MIPS: Add missing VZ accessor microMIPS encodings
[linux-2.6-block.git] / include / linux / radix-tree.h
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2006 Nick Piggin
5  * Copyright (C) 2012 Konstantin Khlebnikov
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2, or (at
10  * your option) any later version.
11  * 
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  * 
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 #ifndef _LINUX_RADIX_TREE_H
22 #define _LINUX_RADIX_TREE_H
23
24 #include <linux/bitops.h>
25 #include <linux/preempt.h>
26 #include <linux/types.h>
27 #include <linux/bug.h>
28 #include <linux/kernel.h>
29 #include <linux/rcupdate.h>
30
31 /*
32  * An indirect pointer (root->rnode pointing to a radix_tree_node, rather
33  * than a data item) is signalled by the low bit set in the root->rnode
34  * pointer.
35  *
36  * In this case root->height is > 0, but the indirect pointer tests are
37  * needed for RCU lookups (because root->height is unreliable). The only
38  * time callers need worry about this is when doing a lookup_slot under
39  * RCU.
40  *
41  * Indirect pointer in fact is also used to tag the last pointer of a node
42  * when it is shrunk, before we rcu free the node. See shrink code for
43  * details.
44  */
45 #define RADIX_TREE_INDIRECT_PTR         1
46 /*
47  * A common use of the radix tree is to store pointers to struct pages;
48  * but shmem/tmpfs needs also to store swap entries in the same tree:
49  * those are marked as exceptional entries to distinguish them.
50  * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it.
51  */
52 #define RADIX_TREE_EXCEPTIONAL_ENTRY    2
53 #define RADIX_TREE_EXCEPTIONAL_SHIFT    2
54
55 #define RADIX_DAX_MASK  0xf
56 #define RADIX_DAX_SHIFT 4
57 #define RADIX_DAX_PTE  (0x4 | RADIX_TREE_EXCEPTIONAL_ENTRY)
58 #define RADIX_DAX_PMD  (0x8 | RADIX_TREE_EXCEPTIONAL_ENTRY)
59 #define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_MASK)
60 #define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT))
61 #define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \
62                 RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE)))
63
64 static inline int radix_tree_is_indirect_ptr(void *ptr)
65 {
66         return (int)((unsigned long)ptr & RADIX_TREE_INDIRECT_PTR);
67 }
68
69 /*** radix-tree API starts here ***/
70
71 #define RADIX_TREE_MAX_TAGS 3
72
73 #ifdef __KERNEL__
74 #define RADIX_TREE_MAP_SHIFT    (CONFIG_BASE_SMALL ? 4 : 6)
75 #else
76 #define RADIX_TREE_MAP_SHIFT    3       /* For more stressful testing */
77 #endif
78
79 #define RADIX_TREE_MAP_SIZE     (1UL << RADIX_TREE_MAP_SHIFT)
80 #define RADIX_TREE_MAP_MASK     (RADIX_TREE_MAP_SIZE-1)
81
82 #define RADIX_TREE_TAG_LONGS    \
83         ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
84
85 #define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
86 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
87                                           RADIX_TREE_MAP_SHIFT))
88
89 /* Height component in node->path */
90 #define RADIX_TREE_HEIGHT_SHIFT (RADIX_TREE_MAX_PATH + 1)
91 #define RADIX_TREE_HEIGHT_MASK  ((1UL << RADIX_TREE_HEIGHT_SHIFT) - 1)
92
93 /* Internally used bits of node->count */
94 #define RADIX_TREE_COUNT_SHIFT  (RADIX_TREE_MAP_SHIFT + 1)
95 #define RADIX_TREE_COUNT_MASK   ((1UL << RADIX_TREE_COUNT_SHIFT) - 1)
96
97 struct radix_tree_node {
98         unsigned int    path;   /* Offset in parent & height from the bottom */
99         unsigned int    count;
100         union {
101                 struct {
102                         /* Used when ascending tree */
103                         struct radix_tree_node *parent;
104                         /* For tree user */
105                         void *private_data;
106                 };
107                 /* Used when freeing node */
108                 struct rcu_head rcu_head;
109         };
110         /* For tree user */
111         struct list_head private_list;
112         void __rcu      *slots[RADIX_TREE_MAP_SIZE];
113         unsigned long   tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
114 };
115
116 /* root tags are stored in gfp_mask, shifted by __GFP_BITS_SHIFT */
117 struct radix_tree_root {
118         unsigned int            height;
119         gfp_t                   gfp_mask;
120         struct radix_tree_node  __rcu *rnode;
121 };
122
123 #define RADIX_TREE_INIT(mask)   {                                       \
124         .height = 0,                                                    \
125         .gfp_mask = (mask),                                             \
126         .rnode = NULL,                                                  \
127 }
128
129 #define RADIX_TREE(name, mask) \
130         struct radix_tree_root name = RADIX_TREE_INIT(mask)
131
132 #define INIT_RADIX_TREE(root, mask)                                     \
133 do {                                                                    \
134         (root)->height = 0;                                             \
135         (root)->gfp_mask = (mask);                                      \
136         (root)->rnode = NULL;                                           \
137 } while (0)
138
139 /**
140  * Radix-tree synchronization
141  *
142  * The radix-tree API requires that users provide all synchronisation (with
143  * specific exceptions, noted below).
