generation number in the context that is
3069  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3070  * and list_del_event().
3071  */
3072 static int context_equiv(struct perf_event_context *ctx1,
3073                          struct perf_event_context *ctx2)
3074 {
3075         lockdep_assert_held(&ctx1->lock);
3076         lockdep_assert_held(&ctx2->lock);
3077
3078         /* Pinning disables the swap optimization */
3079         if (ctx1->pin_count || ctx2->pin_count)
3080                 return 0;
3081
3082         /* If ctx1 is the parent of ctx2 */
3083         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3084                 return 1;
3085
3086         /* If ctx2 is the parent of ctx1 */
3087         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3088                 return 1;
3089
3090         /*
3091          * If ctx1 and ctx2 have the same parent; we flatten the parent
3092          * hierarchy, see perf_event_init_context().
3093          */
3094         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3095                         ctx1->parent_gen == ctx2->parent_gen)
3096                 return 1;
3097
3098         /* Unmatched */
3099         return 0;
3100 }
3101
3102 static void __perf_event_sync_stat(struct perf_event *event,
3103                                      struct perf_event *next_event)
3104 {
3105         u64 value;
3106
3107         if (!event->attr.inherit_stat)
3108                 return;
3109
3110         /*
3111          * Update the event value, we cannot use perf_event_read()
3112          * because we're in the middle of a context switch and have IRQs
3113          * disabled, which upsets smp_call_function_single(), however
3114          * we know the event must be on the current CPU, therefore we
3115          * don't need to use it.
3116          */
3117         if (event->state == PERF_EVENT_STATE_ACTIVE)
3118                 event->pmu->read(event);
3119
3120         perf_event_update_time(event);
3121
3122         /*
3123          * In order to keep per-task stats reliable we need to flip the event
3124          * values when we flip the contexts.
3125          */
3126         value = local64_read(&next_event->count);
3127         value = local64_xchg(&event->count, value);
3128         local64_set(&next_event->count, value);
3129
3130         swap(event->total_time_enabled, next_event->total_time_enabled);
3131         swap(event->total_time_running, next_event->total_time_running);
3132
3133         /*
3134          * Since we swizzled the values, update the user visible data too.
3135          */
3136         perf_event_update_userpage(event);
3137         perf_event_update_userpage(next_event);
3138 }
3139
3140 static void perf_event_sync_stat(struct perf_event_context *ctx,
3141                                    struct perf_event_context *next_ctx)
3142 {
3143         struct perf_event *event, *next_event;
3144
3145         if (!ctx->nr_stat)
3146                 return;
3147
3148         update_context_time(ctx);
3149
3150         event = list_first_entry(&ctx->event_list,
3151                                    struct perf_event, event_entry);
3152
3153         next_event = list_first_entry(&next_ctx->event_list,
3154                                         struct perf_event, event_entry);
3155
3156         while (&event->event_entry != &ctx->event_list &&
3157                &next_event->event_entry != &next_ctx->event_list) {
3158
3159                 __perf_event_sync_stat(event, next_event);
3160
3161                 event = list_next_entry(event, event_entry);
3162                 next_event = list_next_entry(next_event, event_entry);
3163         }
3164 }
3165
3166 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3167                                          struct task_struct *next)
3168 {
3169         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3170         struct perf_event_context *next_ctx;
3171         struct perf_event_context *parent, *next_parent;
3172         struct perf_cpu_context *cpuctx;
3173         int do_switch = 1;
3174
3175         if (likely(!ctx))
3176                 return;
3177
3178         cpuctx = __get_cpu_context(ctx);
3179         if (!cpuctx->task_ctx)
3180                 return;
3181
3182         rcu_read_lock();
3183         next_ctx = next->perf_event_ctxp[ctxn];
3184         if (!next_ctx)
3185                 goto unlock;
3186
3187         parent = rcu_dereference(ctx->parent_ctx);
3188         next_parent = rcu_dereference(next_ctx->parent_ctx);
3189
3190         /* If neither context have a parent context; they cannot be clones. */
3191         if (!parent && !next_parent)
3192                 goto unlock;
3193
3194         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3195                 /*
3196                  * Looks like the two contexts are clones, so we might be
3197                  * able to optimize the context switch.  We lock both
3198                  * contexts and check that they are clones under the
3199                  * lock (including re-checking that neither has been
3200                  * uncloned in the meantime).  It doesn't matter which
3201                  * order we take the locks because no other cpu could
3202                  * be trying to lock both of these tasks.
3203                  */
3204                 raw_spin_lock(&ctx->lock);
3205                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3206                 if (context_equiv(ctx, next_ctx)) {
3207                         WRITE_ONCE(ctx->task, next);
3208                         WRITE_ONCE(next_ctx->task, task);
3209
3210                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3211
3212                         /*
3213                          * RCU_INIT_POINTER here is safe because we've not
3214                          * modified the ctx and the above modification of
3215                          * ctx->task and ctx->task_ctx_data are immaterial
3216                          * since those values are always verified under
3217                          * ctx->lock which we're now holding.
3218                          */
3219                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3220                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3221
3222                         do_switch = 0;
3223
3224                         perf_event_sync_stat(ctx, next_ctx);
3225                 }
3226                 raw_spin_unlock(&next_ctx->lock);
3227                 raw_spin_unlock(&ctx->lock);
3228         }
3229 unlock:
3230         rcu_read_unlock();
3231
3232         if (do_switch) {
3233                 raw_spin_lock(&ctx->lock);
3234                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3235                 raw_spin_unlock(&ctx->lock);
3236         }
3237 }
3238
3239 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3240
3241 void perf_sched_cb_dec(struct pmu *pmu)
3242 {
3243         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3244
3245         this_cpu_dec(perf_sched_cb_usages);
3246
3247         if (!--cpuctx->sched_cb_usage)
3248                 list_del(&cpuctx->sched_cb_entry);
3249 }
3250
3251
3252 void perf_sched_cb_inc(struct pmu *pmu)
3253 {
3254         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3255
3256         if (!cpuctx->sched_cb_usage++)
3257                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3258
3259         this_cpu_inc(perf_sched_cb_usages);
3260 }
3261
3262 /*
3263  * This function provides the context switch callback to the lower code
3264  * layer. It is invoked ONLY when the context switch callback is enabled.
3265  *
3266  * This callback is relevant even to per-cpu events; for example multi event
3267  * PEBS requires this to provide PID/TID information. This requires we flush
3268  * all queued PEBS records before we context switch to a new task.
3269  */
3270 static void perf_pmu_sched_task(struct task_struct *prev,
3271                                 struct task_struct *next,
3272                                 bool sched_in)
3273 {
3274         struct perf_cpu_context *cpuctx;
3275         struct pmu *pmu;
3276
3277         if (prev == next)
3278                 return;
3279
3280         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3281                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3282
3283                 if (WARN_ON_ONCE(!pmu->sched_task))
3284                         continue;
3285
3286                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3287                 perf_pmu_disable(pmu);
3288
3289                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3290
3291                 perf_pmu_enable(pmu);
3292                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3293         }
3294 }
3295
3296 static void perf_event_switch(struct task_struct *task,
3297                               struct task_struct *next_prev, bool sched_in);
3298
3299 #define for_each_task_context_nr(ctxn)                                  \
3300         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3301
3302 /*
3303  * Called from scheduler to remove the events of the current task,
3304  * with interrupts disabled.
3305  *
3306  * We stop each event and update the event value in event->count.
3307  *
3308  * This does not protect us against NMI, but disable()
3309  * sets the disabled bit in the control field of event _before_
3310  * accessing the event control register. If a NMI hits, then it will
3311  * not restart the event.
3312  */
3313 void __perf_event_task_sched_out(struct task_struct *task,
3314                                  struct task_struct *next)
3315 {
3316         int ctxn;
3317
3318         if (__this_cpu_read(perf_sched_cb_usages))
3319                 perf_pmu_sched_task(task, next, false);
3320
3321         if (atomic_read(&nr_switch_events))
3322                 perf_event_switch(task, next, false);
3323
3324         for_each_task_context_nr(ctxn)
3325                 perf_event_context_sched_out(task, ctxn, next);
3326
3327         /*
3328          * if cgroup events exist on this CPU, then we need
3329          * to check if we have to switch out PMU state.
3330          * cgroup event are system-wide mode only
3331          */
3332         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3333                 perf_cgroup_sched_out(task, next);
3334 }
3335
3336 /*
3337  * Called with IRQs disabled
3338  */
3339 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3340                               enum event_type_t event_type)
3341 {
3342         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3343 }
3344
3345 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3346                               int (*func)(struct perf_event *, void *), void *data)
3347 {
3348         struct perf_event **evt, *evt1, *evt2;
3349         int ret;
3350
3351         evt1 = perf_event_groups_first(groups, -1);
3352         evt2 = perf_event_groups_first(groups, cpu);
3353
3354         while (evt1 || evt2) {
3355                 if (evt1 && evt2) {
3356                         if (evt1->group_index < evt2->group_index)
3357                                 evt = &evt1;
3358                         else
3359                                 evt = &evt2;
3360                 } else if (evt1) {
3361                         evt = &evt1;
3362                 } else {
3363                         evt = &evt2;
3364                 }
3365
3366                 ret = func(*evt, data);
3367                 if (ret)
3368                         return ret;
3369
3370                 *evt = perf_event_groups_next(*evt);
3371         }
3372
3373         return 0;
3374 }
3375
3376 struct sched_in_data {
3377         struct perf_event_context *ctx;
3378         struct perf_cpu_context *cpuctx;
3379         int can_add_hw;
3380 };
3381
3382 static int pinned_sched_in(struct perf_event *event, void *data)
3383 {
3384         struct sched_in_data *sid = data;
3385
3386         if (event->state <= PERF_EVENT_STATE_OFF)
3387                 return 0;
3388
3389         if (!event_filter_match(event))
3390                 return 0;
3391
3392         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3393                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3394                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3395         }
3396
3397         /*
3398          * If this pinned group hasn't been scheduled,
3399          * put it in error state.
3400          */
3401         if (event->state == PERF_EVENT_STATE_INACTIVE)
3402                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3403
3404         return 0;
3405 }
3406
3407 static int flexible_sched_in(struct perf_event *event, void *data)
3408 {
3409         struct sched_in_data *sid = data;
3410
3411         if (event->state <= PERF_EVENT_STATE_OFF)
3412                 return 0;
3413
3414         if (!event_filter_match(event))
3415                 return 0;
3416
3417         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3418                 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3419                 if (ret) {
3420                         sid->can_add_hw = 0;
3421                         sid->ctx->rotate_necessary = 1;
3422                         return 0;
3423                 }
3424                 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3425         }
3426
3427         return 0;
3428 }
3429
3430 static void
3431 ctx_pinned_sched_in(struct perf_event_context *ctx,
3432                     struct perf_cpu_context *cpuctx)
3433 {
3434         struct sched_in_data sid = {
3435                 .ctx = ctx,
3436                 .cpuctx = cpuctx,
3437                 .can_add_hw = 1,
3438         };
3439
3440         visit_groups_merge(&ctx->pinned_groups,
3441                            smp_processor_id(),
3442                            pinned_sched_in, &sid);
3443 }
3444
3445 static void
3446 ctx_flexible_sched_in(struct perf_event_context *ctx,
3447                       struct perf_cpu_context *cpuctx)
3448 {
3449         struct sched_in_data sid = {
3450                 .ctx = ctx,
3451                 .cpuctx = cpuctx,
3452                 .can_add_hw = 1,
3453         };
3454
3455         visit_groups_merge(&ctx->flexible_groups,
3456                            smp_processor_id(),
3457                            flexible_sched_in, &sid);
3458 }
3459
3460 static void
3461 ctx_sched_in(struct perf_event_context *ctx,
3462              struct perf_cpu_context *cpuctx,
3463              enum event_type_t event_type,
3464              struct task_struct *task)
3465 {
3466         int is_active = ctx->is_active;
3467         u64 now;
3468
3469         lockdep_assert_held(&ctx->lock);
3470
3471         if (likely(!ctx->nr_events))
3472                 return;
3473
3474         ctx->is_active |= (event_type | EVENT_TIME);
3475         if (ctx->task) {
3476                 if (!is_active)
3477                         cpuctx->task_ctx = ctx;
3478                 else
3479                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3480         }
3481
3482         is_active ^= ctx->is_active; /* changed bits */
3483
3484         if (is_active & EVENT_TIME) {
3485                 /* start ctx time */
3486                 now = perf_clock();
3487                 ctx->timestamp = now;
3488                 perf_cgroup_set_timestamp(task, ctx);
3489         }
3490
3491         /*
3492          * First go through the list and put on any pinned groups
3493          * in order to give them the best chance of going on.
3494          */
3495         if (is_active & EVENT_PINNED)
3496                 ctx_pinned_sched_in(ctx, cpuctx);
3497
3498         /* Then walk through the lower prio flexible groups */
3499         if (is_active & EVENT_FLEXIBLE)
3500                 ctx_flexible_sched_in(ctx, cpuctx);
3501 }
3502
3503 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3504                              enum event_type_t event_type,
3505                              struct task_struct *task)
3506 {
3507         struct perf_event_context *ctx = &cpuctx->ctx;
3508
3509         ctx_sched_in(ctx, cpuctx, event_type, task);
3510 }
3511
3512 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3513                                         struct task_struct *task)
3514 {
3515         struct perf_cpu_context *cpuctx;
3516
3517         cpuctx = __get_cpu_context(ctx);
3518         if (cpuctx->task_ctx == ctx)
3519                 return;
3520
3521         perf_ctx_lock(cpuctx, ctx);
3522         /*
3523          * We must check ctx->nr_events while holding ctx->lock, such
3524          * that we serialize against perf_install_in_context().
3525          */
3526         if (!ctx->nr_events)
3527                 goto unlock;
3528
3529         perf_pmu_disable(ctx->pmu);
3530         /*
3531          * We want to keep the following priority order:
3532          * cpu pinned (that don't need to move), task pinned,
3533          * cpu flexible, task flexible.
3534          *
3535          * However, if task's ctx is not carrying any pinned
3536          * events, no need to flip the cpuctx's events around.
3537          */
3538         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3539                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3540         perf_event_sched_in(cpuctx, ctx, task);
3541         perf_pmu_enable(ctx->pmu);
3542
3543 unlock:
3544         perf_ctx_unlock(cpuctx, ctx);
3545 }
3546
3547 /*
3548  * Called from scheduler to add the events of the current task
3549  * with interrupts disabled.
3550  *
3551  * We restore the event value and then enable it.
3552  *
3553  * This does not protect us against NMI, but enable()
3554  * sets the enabled bit in the control field of event _before_
3555  * accessing the event control register. If a NMI hits, then it will
3556  * keep the event running.
3557  */
3558 void __perf_event_task_sched_in(struct task_struct *prev,
3559                                 struct task_struct *task)
3560 {
3561         struct perf_event_context *ctx;
3562         int ctxn;
3563
3564         /*
3565          * If cgroup events exist on this CPU, then we need to check if we have
3566          * to switch in PMU state; cgroup event are system-wide mode only.
3567          *
3568          * Since cgroup events are CPU events, we must schedule these in before
3569          * we schedule in the task events.
3570          */
3571         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3572                 perf_cgroup_sched_in(prev, task);
3573
3574         for_each_task_context_nr(ctxn) {
3575                 ctx = task->perf_event_ctxp[ctxn];
3576                 if (likely(!ctx))
3577                         continue;
3578
3579                 perf_event_context_sched_in(ctx, task);
3580         }
3581
3582         if (atomic_read(&nr_switch_events))
3583                 perf_event_switch(task, prev, true);
3584
3585         if (__this_cpu_read(perf_sched_cb_usages))
3586                 perf_pmu_sched_task(prev, task, true);
3587 }
3588
3589 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3590 {
3591         u64 frequency = event->attr.sample_freq;
3592         u64 sec = NSEC_PER_SEC;
3593         u64 divisor, dividend;
3594
3595         int count_fls, nsec_fls, frequency_fls, sec_fls;
3596
3597         count_fls = fls64(count);
3598         nsec_fls = fls64(nsec);
3599         frequency_fls = fls64(frequency);
3600         sec_fls = 30;
3601
3602         /*
3603          * We got @count in @nsec, with a target of sample_freq HZ
3604          * the target period becomes:
3605          *
3606          *             @count * 10^9
3607          * period = -------------------
3608          *          @nsec * sample_freq
3609          *
3610          */
3611
3612         /*
3613          * Reduce accuracy by one bit such that @a and @b converge
3614          * to a similar magnitude.
3615          */
3616 #define REDUCE_FLS(a, b)                \
3617 do {                                    \
3618         if (a##_fls > b##_fls) {        \
3619                 a >>= 1;                \
3620                 a##_fls--;              \
3621         } else {                        \
3622                 b >>= 1;                \
3623                 b##_fls--;              \
3624         }                               \
3625 } while (0)
3626
3627         /*
3628          * Reduce accuracy until either term fits in a u64, then proceed with
3629          * the other, so that finally we can do a u64/u64 division.
3630          */
3631         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3632                 REDUCE_FLS(nsec, frequency);
3633                 REDUCE_FLS(sec, count);
3634         }
3635
3636         if (count_fls + sec_fls > 64) {
3637                 divisor = nsec * frequency;
3638
3639                 while (count_fls + sec_fls > 64) {
3640                         REDUCE_FLS(count, sec);
3641                         divisor >>= 1;
3642                 }
3643
3644                 dividend = count * sec;
3645         } else {
3646                 dividend = count * sec;
3647
3648                 while (nsec_fls + frequency_fls > 64) {
3649                         REDUCE_FLS(nsec, frequency);
3650                         dividend >>= 1;
3651                 }
3652
3653                 divisor = nsec * frequency;
3654         }
3655
3656         if (!divisor)
3657                 return dividend;
3658
3659         return div64_u64(dividend, divisor);
3660 }
3661
3662 static DEFINE_PER_CPU(int, perf_throttled_count);
3663 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3664
3665 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3666 {
3667         struct hw_perf_event *hwc = &event->hw;
3668         s64 period, sample_period;
3669         s64 delta;
3670
3671         period = perf_calculate_period(event, nsec, count);
3672
3673         delta = (s64)(period - hwc->sample_period);
3674         delta = (delta + 7) / 8; /* low pass filter */
3675
3676         sample_period = hwc->sample_period + delta;
3677
3678         if (!sample_period)
3679                 sample_period = 1;
3680
3681         hwc->sample_period = sample_period;
3682
3683         if (local64_read(&hwc->period_left) > 8*sample_period) {
3684                 if (disable)
3685                         event->pmu->stop(event, PERF_EF_UPDATE);
3686
3687                 local64_set(&hwc->period_left, 0);
3688
3689                 if (disable)
3690                         event->pmu->start(event, PERF_EF_RELOAD);
3691         }
3692 }
3693
3694 /*
3695  * combine freq adjustment with unthrottling to avoid two passes over the
3696  * events. At the same time, make sure, having freq events does not change
3697  * the rate of unthrottling as that would introduce bias.
3698  */
3699 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3700                                            int needs_unthr)
3701 {
3702         struct perf_event *event;
3703         struct hw_perf_event *hwc;
3704         u64 now, period = TICK_NSEC;
3705         s64 delta;
3706
3707         /*
3708          * only need to iterate over all events iff:
3709          * - context have events in frequency mode (needs freq adjust)
3710          * - there are events to unthrottle on this cpu
3711          */
3712         if (!(ctx->nr_freq || needs_unthr))
3713                 return;
3714
3715         raw_spin_lock(&ctx->lock);
3716         perf_pmu_disable(ctx->pmu);
3717
3718         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3719                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3720                         continue;
3721
3722                 if (!event_filter_match(event))
3723                         continue;
3724
3725                 perf_pmu_disable(event->pmu);
3726
3727                 hwc = &event->hw;
3728
3729                 if (hwc->interrupts == MAX_INTERRUPTS) {
3730                         hwc->interrupts = 0;
3731                         perf_log_throttle(event, 1);
3732                         event->pmu->start(event, 0);
3733                 }
3734
3735                 if (!event->attr.freq || !event->attr.sample_freq)
3736                         goto next;
3737
3738                 /*
3739                  * stop the event and update event->count
3740                  */
3741                 event->pmu->stop(event, PERF_EF_UPDATE);
3742
3743                 now = local64_read(&event->count);
3744                 delta = now - hwc->freq_count_stamp;
3745                 hwc->freq_count_stamp = now;
3746
3747                 /*
3748                  * restart the event
3749                  * reload only if value has changed
3750                  * we have stopped the event so tell that
3751                  * to perf_adjust_period() to avoid stopping it
3752                  * twice.
3753                  */
3754                 if (delta > 0)
3755                         perf_adjust_period(event, period, delta, false);
3756
3757                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3758         next:
3759                 perf_pmu_enable(event->pmu);
3760         }
3761
3762         perf_pmu_enable(ctx->pmu);
3763         raw_spin_unlock(&ctx->lock);
3764 }
3765
3766 /*
3767  * Move @event to the tail of the @ctx's elegible events.
3768  */
3769 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3770 {
3771         /*
3772          * Rotate the first entry last of non-pinned groups. Rotation might be
3773          * disabled by the inheritance code.
3774          */
3775         if (ctx->rotate_disable)
3776                 return;
3777
3778         perf_event_groups_delete(&ctx->flexible_groups, event);
3779         perf_event_groups_insert(&ctx->flexible_groups, event);
3780 }
3781
3782 /* pick an event from the flexible_groups to rotate */
3783 static inline struct perf_event *
3784 ctx_event_to_rotate(struct perf_event_context *ctx)
3785 {
3786         struct perf_event *event;
3787
3788         /* pick the first active flexible event */
3789         event = list_first_entry_or_null(&ctx->flexible_active,
3790                                          struct perf_event, active_list);
3791
3792         /* if no active flexible event, pick the first event */
3793         if (!event) {
3794                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3795                                       typeof(*event), group_node);
3796         }
3797
3798         return event;
3799 }
3800
3801 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3802 {
3803         struct perf_event *cpu_event = NULL, *task_event = NULL;
3804         struct perf_event_context *task_ctx = NULL;
3805         int cpu_rotate, task_rotate;
3806
3807         /*
3808          * Since we run this from IRQ context, nobody can install new
3809          * events, thus the event count values are stable.
3810          */
3811
3812         cpu_rotate = cpuctx->ctx.rotate_necessary;
3813         task_ctx = cpuctx->task_ctx;
3814         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3815
3816         if (!(cpu_rotate || task_rotate))
3817                 return false;
3818
3819         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3820         perf_pmu_disable(cpuctx->ctx.pmu);
3821
3822         if (task_rotate)
3823                 task_event = ctx_event_to_rotate(task_ctx);
3824         if (cpu_rotate)
3825                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
3826
3827         /*
3828          * As per the order given at ctx_resched() first 'pop' task flexible
3829          * and then, if needed CPU flexible.
3830          */
3831         if (task_event || (task_ctx && cpu_event))
3832                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3833         if (cpu_event)
3834                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3835
3836         if (task_event)
3837                 rotate_ctx(task_ctx, task_event);
3838         if (cpu_event)
3839                 rotate_ctx(&cpuctx->ctx, cpu_event);
3840
3841         perf_event_sched_in(cpuctx, task_ctx, current);
3842
3843         perf_pmu_enable(cpuctx->ctx.pmu);
3844         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3845
3846         return true;
3847 }
3848
3849 void perf_event_task_tick(void)
3850 {
3851         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3852         struct perf_event_context *ctx, *tmp;
3853         int throttled;
3854
3855         lockdep_assert_irqs_disabled();
3856
3857         __this_cpu_inc(perf_throttled_seq);
3858         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3859         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3860
3861         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3862                 perf_adjust_freq_unthr_context(ctx, throttled);
3863 }
3864
3865 static int event_enable_on_exec(struct perf_event *event,
3866                                 struct perf_event_context *ctx)
3867 {
3868         if (!event->attr.enable_on_exec)
3869                 return 0;
3870
3871         event->attr.enable_on_exec = 0;
3872         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3873                 return 0;
3874
3875         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3876
3877         return 1;
3878 }
3879
3880 /*
3881  * Enable all of a task's events that have been marked enable-on-exec.
3882  * This expects task == current.
3883  */
3884 static void perf_event_enable_on_exec(int ctxn)
3885 {
3886         struct perf_event_context *ctx, *clone_ctx = NULL;
3887         enum event_type_t event_type = 0;
3888         struct perf_cpu_context *cpuctx;
3889         struct perf_event *event;
3890         unsigned long flags;
3891         int enabled = 0;
3892
3893         local_irq_save(flags);
3894         ctx = current->perf_event_ctxp[ctxn];
3895         if (!ctx || !ctx->nr_events)
3896                 goto out;
3897
3898         cpuctx = __get_cpu_context(ctx);
3899         perf_ctx_lock(cpuctx, ctx);
3900         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3901         list_for_each_entry(event, &ctx->event_list, event_entry) {
3902                 enabled |= event_enable_on_exec(event, ctx);
3903                 event_type |= get_event_type(event);
3904         }
3905
3906         /*
3907          * Unclone and reschedule this context if we enabled any event.
3908          */
3909         if (enabled) {
3910                 clone_ctx = unclone_ctx(ctx);
3911                 ctx_resched(cpuctx, ctx, event_type);
3912         } else {
3913                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3914         }
3915         perf_ctx_unlock(cpuctx, ctx);
3916
3917 out:
3918         local_irq_restore(flags);
3919
3920         if (clone_ctx)
3921                 put_ctx(clone_ctx);
3922 }
3923
3924 struct perf_read_data {
3925         struct perf_event *event;
3926         bool group;
3927         int ret;
3928 };
3929
3930 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3931 {
3932         u16 local_pkg, event_pkg;
3933
3934         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3935                 int local_cpu = smp_processor_id();
3936
3937                 event_pkg = topology_physical_package_id(event_cpu);
3938                 local_pkg = topology_physical_package_id(local_cpu);
3939
3940                 if (event_pkg == local_pkg)
3941                         return local_cpu;
3942         }
3943
3944         return event_cpu;
3945 }
3946
3947 /*
3948  * Cross CPU call to read the hardware event
3949  */
3950 static void __perf_event_read(void *info)
3951 {
3952         struct perf_read_data *data = info;
3953         struct perf_event *sub, *event = data->event;
3954         struct perf_event_context *ctx = event->ctx;
3955         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3956         struct pmu *pmu = event->pmu;
3957
3958         /*
3959          * If this is a task context, we need to check whether it is
3960          * the current task context of this cpu.  If not it has been
3961          * scheduled out before the smp call arrived.  In that case
3962          * event->count would have been updated to a recent sample
3963          * when the event was scheduled out.
3964          */
3965         if (ctx->task && cpuctx->task_ctx != ctx)
3966                 return;
3967
3968         raw_spin_lock(&ctx->lock);
3969         if (ctx->is_active & EVENT_TIME) {
3970                 update_context_time(ctx);
3971                 update_cgrp_time_from_event(event);
3972         }
3973
3974         perf_event_update_time(event);
3975         if (data->group)
3976                 perf_event_update_sibling_time(event);
3977
3978         if (event->state != PERF_EVENT_STATE_ACTIVE)
3979                 goto unlock;
3980
3981         if (!data->group) {
3982                 pmu->read(event);
3983                 data->ret = 0;
3984                 goto unlock;
3985         }
3986
3987         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3988
3989         pmu->read(event);
3990
3991         for_each_sibling_event(sub, event) {
3992                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3993                         /*
3994                          * Use sibling's PMU rather than @event's since
3995                          * sibling could be on different (eg: software) PMU.
3996                          */
3997                         sub->pmu->read(sub);
3998                 }
3999         }
4000
4001         data->ret = pmu->commit_txn(pmu);
4002
4003 unlock:
4004         raw_spin_unlock(&ctx->lock);
4005 }
4006
4007 static inline u64 perf_event_count(struct perf_event *event)
4008 {
4009         return local64_read(&event->count) + atomic64_read(&event->child_count);
4010 }
4011
4012 /*
4013  * NMI-safe method to read a local event, that is an event that
4014  * is:
4015  *   - either for the current task, or for this CPU
4016  *   - does not have inherit set, for inherited task events
4017  *     will not be local and we cannot read them atomically
4018  *   - must not have a pmu::count method
4019  */
4020 int perf_event_read_local(struct perf_event *event, u64 *value,
4021                           u64 *enabled, u64 *running)
4022 {
4023         unsigned long flags;
4024         int ret = 0;
4025
4026         /*
4027          * Disabling interrupts avoids all counter scheduling (context
4028          * switches, timer based rotation and IPIs).
4029          */
4030         local_irq_save(flags);
4031
4032         /*
4033          * It must not be an event with inherit set, we cannot read
4034          * all child counters from atomic context.
4035          */
4036         if (event->attr.inherit) {
4037                 ret = -EOPNOTSUPP;
4038                 goto out;
4039         }
4040
4041         /* If this is a per-task event, it must be for current */
4042         if ((event->attach_state & PERF_ATTACH_TASK) &&
4043             event->hw.target != current) {
4044                 ret = -EINVAL;
4045                 goto out;
4046         }
4047
4048         /* If this is a per-CPU event, it must be for this CPU */
4049         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4050             event->cpu != smp_processor_id()) {
4051                 ret = -EINVAL;
4052                 goto out;
4053         }
4054
4055         /* If this is a pinned event it must be running on this CPU */
4056         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4057                 ret = -EBUSY;
4058                 goto out;
4059         }
4060
4061         /*
4062          * If the event is currently on this CPU, its either a per-task event,
4063          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4064          * oncpu == -1).
4065          */
4066         if (event->oncpu == smp_processor_id())
4067                 event->pmu->read(event);
4068
4069         *value = local64_read(&event->count);
4070         if (enabled || running) {
4071                 u64 now = event->shadow_ctx_time + perf_clock();
4072                 u64 __enabled, __running;
4073
4074                 __perf_update_times(event, now, &__enabled, &__running);
4075                 if (enabled)
4076                         *enabled = __enabled;
4077                 if (running)
4078                         *running = __running;
4079         }
4080 out:
4081         local_irq_restore(flags);
4082
4083         return ret;
4084 }
4085
4086 static int perf_event_read(struct perf_event *event, bool group)
4087 {
4088         enum perf_event_state state = READ_ONCE(event->state);
4089         int event_cpu, ret = 0;
4090
4091         /*
4092          * If event is enabled and currently active on a CPU, update the
4093          * value in the event structure:
4094          */
4095 again:
4096         if (state == PERF_EVENT_STATE_ACTIVE) {
4097                 struct perf_read_data data;
4098
4099                 /*
4100                  * Orders the ->state and ->oncpu loads such that if we see
4101                  * ACTIVE we must also see the right ->oncpu.
4102                  *
4103                  * Matches the smp_wmb() from event_sched_in().
4104                  */
4105                 smp_rmb();
4106
4107                 event_cpu = READ_ONCE(event->oncpu);
4108                 if ((unsigned)event_cpu >= nr_cpu_ids)
4109                         return 0;
4110
4111                 data = (struct perf_read_data){
4112                         .event = event,
4113                         .group = group,
4114                         .ret = 0,
4115                 };
4116
4117                 preempt_disable();
4118                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4119
4120                 /*
4121                  * Purposely ignore the smp_call_function_single() return
4122                  * value.
4123                  *
4124                  * If event_cpu isn't a valid CPU it means the event got
4125                  * scheduled out and that will have updated the event count.
4126                  *
4127                  * Therefore, either way, we'll have an up-to-date event count
4128                  * after this.
4129                  */
4130                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4131                 preempt_enable();
4132                 ret = data.ret;
4133
4134         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4135                 struct perf_event_context *ctx = event->ctx;
4136                 unsigned long flags;
4137
4138                 raw_spin_lock_irqsave(&ctx->lock, flags);
4139                 state = event->state;
4140                 if (state != PERF_EVENT_STATE_INACTIVE) {
4141                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4142                         goto again;
4143                 }
4144
4145                 /*
4146                  * May read while context is not active (e.g., thread is
4147                  * blocked), in that case we cannot update context time
4148                  */
4149                 if (ctx->is_active & EVENT_TIME) {
4150                         update_context_time(ctx);
4151                         update_cgrp_time_from_event(event);
4152                 }
4153
4154                 perf_event_update_time(event);
4155                 if (group)
4156                         perf_event_update_sibling_time(event);
4157                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4158         }
4159
4160         return ret;
4161 }
4162
4163 /*
4164  * Initialize the perf_event context in a task_struct:
4165  */
4166 static void __perf_event_init_context(struct perf_event_context *ctx)
4167 {
4168         raw_spin_lock_init(&ctx->lock);
4169         mutex_init(&ctx->mutex);
4170         INIT_LIST_HEAD(&ctx->active_ctx_list);
4171         perf_event_groups_init(&ctx->pinned_groups);
4172         perf_event_groups_init(&ctx->flexible_groups);
4173         INIT_LIST_HEAD(&ctx->event_list);
4174         INIT_LIST_HEAD(&ctx->pinned_active);
4175         INIT_LIST_HEAD(&ctx->flexible_active);
4176         refcount_set(&ctx->refcount, 1);
4177 }
4178
4179 static struct perf_event_context *
4180 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4181 {
4182         struct perf_event_context *ctx;
4183
4184         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4185         if (!ctx)
4186                 return NULL;
4187
4188         __perf_event_init_context(ctx);
4189         if (task)
4190                 ctx->task = get_task_struct(task);
4191         ctx->pmu = pmu;
4192
4193         return ctx;
4194 }
4195
4196 static struct task_struct *
4197 find_lively_task_by_vpid(pid_t vpid)
4198 {
4199         struct task_struct *task;
4200
4201         rcu_read_lock();
4202         if (!vpid)
4203                 task = current;
4204         else
4205                 task = find_task_by_vpid(vpid);
4206         if (task)
4207                 get_task_struct(task);
4208         rcu_read_unlock();
4209
4210         if (!task)
4211                 return ERR_PTR(-ESRCH);
4212
4213         return task;
4214 }
4215
4216 /*
4217  * Returns a matching context with refcount and pincount.
