ocfs2: take inode lock when get clusters
[linux-2.6-block.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
49
50 #include "buffer_head_io.h"
51 #include "dir.h"
52 #include "namei.h"
53 #include "sysfile.h"
54
55 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
56                                    struct buffer_head *bh_result, int create)
57 {
58         int err = -EIO;
59         int status;
60         struct ocfs2_dinode *fe = NULL;
61         struct buffer_head *bh = NULL;
62         struct buffer_head *buffer_cache_bh = NULL;
63         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
64         void *kaddr;
65
66         trace_ocfs2_symlink_get_block(
67                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
68                         (unsigned long long)iblock, bh_result, create);
69
70         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
71
72         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
73                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
74                      (unsigned long long)iblock);
75                 goto bail;
76         }
77
78         status = ocfs2_read_inode_block(inode, &bh);
79         if (status < 0) {
80                 mlog_errno(status);
81                 goto bail;
82         }
83         fe = (struct ocfs2_dinode *) bh->b_data;
84
85         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
86                                                     le32_to_cpu(fe->i_clusters))) {
87                 err = -ENOMEM;
88                 mlog(ML_ERROR, "block offset is outside the allocated size: "
89                      "%llu\n", (unsigned long long)iblock);
90                 goto bail;
91         }
92
93         /* We don't use the page cache to create symlink data, so if
94          * need be, copy it over from the buffer cache. */
95         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97                             iblock;
98                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
99                 if (!buffer_cache_bh) {
100                         err = -ENOMEM;
101                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102                         goto bail;
103                 }
104
105                 /* we haven't locked out transactions, so a commit
106                  * could've happened. Since we've got a reference on
107                  * the bh, even if it commits while we're doing the
108                  * copy, the data is still good. */
109                 if (buffer_jbd(buffer_cache_bh)
110                     && ocfs2_inode_is_new(inode)) {
111                         kaddr = kmap_atomic(bh_result->b_page);
112                         if (!kaddr) {
113                                 mlog(ML_ERROR, "couldn't kmap!\n");
114                                 goto bail;
115                         }
116                         memcpy(kaddr + (bh_result->b_size * iblock),
117                                buffer_cache_bh->b_data,
118                                bh_result->b_size);
119                         kunmap_atomic(kaddr);
120                         set_buffer_uptodate(bh_result);
121                 }
122                 brelse(buffer_cache_bh);
123         }
124
125         map_bh(bh_result, inode->i_sb,
126                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127
128         err = 0;
129
130 bail:
131         brelse(bh);
132
133         return err;
134 }
135
136 int ocfs2_get_block(struct inode *inode, sector_t iblock,
137                     struct buffer_head *bh_result, int create)
138 {
139         int err = 0;
140         unsigned int ext_flags;
141         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
142         u64 p_blkno, count, past_eof;
143         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144
145         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
146                               (unsigned long long)iblock, bh_result, create);
147
148         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150                      inode, inode->i_ino);
151
152         if (S_ISLNK(inode->i_mode)) {
153                 /* this always does I/O for some reason. */
154                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155                 goto bail;
156         }
157
158         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
159                                           &ext_flags);
160         if (err) {
161                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163                      (unsigned long long)p_blkno);
164                 goto bail;
165         }
166
167         if (max_blocks < count)
168                 count = max_blocks;
169
170         /*
171          * ocfs2 never allocates in this function - the only time we
172          * need to use BH_New is when we're extending i_size on a file
173          * system which doesn't support holes, in which case BH_New
174          * allows __block_write_begin() to zero.
175          *
176          * If we see this on a sparse file system, then a truncate has
177          * raced us and removed the cluster. In this case, we clear
178          * the buffers dirty and uptodate bits and let the buffer code
179          * ignore it as a hole.
180          */
181         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
182                 clear_buffer_dirty(bh_result);
183                 clear_buffer_uptodate(bh_result);
184                 goto bail;
185         }
186
187         /* Treat the unwritten extent as a hole for zeroing purposes. */
188         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
189                 map_bh(bh_result, inode->i_sb, p_blkno);
190
191         bh_result->b_size = count << inode->i_blkbits;
192
193         if (!ocfs2_sparse_alloc(osb)) {
194                 if (p_blkno == 0) {
195                         err = -EIO;
196                         mlog(ML_ERROR,
197                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
198                              (unsigned long long)iblock,
199                              (unsigned long long)p_blkno,
200                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
201                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
202                         dump_stack();
203                         goto bail;
204                 }
205         }
206
207         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
208
209         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
210                                   (unsigned long long)past_eof);
211         if (create && (iblock >= past_eof))
212                 set_buffer_new(bh_result);
213
214 bail:
215         if (err < 0)
216                 err = -EIO;
217
218         return err;
219 }
220
221 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
222                            struct buffer_head *di_bh)
223 {
224         void *kaddr;
225         loff_t size;
226         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
227
228         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
229                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
230                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
231                 return -EROFS;
232         }
233
234         size = i_size_read(inode);
235
236         if (size > PAGE_CACHE_SIZE ||
237             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
238                 ocfs2_error(inode->i_sb,
239                             "Inode %llu has with inline data has bad size: %Lu",
240                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
241                             (unsigned long long)size);
242                 return -EROFS;
243         }
244
245         kaddr = kmap_atomic(page);
246         if (size)
247                 memcpy(kaddr, di->id2.i_data.id_data, size);
248         /* Clear the remaining part of the page */
249         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
250         flush_dcache_page(page);
251         kunmap_atomic(kaddr);
252
253         SetPageUptodate(page);
254
255         return 0;
256 }
257
258 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
259 {
260         int ret;
261         struct buffer_head *di_bh = NULL;
262
263         BUG_ON(!PageLocked(page));
264         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
265
266         ret = ocfs2_read_inode_block(inode, &di_bh);
267         if (ret) {
268                 mlog_errno(ret);
269                 goto out;
270         }
271
272         ret = ocfs2_read_inline_data(inode, page, di_bh);
273 out:
274         unlock_page(page);
275
276         brelse(di_bh);
277         return ret;
278 }
279
280 static int ocfs2_readpage(struct file *file, struct page *page)
281 {
282         struct inode *inode = page->mapping->host;
283         struct ocfs2_inode_info *oi = OCFS2_I(inode);
284         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
285         int ret, unlock = 1;
286
287         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
288                              (page ? page->index : 0));
289
290         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
291         if (ret != 0) {
292                 if (ret == AOP_TRUNCATED_PAGE)
293                         unlock = 0;
294                 mlog_errno(ret);
295                 goto out;
296         }
297
298         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
299                 /*
300                  * Unlock the page and cycle ip_alloc_sem so that we don't
301                  * busyloop waiting for ip_alloc_sem to unlock
302                  */
303                 ret = AOP_TRUNCATED_PAGE;
304                 unlock_page(page);
305                 unlock = 0;
306                 down_read(&oi->ip_alloc_sem);
307                 up_read(&oi->ip_alloc_sem);
308                 goto out_inode_unlock;
309         }
310
311         /*
312          * i_size might have just been updated as we grabed the meta lock.  We
313          * might now be discovering a truncate that hit on another node.
314          * block_read_full_page->get_block freaks out if it is asked to read
315          * beyond the end of a file, so we check here.  Callers
316          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
317          * and notice that the page they just read isn't needed.
318          *
319          * XXX sys_readahead() seems to get that wrong?
320          */
321         if (start >= i_size_read(inode)) {
322                 zero_user(page, 0, PAGE_SIZE);
323                 SetPageUptodate(page);
324                 ret = 0;
325                 goto out_alloc;
326         }
327
328         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
329                 ret = ocfs2_readpage_inline(inode, page);
330         else
331                 ret = block_read_full_page(page, ocfs2_get_block);
332         unlock = 0;
333
334 out_alloc:
335         up_read(&OCFS2_I(inode)->ip_alloc_sem);
336 out_inode_unlock:
337         ocfs2_inode_unlock(inode, 0);
338 out:
339         if (unlock)
340                 unlock_page(page);
341         return ret;
342 }
343
344 /*
345  * This is used only for read-ahead. Failures or difficult to handle
346  * situations are safe to ignore.
347  *
348  * Right now, we don't bother with BH_Boundary - in-inode extent lists
349  * are quite large (243 extents on 4k blocks), so most inodes don't
350  * grow out to a tree. If need be, detecting boundary extents could
351  * trivially be added in a future version of ocfs2_get_block().