144  *
145  * Synchronization of access to the data items being stored in the tree, and
146  * management of their lifetimes must be completely managed by API users.
147  *
148  * For API usage, in general,
149  * - any function _modifying_ the tree or tags (inserting or deleting
150  *   items, setting or clearing tags) must exclude other modifications, and
151  *   exclude any functions reading the tree.
152  * - any function _reading_ the tree or tags (looking up items or tags,
153  *   gang lookups) must exclude modifications to the tree, but may occur
154  *   concurrently with other readers.
155  *
156  * The notable exceptions to this rule are the following functions:
157  * __radix_tree_lookup
158  * radix_tree_lookup
159  * radix_tree_lookup_slot
160  * radix_tree_tag_get
161  * radix_tree_gang_lookup
162  * radix_tree_gang_lookup_slot
163  * radix_tree_gang_lookup_tag
164  * radix_tree_gang_lookup_tag_slot
165  * radix_tree_tagged
166  *
167  * The first 8 functions are able to be called locklessly, using RCU. The
168  * caller must ensure calls to these functions are made within rcu_read_lock()
169  * regions. Other readers (lock-free or otherwise) and modifications may be
170  * running concurrently.
171  *
172  * It is still required that the caller manage the synchronization and lifetimes
173  * of the items. So if RCU lock-free lookups are used, typically this would mean
174  * that the items have their own locks, or are amenable to lock-free access; and
175  * that the items are freed by RCU (or only freed after having been deleted from
176  * the radix tree *and* a synchronize_rcu() grace period).
177  *
178  * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
179  * access to data items when inserting into or looking up from the radix tree)
180  *
181  * Note that the value returned by radix_tree_tag_get() may not be relied upon
182  * if only the RCU read lock is held.  Functions to set/clear tags and to
183  * delete nodes running concurrently with it may affect its result such that
184  * two consecutive reads in the same locked section may return different
185  * values.  If reliability is required, modification functions must also be
186  * excluded from concurrency.
187  *
188  * radix_tree_tagged is able to be called without locking or RCU.
189  */
190
191 /**
192  * radix_tree_deref_slot        - dereference a slot
193  * @pslot:      pointer to slot, returned by radix_tree_lookup_slot
194  * Returns:     item that was stored in that slot with any direct pointer flag
195  *              removed.
196  *
197  * For use with radix_tree_lookup_slot().  Caller must hold tree at least read
198  * locked across slot lookup and dereference. Not required if write lock is
199  * held (ie. items cannot be concurrently inserted).
200  *
201  * radix_tree_deref_retry must be used to confirm validity of the pointer if
202  * only the read lock is held.
203  */
204 static inline void *radix_tree_deref_slot(void **pslot)
205 {
206         return rcu_dereference(*pslot);
207 }
208
209 /**
210  * radix_tree_deref_slot_protected      - dereference a slot without RCU lock but with tree lock held
211  * @pslot:      pointer to slot, returned by radix_tree_lookup_slot
212  * Returns:     item that was stored in that slot with any direct pointer flag
213  *              removed.
214  *
215  * Similar to radix_tree_deref_slot but only used during migration when a pages
216  * mapping is being moved. The caller does not hold the RCU read lock but it
217  * must hold the tree lock to prevent parallel updates.