4218  */
4219 static struct perf_event_context *
4220 find_get_context(struct pmu *pmu, struct task_struct *task,
4221                 struct perf_event *event)
4222 {
4223         struct perf_event_context *ctx, *clone_ctx = NULL;
4224         struct perf_cpu_context *cpuctx;
4225         void *task_ctx_data = NULL;
4226         unsigned long flags;
4227         int ctxn, err;
4228         int cpu = event->cpu;
4229
4230         if (!task) {
4231                 /* Must be root to operate on a CPU event: */
4232                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4233                         return ERR_PTR(-EACCES);
4234
4235                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4236                 ctx = &cpuctx->ctx;
4237                 get_ctx(ctx);
4238                 ++ctx->pin_count;
4239
4240                 return ctx;
4241         }
4242
4243         err = -EINVAL;
4244         ctxn = pmu->task_ctx_nr;
4245         if (ctxn < 0)
4246                 goto errout;
4247
4248         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4249                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4250                 if (!task_ctx_data) {
4251                         err = -ENOMEM;
4252                         goto errout;
4253                 }
4254         }
4255
4256 retry:
4257         ctx = perf_lock_task_context(task, ctxn, &flags);
4258         if (ctx) {
4259                 clone_ctx = unclone_ctx(ctx);
4260                 ++ctx->pin_count;
4261
4262                 if (task_ctx_data && !ctx->task_ctx_data) {
4263                         ctx->task_ctx_data = task_ctx_data;
4264                         task_ctx_data = NULL;
4265                 }
4266                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4267
4268                 if (clone_ctx)
4269                         put_ctx(clone_ctx);
4270         } else {
4271                 ctx = alloc_perf_context(pmu, task);
4272                 err = -ENOMEM;
4273                 if (!ctx)
4274                         goto errout;
4275
4276                 if (task_ctx_data) {
4277                         ctx->task_ctx_data = task_ctx_data;
4278                         task_ctx_data = NULL;
4279                 }
4280
4281                 err = 0;
4282                 mutex_lock(&task->perf_event_mutex);
4283                 /*
4284                  * If it has already passed perf_event_exit_task().
4285                  * we must see PF_EXITING, it takes this mutex too.
4286                  */
4287                 if (task->flags & PF_EXITING)
4288                         err = -ESRCH;
4289                 else if (task->perf_event_ctxp[ctxn])
4290                         err = -EAGAIN;
4291                 else {
4292                         get_ctx(ctx);
4293                         ++ctx->pin_count;
4294                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4295                 }
4296                 mutex_unlock(&task->perf_event_mutex);
4297
4298                 if (unlikely(err)) {
4299                         put_ctx(ctx);
4300
4301                         if (err == -EAGAIN)
4302                                 goto retry;
4303                         goto errout;
4304                 }
4305         }
4306
4307         kfree(task_ctx_data);
4308         return ctx;
4309
4310 errout:
4311         kfree(task_ctx_data);
4312         return ERR_PTR(err);
4313 }
4314
4315 static void perf_event_free_filter(struct perf_event *event);
4316 static void perf_event_free_bpf_prog(struct perf_event *event);
4317
4318 static void free_event_rcu(struct rcu_head *head)
4319 {
4320         struct perf_event *event;
4321
4322         event = container_of(head, struct perf_event, rcu_head);
4323         if (event->ns)
4324                 put_pid_ns(event->ns);
4325         perf_event_free_filter(event);
4326         kfree(event);
4327 }
4328
4329 static void ring_buffer_attach(struct perf_event *event,
4330                                struct ring_buffer *rb);
4331
4332 static void detach_sb_event(struct perf_event *event)
4333 {
4334         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4335
4336         raw_spin_lock(&pel->lock);
4337         list_del_rcu(&event->sb_list);
4338         raw_spin_unlock(&pel->lock);
4339 }
4340
4341 static bool is_sb_event(struct perf_event *event)
4342 {
4343         struct perf_event_attr *attr = &event->attr;
4344
4345         if (event->parent)
4346                 return false;
4347
4348         if (event->attach_state & PERF_ATTACH_TASK)
4349                 return false;
4350
4351         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4352             attr->comm || attr->comm_exec ||
4353             attr->task || attr->ksymbol ||
4354             attr->context_switch ||
4355             attr->bpf_event)
4356                 return true;
4357         return false;
4358 }
4359
4360 static void unaccount_pmu_sb_event(struct perf_event *event)
4361 {
4362         if (is_sb_event(event))
4363                 detach_sb_event(event);
4364 }
4365
4366 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4367 {
4368         if (event->parent)
4369                 return;
4370
4371         if (is_cgroup_event(event))
4372                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4373 }
4374
4375 #ifdef CONFIG_NO_HZ_FULL
4376 static DEFINE_SPINLOCK(nr_freq_lock);
4377 #endif
4378
4379 static void unaccount_freq_event_nohz(void)
4380 {
4381 #ifdef CONFIG_NO_HZ_FULL
4382         spin_lock(&nr_freq_lock);
4383         if (atomic_dec_and_test(&nr_freq_events))
4384                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4385         spin_unlock(&nr_freq_lock);
4386 #endif
4387 }
4388
4389 static void unaccount_freq_event(void)
4390 {
4391         if (tick_nohz_full_enabled())
4392                 unaccount_freq_event_nohz();
4393         else
4394                 atomic_dec(&nr_freq_events);
4395 }
4396
4397 static void unaccount_event(struct perf_event *event)
4398 {
4399         bool dec = false;
4400
4401         if (event->parent)
4402                 return;
4403
4404         if (event->attach_state & PERF_ATTACH_TASK)
4405                 dec = true;
4406         if (event->attr.mmap || event->attr.mmap_data)
4407                 atomic_dec(&nr_mmap_events);
4408         if (event->attr.comm)
4409                 atomic_dec(&nr_comm_events);
4410         if (event->attr.namespaces)
4411                 atomic_dec(&nr_namespaces_events);
4412         if (event->attr.task)
4413                 atomic_dec(&nr_task_events);
4414         if (event->attr.freq)
4415                 unaccount_freq_event();
4416         if (event->attr.context_switch) {
4417                 dec = true;
4418                 atomic_dec(&nr_switch_events);
4419         }
4420         if (is_cgroup_event(event))
4421                 dec = true;
4422         if (has_branch_stack(event))
4423                 dec = true;
4424         if (event->attr.ksymbol)
4425                 atomic_dec(&nr_ksymbol_events);
4426         if (event->attr.bpf_event)
4427                 atomic_dec(&nr_bpf_events);
4428
4429         if (dec) {
4430                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4431                         schedule_delayed_work(&perf_sched_work, HZ);
4432         }
4433
4434         unaccount_event_cpu(event, event->cpu);
4435
4436         unaccount_pmu_sb_event(event);
4437 }
4438
4439 static void perf_sched_delayed(struct work_struct *work)
4440 {
4441         mutex_lock(&perf_sched_mutex);
4442         if (atomic_dec_and_test(&perf_sched_count))
4443                 static_branch_disable(&perf_sched_events);
4444         mutex_unlock(&perf_sched_mutex);
4445 }
4446
4447 /*
4448  * The following implement mutual exclusion of events on "exclusive" pmus
4449  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4450  * at a time, so we disallow creating events that might conflict, namely:
4451  *
4452  *  1) cpu-wide events in the presence of per-task events,
4453  *  2) per-task events in the presence of cpu-wide events,
4454  *  3) two matching events on the same context.
4455  *
4456  * The former two cases are handled in the allocation path (perf_event_alloc(),
4457  * _free_event()), the latter -- before the first perf_install_in_context().
4458  */
4459 static int exclusive_event_init(struct perf_event *event)
4460 {
4461         struct pmu *pmu = event->pmu;
4462
4463         if (!is_exclusive_pmu(pmu))
4464                 return 0;
4465
4466         /*
4467          * Prevent co-existence of per-task and cpu-wide events on the
4468          * same exclusive pmu.
4469          *
4470          * Negative pmu::exclusive_cnt means there are cpu-wide
4471          * events on this "exclusive" pmu, positive means there are
4472          * per-task events.
4473          *
4474          * Since this is called in perf_event_alloc() path, event::ctx
4475          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4476          * to mean "per-task event", because unlike other attach states it
4477          * never gets cleared.
4478          */
4479         if (event->attach_state & PERF_ATTACH_TASK) {
4480                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4481                         return -EBUSY;
4482         } else {
4483                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4484                         return -EBUSY;
4485         }
4486
4487         return 0;
4488 }
4489
4490 static void exclusive_event_destroy(struct perf_event *event)
4491 {
4492         struct pmu *pmu = event->pmu;
4493
4494         if (!is_exclusive_pmu(pmu))
4495                 return;
4496
4497         /* see comment in exclusive_event_init() */
4498         if (event->attach_state & PERF_ATTACH_TASK)
4499                 atomic_dec(&pmu->exclusive_cnt);
4500         else
4501                 atomic_inc(&pmu->exclusive_cnt);
4502 }
4503
4504 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4505 {
4506         if ((e1->pmu == e2->pmu) &&
4507             (e1->cpu == e2->cpu ||
4508              e1->cpu == -1 ||
4509              e2->cpu == -1))
4510                 return true;
4511         return false;
4512 }
4513
4514 static bool exclusive_event_installable(struct perf_event *event,
4515                                         struct perf_event_context *ctx)
4516 {
4517         struct perf_event *iter_event;
4518         struct pmu *pmu = event->pmu;
4519
4520         lockdep_assert_held(&ctx->mutex);
4521
4522         if (!is_exclusive_pmu(pmu))
4523                 return true;
4524
4525         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4526                 if (exclusive_event_match(iter_event, event))
4527                         return false;
4528         }
4529
4530         return true;
4531 }
4532
4533 static void perf_addr_filters_splice(struct perf_event *event,
4534                                        struct list_head *head);
4535
4536 static void _free_event(struct perf_event *event)
4537 {
4538         irq_work_sync(&event->pending);
4539
4540         unaccount_event(event);
4541
4542         if (event->rb) {
4543                 /*
4544                  * Can happen when we close an event with re-directed output.
4545                  *
4546                  * Since we have a 0 refcount, perf_mmap_close() will skip
4547                  * over us; possibly making our ring_buffer_put() the last.
4548                  */
4549                 mutex_lock(&event->mmap_mutex);
4550                 ring_buffer_attach(event, NULL);
4551                 mutex_unlock(&event->mmap_mutex);
4552         }
4553
4554         if (is_cgroup_event(event))
4555                 perf_detach_cgroup(event);
4556
4557         if (!event->parent) {
4558                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4559                         put_callchain_buffers();
4560         }
4561
4562         perf_event_free_bpf_prog(event);
4563         perf_addr_filters_splice(event, NULL);
4564         kfree(event->addr_filter_ranges);
4565
4566         if (event->destroy)
4567                 event->destroy(event);
4568
4569         /*
4570          * Must be after ->destroy(), due to uprobe_perf_close() using
4571          * hw.target.
4572          */
4573         if (event->hw.target)
4574                 put_task_struct(event->hw.target);
4575
4576         /*
4577          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4578          * all task references must be cleaned up.
4579          */
4580         if (event->ctx)
4581                 put_ctx(event->ctx);
4582
4583         exclusive_event_destroy(event);
4584         module_put(event->pmu->module);
4585
4586         call_rcu(&event->rcu_head, free_event_rcu);
4587 }
4588
4589 /*
4590  * Used to free events which have a known refcount of 1, such as in error paths
4591  * where the event isn't exposed yet and inherited events.
4592  */
4593 static void free_event(struct perf_event *event)
4594 {
4595         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4596                                 "unexpected event refcount: %ld; ptr=%p\n",
4597                                 atomic_long_read(&event->refcount), event)) {
4598                 /* leak to avoid use-after-free */
4599                 return;
4600         }
4601
4602         _free_event(event);
4603 }
4604
4605 /*
4606  * Remove user event from the owner task.
4607  */
4608 static void perf_remove_from_owner(struct perf_event *event)
4609 {
4610         struct task_struct *owner;
4611
4612         rcu_read_lock();
4613         /*
4614          * Matches the smp_store_release() in perf_event_exit_task(). If we
4615          * observe !owner it means the list deletion is complete and we can
4616          * indeed free this event, otherwise we need to serialize on
4617          * owner->perf_event_mutex.
4618          */
4619         owner = READ_ONCE(event->owner);
4620         if (owner) {
4621                 /*
4622                  * Since delayed_put_task_struct() also drops the last
4623                  * task reference we can safely take a new reference
4624                  * while holding the rcu_read_lock().
4625                  */
4626                 get_task_struct(owner);
4627         }
4628         rcu_read_unlock();
4629
4630         if (owner) {
4631                 /*
4632                  * If we're here through perf_event_exit_task() we're already
4633                  * holding ctx->mutex which would be an inversion wrt. the
4634                  * normal lock order.
4635                  *
4636                  * However we can safely take this lock because its the child
4637                  * ctx->mutex.
4638                  */
4639                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4640
4641                 /*
4642                  * We have to re-check the event->owner field, if it is cleared
4643                  * we raced with perf_event_exit_task(), acquiring the mutex
4644                  * ensured they're done, and we can proceed with freeing the
4645                  * event.
4646                  */
4647                 if (event->owner) {
4648                         list_del_init(&event->owner_entry);
4649                         smp_store_release(&event->owner, NULL);
4650                 }
4651                 mutex_unlock(&owner->perf_event_mutex);
4652                 put_task_struct(owner);
4653         }
4654 }
4655
4656 static void put_event(struct perf_event *event)
4657 {
4658         if (!atomic_long_dec_and_test(&event->refcount))
4659                 return;
4660
4661         _free_event(event);
4662 }
4663
4664 /*
4665  * Kill an event dead; while event:refcount will preserve the event
4666  * object, it will not preserve its functionality. Once the last 'user'
4667  * gives up the object, we'll destroy the thing.
4668  */
4669 int perf_event_release_kernel(struct perf_event *event)
4670 {
4671         struct perf_event_context *ctx = event->ctx;
4672         struct perf_event *child, *tmp;
4673         LIST_HEAD(free_list);
4674
4675         /*
4676          * If we got here through err_file: fput(event_file); we will not have
4677          * attached to a context yet.
4678          */
4679         if (!ctx) {
4680                 WARN_ON_ONCE(event->attach_state &
4681                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4682                 goto no_ctx;
4683         }
4684
4685         if (!is_kernel_event(event))
4686                 perf_remove_from_owner(event);
4687
4688         ctx = perf_event_ctx_lock(event);
4689         WARN_ON_ONCE(ctx->parent_ctx);
4690         perf_remove_from_context(event, DETACH_GROUP);
4691
4692         raw_spin_lock_irq(&ctx->lock);
4693         /*
4694          * Mark this event as STATE_DEAD, there is no external reference to it
4695          * anymore.
4696          *
4697          * Anybody acquiring event->child_mutex after the below loop _must_
4698          * also see this, most importantly inherit_event() which will avoid
4699          * placing more children on the list.
4700          *
4701          * Thus this guarantees that we will in fact observe and kill _ALL_
4702          * child events.
4703          */
4704         event->state = PERF_EVENT_STATE_DEAD;
4705         raw_spin_unlock_irq(&ctx->lock);
4706
4707         perf_event_ctx_unlock(event, ctx);
4708
4709 again:
4710         mutex_lock(&event->child_mutex);
4711         list_for_each_entry(child, &event->child_list, child_list) {
4712
4713                 /*
4714                  * Cannot change, child events are not migrated, see the
4715                  * comment with perf_event_ctx_lock_nested().
4716                  */
4717                 ctx = READ_ONCE(child->ctx);
4718                 /*
4719                  * Since child_mutex nests inside ctx::mutex, we must jump
4720                  * through hoops. We start by grabbing a reference on the ctx.
4721                  *
4722                  * Since the event cannot get freed while we hold the
4723                  * child_mutex, the context must also exist and have a !0
4724                  * reference count.
4725                  */
4726                 get_ctx(ctx);
4727
4728                 /*
4729                  * Now that we have a ctx ref, we can drop child_mutex, and
4730                  * acquire ctx::mutex without fear of it going away. Then we
4731                  * can re-acquire child_mutex.
4732                  */
4733                 mutex_unlock(&event->child_mutex);
4734                 mutex_lock(&ctx->mutex);
4735                 mutex_lock(&event->child_mutex);
4736
4737                 /*
4738                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4739                  * state, if child is still the first entry, it didn't get freed
4740                  * and we can continue doing so.
4741                  */
4742                 tmp = list_first_entry_or_null(&event->child_list,
4743                                                struct perf_event, child_list);
4744                 if (tmp == child) {
4745                         perf_remove_from_context(child, DETACH_GROUP);
4746                         list_move(&child->child_list, &free_list);
4747                         /*
4748                          * This matches the refcount bump in inherit_event();
4749                          * this can't be the last reference.
4750                          */
4751                         put_event(event);
4752                 }
4753
4754                 mutex_unlock(&event->child_mutex);
4755                 mutex_unlock(&ctx->mutex);
4756                 put_ctx(ctx);
4757                 goto again;
4758         }
4759         mutex_unlock(&event->child_mutex);
4760
4761         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4762                 void *var = &child->ctx->refcount;
4763
4764                 list_del(&child->child_list);
4765                 free_event(child);
4766
4767                 /*
4768                  * Wake any perf_event_free_task() waiting for this event to be
4769                  * freed.
4770                  */
4771                 smp_mb(); /* pairs with wait_var_event() */
4772                 wake_up_var(var);
4773         }
4774
4775 no_ctx:
4776         put_event(event); /* Must be the 'last' reference */
4777         return 0;
4778 }
4779 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4780
4781 /*
4782  * Called when the last reference to the file is gone.
4783  */
4784 static int perf_release(struct inode *inode, struct file *file)
4785 {
4786         perf_event_release_kernel(file->private_data);
4787         return 0;
4788 }
4789
4790 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4791 {
4792         struct perf_event *child;
4793         u64 total = 0;
4794
4795         *enabled = 0;
4796         *running = 0;
4797
4798         mutex_lock(&event->child_mutex);
4799
4800         (void)perf_event_read(event, false);
4801         total += perf_event_count(event);
4802
4803         *enabled += event->total_time_enabled +
4804                         atomic64_read(&event->child_total_time_enabled);
4805         *running += event->total_time_running +
4806                         atomic64_read(&event->child_total_time_running);
4807
4808         list_for_each_entry(child, &event->child_list, child_list) {
4809                 (void)perf_event_read(child, false);
4810                 total += perf_event_count(child);
4811                 *enabled += child->total_time_enabled;
4812                 *running += child->total_time_running;
4813         }
4814         mutex_unlock(&event->child_mutex);
4815
4816         return total;
4817 }
4818
4819 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4820 {
4821         struct perf_event_context *ctx;
4822         u64 count;
4823
4824         ctx = perf_event_ctx_lock(event);
4825         count = __perf_event_read_value(event, enabled, running);
4826         perf_event_ctx_unlock(event, ctx);
4827
4828         return count;
4829 }
4830 EXPORT_SYMBOL_GPL(perf_event_read_value);
4831
4832 static int __perf_read_group_add(struct perf_event *leader,
4833                                         u64 read_format, u64 *values)
4834 {
4835         struct perf_event_context *ctx = leader->ctx;
4836         struct perf_event *sub;
4837         unsigned long flags;
4838         int n = 1; /* skip @nr */
4839         int ret;
4840
4841         ret = perf_event_read(leader, true);
4842         if (ret)
4843                 return ret;
4844
4845         raw_spin_lock_irqsave(&ctx->lock, flags);
4846
4847         /*
4848          * Since we co-schedule groups, {enabled,running} times of siblings
4849          * will be identical to those of the leader, so we only publish one
4850          * set.
4851          */
4852         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4853                 values[n++] += leader->total_time_enabled +
4854                         atomic64_read(&leader->child_total_time_enabled);
4855         }
4856
4857         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4858                 values[n++] += leader->total_time_running +
4859                         atomic64_read(&leader->child_total_time_running);
4860         }
4861
4862         /*
4863          * Write {count,id} tuples for every sibling.
4864          */
4865         values[n++] += perf_event_count(leader);
4866         if (read_format & PERF_FORMAT_ID)
4867                 values[n++] = primary_event_id(leader);
4868
4869         for_each_sibling_event(sub, leader) {
4870                 values[n++] += perf_event_count(sub);
4871                 if (read_format & PERF_FORMAT_ID)
4872                         values[n++] = primary_event_id(sub);
4873         }
4874
4875         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4876         return 0;
4877 }
4878
4879 static int perf_read_group(struct perf_event *event,
4880                                    u64 read_format, char __user *buf)
4881 {
4882         struct perf_event *leader = event->group_leader, *child;
4883         struct perf_event_context *ctx = leader->ctx;
4884         int ret;
4885         u64 *values;
4886
4887         lockdep_assert_held(&ctx->mutex);
4888
4889         values = kzalloc(event->read_size, GFP_KERNEL);
4890         if (!values)
4891                 return -ENOMEM;
4892
4893         values[0] = 1 + leader->nr_siblings;
4894
4895         /*
4896          * By locking the child_mutex of the leader we effectively
4897          * lock the child list of all siblings.. XXX explain how.
4898          */
4899         mutex_lock(&leader->child_mutex);
4900
4901         ret = __perf_read_group_add(leader, read_format, values);
4902         if (ret)
4903                 goto unlock;
4904
4905         list_for_each_entry(child, &leader->child_list, child_list) {
4906                 ret = __perf_read_group_add(child, read_format, values);
4907                 if (ret)
4908                         goto unlock;
4909         }
4910
4911         mutex_unlock(&leader->child_mutex);
4912
4913         ret = event->read_size;
4914         if (copy_to_user(buf, values, event->read_size))
4915                 ret = -EFAULT;
4916         goto out;
4917
4918 unlock:
4919         mutex_unlock(&leader->child_mutex);
4920 out:
4921         kfree(values);
4922         return ret;
4923 }
4924
4925 static int perf_read_one(struct perf_event *event,
4926                                  u64 read_format, char __user *buf)
4927 {
4928         u64 enabled, running;
4929         u64 values[4];
4930         int n = 0;
4931
4932         values[n++] = __perf_event_read_value(event, &enabled, &running);
4933         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4934                 values[n++] = enabled;
4935         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4936                 values[n++] = running;
4937         if (read_format & PERF_FORMAT_ID)
4938                 values[n++] = primary_event_id(event);
4939
4940         if (copy_to_user(buf, values, n * sizeof(u64)))
4941                 return -EFAULT;
4942
4943         return n * sizeof(u64);
4944 }
4945
4946 static bool is_event_hup(struct perf_event *event)
4947 {
4948         bool no_children;
4949
4950         if (event->state > PERF_EVENT_STATE_EXIT)
4951                 return false;
4952
4953         mutex_lock(&event->child_mutex);
4954         no_children = list_empty(&event->child_list);
4955         mutex_unlock(&event->child_mutex);
4956         return no_children;
4957 }
4958
4959 /*
4960  * Read the performance event - simple non blocking version for now
4961  */
4962 static ssize_t
4963 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4964 {
4965         u64 read_format = event->attr.read_format;
4966         int ret;
4967
4968         /*
4969          * Return end-of-file for a read on an event that is in
4970          * error state (i.e. because it was pinned but it couldn't be
4971          * scheduled on to the CPU at some point).
4972          */
4973         if (event->state == PERF_EVENT_STATE_ERROR)
4974                 return 0;
4975
4976         if (count < event->read_size)
4977                 return -ENOSPC;
4978
4979         WARN_ON_ONCE(event->ctx->parent_ctx);
4980         if (read_format & PERF_FORMAT_GROUP)
4981                 ret = perf_read_group(event, read_format, buf);
4982         else
4983                 ret = perf_read_one(event, read_format, buf);
4984
4985         return ret;
4986 }
4987
4988 static ssize_t
4989 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4990 {
4991         struct perf_event *event = file->private_data;
4992         struct perf_event_context *ctx;
4993         int ret;
4994
4995         ctx = perf_event_ctx_lock(event);
4996         ret = __perf_read(event, buf, count);
4997         perf_event_ctx_unlock(event, ctx);
4998
4999         return ret;
5000 }
5001
5002 static __poll_t perf_poll(struct file *file, poll_table *wait)
5003 {
5004         struct perf_event *event = file->private_data;
5005         struct ring_buffer *rb;
5006         __poll_t events = EPOLLHUP;
5007
5008         poll_wait(file, &event->waitq, wait);
5009
5010         if (is_event_hup(event))
5011                 return events;
5012
5013         /*
5014          * Pin the event->rb by taking event->mmap_mutex; otherwise
5015          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5016          */
5017         mutex_lock(&event->mmap_mutex);
5018         rb = event->rb;
5019         if (rb)
5020                 events = atomic_xchg(&rb->poll, 0);
5021         mutex_unlock(&event->mmap_mutex);
5022         return events;
5023 }
5024
5025 static void _perf_event_reset(struct perf_event *event)
5026 {
5027         (void)perf_event_read(event, false);
5028         local64_set(&event->count, 0);
5029         perf_event_update_userpage(event);
5030 }
5031
5032 /*
5033  * Holding the top-level event's child_mutex means that any
5034  * descendant process that has inherited this event will block
5035  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5036  * task existence requirements of perf_event_enable/disable.
5037  */
5038 static void perf_event_for_each_child(struct perf_event *event,
5039                                         void (*func)(struct perf_event *))
5040 {
5041         struct perf_event *child;
5042
5043         WARN_ON_ONCE(event->ctx->parent_ctx);
5044
5045         mutex_lock(&event->child_mutex);
5046         func(event);
5047         list_for_each_entry(child, &event->child_list, child_list)
5048                 func(child);
5049         mutex_unlock(&event->child_mutex);
5050 }
5051
5052 static void perf_event_for_each(struct perf_event *event,
5053                                   void (*func)(struct perf_event *))
5054 {
5055         struct perf_event_context *ctx = event->ctx;
5056         struct perf_event *sibling;
5057
5058         lockdep_assert_held(&ctx->mutex);
5059
5060         event = event->group_leader;
5061
5062         perf_event_for_each_child(event, func);
5063         for_each_sibling_event(sibling, event)
5064                 perf_event_for_each_child(sibling, func);
5065 }
5066
5067 static void __perf_event_period(struct perf_event *event,
5068                                 struct perf_cpu_context *cpuctx,
5069                                 struct perf_event_context *ctx,
5070                                 void *info)
5071 {
5072         u64 value = *((u64 *)info);
5073         bool active;
5074
5075         if (event->attr.freq) {
5076                 event->attr.sample_freq = value;
5077         } else {
5078                 event->attr.sample_period = value;
5079                 event->hw.sample_period = value;
5080         }
5081
5082         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5083         if (active) {
5084                 perf_pmu_disable(ctx->pmu);
5085                 /*
5086                  * We could be throttled; unthrottle now to avoid the tick
5087                  * trying to unthrottle while we already re-started the event.
5088                  */
5089                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5090                         event->hw.interrupts = 0;
5091                         perf_log_throttle(event, 1);
5092                 }
5093                 event->pmu->stop(event, PERF_EF_UPDATE);
5094         }
5095
5096         local64_set(&event->hw.period_left, 0);
5097
5098         if (active) {
5099                 event->pmu->start(event, PERF_EF_RELOAD);
5100                 perf_pmu_enable(ctx->pmu);
5101         }
5102 }
5103
5104 static int perf_event_check_period(struct perf_event *event, u64 value)
5105 {
5106         return event->pmu->check_period(event, value);
5107 }
5108
5109 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5110 {
5111         u64 value;
5112
5113         if (!is_sampling_event(event))
5114                 return -EINVAL;
5115
5116         if (copy_from_user(&value, arg, sizeof(value)))
5117                 return -EFAULT;
5118
5119         if (!value)
5120                 return -EINVAL;
5121
5122         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5123                 return -EINVAL;
5124
5125         if (perf_event_check_period(event, value))
5126                 return -EINVAL;
5127
5128         if (!event->attr.freq && (value & (1ULL << 63)))
5129                 return -EINVAL;
5130
5131         event_function_call(event, __perf_event_period, &value);
5132
5133         return 0;
5134 }
5135
5136 static const struct file_operations perf_fops;
5137
5138 static inline int perf_fget_light(int fd, struct fd *p)
5139 {
5140         struct fd f = fdget(fd);
5141         if (!f.file)
5142                 return -EBADF;
5143
5144         if (f.file->f_op != &perf_fops) {
5145                 fdput(f);
5146                 return -EBADF;
5147         }
5148         *p = f;
5149         return 0;
5150 }
5151
5152 static int perf_event_set_output(struct perf_event *event,
5153                                  struct perf_event *output_event);
5154 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5155 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5156 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5157                           struct perf_event_attr *attr);
5158
5159 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5160 {
5161         void (*func)(struct perf_event *);
5162         u32 flags = arg;
5163
5164         switch (cmd) {
5165         case PERF_EVENT_IOC_ENABLE:
5166                 func = _perf_event_enable;
5167                 break;
5168         case PERF_EVENT_IOC_DISABLE:
5169                 func = _perf_event_disable;
5170                 break;
5171         case PERF_EVENT_IOC_RESET:
5172                 func = _perf_event_reset;
5173                 break;
5174
5175         case PERF_EVENT_IOC_REFRESH:
5176                 return _perf_event_refresh(event, arg);
5177
5178         case PERF_EVENT_IOC_PERIOD:
5179                 return perf_event_period(event, (u64 __user *)arg);
5180
5181         case PERF_EVENT_IOC_ID:
5182         {
5183                 u64 id = primary_event_id(event);
5184
5185                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5186                         return -EFAULT;
5187                 return 0;
5188         }
5189
5190         case PERF_EVENT_IOC_SET_OUTPUT:
5191         {
5192                 int ret;
5193                 if (arg != -1) {
5194                         struct perf_event *output_event;
5195                         struct fd output;
5196                         ret = perf_fget_light(arg, &output);
5197                         if (ret)
5198                                 return ret;
5199                         output_event = output.file->private_data;
5200                         ret = perf_event_set_output(event, output_event);
5201                         fdput(output);
5202                 } else {
5203                         ret = perf_event_set_output(event, NULL);
5204                 }
5205                 return ret;
5206         }
5207
5208         case PERF_EVENT_IOC_SET_FILTER:
5209                 return perf_event_set_filter(event, (void __user *)arg);
5210
5211         case PERF_EVENT_IOC_SET_BPF:
5212                 return perf_event_set_bpf_prog(event, arg);
5213
5214         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5215                 struct ring_buffer *rb;
5216
5217                 rcu_read_lock();
5218                 rb = rcu_dereference(event->rb);
5219                 if (!rb || !rb->nr_pages) {
5220                         rcu_read_unlock();
5221                         return -EINVAL;
5222                 }
5223                 rb_toggle_paused(rb, !!arg);
5224                 rcu_read_unlock();
5225                 return 0;
5226         }
5227
5228         case PERF_EVENT_IOC_QUERY_BPF:
5229                 return perf_event_query_prog_array(event, (void __user *)arg);
5230
5231         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5232                 struct perf_event_attr new_attr;
5233                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5234                                          &new_attr);
5235
5236                 if (err)
5237                         return err;
5238
5239                 return perf_event_modify_attr(event,  &new_attr);
5240         }
5241         default:
5242                 return -ENOTTY;
5243         }
5244
5245         if (flags & PERF_IOC_FLAG_GROUP)
5246                 perf_event_for_each(event, func);
5247         else
5248                 perf_event_for_each_child(event, func);
5249
5250         return 0;
5251 }
5252
5253 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5254 {
5255         struct perf_event *event = file->private_data;
5256         struct perf_event_context *ctx;
5257         long ret;
5258
5259         ctx = perf_event_ctx_lock(event);
5260         ret = _perf_ioctl(event, cmd, arg);
5261         perf_event_ctx_unlock(event, ctx);
5262
5263         return ret;
5264 }
5265
5266 #ifdef CONFIG_COMPAT
5267 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5268                                 unsigned long arg)
5269 {
5270         switch (_IOC_NR(cmd)) {
5271         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5272         case _IOC_NR(PERF_EVENT_IOC_ID):
5273         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5274         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5275                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5276                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5277                         cmd &= ~IOCSIZE_MASK;
5278                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5279                 }
5280                 break;
5281         }
5282         return perf_ioctl(file, cmd, arg);
5283 }
5284 #else
5285 # define perf_compat_ioctl NULL
5286 #endif
5287
5288 int perf_event_task_enable(void)
5289 {
5290         struct perf_event_context *ctx;
5291         struct perf_event *event;
5292
5293         mutex_lock(&current->perf_event_mutex);
5294         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5295                 ctx = perf_event_ctx_lock(event);
5296                 perf_event_for_each_child(event, _perf_event_enable);
5297                 perf_event_ctx_unlock(event, ctx);
5298         }
5299         mutex_unlock(&current->perf_event_mutex);
5300
5301         return 0;
5302 }
5303
5304 int perf_event_task_disable(void)
5305 {
5306         struct perf_event_context *ctx;
5307         struct perf_event *event;
5308
5309         mutex_lock(&current->perf_event_mutex);
5310         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5311                 ctx = perf_event_ctx_lock(event);
5312                 perf_event_for_each_child(event, _perf_event_disable);
5313                 perf_event_ctx_unlock(event, ctx);
5314         }
5315         mutex_unlock(&current->perf_event_mutex);
5316
5317         return 0;
5318 }
5319
5320 static int perf_event_index(struct perf_event *event)
5321 {
5322         if (event->hw.state & PERF_HES_STOPPED)
5323                 return 0;
5324
5325         if (event->state != PERF_EVENT_STATE_ACTIVE)
5326                 return 0;
5327
5328         return event->pmu->event_idx(event);
5329 }
5330
5331 static void calc_timer_values(struct perf_event *event,
5332                                 u64 *now,
5333                                 u64 *enabled,
5334                                 u64 *running)
5335 {
5336         u64 ctx_time;
5337
5338         *now = perf_clock();
5339         ctx_time = event->shadow_ctx_time + *now;
5340         __perf_update_times(event, ctx_time, enabled, running);
5341 }
5342
5343 static void perf_event_init_userpage(struct perf_event *event)
5344 {
5345         struct perf_event_mmap_page *userpg;
5346         struct ring_buffer *rb;
5347
5348         rcu_read_lock();
5349         rb = rcu_dereference(event->rb);
5350         if (!rb)
5351                 goto unlock;
5352
5353         userpg = rb->user_page;
5354
5355         /* Allow new userspace to detect that bit 0 is deprecated */
5356         userpg->cap_bit0_is_deprecated = 1;
5357         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5358         userpg->data_offset = PAGE_SIZE;
5359         userpg->data_size = perf_data_size(rb);
5360
5361 unlock:
5362         rcu_read_unlock();
5363 }
5364
5365 void __weak arch_perf_update_userpage(
5366         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5367 {
5368 }
5369
5370 /*
5371  * Callers need to ensure there can be no nesting of this function, otherwise
5372  * the seqlock logic goes bad. We can not serialize this because the arch
5373  * code calls this from NMI context.