352  */
353 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
354                            struct list_head *pages, unsigned nr_pages)
355 {
356         int ret, err = -EIO;
357         struct inode *inode = mapping->host;
358         struct ocfs2_inode_info *oi = OCFS2_I(inode);
359         loff_t start;
360         struct page *last;
361
362         /*
363          * Use the nonblocking flag for the dlm code to avoid page
364          * lock inversion, but don't bother with retrying.
365          */
366         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
367         if (ret)
368                 return err;
369
370         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
371                 ocfs2_inode_unlock(inode, 0);
372                 return err;
373         }
374
375         /*
376          * Don't bother with inline-data. There isn't anything
377          * to read-ahead in that case anyway...
378          */
379         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
380                 goto out_unlock;
381
382         /*
383          * Check whether a remote node truncated this file - we just
384          * drop out in that case as it's not worth handling here.
385          */
386         last = list_entry(pages->prev, struct page, lru);
387         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
388         if (start >= i_size_read(inode))
389                 goto out_unlock;
390
391         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
392
393 out_unlock:
394         up_read(&oi->ip_alloc_sem);
395         ocfs2_inode_unlock(inode, 0);
396
397         return err;
398 }
399
400 /* Note: Because we don't support holes, our allocation has
401  * already happened (allocation writes zeros to the file data)
402  * so we don't have to worry about ordered writes in
403  * ocfs2_writepage.
404  *
405  * ->writepage is called during the process of invalidating the page cache
406  * during blocked lock processing.  It can't block on any cluster locks
407  * to during block mapping.  It's relying on the fact that the block
408  * mapping can't have disappeared under the dirty pages that it is
409  * being asked to write back.
410  */
411 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
412 {
413         trace_ocfs2_writepage(
414                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
415                 page->index);
416
417         return block_write_full_page(page, ocfs2_get_block, wbc);
418 }
419
420 /* Taken from ext3. We don't necessarily need the full blown
421  * functionality yet, but IMHO it's better to cut and paste the whole
422  * thing so we can avoid introducing our own bugs (and easily pick up
423  * their fixes when they happen) --Mark */
424 int walk_page_buffers(  handle_t *handle,
425                         struct buffer_head *head,
426                         unsigned from,
427                         unsigned to,
428                         int *partial,
429                         int (*fn)(      handle_t *handle,
430                                         struct buffer_head *bh))
431 {
432         struct buffer_head *bh;
433         unsigned block_start, block_end;
434         unsigned blocksize = head->b_size;
435         int err, ret = 0;
436         struct buffer_head *next;
437
438         for (   bh = head, block_start = 0;
439                 ret == 0 && (bh != head || !block_start);
440                 block_start = block_end, bh = next)
441         {
442                 next = bh->b_this_page;
443                 block_end = block_start + blocksize;
444                 if (block_end <= from || block_start >= to) {
445                         if (partial && !buffer_uptodate(bh))
446                                 *partial = 1;
447                         continue;
448                 }
449                 err = (*fn)(handle, bh);
450                 if (!ret)
451                         ret = err;
452         }
453         return ret;
454 }
455
456 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
457 {
458         sector_t status;
459         u64 p_blkno = 0;
460         int err = 0;
461         struct inode *inode = mapping->host;
462
463         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
464                          (unsigned long long)block);
465
466         /* We don't need to lock journal system files, since they aren't
467          * accessed concurrently from multiple nodes.
468          */
469         if (!INODE_JOURNAL(inode)) {
470                 err = ocfs2_inode_lock(inode, NULL, 0);
471                 if (err) {
472                         if (err != -ENOENT)
473                                 mlog_errno(err);
474                         goto bail;
475                 }
476                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
477         }
478
479         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
480                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
481                                                   NULL);
482
483         if (!INODE_JOURNAL(inode)) {
484                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
485                 ocfs2_inode_unlock(inode, 0);
486         }
487
488         if (err) {
489                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
490                      (unsigned long long)block);
491                 mlog_errno(err);
492                 goto bail;
493         }
494
495 bail:
496         status = err ? 0 : p_blkno;
497
498         return status;
499 }
500
501 /*
502  * TODO: Make this into a generic get_blocks function.
503  *
504  * From do_direct_io in direct-io.c:
505  *  "So what we do is to permit the ->get_blocks function to populate
506  *   bh.b_size with the size of IO which is permitted at this offset and
507  *   this i_blkbits."
508  *
509  * This function is called directly from get_more_blocks in direct-io.c.
510  *
511  * called like this: dio->get_blocks(dio->inode, fs_startblk,
512  *                                      fs_count, map_bh, dio->rw == WRITE);
513  */
514 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
515                                      struct buffer_head *bh_result, int create)
516 {
517         int ret;
518         u32 cpos = 0;
519         int alloc_locked = 0;
520         u64 p_blkno, inode_blocks, contig_blocks;
521         unsigned int ext_flags;
522         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
523         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
524         unsigned long len = bh_result->b_size;
525         unsigned int clusters_to_alloc = 0;
526
527         cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
528
529         /* This function won't even be called if the request isn't all
530          * nicely aligned and of the right size, so there's no need
531          * for us to check any of that. */
532
533         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
534
535         /* This figures out the size of the next contiguous block, and
536          * our logical offset */
537         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
538                                           &contig_blocks, &ext_flags);
539         if (ret) {
540                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
541                      (unsigned long long)iblock);
542                 ret = -EIO;
543                 goto bail;
544         }
545
546         /* We should already CoW the refcounted extent in case of create. */
547         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
548
549         /* allocate blocks if no p_blkno is found, and create == 1 */
550         if (!p_blkno && create) {
551                 ret = ocfs2_inode_lock(inode, NULL, 1);
552                 if (ret < 0) {
553                         mlog_errno(ret);
554                         goto bail;
555                 }
556
557                 alloc_locked = 1;
558
559                 /* fill hole, allocate blocks can't be larger than the size
560                  * of the hole */
561                 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
562                 if (clusters_to_alloc > contig_blocks)
563                         clusters_to_alloc = contig_blocks;
564
565                 /* allocate extent and insert them into the extent tree */
566                 ret = ocfs2_extend_allocation(inode, cpos,
567                                 clusters_to_alloc, 0);
568                 if (ret < 0) {
569                         mlog_errno(ret);
570                         goto bail;
571                 }
572
573                 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
574                                 &contig_blocks, &ext_flags);
575                 if (ret < 0) {
576                         mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
577                                         (unsigned long long)iblock);
578                         ret = -EIO;
579                         goto bail;
580                 }
581         }
582
583         /*
584          * get_more_blocks() expects us to describe a hole by clearing
585          * the mapped bit on bh_result().
586          *
587          * Consider an unwritten extent as a hole.
588          */
589         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
590                 map_bh(bh_result, inode->i_sb, p_blkno);
591         else
592                 clear_buffer_mapped(bh_result);
593
594         /* make sure we don't map more than max_blocks blocks here as
595            that's all the kernel will handle at this point. */
596         if (max_blocks < contig_blocks)
597                 contig_blocks = max_blocks;
598         bh_result->b_size = contig_blocks << blocksize_bits;
599 bail:
600         if (alloc_locked)
601                 ocfs2_inode_unlock(inode, 1);
602         return ret;
603 }
604
605 /*
606  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
607  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
608  * to protect io on one node from truncation on another.