218  */
219 static inline void *radix_tree_deref_slot_protected(void **pslot,
220                                                         spinlock_t *treelock)
221 {
222         return rcu_dereference_protected(*pslot, lockdep_is_held(treelock));
223 }
224
225 /**
226  * radix_tree_deref_retry       - check radix_tree_deref_slot
227  * @arg:        pointer returned by radix_tree_deref_slot
228  * Returns:     0 if retry is not required, otherwise retry is required
229  *
230  * radix_tree_deref_retry must be used with radix_tree_deref_slot.
231  */
232 static inline int radix_tree_deref_retry(void *arg)
233 {
234         return unlikely((unsigned long)arg & RADIX_TREE_INDIRECT_PTR);
235 }
236
237 /**
238  * radix_tree_exceptional_entry - radix_tree_deref_slot gave exceptional entry?
239  * @arg:        value returned by radix_tree_deref_slot
240  * Returns:     0 if well-aligned pointer, non-0 if exceptional entry.
241  */
242 static inline int radix_tree_exceptional_entry(void *arg)
243 {
244         /* Not unlikely because radix_tree_exception often tested first */
245         return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY;
246 }
247
248 /**
249  * radix_tree_exception - radix_tree_deref_slot returned either exception?
250  * @arg:        value returned by radix_tree_deref_slot
251  * Returns:     0 if well-aligned pointer, non-0 if either kind of exception.
252  */
253 static inline int radix_tree_exception(void *arg)
254 {
255         return unlikely((unsigned long)arg &
256                 (RADIX_TREE_INDIRECT_PTR | RADIX_TREE_EXCEPTIONAL_ENTRY));
257 }
258
259 /**
260  * radix_tree_replace_slot      - replace item in a slot
261  * @pslot:      pointer to slot, returned by radix_tree_lookup_slot
262  * @item:       new item to store in the slot.
263  *
264  * For use with radix_tree_lookup_slot().  Caller must hold tree write locked
265  * across slot lookup and replacement.
266  */
267 static inline void radix_tree_replace_slot(void **pslot, void *item)
268 {
269         BUG_ON(radix_tree_is_indirect_ptr(item));
270         rcu_assign_pointer(*pslot, item);
271 }
272
273 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
274                         unsigned order, struct radix_tree_node **nodep,
275                         void ***slotp);
276 int __radix_tree_insert(struct radix_tree_root *, unsigned long index,
277                         unsigned order, void *);
278 static inline int radix_tree_insert(struct radix_tree_root *root,
279                         unsigned long index, void *entry)
280 {
281         return __radix_tree_insert(root, index, 0, entry);
282 }
283 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
284                           struct radix_tree_node **nodep, void ***slotp);
285 void *radix_tree_lookup(struct radix_tree_root *, unsigned long);
286 void **radix_tree_lookup_slot(struct radix_tree_root *, unsigned long);
287 bool __radix_tree_delete_node(struct radix_tree_root *root,
288                               struct radix_tree_node *node);
289 void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *);
290 void *radix_tree_delete(struct radix_tree_root *, unsigned long);
291 unsigned int
292 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
293                         unsigned long first_index, unsigned int max_items);
294 unsigned int radix_tree_gang_lookup_slot(struct radix_tree_root *root,
295                         void ***results, unsigned long *indices,
296                         unsigned long first_index, unsigned int max_items);
297 int radix_tree_preload(gfp_t gfp_mask);
298 int radix_tree_maybe_preload(gfp_t gfp_mask);
299 void radix_tree_init(void);
300 void *radix_tree_tag_set(struct radix_tree_root *root,
301                         unsigned long index, unsigned int tag);
302 void *radix_tree_tag_clear(struct radix_tree_root *root,
303                         unsigned long index, unsigned int tag);
304 int radix_tree_tag_get(struct radix_tree_root *root,
305                         unsigned long index, unsigned int tag);
306 unsigned int
307 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
308                 unsigned long first_index, unsigned int max_items,
309                 unsigned int tag);
310 unsigned int
311 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
312                 unsigned long first_index, unsigned int max_items,
313                 unsigned int tag);
314 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
315                 unsigned long *first_indexp, unsigned long last_index,
316                 unsigned long nr_to_tag,
317                 unsigned int fromtag, unsigned int totag);
318 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag);
319 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item);
320
321 static inline void radix_tree_preload_end(void)
322 {
323         preempt_enable();
324 }
325
326 /**
327  * struct radix_tree_iter - radix tree iterator state
328  *
329  * @index:      index of current slot
330  * @next_index: next-to-last index for this chunk
331  * @tags:       bit-mask for tag-iterating
332  *
333  * This radix tree iterator works in terms of "chunks" of slots.  A chunk is a
334  * subinterval of slots contained within one radix tree leaf node.  It is
335  * described by a pointer to its first slot and a struct radix_tree_iter
336  * which holds the chunk's position in the tree and its size.  For tagged
337  * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
338  * radix tree tag.