5374  */
5375 void perf_event_update_userpage(struct perf_event *event)
5376 {
5377         struct perf_event_mmap_page *userpg;
5378         struct ring_buffer *rb;
5379         u64 enabled, running, now;
5380
5381         rcu_read_lock();
5382         rb = rcu_dereference(event->rb);
5383         if (!rb)
5384                 goto unlock;
5385
5386         /*
5387          * compute total_time_enabled, total_time_running
5388          * based on snapshot values taken when the event
5389          * was last scheduled in.
5390          *
5391          * we cannot simply called update_context_time()
5392          * because of locking issue as we can be called in
5393          * NMI context
5394          */
5395         calc_timer_values(event, &now, &enabled, &running);
5396
5397         userpg = rb->user_page;
5398         /*
5399          * Disable preemption to guarantee consistent time stamps are stored to
5400          * the user page.
5401          */
5402         preempt_disable();
5403         ++userpg->lock;
5404         barrier();
5405         userpg->index = perf_event_index(event);
5406         userpg->offset = perf_event_count(event);
5407         if (userpg->index)
5408                 userpg->offset -= local64_read(&event->hw.prev_count);
5409
5410         userpg->time_enabled = enabled +
5411                         atomic64_read(&event->child_total_time_enabled);
5412
5413         userpg->time_running = running +
5414                         atomic64_read(&event->child_total_time_running);
5415
5416         arch_perf_update_userpage(event, userpg, now);
5417
5418         barrier();
5419         ++userpg->lock;
5420         preempt_enable();
5421 unlock:
5422         rcu_read_unlock();
5423 }
5424 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5425
5426 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5427 {
5428         struct perf_event *event = vmf->vma->vm_file->private_data;
5429         struct ring_buffer *rb;
5430         vm_fault_t ret = VM_FAULT_SIGBUS;
5431
5432         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5433                 if (vmf->pgoff == 0)
5434                         ret = 0;
5435                 return ret;
5436         }
5437
5438         rcu_read_lock();
5439         rb = rcu_dereference(event->rb);
5440         if (!rb)
5441                 goto unlock;
5442
5443         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5444                 goto unlock;
5445
5446         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5447         if (!vmf->page)
5448                 goto unlock;
5449
5450         get_page(vmf->page);
5451         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5452         vmf->page->index   = vmf->pgoff;
5453
5454         ret = 0;
5455 unlock:
5456         rcu_read_unlock();
5457
5458         return ret;
5459 }
5460
5461 static void ring_buffer_attach(struct perf_event *event,
5462                                struct ring_buffer *rb)
5463 {
5464         struct ring_buffer *old_rb = NULL;
5465         unsigned long flags;
5466
5467         if (event->rb) {
5468                 /*
5469                  * Should be impossible, we set this when removing
5470                  * event->rb_entry and wait/clear when adding event->rb_entry.
5471                  */
5472                 WARN_ON_ONCE(event->rcu_pending);
5473
5474                 old_rb = event->rb;
5475                 spin_lock_irqsave(&old_rb->event_lock, flags);
5476                 list_del_rcu(&event->rb_entry);
5477                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5478
5479                 event->rcu_batches = get_state_synchronize_rcu();
5480                 event->rcu_pending = 1;
5481         }
5482
5483         if (rb) {
5484                 if (event->rcu_pending) {
5485                         cond_synchronize_rcu(event->rcu_batches);
5486                         event->rcu_pending = 0;
5487                 }
5488
5489                 spin_lock_irqsave(&rb->event_lock, flags);
5490                 list_add_rcu(&event->rb_entry, &rb->event_list);
5491                 spin_unlock_irqrestore(&rb->event_lock, flags);
5492         }
5493
5494         /*
5495          * Avoid racing with perf_mmap_close(AUX): stop the event
5496          * before swizzling the event::rb pointer; if it's getting
5497          * unmapped, its aux_mmap_count will be 0 and it won't
5498          * restart. See the comment in __perf_pmu_output_stop().
5499          *
5500          * Data will inevitably be lost when set_output is done in
5501          * mid-air, but then again, whoever does it like this is
5502          * not in for the data anyway.
5503          */
5504         if (has_aux(event))
5505                 perf_event_stop(event, 0);
5506
5507         rcu_assign_pointer(event->rb, rb);
5508
5509         if (old_rb) {
5510                 ring_buffer_put(old_rb);
5511                 /*
5512                  * Since we detached before setting the new rb, so that we
5513                  * could attach the new rb, we could have missed a wakeup.
5514                  * Provide it now.
5515                  */
5516                 wake_up_all(&event->waitq);
5517         }
5518 }
5519
5520 static void ring_buffer_wakeup(struct perf_event *event)
5521 {
5522         struct ring_buffer *rb;
5523
5524         rcu_read_lock();
5525         rb = rcu_dereference(event->rb);
5526         if (rb) {
5527                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5528                         wake_up_all(&event->waitq);
5529         }
5530         rcu_read_unlock();
5531 }
5532
5533 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5534 {
5535         struct ring_buffer *rb;
5536
5537         rcu_read_lock();
5538         rb = rcu_dereference(event->rb);
5539         if (rb) {
5540                 if (!refcount_inc_not_zero(&rb->refcount))
5541                         rb = NULL;
5542         }
5543         rcu_read_unlock();
5544
5545         return rb;
5546 }
5547
5548 void ring_buffer_put(struct ring_buffer *rb)
5549 {
5550         if (!refcount_dec_and_test(&rb->refcount))
5551                 return;
5552
5553         WARN_ON_ONCE(!list_empty(&rb->event_list));
5554
5555         call_rcu(&rb->rcu_head, rb_free_rcu);
5556 }
5557
5558 static void perf_mmap_open(struct vm_area_struct *vma)
5559 {
5560         struct perf_event *event = vma->vm_file->private_data;
5561
5562         atomic_inc(&event->mmap_count);
5563         atomic_inc(&event->rb->mmap_count);
5564
5565         if (vma->vm_pgoff)
5566                 atomic_inc(&event->rb->aux_mmap_count);
5567
5568         if (event->pmu->event_mapped)
5569                 event->pmu->event_mapped(event, vma->vm_mm);
5570 }
5571
5572 static void perf_pmu_output_stop(struct perf_event *event);
5573
5574 /*
5575  * A buffer can be mmap()ed multiple times; either directly through the same
5576  * event, or through other events by use of perf_event_set_output().
5577  *
5578  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5579  * the buffer here, where we still have a VM context. This means we need
5580  * to detach all events redirecting to us.
5581  */
5582 static void perf_mmap_close(struct vm_area_struct *vma)
5583 {
5584         struct perf_event *event = vma->vm_file->private_data;
5585
5586         struct ring_buffer *rb = ring_buffer_get(event);
5587         struct user_struct *mmap_user = rb->mmap_user;
5588         int mmap_locked = rb->mmap_locked;
5589         unsigned long size = perf_data_size(rb);
5590
5591         if (event->pmu->event_unmapped)
5592                 event->pmu->event_unmapped(event, vma->vm_mm);
5593
5594         /*
5595          * rb->aux_mmap_count will always drop before rb->mmap_count and
5596          * event->mmap_count, so it is ok to use event->mmap_mutex to
5597          * serialize with perf_mmap here.
5598          */
5599         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5600             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5601                 /*
5602                  * Stop all AUX events that are writing to this buffer,
5603                  * so that we can free its AUX pages and corresponding PMU
5604                  * data. Note that after rb::aux_mmap_count dropped to zero,
5605                  * they won't start any more (see perf_aux_output_begin()).
5606                  */
5607                 perf_pmu_output_stop(event);
5608
5609                 /* now it's safe to free the pages */
5610                 if (!rb->aux_mmap_locked)
5611                         atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5612                 else
5613                         atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5614
5615                 /* this has to be the last one */
5616                 rb_free_aux(rb);
5617                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5618
5619                 mutex_unlock(&event->mmap_mutex);
5620         }
5621
5622         atomic_dec(&rb->mmap_count);
5623
5624         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5625                 goto out_put;
5626
5627         ring_buffer_attach(event, NULL);
5628         mutex_unlock(&event->mmap_mutex);
5629
5630         /* If there's still other mmap()s of this buffer, we're done. */
5631         if (atomic_read(&rb->mmap_count))
5632                 goto out_put;
5633
5634         /*
5635          * No other mmap()s, detach from all other events that might redirect
5636          * into the now unreachable buffer. Somewhat complicated by the
5637          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5638          */
5639 again:
5640         rcu_read_lock();
5641         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5642                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5643                         /*
5644                          * This event is en-route to free_event() which will
5645                          * detach it and remove it from the list.
5646                          */
5647                         continue;
5648                 }
5649                 rcu_read_unlock();
5650
5651                 mutex_lock(&event->mmap_mutex);
5652                 /*
5653                  * Check we didn't race with perf_event_set_output() which can
5654                  * swizzle the rb from under us while we were waiting to
5655                  * acquire mmap_mutex.
5656                  *
5657                  * If we find a different rb; ignore this event, a next
5658                  * iteration will no longer find it on the list. We have to
5659                  * still restart the iteration to make sure we're not now
5660                  * iterating the wrong list.
5661                  */
5662                 if (event->rb == rb)
5663                         ring_buffer_attach(event, NULL);
5664
5665                 mutex_unlock(&event->mmap_mutex);
5666                 put_event(event);
5667
5668                 /*
5669                  * Restart the iteration; either we're on the wrong list or
5670                  * destroyed its integrity by doing a deletion.
5671                  */
5672                 goto again;
5673         }
5674         rcu_read_unlock();
5675
5676         /*
5677          * It could be there's still a few 0-ref events on the list; they'll
5678          * get cleaned up by free_event() -- they'll also still have their
5679          * ref on the rb and will free it whenever they are done with it.
5680          *
5681          * Aside from that, this buffer is 'fully' detached and unmapped,
5682          * undo the VM accounting.
5683          */
5684
5685         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5686                         &mmap_user->locked_vm);
5687         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5688         free_uid(mmap_user);
5689
5690 out_put:
5691         ring_buffer_put(rb); /* could be last */
5692 }
5693
5694 static const struct vm_operations_struct perf_mmap_vmops = {
5695         .open           = perf_mmap_open,
5696         .close          = perf_mmap_close, /* non mergeable */
5697         .fault          = perf_mmap_fault,
5698         .page_mkwrite   = perf_mmap_fault,
5699 };
5700
5701 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5702 {
5703         struct perf_event *event = file->private_data;
5704         unsigned long user_locked, user_lock_limit;
5705         struct user_struct *user = current_user();
5706         unsigned long locked, lock_limit;
5707         struct ring_buffer *rb = NULL;
5708         unsigned long vma_size;
5709         unsigned long nr_pages;
5710         long user_extra = 0, extra = 0;
5711         int ret = 0, flags = 0;
5712
5713         /*
5714          * Don't allow mmap() of inherited per-task counters. This would
5715          * create a performance issue due to all children writing to the
5716          * same rb.
5717          */
5718         if (event->cpu == -1 && event->attr.inherit)
5719                 return -EINVAL;
5720
5721         if (!(vma->vm_flags & VM_SHARED))
5722                 return -EINVAL;
5723
5724         vma_size = vma->vm_end - vma->vm_start;
5725
5726         if (vma->vm_pgoff == 0) {
5727                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5728         } else {
5729                 /*
5730                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5731                  * mapped, all subsequent mappings should have the same size
5732                  * and offset. Must be above the normal perf buffer.
5733                  */
5734                 u64 aux_offset, aux_size;
5735
5736                 if (!event->rb)
5737                         return -EINVAL;
5738
5739                 nr_pages = vma_size / PAGE_SIZE;
5740
5741                 mutex_lock(&event->mmap_mutex);
5742                 ret = -EINVAL;
5743
5744                 rb = event->rb;
5745                 if (!rb)
5746                         goto aux_unlock;
5747
5748                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5749                 aux_size = READ_ONCE(rb->user_page->aux_size);
5750
5751                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5752                         goto aux_unlock;
5753
5754                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5755                         goto aux_unlock;
5756
5757                 /* already mapped with a different offset */
5758                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5759                         goto aux_unlock;
5760
5761                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5762                         goto aux_unlock;
5763
5764                 /* already mapped with a different size */
5765                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5766                         goto aux_unlock;
5767
5768                 if (!is_power_of_2(nr_pages))
5769                         goto aux_unlock;
5770
5771                 if (!atomic_inc_not_zero(&rb->mmap_count))
5772                         goto aux_unlock;
5773
5774                 if (rb_has_aux(rb)) {
5775                         atomic_inc(&rb->aux_mmap_count);
5776                         ret = 0;
5777                         goto unlock;
5778                 }
5779
5780                 atomic_set(&rb->aux_mmap_count, 1);
5781                 user_extra = nr_pages;
5782
5783                 goto accounting;
5784         }
5785
5786         /*
5787          * If we have rb pages ensure they're a power-of-two number, so we
5788          * can do bitmasks instead of modulo.
5789          */
5790         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5791                 return -EINVAL;
5792
5793         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5794                 return -EINVAL;
5795
5796         WARN_ON_ONCE(event->ctx->parent_ctx);
5797 again:
5798         mutex_lock(&event->mmap_mutex);
5799         if (event->rb) {
5800                 if (event->rb->nr_pages != nr_pages) {
5801                         ret = -EINVAL;
5802                         goto unlock;
5803                 }
5804
5805                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5806                         /*
5807                          * Raced against perf_mmap_close() through
5808                          * perf_event_set_output(). Try again, hope for better
5809                          * luck.
5810                          */
5811                         mutex_unlock(&event->mmap_mutex);
5812                         goto again;
5813                 }
5814
5815                 goto unlock;
5816         }
5817
5818         user_extra = nr_pages + 1;
5819
5820 accounting:
5821         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5822
5823         /*
5824          * Increase the limit linearly with more CPUs:
5825          */
5826         user_lock_limit *= num_online_cpus();
5827
5828         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5829
5830         if (user_locked <= user_lock_limit) {
5831                 /* charge all to locked_vm */
5832         } else if (atomic_long_read(&user->locked_vm) >= user_lock_limit) {
5833                 /* charge all to pinned_vm */
5834                 extra = user_extra;
5835                 user_extra = 0;
5836         } else {
5837                 /*
5838                  * charge locked_vm until it hits user_lock_limit;
5839                  * charge the rest from pinned_vm
5840                  */
5841                 extra = user_locked - user_lock_limit;
5842                 user_extra -= extra;
5843         }
5844
5845         lock_limit = rlimit(RLIMIT_MEMLOCK);
5846         lock_limit >>= PAGE_SHIFT;
5847         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5848
5849         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5850                 !capable(CAP_IPC_LOCK)) {
5851                 ret = -EPERM;
5852                 goto unlock;
5853         }
5854
5855         WARN_ON(!rb && event->rb);
5856
5857         if (vma->vm_flags & VM_WRITE)
5858                 flags |= RING_BUFFER_WRITABLE;
5859
5860         if (!rb) {
5861                 rb = rb_alloc(nr_pages,
5862                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5863                               event->cpu, flags);
5864
5865                 if (!rb) {
5866                         ret = -ENOMEM;
5867                         goto unlock;
5868                 }
5869
5870                 atomic_set(&rb->mmap_count, 1);
5871                 rb->mmap_user = get_current_user();
5872                 rb->mmap_locked = extra;
5873
5874                 ring_buffer_attach(event, rb);
5875
5876                 perf_event_init_userpage(event);
5877                 perf_event_update_userpage(event);
5878         } else {
5879                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5880                                    event->attr.aux_watermark, flags);
5881                 if (!ret)
5882                         rb->aux_mmap_locked = extra;
5883         }
5884
5885 unlock:
5886         if (!ret) {
5887                 atomic_long_add(user_extra, &user->locked_vm);
5888                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
5889
5890                 atomic_inc(&event->mmap_count);
5891         } else if (rb) {
5892                 atomic_dec(&rb->mmap_count);
5893         }
5894 aux_unlock:
5895         mutex_unlock(&event->mmap_mutex);
5896
5897         /*
5898          * Since pinned accounting is per vm we cannot allow fork() to copy our
5899          * vma.
5900          */
5901         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5902         vma->vm_ops = &perf_mmap_vmops;
5903
5904         if (event->pmu->event_mapped)
5905                 event->pmu->event_mapped(event, vma->vm_mm);
5906
5907         return ret;
5908 }
5909
5910 static int perf_fasync(int fd, struct file *filp, int on)
5911 {
5912         struct inode *inode = file_inode(filp);
5913         struct perf_event *event = filp->private_data;
5914         int retval;
5915
5916         inode_lock(inode);
5917         retval = fasync_helper(fd, filp, on, &event->fasync);
5918         inode_unlock(inode);
5919
5920         if (retval < 0)
5921                 return retval;
5922
5923         return 0;
5924 }
5925
5926 static const struct file_operations perf_fops = {
5927         .llseek                 = no_llseek,
5928         .release                = perf_release,
5929         .read                   = perf_read,
5930         .poll                   = perf_poll,
5931         .unlocked_ioctl         = perf_ioctl,
5932         .compat_ioctl           = perf_compat_ioctl,
5933         .mmap                   = perf_mmap,
5934         .fasync                 = perf_fasync,
5935 };
5936
5937 /*
5938  * Perf event wakeup
5939  *
5940  * If there's data, ensure we set the poll() state and publish everything
5941  * to user-space before waking everybody up.
5942  */
5943
5944 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5945 {
5946         /* only the parent has fasync state */
5947         if (event->parent)
5948                 event = event->parent;
5949         return &event->fasync;
5950 }
5951
5952 void perf_event_wakeup(struct perf_event *event)
5953 {
5954         ring_buffer_wakeup(event);
5955
5956         if (event->pending_kill) {
5957                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5958                 event->pending_kill = 0;
5959         }
5960 }
5961
5962 static void perf_pending_event_disable(struct perf_event *event)
5963 {
5964         int cpu = READ_ONCE(event->pending_disable);
5965
5966         if (cpu < 0)
5967                 return;
5968
5969         if (cpu == smp_processor_id()) {
5970                 WRITE_ONCE(event->pending_disable, -1);
5971                 perf_event_disable_local(event);
5972                 return;
5973         }
5974
5975         /*
5976          *  CPU-A                       CPU-B
5977          *
5978          *  perf_event_disable_inatomic()
5979          *    @pending_disable = CPU-A;
5980          *    irq_work_queue();
5981          *
5982          *  sched-out
5983          *    @pending_disable = -1;
5984          *
5985          *                              sched-in
5986          *                              perf_event_disable_inatomic()
5987          *                                @pending_disable = CPU-B;
5988          *                                irq_work_queue(); // FAILS
5989          *
5990          *  irq_work_run()
5991          *    perf_pending_event()
5992          *
5993          * But the event runs on CPU-B and wants disabling there.
5994          */
5995         irq_work_queue_on(&event->pending, cpu);
5996 }
5997
5998 static void perf_pending_event(struct irq_work *entry)
5999 {
6000         struct perf_event *event = container_of(entry, struct perf_event, pending);
6001         int rctx;
6002
6003         rctx = perf_swevent_get_recursion_context();
6004         /*
6005          * If we 'fail' here, that's OK, it means recursion is already disabled
6006          * and we won't recurse 'further'.
6007          */
6008
6009         perf_pending_event_disable(event);
6010
6011         if (event->pending_wakeup) {
6012                 event->pending_wakeup = 0;
6013                 perf_event_wakeup(event);
6014         }
6015
6016         if (rctx >= 0)
6017                 perf_swevent_put_recursion_context(rctx);
6018 }
6019
6020 /*
6021  * We assume there is only KVM supporting the callbacks.
6022  * Later on, we might change it to a list if there is
6023  * another virtualization implementation supporting the callbacks.
6024  */
6025 struct perf_guest_info_callbacks *perf_guest_cbs;
6026
6027 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6028 {
6029         perf_guest_cbs = cbs;
6030         return 0;
6031 }
6032 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6033
6034 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6035 {
6036         perf_guest_cbs = NULL;
6037         return 0;
6038 }
6039 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6040
6041 static void
6042 perf_output_sample_regs(struct perf_output_handle *handle,
6043                         struct pt_regs *regs, u64 mask)
6044 {
6045         int bit;
6046         DECLARE_BITMAP(_mask, 64);
6047
6048         bitmap_from_u64(_mask, mask);
6049         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6050                 u64 val;
6051
6052                 val = perf_reg_value(regs, bit);
6053                 perf_output_put(handle, val);
6054         }
6055 }
6056
6057 static void perf_sample_regs_user(struct perf_regs *regs_user,
6058                                   struct pt_regs *regs,
6059                                   struct pt_regs *regs_user_copy)
6060 {
6061         if (user_mode(regs)) {
6062                 regs_user->abi = perf_reg_abi(current);
6063                 regs_user->regs = regs;
6064         } else if (!(current->flags & PF_KTHREAD)) {
6065                 perf_get_regs_user(regs_user, regs, regs_user_copy);
6066         } else {
6067                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6068                 regs_user->regs = NULL;
6069         }
6070 }
6071
6072 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6073                                   struct pt_regs *regs)
6074 {
6075         regs_intr->regs = regs;
6076         regs_intr->abi  = perf_reg_abi(current);
6077 }
6078
6079
6080 /*
6081  * Get remaining task size from user stack pointer.
6082  *
6083  * It'd be better to take stack vma map and limit this more
6084  * precisely, but there's no way to get it safely under interrupt,
6085  * so using TASK_SIZE as limit.
6086  */
6087 static u64 perf_ustack_task_size(struct pt_regs *regs)
6088 {
6089         unsigned long addr = perf_user_stack_pointer(regs);
6090
6091         if (!addr || addr >= TASK_SIZE)
6092                 return 0;
6093
6094         return TASK_SIZE - addr;
6095 }
6096
6097 static u16
6098 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6099                         struct pt_regs *regs)
6100 {
6101         u64 task_size;
6102
6103         /* No regs, no stack pointer, no dump. */
6104         if (!regs)
6105                 return 0;
6106
6107         /*
6108          * Check if we fit in with the requested stack size into the:
6109          * - TASK_SIZE
6110          *   If we don't, we limit the size to the TASK_SIZE.
6111          *
6112          * - remaining sample size
6113          *   If we don't, we customize the stack size to
6114          *   fit in to the remaining sample size.
6115          */
6116
6117         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6118         stack_size = min(stack_size, (u16) task_size);
6119
6120         /* Current header size plus static size and dynamic size. */
6121         header_size += 2 * sizeof(u64);
6122
6123         /* Do we fit in with the current stack dump size? */
6124         if ((u16) (header_size + stack_size) < header_size) {
6125                 /*
6126                  * If we overflow the maximum size for the sample,
6127                  * we customize the stack dump size to fit in.
6128                  */
6129                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6130                 stack_size = round_up(stack_size, sizeof(u64));
6131         }
6132
6133         return stack_size;
6134 }
6135
6136 static void
6137 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6138                           struct pt_regs *regs)
6139 {
6140         /* Case of a kernel thread, nothing to dump */
6141         if (!regs) {
6142                 u64 size = 0;
6143                 perf_output_put(handle, size);
6144         } else {
6145                 unsigned long sp;
6146                 unsigned int rem;
6147                 u64 dyn_size;
6148                 mm_segment_t fs;
6149
6150                 /*
6151                  * We dump:
6152                  * static size
6153                  *   - the size requested by user or the best one we can fit
6154                  *     in to the sample max size
6155                  * data
6156                  *   - user stack dump data
6157                  * dynamic size
6158                  *   - the actual dumped size
6159                  */
6160
6161                 /* Static size. */
6162                 perf_output_put(handle, dump_size);
6163
6164                 /* Data. */
6165                 sp = perf_user_stack_pointer(regs);
6166                 fs = get_fs();
6167                 set_fs(USER_DS);
6168                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6169                 set_fs(fs);
6170                 dyn_size = dump_size - rem;
6171
6172                 perf_output_skip(handle, rem);
6173
6174                 /* Dynamic size. */
6175                 perf_output_put(handle, dyn_size);
6176         }
6177 }
6178
6179 static void __perf_event_header__init_id(struct perf_event_header *header,
6180                                          struct perf_sample_data *data,
6181                                          struct perf_event *event)
6182 {
6183         u64 sample_type = event->attr.sample_type;
6184
6185         data->type = sample_type;
6186         header->size += event->id_header_size;
6187
6188         if (sample_type & PERF_SAMPLE_TID) {
6189                 /* namespace issues */
6190                 data->tid_entry.pid = perf_event_pid(event, current);
6191                 data->tid_entry.tid = perf_event_tid(event, current);
6192         }
6193
6194         if (sample_type & PERF_SAMPLE_TIME)
6195                 data->time = perf_event_clock(event);
6196
6197         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6198                 data->id = primary_event_id(event);
6199
6200         if (sample_type & PERF_SAMPLE_STREAM_ID)
6201                 data->stream_id = event->id;
6202
6203         if (sample_type & PERF_SAMPLE_CPU) {
6204                 data->cpu_entry.cpu      = raw_smp_processor_id();
6205                 data->cpu_entry.reserved = 0;
6206         }
6207 }
6208
6209 void perf_event_header__init_id(struct perf_event_header *header,
6210                                 struct perf_sample_data *data,
6211                                 struct perf_event *event)
6212 {
6213         if (event->attr.sample_id_all)
6214                 __perf_event_header__init_id(header, data, event);
6215 }
6216
6217 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6218                                            struct perf_sample_data *data)
6219 {
6220         u64 sample_type = data->type;
6221
6222         if (sample_type & PERF_SAMPLE_TID)
6223                 perf_output_put(handle, data->tid_entry);
6224
6225         if (sample_type & PERF_SAMPLE_TIME)
6226                 perf_output_put(handle, data->time);
6227
6228         if (sample_type & PERF_SAMPLE_ID)
6229                 perf_output_put(handle, data->id);
6230
6231         if (sample_type & PERF_SAMPLE_STREAM_ID)
6232                 perf_output_put(handle, data->stream_id);
6233
6234         if (sample_type & PERF_SAMPLE_CPU)
6235                 perf_output_put(handle, data->cpu_entry);
6236
6237         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6238                 perf_output_put(handle, data->id);
6239 }
6240
6241 void perf_event__output_id_sample(struct perf_event *event,
6242                                   struct perf_output_handle *handle,
6243                                   struct perf_sample_data *sample)
6244 {
6245         if (event->attr.sample_id_all)
6246                 __perf_event__output_id_sample(handle, sample);
6247 }
6248
6249 static void perf_output_read_one(struct perf_output_handle *handle,
6250                                  struct perf_event *event,
6251                                  u64 enabled, u64 running)
6252 {
6253         u64 read_format = event->attr.read_format;
6254         u64 values[4];
6255         int n = 0;
6256
6257         values[n++] = perf_event_count(event);
6258         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6259                 values[n++] = enabled +
6260                         atomic64_read(&event->child_total_time_enabled);
6261         }
6262         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6263                 values[n++] = running +
6264                         atomic64_read(&event->child_total_time_running);
6265         }
6266         if (read_format & PERF_FORMAT_ID)
6267                 values[n++] = primary_event_id(event);
6268
6269         __output_copy(handle, values, n * sizeof(u64));
6270 }
6271
6272 static void perf_output_read_group(struct perf_output_handle *handle,
6273                             struct perf_event *event,
6274                             u64 enabled, u64 running)
6275 {
6276         struct perf_event *leader = event->group_leader, *sub;
6277         u64 read_format = event->attr.read_format;
6278         u64 values[5];
6279         int n = 0;
6280
6281         values[n++] = 1 + leader->nr_siblings;
6282
6283         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6284                 values[n++] = enabled;
6285
6286         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6287                 values[n++] = running;
6288
6289         if ((leader != event) &&
6290             (leader->state == PERF_EVENT_STATE_ACTIVE))
6291                 leader->pmu->read(leader);
6292
6293         values[n++] = perf_event_count(leader);
6294         if (read_format & PERF_FORMAT_ID)
6295                 values[n++] = primary_event_id(leader);
6296
6297         __output_copy(handle, values, n * sizeof(u64));
6298
6299         for_each_sibling_event(sub, leader) {
6300                 n = 0;
6301
6302                 if ((sub != event) &&
6303                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6304                         sub->pmu->read(sub);
6305
6306                 values[n++] = perf_event_count(sub);
6307                 if (read_format & PERF_FORMAT_ID)
6308                         values[n++] = primary_event_id(sub);
6309
6310                 __output_copy(handle, values, n * sizeof(u64));
6311         }
6312 }
6313
6314 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6315                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6316
6317 /*
6318  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6319  *
6320  * The problem is that its both hard and excessively expensive to iterate the
6321  * child list, not to mention that its impossible to IPI the children running
6322  * on another CPU, from interrupt/NMI context.
6323  */
6324 static void perf_output_read(struct perf_output_handle *handle,
6325                              struct perf_event *event)
6326 {
6327         u64 enabled = 0, running = 0, now;
6328         u64 read_format = event->attr.read_format;
6329
6330         /*
6331          * compute total_time_enabled, total_time_running
6332          * based on snapshot values taken when the event
6333          * was last scheduled in.
6334          *
6335          * we cannot simply called update_context_time()
6336          * because of locking issue as we are called in
6337          * NMI context
6338          */
6339         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6340                 calc_timer_values(event, &now, &enabled, &running);
6341
6342         if (event->attr.read_format & PERF_FORMAT_GROUP)
6343                 perf_output_read_group(handle, event, enabled, running);
6344         else
6345                 perf_output_read_one(handle, event, enabled, running);
6346 }
6347
6348 void perf_output_sample(struct perf_output_handle *handle,
6349                         struct perf_event_header *header,
6350                         struct perf_sample_data *data,
6351                         struct perf_event *event)
6352 {
6353         u64 sample_type = data->type;
6354
6355         perf_output_put(handle, *header);
6356
6357         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6358                 perf_output_put(handle, data->id);
6359
6360         if (sample_type & PERF_SAMPLE_IP)
6361                 perf_output_put(handle, data->ip);
6362
6363         if (sample_type & PERF_SAMPLE_TID)
6364                 perf_output_put(handle, data->tid_entry);
6365
6366         if (sample_type & PERF_SAMPLE_TIME)
6367                 perf_output_put(handle, data->time);
6368
6369         if (sample_type & PERF_SAMPLE_ADDR)
6370                 perf_output_put(handle, data->addr);
6371
6372         if (sample_type & PERF_SAMPLE_ID)
6373                 perf_output_put(handle, data->id);
6374
6375         if (sample_type & PERF_SAMPLE_STREAM_ID)
6376                 perf_output_put(handle, data->stream_id);
6377
6378         if (sample_type & PERF_SAMPLE_CPU)
6379                 perf_output_put(handle, data->cpu_entry);
6380
6381         if (sample_type & PERF_SAMPLE_PERIOD)
6382                 perf_output_put(handle, data->period);
6383
6384         if (sample_type & PERF_SAMPLE_READ)
6385                 perf_output_read(handle, event);
6386
6387         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6388                 int size = 1;
6389
6390                 size += data->callchain->nr;
6391                 size *= sizeof(u64);
6392                 __output_copy(handle, data->callchain, size);
6393         }
6394
6395         if (sample_type & PERF_SAMPLE_RAW) {
6396                 struct perf_raw_record *raw = data->raw;
6397
6398                 if (raw) {
6399                         struct perf_raw_frag *frag = &raw->frag;
6400
6401                         perf_output_put(handle, raw->size);
6402                         do {
6403                                 if (frag->copy) {
6404                                         __output_custom(handle, frag->copy,
6405                                                         frag->data, frag->size);
6406                                 } else {
6407                                         __output_copy(handle, frag->data,
6408                                                       frag->size);
6409                                 }
6410                                 if (perf_raw_frag_last(frag))
6411                                         break;
6412                                 frag = frag->next;
6413                         } while (1);
6414                         if (frag->pad)
6415                                 __output_skip(handle, NULL, frag->pad);
6416                 } else {
6417                         struct {
6418                                 u32     size;
6419                                 u32     data;
6420                         } raw = {
6421                                 .size = sizeof(u32),
6422                                 .data = 0,
6423                         };
6424                         perf_output_put(handle, raw);
6425                 }
6426         }
6427
6428         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6429                 if (data->br_stack) {
6430                         size_t size;
6431
6432                         size = data->br_stack->nr
6433                              * sizeof(struct perf_branch_entry);
6434
6435                         perf_output_put(handle, data->br_stack->nr);
6436                         perf_output_copy(handle, data->br_stack->entries, size);
6437                 } else {
6438                         /*
6439                          * we always store at least the value of nr
6440                          */
6441                         u64 nr = 0;
6442                         perf_output_put(handle, nr);
6443                 }
6444         }
6445
6446         if (sample_type & PERF_SAMPLE_REGS_USER) {
6447                 u64 abi = data->regs_user.abi;
6448
6449                 /*
6450                  * If there are no regs to dump, notice it through
6451                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6452                  */
6453                 perf_output_put(handle, abi);
6454
6455                 if (abi) {
6456                         u64 mask = event->attr.sample_regs_user;
6457                         perf_output_sample_regs(handle,
6458                                                 data->regs_user.regs,
6459                                                 mask);
6460                 }
6461         }
6462
6463         if (sample_type & PERF_SAMPLE_STACK_USER) {
6464                 perf_output_sample_ustack(handle,
6465                                           data->stack_user_size,
6466                                           data->regs_user.regs);
6467         }
6468
6469         if (sample_type & PERF_SAMPLE_WEIGHT)
6470                 perf_output_put(handle, data->weight);
6471
6472         if (sample_type & PERF_SAMPLE_DATA_SRC)
6473                 perf_output_put(handle, data->data_src.val);
6474
6475         if (sample_type & PERF_SAMPLE_TRANSACTION)
6476                 perf_output_put(handle, data->txn);
6477
6478         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6479                 u64 abi = data->regs_intr.abi;
6480                 /*
6481                  * If there are no regs to dump, notice it through
6482                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6483                  */
6484                 perf_output_put(handle, abi);
6485
6486                 if (abi) {
6487                         u64 mask = event->attr.sample_regs_intr;
6488
6489                         perf_output_sample_regs(handle,
6490                                                 data->regs_intr.regs,
6491                                                 mask);
6492                 }
6493         }
6494
6495         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6496                 perf_output_put(handle, data->phys_addr);
6497
6498         if (!event->attr.watermark) {
6499                 int wakeup_events = event->attr.wakeup_events;
6500
6501                 if (wakeup_events) {
6502                         struct ring_buffer *rb = handle->rb;
6503                         int events = local_inc_return(&rb->events);
6504
6505                         if (events >= wakeup_events) {
6506                                 local_sub(wakeup_events, &rb->events);
6507                                 local_inc(&rb->wakeup);
6508                         }
6509                 }
6510         }
6511 }
6512
6513 static u64 perf_virt_to_phys(u64 virt)
6514 {
6515         u64 phys_addr = 0;
6516         struct page *p = NULL;
6517
6518         if (!virt)
6519                 return 0;
6520
6521         if (virt >= TASK_SIZE) {
6522                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6523                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6524                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6525                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6526         } else {
6527                 /*
6528                  * Walking the pages tables for user address.