609  */
610 static void ocfs2_dio_end_io(struct kiocb *iocb,
611                              loff_t offset,
612                              ssize_t bytes,
613                              void *private)
614 {
615         struct inode *inode = file_inode(iocb->ki_filp);
616         int level;
617
618         /* this io's submitter should not have unlocked this before we could */
619         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
620
621         if (ocfs2_iocb_is_sem_locked(iocb))
622                 ocfs2_iocb_clear_sem_locked(iocb);
623
624         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
625                 ocfs2_iocb_clear_unaligned_aio(iocb);
626
627                 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
628         }
629
630         ocfs2_iocb_clear_rw_locked(iocb);
631
632         level = ocfs2_iocb_rw_locked_level(iocb);
633         ocfs2_rw_unlock(inode, level);
634 }
635
636 static int ocfs2_releasepage(struct page *page, gfp_t wait)
637 {
638         if (!page_has_buffers(page))
639                 return 0;
640         return try_to_free_buffers(page);
641 }
642
643 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
644                 struct inode *inode, loff_t offset)
645 {
646         int ret = 0;
647         u32 v_cpos = 0;
648         u32 p_cpos = 0;
649         unsigned int num_clusters = 0;
650         unsigned int ext_flags = 0;
651
652         v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
653         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
654                         &num_clusters, &ext_flags);
655         if (ret < 0) {
656                 mlog_errno(ret);
657                 return ret;
658         }
659
660         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
661                 return 1;
662
663         return 0;
664 }
665
666 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
667                 struct iov_iter *iter,
668                 loff_t offset)
669 {
670         ssize_t ret = 0;
671         ssize_t written = 0;
672         bool orphaned = false;
673         int is_overwrite = 0;
674         struct file *file = iocb->ki_filp;
675         struct inode *inode = file_inode(file)->i_mapping->host;
676         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
677         struct buffer_head *di_bh = NULL;
678         size_t count = iter->count;
679         journal_t *journal = osb->journal->j_journal;
680         u32 zero_len;
681         int cluster_align;
682         loff_t final_size = offset + count;
683         int append_write = offset >= i_size_read(inode) ? 1 : 0;
684         unsigned int num_clusters = 0;
685         unsigned int ext_flags = 0;
686
687         {
688                 u64 o = offset;
689
690                 zero_len = do_div(o, 1 << osb->s_clustersize_bits);
691                 cluster_align = !zero_len;
692         }
693
694         /*
695          * when final_size > inode->i_size, inode->i_size will be
696          * updated after direct write, so add the inode to orphan
697          * dir first.
698          */
699         if (final_size > i_size_read(inode)) {
700                 ret = ocfs2_add_inode_to_orphan(osb, inode);
701                 if (ret < 0) {
702                         mlog_errno(ret);
703                         goto out;
704                 }
705                 orphaned = true;
706         }
707
708         if (append_write) {
709                 ret = ocfs2_inode_lock(inode, NULL, 1);
710                 if (ret < 0) {
711                         mlog_errno(ret);
712                         goto clean_orphan;
713                 }
714
715                 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
716                         ret = ocfs2_zero_extend(inode, di_bh, offset);
717                 else
718                         ret = ocfs2_extend_no_holes(inode, di_bh, offset,
719                                         offset);
720                 if (ret < 0) {
721                         mlog_errno(ret);
722                         ocfs2_inode_unlock(inode, 1);
723                         goto clean_orphan;
724                 }
725
726                 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
727                 if (is_overwrite < 0) {
728                         mlog_errno(is_overwrite);
729                         ocfs2_inode_unlock(inode, 1);
730                         goto clean_orphan;
731                 }
732
733                 ocfs2_inode_unlock(inode, 1);
734         }
735
736         written = __blockdev_direct_IO(WRITE, iocb, inode, inode->i_sb->s_bdev,
737                         iter, offset,
738                         ocfs2_direct_IO_get_blocks,
739                         ocfs2_dio_end_io, NULL, 0);
740         if (unlikely(written < 0)) {
741                 loff_t i_size = i_size_read(inode);
742
743                 if (offset + count > i_size) {
744                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
745                         if (ret < 0) {
746                                 mlog_errno(ret);
747                                 goto clean_orphan;
748                         }
749
750                         if (i_size == i_size_read(inode)) {
751                                 ret = ocfs2_truncate_file(inode, di_bh,
752                                                 i_size);
753                                 if (ret < 0) {
754                                         if (ret != -ENOSPC)
755                                                 mlog_errno(ret);
756
757                                         ocfs2_inode_unlock(inode, 1);
758                                         brelse(di_bh);
759                                         goto clean_orphan;
760                                 }
761                         }
762
763                         ocfs2_inode_unlock(inode, 1);
764                         brelse(di_bh);
765
766                         ret = jbd2_journal_force_commit(journal);
767                         if (ret < 0)
768                                 mlog_errno(ret);
769                 }
770         } else if (written > 0 && append_write && !is_overwrite &&
771                         !cluster_align) {
772                 u32 p_cpos = 0;
773                 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
774
775                 ret = ocfs2_inode_lock(inode, NULL, 0);
776                 if (ret < 0) {
777                         mlog_errno(ret);
778                         goto clean_orphan;
779                 }
780
781                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
782                                 &num_clusters, &ext_flags);
783                 if (ret < 0) {
784                         mlog_errno(ret);
785                         ocfs2_inode_unlock(inode, 0);
786                         goto clean_orphan;
787                 }
788
789                 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
790
791                 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
792                                 p_cpos << (osb->s_clustersize_bits - 9),
793                                 zero_len >> 9, GFP_NOFS, false);
794                 if (ret < 0)
795                         mlog_errno(ret);
796
797                 ocfs2_inode_unlock(inode, 0);
798         }
799
800 clean_orphan:
801         if (orphaned) {
802                 int tmp_ret;
803                 int update_isize = written > 0 ? 1 : 0;
804                 loff_t end = update_isize ? offset + written : 0;
805
806                 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
807                                 update_isize, end);
808                 if (tmp_ret < 0) {
809                         ret = tmp_ret;
810                         goto out;
811                 }
812
813                 tmp_ret = jbd2_journal_force_commit(journal);
814                 if (tmp_ret < 0) {
815                         ret = tmp_ret;
816                         mlog_errno(tmp_ret);
817                 }
818         }
819
820 out:
821         if (ret >= 0)
822                 ret = written;
823         return ret;
824 }
825
826 static ssize_t ocfs2_direct_IO(int rw,
827                                struct kiocb *iocb,
828                                struct iov_iter *iter,
829                                loff_t offset)
830 {
831         struct file *file = iocb->ki_filp;
832         struct inode *inode = file_inode(file)->i_mapping->host;
833         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
834         int full_coherency = !(osb->s_mount_opt &
835                         OCFS2_MOUNT_COHERENCY_BUFFERED);
836
837         /*
838          * Fallback to buffered I/O if we see an inode without
839          * extents.
840          */
841         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
842                 return 0;
843
844         /* Fallback to buffered I/O if we are appending and
845          * concurrent O_DIRECT writes are allowed.
846          */
847         if (i_size_read(inode) <= offset && !full_coherency)
848                 return 0;
849
850         if (rw == READ)
851                 return __blockdev_direct_IO(rw, iocb, inode,
852                                     inode->i_sb->s_bdev,
853                                     iter, offset,
854                                     ocfs2_direct_IO_get_blocks,
855                                     ocfs2_dio_end_io, NULL, 0);
856         else
857                 return ocfs2_direct_IO_write(iocb, iter, offset);
858 }
859
860 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
861                                             u32 cpos,
862                                             unsigned int *start,
863                                             unsigned int *end)
864 {
865         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
866
867         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
868                 unsigned int cpp;
869
870                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
871
872                 cluster_start = cpos % cpp;
873                 cluster_start = cluster_start << osb->s_clustersize_bits;
874
875                 cluster_end = cluster_start + osb->s_clustersize;
876         }
877
878         BUG_ON(cluster_start > PAGE_SIZE);
879         BUG_ON(cluster_end > PAGE_SIZE);
880
881         if (start)
882                 *start = cluster_start;
883         if (end)
884                 *end = cluster_end;
885 }
886
887 /*
888  * 'from' and 'to' are the region in the page to avoid zeroing.
889  *
890  * If pagesize > clustersize, this function will avoid zeroing outside
891  * of the cluster boundary.
892  *
893  * from == to == 0 is code for "zero the entire cluster region"
894  */
895 static void ocfs2_clear_page_regions(struct page *page,
896                                      struct ocfs2_super *osb, u32 cpos,
897                                      unsigned from, unsigned to)
898 {
899         void *kaddr;
900         unsigned int cluster_start, cluster_end;
901
902         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
903
904         kaddr = kmap_atomic(page);
905
906         if (from || to) {
907                 if (from > cluster_start)
908                         memset(kaddr + cluster_start, 0, from - cluster_start);
909                 if (to < cluster_end)
910                         memset(kaddr + to, 0, cluster_end - to);
911         } else {
912                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
913         }
914
915         kunmap_atomic(kaddr);
916 }
917
918 /*
919  * Nonsparse file systems fully allocate before we get to the write
920  * code. This prevents ocfs2_write() from tagging the write as an
921  * allocating one, which means ocfs2_map_page_blocks() might try to
922  * read-in the blocks at the tail of our file. Avoid reading them by
923  * testing i_size against each block offset.