339  */
340 struct radix_tree_iter {
341         unsigned long   index;
342         unsigned long   next_index;
343         unsigned long   tags;
344 };
345
346 #define RADIX_TREE_ITER_TAG_MASK        0x00FF  /* tag index in lower byte */
347 #define RADIX_TREE_ITER_TAGGED          0x0100  /* lookup tagged slots */
348 #define RADIX_TREE_ITER_CONTIG          0x0200  /* stop at first hole */
349
350 /**
351  * radix_tree_iter_init - initialize radix tree iterator
352  *
353  * @iter:       pointer to iterator state
354  * @start:      iteration starting index
355  * Returns:     NULL
356  */
357 static __always_inline void **
358 radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
359 {
360         /*
361          * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
362          * in the case of a successful tagged chunk lookup.  If the lookup was
363          * unsuccessful or non-tagged then nobody cares about ->tags.
364          *
365          * Set index to zero to bypass next_index overflow protection.
366          * See the comment in radix_tree_next_chunk() for details.
367          */
368         iter->index = 0;
369         iter->next_index = start;
370         return NULL;
371 }
372
373 /**
374  * radix_tree_next_chunk - find next chunk of slots for iteration
375  *
376  * @root:       radix tree root
377  * @iter:       iterator state
378  * @flags:      RADIX_TREE_ITER_* flags and tag index
379  * Returns:     pointer to chunk first slot, or NULL if there no more left
380  *
381  * This function looks up the next chunk in the radix tree starting from
382  * @iter->next_index.  It returns a pointer to the chunk's first slot.
383  * Also it fills @iter with data about chunk: position in the tree (index),
384  * its end (next_index), and constructs a bit mask for tagged iterating (tags).
385  */
386 void **radix_tree_next_chunk(struct radix_tree_root *root,
387                              struct radix_tree_iter *iter, unsigned flags);
388
389 /**
390  * radix_tree_iter_retry - retry this chunk of the iteration
391  * @iter:       iterator state
392  *
393  * If we iterate over a tree protected only by the RCU lock, a race
394  * against deletion or creation may result in seeing a slot for which
395  * radix_tree_deref_retry() returns true.  If so, call this function
396  * and continue the iteration.
397  */
398 static inline __must_check
399 void **radix_tree_iter_retry(struct radix_tree_iter *iter)
400 {
401         iter->next_index = iter->index;
402         return NULL;
403 }
404
405 /**
406  * radix_tree_iter_next - resume iterating when the chunk may be invalid
407  * @iter:       iterator state
408  *
409  * If the iterator needs to release then reacquire a lock, the chunk may
410  * have been invalidated by an insertion or deletion.  Call this function
411  * to continue the iteration from the next index.
412  */
413 static inline __must_check
414 void **radix_tree_iter_next(struct radix_tree_iter *iter)
415 {
416         iter->next_index = iter->index + 1;
417         iter->tags = 0;
418         return NULL;
419 }
420
421 /**
422  * radix_tree_chunk_size - get current chunk size
423  *
424  * @iter:       pointer to radix tree iterator
425  * Returns:     current chunk size
426  */
427 static __always_inline long
428 radix_tree_chunk_size(struct radix_tree_iter *iter)
429 {
430         return iter->next_index - iter->index;
431 }
432
433 /**
434  * radix_tree_next_slot - find next slot in chunk
435  *
436  * @slot:       pointer to current slot
437  * @iter:       pointer to interator state
438  * @flags:      RADIX_TREE_ITER_*, should be constant
439  * Returns:     pointer to next slot, or NULL if there no more left
440  *
441  * This function updates @iter->index in the case of a successful lookup.
442  * For tagged lookup it also eats @iter->tags.