6529                  * Interrupts are disabled, so it prevents any tear down
6530                  * of the page tables.
6531                  * Try IRQ-safe __get_user_pages_fast first.
6532                  * If failed, leave phys_addr as 0.
6533                  */
6534                 if ((current->mm != NULL) &&
6535                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6536                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6537
6538                 if (p)
6539                         put_page(p);
6540         }
6541
6542         return phys_addr;
6543 }
6544
6545 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6546
6547 struct perf_callchain_entry *
6548 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6549 {
6550         bool kernel = !event->attr.exclude_callchain_kernel;
6551         bool user   = !event->attr.exclude_callchain_user;
6552         /* Disallow cross-task user callchains. */
6553         bool crosstask = event->ctx->task && event->ctx->task != current;
6554         const u32 max_stack = event->attr.sample_max_stack;
6555         struct perf_callchain_entry *callchain;
6556
6557         if (!kernel && !user)
6558                 return &__empty_callchain;
6559
6560         callchain = get_perf_callchain(regs, 0, kernel, user,
6561                                        max_stack, crosstask, true);
6562         return callchain ?: &__empty_callchain;
6563 }
6564
6565 void perf_prepare_sample(struct perf_event_header *header,
6566                          struct perf_sample_data *data,
6567                          struct perf_event *event,
6568                          struct pt_regs *regs)
6569 {
6570         u64 sample_type = event->attr.sample_type;
6571
6572         header->type = PERF_RECORD_SAMPLE;
6573         header->size = sizeof(*header) + event->header_size;
6574
6575         header->misc = 0;
6576         header->misc |= perf_misc_flags(regs);
6577
6578         __perf_event_header__init_id(header, data, event);
6579
6580         if (sample_type & PERF_SAMPLE_IP)
6581                 data->ip = perf_instruction_pointer(regs);
6582
6583         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6584                 int size = 1;
6585
6586                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6587                         data->callchain = perf_callchain(event, regs);
6588
6589                 size += data->callchain->nr;
6590
6591                 header->size += size * sizeof(u64);
6592         }
6593
6594         if (sample_type & PERF_SAMPLE_RAW) {
6595                 struct perf_raw_record *raw = data->raw;
6596                 int size;
6597
6598                 if (raw) {
6599                         struct perf_raw_frag *frag = &raw->frag;
6600                         u32 sum = 0;
6601
6602                         do {
6603                                 sum += frag->size;
6604                                 if (perf_raw_frag_last(frag))
6605                                         break;
6606                                 frag = frag->next;
6607                         } while (1);
6608
6609                         size = round_up(sum + sizeof(u32), sizeof(u64));
6610                         raw->size = size - sizeof(u32);
6611                         frag->pad = raw->size - sum;
6612                 } else {
6613                         size = sizeof(u64);
6614                 }
6615
6616                 header->size += size;
6617         }
6618
6619         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6620                 int size = sizeof(u64); /* nr */
6621                 if (data->br_stack) {
6622                         size += data->br_stack->nr
6623                               * sizeof(struct perf_branch_entry);
6624                 }
6625                 header->size += size;
6626         }
6627
6628         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6629                 perf_sample_regs_user(&data->regs_user, regs,
6630                                       &data->regs_user_copy);
6631
6632         if (sample_type & PERF_SAMPLE_REGS_USER) {
6633                 /* regs dump ABI info */
6634                 int size = sizeof(u64);
6635
6636                 if (data->regs_user.regs) {
6637                         u64 mask = event->attr.sample_regs_user;
6638                         size += hweight64(mask) * sizeof(u64);
6639                 }
6640
6641                 header->size += size;
6642         }
6643
6644         if (sample_type & PERF_SAMPLE_STACK_USER) {
6645                 /*
6646                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
6647                  * processed as the last one or have additional check added
6648                  * in case new sample type is added, because we could eat
6649                  * up the rest of the sample size.
6650                  */
6651                 u16 stack_size = event->attr.sample_stack_user;
6652                 u16 size = sizeof(u64);
6653
6654                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6655                                                      data->regs_user.regs);
6656
6657                 /*
6658                  * If there is something to dump, add space for the dump
6659                  * itself and for the field that tells the dynamic size,
6660                  * which is how many have been actually dumped.
6661                  */
6662                 if (stack_size)
6663                         size += sizeof(u64) + stack_size;
6664
6665                 data->stack_user_size = stack_size;
6666                 header->size += size;
6667         }
6668
6669         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6670                 /* regs dump ABI info */
6671                 int size = sizeof(u64);
6672
6673                 perf_sample_regs_intr(&data->regs_intr, regs);
6674
6675                 if (data->regs_intr.regs) {
6676                         u64 mask = event->attr.sample_regs_intr;
6677
6678                         size += hweight64(mask) * sizeof(u64);
6679                 }
6680
6681                 header->size += size;
6682         }
6683
6684         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6685                 data->phys_addr = perf_virt_to_phys(data->addr);
6686 }
6687
6688 static __always_inline int
6689 __perf_event_output(struct perf_event *event,
6690                     struct perf_sample_data *data,
6691                     struct pt_regs *regs,
6692                     int (*output_begin)(struct perf_output_handle *,
6693                                         struct perf_event *,
6694                                         unsigned int))
6695 {
6696         struct perf_output_handle handle;
6697         struct perf_event_header header;
6698         int err;
6699
6700         /* protect the callchain buffers */
6701         rcu_read_lock();
6702
6703         perf_prepare_sample(&header, data, event, regs);
6704
6705         err = output_begin(&handle, event, header.size);
6706         if (err)
6707                 goto exit;
6708
6709         perf_output_sample(&handle, &header, data, event);
6710
6711         perf_output_end(&handle);
6712
6713 exit:
6714         rcu_read_unlock();
6715         return err;
6716 }
6717
6718 void
6719 perf_event_output_forward(struct perf_event *event,
6720                          struct perf_sample_data *data,
6721                          struct pt_regs *regs)
6722 {
6723         __perf_event_output(event, data, regs, perf_output_begin_forward);
6724 }
6725
6726 void
6727 perf_event_output_backward(struct perf_event *event,
6728                            struct perf_sample_data *data,
6729                            struct pt_regs *regs)
6730 {
6731         __perf_event_output(event, data, regs, perf_output_begin_backward);
6732 }
6733
6734 int
6735 perf_event_output(struct perf_event *event,
6736                   struct perf_sample_data *data,
6737                   struct pt_regs *regs)
6738 {
6739         return __perf_event_output(event, data, regs, perf_output_begin);
6740 }
6741
6742 /*
6743  * read event_id
6744  */
6745
6746 struct perf_read_event {
6747         struct perf_event_header        header;
6748
6749         u32                             pid;
6750         u32                             tid;
6751 };
6752
6753 static void
6754 perf_event_read_event(struct perf_event *event,
6755                         struct task_struct *task)
6756 {
6757         struct perf_output_handle handle;
6758         struct perf_sample_data sample;
6759         struct perf_read_event read_event = {
6760                 .header = {
6761                         .type = PERF_RECORD_READ,
6762                         .misc = 0,
6763                         .size = sizeof(read_event) + event->read_size,
6764                 },
6765                 .pid = perf_event_pid(event, task),
6766                 .tid = perf_event_tid(event, task),
6767         };
6768         int ret;
6769
6770         perf_event_header__init_id(&read_event.header, &sample, event);
6771         ret = perf_output_begin(&handle, event, read_event.header.size);
6772         if (ret)
6773                 return;
6774
6775         perf_output_put(&handle, read_event);
6776         perf_output_read(&handle, event);
6777         perf_event__output_id_sample(event, &handle, &sample);
6778
6779         perf_output_end(&handle);
6780 }
6781
6782 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6783
6784 static void
6785 perf_iterate_ctx(struct perf_event_context *ctx,
6786                    perf_iterate_f output,
6787                    void *data, bool all)
6788 {
6789         struct perf_event *event;
6790
6791         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6792                 if (!all) {
6793                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6794                                 continue;
6795                         if (!event_filter_match(event))
6796                                 continue;
6797                 }
6798
6799                 output(event, data);
6800         }
6801 }
6802
6803 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6804 {
6805         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6806         struct perf_event *event;
6807
6808         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6809                 /*
6810                  * Skip events that are not fully formed yet; ensure that
6811                  * if we observe event->ctx, both event and ctx will be
6812                  * complete enough. See perf_install_in_context().
6813                  */
6814                 if (!smp_load_acquire(&event->ctx))
6815                         continue;
6816
6817                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6818                         continue;
6819                 if (!event_filter_match(event))
6820                         continue;
6821                 output(event, data);
6822         }
6823 }
6824
6825 /*
6826  * Iterate all events that need to receive side-band events.
6827  *
6828  * For new callers; ensure that account_pmu_sb_event() includes
6829  * your event, otherwise it might not get delivered.
6830  */
6831 static void
6832 perf_iterate_sb(perf_iterate_f output, void *data,
6833                struct perf_event_context *task_ctx)
6834 {
6835         struct perf_event_context *ctx;
6836         int ctxn;
6837
6838         rcu_read_lock();
6839         preempt_disable();
6840
6841         /*
6842          * If we have task_ctx != NULL we only notify the task context itself.
6843          * The task_ctx is set only for EXIT events before releasing task
6844          * context.
6845          */
6846         if (task_ctx) {
6847                 perf_iterate_ctx(task_ctx, output, data, false);
6848                 goto done;
6849         }
6850
6851         perf_iterate_sb_cpu(output, data);
6852
6853         for_each_task_context_nr(ctxn) {
6854                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6855                 if (ctx)
6856                         perf_iterate_ctx(ctx, output, data, false);
6857         }
6858 done:
6859         preempt_enable();
6860         rcu_read_unlock();
6861 }
6862
6863 /*
6864  * Clear all file-based filters at exec, they'll have to be
6865  * re-instated when/if these objects are mmapped again.
6866  */
6867 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6868 {
6869         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6870         struct perf_addr_filter *filter;
6871         unsigned int restart = 0, count = 0;
6872         unsigned long flags;
6873
6874         if (!has_addr_filter(event))
6875                 return;
6876
6877         raw_spin_lock_irqsave(&ifh->lock, flags);
6878         list_for_each_entry(filter, &ifh->list, entry) {
6879                 if (filter->path.dentry) {
6880                         event->addr_filter_ranges[count].start = 0;
6881                         event->addr_filter_ranges[count].size = 0;
6882                         restart++;
6883                 }
6884
6885                 count++;
6886         }
6887
6888         if (restart)
6889                 event->addr_filters_gen++;
6890         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6891
6892         if (restart)
6893                 perf_event_stop(event, 1);
6894 }
6895
6896 void perf_event_exec(void)
6897 {
6898         struct perf_event_context *ctx;
6899         int ctxn;
6900
6901         rcu_read_lock();
6902         for_each_task_context_nr(ctxn) {
6903                 ctx = current->perf_event_ctxp[ctxn];
6904                 if (!ctx)
6905                         continue;
6906
6907                 perf_event_enable_on_exec(ctxn);
6908
6909                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6910                                    true);
6911         }
6912         rcu_read_unlock();
6913 }
6914
6915 struct remote_output {
6916         struct ring_buffer      *rb;
6917         int                     err;
6918 };
6919
6920 static void __perf_event_output_stop(struct perf_event *event, void *data)
6921 {
6922         struct perf_event *parent = event->parent;
6923         struct remote_output *ro = data;
6924         struct ring_buffer *rb = ro->rb;
6925         struct stop_event_data sd = {
6926                 .event  = event,
6927         };
6928
6929         if (!has_aux(event))
6930                 return;
6931
6932         if (!parent)
6933                 parent = event;
6934
6935         /*
6936          * In case of inheritance, it will be the parent that links to the
6937          * ring-buffer, but it will be the child that's actually using it.
6938          *
6939          * We are using event::rb to determine if the event should be stopped,
6940          * however this may race with ring_buffer_attach() (through set_output),
6941          * which will make us skip the event that actually needs to be stopped.
6942          * So ring_buffer_attach() has to stop an aux event before re-assigning
6943          * its rb pointer.
6944          */
6945         if (rcu_dereference(parent->rb) == rb)
6946                 ro->err = __perf_event_stop(&sd);
6947 }
6948
6949 static int __perf_pmu_output_stop(void *info)
6950 {
6951         struct perf_event *event = info;
6952         struct pmu *pmu = event->ctx->pmu;
6953         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6954         struct remote_output ro = {
6955                 .rb     = event->rb,
6956         };
6957
6958         rcu_read_lock();
6959         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6960         if (cpuctx->task_ctx)
6961                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6962                                    &ro, false);
6963         rcu_read_unlock();
6964
6965         return ro.err;
6966 }
6967
6968 static void perf_pmu_output_stop(struct perf_event *event)
6969 {
6970         struct perf_event *iter;
6971         int err, cpu;
6972
6973 restart:
6974         rcu_read_lock();
6975         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6976                 /*
6977                  * For per-CPU events, we need to make sure that neither they
6978                  * nor their children are running; for cpu==-1 events it's
6979                  * sufficient to stop the event itself if it's active, since
6980                  * it can't have children.
6981                  */
6982                 cpu = iter->cpu;
6983                 if (cpu == -1)
6984                         cpu = READ_ONCE(iter->oncpu);
6985
6986                 if (cpu == -1)
6987                         continue;
6988
6989                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6990                 if (err == -EAGAIN) {
6991                         rcu_read_unlock();
6992                         goto restart;
6993                 }
6994         }
6995         rcu_read_unlock();
6996 }
6997
6998 /*
6999  * task tracking -- fork/exit
7000  *
7001  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7002  */
7003
7004 struct perf_task_event {
7005         struct task_struct              *task;
7006         struct perf_event_context       *task_ctx;
7007
7008         struct {
7009                 struct perf_event_header        header;
7010
7011                 u32                             pid;
7012                 u32                             ppid;
7013                 u32                             tid;
7014                 u32                             ptid;
7015                 u64                             time;
7016         } event_id;
7017 };
7018
7019 static int perf_event_task_match(struct perf_event *event)
7020 {
7021         return event->attr.comm  || event->attr.mmap ||
7022                event->attr.mmap2 || event->attr.mmap_data ||
7023                event->attr.task;
7024 }
7025
7026 static void perf_event_task_output(struct perf_event *event,
7027                                    void *data)
7028 {
7029         struct perf_task_event *task_event = data;
7030         struct perf_output_handle handle;
7031         struct perf_sample_data sample;
7032         struct task_struct *task = task_event->task;
7033         int ret, size = task_event->event_id.header.size;
7034
7035         if (!perf_event_task_match(event))
7036                 return;
7037
7038         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7039
7040         ret = perf_output_begin(&handle, event,
7041                                 task_event->event_id.header.size);
7042         if (ret)
7043                 goto out;
7044
7045         task_event->event_id.pid = perf_event_pid(event, task);
7046         task_event->event_id.ppid = perf_event_pid(event, current);
7047
7048         task_event->event_id.tid = perf_event_tid(event, task);
7049         task_event->event_id.ptid = perf_event_tid(event, current);
7050
7051         task_event->event_id.time = perf_event_clock(event);
7052
7053         perf_output_put(&handle, task_event->event_id);
7054
7055         perf_event__output_id_sample(event, &handle, &sample);
7056
7057         perf_output_end(&handle);
7058 out:
7059         task_event->event_id.header.size = size;
7060 }
7061
7062 static void perf_event_task(struct task_struct *task,
7063                               struct perf_event_context *task_ctx,
7064                               int new)
7065 {
7066         struct perf_task_event task_event;
7067
7068         if (!atomic_read(&nr_comm_events) &&
7069             !atomic_read(&nr_mmap_events) &&
7070             !atomic_read(&nr_task_events))
7071                 return;
7072
7073         task_event = (struct perf_task_event){
7074                 .task     = task,
7075                 .task_ctx = task_ctx,
7076                 .event_id    = {
7077                         .header = {
7078                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7079                                 .misc = 0,
7080                                 .size = sizeof(task_event.event_id),
7081                         },
7082                         /* .pid  */
7083                         /* .ppid */
7084                         /* .tid  */
7085                         /* .ptid */
7086                         /* .time */
7087                 },
7088         };
7089
7090         perf_iterate_sb(perf_event_task_output,
7091                        &task_event,
7092                        task_ctx);
7093 }
7094
7095 void perf_event_fork(struct task_struct *task)
7096 {
7097         perf_event_task(task, NULL, 1);
7098         perf_event_namespaces(task);
7099 }
7100
7101 /*
7102  * comm tracking
7103  */
7104
7105 struct perf_comm_event {
7106         struct task_struct      *task;
7107         char                    *comm;
7108         int                     comm_size;
7109
7110         struct {
7111                 struct perf_event_header        header;
7112
7113                 u32                             pid;
7114                 u32                             tid;
7115         } event_id;
7116 };
7117
7118 static int perf_event_comm_match(struct perf_event *event)
7119 {
7120         return event->attr.comm;
7121 }
7122
7123 static void perf_event_comm_output(struct perf_event *event,
7124                                    void *data)
7125 {
7126         struct perf_comm_event *comm_event = data;
7127         struct perf_output_handle handle;
7128         struct perf_sample_data sample;
7129         int size = comm_event->event_id.header.size;
7130         int ret;
7131
7132         if (!perf_event_comm_match(event))
7133                 return;
7134
7135         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7136         ret = perf_output_begin(&handle, event,
7137                                 comm_event->event_id.header.size);
7138
7139         if (ret)
7140                 goto out;
7141
7142         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7143         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7144
7145         perf_output_put(&handle, comm_event->event_id);
7146         __output_copy(&handle, comm_event->comm,
7147                                    comm_event->comm_size);
7148
7149         perf_event__output_id_sample(event, &handle, &sample);
7150
7151         perf_output_end(&handle);
7152 out:
7153         comm_event->event_id.header.size = size;
7154 }
7155
7156 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7157 {
7158         char comm[TASK_COMM_LEN];
7159         unsigned int size;
7160
7161         memset(comm, 0, sizeof(comm));
7162         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7163         size = ALIGN(strlen(comm)+1, sizeof(u64));
7164
7165         comm_event->comm = comm;
7166         comm_event->comm_size = size;
7167
7168         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7169
7170         perf_iterate_sb(perf_event_comm_output,
7171                        comm_event,
7172                        NULL);
7173 }
7174
7175 void perf_event_comm(struct task_struct *task, bool exec)
7176 {
7177         struct perf_comm_event comm_event;
7178
7179         if (!atomic_read(&nr_comm_events))
7180                 return;
7181
7182         comm_event = (struct perf_comm_event){
7183                 .task   = task,
7184                 /* .comm      */
7185                 /* .comm_size */
7186                 .event_id  = {
7187                         .header = {
7188                                 .type = PERF_RECORD_COMM,
7189                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7190                                 /* .size */
7191                         },
7192                         /* .pid */
7193                         /* .tid */
7194                 },
7195         };
7196
7197         perf_event_comm_event(&comm_event);
7198 }
7199
7200 /*
7201  * namespaces tracking
7202  */
7203
7204 struct perf_namespaces_event {
7205         struct task_struct              *task;
7206
7207         struct {
7208                 struct perf_event_header        header;
7209
7210                 u32                             pid;
7211                 u32                             tid;
7212                 u64                             nr_namespaces;
7213                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7214         } event_id;
7215 };
7216
7217 static int perf_event_namespaces_match(struct perf_event *event)
7218 {
7219         return event->attr.namespaces;
7220 }
7221
7222 static void perf_event_namespaces_output(struct perf_event *event,
7223                                          void *data)
7224 {
7225         struct perf_namespaces_event *namespaces_event = data;
7226         struct perf_output_handle handle;
7227         struct perf_sample_data sample;
7228         u16 header_size = namespaces_event->event_id.header.size;
7229         int ret;
7230
7231         if (!perf_event_namespaces_match(event))
7232                 return;
7233
7234         perf_event_header__init_id(&namespaces_event->event_id.header,
7235                                    &sample, event);
7236         ret = perf_output_begin(&handle, event,
7237                                 namespaces_event->event_id.header.size);
7238         if (ret)
7239                 goto out;
7240
7241         namespaces_event->event_id.pid = perf_event_pid(event,
7242                                                         namespaces_event->task);
7243         namespaces_event->event_id.tid = perf_event_tid(event,
7244                                                         namespaces_event->task);
7245
7246         perf_output_put(&handle, namespaces_event->event_id);
7247
7248         perf_event__output_id_sample(event, &handle, &sample);
7249
7250         perf_output_end(&handle);
7251 out:
7252         namespaces_event->event_id.header.size = header_size;
7253 }
7254
7255 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7256                                    struct task_struct *task,
7257                                    const struct proc_ns_operations *ns_ops)
7258 {
7259         struct path ns_path;
7260         struct inode *ns_inode;
7261         void *error;
7262
7263         error = ns_get_path(&ns_path, task, ns_ops);
7264         if (!error) {
7265                 ns_inode = ns_path.dentry->d_inode;
7266                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7267                 ns_link_info->ino = ns_inode->i_ino;
7268                 path_put(&ns_path);
7269         }
7270 }
7271
7272 void perf_event_namespaces(struct task_struct *task)
7273 {
7274         struct perf_namespaces_event namespaces_event;
7275         struct perf_ns_link_info *ns_link_info;
7276
7277         if (!atomic_read(&nr_namespaces_events))
7278                 return;
7279
7280         namespaces_event = (struct perf_namespaces_event){
7281                 .task   = task,
7282                 .event_id  = {
7283                         .header = {
7284                                 .type = PERF_RECORD_NAMESPACES,
7285                                 .misc = 0,
7286                                 .size = sizeof(namespaces_event.event_id),
7287                         },
7288                         /* .pid */
7289                         /* .tid */
7290                         .nr_namespaces = NR_NAMESPACES,
7291                         /* .link_info[NR_NAMESPACES] */
7292                 },
7293         };
7294
7295         ns_link_info = namespaces_event.event_id.link_info;
7296
7297         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7298                                task, &mntns_operations);
7299
7300 #ifdef CONFIG_USER_NS
7301         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7302                                task, &userns_operations);
7303 #endif
7304 #ifdef CONFIG_NET_NS
7305         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7306                                task, &netns_operations);
7307 #endif
7308 #ifdef CONFIG_UTS_NS
7309         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7310                                task, &utsns_operations);
7311 #endif
7312 #ifdef CONFIG_IPC_NS
7313         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7314                                task, &ipcns_operations);
7315 #endif
7316 #ifdef CONFIG_PID_NS
7317         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7318                                task, &pidns_operations);
7319 #endif
7320 #ifdef CONFIG_CGROUPS
7321         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7322                                task, &cgroupns_operations);
7323 #endif
7324
7325         perf_iterate_sb(perf_event_namespaces_output,
7326                         &namespaces_event,
7327                         NULL);
7328 }
7329
7330 /*
7331  * mmap tracking
7332  */
7333
7334 struct perf_mmap_event {
7335         struct vm_area_struct   *vma;
7336
7337         const char              *file_name;
7338         int                     file_size;
7339         int                     maj, min;
7340         u64                     ino;
7341         u64                     ino_generation;
7342         u32                     prot, flags;
7343
7344         struct {
7345                 struct perf_event_header        header;
7346
7347                 u32                             pid;
7348                 u32                             tid;
7349                 u64                             start;
7350                 u64                             len;
7351                 u64                             pgoff;
7352         } event_id;
7353 };
7354
7355 static int perf_event_mmap_match(struct perf_event *event,
7356                                  void *data)
7357 {
7358         struct perf_mmap_event *mmap_event = data;
7359         struct vm_area_struct *vma = mmap_event->vma;
7360         int executable = vma->vm_flags & VM_EXEC;
7361
7362         return (!executable && event->attr.mmap_data) ||
7363                (executable && (event->attr.mmap || event->attr.mmap2));
7364 }
7365
7366 static void perf_event_mmap_output(struct perf_event *event,
7367                                    void *data)
7368 {
7369         struct perf_mmap_event *mmap_event = data;
7370         struct perf_output_handle handle;
7371         struct perf_sample_data sample;
7372         int size = mmap_event->event_id.header.size;
7373         u32 type = mmap_event->event_id.header.type;
7374         int ret;
7375
7376         if (!perf_event_mmap_match(event, data))
7377                 return;
7378
7379         if (event->attr.mmap2) {
7380                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7381                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7382                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7383                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7384                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7385                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7386                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7387         }
7388
7389         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7390         ret = perf_output_begin(&handle, event,
7391                                 mmap_event->event_id.header.size);
7392         if (ret)
7393                 goto out;
7394
7395         mmap_event->event_id.pid = perf_event_pid(event, current);
7396         mmap_event->event_id.tid = perf_event_tid(event, current);
7397
7398         perf_output_put(&handle, mmap_event->event_id);
7399
7400         if (event->attr.mmap2) {
7401                 perf_output_put(&handle, mmap_event->maj);
7402                 perf_output_put(&handle, mmap_event->min);
7403                 perf_output_put(&handle, mmap_event->ino);
7404                 perf_output_put(&handle, mmap_event->ino_generation);
7405                 perf_output_put(&handle, mmap_event->prot);
7406                 perf_output_put(&handle, mmap_event->flags);
7407         }
7408
7409         __output_copy(&handle, mmap_event->file_name,
7410                                    mmap_event->file_size);
7411
7412         perf_event__output_id_sample(event, &handle, &sample);
7413
7414         perf_output_end(&handle);
7415 out:
7416         mmap_event->event_id.header.size = size;
7417         mmap_event->event_id.header.type = type;
7418 }
7419
7420 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7421 {
7422         struct vm_area_struct *vma = mmap_event->vma;
7423         struct file *file = vma->vm_file;
7424         int maj = 0, min = 0;
7425         u64 ino = 0, gen = 0;
7426         u32 prot = 0, flags = 0;
7427         unsigned int size;
7428         char tmp[16];
7429         char *buf = NULL;
7430         char *name;
7431
7432         if (vma->vm_flags & VM_READ)
7433                 prot |= PROT_READ;
7434         if (vma->vm_flags & VM_WRITE)
7435                 prot |= PROT_WRITE;
7436         if (vma->vm_flags & VM_EXEC)
7437                 prot |= PROT_EXEC;
7438
7439         if (vma->vm_flags & VM_MAYSHARE)
7440                 flags = MAP_SHARED;
7441         else
7442                 flags = MAP_PRIVATE;
7443
7444         if (vma->vm_flags & VM_DENYWRITE)
7445                 flags |= MAP_DENYWRITE;
7446         if (vma->vm_flags & VM_MAYEXEC)
7447                 flags |= MAP_EXECUTABLE;
7448         if (vma->vm_flags & VM_LOCKED)
7449                 flags |= MAP_LOCKED;
7450         if (vma->vm_flags & VM_HUGETLB)
7451                 flags |= MAP_HUGETLB;
7452
7453         if (file) {
7454                 struct inode *inode;
7455                 dev_t dev;
7456
7457                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7458                 if (!buf) {
7459                         name = "//enomem";
7460                         goto cpy_name;
7461                 }
7462                 /*
7463                  * d_path() works from the end of the rb backwards, so we
7464                  * need to add enough zero bytes after the string to handle
7465                  * the 64bit alignment we do later.
7466                  */
7467                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7468                 if (IS_ERR(name)) {
7469                         name = "//toolong";
7470                         goto cpy_name;
7471                 }
7472                 inode = file_inode(vma->vm_file);
7473                 dev = inode->i_sb->s_dev;
7474                 ino = inode->i_ino;
7475                 gen = inode->i_generation;
7476                 maj = MAJOR(dev);
7477                 min = MINOR(dev);
7478
7479                 goto got_name;
7480         } else {
7481                 if (vma->vm_ops && vma->vm_ops->name) {
7482                         name = (char *) vma->vm_ops->name(vma);
7483                         if (name)
7484                                 goto cpy_name;
7485                 }
7486
7487                 name = (char *)arch_vma_name(vma);
7488                 if (name)
7489                         goto cpy_name;
7490
7491                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7492                                 vma->vm_end >= vma->vm_mm->brk) {
7493                         name = "[heap]";
7494                         goto cpy_name;
7495                 }
7496                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7497                                 vma->vm_end >= vma->vm_mm->start_stack) {
7498                         name = "[stack]";
7499                         goto cpy_name;
7500                 }
7501
7502                 name = "//anon";
7503                 goto cpy_name;
7504         }
7505
7506 cpy_name:
7507         strlcpy(tmp, name, sizeof(tmp));
7508         name = tmp;
7509 got_name:
7510         /*
7511          * Since our buffer works in 8 byte units we need to align our string
7512          * size to a multiple of 8. However, we must guarantee the tail end is
7513          * zero'd out to avoid leaking random bits to userspace.
7514          */
7515         size = strlen(name)+1;
7516         while (!IS_ALIGNED(size, sizeof(u64)))
7517                 name[size++] = '\0';
7518
7519         mmap_event->file_name = name;
7520         mmap_event->file_size = size;
7521         mmap_event->maj = maj;
7522         mmap_event->min = min;
7523         mmap_event->ino = ino;
7524         mmap_event->ino_generation = gen;
7525         mmap_event->prot = prot;
7526         mmap_event->flags = flags;
7527
7528         if (!(vma->vm_flags & VM_EXEC))
7529                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7530
7531         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7532
7533         perf_iterate_sb(perf_event_mmap_output,
7534                        mmap_event,
7535                        NULL);
7536
7537         kfree(buf);
7538 }
7539
7540 /*
7541  * Check whether inode and address range match filter criteria.