924  */
925 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
926                                  unsigned int block_start)
927 {
928         u64 offset = page_offset(page) + block_start;
929
930         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
931                 return 1;
932
933         if (i_size_read(inode) > offset)
934                 return 1;
935
936         return 0;
937 }
938
939 /*
940  * Some of this taken from __block_write_begin(). We already have our
941  * mapping by now though, and the entire write will be allocating or
942  * it won't, so not much need to use BH_New.
943  *
944  * This will also skip zeroing, which is handled externally.
945  */
946 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
947                           struct inode *inode, unsigned int from,
948                           unsigned int to, int new)
949 {
950         int ret = 0;
951         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
952         unsigned int block_end, block_start;
953         unsigned int bsize = 1 << inode->i_blkbits;
954
955         if (!page_has_buffers(page))
956                 create_empty_buffers(page, bsize, 0);
957
958         head = page_buffers(page);
959         for (bh = head, block_start = 0; bh != head || !block_start;
960              bh = bh->b_this_page, block_start += bsize) {
961                 block_end = block_start + bsize;
962
963                 clear_buffer_new(bh);
964
965                 /*
966                  * Ignore blocks outside of our i/o range -
967                  * they may belong to unallocated clusters.
968                  */
969                 if (block_start >= to || block_end <= from) {
970                         if (PageUptodate(page))
971                                 set_buffer_uptodate(bh);
972                         continue;
973                 }
974
975                 /*
976                  * For an allocating write with cluster size >= page
977                  * size, we always write the entire page.
978                  */
979                 if (new)
980                         set_buffer_new(bh);
981
982                 if (!buffer_mapped(bh)) {
983                         map_bh(bh, inode->i_sb, *p_blkno);
984                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
985                 }
986
987                 if (PageUptodate(page)) {
988                         if (!buffer_uptodate(bh))
989                                 set_buffer_uptodate(bh);
990                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
991                            !buffer_new(bh) &&
992                            ocfs2_should_read_blk(inode, page, block_start) &&
993                            (block_start < from || block_end > to)) {
994                         ll_rw_block(READ, 1, &bh);
995                         *wait_bh++=bh;
996                 }
997
998                 *p_blkno = *p_blkno + 1;
999         }
1000
1001         /*
1002          * If we issued read requests - let them complete.
1003          */
1004         while(wait_bh > wait) {
1005                 wait_on_buffer(*--wait_bh);
1006                 if (!buffer_uptodate(*wait_bh))
1007                         ret = -EIO;
1008         }
1009
1010         if (ret == 0 || !new)
1011                 return ret;
1012
1013         /*
1014          * If we get -EIO above, zero out any newly allocated blocks
1015          * to avoid exposing stale data.
1016          */
1017         bh = head;
1018         block_start = 0;
1019         do {
1020                 block_end = block_start + bsize;
1021                 if (block_end <= from)
1022                         goto next_bh;
1023                 if (block_start >= to)
1024                         break;
1025
1026                 zero_user(page, block_start, bh->b_size);
1027                 set_buffer_uptodate(bh);
1028                 mark_buffer_dirty(bh);
1029
1030 next_bh:
1031                 block_start = block_end;
1032                 bh = bh->b_this_page;
1033         } while (bh != head);
1034
1035         return ret;
1036 }
1037
1038 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1039 #define OCFS2_MAX_CTXT_PAGES    1
1040 #else
1041 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1042 #endif
1043
1044 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1045
1046 /*
1047  * Describe the state of a single cluster to be written to.
1048  */
1049 struct ocfs2_write_cluster_desc {
1050         u32             c_cpos;
1051         u32             c_phys;
1052         /*
1053          * Give this a unique field because c_phys eventually gets
1054          * filled.
1055          */
1056         unsigned        c_new;
1057         unsigned        c_unwritten;
1058         unsigned        c_needs_zero;
1059 };
1060
1061 struct ocfs2_write_ctxt {
1062         /* Logical cluster position / len of write */
1063         u32                             w_cpos;
1064         u32                             w_clen;
1065
1066         /* First cluster allocated in a nonsparse extend */
1067         u32                             w_first_new_cpos;
1068
1069         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1070
1071         /*
1072          * This is true if page_size > cluster_size.
1073          *
1074          * It triggers a set of special cases during write which might
1075          * have to deal with allocating writes to partial pages.
1076          */
1077         unsigned int                    w_large_pages;
1078
1079         /*
1080          * Pages involved in this write.
1081          *
1082          * w_target_page is the page being written to by the user.
1083          *
1084          * w_pages is an array of pages which always contains
1085          * w_target_page, and in the case of an allocating write with
1086          * page_size < cluster size, it will contain zero'd and mapped
1087          * pages adjacent to w_target_page which need to be written
1088          * out in so that future reads from that region will get
1089          * zero's.
1090          */
1091         unsigned int                    w_num_pages;
1092         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1093         struct page                     *w_target_page;
1094
1095         /*
1096          * w_target_locked is used for page_mkwrite path indicating no unlocking
1097          * against w_target_page in ocfs2_write_end_nolock.
1098          */
1099         unsigned int                    w_target_locked:1;
1100
1101         /*
1102          * ocfs2_write_end() uses this to know what the real range to
1103          * write in the target should be.
1104          */
1105         unsigned int                    w_target_from;
1106         unsigned int                    w_target_to;
1107
1108         /*
1109          * We could use journal_current_handle() but this is cleaner,
1110          * IMHO -Mark
1111          */
1112         handle_t                        *w_handle;
1113
1114         struct buffer_head              *w_di_bh;
1115
1116         struct ocfs2_cached_dealloc_ctxt w_dealloc;
1117 };
1118
1119 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1120 {
1121         int i;
1122
1123         for(i = 0; i < num_pages; i++) {
1124                 if (pages[i]) {
1125                         unlock_page(pages[i]);
1126                         mark_page_accessed(pages[i]);
1127                         page_cache_release(pages[i]);
1128                 }
1129         }
1130 }
1131
1132 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1133 {
1134         int i;
1135
1136         /*
1137          * w_target_locked is only set to true in the page_mkwrite() case.
1138          * The intent is to allow us to lock the target page from write_begin()
1139          * to write_end(). The caller must hold a ref on w_target_page.
1140          */
1141         if (wc->w_target_locked) {
1142                 BUG_ON(!wc->w_target_page);
1143                 for (i = 0; i < wc->w_num_pages; i++) {
1144                         if (wc->w_target_page == wc->w_pages[i]) {
1145                                 wc->w_pages[i] = NULL;
1146                                 break;
1147                         }
1148                 }
1149                 mark_page_accessed(wc->w_target_page);
1150                 page_cache_release(wc->w_target_page);
1151         }
1152         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1153 }
1154
1155 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1156 {
1157         ocfs2_unlock_pages(wc);
1158         brelse(wc->w_di_bh);
1159         kfree(wc);
1160 }
1161
1162 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1163                                   struct ocfs2_super *osb, loff_t pos,
1164                                   unsigned len, struct buffer_head *di_bh)
1165 {
1166         u32 cend;
1167         struct ocfs2_write_ctxt *wc;
1168
1169         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1170         if (!wc)
1171                 return -ENOMEM;
1172
1173         wc->w_cpos = pos >> osb->s_clustersize_bits;
1174         wc->w_first_new_cpos = UINT_MAX;
1175         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1176         wc->w_clen = cend - wc->w_cpos + 1;
1177         get_bh(di_bh);
1178         wc->w_di_bh = di_bh;
1179
1180         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1181                 wc->w_large_pages = 1;
1182         else
1183                 wc->w_large_pages = 0;
1184
1185         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1186
1187         *wcp = wc;
1188
1189         return 0;
1190 }
1191
1192 /*
1193  * If a page has any new buffers, zero them out here, and mark them uptodate
1194  * and dirty so they'll be written out (in order to prevent uninitialised
1195  * block data from leaking). And clear the new bit.