443  */
444 static __always_inline void **
445 radix_tree_next_slot(void **slot, struct radix_tree_iter *iter, unsigned flags)
446 {
447         if (flags & RADIX_TREE_ITER_TAGGED) {
448                 iter->tags >>= 1;
449                 if (likely(iter->tags & 1ul)) {
450                         iter->index++;
451                         return slot + 1;
452                 }
453                 if (!(flags & RADIX_TREE_ITER_CONTIG) && likely(iter->tags)) {
454                         unsigned offset = __ffs(iter->tags);
455
456                         iter->tags >>= offset;
457                         iter->index += offset + 1;
458                         return slot + offset + 1;
459                 }
460         } else {
461                 long size = radix_tree_chunk_size(iter);
462
463                 while (--size > 0) {
464                         slot++;
465                         iter->index++;
466                         if (likely(*slot))
467                                 return slot;
468                         if (flags & RADIX_TREE_ITER_CONTIG) {
469                                 /* forbid switching to the next chunk */
470                                 iter->next_index = 0;
471                                 break;
472                         }
473                 }
474         }
475         return NULL;
476 }
477
478 /**
479  * radix_tree_for_each_chunk - iterate over chunks
480  *
481  * @slot:       the void** variable for pointer to chunk first slot
482  * @root:       the struct radix_tree_root pointer
483  * @iter:       the struct radix_tree_iter pointer
484  * @start:      iteration starting index
485  * @flags:      RADIX_TREE_ITER_* and tag index
486  *
487  * Locks can be released and reacquired between iterations.
488  */
489 #define radix_tree_for_each_chunk(slot, root, iter, start, flags)       \
490         for (slot = radix_tree_iter_init(iter, start) ;                 \
491               (slot = radix_tree_next_chunk(root, iter, flags)) ;)
492
493 /**
494  * radix_tree_for_each_chunk_slot - iterate over slots in one chunk
495  *
496  * @slot:       the void** variable, at the beginning points to chunk first slot
497  * @iter:       the struct radix_tree_iter pointer
498  * @flags:      RADIX_TREE_ITER_*, should be constant
499  *
500  * This macro is designed to be nested inside radix_tree_for_each_chunk().
501  * @slot points to the radix tree slot, @iter->index contains its index.
502  */
503 #define radix_tree_for_each_chunk_slot(slot, iter, flags)               \
504         for (; slot ; slot = radix_tree_next_slot(slot, iter, flags))
505
506 /**
507  * radix_tree_for_each_slot - iterate over non-empty slots
508  *
509  * @slot:       the void** variable for pointer to slot
510  * @root:       the struct radix_tree_root pointer
511  * @iter:       the struct radix_tree_iter pointer
512  * @start:      iteration starting index
513  *
514  * @slot points to radix tree slot, @iter->index contains its index.
515  */
516 #define radix_tree_for_each_slot(slot, root, iter, start)               \
517         for (slot = radix_tree_iter_init(iter, start) ;                 \
518              slot || (slot = radix_tree_next_chunk(root, iter, 0)) ;    \
519              slot = radix_tree_next_slot(slot, iter, 0))
520
521 /**
522  * radix_tree_for_each_contig - iterate over contiguous slots
523  *
524  * @slot:       the void** variable for pointer to slot
525  * @root:       the struct radix_tree_root pointer
526  * @iter:       the struct radix_tree_iter pointer
527  * @start:      iteration starting index
528  *
529  * @slot points to radix tree slot, @iter->index contains its index.
530  */
531 #define radix_tree_for_each_contig(slot, root, iter, start)             \
532         for (slot = radix_tree_iter_init(iter, start) ;                 \
533              slot || (slot = radix_tree_next_chunk(root, iter,          \
534                                 RADIX_TREE_ITER_CONTIG)) ;              \
535              slot = radix_tree_next_slot(slot, iter,                    \
536                                 RADIX_TREE_ITER_CONTIG))
537
538 /**
539  * radix_tree_for_each_tagged - iterate over tagged slots
540  *
541  * @slot:       the void** variable for pointer to slot
542  * @root:       the struct radix_tree_root pointer
543  * @iter:       the struct radix_tree_iter pointer
544  * @start:      iteration starting index
545  * @tag:        tag index
546  *
547  * @slot points to radix tree slot, @iter->index contains its index.
548  */
549 #define radix_tree_for_each_tagged(slot, root, iter, start, tag)        \
550         for (slot = radix_tree_iter_init(iter, start) ;                 \
551              slot || (slot = radix_tree_next_chunk(root, iter,          \
552                               RADIX_TREE_ITER_TAGGED | tag)) ;          \
553              slot = radix_tree_next_slot(slot, iter,                    \
554                                 RADIX_TREE_ITER_TAGGED))
555
556 #endif /* _LINUX_RADIX_TREE_H */