7542  */
7543 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7544                                      struct file *file, unsigned long offset,
7545                                      unsigned long size)
7546 {
7547         /* d_inode(NULL) won't be equal to any mapped user-space file */
7548         if (!filter->path.dentry)
7549                 return false;
7550
7551         if (d_inode(filter->path.dentry) != file_inode(file))
7552                 return false;
7553
7554         if (filter->offset > offset + size)
7555                 return false;
7556
7557         if (filter->offset + filter->size < offset)
7558                 return false;
7559
7560         return true;
7561 }
7562
7563 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7564                                         struct vm_area_struct *vma,
7565                                         struct perf_addr_filter_range *fr)
7566 {
7567         unsigned long vma_size = vma->vm_end - vma->vm_start;
7568         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7569         struct file *file = vma->vm_file;
7570
7571         if (!perf_addr_filter_match(filter, file, off, vma_size))
7572                 return false;
7573
7574         if (filter->offset < off) {
7575                 fr->start = vma->vm_start;
7576                 fr->size = min(vma_size, filter->size - (off - filter->offset));
7577         } else {
7578                 fr->start = vma->vm_start + filter->offset - off;
7579                 fr->size = min(vma->vm_end - fr->start, filter->size);
7580         }
7581
7582         return true;
7583 }
7584
7585 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7586 {
7587         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7588         struct vm_area_struct *vma = data;
7589         struct perf_addr_filter *filter;
7590         unsigned int restart = 0, count = 0;
7591         unsigned long flags;
7592
7593         if (!has_addr_filter(event))
7594                 return;
7595
7596         if (!vma->vm_file)
7597                 return;
7598
7599         raw_spin_lock_irqsave(&ifh->lock, flags);
7600         list_for_each_entry(filter, &ifh->list, entry) {
7601                 if (perf_addr_filter_vma_adjust(filter, vma,
7602                                                 &event->addr_filter_ranges[count]))
7603                         restart++;
7604
7605                 count++;
7606         }
7607
7608         if (restart)
7609                 event->addr_filters_gen++;
7610         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7611
7612         if (restart)
7613                 perf_event_stop(event, 1);
7614 }
7615
7616 /*
7617  * Adjust all task's events' filters to the new vma
7618  */
7619 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7620 {
7621         struct perf_event_context *ctx;
7622         int ctxn;
7623
7624         /*
7625          * Data tracing isn't supported yet and as such there is no need
7626          * to keep track of anything that isn't related to executable code:
7627          */
7628         if (!(vma->vm_flags & VM_EXEC))
7629                 return;
7630
7631         rcu_read_lock();
7632         for_each_task_context_nr(ctxn) {
7633                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7634                 if (!ctx)
7635                         continue;
7636
7637                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7638         }
7639         rcu_read_unlock();
7640 }
7641
7642 void perf_event_mmap(struct vm_area_struct *vma)
7643 {
7644         struct perf_mmap_event mmap_event;
7645
7646         if (!atomic_read(&nr_mmap_events))
7647                 return;
7648
7649         mmap_event = (struct perf_mmap_event){
7650                 .vma    = vma,
7651                 /* .file_name */
7652                 /* .file_size */
7653                 .event_id  = {
7654                         .header = {
7655                                 .type = PERF_RECORD_MMAP,
7656                                 .misc = PERF_RECORD_MISC_USER,
7657                                 /* .size */
7658                         },
7659                         /* .pid */
7660                         /* .tid */
7661                         .start  = vma->vm_start,
7662                         .len    = vma->vm_end - vma->vm_start,
7663                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7664                 },
7665                 /* .maj (attr_mmap2 only) */
7666                 /* .min (attr_mmap2 only) */
7667                 /* .ino (attr_mmap2 only) */
7668                 /* .ino_generation (attr_mmap2 only) */
7669                 /* .prot (attr_mmap2 only) */
7670                 /* .flags (attr_mmap2 only) */
7671         };
7672
7673         perf_addr_filters_adjust(vma);
7674         perf_event_mmap_event(&mmap_event);
7675 }
7676
7677 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7678                           unsigned long size, u64 flags)
7679 {
7680         struct perf_output_handle handle;
7681         struct perf_sample_data sample;
7682         struct perf_aux_event {
7683                 struct perf_event_header        header;
7684                 u64                             offset;
7685                 u64                             size;
7686                 u64                             flags;
7687         } rec = {
7688                 .header = {
7689                         .type = PERF_RECORD_AUX,
7690                         .misc = 0,
7691                         .size = sizeof(rec),
7692                 },
7693                 .offset         = head,
7694                 .size           = size,
7695                 .flags          = flags,
7696         };
7697         int ret;
7698
7699         perf_event_header__init_id(&rec.header, &sample, event);
7700         ret = perf_output_begin(&handle, event, rec.header.size);
7701
7702         if (ret)
7703                 return;
7704
7705         perf_output_put(&handle, rec);
7706         perf_event__output_id_sample(event, &handle, &sample);
7707
7708         perf_output_end(&handle);
7709 }
7710
7711 /*
7712  * Lost/dropped samples logging
7713  */
7714 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7715 {
7716         struct perf_output_handle handle;
7717         struct perf_sample_data sample;
7718         int ret;
7719
7720         struct {
7721                 struct perf_event_header        header;
7722                 u64                             lost;
7723         } lost_samples_event = {
7724                 .header = {
7725                         .type = PERF_RECORD_LOST_SAMPLES,
7726                         .misc = 0,
7727                         .size = sizeof(lost_samples_event),
7728                 },
7729                 .lost           = lost,
7730         };
7731
7732         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7733
7734         ret = perf_output_begin(&handle, event,
7735                                 lost_samples_event.header.size);
7736         if (ret)
7737                 return;
7738
7739         perf_output_put(&handle, lost_samples_event);
7740         perf_event__output_id_sample(event, &handle, &sample);
7741         perf_output_end(&handle);
7742 }
7743
7744 /*
7745  * context_switch tracking
7746  */
7747
7748 struct perf_switch_event {
7749         struct task_struct      *task;
7750         struct task_struct      *next_prev;
7751
7752         struct {
7753                 struct perf_event_header        header;
7754                 u32                             next_prev_pid;
7755                 u32                             next_prev_tid;
7756         } event_id;
7757 };
7758
7759 static int perf_event_switch_match(struct perf_event *event)
7760 {
7761         return event->attr.context_switch;
7762 }
7763
7764 static void perf_event_switch_output(struct perf_event *event, void *data)
7765 {
7766         struct perf_switch_event *se = data;
7767         struct perf_output_handle handle;
7768         struct perf_sample_data sample;
7769         int ret;
7770
7771         if (!perf_event_switch_match(event))
7772                 return;
7773
7774         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7775         if (event->ctx->task) {
7776                 se->event_id.header.type = PERF_RECORD_SWITCH;
7777                 se->event_id.header.size = sizeof(se->event_id.header);
7778         } else {
7779                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7780                 se->event_id.header.size = sizeof(se->event_id);
7781                 se->event_id.next_prev_pid =
7782                                         perf_event_pid(event, se->next_prev);
7783                 se->event_id.next_prev_tid =
7784                                         perf_event_tid(event, se->next_prev);
7785         }
7786
7787         perf_event_header__init_id(&se->event_id.header, &sample, event);
7788
7789         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7790         if (ret)
7791                 return;
7792
7793         if (event->ctx->task)
7794                 perf_output_put(&handle, se->event_id.header);
7795         else
7796                 perf_output_put(&handle, se->event_id);
7797
7798         perf_event__output_id_sample(event, &handle, &sample);
7799
7800         perf_output_end(&handle);
7801 }
7802
7803 static void perf_event_switch(struct task_struct *task,
7804                               struct task_struct *next_prev, bool sched_in)
7805 {
7806         struct perf_switch_event switch_event;
7807
7808         /* N.B. caller checks nr_switch_events != 0 */
7809
7810         switch_event = (struct perf_switch_event){
7811                 .task           = task,
7812                 .next_prev      = next_prev,
7813                 .event_id       = {
7814                         .header = {
7815                                 /* .type */
7816                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7817                                 /* .size */
7818                         },
7819                         /* .next_prev_pid */
7820                         /* .next_prev_tid */
7821                 },
7822         };
7823
7824         if (!sched_in && task->state == TASK_RUNNING)
7825                 switch_event.event_id.header.misc |=
7826                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7827
7828         perf_iterate_sb(perf_event_switch_output,
7829                        &switch_event,
7830                        NULL);
7831 }
7832
7833 /*
7834  * IRQ throttle logging
7835  */
7836
7837 static void perf_log_throttle(struct perf_event *event, int enable)
7838 {
7839         struct perf_output_handle handle;
7840         struct perf_sample_data sample;
7841         int ret;
7842
7843         struct {
7844                 struct perf_event_header        header;
7845                 u64                             time;
7846                 u64                             id;
7847                 u64                             stream_id;
7848         } throttle_event = {
7849                 .header = {
7850                         .type = PERF_RECORD_THROTTLE,
7851                         .misc = 0,
7852                         .size = sizeof(throttle_event),
7853                 },
7854                 .time           = perf_event_clock(event),
7855                 .id             = primary_event_id(event),
7856                 .stream_id      = event->id,
7857         };
7858
7859         if (enable)
7860                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7861
7862         perf_event_header__init_id(&throttle_event.header, &sample, event);
7863
7864         ret = perf_output_begin(&handle, event,
7865                                 throttle_event.header.size);
7866         if (ret)
7867                 return;
7868
7869         perf_output_put(&handle, throttle_event);
7870         perf_event__output_id_sample(event, &handle, &sample);
7871         perf_output_end(&handle);
7872 }
7873
7874 /*
7875  * ksymbol register/unregister tracking
7876  */
7877
7878 struct perf_ksymbol_event {
7879         const char      *name;
7880         int             name_len;
7881         struct {
7882                 struct perf_event_header        header;
7883                 u64                             addr;
7884                 u32                             len;
7885                 u16                             ksym_type;
7886                 u16                             flags;
7887         } event_id;
7888 };
7889
7890 static int perf_event_ksymbol_match(struct perf_event *event)
7891 {
7892         return event->attr.ksymbol;
7893 }
7894
7895 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7896 {
7897         struct perf_ksymbol_event *ksymbol_event = data;
7898         struct perf_output_handle handle;
7899         struct perf_sample_data sample;
7900         int ret;
7901
7902         if (!perf_event_ksymbol_match(event))
7903                 return;
7904
7905         perf_event_header__init_id(&ksymbol_event->event_id.header,
7906                                    &sample, event);
7907         ret = perf_output_begin(&handle, event,
7908                                 ksymbol_event->event_id.header.size);
7909         if (ret)
7910                 return;
7911
7912         perf_output_put(&handle, ksymbol_event->event_id);
7913         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7914         perf_event__output_id_sample(event, &handle, &sample);
7915
7916         perf_output_end(&handle);
7917 }
7918
7919 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7920                         const char *sym)
7921 {
7922         struct perf_ksymbol_event ksymbol_event;
7923         char name[KSYM_NAME_LEN];
7924         u16 flags = 0;
7925         int name_len;
7926
7927         if (!atomic_read(&nr_ksymbol_events))
7928                 return;
7929
7930         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7931             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7932                 goto err;
7933
7934         strlcpy(name, sym, KSYM_NAME_LEN);
7935         name_len = strlen(name) + 1;
7936         while (!IS_ALIGNED(name_len, sizeof(u64)))
7937                 name[name_len++] = '\0';
7938         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7939
7940         if (unregister)
7941                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7942
7943         ksymbol_event = (struct perf_ksymbol_event){
7944                 .name = name,
7945                 .name_len = name_len,
7946                 .event_id = {
7947                         .header = {
7948                                 .type = PERF_RECORD_KSYMBOL,
7949                                 .size = sizeof(ksymbol_event.event_id) +
7950                                         name_len,
7951                         },
7952                         .addr = addr,
7953                         .len = len,
7954                         .ksym_type = ksym_type,
7955                         .flags = flags,
7956                 },
7957         };
7958
7959         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7960         return;
7961 err:
7962         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7963 }
7964
7965 /*
7966  * bpf program load/unload tracking
7967  */
7968
7969 struct perf_bpf_event {
7970         struct bpf_prog *prog;
7971         struct {
7972                 struct perf_event_header        header;
7973                 u16                             type;
7974                 u16                             flags;
7975                 u32                             id;
7976                 u8                              tag[BPF_TAG_SIZE];
7977         } event_id;
7978 };
7979
7980 static int perf_event_bpf_match(struct perf_event *event)
7981 {
7982         return event->attr.bpf_event;
7983 }
7984
7985 static void perf_event_bpf_output(struct perf_event *event, void *data)
7986 {
7987         struct perf_bpf_event *bpf_event = data;
7988         struct perf_output_handle handle;
7989         struct perf_sample_data sample;
7990         int ret;
7991
7992         if (!perf_event_bpf_match(event))
7993                 return;
7994
7995         perf_event_header__init_id(&bpf_event->event_id.header,
7996                                    &sample, event);
7997         ret = perf_output_begin(&handle, event,
7998                                 bpf_event->event_id.header.size);
7999         if (ret)
8000                 return;
8001
8002         perf_output_put(&handle, bpf_event->event_id);
8003         perf_event__output_id_sample(event, &handle, &sample);
8004
8005         perf_output_end(&handle);
8006 }
8007
8008 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8009                                          enum perf_bpf_event_type type)
8010 {
8011         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8012         char sym[KSYM_NAME_LEN];
8013         int i;
8014
8015         if (prog->aux->func_cnt == 0) {
8016                 bpf_get_prog_name(prog, sym);
8017                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8018                                    (u64)(unsigned long)prog->bpf_func,
8019                                    prog->jited_len, unregister, sym);
8020         } else {
8021                 for (i = 0; i < prog->aux->func_cnt; i++) {
8022                         struct bpf_prog *subprog = prog->aux->func[i];
8023
8024                         bpf_get_prog_name(subprog, sym);
8025                         perf_event_ksymbol(
8026                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8027                                 (u64)(unsigned long)subprog->bpf_func,
8028                                 subprog->jited_len, unregister, sym);
8029                 }
8030         }
8031 }
8032
8033 void perf_event_bpf_event(struct bpf_prog *prog,
8034                           enum perf_bpf_event_type type,
8035                           u16 flags)
8036 {
8037         struct perf_bpf_event bpf_event;
8038
8039         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8040             type >= PERF_BPF_EVENT_MAX)
8041                 return;
8042
8043         switch (type) {
8044         case PERF_BPF_EVENT_PROG_LOAD:
8045         case PERF_BPF_EVENT_PROG_UNLOAD:
8046                 if (atomic_read(&nr_ksymbol_events))
8047                         perf_event_bpf_emit_ksymbols(prog, type);
8048                 break;
8049         default:
8050                 break;
8051         }
8052
8053         if (!atomic_read(&nr_bpf_events))
8054                 return;
8055
8056         bpf_event = (struct perf_bpf_event){
8057                 .prog = prog,
8058                 .event_id = {
8059                         .header = {
8060                                 .type = PERF_RECORD_BPF_EVENT,
8061                                 .size = sizeof(bpf_event.event_id),
8062                         },
8063                         .type = type,
8064                         .flags = flags,
8065                         .id = prog->aux->id,
8066                 },
8067         };
8068
8069         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8070
8071         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8072         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8073 }
8074
8075 void perf_event_itrace_started(struct perf_event *event)
8076 {
8077         event->attach_state |= PERF_ATTACH_ITRACE;
8078 }
8079
8080 static void perf_log_itrace_start(struct perf_event *event)
8081 {
8082         struct perf_output_handle handle;
8083         struct perf_sample_data sample;
8084         struct perf_aux_event {
8085                 struct perf_event_header        header;
8086                 u32                             pid;
8087                 u32                             tid;
8088         } rec;
8089         int ret;
8090
8091         if (event->parent)
8092                 event = event->parent;
8093
8094         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8095             event->attach_state & PERF_ATTACH_ITRACE)
8096                 return;
8097
8098         rec.header.type = PERF_RECORD_ITRACE_START;
8099         rec.header.misc = 0;
8100         rec.header.size = sizeof(rec);
8101         rec.pid = perf_event_pid(event, current);
8102         rec.tid = perf_event_tid(event, current);
8103
8104         perf_event_header__init_id(&rec.header, &sample, event);
8105         ret = perf_output_begin(&handle, event, rec.header.size);
8106
8107         if (ret)
8108                 return;
8109
8110         perf_output_put(&handle, rec);
8111         perf_event__output_id_sample(event, &handle, &sample);
8112
8113         perf_output_end(&handle);
8114 }
8115
8116 static int
8117 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8118 {
8119         struct hw_perf_event *hwc = &event->hw;
8120         int ret = 0;
8121         u64 seq;
8122
8123         seq = __this_cpu_read(perf_throttled_seq);
8124         if (seq != hwc->interrupts_seq) {
8125                 hwc->interrupts_seq = seq;
8126                 hwc->interrupts = 1;
8127         } else {
8128                 hwc->interrupts++;
8129                 if (unlikely(throttle
8130                              && hwc->interrupts >= max_samples_per_tick)) {
8131                         __this_cpu_inc(perf_throttled_count);
8132                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8133                         hwc->interrupts = MAX_INTERRUPTS;
8134                         perf_log_throttle(event, 0);
8135                         ret = 1;
8136                 }
8137         }
8138
8139         if (event->attr.freq) {
8140                 u64 now = perf_clock();
8141                 s64 delta = now - hwc->freq_time_stamp;
8142
8143                 hwc->freq_time_stamp = now;
8144
8145                 if (delta > 0 && delta < 2*TICK_NSEC)
8146                         perf_adjust_period(event, delta, hwc->last_period, true);
8147         }
8148
8149         return ret;
8150 }
8151
8152 int perf_event_account_interrupt(struct perf_event *event)
8153 {
8154         return __perf_event_account_interrupt(event, 1);
8155 }
8156
8157 /*
8158  * Generic event overflow handling, sampling.
8159  */
8160
8161 static int __perf_event_overflow(struct perf_event *event,
8162                                    int throttle, struct perf_sample_data *data,
8163                                    struct pt_regs *regs)
8164 {
8165         int events = atomic_read(&event->event_limit);
8166         int ret = 0;
8167
8168         /*
8169          * Non-sampling counters might still use the PMI to fold short
8170          * hardware counters, ignore those.
8171          */
8172         if (unlikely(!is_sampling_event(event)))
8173                 return 0;
8174
8175         ret = __perf_event_account_interrupt(event, throttle);
8176
8177         /*
8178          * XXX event_limit might not quite work as expected on inherited
8179          * events
8180          */
8181
8182         event->pending_kill = POLL_IN;
8183         if (events && atomic_dec_and_test(&event->event_limit)) {
8184                 ret = 1;
8185                 event->pending_kill = POLL_HUP;
8186
8187                 perf_event_disable_inatomic(event);
8188         }
8189
8190         READ_ONCE(event->overflow_handler)(event, data, regs);
8191
8192         if (*perf_event_fasync(event) && event->pending_kill) {
8193                 event->pending_wakeup = 1;
8194                 irq_work_queue(&event->pending);
8195         }
8196
8197         return ret;
8198 }
8199
8200 int perf_event_overflow(struct perf_event *event,
8201                           struct perf_sample_data *data,
8202                           struct pt_regs *regs)
8203 {
8204         return __perf_event_overflow(event, 1, data, regs);
8205 }
8206
8207 /*
8208  * Generic software event infrastructure
8209  */
8210
8211 struct swevent_htable {
8212         struct swevent_hlist            *swevent_hlist;
8213         struct mutex                    hlist_mutex;
8214         int                             hlist_refcount;
8215
8216         /* Recursion avoidance in each contexts */
8217         int                             recursion[PERF_NR_CONTEXTS];
8218 };
8219
8220 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8221
8222 /*
8223  * We directly increment event->count and keep a second value in
8224  * event->hw.period_left to count intervals. This period event
8225  * is kept in the range [-sample_period, 0] so that we can use the
8226  * sign as trigger.
8227  */
8228
8229 u64 perf_swevent_set_period(struct perf_event *event)
8230 {
8231         struct hw_perf_event *hwc = &event->hw;
8232         u64 period = hwc->last_period;
8233         u64 nr, offset;
8234         s64 old, val;
8235
8236         hwc->last_period = hwc->sample_period;
8237
8238 again:
8239         old = val = local64_read(&hwc->period_left);
8240         if (val < 0)
8241                 return 0;
8242
8243         nr = div64_u64(period + val, period);
8244         offset = nr * period;
8245         val -= offset;
8246         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8247                 goto again;
8248
8249         return nr;
8250 }
8251
8252 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8253                                     struct perf_sample_data *data,
8254                                     struct pt_regs *regs)
8255 {
8256         struct hw_perf_event *hwc = &event->hw;
8257         int throttle = 0;
8258
8259         if (!overflow)
8260                 overflow = perf_swevent_set_period(event);
8261
8262         if (hwc->interrupts == MAX_INTERRUPTS)
8263                 return;
8264
8265         for (; overflow; overflow--) {
8266                 if (__perf_event_overflow(event, throttle,
8267                                             data, regs)) {
8268                         /*
8269                          * We inhibit the overflow from happening when
8270                          * hwc->interrupts == MAX_INTERRUPTS.
8271                          */
8272                         break;
8273                 }
8274                 throttle = 1;
8275         }
8276 }
8277
8278 static void perf_swevent_event(struct perf_event *event, u64 nr,
8279                                struct perf_sample_data *data,
8280                                struct pt_regs *regs)
8281 {
8282         struct hw_perf_event *hwc = &event->hw;
8283
8284         local64_add(nr, &event->count);
8285
8286         if (!regs)
8287                 return;
8288
8289         if (!is_sampling_event(event))
8290                 return;
8291
8292         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8293                 data->period = nr;
8294                 return perf_swevent_overflow(event, 1, data, regs);
8295         } else
8296                 data->period = event->hw.last_period;
8297
8298         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8299                 return perf_swevent_overflow(event, 1, data, regs);
8300
8301         if (local64_add_negative(nr, &hwc->period_left))
8302                 return;
8303
8304         perf_swevent_overflow(event, 0, data, regs);
8305 }
8306
8307 static int perf_exclude_event(struct perf_event *event,
8308                               struct pt_regs *regs)
8309 {
8310         if (event->hw.state & PERF_HES_STOPPED)
8311                 return 1;
8312
8313         if (regs) {
8314                 if (event->attr.exclude_user && user_mode(regs))
8315                         return 1;
8316
8317                 if (event->attr.exclude_kernel && !user_mode(regs))
8318                         return 1;
8319         }
8320
8321         return 0;
8322 }
8323
8324 static int perf_swevent_match(struct perf_event *event,
8325                                 enum perf_type_id type,
8326                                 u32 event_id,
8327                                 struct perf_sample_data *data,
8328                                 struct pt_regs *regs)
8329 {
8330         if (event->attr.type != type)
8331                 return 0;
8332
8333         if (event->attr.config != event_id)
8334                 return 0;
8335
8336         if (perf_exclude_event(event, regs))
8337                 return 0;
8338
8339         return 1;
8340 }
8341
8342 static inline u64 swevent_hash(u64 type, u32 event_id)
8343 {
8344         u64 val = event_id | (type << 32);
8345
8346         return hash_64(val, SWEVENT_HLIST_BITS);
8347 }
8348
8349 static inline struct hlist_head *
8350 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8351 {
8352         u64 hash = swevent_hash(type, event_id);
8353
8354         return &hlist->heads[hash];
8355 }
8356
8357 /* For the read side: events when they trigger */
8358 static inline struct hlist_head *
8359 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8360 {
8361         struct swevent_hlist *hlist;
8362
8363         hlist = rcu_dereference(swhash->swevent_hlist);
8364         if (!hlist)
8365                 return NULL;
8366
8367         return __find_swevent_head(hlist, type, event_id);
8368 }
8369
8370 /* For the event head insertion and removal in the hlist */
8371 static inline struct hlist_head *
8372 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8373 {
8374         struct swevent_hlist *hlist;
8375         u32 event_id = event->attr.config;
8376         u64 type = event->attr.type;
8377
8378         /*
8379          * Event scheduling is always serialized against hlist allocation
8380          * and release. Which makes the protected version suitable here.
8381          * The context lock guarantees that.
8382          */
8383         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8384                                           lockdep_is_held(&event->ctx->lock));
8385         if (!hlist)
8386                 return NULL;
8387
8388         return __find_swevent_head(hlist, type, event_id);
8389 }
8390
8391 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8392                                     u64 nr,
8393                                     struct perf_sample_data *data,
8394                                     struct pt_regs *regs)
8395 {
8396         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8397         struct perf_event *event;
8398         struct hlist_head *head;
8399
8400         rcu_read_lock();
8401         head = find_swevent_head_rcu(swhash, type, event_id);
8402         if (!head)
8403                 goto end;
8404
8405         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8406                 if (perf_swevent_match(event, type, event_id, data, regs))
8407                         perf_swevent_event(event, nr, data, regs);
8408         }
8409 end:
8410         rcu_read_unlock();
8411 }
8412
8413 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8414
8415 int perf_swevent_get_recursion_context(void)
8416 {
8417         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8418
8419         return get_recursion_context(swhash->recursion);
8420 }
8421 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8422
8423 void perf_swevent_put_recursion_context(int rctx)
8424 {
8425         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8426
8427         put_recursion_context(swhash->recursion, rctx);
8428 }
8429
8430 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8431 {
8432         struct perf_sample_data data;
8433
8434         if (WARN_ON_ONCE(!regs))
8435                 return;
8436
8437         perf_sample_data_init(&data, addr, 0);
8438         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8439 }
8440
8441 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8442 {
8443         int rctx;
8444
8445         preempt_disable_notrace();
8446         rctx = perf_swevent_get_recursion_context();
8447         if (unlikely(rctx < 0))
8448                 goto fail;
8449
8450         ___perf_sw_event(event_id, nr, regs, addr);
8451
8452         perf_swevent_put_recursion_context(rctx);
8453 fail:
8454         preempt_enable_notrace();
8455 }
8456
8457 static void perf_swevent_read(struct perf_event *event)
8458 {
8459 }
8460
8461 static int perf_swevent_add(struct perf_event *event, int flags)
8462 {
8463         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8464         struct hw_perf_event *hwc = &event->hw;
8465         struct hlist_head *head;
8466
8467         if (is_sampling_event(event)) {
8468                 hwc->last_period = hwc->sample_period;
8469                 perf_swevent_set_period(event);
8470         }
8471
8472         hwc->state = !(flags & PERF_EF_START);
8473
8474         head = find_swevent_head(swhash, event);
8475         if (WARN_ON_ONCE(!head))
8476                 return -EINVAL;
8477
8478         hlist_add_head_rcu(&event->hlist_entry, head);
8479         perf_event_update_userpage(event);
8480
8481         return 0;
8482 }
8483
8484 static void perf_swevent_del(struct perf_event *event, int flags)
8485 {
8486         hlist_del_rcu(&event->hlist_entry);
8487 }
8488
8489 static void perf_swevent_start(struct perf_event *event, int flags)
8490 {
8491         event->hw.state = 0;
8492 }
8493
8494 static void perf_swevent_stop(struct perf_event *event, int flags)
8495 {
8496         event->hw.state = PERF_HES_STOPPED;
8497 }
8498
8499 /* Deref the hlist from the update side */
8500 static inline struct swevent_hlist *
8501 swevent_hlist_deref(struct swevent_htable *swhash)
8502 {
8503         return rcu_dereference_protected(swhash->swevent_hlist,
8504                                          lockdep_is_held(&swhash->hlist_mutex));
8505 }
8506
8507 static void swevent_hlist_release(struct swevent_htable *swhash)
8508 {
8509         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8510
8511         if (!hlist)
8512                 return;
8513
8514         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8515         kfree_rcu(hlist, rcu_head);
8516 }
8517
8518 static void swevent_hlist_put_cpu(int cpu)
8519 {
8520         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8521
8522         mutex_lock(&swhash->hlist_mutex);
8523
8524         if (!--swhash->hlist_refcount)
8525                 swevent_hlist_release(swhash);
8526
8527         mutex_unlock(&swhash->hlist_mutex);
8528 }
8529
8530 static void swevent_hlist_put(void)
8531 {
8532         int cpu;
8533
8534         for_each_possible_cpu(cpu)
8535                 swevent_hlist_put_cpu(cpu);
8536 }
8537
8538 static int swevent_hlist_get_cpu(int cpu)
8539 {
8540         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8541         int err = 0;
8542
8543         mutex_lock(&swhash->hlist_mutex);
8544         if (!swevent_hlist_deref(swhash) &&
8545             cpumask_test_cpu(cpu, perf_online_mask)) {
8546                 struct swevent_hlist *hlist;
8547
8548                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8549                 if (!hlist) {
8550                         err = -ENOMEM;
8551                         goto exit;
8552                 }
8553                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8554         }
8555         swhash->hlist_refcount++;
8556 exit:
8557         mutex_unlock(&swhash->hlist_mutex);
8558
8559         return err;
8560 }
8561
8562 static int swevent_hlist_get(void)
8563 {
8564         int err, cpu, failed_cpu;
8565
8566         mutex_lock(&pmus_lock);
8567         for_each_possible_cpu(cpu) {
8568                 err = swevent_hlist_get_cpu(cpu);
8569                 if (err) {
8570                         failed_cpu = cpu;
8571                         goto fail;
8572                 }
8573         }
8574         mutex_unlock(&pmus_lock);
8575         return 0;
8576 fail:
8577         for_each_possible_cpu(cpu) {
8578                 if (cpu == failed_cpu)
8579                         break;
8580                 swevent_hlist_put_cpu(cpu);
8581         }
8582         mutex_unlock(&pmus_lock);
8583         return err;
8584 }
8585
8586 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8587
8588 static void sw_perf_event_destroy(struct perf_event *event)
8589 {
8590         u64 event_id = event->attr.config;
8591
8592         WARN_ON(event->parent);
8593
8594         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8595         swevent_hlist_put();
8596 }
8597
8598 static int perf_swevent_init(struct perf_event *event)
8599 {
8600         u64 event_id = event->attr.config;
8601
8602         if (event->attr.type != PERF_TYPE_SOFTWARE)
8603                 return -ENOENT;
8604
8605         /*
8606          * no branch sampling for software events
8607          */
8608         if (has_branch_stack(event))
8609                 return -EOPNOTSUPP;
8610
8611         switch (event_id) {
8612         case PERF_COUNT_SW_CPU_CLOCK:
8613         case PERF_COUNT_SW_TASK_CLOCK:
8614                 return -ENOENT;
8615
8616         default:
8617                 break;
8618         }
8619
8620         if (event_id >= PERF_COUNT_SW_MAX)
8621                 return -ENOENT;
8622
8623         if (!event->parent) {
8624                 int err;
8625
8626                 err = swevent_hlist_get();
8627                 if (err)
8628                         return err;
8629
8630                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8631                 event->destroy = sw_perf_event_destroy;
8632         }
8633
8634         return 0;
8635 }
8636
8637 static struct pmu perf_swevent = {
8638         .task_ctx_nr    = perf_sw_context,
8639
8640         .capabilities   = PERF_PMU_CAP_NO_NMI,
8641
8642         .event_init     = perf_swevent_init,
8643         .add            = perf_swevent_add,
8644         .del            = perf_swevent_del,
8645         .start          = perf_swevent_start,
8646         .stop           = perf_swevent_stop,
8647         .read           = perf_swevent_read,
8648 };
8649
8650 #ifdef CONFIG_EVENT_TRACING
8651
8652 static int perf_tp_filter_match(struct perf_event *event,
8653                                 struct perf_sample_data *data)
8654 {
8655         void *record = data->raw->frag.data;
8656
8657         /* only top level events have filters set */
8658         if (event->parent)
8659                 event = event->parent;
8660
8661         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8662                 return 1;
8663         return 0;
8664 }
8665
8666 static int perf_tp_event_match(struct perf_event *event,
8667                                 struct perf_sample_data *data,
8668                                 struct pt_regs *regs)
8669 {
8670         if (event->hw.state & PERF_HES_STOPPED)
8671                 return 0;
8672         /*
8673          * If exclude_kernel, only trace user-space tracepoints (uprobes)
8674          */
8675         if (event->attr.exclude_kernel && !user_mode(regs))
8676                 return 0;
8677
8678         if (!perf_tp_filter_match(event, data))
8679                 return 0;
8680
8681         return 1;
8682 }
8683
8684 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8685                                struct trace_event_call *call, u64 count,
8686                                struct pt_regs *regs, struct hlist_head *head,
8687                                struct task_struct *task)
8688 {
8689         if (bpf_prog_array_valid(call)) {
8690                 *(struct pt_regs **)raw_data = regs;
8691                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8692                         perf_swevent_put_recursion_context(rctx);
8693                         return;
8694                 }
8695         }
8696         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8697                       rctx, task);
8698 }
8699 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8700
8701 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8702                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8703                    struct task_struct *task)
8704 {
8705         struct perf_sample_data data;
8706         struct perf_event *event;
8707
8708         struct perf_raw_record raw = {
8709                 .frag = {
8710                         .size = entry_size,
8711                         .data = record,
8712                 },
8713         };
8714
8715         perf_sample_data_init(&data, 0, 0);
8716         data.raw = &raw;
8717
8718         perf_trace_buf_update(record, event_type);
8719
8720         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8721                 if (perf_tp_event_match(event, &data, regs))
8722                         perf_swevent_event(event, count, &data, regs);
8723         }
8724
8725         /*
8726          * If we got specified a target task, also iterate its context and
8727          * deliver this event there too.
8728          */
8729         if (task && task != current) {
8730                 struct perf_event_context *ctx;
8731                 struct trace_entry *entry = record;
8732
8733                 rcu_read_lock();
8734                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8735                 if (!ctx)
8736                         goto unlock;
8737
8738                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8739                         if (event->cpu != smp_processor_id())
8740                                 continue;
8741                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8742                                 continue;
8743                         if (event->attr.config != entry->type)
8744                                 continue;
8745                         if (perf_tp_event_match(event, &data, regs))
8746                                 perf_swevent_event(event, count, &data, regs);
8747                 }
8748 unlock:
8749                 rcu_read_unlock();
8750         }
8751
8752         perf_swevent_put_recursion_context(rctx);
8753 }
8754 EXPORT_SYMBOL_GPL(perf_tp_event);
8755
8756 static void tp_perf_event_destroy(struct perf_event *event)
8757 {
8758         perf_trace_destroy(event);
8759 }
8760
8761 static int perf_tp_event_init(struct perf_event *event)
8762 {
8763         int err;
8764
8765         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8766                 return -ENOENT;
8767
8768         /*
8769          * no branch sampling for tracepoint events
8770          */
8771         if (has_branch_stack(event))
8772                 return -EOPNOTSUPP;
8773
8774         err = perf_trace_init(event);
8775         if (err)
8776                 return err;
8777
8778         event->destroy = tp_perf_event_destroy;
8779
8780         return 0;
8781 }
8782
8783 static struct pmu perf_tracepoint = {
8784         .task_ctx_nr    = perf_sw_context,
8785
8786         .event_init     = perf_tp_event_init,
8787         .add            = perf_trace_add,
8788         .del            = perf_trace_del,
8789         .start          = perf_swevent_start,
8790         .stop           = perf_swevent_stop,
8791         .read           = perf_swevent_read,
8792 };
8793
8794 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8795 /*
8796  * Flags in config, used by dynamic PMU kprobe and uprobe
8797  * The flags should match following PMU_FORMAT_ATTR().