1196  */
1197 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1198 {
1199         unsigned int block_start, block_end;
1200         struct buffer_head *head, *bh;
1201
1202         BUG_ON(!PageLocked(page));
1203         if (!page_has_buffers(page))
1204                 return;
1205
1206         bh = head = page_buffers(page);
1207         block_start = 0;
1208         do {
1209                 block_end = block_start + bh->b_size;
1210
1211                 if (buffer_new(bh)) {
1212                         if (block_end > from && block_start < to) {
1213                                 if (!PageUptodate(page)) {
1214                                         unsigned start, end;
1215
1216                                         start = max(from, block_start);
1217                                         end = min(to, block_end);
1218
1219                                         zero_user_segment(page, start, end);
1220                                         set_buffer_uptodate(bh);
1221                                 }
1222
1223                                 clear_buffer_new(bh);
1224                                 mark_buffer_dirty(bh);
1225                         }
1226                 }
1227
1228                 block_start = block_end;
1229                 bh = bh->b_this_page;
1230         } while (bh != head);
1231 }
1232
1233 /*
1234  * Only called when we have a failure during allocating write to write
1235  * zero's to the newly allocated region.
1236  */
1237 static void ocfs2_write_failure(struct inode *inode,
1238                                 struct ocfs2_write_ctxt *wc,
1239                                 loff_t user_pos, unsigned user_len)
1240 {
1241         int i;
1242         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1243                 to = user_pos + user_len;
1244         struct page *tmppage;
1245
1246         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1247
1248         for(i = 0; i < wc->w_num_pages; i++) {
1249                 tmppage = wc->w_pages[i];
1250
1251                 if (page_has_buffers(tmppage)) {
1252                         if (ocfs2_should_order_data(inode))
1253                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1254
1255                         block_commit_write(tmppage, from, to);
1256                 }
1257         }
1258 }
1259
1260 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1261                                         struct ocfs2_write_ctxt *wc,
1262                                         struct page *page, u32 cpos,
1263                                         loff_t user_pos, unsigned user_len,
1264                                         int new)
1265 {
1266         int ret;
1267         unsigned int map_from = 0, map_to = 0;
1268         unsigned int cluster_start, cluster_end;
1269         unsigned int user_data_from = 0, user_data_to = 0;
1270
1271         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1272                                         &cluster_start, &cluster_end);
1273
1274         /* treat the write as new if the a hole/lseek spanned across
1275          * the page boundary.
1276          */
1277         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1278                         (page_offset(page) <= user_pos));
1279
1280         if (page == wc->w_target_page) {
1281                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1282                 map_to = map_from + user_len;
1283
1284                 if (new)
1285                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1286                                                     cluster_start, cluster_end,
1287                                                     new);
1288                 else
1289                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1290                                                     map_from, map_to, new);
1291                 if (ret) {
1292                         mlog_errno(ret);
1293                         goto out;
1294                 }
1295
1296                 user_data_from = map_from;
1297                 user_data_to = map_to;
1298                 if (new) {
1299                         map_from = cluster_start;
1300                         map_to = cluster_end;
1301                 }
1302         } else {
1303                 /*
1304                  * If we haven't allocated the new page yet, we
1305                  * shouldn't be writing it out without copying user
1306                  * data. This is likely a math error from the caller.
1307                  */
1308                 BUG_ON(!new);
1309
1310                 map_from = cluster_start;
1311                 map_to = cluster_end;
1312
1313                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1314                                             cluster_start, cluster_end, new);
1315                 if (ret) {
1316                         mlog_errno(ret);
1317                         goto out;
1318                 }
1319         }
1320
1321         /*
1322          * Parts of newly allocated pages need to be zero'd.
1323          *
1324          * Above, we have also rewritten 'to' and 'from' - as far as
1325          * the rest of the function is concerned, the entire cluster
1326          * range inside of a page needs to be written.
1327          *
1328          * We can skip this if the page is up to date - it's already
1329          * been zero'd from being read in as a hole.
1330          */
1331         if (new && !PageUptodate(page))
1332                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1333                                          cpos, user_data_from, user_data_to);
1334
1335         flush_dcache_page(page);
1336
1337 out:
1338         return ret;
1339 }
1340
1341 /*
1342  * This function will only grab one clusters worth of pages.
1343  */
1344 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1345                                       struct ocfs2_write_ctxt *wc,
1346                                       u32 cpos, loff_t user_pos,
1347                                       unsigned user_len, int new,
1348                                       struct page *mmap_page)
1349 {
1350         int ret = 0, i;
1351         unsigned long start, target_index, end_index, index;
1352         struct inode *inode = mapping->host;
1353         loff_t last_byte;
1354
1355         target_index = user_pos >> PAGE_CACHE_SHIFT;
1356
1357         /*
1358          * Figure out how many pages we'll be manipulating here. For
1359          * non allocating write, we just change the one
1360          * page. Otherwise, we'll need a whole clusters worth.  If we're
1361          * writing past i_size, we only need enough pages to cover the
1362          * last page of the write.
1363          */
1364         if (new) {
1365                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1366                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1367                 /*
1368                  * We need the index *past* the last page we could possibly
1369                  * touch.  This is the page past the end of the write or
1370                  * i_size, whichever is greater.
1371                  */
1372                 last_byte = max(user_pos + user_len, i_size_read(inode));
1373                 BUG_ON(last_byte < 1);
1374                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1375                 if ((start + wc->w_num_pages) > end_index)
1376                         wc->w_num_pages = end_index - start;
1377         } else {
1378                 wc->w_num_pages = 1;
1379                 start = target_index;
1380         }
1381
1382         for(i = 0; i < wc->w_num_pages; i++) {
1383                 index = start + i;
1384
1385                 if (index == target_index && mmap_page) {
1386                         /*
1387                          * ocfs2_pagemkwrite() is a little different
1388                          * and wants us to directly use the page
1389                          * passed in.
1390                          */
1391                         lock_page(mmap_page);
1392
1393                         /* Exit and let the caller retry */
1394                         if (mmap_page->mapping != mapping) {
1395                                 WARN_ON(mmap_page->mapping);
1396                                 unlock_page(mmap_page);
1397                                 ret = -EAGAIN;
1398                                 goto out;
1399                         }
1400
1401                         page_cache_get(mmap_page);
1402                         wc->w_pages[i] = mmap_page;
1403                         wc->w_target_locked = true;
1404                 } else {
1405                         wc->w_pages[i] = find_or_create_page(mapping, index,
1406                                                              GFP_NOFS);
1407                         if (!wc->w_pages[i]) {
1408                                 ret = -ENOMEM;
1409                                 mlog_errno(ret);
1410                                 goto out;
1411                         }
1412                 }
1413                 wait_for_stable_page(wc->w_pages[i]);
1414
1415                 if (index == target_index)
1416                         wc->w_target_page = wc->w_pages[i];
1417         }
1418 out:
1419         if (ret)
1420                 wc->w_target_locked = false;
1421         return ret;
1422 }
1423
1424 /*
1425  * Prepare a single cluster for write one cluster into the file.
1426  */
1427 static int ocfs2_write_cluster(struct address_space *mapping,
1428                                u32 phys, unsigned int unwritten,
1429                                unsigned int should_zero,
1430                                struct ocfs2_alloc_context *data_ac,
1431                                struct ocfs2_alloc_context *meta_ac,
1432                                struct ocfs2_write_ctxt *wc, u32 cpos,
1433                                loff_t user_pos, unsigned user_len)
1434 {
1435         int ret, i, new;
1436         u64 v_blkno, p_blkno;
1437         struct inode *inode = mapping->host;
1438         struct ocfs2_extent_tree et;
1439
1440         new = phys == 0 ? 1 : 0;
1441         if (new) {
1442                 u32 tmp_pos;
1443
1444                 /*
1445                  * This is safe to call with the page locks - it won't take
1446                  * any additional semaphores or cluster locks.
1447                  */
1448                 tmp_pos = cpos;
1449                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1450                                            &tmp_pos, 1, 0, wc->w_di_bh,
1451                                            wc->w_handle, data_ac,
1452                                            meta_ac, NULL);
1453                 /*
1454                  * This shouldn't happen because we must have already
1455                  * calculated the correct meta data allocation required. The
1456                  * internal tree allocation code should know how to increase
1457                  * transaction credits itself.
1458                  *
1459                  * If need be, we could handle -EAGAIN for a
1460                  * RESTART_TRANS here.