8798  *
8799  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8800  *                               if not set, create kprobe/uprobe
8801  *
8802  * The following values specify a reference counter (or semaphore in the
8803  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8804  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8805  *
8806  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
8807  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
8808  */
8809 enum perf_probe_config {
8810         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8811         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8812         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8813 };
8814
8815 PMU_FORMAT_ATTR(retprobe, "config:0");
8816 #endif
8817
8818 #ifdef CONFIG_KPROBE_EVENTS
8819 static struct attribute *kprobe_attrs[] = {
8820         &format_attr_retprobe.attr,
8821         NULL,
8822 };
8823
8824 static struct attribute_group kprobe_format_group = {
8825         .name = "format",
8826         .attrs = kprobe_attrs,
8827 };
8828
8829 static const struct attribute_group *kprobe_attr_groups[] = {
8830         &kprobe_format_group,
8831         NULL,
8832 };
8833
8834 static int perf_kprobe_event_init(struct perf_event *event);
8835 static struct pmu perf_kprobe = {
8836         .task_ctx_nr    = perf_sw_context,
8837         .event_init     = perf_kprobe_event_init,
8838         .add            = perf_trace_add,
8839         .del            = perf_trace_del,
8840         .start          = perf_swevent_start,
8841         .stop           = perf_swevent_stop,
8842         .read           = perf_swevent_read,
8843         .attr_groups    = kprobe_attr_groups,
8844 };
8845
8846 static int perf_kprobe_event_init(struct perf_event *event)
8847 {
8848         int err;
8849         bool is_retprobe;
8850
8851         if (event->attr.type != perf_kprobe.type)
8852                 return -ENOENT;
8853
8854         if (!capable(CAP_SYS_ADMIN))
8855                 return -EACCES;
8856
8857         /*
8858          * no branch sampling for probe events
8859          */
8860         if (has_branch_stack(event))
8861                 return -EOPNOTSUPP;
8862
8863         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8864         err = perf_kprobe_init(event, is_retprobe);
8865         if (err)
8866                 return err;
8867
8868         event->destroy = perf_kprobe_destroy;
8869
8870         return 0;
8871 }
8872 #endif /* CONFIG_KPROBE_EVENTS */
8873
8874 #ifdef CONFIG_UPROBE_EVENTS
8875 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8876
8877 static struct attribute *uprobe_attrs[] = {
8878         &format_attr_retprobe.attr,
8879         &format_attr_ref_ctr_offset.attr,
8880         NULL,
8881 };
8882
8883 static struct attribute_group uprobe_format_group = {
8884         .name = "format",
8885         .attrs = uprobe_attrs,
8886 };
8887
8888 static const struct attribute_group *uprobe_attr_groups[] = {
8889         &uprobe_format_group,
8890         NULL,
8891 };
8892
8893 static int perf_uprobe_event_init(struct perf_event *event);
8894 static struct pmu perf_uprobe = {
8895         .task_ctx_nr    = perf_sw_context,
8896         .event_init     = perf_uprobe_event_init,
8897         .add            = perf_trace_add,
8898         .del            = perf_trace_del,
8899         .start          = perf_swevent_start,
8900         .stop           = perf_swevent_stop,
8901         .read           = perf_swevent_read,
8902         .attr_groups    = uprobe_attr_groups,
8903 };
8904
8905 static int perf_uprobe_event_init(struct perf_event *event)
8906 {
8907         int err;
8908         unsigned long ref_ctr_offset;
8909         bool is_retprobe;
8910
8911         if (event->attr.type != perf_uprobe.type)
8912                 return -ENOENT;
8913
8914         if (!capable(CAP_SYS_ADMIN))
8915                 return -EACCES;
8916
8917         /*
8918          * no branch sampling for probe events
8919          */
8920         if (has_branch_stack(event))
8921                 return -EOPNOTSUPP;
8922
8923         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8924         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8925         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8926         if (err)
8927                 return err;
8928
8929         event->destroy = perf_uprobe_destroy;
8930
8931         return 0;
8932 }
8933 #endif /* CONFIG_UPROBE_EVENTS */
8934
8935 static inline void perf_tp_register(void)
8936 {
8937         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8938 #ifdef CONFIG_KPROBE_EVENTS
8939         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8940 #endif
8941 #ifdef CONFIG_UPROBE_EVENTS
8942         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8943 #endif
8944 }
8945
8946 static void perf_event_free_filter(struct perf_event *event)
8947 {
8948         ftrace_profile_free_filter(event);
8949 }
8950
8951 #ifdef CONFIG_BPF_SYSCALL
8952 static void bpf_overflow_handler(struct perf_event *event,
8953                                  struct perf_sample_data *data,
8954                                  struct pt_regs *regs)
8955 {
8956         struct bpf_perf_event_data_kern ctx = {
8957                 .data = data,
8958                 .event = event,
8959         };
8960         int ret = 0;
8961
8962         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8963         preempt_disable();
8964         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8965                 goto out;
8966         rcu_read_lock();
8967         ret = BPF_PROG_RUN(event->prog, &ctx);
8968         rcu_read_unlock();
8969 out:
8970         __this_cpu_dec(bpf_prog_active);
8971         preempt_enable();
8972         if (!ret)
8973                 return;
8974
8975         event->orig_overflow_handler(event, data, regs);
8976 }
8977
8978 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8979 {
8980         struct bpf_prog *prog;
8981
8982         if (event->overflow_handler_context)
8983                 /* hw breakpoint or kernel counter */
8984                 return -EINVAL;
8985
8986         if (event->prog)
8987                 return -EEXIST;
8988
8989         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8990         if (IS_ERR(prog))
8991                 return PTR_ERR(prog);
8992
8993         event->prog = prog;
8994         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8995         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8996         return 0;
8997 }
8998
8999 static void perf_event_free_bpf_handler(struct perf_event *event)
9000 {
9001         struct bpf_prog *prog = event->prog;
9002
9003         if (!prog)
9004                 return;
9005
9006         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9007         event->prog = NULL;
9008         bpf_prog_put(prog);
9009 }
9010 #else
9011 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9012 {
9013         return -EOPNOTSUPP;
9014 }
9015 static void perf_event_free_bpf_handler(struct perf_event *event)
9016 {
9017 }
9018 #endif
9019
9020 /*
9021  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9022  * with perf_event_open()
9023  */
9024 static inline bool perf_event_is_tracing(struct perf_event *event)
9025 {
9026         if (event->pmu == &perf_tracepoint)
9027                 return true;
9028 #ifdef CONFIG_KPROBE_EVENTS
9029         if (event->pmu == &perf_kprobe)
9030                 return true;
9031 #endif
9032 #ifdef CONFIG_UPROBE_EVENTS
9033         if (event->pmu == &perf_uprobe)
9034                 return true;
9035 #endif
9036         return false;
9037 }
9038
9039 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9040 {
9041         bool is_kprobe, is_tracepoint, is_syscall_tp;
9042         struct bpf_prog *prog;
9043         int ret;
9044
9045         if (!perf_event_is_tracing(event))
9046                 return perf_event_set_bpf_handler(event, prog_fd);
9047
9048         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9049         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9050         is_syscall_tp = is_syscall_trace_event(event->tp_event);
9051         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9052                 /* bpf programs can only be attached to u/kprobe or tracepoint */
9053                 return -EINVAL;
9054
9055         prog = bpf_prog_get(prog_fd);
9056         if (IS_ERR(prog))
9057                 return PTR_ERR(prog);
9058
9059         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9060             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9061             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9062                 /* valid fd, but invalid bpf program type */
9063                 bpf_prog_put(prog);
9064                 return -EINVAL;
9065         }
9066
9067         /* Kprobe override only works for kprobes, not uprobes. */
9068         if (prog->kprobe_override &&
9069             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9070                 bpf_prog_put(prog);
9071                 return -EINVAL;
9072         }
9073
9074         if (is_tracepoint || is_syscall_tp) {
9075                 int off = trace_event_get_offsets(event->tp_event);
9076
9077                 if (prog->aux->max_ctx_offset > off) {
9078                         bpf_prog_put(prog);
9079                         return -EACCES;
9080                 }
9081         }
9082
9083         ret = perf_event_attach_bpf_prog(event, prog);
9084         if (ret)
9085                 bpf_prog_put(prog);
9086         return ret;
9087 }
9088
9089 static void perf_event_free_bpf_prog(struct perf_event *event)
9090 {
9091         if (!perf_event_is_tracing(event)) {
9092                 perf_event_free_bpf_handler(event);
9093                 return;
9094         }
9095         perf_event_detach_bpf_prog(event);
9096 }
9097
9098 #else
9099
9100 static inline void perf_tp_register(void)
9101 {
9102 }
9103
9104 static void perf_event_free_filter(struct perf_event *event)
9105 {
9106 }
9107
9108 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9109 {
9110         return -ENOENT;
9111 }
9112
9113 static void perf_event_free_bpf_prog(struct perf_event *event)
9114 {
9115 }
9116 #endif /* CONFIG_EVENT_TRACING */
9117
9118 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9119 void perf_bp_event(struct perf_event *bp, void *data)
9120 {
9121         struct perf_sample_data sample;
9122         struct pt_regs *regs = data;
9123
9124         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9125
9126         if (!bp->hw.state && !perf_exclude_event(bp, regs))
9127                 perf_swevent_event(bp, 1, &sample, regs);
9128 }
9129 #endif
9130
9131 /*
9132  * Allocate a new address filter
9133  */
9134 static struct perf_addr_filter *
9135 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9136 {
9137         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9138         struct perf_addr_filter *filter;
9139
9140         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9141         if (!filter)
9142                 return NULL;
9143
9144         INIT_LIST_HEAD(&filter->entry);
9145         list_add_tail(&filter->entry, filters);
9146
9147         return filter;
9148 }
9149
9150 static void free_filters_list(struct list_head *filters)
9151 {
9152         struct perf_addr_filter *filter, *iter;
9153
9154         list_for_each_entry_safe(filter, iter, filters, entry) {
9155                 path_put(&filter->path);
9156                 list_del(&filter->entry);
9157                 kfree(filter);
9158         }
9159 }
9160
9161 /*
9162  * Free existing address filters and optionally install new ones
9163  */
9164 static void perf_addr_filters_splice(struct perf_event *event,
9165                                      struct list_head *head)
9166 {
9167         unsigned long flags;
9168         LIST_HEAD(list);
9169
9170         if (!has_addr_filter(event))
9171                 return;
9172
9173         /* don't bother with children, they don't have their own filters */
9174         if (event->parent)
9175                 return;
9176
9177         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9178
9179         list_splice_init(&event->addr_filters.list, &list);
9180         if (head)
9181                 list_splice(head, &event->addr_filters.list);
9182
9183         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9184
9185         free_filters_list(&list);
9186 }
9187
9188 /*
9189  * Scan through mm's vmas and see if one of them matches the
9190  * @filter; if so, adjust filter's address range.
9191  * Called with mm::mmap_sem down for reading.
9192  */
9193 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9194                                    struct mm_struct *mm,
9195                                    struct perf_addr_filter_range *fr)
9196 {
9197         struct vm_area_struct *vma;
9198
9199         for (vma = mm->mmap; vma; vma = vma->vm_next) {
9200                 if (!vma->vm_file)
9201                         continue;
9202
9203                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9204                         return;
9205         }
9206 }
9207
9208 /*
9209  * Update event's address range filters based on the
9210  * task's existing mappings, if any.
9211  */
9212 static void perf_event_addr_filters_apply(struct perf_event *event)
9213 {
9214         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9215         struct task_struct *task = READ_ONCE(event->ctx->task);
9216         struct perf_addr_filter *filter;
9217         struct mm_struct *mm = NULL;
9218         unsigned int count = 0;
9219         unsigned long flags;
9220
9221         /*
9222          * We may observe TASK_TOMBSTONE, which means that the event tear-down
9223          * will stop on the parent's child_mutex that our caller is also holding
9224          */
9225         if (task == TASK_TOMBSTONE)
9226                 return;
9227
9228         if (ifh->nr_file_filters) {
9229                 mm = get_task_mm(event->ctx->task);
9230                 if (!mm)
9231                         goto restart;
9232
9233                 down_read(&mm->mmap_sem);
9234         }
9235
9236         raw_spin_lock_irqsave(&ifh->lock, flags);
9237         list_for_each_entry(filter, &ifh->list, entry) {
9238                 if (filter->path.dentry) {
9239                         /*
9240                          * Adjust base offset if the filter is associated to a
9241                          * binary that needs to be mapped:
9242                          */
9243                         event->addr_filter_ranges[count].start = 0;
9244                         event->addr_filter_ranges[count].size = 0;
9245
9246                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9247                 } else {
9248                         event->addr_filter_ranges[count].start = filter->offset;
9249                         event->addr_filter_ranges[count].size  = filter->size;
9250                 }
9251
9252                 count++;
9253         }
9254
9255         event->addr_filters_gen++;
9256         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9257
9258         if (ifh->nr_file_filters) {
9259                 up_read(&mm->mmap_sem);
9260
9261                 mmput(mm);
9262         }
9263
9264 restart:
9265         perf_event_stop(event, 1);
9266 }
9267
9268 /*
9269  * Address range filtering: limiting the data to certain
9270  * instruction address ranges. Filters are ioctl()ed to us from
9271  * userspace as ascii strings.
9272  *
9273  * Filter string format:
9274  *
9275  * ACTION RANGE_SPEC
9276  * where ACTION is one of the
9277  *  * "filter": limit the trace to this region
9278  *  * "start": start tracing from this address
9279  *  * "stop": stop tracing at this address/region;
9280  * RANGE_SPEC is
9281  *  * for kernel addresses: <start address>[/<size>]
9282  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9283  *
9284  * if <size> is not specified or is zero, the range is treated as a single
9285  * address; not valid for ACTION=="filter".
9286  */
9287 enum {
9288         IF_ACT_NONE = -1,
9289         IF_ACT_FILTER,
9290         IF_ACT_START,
9291         IF_ACT_STOP,
9292         IF_SRC_FILE,
9293         IF_SRC_KERNEL,
9294         IF_SRC_FILEADDR,
9295         IF_SRC_KERNELADDR,
9296 };
9297
9298 enum {
9299         IF_STATE_ACTION = 0,
9300         IF_STATE_SOURCE,
9301         IF_STATE_END,
9302 };
9303
9304 static const match_table_t if_tokens = {
9305         { IF_ACT_FILTER,        "filter" },
9306         { IF_ACT_START,         "start" },
9307         { IF_ACT_STOP,          "stop" },
9308         { IF_SRC_FILE,          "%u/%u@%s" },
9309         { IF_SRC_KERNEL,        "%u/%u" },
9310         { IF_SRC_FILEADDR,      "%u@%s" },
9311         { IF_SRC_KERNELADDR,    "%u" },
9312         { IF_ACT_NONE,          NULL },
9313 };
9314
9315 /*
9316  * Address filter string parser
9317  */
9318 static int
9319 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9320                              struct list_head *filters)
9321 {
9322         struct perf_addr_filter *filter = NULL;
9323         char *start, *orig, *filename = NULL;
9324         substring_t args[MAX_OPT_ARGS];
9325         int state = IF_STATE_ACTION, token;
9326         unsigned int kernel = 0;
9327         int ret = -EINVAL;
9328
9329         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9330         if (!fstr)
9331                 return -ENOMEM;
9332
9333         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9334                 static const enum perf_addr_filter_action_t actions[] = {
9335                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9336                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9337                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9338                 };
9339                 ret = -EINVAL;
9340
9341                 if (!*start)
9342                         continue;
9343
9344                 /* filter definition begins */
9345                 if (state == IF_STATE_ACTION) {
9346                         filter = perf_addr_filter_new(event, filters);
9347                         if (!filter)
9348                                 goto fail;
9349                 }
9350
9351                 token = match_token(start, if_tokens, args);
9352                 switch (token) {
9353                 case IF_ACT_FILTER:
9354                 case IF_ACT_START:
9355                 case IF_ACT_STOP:
9356                         if (state != IF_STATE_ACTION)
9357                                 goto fail;
9358
9359                         filter->action = actions[token];
9360                         state = IF_STATE_SOURCE;
9361                         break;
9362
9363                 case IF_SRC_KERNELADDR:
9364                 case IF_SRC_KERNEL:
9365                         kernel = 1;
9366                         /* fall through */
9367
9368                 case IF_SRC_FILEADDR:
9369                 case IF_SRC_FILE:
9370                         if (state != IF_STATE_SOURCE)
9371                                 goto fail;
9372
9373                         *args[0].to = 0;
9374                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9375                         if (ret)
9376                                 goto fail;
9377
9378                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9379                                 *args[1].to = 0;
9380                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9381                                 if (ret)
9382                                         goto fail;
9383                         }
9384
9385                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9386                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9387
9388                                 filename = match_strdup(&args[fpos]);
9389                                 if (!filename) {
9390                                         ret = -ENOMEM;
9391                                         goto fail;
9392                                 }
9393                         }
9394
9395                         state = IF_STATE_END;
9396                         break;
9397
9398                 default:
9399                         goto fail;
9400                 }
9401
9402                 /*
9403                  * Filter definition is fully parsed, validate and install it.
9404                  * Make sure that it doesn't contradict itself or the event's
9405                  * attribute.
9406                  */
9407                 if (state == IF_STATE_END) {
9408                         ret = -EINVAL;
9409                         if (kernel && event->attr.exclude_kernel)
9410                                 goto fail;
9411
9412                         /*
9413                          * ACTION "filter" must have a non-zero length region
9414                          * specified.
9415                          */
9416                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9417                             !filter->size)
9418                                 goto fail;
9419
9420                         if (!kernel) {
9421                                 if (!filename)
9422                                         goto fail;
9423
9424                                 /*
9425                                  * For now, we only support file-based filters
9426                                  * in per-task events; doing so for CPU-wide
9427                                  * events requires additional context switching
9428                                  * trickery, since same object code will be
9429                                  * mapped at different virtual addresses in
9430                                  * different processes.
9431                                  */
9432                                 ret = -EOPNOTSUPP;
9433                                 if (!event->ctx->task)
9434                                         goto fail_free_name;
9435
9436                                 /* look up the path and grab its inode */
9437                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9438                                                 &filter->path);
9439                                 if (ret)
9440                                         goto fail_free_name;
9441
9442                                 kfree(filename);
9443                                 filename = NULL;
9444
9445                                 ret = -EINVAL;
9446                                 if (!filter->path.dentry ||
9447                                     !S_ISREG(d_inode(filter->path.dentry)
9448                                              ->i_mode))
9449                                         goto fail;
9450
9451                                 event->addr_filters.nr_file_filters++;
9452                         }
9453
9454                         /* ready to consume more filters */
9455                         state = IF_STATE_ACTION;
9456                         filter = NULL;
9457                 }
9458         }
9459
9460         if (state != IF_STATE_ACTION)
9461                 goto fail;
9462
9463         kfree(orig);
9464
9465         return 0;
9466
9467 fail_free_name:
9468         kfree(filename);
9469 fail:
9470         free_filters_list(filters);
9471         kfree(orig);
9472
9473         return ret;
9474 }
9475
9476 static int
9477 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9478 {
9479         LIST_HEAD(filters);
9480         int ret;
9481
9482         /*
9483          * Since this is called in perf_ioctl() path, we're already holding
9484          * ctx::mutex.
9485          */
9486         lockdep_assert_held(&event->ctx->mutex);
9487
9488         if (WARN_ON_ONCE(event->parent))
9489                 return -EINVAL;
9490
9491         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9492         if (ret)
9493                 goto fail_clear_files;
9494
9495         ret = event->pmu->addr_filters_validate(&filters);
9496         if (ret)
9497                 goto fail_free_filters;
9498
9499         /* remove existing filters, if any */
9500         perf_addr_filters_splice(event, &filters);
9501
9502         /* install new filters */
9503         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9504
9505         return ret;
9506
9507 fail_free_filters:
9508         free_filters_list(&filters);
9509
9510 fail_clear_files:
9511         event->addr_filters.nr_file_filters = 0;
9512
9513         return ret;
9514 }
9515
9516 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9517 {
9518         int ret = -EINVAL;
9519         char *filter_str;
9520
9521         filter_str = strndup_user(arg, PAGE_SIZE);
9522         if (IS_ERR(filter_str))
9523                 return PTR_ERR(filter_str);
9524
9525 #ifdef CONFIG_EVENT_TRACING
9526         if (perf_event_is_tracing(event)) {
9527                 struct perf_event_context *ctx = event->ctx;
9528
9529                 /*
9530                  * Beware, here be dragons!!
9531                  *
9532                  * the tracepoint muck will deadlock against ctx->mutex, but
9533                  * the tracepoint stuff does not actually need it. So
9534                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9535                  * already have a reference on ctx.
9536                  *
9537                  * This can result in event getting moved to a different ctx,
9538                  * but that does not affect the tracepoint state.
9539                  */
9540                 mutex_unlock(&ctx->mutex);
9541                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9542                 mutex_lock(&ctx->mutex);
9543         } else
9544 #endif
9545         if (has_addr_filter(event))
9546                 ret = perf_event_set_addr_filter(event, filter_str);
9547
9548         kfree(filter_str);
9549         return ret;
9550 }
9551
9552 /*
9553  * hrtimer based swevent callback
9554  */
9555
9556 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9557 {
9558         enum hrtimer_restart ret = HRTIMER_RESTART;
9559         struct perf_sample_data data;
9560         struct pt_regs *regs;
9561         struct perf_event *event;
9562         u64 period;
9563
9564         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9565
9566         if (event->state != PERF_EVENT_STATE_ACTIVE)
9567                 return HRTIMER_NORESTART;
9568
9569         event->pmu->read(event);
9570
9571         perf_sample_data_init(&data, 0, event->hw.last_period);
9572         regs = get_irq_regs();
9573
9574         if (regs && !perf_exclude_event(event, regs)) {
9575                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9576                         if (__perf_event_overflow(event, 1, &data, regs))
9577                                 ret = HRTIMER_NORESTART;
9578         }
9579
9580         period = max_t(u64, 10000, event->hw.sample_period);
9581         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9582
9583         return ret;
9584 }
9585
9586 static void perf_swevent_start_hrtimer(struct perf_event *event)
9587 {
9588         struct hw_perf_event *hwc = &event->hw;
9589         s64 period;
9590
9591         if (!is_sampling_event(event))
9592                 return;
9593
9594         period = local64_read(&hwc->period_left);
9595         if (period) {
9596                 if (period < 0)
9597                         period = 10000;
9598
9599                 local64_set(&hwc->period_left, 0);
9600         } else {
9601                 period = max_t(u64, 10000, hwc->sample_period);
9602         }
9603         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9604                       HRTIMER_MODE_REL_PINNED_HARD);
9605 }
9606
9607 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9608 {
9609         struct hw_perf_event *hwc = &event->hw;
9610
9611         if (is_sampling_event(event)) {
9612                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9613                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9614
9615                 hrtimer_cancel(&hwc->hrtimer);
9616         }
9617 }
9618
9619 static void perf_swevent_init_hrtimer(struct perf_event *event)
9620 {
9621         struct hw_perf_event *hwc = &event->hw;
9622
9623         if (!is_sampling_event(event))
9624                 return;
9625
9626         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
9627         hwc->hrtimer.function = perf_swevent_hrtimer;
9628
9629         /*
9630          * Since hrtimers have a fixed rate, we can do a static freq->period
9631          * mapping and avoid the whole period adjust feedback stuff.
9632          */
9633         if (event->attr.freq) {
9634                 long freq = event->attr.sample_freq;
9635
9636                 event->attr.sample_period = NSEC_PER_SEC / freq;
9637                 hwc->sample_period = event->attr.sample_period;
9638                 local64_set(&hwc->period_left, hwc->sample_period);
9639                 hwc->last_period = hwc->sample_period;
9640                 event->attr.freq = 0;
9641         }
9642 }
9643
9644 /*
9645  * Software event: cpu wall time clock
9646  */
9647
9648 static void cpu_clock_event_update(struct perf_event *event)
9649 {
9650         s64 prev;
9651         u64 now;
9652
9653         now = local_clock();
9654         prev = local64_xchg(&event->hw.prev_count, now);
9655         local64_add(now - prev, &event->count);
9656 }
9657
9658 static void cpu_clock_event_start(struct perf_event *event, int flags)
9659 {
9660         local64_set(&event->hw.prev_count, local_clock());
9661         perf_swevent_start_hrtimer(event);
9662 }
9663
9664 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9665 {
9666         perf_swevent_cancel_hrtimer(event);
9667         cpu_clock_event_update(event);
9668 }
9669
9670 static int cpu_clock_event_add(struct perf_event *event, int flags)
9671 {
9672         if (flags & PERF_EF_START)
9673                 cpu_clock_event_start(event, flags);
9674         perf_event_update_userpage(event);
9675
9676         return 0;
9677 }
9678
9679 static void cpu_clock_event_del(struct perf_event *event, int flags)
9680 {
9681         cpu_clock_event_stop(event, flags);
9682 }
9683
9684 static void cpu_clock_event_read(struct perf_event *event)
9685 {
9686         cpu_clock_event_update(event);
9687 }
9688
9689 static int cpu_clock_event_init(struct perf_event *event)
9690 {
9691         if (event->attr.type != PERF_TYPE_SOFTWARE)
9692                 return -ENOENT;
9693
9694         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9695                 return -ENOENT;
9696
9697         /*
9698          * no branch sampling for software events
9699          */
9700         if (has_branch_stack(event))
9701                 return -EOPNOTSUPP;
9702
9703         perf_swevent_init_hrtimer(event);
9704
9705         return 0;
9706 }
9707
9708 static struct pmu perf_cpu_clock = {
9709         .task_ctx_nr    = perf_sw_context,
9710
9711         .capabilities   = PERF_PMU_CAP_NO_NMI,
9712
9713         .event_init     = cpu_clock_event_init,
9714         .add            = cpu_clock_event_add,
9715         .del            = cpu_clock_event_del,
9716         .start          = cpu_clock_event_start,
9717         .stop           = cpu_clock_event_stop,
9718         .read           = cpu_clock_event_read,
9719 };
9720
9721 /*
9722  * Software event: task time clock
9723  */
9724
9725 static void task_clock_event_update(struct perf_event *event, u64 now)
9726 {
9727         u64 prev;
9728         s64 delta;
9729
9730         prev = local64_xchg(&event->hw.prev_count, now);
9731         delta = now - prev;
9732         local64_add(delta, &event->count);
9733 }
9734
9735 static void task_clock_event_start(struct perf_event *event, int flags)
9736 {
9737         local64_set(&event->hw.prev_count, event->ctx->time);
9738         perf_swevent_start_hrtimer(event);
9739 }
9740
9741 static void task_clock_event_stop(struct perf_event *event, int flags)
9742 {
9743         perf_swevent_cancel_hrtimer(event);
9744         task_clock_event_update(event, event->ctx->time);
9745 }
9746
9747 static int task_clock_event_add(struct perf_event *event, int flags)
9748 {
9749         if (flags & PERF_EF_START)
9750                 task_clock_event_start(event, flags);
9751         perf_event_update_userpage(event);
9752
9753         return 0;
9754 }
9755
9756 static void task_clock_event_del(struct perf_event *event, int flags)
9757 {
9758         task_clock_event_stop(event, PERF_EF_UPDATE);
9759 }
9760
9761 static void task_clock_event_read(struct perf_event *event)
9762 {
9763         u64 now = perf_clock();
9764         u64 delta = now - event->ctx->timestamp;
9765         u64 time = event->ctx->time + delta;
9766
9767         task_clock_event_update(event, time);
9768 }
9769
9770 static int task_clock_event_init(struct perf_event *event)
9771 {
9772         if (event->attr.type != PERF_TYPE_SOFTWARE)
9773                 return -ENOENT;
9774
9775         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9776                 return -ENOENT;
9777
9778         /*
9779          * no branch sampling for software events
9780          */
9781         if (has_branch_stack(event))
9782                 return -EOPNOTSUPP;
9783
9784         perf_swevent_init_hrtimer(event);
9785
9786         return 0;
9787 }
9788
9789 static struct pmu perf_task_clock = {
9790         .task_ctx_nr    = perf_sw_context,
9791
9792         .capabilities   = PERF_PMU_CAP_NO_NMI,
9793
9794         .event_init     = task_clock_event_init,
9795         .add            = task_clock_event_add,
9796         .del            = task_clock_event_del,
9797         .start          = task_clock_event_start,
9798         .stop           = task_clock_event_stop,
9799         .read           = task_clock_event_read,
9800 };
9801
9802 static void perf_pmu_nop_void(struct pmu *pmu)
9803 {
9804 }
9805
9806 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9807 {
9808 }
9809
9810 static int perf_pmu_nop_int(struct pmu *pmu)
9811 {
9812         return 0;
9813 }
9814
9815 static int perf_event_nop_int(struct perf_event *event, u64 value)
9816 {
9817         return 0;
9818 }
9819
9820 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9821
9822 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9823 {
9824         __this_cpu_write(nop_txn_flags, flags);
9825
9826         if (flags & ~PERF_PMU_TXN_ADD)
9827                 return;
9828
9829         perf_pmu_disable(pmu);
9830 }
9831
9832 static int perf_pmu_commit_txn(struct pmu *pmu)
9833 {
9834         unsigned int flags = __this_cpu_read(nop_txn_flags);
9835
9836         __this_cpu_write(nop_txn_flags, 0);
9837
9838         if (flags & ~PERF_PMU_TXN_ADD)
9839                 return 0;
9840
9841         perf_pmu_enable(pmu);
9842         return 0;
9843 }
9844
9845 static void perf_pmu_cancel_txn(struct pmu *pmu)
9846 {
9847         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9848
9849         __this_cpu_write(nop_txn_flags, 0);
9850
9851         if (flags & ~PERF_PMU_TXN_ADD)
9852                 return;
9853
9854         perf_pmu_enable(pmu);
9855 }
9856
9857 static int perf_event_idx_default(struct perf_event *event)
9858 {
9859         return 0;
9860 }
9861
9862 /*
9863  * Ensures all contexts with the same task_ctx_nr have the same
9864  * pmu_cpu_context too.
9865  */
9866 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9867 {
9868         struct pmu *pmu;
9869
9870         if (ctxn < 0)
9871                 return NULL;
9872
9873         list_for_each_entry(pmu, &pmus, entry) {
9874                 if (pmu->task_ctx_nr == ctxn)
9875                         return pmu->pmu_cpu_context;
9876         }
9877
9878         return NULL;
9879 }
9880
9881 static void free_pmu_context(struct pmu *pmu)
9882 {
9883         /*
9884          * Static contexts such as perf_sw_context have a global lifetime
9885          * and may be shared between different PMUs. Avoid freeing them
9886          * when a single PMU is going away.
9887          */
9888         if (pmu->task_ctx_nr > perf_invalid_context)
9889                 return;
9890
9891         free_percpu(pmu->pmu_cpu_context);
9892 }
9893
9894 /*
9895  * Let userspace know that this PMU supports address range filtering:
9896  */
9897 static ssize_t nr_addr_filters_show(struct device *dev,
9898                                     struct device_attribute *attr,
9899                                     char *page)
9900 {
9901         struct pmu *pmu = dev_get_drvdata(dev);
9902
9903         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9904 }
9905 DEVICE_ATTR_RO(nr_addr_filters);
9906
9907 static struct idr pmu_idr;
9908
9909 static ssize_t
9910 type_show(struct device *dev, struct device_attribute *attr, char *page)
9911 {
9912         struct pmu *pmu = dev_get_drvdata(dev);
9913
9914         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9915 }
9916 static DEVICE_ATTR_RO(type);
9917
9918 static ssize_t
9919 perf_event_mux_interval_ms_show(struct device *dev,
9920                                 struct device_attribute *attr,
9921                                 char *page)
9922 {
9923         struct pmu *pmu = dev_get_drvdata(dev);
9924
9925         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9926 }
9927
9928 static DEFINE_MUTEX(mux_interval_mutex);
9929
9930 static ssize_t
9931 perf_event_mux_interval_ms_store(struct device *dev,
9932                                  struct device_attribute *attr,
9933                                  const char *buf, size_t count)
9934 {
9935         struct pmu *pmu = dev_get_drvdata(dev);
9936         int timer, cpu, ret;
9937
9938         ret = kstrtoint(buf, 0, &timer);
9939         if (ret)
9940                 return ret;
9941
9942         if (timer < 1)
9943                 return -EINVAL;
9944
9945         /* same value, noting to do */
9946         if (timer == pmu->hrtimer_interval_ms)
9947                 return count;
9948
9949         mutex_lock(&mux_interval_mutex);
9950         pmu->hrtimer_interval_ms = timer;
9951
9952         /* update all cpuctx for this PMU */
9953         cpus_read_lock();
9954         for_each_online_cpu(cpu) {
9955                 struct perf_cpu_context *cpuctx;
9956                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9957                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9958
9959                 cpu_function_call(cpu,
9960                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9961         }
9962         cpus_read_unlock();
9963         mutex_unlock(&mux_interval_mutex);
9964
9965         return count;
9966 }
9967 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9968
9969 static struct attribute *pmu_dev_attrs[] = {
9970         &dev_attr_type.attr,
9971         &dev_attr_perf_event_mux_interval_ms.attr,
9972         NULL,
9973 };
9974 ATTRIBUTE_GROUPS(pmu_dev);
9975
9976 static int pmu_bus_running;
9977 static struct bus_type pmu_bus = {
9978         .name           = "event_source",
9979         .dev_groups     = pmu_dev_groups,
9980 };
9981
9982 static void pmu_dev_release(struct device *dev)
9983 {
9984         kfree(dev);
9985 }
9986
9987 static int pmu_dev_alloc(struct pmu *pmu)
9988 {
9989         int ret = -ENOMEM;
9990
9991         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9992         if (!pmu->dev)
9993                 goto out;
9994
9995         pmu->dev->groups = pmu->attr_groups;
9996         device_initialize(pmu->dev);
9997         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9998         if (ret)
9999                 goto free_dev;
10000
10001         dev_set_drvdata(pmu->dev, pmu);
10002         pmu->dev->bus = &pmu_bus;
10003         pmu->dev->release = pmu_dev_release;
10004         ret = device_add(pmu->dev);
10005         if (ret)
10006                 goto free_dev;
10007
10008         /* For PMUs with address filters, throw in an extra attribute: */
10009         if (pmu->nr_addr_filters)
10010                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10011
10012         if (ret)
10013                 goto del_dev;
10014
10015         if (pmu->attr_update)
10016                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10017
10018         if (ret)
10019                 goto del_dev;
10020
10021 out:
10022         return ret;
10023
10024 del_dev:
10025         device_del(pmu->dev);
10026
10027 free_dev:
10028         put_device(pmu->dev);
10029         goto out;
10030 }
10031
10032 static struct lock_class_key cpuctx_mutex;
10033 static struct lock_class_key cpuctx_lock;
10034
10035 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10036 {
10037         int cpu, ret;
10038
10039         mutex_lock(&pmus_lock);
10040         ret = -ENOMEM;
10041         pmu->pmu_disable_count = alloc_percpu(int);
10042         if (!pmu->pmu_disable_count)
10043                 goto unlock;
10044
10045         pmu->type = -1;
10046         if (!name)
10047                 goto skip_type;
10048         pmu->name = name;
10049
10050         if (type < 0) {
10051                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
10052                 if (type < 0) {
10053                         ret = type;
10054                         goto free_pdc;
10055                 }
10056         }
10057         pmu->type = type;
10058
10059         if (pmu_bus_running) {
10060                 ret = pmu_dev_alloc(pmu);
10061                 if (ret)
10062                         goto free_idr;
10063         }
10064
10065 skip_type:
10066         if (pmu->task_ctx_nr == perf_hw_context) {
10067                 static int hw_context_taken = 0;
10068
10069                 /*
10070                  * Other than systems with heterogeneous CPUs, it never makes
10071                  * sense for two PMUs to share perf_hw_context. PMUs which are
10072                  * uncore must use perf_invalid_context.
10073                  */
10074                 if (WARN_ON_ONCE(hw_context_taken &&
10075                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10076                         pmu->task_ctx_nr = perf_invalid_context;
10077
10078                 hw_context_taken = 1;
10079         }
10080
10081         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10082         if (pmu->pmu_cpu_context)
10083                 goto got_cpu_context;
10084
10085         ret = -ENOMEM;
10086         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10087         if (!pmu->pmu_cpu_context)
10088                 goto free_dev;
10089
10090         for_each_possible_cpu(cpu) {
10091                 struct perf_cpu_context *cpuctx;
10092
10093                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10094                 __perf_event_init_context(&cpuctx->ctx);
10095                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10096                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10097                 cpuctx->ctx.pmu = pmu;
10098                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10099
10100                 __perf_mux_hrtimer_init(cpuctx, cpu);
10101         }
10102
10103 got_cpu_context:
10104         if (!pmu->start_txn) {
10105                 if (pmu->pmu_enable) {
10106                         /*
10107                          * If we have pmu_enable/pmu_disable calls, install
10108                          * transaction stubs that use that to try and batch
10109                          * hardware accesses.
10110                          */
10111                         pmu->start_txn  = perf_pmu_start_txn;
10112                         pmu->commit_txn = perf_pmu_commit_txn;
10113                         pmu->cancel_txn = perf_pmu_cancel_txn;
10114                 } else {
10115                         pmu->start_txn  = perf_pmu_nop_txn;
10116                         pmu->commit_txn = perf_pmu_nop_int;
10117                         pmu->cancel_txn = perf_pmu_nop_void;
10118                 }
10119         }
10120
10121         if (!pmu->pmu_enable) {
10122                 pmu->pmu_enable  = perf_pmu_nop_void;
10123                 pmu->pmu_disable = perf_pmu_nop_void;
10124         }
10125
10126         if (!pmu->check_period)
10127                 pmu->check_period = perf_event_nop_int;
10128
10129         if (!pmu->event_idx)
10130                 pmu->event_idx = perf_event_idx_default;
10131
10132         list_add_rcu(&pmu->entry, &pmus);
10133         atomic_set(&pmu->exclusive_cnt, 0);
10134         ret = 0;
10135 unlock:
10136         mutex_unlock(&pmus_lock);
10137
10138         return ret;
10139
10140 free_dev:
10141         device_del(pmu->dev);
10142         put_device(pmu->dev);
10143
10144 free_idr:
10145         if (pmu->type >= PERF_TYPE_MAX)
10146                 idr_remove(&pmu_idr, pmu->type);
10147
10148 free_pdc:
10149         free_percpu(pmu->pmu_disable_count);
10150         goto unlock;
10151 }
10152 EXPORT_SYMBOL_GPL(perf_pmu_register);
10153
10154 void perf_pmu_unregister(struct pmu *pmu)
10155 {
10156         mutex_lock(&pmus_lock);
10157         list_del_rcu(&pmu->entry);
10158
10159         /*
10160          * We dereference the pmu list under both SRCU and regular RCU, so
10161          * synchronize against both of those.
10162          */
10163         synchronize_srcu(&pmus_srcu);
10164         synchronize_rcu();
10165
10166         free_percpu(pmu->pmu_disable_count);
10167         if (pmu->type >= PERF_TYPE_MAX)
10168                 idr_remove(&pmu_idr, pmu->type);
10169         if (pmu_bus_running) {
10170                 if (pmu->nr_addr_filters)
10171                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10172                 device_del(pmu->dev);
10173                 put_device(pmu->dev);
10174         }
10175         free_pmu_context(pmu);
10176         mutex_unlock(&pmus_lock);
10177 }
10178 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10179
10180 static inline bool has_extended_regs(struct perf_event *event)
10181 {
10182         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10183                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10184 }
10185
10186 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10187 {
10188         struct perf_event_context *ctx = NULL;
10189         int ret;
10190
10191         if (!try_module_get(pmu->module))
10192                 return -ENODEV;
10193
10194         /*
10195          * A number of pmu->event_init() methods iterate the sibling_list to,
10196          * for example, validate if the group fits on the PMU. Therefore,
10197          * if this is a sibling event, acquire the ctx->mutex to protect
10198          * the sibling_list.
10199          */
10200         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10201                 /*
10202                  * This ctx->mutex can nest when we're called through
10203                  * inheritance. See the perf_event_ctx_lock_nested() comment.
10204                  */
10205                 ctx = perf_event_ctx_lock_nested(event->group_leader,
10206                                                  SINGLE_DEPTH_NESTING);
10207                 BUG_ON(!ctx);
10208         }
10209
10210         event->pmu = pmu;
10211         ret = pmu->event_init(event);
10212
10213         if (ctx)
10214                 perf_event_ctx_unlock(event->group_leader, ctx);
10215
10216         if (!ret) {
10217                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10218                     has_extended_regs(event))
10219                         ret = -EOPNOTSUPP;
10220
10221                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10222                     event_has_any_exclude_flag(event))
10223                         ret = -EINVAL;
10224
10225                 if (ret && event->destroy)
10226                         event->destroy(event);
10227         }
10228
10229         if (ret)
10230                 module_put(pmu->module);
10231
10232         return ret;
10233 }
10234
10235 static struct pmu *perf_init_event(struct perf_event *event)
10236 {
10237         struct pmu *pmu;
10238         int idx;
10239         int ret;
10240
10241         idx = srcu_read_lock(&pmus_srcu);
10242
10243         /* Try parent's PMU first: */
10244         if (event->parent && event->parent->pmu) {
10245                 pmu = event->parent->pmu;
10246                 ret = perf_try_init_event(pmu, event);
10247                 if (!ret)
10248                         goto unlock;
10249         }
10250
10251         rcu_read_lock();
10252         pmu = idr_find(&pmu_idr, event->attr.type);
10253         rcu_read_unlock();
10254         if (pmu) {
10255                 ret = perf_try_init_event(pmu, event);
10256                 if (ret)
10257                         pmu = ERR_PTR(ret);
10258                 goto unlock;
10259         }
10260
10261         list_for_each_entry_rcu(pmu, &pmus, entry) {
10262                 ret = perf_try_init_event(pmu, event);
10263                 if (!ret)
10264                         goto unlock;
10265
10266                 if (ret != -ENOENT) {
10267                         pmu = ERR_PTR(ret);
10268                         goto unlock;
10269                 }
10270         }
10271         pmu = ERR_PTR(-ENOENT);
10272 unlock:
10273         srcu_read_unlock(&pmus_srcu, idx);
10274
10275         return pmu;
10276 }
10277
10278 static void attach_sb_event(struct perf_event *event)
10279 {
10280         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10281
10282         raw_spin_lock(&pel->lock);
10283         list_add_rcu(&event->sb_list, &pel->list);
10284         raw_spin_unlock(&pel->lock);
10285 }
10286
10287 /*
10288  * We keep a list of all !task (and therefore per-cpu) events
10289  * that need to receive side-band records.
10290  *
10291  * This avoids having to scan all the various PMU per-cpu contexts
10292  * looking for them.
10293  */
10294 static void account_pmu_sb_event(struct perf_event *event)
10295 {
10296         if (is_sb_event(event))
10297                 attach_sb_event(event);
10298 }
10299
10300 static void account_event_cpu(struct perf_event *event, int cpu)
10301 {
10302         if (event->parent)
10303                 return;
10304
10305         if (is_cgroup_event(event))
10306                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10307 }
10308
10309 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10310 static void account_freq_event_nohz(void)
10311 {
10312 #ifdef CONFIG_NO_HZ_FULL
10313         /* Lock so we don't race with concurrent unaccount */
10314         spin_lock(&nr_freq_lock);
10315         if (atomic_inc_return(&nr_freq_events) == 1)
10316                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10317         spin_unlock(&nr_freq_lock);
10318 #endif
10319 }
10320
10321 static void account_freq_event(void)
10322 {
10323         if (tick_nohz_full_enabled())
10324                 account_freq_event_nohz();
10325         else
10326                 atomic_inc(&nr_freq_events);
10327 }
10328
10329
10330 static void account_event(struct perf_event *event)
10331 {
10332         bool inc = false;
10333
10334         if (event->parent)
10335                 return;
10336
10337         if (event->attach_state & PERF_ATTACH_TASK)
10338                 inc = true;
10339         if (event->attr.mmap || event->attr.mmap_data)
10340                 atomic_inc(&nr_mmap_events);
10341         if (event->attr.comm)
10342                 atomic_inc(&nr_comm_events);
10343         if (event->attr.namespaces)
10344                 atomic_inc(&nr_namespaces_events);
10345         if (event->attr.task)
10346                 atomic_inc(&nr_task_events);
10347         if (event->attr.freq)
10348                 account_freq_event();
10349         if (event->attr.context_switch) {
10350                 atomic_inc(&nr_switch_events);
10351                 inc = true;
10352         }
10353         if (has_branch_stack(event))
10354                 inc = true;
10355         if (is_cgroup_event(event))
10356                 inc = true;
10357         if (event->attr.ksymbol)
10358                 atomic_inc(&nr_ksymbol_events);
10359         if (event->attr.bpf_event)
10360                 atomic_inc(&nr_bpf_events);
10361
10362         if (inc) {
10363                 /*
10364                  * We need the mutex here because static_branch_enable()
10365                  * must complete *before* the perf_sched_count increment
10366                  * becomes visible.
10367                  */
10368                 if (atomic_inc_not_zero(&perf_sched_count))
10369                         goto enabled;
10370
10371                 mutex_lock(&perf_sched_mutex);
10372                 if (!atomic_read(&perf_sched_count)) {
10373                         static_branch_enable(&perf_sched_events);
10374                         /*
10375                          * Guarantee that all CPUs observe they key change and
10376                          * call the perf scheduling hooks before proceeding to
10377                          * install events that need them.
10378                          */
10379                         synchronize_rcu();
10380                 }
10381                 /*
10382                  * Now that we have waited for the sync_sched(), allow further
10383                  * increments to by-pass the mutex.
10384                  */
10385                 atomic_inc(&perf_sched_count);
10386                 mutex_unlock(&perf_sched_mutex);
10387         }
10388 enabled:
10389
10390         account_event_cpu(event, event->cpu);
10391
10392         account_pmu_sb_event(event);
10393 }
10394
10395 /*
10396  * Allocate and initialize an event structure
10397  */
10398 static struct perf_event *
10399 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10400                  struct task_struct *task,
10401                  struct perf_event *group_leader,
10402                  struct perf_event *parent_event,
10403                  perf_overflow_handler_t overflow_handler,
10404                  void *context, int cgroup_fd)
10405 {
10406         struct pmu *pmu;
10407         struct perf_event *event;
10408         struct hw_perf_event *hwc;
10409         long err = -EINVAL;
10410
10411         if ((unsigned)cpu >= nr_cpu_ids) {
10412                 if (!task || cpu != -1)
10413                         return ERR_PTR(-EINVAL);
10414         }
10415
10416         event = kzalloc(sizeof(*event), GFP_KERNEL);
10417         if (!event)
10418                 return ERR_PTR(-ENOMEM);
10419
10420         /*
10421          * Single events are their own group leaders, with an
10422          * empty sibling list:
10423          */
10424         if (!group_leader)
10425                 group_leader = event;
10426
10427         mutex_init(&event->child_mutex);
10428         INIT_LIST_HEAD(&event->child_list);
10429
10430         INIT_LIST_HEAD(&event->event_entry);
10431         INIT_LIST_HEAD(&event->sibling_list);
10432         INIT_LIST_HEAD(&event->active_list);
10433         init_event_group(event);
10434         INIT_LIST_HEAD(&event->rb_entry);
10435         INIT_LIST_HEAD(&event->active_entry);
10436         INIT_LIST_HEAD(&event->addr_filters.list);
10437         INIT_HLIST_NODE(&event->hlist_entry);
10438
10439
10440         init_waitqueue_head(&event->waitq);
10441         event->pending_disable = -1;
10442         init_irq_work(&event->pending, perf_pending_event);
10443
10444         mutex_init(&event->mmap_mutex);
10445         raw_spin_lock_init(&event->addr_filters.lock);
10446
10447         atomic_long_set(&event->refcount, 1);
10448         event->cpu              = cpu;
10449         event->attr             = *attr;
10450         event->group_leader     = group_leader;
10451         event->pmu              = NULL;
10452         event->oncpu            = -1;
10453
10454         event->parent           = parent_event;
10455
10456         event->ns               = get_pid_ns(task_active_pid_ns(current));
10457         event->id               = atomic64_inc_return(&perf_event_id);
10458
10459         event->state            = PERF_EVENT_STATE_INACTIVE;
10460
10461         if (task) {
10462                 event->attach_state = PERF_ATTACH_TASK;
10463                 /*
10464                  * XXX pmu::event_init needs to know what task to account to
10465                  * and we cannot use the ctx information because we need the
10466                  * pmu before we get a ctx.
10467                  */
10468                 event->hw.target = get_task_struct(task);
10469         }
10470
10471         event->clock = &local_clock;
10472         if (parent_event)
10473                 event->clock = parent_event->clock;
10474
10475         if (!overflow_handler && parent_event) {
10476                 overflow_handler = parent_event->overflow_handler;
10477                 context = parent_event->overflow_handler_context;
10478 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10479                 if (overflow_handler == bpf_overflow_handler) {
10480                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10481
10482                         if (IS_ERR(prog)) {
10483                                 err = PTR_ERR(prog);
10484                                 goto err_ns;
10485                         }
10486                         event->prog = prog;
10487                         event->orig_overflow_handler =
10488                                 parent_event->orig_overflow_handler;
10489                 }
10490 #endif
10491         }
10492
10493         if (overflow_handler) {
10494                 event->overflow_handler = overflow_handler;
10495                 event->overflow_handler_context = context;
10496         } else if (is_write_backward(event)){
10497                 event->overflow_handler = perf_event_output_backward;
10498                 event->overflow_handler_context = NULL;
10499         } else {
10500                 event->overflow_handler = perf_event_output_forward;
10501                 event->overflow_handler_context = NULL;
10502         }
10503
10504         perf_event__state_init(event);
10505
10506         pmu = NULL;
10507
10508         hwc = &event->hw;
10509         hwc->sample_period = attr->sample_period;
10510         if (attr->freq && attr->sample_freq)
10511                 hwc->sample_period = 1;
10512         hwc->last_period = hwc->sample_period;
10513
10514         local64_set(&hwc->period_left, hwc->sample_period);
10515
10516         /*
10517          * We currently do not support PERF_SAMPLE_READ on inherited events.
10518          * See perf_output_read().
10519          */
10520         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10521                 goto err_ns;
10522
10523         if (!has_branch_stack(event))
10524                 event->attr.branch_sample_type = 0;
10525
10526         if (cgroup_fd != -1) {
10527                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10528                 if (err)
10529                         goto err_ns;
10530         }
10531
10532         pmu = perf_init_event(event);
10533         if (IS_ERR(pmu)) {
10534                 err = PTR_ERR(pmu);
10535                 goto err_ns;
10536         }
10537
10538         if (event->attr.aux_output &&
10539             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10540                 err = -EOPNOTSUPP;
10541                 goto err_pmu;
10542         }
10543
10544         err = exclusive_event_init(event);
10545         if (err)
10546                 goto err_pmu;
10547
10548         if (has_addr_filter(event)) {
10549                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10550                                                     sizeof(struct perf_addr_filter_range),
10551                                                     GFP_KERNEL);
10552                 if (!event->addr_filter_ranges) {
10553                         err = -ENOMEM;
10554                         goto err_per_task;
10555                 }
10556
10557                 /*
10558                  * Clone the parent's vma offsets: they are valid until exec()
10559                  * even if the mm is not shared with the parent.
10560                  */
10561                 if (event->parent) {
10562                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10563
10564                         raw_spin_lock_irq(&ifh->lock);
10565                         memcpy(event->addr_filter_ranges,
10566                                event->parent->addr_filter_ranges,
10567                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10568                         raw_spin_unlock_irq(&ifh->lock);
10569                 }
10570
10571                 /* force hw sync on the address filters */
10572                 event->addr_filters_gen = 1;
10573         }
10574
10575         if (!event->parent) {
10576                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10577                         err = get_callchain_buffers(attr->sample_max_stack);
10578                         if (err)
10579                                 goto err_addr_filters;
10580                 }
10581         }
10582
10583         /* symmetric to unaccount_event() in _free_event() */
10584         account_event(event);
10585
10586         return event;
10587
10588 err_addr_filters:
10589         kfree(event->addr_filter_ranges);
10590
10591 err_per_task:
10592         exclusive_event_destroy(event);
10593
10594 err_pmu:
10595         if (event->destroy)
10596                 event->destroy(event);
10597         module_put(pmu->module);
10598 err_ns:
10599         if (is_cgroup_event(event))
10600                 perf_detach_cgroup(event);
10601         if (event->ns)
10602                 put_pid_ns(event->ns);
10603         if (event->hw.target)
10604                 put_task_struct(event->hw.target);
10605         kfree(event);
10606
10607         return ERR_PTR(err);
10608 }
10609
10610 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10611                           struct perf_event_attr *attr)
10612 {
10613         u32 size;
10614         int ret;
10615
10616         /* Zero the full structure, so that a short copy will be nice. */
10617         memset(attr, 0, sizeof(*attr));
10618
10619         ret = get_user(size, &uattr->size);
10620         if (ret)
10621                 return ret;
10622
10623         /* ABI compatibility quirk: */
10624         if (!size)
10625                 size = PERF_ATTR_SIZE_VER0;
10626         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
10627                 goto err_size;
10628
10629         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10630         if (ret) {
10631                 if (ret == -E2BIG)
10632                         goto err_size;
10633                 return ret;
10634         }
10635
10636         attr->size = size;
10637
10638         if (attr->__reserved_1 || attr->__reserved_2)
10639                 return -EINVAL;
10640
10641         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10642                 return -EINVAL;
10643
10644         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10645                 return -EINVAL;
10646
10647         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10648                 u64 mask = attr->branch_sample_type;
10649
10650                 /* only using defined bits */
10651                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10652                         return -EINVAL;
10653
10654                 /* at least one branch bit must be set */
10655                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10656                         return -EINVAL;
10657
10658                 /* propagate priv level, when not set for branch */
10659                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10660
10661                         /* exclude_kernel checked on syscall entry */
10662                         if (!attr->exclude_kernel)
10663                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10664
10665                         if (!attr->exclude_user)
10666                                 mask |= PERF_SAMPLE_BRANCH_USER;
10667
10668                         if (!attr->exclude_hv)
10669                                 mask |= PERF_SAMPLE_BRANCH_HV;
10670                         /*
10671                          * adjust user setting (for HW filter setup)
10672                          */
10673                         attr->branch_sample_type = mask;
10674                 }
10675                 /* privileged levels capture (kernel, hv): check permissions */
10676                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10677                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10678                         return -EACCES;
10679         }
10680
10681         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10682                 ret = perf_reg_validate(attr->sample_regs_user);
10683                 if (ret)
10684                         return ret;
10685         }
10686
10687         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10688                 if (!arch_perf_have_user_stack_dump())
10689                         return -ENOSYS;
10690
10691                 /*
10692                  * We have __u32 type for the size, but so far
10693                  * we can only use __u16 as maximum due to the
10694                  * __u16 sample size limit.
10695                  */
10696                 if (attr->sample_stack_user >= USHRT_MAX)
10697                         return -EINVAL;
10698                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10699                         return -EINVAL;
10700         }
10701
10702         if (!attr->sample_max_stack)
10703                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10704
10705         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10706                 ret = perf_reg_validate(attr->sample_regs_intr);
10707 out:
10708         return ret;
10709
10710 err_size:
10711         put_user(sizeof(*attr), &uattr->size);
10712         ret = -E2BIG;
10713         goto out;
10714 }
10715
10716 static int
10717 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10718 {
10719         struct ring_buffer *rb = NULL;
10720         int ret = -EINVAL;
10721
10722         if (!output_event)
10723                 goto set;
10724
10725         /* don't allow circular references */
10726         if (event == output_event)
10727                 goto out;
10728
10729         /*
10730          * Don't allow cross-cpu buffers
10731          */
10732         if (output_event->cpu != event->cpu)
10733                 goto out;
10734
10735         /*
10736          * If its not a per-cpu rb, it must be the same task.
10737          */
10738         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10739                 goto out;
10740
10741         /*
10742          * Mixing clocks in the same buffer is trouble you don't need.
10743          */
10744         if (output_event->clock != event->clock)
10745                 goto out;
10746
10747         /*
10748          * Either writing ring buffer from beginning or from end.
10749          * Mixing is not allowed.
10750          */
10751         if (is_write_backward(output_event) != is_write_backward(event))
10752                 goto out;
10753
10754         /*
10755          * If both events generate aux data, they must be on the same PMU
10756          */
10757         if (has_aux(event) && has_aux(output_event) &&
10758             event->pmu != output_event->pmu)
10759                 goto out;
10760
10761 set:
10762         mutex_lock(&event->mmap_mutex);
10763         /* Can't redirect output if we've got an active mmap() */
10764         if (atomic_read(&event->mmap_count))
10765                 goto unlock;
10766
10767         if (output_event) {
10768                 /* get the rb we want to redirect to */
10769                 rb = ring_buffer_get(output_event);
10770                 if (!rb)
10771                         goto unlock;
10772         }
10773
10774         ring_buffer_attach(event, rb);
10775
10776         ret = 0;
10777 unlock:
10778         mutex_unlock(&event->mmap_mutex);
10779
10780 out:
10781         return ret;
10782 }
10783
10784 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10785 {
10786         if (b < a)
10787                 swap(a, b);
10788
10789         mutex_lock(a);
10790         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10791 }
10792
10793 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10794 {
10795         bool nmi_safe = false;
10796
10797         switch (clk_id) {
10798         case CLOCK_MONOTONIC:
10799                 event->clock = &ktime_get_mono_fast_ns;
10800                 nmi_safe = true;
10801                 break;
10802
10803         case CLOCK_MONOTONIC_RAW:
10804                 event->clock = &ktime_get_raw_fast_ns;
10805                 nmi_safe = true;
10806                 break;
10807
10808         case CLOCK_REALTIME:
10809                 event->clock = &ktime_get_real_ns;
10810                 break;
10811
10812         case CLOCK_BOOTTIME:
10813                 event->clock = &ktime_get_boottime_ns;
10814                 break;
10815
10816         case CLOCK_TAI:
10817                 event->clock = &ktime_get_clocktai_ns;
10818                 break;
10819
10820         default:
10821                 return -EINVAL;
10822         }
10823
10824         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10825                 return -EINVAL;
10826
10827         return 0;
10828 }
10829
10830 /*
10831  * Variation on perf_event_ctx_lock_nested(), except we take two context
10832  * mutexes.
10833  */
10834 static struct perf_event_context *
10835 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10836                              struct perf_event_context *ctx)
10837 {
10838         struct perf_event_context *gctx;
10839
10840 again:
10841         rcu_read_lock();
10842         gctx = READ_ONCE(group_leader->ctx);
10843         if (!refcount_inc_not_zero(&gctx->refcount)) {
10844                 rcu_read_unlock();
10845                 goto again;
10846         }
10847         rcu_read_unlock();
10848
10849         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10850
10851         if (group_leader->ctx != gctx) {
10852                 mutex_unlock(&ctx->mutex);
10853                 mutex_unlock(&gctx->mutex);
10854                 put_ctx(gctx);
10855                 goto again;
10856         }
10857
10858         return gctx;
10859 }
10860
10861 /**
10862  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10863  *
10864  * @attr_uptr:  event_id type attributes for monitoring/sampling
10865  * @pid:                target pid
10866  * @cpu:                target cpu
10867  * @group_fd:           group leader event fd
10868  */
10869 SYSCALL_DEFINE5(perf_event_open,
10870                 struct perf_event_attr __user *, attr_uptr,
10871                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10872 {
10873         struct perf_event *group_leader = NULL, *output_event = NULL;
10874         struct perf_event *event, *sibling;
10875         struct perf_event_attr attr;
10876         struct perf_event_context *ctx, *uninitialized_var(gctx);
10877         struct file *event_file = NULL;
10878         struct fd group = {NULL, 0};
10879         struct task_struct *task = NULL;
10880         struct pmu *pmu;
10881         int event_fd;
10882         int move_group = 0;
10883         int err;
10884         int f_flags = O_RDWR;
10885         int cgroup_fd = -1;
10886
10887         /* for future expandability... */
10888         if (flags & ~PERF_FLAG_ALL)
10889                 return -EINVAL;
10890
10891         err = perf_copy_attr(attr_uptr, &attr);
10892         if (err)
10893                 return err;
10894
10895         if (!attr.exclude_kernel) {
10896                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10897                         return -EACCES;
10898         }
10899
10900         if (attr.namespaces) {
10901                 if (!capable(CAP_SYS_ADMIN))
10902                         return -EACCES;
10903         }
10904
10905         if (attr.freq) {
10906                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10907                         return -EINVAL;
10908         } else {
10909                 if (attr.sample_period & (1ULL << 63))
10910                         return -EINVAL;
10911         }
10912
10913         /* Only privileged users can get physical addresses */
10914         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10915             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10916                 return -EACCES;
10917
10918         err = security_locked_down(LOCKDOWN_PERF);
10919         if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
10920                 /* REGS_INTR can leak data, lockdown must prevent this */
10921                 return err;
10922
10923         err = 0;
10924
10925         /*
10926          * In cgroup mode, the pid argument is used to pass the fd
10927          * opened to the cgroup directory in cgroupfs. The cpu argument
10928          * designates the cpu on which to monitor threads from that
10929          * cgroup.
10930          */
10931         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10932                 return -EINVAL;
10933
10934         if (flags & PERF_FLAG_FD_CLOEXEC)
10935                 f_flags |= O_CLOEXEC;
10936
10937         event_fd = get_unused_fd_flags(f_flags);
10938         if (event_fd < 0)
10939                 return event_fd;
10940
10941         if (group_fd != -1) {
10942                 err = perf_fget_light(group_fd, &group);
10943                 if (err)
10944                         goto err_fd;
10945                 group_leader = group.file->private_data;
10946                 if (flags & PERF_FLAG_FD_OUTPUT)
10947                         output_event = group_leader;
10948                 if (flags & PERF_FLAG_FD_NO_GROUP)
10949                         group_leader = NULL;
10950         }
10951
10952         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10953                 task = find_lively_task_by_vpid(pid);
10954                 if (IS_ERR(task)) {
10955                         err = PTR_ERR(task);
10956                         goto err_group_fd;
10957                 }
10958         }
10959
10960         if (task && group_leader &&
10961             group_leader->attr.inherit != attr.inherit) {
10962                 err = -EINVAL;
10963                 goto err_task;
10964         }
10965
10966         if (task) {
10967                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10968                 if (err)
10969                         goto err_task;
10970
10971                 /*
10972                  * Reuse ptrace permission checks for now.
10973                  *
10974                  * We must hold cred_guard_mutex across this and any potential
10975                  * perf_install_in_context() call for this new event to
10976                  * serialize against exec() altering our credentials (and the
10977                  * perf_event_exit_task() that could imply).
10978                  */
10979                 err = -EACCES;
10980                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10981                         goto err_cred;
10982         }
10983
10984         if (flags & PERF_FLAG_PID_CGROUP)
10985                 cgroup_fd = pid;
10986
10987         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10988                                  NULL, NULL, cgroup_fd);
10989         if (IS_ERR(event)) {
10990                 err = PTR_ERR(event);
10991                 goto err_cred;
10992         }
10993
10994         if (is_sampling_event(event)) {
10995                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10996                         err = -EOPNOTSUPP;
10997                         goto err_alloc;
10998                 }
10999         }
11000
11001         /*
11002          * Special case software events and allow them to be part of
11003          * any hardware group.
11004          */
11005         pmu = event->pmu;
11006
11007         if (attr.use_clockid) {
11008                 err = perf_event_set_clock(event, attr.clockid);
11009                 if (err)
11010                         goto err_alloc;
11011         }
11012
11013         if (pmu->task_ctx_nr == perf_sw_context)
11014                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11015
11016         if (group_leader) {
11017                 if (is_software_event(event) &&
11018                     !in_software_context(group_leader)) {
11019                         /*
11020                          * If the event is a sw event, but the group_leader
11021                          * is on hw context.
11022                          *
11023                          * Allow the addition of software events to hw
11024                          * groups, this is safe because software events
11025                          * never fail to schedule.
11026                          */
11027                         pmu = group_leader->ctx->pmu;
11028                 } else if (!is_software_event(event) &&
11029                            is_software_event(group_leader) &&
11030                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11031                         /*
11032                          * In case the group is a pure software group, and we
11033                          * try to add a hardware event, move the whole group to
11034                          * the hardware context.
11035                          */
11036                         move_group = 1;
11037                 }
11038         }
11039
11040         /*
11041          * Get the target context (task or percpu):
11042          */
11043         ctx = find_get_context(pmu, task, event);
11044         if (IS_ERR(ctx)) {
11045                 err = PTR_ERR(ctx);
11046                 goto err_alloc;
11047         }
11048
11049         /*
11050          * Look up the group leader (we will attach this event to it):
11051          */
11052         if (group_leader) {
11053                 err = -EINVAL;
11054
11055                 /*
11056                  * Do not allow a recursive hierarchy (this new sibling
11057                  * becoming part of another group-sibling):
11058                  */
11059                 if (group_leader->group_leader != group_leader)
11060                         goto err_context;
11061
11062                 /* All events in a group should have the same clock */
11063                 if (group_leader->clock != event->clock)
11064                         goto err_context;
11065
11066                 /*
11067                  * Make sure we're both events for the same CPU;
11068                  * grouping events for different CPUs is broken; since
11069                  * you can never concurrently schedule them anyhow.
11070                  */
11071                 if (group_leader->cpu != event->cpu)
11072                         goto err_context;
11073
11074                 /*
11075                  * Make sure we're both on the same task, or both
11076                  * per-CPU events.
11077                  */
11078                 if (group_leader->ctx->task != ctx->task)
11079                         goto err_context;
11080
11081                 /*
11082                  * Do not allow to attach to a group in a different task
11083                  * or CPU context. If we're moving SW events, we'll fix
11084                  * this up later, so allow that.
11085                  */
11086                 if (!move_group && group_leader->ctx != ctx)
11087                         goto err_context;
11088
11089                 /*
11090                  * Only a group leader can be exclusive or pinned
11091                  */
11092                 if (attr.exclusive || attr.pinned)
11093                         goto err_context;
11094         }
11095
11096         if (output_event) {
11097                 err = perf_event_set_output(event, output_event);
11098                 if (err)
11099                         goto err_context;
11100         }
11101
11102         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11103                                         f_flags);
11104         if (IS_ERR(event_file)) {
11105                 err = PTR_ERR(event_file);
11106                 event_file = NULL;
11107                 goto err_context;
11108         }
11109
11110         if (move_group) {
11111                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11112
11113                 if (gctx->task == TASK_TOMBSTONE) {
11114                         err = -ESRCH;
11115                         goto err_locked;
11116                 }
11117
11118                 /*
11119                  * Check if we raced against another sys_perf_event_open() call
11120                  * moving the software group underneath us.
11121                  */
11122                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11123                         /*
11124                          * If someone moved the group out from under us, check
11125                          * if this new event wound up on the same ctx, if so
11126                          * its the regular !move_group case, otherwise fail.
11127                          */
11128                         if (gctx != ctx) {
11129                                 err = -EINVAL;
11130                                 goto err_locked;
11131                         } else {
11132                                 perf_event_ctx_unlock(group_leader, gctx);
11133                                 move_group = 0;
11134                         }
11135                 }
11136
11137                 /*
11138                  * Failure to create exclusive events returns -EBUSY.
11139                  */
11140                 err = -EBUSY;
11141                 if (!exclusive_event_installable(group_leader, ctx))
11142                         goto err_locked;
11143
11144                 for_each_sibling_event(sibling, group_leader) {
11145                         if (!exclusive_event_installable(sibling, ctx))
11146                                 goto err_locked;
11147                 }
11148         } else {
11149                 mutex_lock(&ctx->mutex);
11150         }
11151
11152         if (ctx->task == TASK_TOMBSTONE) {
11153                 err = -ESRCH;
11154                 goto err_locked;
11155         }
11156
11157         if (!perf_event_validate_size(event)) {
11158                 err = -E2BIG;
11159                 goto err_locked;
11160         }
11161
11162         if (!task) {
11163                 /*
11164                  * Check if the @cpu we're creating an event for is online.
11165                  *
11166                  * We use the perf_cpu_context::ctx::mutex to serialize against
11167                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11168                  */
11169                 struct perf_cpu_context *cpuctx =
11170                         container_of(ctx, struct perf_cpu_context, ctx);
11171
11172                 if (!cpuctx->online) {
11173                         err = -ENODEV;
11174                         goto err_locked;
11175                 }
11176         }
11177
11178         if (event->attr.aux_output && !perf_get_aux_event(event, group_leader))
11179                 goto err_locked;
11180
11181         /*
11182          * Must be under the same ctx::mutex as perf_install_in_context(),
11183          * because we need to serialize with concurrent event creation.
11184          */
11185         if (!exclusive_event_installable(event, ctx)) {
11186                 err = -EBUSY;
11187                 goto err_locked;
11188         }
11189
11190         WARN_ON_ONCE(ctx->parent_ctx);
11191
11192         /*
11193          * This is the point on no return; we cannot fail hereafter. This is
11194          * where we start modifying current state.
11195          */
11196
11197         if (move_group) {
11198                 /*
11199                  * See perf_event_ctx_lock() for comments on the details
11200                  * of swizzling perf_event::ctx.