1461                  */
1462                 mlog_bug_on_msg(ret == -EAGAIN,
1463                                 "Inode %llu: EAGAIN return during allocation.\n",
1464                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1465                 if (ret < 0) {
1466                         mlog_errno(ret);
1467                         goto out;
1468                 }
1469         } else if (unwritten) {
1470                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1471                                               wc->w_di_bh);
1472                 ret = ocfs2_mark_extent_written(inode, &et,
1473                                                 wc->w_handle, cpos, 1, phys,
1474                                                 meta_ac, &wc->w_dealloc);
1475                 if (ret < 0) {
1476                         mlog_errno(ret);
1477                         goto out;
1478                 }
1479         }
1480
1481         if (should_zero)
1482                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1483         else
1484                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1485
1486         /*
1487          * The only reason this should fail is due to an inability to
1488          * find the extent added.
1489          */
1490         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1491                                           NULL);
1492         if (ret < 0) {
1493                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1494                             "at logical block %llu",
1495                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1496                             (unsigned long long)v_blkno);
1497                 goto out;
1498         }
1499
1500         BUG_ON(p_blkno == 0);
1501
1502         for(i = 0; i < wc->w_num_pages; i++) {
1503                 int tmpret;
1504
1505                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1506                                                       wc->w_pages[i], cpos,
1507                                                       user_pos, user_len,
1508                                                       should_zero);
1509                 if (tmpret) {
1510                         mlog_errno(tmpret);
1511                         if (ret == 0)
1512                                 ret = tmpret;
1513                 }
1514         }
1515
1516         /*
1517          * We only have cleanup to do in case of allocating write.
1518          */
1519         if (ret && new)
1520                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1521
1522 out:
1523
1524         return ret;
1525 }
1526
1527 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1528                                        struct ocfs2_alloc_context *data_ac,
1529                                        struct ocfs2_alloc_context *meta_ac,
1530                                        struct ocfs2_write_ctxt *wc,
1531                                        loff_t pos, unsigned len)
1532 {
1533         int ret, i;
1534         loff_t cluster_off;
1535         unsigned int local_len = len;
1536         struct ocfs2_write_cluster_desc *desc;
1537         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1538
1539         for (i = 0; i < wc->w_clen; i++) {
1540                 desc = &wc->w_desc[i];
1541
1542                 /*
1543                  * We have to make sure that the total write passed in
1544                  * doesn't extend past a single cluster.
1545                  */
1546                 local_len = len;
1547                 cluster_off = pos & (osb->s_clustersize - 1);
1548                 if ((cluster_off + local_len) > osb->s_clustersize)
1549                         local_len = osb->s_clustersize - cluster_off;
1550
1551                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1552                                           desc->c_unwritten,
1553                                           desc->c_needs_zero,
1554                                           data_ac, meta_ac,
1555                                           wc, desc->c_cpos, pos, local_len);
1556                 if (ret) {
1557                         mlog_errno(ret);
1558                         goto out;
1559                 }
1560
1561                 len -= local_len;
1562                 pos += local_len;
1563         }
1564
1565         ret = 0;
1566 out:
1567         return ret;
1568 }
1569
1570 /*
1571  * ocfs2_write_end() wants to know which parts of the target page it
1572  * should complete the write on. It's easiest to compute them ahead of
1573  * time when a more complete view of the write is available.
1574  */
1575 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1576                                         struct ocfs2_write_ctxt *wc,
1577                                         loff_t pos, unsigned len, int alloc)
1578 {
1579         struct ocfs2_write_cluster_desc *desc;
1580
1581         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1582         wc->w_target_to = wc->w_target_from + len;
1583
1584         if (alloc == 0)
1585                 return;
1586
1587         /*
1588          * Allocating write - we may have different boundaries based
1589          * on page size and cluster size.
1590          *
1591          * NOTE: We can no longer compute one value from the other as
1592          * the actual write length and user provided length may be
1593          * different.
1594          */
1595
1596         if (wc->w_large_pages) {
1597                 /*
1598                  * We only care about the 1st and last cluster within
1599                  * our range and whether they should be zero'd or not. Either
1600                  * value may be extended out to the start/end of a
1601                  * newly allocated cluster.
1602                  */
1603                 desc = &wc->w_desc[0];
1604                 if (desc->c_needs_zero)
1605                         ocfs2_figure_cluster_boundaries(osb,
1606                                                         desc->c_cpos,
1607                                                         &wc->w_target_from,
1608                                                         NULL);
1609
1610                 desc = &wc->w_desc[wc->w_clen - 1];
1611                 if (desc->c_needs_zero)
1612                         ocfs2_figure_cluster_boundaries(osb,
1613                                                         desc->c_cpos,
1614                                                         NULL,
1615                                                         &wc->w_target_to);
1616         } else {
1617                 wc->w_target_from = 0;
1618                 wc->w_target_to = PAGE_CACHE_SIZE;
1619         }
1620 }
1621
1622 /*
1623  * Populate each single-cluster write descriptor in the write context
1624  * with information about the i/o to be done.
1625  *
1626  * Returns the number of clusters that will have to be allocated, as
1627  * well as a worst case estimate of the number of extent records that
1628  * would have to be created during a write to an unwritten region.
1629  */
1630 static int ocfs2_populate_write_desc(struct inode *inode,
1631                                      struct ocfs2_write_ctxt *wc,
1632                                      unsigned int *clusters_to_alloc,
1633                                      unsigned int *extents_to_split)
1634 {
1635         int ret;
1636         struct ocfs2_write_cluster_desc *desc;
1637         unsigned int num_clusters = 0;
1638         unsigned int ext_flags = 0;
1639         u32 phys = 0;
1640         int i;
1641
1642         *clusters_to_alloc = 0;
1643         *extents_to_split = 0;
1644
1645         for (i = 0; i < wc->w_clen; i++) {
1646                 desc = &wc->w_desc[i];
1647                 desc->c_cpos = wc->w_cpos + i;
1648
1649                 if (num_clusters == 0) {
1650                         /*
1651                          * Need to look up the next extent record.
1652                          */
1653                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1654                                                  &num_clusters, &ext_flags);
1655                         if (ret) {
1656                                 mlog_errno(ret);
1657                                 goto out;
1658                         }
1659
1660                         /* We should already CoW the refcountd extent. */
1661                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1662
1663                         /*
1664                          * Assume worst case - that we're writing in
1665                          * the middle of the extent.
1666                          *
1667                          * We can assume that the write proceeds from
1668                          * left to right, in which case the extent
1669                          * insert code is smart enough to coalesce the
1670                          * next splits into the previous records created.
1671                          */
1672                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1673                                 *extents_to_split = *extents_to_split + 2;
1674                 } else if (phys) {
1675                         /*
1676                          * Only increment phys if it doesn't describe
1677                          * a hole.
1678                          */
1679                         phys++;
1680                 }
1681
1682                 /*
1683                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1684                  * file that got extended.  w_first_new_cpos tells us
1685                  * where the newly allocated clusters are so we can
1686                  * zero them.
1687                  */
1688                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1689                         BUG_ON(phys == 0);
1690                         desc->c_needs_zero = 1;
1691                 }
1692
1693                 desc->c_phys = phys;
1694                 if (phys == 0) {
1695                         desc->c_new = 1;
1696                         desc->c_needs_zero = 1;
1697                         *clusters_to_alloc = *clusters_to_alloc + 1;
1698                 }
1699
1700                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1701                         desc->c_unwritten = 1;
1702                         desc->c_needs_zero = 1;
1703                 }
1704
1705                 num_clusters--;
1706         }
1707
1708         ret = 0;
1709 out:
1710         return ret;
1711 }
1712
1713 static int ocfs2_write_begin_inline(struct address_space *mapping,
1714                                     struct inode *inode,
1715                                     struct ocfs2_write_ctxt *wc)
1716 {
1717         int ret;
1718         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1719         struct page *page;
1720         handle_t *handle;
1721         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1722
1723         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1724         if (IS_ERR(handle)) {
1725                 ret = PTR_ERR(handle);
1726                 mlog_errno(ret);
1727                 goto out;
1728         }
1729
1730         page = find_or_create_page(mapping, 0, GFP_NOFS);
1731         if (!page) {
1732                 ocfs2_commit_trans(osb, handle);
1733                 ret = -ENOMEM;
1734                 mlog_errno(ret);
1735                 goto out;
1736         }
1737         /*
1738          * If we don't set w_num_pages then this page won't get unlocked
1739          * and freed on cleanup of the write context.