11201                  */
11202                 perf_remove_from_context(group_leader, 0);
11203                 put_ctx(gctx);
11204
11205                 for_each_sibling_event(sibling, group_leader) {
11206                         perf_remove_from_context(sibling, 0);
11207                         put_ctx(gctx);
11208                 }
11209
11210                 /*
11211                  * Wait for everybody to stop referencing the events through
11212                  * the old lists, before installing it on new lists.
11213                  */
11214                 synchronize_rcu();
11215
11216                 /*
11217                  * Install the group siblings before the group leader.
11218                  *
11219                  * Because a group leader will try and install the entire group
11220                  * (through the sibling list, which is still in-tact), we can
11221                  * end up with siblings installed in the wrong context.
11222                  *
11223                  * By installing siblings first we NO-OP because they're not
11224                  * reachable through the group lists.
11225                  */
11226                 for_each_sibling_event(sibling, group_leader) {
11227                         perf_event__state_init(sibling);
11228                         perf_install_in_context(ctx, sibling, sibling->cpu);
11229                         get_ctx(ctx);
11230                 }
11231
11232                 /*
11233                  * Removing from the context ends up with disabled
11234                  * event. What we want here is event in the initial
11235                  * startup state, ready to be add into new context.
11236                  */
11237                 perf_event__state_init(group_leader);
11238                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11239                 get_ctx(ctx);
11240         }
11241
11242         /*
11243          * Precalculate sample_data sizes; do while holding ctx::mutex such
11244          * that we're serialized against further additions and before
11245          * perf_install_in_context() which is the point the event is active and
11246          * can use these values.
11247          */
11248         perf_event__header_size(event);
11249         perf_event__id_header_size(event);
11250
11251         event->owner = current;
11252
11253         perf_install_in_context(ctx, event, event->cpu);
11254         perf_unpin_context(ctx);
11255
11256         if (move_group)
11257                 perf_event_ctx_unlock(group_leader, gctx);
11258         mutex_unlock(&ctx->mutex);
11259
11260         if (task) {
11261                 mutex_unlock(&task->signal->cred_guard_mutex);
11262                 put_task_struct(task);
11263         }
11264
11265         mutex_lock(&current->perf_event_mutex);
11266         list_add_tail(&event->owner_entry, &current->perf_event_list);
11267         mutex_unlock(&current->perf_event_mutex);
11268
11269         /*
11270          * Drop the reference on the group_event after placing the
11271          * new event on the sibling_list. This ensures destruction
11272          * of the group leader will find the pointer to itself in
11273          * perf_group_detach().
11274          */
11275         fdput(group);
11276         fd_install(event_fd, event_file);
11277         return event_fd;
11278
11279 err_locked:
11280         if (move_group)
11281                 perf_event_ctx_unlock(group_leader, gctx);
11282         mutex_unlock(&ctx->mutex);
11283 /* err_file: */
11284         fput(event_file);
11285 err_context:
11286         perf_unpin_context(ctx);
11287         put_ctx(ctx);
11288 err_alloc:
11289         /*
11290          * If event_file is set, the fput() above will have called ->release()
11291          * and that will take care of freeing the event.
11292          */
11293         if (!event_file)
11294                 free_event(event);
11295 err_cred:
11296         if (task)
11297                 mutex_unlock(&task->signal->cred_guard_mutex);
11298 err_task:
11299         if (task)
11300                 put_task_struct(task);
11301 err_group_fd:
11302         fdput(group);
11303 err_fd:
11304         put_unused_fd(event_fd);
11305         return err;
11306 }
11307
11308 /**
11309  * perf_event_create_kernel_counter
11310  *
11311  * @attr: attributes of the counter to create
11312  * @cpu: cpu in which the counter is bound
11313  * @task: task to profile (NULL for percpu)
11314  */
11315 struct perf_event *
11316 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11317                                  struct task_struct *task,
11318                                  perf_overflow_handler_t overflow_handler,
11319                                  void *context)
11320 {
11321         struct perf_event_context *ctx;
11322         struct perf_event *event;
11323         int err;
11324
11325         /*
11326          * Get the target context (task or percpu):
11327          */
11328
11329         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11330                                  overflow_handler, context, -1);
11331         if (IS_ERR(event)) {
11332                 err = PTR_ERR(event);
11333                 goto err;
11334         }
11335
11336         /* Mark owner so we could distinguish it from user events. */
11337         event->owner = TASK_TOMBSTONE;
11338
11339         ctx = find_get_context(event->pmu, task, event);
11340         if (IS_ERR(ctx)) {
11341                 err = PTR_ERR(ctx);
11342                 goto err_free;
11343         }
11344
11345         WARN_ON_ONCE(ctx->parent_ctx);
11346         mutex_lock(&ctx->mutex);
11347         if (ctx->task == TASK_TOMBSTONE) {
11348                 err = -ESRCH;
11349                 goto err_unlock;
11350         }
11351
11352         if (!task) {
11353                 /*
11354                  * Check if the @cpu we're creating an event for is online.
11355                  *
11356                  * We use the perf_cpu_context::ctx::mutex to serialize against
11357                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11358                  */
11359                 struct perf_cpu_context *cpuctx =
11360                         container_of(ctx, struct perf_cpu_context, ctx);
11361                 if (!cpuctx->online) {
11362                         err = -ENODEV;
11363                         goto err_unlock;
11364                 }
11365         }
11366
11367         if (!exclusive_event_installable(event, ctx)) {
11368                 err = -EBUSY;
11369                 goto err_unlock;
11370         }
11371
11372         perf_install_in_context(ctx, event, event->cpu);
11373         perf_unpin_context(ctx);
11374         mutex_unlock(&ctx->mutex);
11375
11376         return event;
11377
11378 err_unlock:
11379         mutex_unlock(&ctx->mutex);
11380         perf_unpin_context(ctx);
11381         put_ctx(ctx);
11382 err_free:
11383         free_event(event);
11384 err:
11385         return ERR_PTR(err);
11386 }
11387 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11388
11389 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11390 {
11391         struct perf_event_context *src_ctx;
11392         struct perf_event_context *dst_ctx;
11393         struct perf_event *event, *tmp;
11394         LIST_HEAD(events);
11395
11396         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11397         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11398
11399         /*
11400          * See perf_event_ctx_lock() for comments on the details
11401          * of swizzling perf_event::ctx.
11402          */
11403         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11404         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11405                                  event_entry) {
11406                 perf_remove_from_context(event, 0);
11407                 unaccount_event_cpu(event, src_cpu);
11408                 put_ctx(src_ctx);
11409                 list_add(&event->migrate_entry, &events);
11410         }
11411
11412         /*
11413          * Wait for the events to quiesce before re-instating them.
11414          */
11415         synchronize_rcu();
11416
11417         /*
11418          * Re-instate events in 2 passes.
11419          *
11420          * Skip over group leaders and only install siblings on this first
11421          * pass, siblings will not get enabled without a leader, however a
11422          * leader will enable its siblings, even if those are still on the old
11423          * context.
11424          */
11425         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11426                 if (event->group_leader == event)
11427                         continue;
11428
11429                 list_del(&event->migrate_entry);
11430                 if (event->state >= PERF_EVENT_STATE_OFF)
11431                         event->state = PERF_EVENT_STATE_INACTIVE;
11432                 account_event_cpu(event, dst_cpu);
11433                 perf_install_in_context(dst_ctx, event, dst_cpu);
11434                 get_ctx(dst_ctx);
11435         }
11436
11437         /*
11438          * Once all the siblings are setup properly, install the group leaders
11439          * to make it go.
11440          */
11441         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11442                 list_del(&event->migrate_entry);
11443                 if (event->state >= PERF_EVENT_STATE_OFF)
11444                         event->state = PERF_EVENT_STATE_INACTIVE;
11445                 account_event_cpu(event, dst_cpu);
11446                 perf_install_in_context(dst_ctx, event, dst_cpu);
11447                 get_ctx(dst_ctx);
11448         }
11449         mutex_unlock(&dst_ctx->mutex);
11450         mutex_unlock(&src_ctx->mutex);
11451 }
11452 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11453
11454 static void sync_child_event(struct perf_event *child_event,
11455                                struct task_struct *child)
11456 {
11457         struct perf_event *parent_event = child_event->parent;
11458         u64 child_val;
11459
11460         if (child_event->attr.inherit_stat)
11461                 perf_event_read_event(child_event, child);
11462
11463         child_val = perf_event_count(child_event);
11464
11465         /*
11466          * Add back the child's count to the parent's count:
11467          */
11468         atomic64_add(child_val, &parent_event->child_count);
11469         atomic64_add(child_event->total_time_enabled,
11470                      &parent_event->child_total_time_enabled);
11471         atomic64_add(child_event->total_time_running,
11472                      &parent_event->child_total_time_running);
11473 }
11474
11475 static void
11476 perf_event_exit_event(struct perf_event *child_event,
11477                       struct perf_event_context *child_ctx,
11478                       struct task_struct *child)
11479 {
11480         struct perf_event *parent_event = child_event->parent;
11481
11482         /*
11483          * Do not destroy the 'original' grouping; because of the context
11484          * switch optimization the original events could've ended up in a
11485          * random child task.
11486          *
11487          * If we were to destroy the original group, all group related
11488          * operations would cease to function properly after this random
11489          * child dies.
11490          *
11491          * Do destroy all inherited groups, we don't care about those
11492          * and being thorough is better.
11493          */
11494         raw_spin_lock_irq(&child_ctx->lock);
11495         WARN_ON_ONCE(child_ctx->is_active);
11496
11497         if (parent_event)
11498                 perf_group_detach(child_event);
11499         list_del_event(child_event, child_ctx);
11500         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11501         raw_spin_unlock_irq(&child_ctx->lock);
11502
11503         /*
11504          * Parent events are governed by their filedesc, retain them.
11505          */
11506         if (!parent_event) {
11507                 perf_event_wakeup(child_event);
11508                 return;
11509         }
11510         /*
11511          * Child events can be cleaned up.
11512          */
11513
11514         sync_child_event(child_event, child);
11515
11516         /*
11517          * Remove this event from the parent's list
11518          */
11519         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11520         mutex_lock(&parent_event->child_mutex);
11521         list_del_init(&child_event->child_list);
11522         mutex_unlock(&parent_event->child_mutex);
11523
11524         /*
11525          * Kick perf_poll() for is_event_hup().
11526          */
11527         perf_event_wakeup(parent_event);
11528         free_event(child_event);
11529         put_event(parent_event);
11530 }
11531
11532 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11533 {
11534         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11535         struct perf_event *child_event, *next;
11536
11537         WARN_ON_ONCE(child != current);
11538
11539         child_ctx = perf_pin_task_context(child, ctxn);
11540         if (!child_ctx)
11541                 return;
11542
11543         /*
11544          * In order to reduce the amount of tricky in ctx tear-down, we hold
11545          * ctx::mutex over the entire thing. This serializes against almost
11546          * everything that wants to access the ctx.
11547          *
11548          * The exception is sys_perf_event_open() /
11549          * perf_event_create_kernel_count() which does find_get_context()
11550          * without ctx::mutex (it cannot because of the move_group double mutex
11551          * lock thing). See the comments in perf_install_in_context().
11552          */
11553         mutex_lock(&child_ctx->mutex);
11554
11555         /*
11556          * In a single ctx::lock section, de-schedule the events and detach the
11557          * context from the task such that we cannot ever get it scheduled back
11558          * in.
11559          */
11560         raw_spin_lock_irq(&child_ctx->lock);
11561         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11562
11563         /*
11564          * Now that the context is inactive, destroy the task <-> ctx relation
11565          * and mark the context dead.
11566          */
11567         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11568         put_ctx(child_ctx); /* cannot be last */
11569         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11570         put_task_struct(current); /* cannot be last */
11571
11572         clone_ctx = unclone_ctx(child_ctx);
11573         raw_spin_unlock_irq(&child_ctx->lock);
11574
11575         if (clone_ctx)
11576                 put_ctx(clone_ctx);
11577
11578         /*
11579          * Report the task dead after unscheduling the events so that we
11580          * won't get any samples after PERF_RECORD_EXIT. We can however still
11581          * get a few PERF_RECORD_READ events.
11582          */
11583         perf_event_task(child, child_ctx, 0);
11584
11585         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11586                 perf_event_exit_event(child_event, child_ctx, child);
11587
11588         mutex_unlock(&child_ctx->mutex);
11589
11590         put_ctx(child_ctx);
11591 }
11592
11593 /*
11594  * When a child task exits, feed back event values to parent events.
11595  *
11596  * Can be called with cred_guard_mutex held when called from
11597  * install_exec_creds().
11598  */
11599 void perf_event_exit_task(struct task_struct *child)
11600 {
11601         struct perf_event *event, *tmp;
11602         int ctxn;
11603
11604         mutex_lock(&child->perf_event_mutex);
11605         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11606                                  owner_entry) {
11607                 list_del_init(&event->owner_entry);
11608
11609                 /*
11610                  * Ensure the list deletion is visible before we clear
11611                  * the owner, closes a race against perf_release() where
11612                  * we need to serialize on the owner->perf_event_mutex.
11613                  */
11614                 smp_store_release(&event->owner, NULL);
11615         }
11616         mutex_unlock(&child->perf_event_mutex);
11617
11618         for_each_task_context_nr(ctxn)
11619                 perf_event_exit_task_context(child, ctxn);
11620
11621         /*
11622          * The perf_event_exit_task_context calls perf_event_task
11623          * with child's task_ctx, which generates EXIT events for
11624          * child contexts and sets child->perf_event_ctxp[] to NULL.
11625          * At this point we need to send EXIT events to cpu contexts.
11626          */
11627         perf_event_task(child, NULL, 0);
11628 }
11629
11630 static void perf_free_event(struct perf_event *event,
11631                             struct perf_event_context *ctx)
11632 {
11633         struct perf_event *parent = event->parent;
11634
11635         if (WARN_ON_ONCE(!parent))
11636                 return;
11637
11638         mutex_lock(&parent->child_mutex);
11639         list_del_init(&event->child_list);
11640         mutex_unlock(&parent->child_mutex);
11641
11642         put_event(parent);
11643
11644         raw_spin_lock_irq(&ctx->lock);
11645         perf_group_detach(event);
11646         list_del_event(event, ctx);
11647         raw_spin_unlock_irq(&ctx->lock);
11648         free_event(event);
11649 }
11650
11651 /*
11652  * Free a context as created by inheritance by perf_event_init_task() below,
11653  * used by fork() in case of fail.
11654  *
11655  * Even though the task has never lived, the context and events have been
11656  * exposed through the child_list, so we must take care tearing it all down.
11657  */
11658 void perf_event_free_task(struct task_struct *task)
11659 {
11660         struct perf_event_context *ctx;
11661         struct perf_event *event, *tmp;
11662         int ctxn;
11663
11664         for_each_task_context_nr(ctxn) {
11665                 ctx = task->perf_event_ctxp[ctxn];
11666                 if (!ctx)
11667                         continue;
11668
11669                 mutex_lock(&ctx->mutex);
11670                 raw_spin_lock_irq(&ctx->lock);
11671                 /*
11672                  * Destroy the task <-> ctx relation and mark the context dead.
11673                  *
11674                  * This is important because even though the task hasn't been
11675                  * exposed yet the context has been (through child_list).
11676                  */
11677                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11678                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11679                 put_task_struct(task); /* cannot be last */
11680                 raw_spin_unlock_irq(&ctx->lock);
11681
11682                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11683                         perf_free_event(event, ctx);
11684
11685                 mutex_unlock(&ctx->mutex);
11686
11687                 /*
11688                  * perf_event_release_kernel() could've stolen some of our
11689                  * child events and still have them on its free_list. In that
11690                  * case we must wait for these events to have been freed (in
11691                  * particular all their references to this task must've been
11692                  * dropped).
11693                  *
11694                  * Without this copy_process() will unconditionally free this
11695                  * task (irrespective of its reference count) and
11696                  * _free_event()'s put_task_struct(event->hw.target) will be a
11697                  * use-after-free.
11698                  *
11699                  * Wait for all events to drop their context reference.
11700                  */
11701                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11702                 put_ctx(ctx); /* must be last */
11703         }
11704 }
11705
11706 void perf_event_delayed_put(struct task_struct *task)
11707 {
11708         int ctxn;
11709
11710         for_each_task_context_nr(ctxn)
11711                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11712 }
11713
11714 struct file *perf_event_get(unsigned int fd)
11715 {
11716         struct file *file = fget(fd);
11717         if (!file)
11718                 return ERR_PTR(-EBADF);
11719
11720         if (file->f_op != &perf_fops) {
11721                 fput(file);
11722                 return ERR_PTR(-EBADF);
11723         }
11724
11725         return file;
11726 }
11727
11728 const struct perf_event *perf_get_event(struct file *file)
11729 {
11730         if (file->f_op != &perf_fops)
11731                 return ERR_PTR(-EINVAL);
11732
11733         return file->private_data;
11734 }
11735
11736 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11737 {
11738         if (!event)
11739                 return ERR_PTR(-EINVAL);
11740
11741         return &event->attr;
11742 }
11743
11744 /*
11745  * Inherit an event from parent task to child task.
11746  *
11747  * Returns:
11748  *  - valid pointer on success
11749  *  - NULL for orphaned events
11750  *  - IS_ERR() on error
11751  */
11752 static struct perf_event *
11753 inherit_event(struct perf_event *parent_event,
11754               struct task_struct *parent,
11755               struct perf_event_context *parent_ctx,
11756               struct task_struct *child,
11757               struct perf_event *group_leader,
11758               struct perf_event_context *child_ctx)
11759 {
11760         enum perf_event_state parent_state = parent_event->state;
11761         struct perf_event *child_event;
11762         unsigned long flags;
11763
11764         /*
11765          * Instead of creating recursive hierarchies of events,
11766          * we link inherited events back to the original parent,
11767          * which has a filp for sure, which we use as the reference
11768          * count:
11769          */
11770         if (parent_event->parent)
11771                 parent_event = parent_event->parent;
11772
11773         child_event = perf_event_alloc(&parent_event->attr,
11774                                            parent_event->cpu,
11775                                            child,
11776                                            group_leader, parent_event,
11777                                            NULL, NULL, -1);
11778         if (IS_ERR(child_event))
11779                 return child_event;
11780
11781
11782         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11783             !child_ctx->task_ctx_data) {
11784                 struct pmu *pmu = child_event->pmu;
11785
11786                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11787                                                    GFP_KERNEL);
11788                 if (!child_ctx->task_ctx_data) {
11789                         free_event(child_event);
11790                         return NULL;
11791                 }
11792         }
11793
11794         /*
11795          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11796          * must be under the same lock in order to serialize against
11797          * perf_event_release_kernel(), such that either we must observe
11798          * is_orphaned_event() or they will observe us on the child_list.
11799          */
11800         mutex_lock(&parent_event->child_mutex);
11801         if (is_orphaned_event(parent_event) ||
11802             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11803                 mutex_unlock(&parent_event->child_mutex);
11804                 /* task_ctx_data is freed with child_ctx */
11805                 free_event(child_event);
11806                 return NULL;
11807         }
11808
11809         get_ctx(child_ctx);
11810
11811         /*
11812          * Make the child state follow the state of the parent event,
11813          * not its attr.disabled bit.  We hold the parent's mutex,
11814          * so we won't race with perf_event_{en, dis}able_family.
11815          */
11816         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11817                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11818         else
11819                 child_event->state = PERF_EVENT_STATE_OFF;
11820
11821         if (parent_event->attr.freq) {
11822                 u64 sample_period = parent_event->hw.sample_period;
11823                 struct hw_perf_event *hwc = &child_event->hw;
11824
11825                 hwc->sample_period = sample_period;
11826                 hwc->last_period   = sample_period;
11827
11828                 local64_set(&hwc->period_left, sample_period);
11829         }
11830
11831         child_event->ctx = child_ctx;
11832         child_event->overflow_handler = parent_event->overflow_handler;
11833         child_event->overflow_handler_context
11834                 = parent_event->overflow_handler_context;
11835
11836         /*
11837          * Precalculate sample_data sizes
11838          */
11839         perf_event__header_size(child_event);
11840         perf_event__id_header_size(child_event);
11841
11842         /*
11843          * Link it up in the child's context:
11844          */
11845         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11846         add_event_to_ctx(child_event, child_ctx);
11847         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11848
11849         /*
11850          * Link this into the parent event's child list
11851          */
11852         list_add_tail(&child_event->child_list, &parent_event->child_list);
11853         mutex_unlock(&parent_event->child_mutex);
11854
11855         return child_event;
11856 }
11857
11858 /*
11859  * Inherits an event group.
11860  *
11861  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11862  * This matches with perf_event_release_kernel() removing all child events.
11863  *
11864  * Returns:
11865  *  - 0 on success
11866  *  - <0 on error
11867  */
11868 static int inherit_group(struct perf_event *parent_event,
11869               struct task_struct *parent,
11870               struct perf_event_context *parent_ctx,
11871               struct task_struct *child,
11872               struct perf_event_context *child_ctx)
11873 {
11874         struct perf_event *leader;
11875         struct perf_event *sub;
11876         struct perf_event *child_ctr;
11877
11878         leader = inherit_event(parent_event, parent, parent_ctx,
11879                                  child, NULL, child_ctx);
11880         if (IS_ERR(leader))
11881                 return PTR_ERR(leader);
11882         /*
11883          * @leader can be NULL here because of is_orphaned_event(). In this
11884          * case inherit_event() will create individual events, similar to what
11885          * perf_group_detach() would do anyway.
11886          */
11887         for_each_sibling_event(sub, parent_event) {
11888                 child_ctr = inherit_event(sub, parent, parent_ctx,
11889                                             child, leader, child_ctx);
11890                 if (IS_ERR(child_ctr))
11891                         return PTR_ERR(child_ctr);
11892
11893                 if (sub->aux_event == parent_event &&
11894                     !perf_get_aux_event(child_ctr, leader))
11895                         return -EINVAL;
11896         }
11897         return 0;
11898 }
11899
11900 /*
11901  * Creates the child task context and tries to inherit the event-group.
11902  *
11903  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11904  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11905  * consistent with perf_event_release_kernel() removing all child events.
11906  *
11907  * Returns:
11908  *  - 0 on success
11909  *  - <0 on error
11910  */
11911 static int
11912 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11913                    struct perf_event_context *parent_ctx,
11914                    struct task_struct *child, int ctxn,
11915                    int *inherited_all)
11916 {
11917         int ret;
11918         struct perf_event_context *child_ctx;
11919
11920         if (!event->attr.inherit) {
11921                 *inherited_all = 0;
11922                 return 0;
11923         }
11924
11925         child_ctx = child->perf_event_ctxp[ctxn];
11926         if (!child_ctx) {
11927                 /*
11928                  * This is executed from the parent task context, so
11929                  * inherit events that have been marked for cloning.
11930                  * First allocate and initialize a context for the
11931                  * child.
11932                  */
11933                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11934                 if (!child_ctx)
11935                         return -ENOMEM;
11936
11937                 child->perf_event_ctxp[ctxn] = child_ctx;
11938         }
11939
11940         ret = inherit_group(event, parent, parent_ctx,
11941                             child, child_ctx);
11942
11943         if (ret)
11944                 *inherited_all = 0;
11945
11946         return ret;
11947 }
11948
11949 /*
11950  * Initialize the perf_event context in task_struct
11951  */
11952 static int perf_event_init_context(struct task_struct *child, int ctxn)
11953 {
11954         struct perf_event_context *child_ctx, *parent_ctx;
11955         struct perf_event_context *cloned_ctx;
11956         struct perf_event *event;
11957         struct task_struct *parent = current;
11958         int inherited_all = 1;
11959         unsigned long flags;
11960         int ret = 0;
11961
11962         if (likely(!parent->perf_event_ctxp[ctxn]))
11963                 return 0;
11964
11965         /*
11966          * If the parent's context is a clone, pin it so it won't get
11967          * swapped under us.
11968          */
11969         parent_ctx = perf_pin_task_context(parent, ctxn);
11970         if (!parent_ctx)
11971                 return 0;
11972
11973         /*
11974          * No need to check if parent_ctx != NULL here; since we saw
11975          * it non-NULL earlier, the only reason for it to become NULL
11976          * is if we exit, and since we're currently in the middle of
11977          * a fork we can't be exiting at the same time.
11978          */
11979
11980         /*
11981          * Lock the parent list. No need to lock the child - not PID
11982          * hashed yet and not running, so nobody can access it.
11983          */
11984         mutex_lock(&parent_ctx->mutex);
11985
11986         /*
11987          * We dont have to disable NMIs - we are only looking at
11988          * the list, not manipulating it:
11989          */
11990         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11991                 ret = inherit_task_group(event, parent, parent_ctx,
11992                                          child, ctxn, &inherited_all);
11993                 if (ret)
11994                         goto out_unlock;
11995         }
11996
11997         /*
11998          * We can't hold ctx->lock when iterating the ->flexible_group list due
11999          * to allocations, but we need to prevent rotation because
12000          * rotate_ctx() will change the list from interrupt context.
12001          */
12002         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12003         parent_ctx->rotate_disable = 1;
12004         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12005
12006         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12007                 ret = inherit_task_group(event, parent, parent_ctx,
12008                                          child, ctxn, &inherited_all);
12009                 if (ret)
12010                         goto out_unlock;
12011         }
12012
12013         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12014         parent_ctx->rotate_disable = 0;
12015
12016         child_ctx = child->perf_event_ctxp[ctxn];
12017
12018         if (child_ctx && inherited_all) {
12019                 /*
12020                  * Mark the child context as a clone of the parent
12021                  * context, or of whatever the parent is a clone of.
12022                  *
12023                  * Note that if the parent is a clone, the holding of
12024                  * parent_ctx->lock avoids it from being uncloned.
12025                  */
12026                 cloned_ctx = parent_ctx->parent_ctx;
12027                 if (cloned_ctx) {
12028                         child_ctx->parent_ctx = cloned_ctx;
12029                         child_ctx->parent_gen = parent_ctx->parent_gen;
12030                 } else {
12031                         child_ctx->parent_ctx = parent_ctx;
12032                         child_ctx->parent_gen = parent_ctx->generation;
12033                 }
12034                 get_ctx(child_ctx->parent_ctx);
12035         }
12036
12037         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12038 out_unlock:
12039         mutex_unlock(&parent_ctx->mutex);
12040
12041         perf_unpin_context(parent_ctx);
12042         put_ctx(parent_ctx);
12043
12044         return ret;
12045 }
12046
12047 /*
12048  * Initialize the perf_event context in task_struct
12049  */
12050 int perf_event_init_task(struct task_struct *child)
12051 {
12052         int ctxn, ret;
12053
12054         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12055         mutex_init(&child->perf_event_mutex);
12056         INIT_LIST_HEAD(&child->perf_event_list);
12057
12058         for_each_task_context_nr(ctxn) {
12059                 ret = perf_event_init_context(child, ctxn);
12060                 if (ret) {
12061                         perf_event_free_task(child);
12062                         return ret;
12063                 }
12064         }
12065
12066         return 0;
12067 }
12068
12069 static void __init perf_event_init_all_cpus(void)
12070 {
12071         struct swevent_htable *swhash;
12072         int cpu;
12073
12074         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12075
12076         for_each_possible_cpu(cpu) {
12077                 swhash = &per_cpu(swevent_htable, cpu);
12078                 mutex_init(&swhash->hlist_mutex);
12079                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12080
12081                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12082                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12083
12084 #ifdef CONFIG_CGROUP_PERF
12085                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12086 #endif
12087                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12088         }
12089 }
12090
12091 static void perf_swevent_init_cpu(unsigned int cpu)
12092 {
12093         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12094
12095         mutex_lock(&swhash->hlist_mutex);
12096         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12097                 struct swevent_hlist *hlist;
12098
12099                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12100                 WARN_ON(!hlist);
12101                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12102         }
12103         mutex_unlock(&swhash->hlist_mutex);
12104 }
12105
12106 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12107 static void __perf_event_exit_context(void *__info)
12108 {
12109         struct perf_event_context *ctx = __info;
12110         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12111         struct perf_event *event;
12112
12113         raw_spin_lock(&ctx->lock);
12114         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12115         list_for_each_entry(event, &ctx->event_list, event_entry)
12116                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12117         raw_spin_unlock(&ctx->lock);
12118 }
12119
12120 static void perf_event_exit_cpu_context(int cpu)
12121 {
12122         struct perf_cpu_context *cpuctx;
12123         struct perf_event_context *ctx;
12124         struct pmu *pmu;
12125
12126         mutex_lock(&pmus_lock);
12127         list_for_each_entry(pmu, &pmus, entry) {
12128                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12129                 ctx = &cpuctx->ctx;
12130
12131                 mutex_lock(&ctx->mutex);
12132                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12133                 cpuctx->online = 0;
12134                 mutex_unlock(&ctx->mutex);
12135         }
12136         cpumask_clear_cpu(cpu, perf_online_mask);
12137         mutex_unlock(&pmus_lock);
12138 }
12139 #else
12140
12141 static void perf_event_exit_cpu_context(int cpu) { }
12142
12143 #endif
12144
12145 int perf_event_init_cpu(unsigned int cpu)
12146 {
12147         struct perf_cpu_context *cpuctx;
12148         struct perf_event_context *ctx;
12149         struct pmu *pmu;
12150
12151         perf_swevent_init_cpu(cpu);
12152
12153         mutex_lock(&pmus_lock);
12154         cpumask_set_cpu(cpu, perf_online_mask);
12155         list_for_each_entry(pmu, &pmus, entry) {
12156                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12157                 ctx = &cpuctx->ctx;
12158
12159                 mutex_lock(&ctx->mutex);
12160                 cpuctx->online = 1;
12161                 mutex_unlock(&ctx->mutex);
12162         }
12163         mutex_unlock(&pmus_lock);
12164
12165         return 0;
12166 }
12167
12168 int perf_event_exit_cpu(unsigned int cpu)
12169 {
12170         perf_event_exit_cpu_context(cpu);
12171         return 0;
12172 }
12173
12174 static int
12175 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12176 {
12177         int cpu;
12178
12179         for_each_online_cpu(cpu)
12180                 perf_event_exit_cpu(cpu);
12181
12182         return NOTIFY_OK;
12183 }
12184
12185 /*
12186  * Run the perf reboot notifier at the very last possible moment so that
12187  * the generic watchdog code runs as long as possible.
12188  */
12189 static struct notifier_block perf_reboot_notifier = {
12190         .notifier_call = perf_reboot,
12191         .priority = INT_MIN,
12192 };
12193
12194 void __init perf_event_init(void)
12195 {
12196         int ret;
12197
12198         idr_init(&pmu_idr);
12199
12200         perf_event_init_all_cpus();
12201         init_srcu_struct(&pmus_srcu);
12202         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12203         perf_pmu_register(&perf_cpu_clock, NULL, -1);
12204         perf_pmu_register(&perf_task_clock, NULL, -1);
12205         perf_tp_register();
12206         perf_event_init_cpu(smp_processor_id());
12207         register_reboot_notifier(&perf_reboot_notifier);
12208
12209         ret = init_hw_breakpoint();
12210         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12211
12212         /*
12213          * Build time assertion that we keep the data_head at the intended
12214          * location.  IOW, validation we got the __reserved[] size right.
12215          */
12216         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12217                      != 1024);
12218 }
12219
12220 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12221                               char *page)
12222 {
12223         struct perf_pmu_events_attr *pmu_attr =
12224                 container_of(attr, struct perf_pmu_events_attr, attr);
12225
12226         if (pmu_attr->event_str)
12227                 return sprintf(page, "%s\n", pmu_attr->event_str);
12228
12229         return 0;
12230 }
12231 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12232
12233 static int __init perf_event_sysfs_init(void)
12234 {
12235         struct pmu *pmu;
12236         int ret;
12237
12238         mutex_lock(&pmus_lock);
12239
12240         ret = bus_register(&pmu_bus);
12241         if (ret)
12242                 goto unlock;
12243
12244         list_for_each_entry(pmu, &pmus, entry) {
12245                 if (!pmu->name || pmu->type < 0)
12246                         continue;
12247
12248                 ret = pmu_dev_alloc(pmu);
12249                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12250         }
12251         pmu_bus_running = 1;
12252         ret = 0;
12253
12254 unlock:
12255         mutex_unlock(&pmus_lock);
12256
12257         return ret;
12258 }
12259 device_initcall(perf_event_sysfs_init);
12260
12261 #ifdef CONFIG_CGROUP_PERF
12262 static struct cgroup_subsys_state *
12263 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12264 {
12265         struct perf_cgroup *jc;
12266
12267         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12268         if (!jc)
12269                 return ERR_PTR(-ENOMEM);
12270
12271         jc->info = alloc_percpu(struct perf_cgroup_info);
12272         if (!jc->info) {
12273                 kfree(jc);
12274                 return ERR_PTR(-ENOMEM);
12275         }
12276
12277         return &jc->css;
12278 }
12279
12280 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12281 {
12282         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12283
12284         free_percpu(jc->info);
12285         kfree(jc);
12286 }
12287
12288 static int __perf_cgroup_move(void *info)
12289 {
12290         struct task_struct *task = info;
12291         rcu_read_lock();
12292         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12293         rcu_read_unlock();
12294         return 0;
12295 }
12296
12297 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12298 {
12299         struct task_struct *task;
12300         struct cgroup_subsys_state *css;
12301
12302         cgroup_taskset_for_each(task, css, tset)
12303                 task_function_call(task, __perf_cgroup_move, task);
12304 }
12305
12306 struct cgroup_subsys perf_event_cgrp_subsys = {
12307         .css_alloc      = perf_cgroup_css_alloc,
12308         .css_free       = perf_cgroup_css_free,
12309         .attach         = perf_cgroup_attach,
12310         /*
12311          * Implicitly enable on dfl hierarchy so that perf events can
12312          * always be filtered by cgroup2 path as long as perf_event
12313          * controller is not mounted on a legacy hierarchy.
12314          */
12315         .implicit_on_dfl = true,
12316         .threaded       = true,
12317 };
12318 #endif /* CONFIG_CGROUP_PERF */