1740          */
1741         wc->w_pages[0] = wc->w_target_page = page;
1742         wc->w_num_pages = 1;
1743
1744         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1745                                       OCFS2_JOURNAL_ACCESS_WRITE);
1746         if (ret) {
1747                 ocfs2_commit_trans(osb, handle);
1748
1749                 mlog_errno(ret);
1750                 goto out;
1751         }
1752
1753         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1754                 ocfs2_set_inode_data_inline(inode, di);
1755
1756         if (!PageUptodate(page)) {
1757                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1758                 if (ret) {
1759                         ocfs2_commit_trans(osb, handle);
1760
1761                         goto out;
1762                 }
1763         }
1764
1765         wc->w_handle = handle;
1766 out:
1767         return ret;
1768 }
1769
1770 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1771 {
1772         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1773
1774         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1775                 return 1;
1776         return 0;
1777 }
1778
1779 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1780                                           struct inode *inode, loff_t pos,
1781                                           unsigned len, struct page *mmap_page,
1782                                           struct ocfs2_write_ctxt *wc)
1783 {
1784         int ret, written = 0;
1785         loff_t end = pos + len;
1786         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1787         struct ocfs2_dinode *di = NULL;
1788
1789         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1790                                              len, (unsigned long long)pos,
1791                                              oi->ip_dyn_features);
1792
1793         /*
1794          * Handle inodes which already have inline data 1st.
1795          */
1796         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1797                 if (mmap_page == NULL &&
1798                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1799                         goto do_inline_write;
1800
1801                 /*
1802                  * The write won't fit - we have to give this inode an
1803                  * inline extent list now.
1804                  */
1805                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1806                 if (ret)
1807                         mlog_errno(ret);
1808                 goto out;
1809         }
1810
1811         /*
1812          * Check whether the inode can accept inline data.
1813          */
1814         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1815                 return 0;
1816
1817         /*
1818          * Check whether the write can fit.
1819          */
1820         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1821         if (mmap_page ||
1822             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1823                 return 0;
1824
1825 do_inline_write:
1826         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1827         if (ret) {
1828                 mlog_errno(ret);
1829                 goto out;
1830         }
1831
1832         /*
1833          * This signals to the caller that the data can be written
1834          * inline.
1835          */
1836         written = 1;
1837 out:
1838         return written ? written : ret;
1839 }
1840
1841 /*
1842  * This function only does anything for file systems which can't
1843  * handle sparse files.
1844  *
1845  * What we want to do here is fill in any hole between the current end
1846  * of allocation and the end of our write. That way the rest of the
1847  * write path can treat it as an non-allocating write, which has no
1848  * special case code for sparse/nonsparse files.
1849  */
1850 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1851                                         struct buffer_head *di_bh,
1852                                         loff_t pos, unsigned len,
1853                                         struct ocfs2_write_ctxt *wc)
1854 {
1855         int ret;
1856         loff_t newsize = pos + len;
1857
1858         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1859
1860         if (newsize <= i_size_read(inode))
1861                 return 0;
1862
1863         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1864         if (ret)
1865                 mlog_errno(ret);
1866
1867         wc->w_first_new_cpos =
1868                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1869
1870         return ret;
1871 }
1872
1873 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1874                            loff_t pos)
1875 {
1876         int ret = 0;
1877
1878         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1879         if (pos > i_size_read(inode))
1880                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1881
1882         return ret;
1883 }
1884
1885 /*
1886  * Try to flush truncate logs if we can free enough clusters from it.
1887  * As for return value, "< 0" means error, "0" no space and "1" means
1888  * we have freed enough spaces and let the caller try to allocate again.
1889  */
1890 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1891                                           unsigned int needed)
1892 {
1893         tid_t target;
1894         int ret = 0;
1895         unsigned int truncated_clusters;
1896
1897         mutex_lock(&osb->osb_tl_inode->i_mutex);
1898         truncated_clusters = osb->truncated_clusters;
1899         mutex_unlock(&osb->osb_tl_inode->i_mutex);
1900
1901         /*
1902          * Check whether we can succeed in allocating if we free
1903          * the truncate log.
1904          */
1905         if (truncated_clusters < needed)
1906                 goto out;
1907
1908         ret = ocfs2_flush_truncate_log(osb);
1909         if (ret) {
1910                 mlog_errno(ret);
1911                 goto out;
1912         }
1913
1914         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1915                 jbd2_log_wait_commit(osb->journal->j_journal, target);
1916                 ret = 1;
1917         }
1918 out:
1919         return ret;
1920 }
1921
1922 int ocfs2_write_begin_nolock(struct file *filp,
1923                              struct address_space *mapping,
1924                              loff_t pos, unsigned len, unsigned flags,
1925                              struct page **pagep, void **fsdata,
1926                              struct buffer_head *di_bh, struct page *mmap_page)
1927 {
1928         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1929         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1930         struct ocfs2_write_ctxt *wc;
1931         struct inode *inode = mapping->host;
1932         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1933         struct ocfs2_dinode *di;
1934         struct ocfs2_alloc_context *data_ac = NULL;
1935         struct ocfs2_alloc_context *meta_ac = NULL;
1936         handle_t *handle;
1937         struct ocfs2_extent_tree et;
1938         int try_free = 1, ret1;
1939
1940 try_again:
1941         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1942         if (ret) {
1943                 mlog_errno(ret);
1944                 return ret;
1945         }
1946
1947         if (ocfs2_supports_inline_data(osb)) {
1948                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1949                                                      mmap_page, wc);
1950                 if (ret == 1) {
1951                         ret = 0;
1952                         goto success;
1953                 }
1954                 if (ret < 0) {
1955                         mlog_errno(ret);
1956                         goto out;
1957                 }
1958         }
1959
1960         if (ocfs2_sparse_alloc(osb))
1961                 ret = ocfs2_zero_tail(inode, di_bh, pos);
1962         else
1963                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1964                                                    wc);
1965         if (ret) {
1966                 mlog_errno(ret);
1967                 goto out;
1968         }
1969
1970         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1971         if (ret < 0) {
1972                 mlog_errno(ret);
1973                 goto out;
1974         } else if (ret == 1) {
1975                 clusters_need = wc->w_clen;
1976                 ret = ocfs2_refcount_cow(inode, di_bh,
1977                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1978                 if (ret) {
1979                         mlog_errno(ret);
1980                         goto out;
1981                 }
1982         }
1983
1984         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1985                                         &extents_to_split);
1986         if (ret) {
1987                 mlog_errno(ret);
1988                 goto out;
1989         }
1990         clusters_need += clusters_to_alloc;
1991
1992         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1993
1994         trace_ocfs2_write_begin_nolock(
1995                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1996                         (long long)i_size_read(inode),
1997                         le32_to_cpu(di->i_clusters),
1998                         pos, len, flags, mmap_page,
1999                         clusters_to_alloc, extents_to_split);
2000
2001         /*
2002          * We set w_target_from, w_target_to here so that
2003          * ocfs2_write_end() knows which range in the target page to
2004          * write out. An allocation requires that we write the entire
2005          * cluster range.
2006          */
2007         if (clusters_to_alloc || extents_to_split) {
2008                 /*
2009                  * XXX: We are stretching the limits of
2010                  * ocfs2_lock_allocators(). It greatly over-estimates
2011                  * the work to be done.
2012                  */
2013                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2014                                               wc->w_di_bh);
2015                 ret = ocfs2_lock_allocators(inode, &et,
2016                                             clusters_to_alloc, extents_to_split,
2017                                             &data_ac, &meta_ac);
2018                 if (ret) {
2019                         mlog_errno(ret);
2020                         goto out;
2021                 }
2022
2023                 if (data_ac)
2024                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2025
2026                 credits = ocfs2_calc_extend_credits(inode->i_sb,
2027                                                     &di->id2.i_list);
2028
2029         }
2030
2031         /*
2032          * We have to zero sparse allocated clusters, unwritten extent clusters,
2033          * and non-sparse clusters we just extended.  For non-sparse writes,
2034          * we know zeros will only be needed in the first and/or last cluster.
2035          */
2036         if (clusters_to_alloc || extents_to_split ||
2037             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2038                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2039                 cluster_of_pages = 1;
2040         else
2041                 cluster_of_pages = 0;
2042
2043         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2044
2045         handle = ocfs2_start_trans(osb, credits);
2046         if (IS_ERR(handle)) {
2047                 ret = PTR_ERR(handle);
2048                 mlog_errno(ret);
2049                 goto out;
2050         }
2051
2052         wc->w_handle = handle;
2053
2054         if (clusters_to_alloc) {
2055                 ret = dquot_alloc_space_nodirty(inode,
2056                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2057                 if (ret)
2058                         goto out_commit;
2059         }
2060         /*
2061          * We don't want this to fail in ocfs2_write_end(), so do it
2062          * here.
2063          */
2064         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2065                                       OCFS2_JOURNAL_ACCESS_WRITE);
2066         if (ret) {
2067                 mlog_errno(ret);
2068                 goto out_quota;
2069         }
2070
2071         /*
2072          * Fill our page array first. That way we've grabbed enough so
2073          * that we can zero and flush if we error after adding the
2074          * extent.
2075          */
2076         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2077                                          cluster_of_pages, mmap_page);
2078         if (ret && ret != -EAGAIN) {
2079                 mlog_errno(ret);
2080                 goto out_quota;
2081         }
2082
2083         /*
2084          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2085          * the target page. In this case, we exit with no error and no target
2086          * page. This will trigger the caller, page_mkwrite(), to re-try
2087          * the operation.
2088          */
2089         if (ret == -EAGAIN) {
2090                 BUG_ON(wc->w_target_page);
2091                 ret = 0;
2092                 goto out_quota;
2093         }
2094
2095         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2096                                           len);
2097         if (ret) {
2098                 mlog_errno(ret);
2099                 goto out_quota;
2100         }
2101
2102         if (data_ac)
2103                 ocfs2_free_alloc_context(data_ac);
2104         if (meta_ac)
2105                 ocfs2_free_alloc_context(meta_ac);
2106
2107 success:
2108         *pagep = wc->w_target_page;
2109         *fsdata = wc;
2110         return 0;
2111 out_quota:
2112         if (clusters_to_alloc)
2113                 dquot_free_space(inode,
2114                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2115 out_commit:
2116         ocfs2_commit_trans(osb, handle);
2117
2118 out:
2119         ocfs2_free_write_ctxt(wc);
2120
2121         if (data_ac) {
2122                 ocfs2_free_alloc_context(data_ac);
2123                 data_ac = NULL;
2124         }
2125         if (meta_ac) {
2126                 ocfs2_free_alloc_context(meta_ac);
2127                 meta_ac = NULL;
2128         }
2129
2130         if (ret == -ENOSPC && try_free) {
2131                 /*
2132                  * Try to free some truncate log so that we can have enough
2133                  * clusters to allocate.
2134                  */
2135                 try_free = 0;
2136
2137                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2138                 if (ret1 == 1)
2139                         goto try_again;
2140
2141                 if (ret1 < 0)
2142                         mlog_errno(ret1);
2143         }
2144
2145         return ret;
2146 }
2147
2148 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2149                              loff_t pos, unsigned len, unsigned flags,
2150                              struct page **pagep, void **fsdata)
2151 {
2152         int ret;
2153         struct buffer_head *di_bh = NULL;
2154         struct inode *inode = mapping->host;
2155
2156         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2157         if (ret) {
2158                 mlog_errno(ret);
2159                 return ret;
2160         }
2161
2162         /*
2163          * Take alloc sem here to prevent concurrent lookups. That way
2164          * the mapping, zeroing and tree manipulation within
2165          * ocfs2_write() will be safe against ->readpage(). This
2166          * should also serve to lock out allocation from a shared
2167          * writeable region.
2168          */
2169         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2170
2171         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2172                                        fsdata, di_bh, NULL);
2173         if (ret) {
2174                 mlog_errno(ret);
2175                 goto out_fail;
2176         }
2177
2178         brelse(di_bh);
2179
2180         return 0;
2181
2182 out_fail:
2183         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2184
2185         brelse(di_bh);
2186         ocfs2_inode_unlock(inode, 1);
2187
2188         return ret;
2189 }
2190
2191 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2192                                    unsigned len, unsigned *copied,
2193                                    struct ocfs2_dinode *di,
2194                                    struct ocfs2_write_ctxt *wc)
2195 {
2196         void *kaddr;
2197
2198         if (unlikely(*copied < len)) {
2199                 if (!PageUptodate(wc->w_target_page)) {
2200                         *copied = 0;
2201                         return;
2202                 }
2203         }
2204
2205         kaddr = kmap_atomic(wc->w_target_page);
2206         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2207         kunmap_atomic(kaddr);
2208
2209         trace_ocfs2_write_end_inline(
2210              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2211              (unsigned long long)pos, *copied,
2212              le16_to_cpu(di->id2.i_data.id_count),
2213              le16_to_cpu(di->i_dyn_features));
2214 }
2215
2216 int ocfs2_write_end_nolock(struct address_space *mapping,
2217                            loff_t pos, unsigned len, unsigned copied,
2218                            struct page *page, void *fsdata)
2219 {
2220         int i;
2221         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2222         struct inode *inode = mapping->host;
2223         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2224         struct ocfs2_write_ctxt *wc = fsdata;
2225         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2226         handle_t *handle = wc->w_handle;
2227         struct page *tmppage;
2228
2229         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2230                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2231                 goto out_write_size;
2232         }
2233
2234         if (unlikely(copied < len)) {
2235                 if (!PageUptodate(wc->w_target_page))
2236                         copied = 0;
2237
2238                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2239                                        start+len);
2240         }
2241         flush_dcache_page(wc->w_target_page);
2242
2243         for(i = 0; i < wc->w_num_pages; i++) {
2244                 tmppage = wc->w_pages[i];
2245
2246                 if (tmppage == wc->w_target_page) {
2247                         from = wc->w_target_from;
2248                         to = wc->w_target_to;
2249
2250                         BUG_ON(from > PAGE_CACHE_SIZE ||
2251                                to > PAGE_CACHE_SIZE ||
2252                                to < from);
2253                 } else {
2254                         /*
2255                          * Pages adjacent to the target (if any) imply
2256                          * a hole-filling write in which case we want
2257                          * to flush their entire range.
2258                          */
2259                         from = 0;
2260                         to = PAGE_CACHE_SIZE;
2261                 }
2262
2263                 if (page_has_buffers(tmppage)) {
2264                         if (ocfs2_should_order_data(inode))
2265                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2266                         block_commit_write(tmppage, from, to);
2267                 }
2268         }
2269
2270 out_write_size:
2271         pos += copied;
2272         if (pos > i_size_read(inode)) {
2273                 i_size_write(inode, pos);
2274                 mark_inode_dirty(inode);
2275         }
2276         inode->i_blocks = ocfs2_inode_sector_count(inode);
2277         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2278         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2279         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2280         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2281         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2282         ocfs2_journal_dirty(handle, wc->w_di_bh);
2283
2284         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2285          * lock, or it will cause a deadlock since journal commit threads holds
2286          * this lock and will ask for the page lock when flushing the data.
2287          * put it here to preserve the unlock order.
2288          */
2289         ocfs2_unlock_pages(wc);
2290
2291         ocfs2_commit_trans(osb, handle);
2292
2293         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2294
2295         brelse(wc->w_di_bh);
2296         kfree(wc);
2297
2298         return copied;
2299 }
2300
2301 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2302                            loff_t pos, unsigned len, unsigned copied,
2303                            struct page *page, void *fsdata)
2304 {
2305         int ret;
2306         struct inode *inode = mapping->host;
2307
2308         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2309
2310         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2311         ocfs2_inode_unlock(inode, 1);
2312
2313         return ret;
2314 }
2315
2316 const struct address_space_operations ocfs2_aops = {
2317         .readpage               = ocfs2_readpage,
2318         .readpages              = ocfs2_readpages,
2319         .writepage              = ocfs2_writepage,
2320         .write_begin            = ocfs2_write_begin,
2321         .write_end              = ocfs2_write_end,
2322         .bmap                   = ocfs2_bmap,
2323         .direct_IO              = ocfs2_direct_IO,
2324         .invalidatepage         = block_invalidatepage,
2325         .releasepage            = ocfs2_releasepage,
2326         .migratepage            = buffer_migrate_page,
2327         .is_partially_uptodate  = block_is_partially_uptodate,
2328         .error_remove_page      = generic_error_remove_page,
2329 };