ocfs2: fix race between dio and recover orphan
[linux-2.6-block.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57                                    struct buffer_head *bh_result, int create)
58 {
59         int err = -EIO;
60         int status;
61         struct ocfs2_dinode *fe = NULL;
62         struct buffer_head *bh = NULL;
63         struct buffer_head *buffer_cache_bh = NULL;
64         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65         void *kaddr;
66
67         trace_ocfs2_symlink_get_block(
68                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
69                         (unsigned long long)iblock, bh_result, create);
70
71         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75                      (unsigned long long)iblock);
76                 goto bail;
77         }
78
79         status = ocfs2_read_inode_block(inode, &bh);
80         if (status < 0) {
81                 mlog_errno(status);
82                 goto bail;
83         }
84         fe = (struct ocfs2_dinode *) bh->b_data;
85
86         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87                                                     le32_to_cpu(fe->i_clusters))) {
88                 err = -ENOMEM;
89                 mlog(ML_ERROR, "block offset is outside the allocated size: "
90                      "%llu\n", (unsigned long long)iblock);
91                 goto bail;
92         }
93
94         /* We don't use the page cache to create symlink data, so if
95          * need be, copy it over from the buffer cache. */
96         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98                             iblock;
99                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100                 if (!buffer_cache_bh) {
101                         err = -ENOMEM;
102                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103                         goto bail;
104                 }
105
106                 /* we haven't locked out transactions, so a commit
107                  * could've happened. Since we've got a reference on
108                  * the bh, even if it commits while we're doing the
109                  * copy, the data is still good. */
110                 if (buffer_jbd(buffer_cache_bh)
111                     && ocfs2_inode_is_new(inode)) {
112                         kaddr = kmap_atomic(bh_result->b_page);
113                         if (!kaddr) {
114                                 mlog(ML_ERROR, "couldn't kmap!\n");
115                                 goto bail;
116                         }
117                         memcpy(kaddr + (bh_result->b_size * iblock),
118                                buffer_cache_bh->b_data,
119                                bh_result->b_size);
120                         kunmap_atomic(kaddr);
121                         set_buffer_uptodate(bh_result);
122                 }
123                 brelse(buffer_cache_bh);
124         }
125
126         map_bh(bh_result, inode->i_sb,
127                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129         err = 0;
130
131 bail:
132         brelse(bh);
133
134         return err;
135 }
136
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138                     struct buffer_head *bh_result, int create)
139 {
140         int err = 0;
141         unsigned int ext_flags;
142         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143         u64 p_blkno, count, past_eof;
144         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147                               (unsigned long long)iblock, bh_result, create);
148
149         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151                      inode, inode->i_ino);
152
153         if (S_ISLNK(inode->i_mode)) {
154                 /* this always does I/O for some reason. */
155                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156                 goto bail;
157         }
158
159         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160                                           &ext_flags);
161         if (err) {
162                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164                      (unsigned long long)p_blkno);
165                 goto bail;
166         }
167
168         if (max_blocks < count)
169                 count = max_blocks;
170
171         /*
172          * ocfs2 never allocates in this function - the only time we
173          * need to use BH_New is when we're extending i_size on a file
174          * system which doesn't support holes, in which case BH_New
175          * allows __block_write_begin() to zero.
176          *
177          * If we see this on a sparse file system, then a truncate has
178          * raced us and removed the cluster. In this case, we clear
179          * the buffers dirty and uptodate bits and let the buffer code
180          * ignore it as a hole.
181          */
182         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183                 clear_buffer_dirty(bh_result);
184                 clear_buffer_uptodate(bh_result);
185                 goto bail;
186         }
187
188         /* Treat the unwritten extent as a hole for zeroing purposes. */
189         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190                 map_bh(bh_result, inode->i_sb, p_blkno);
191
192         bh_result->b_size = count << inode->i_blkbits;
193
194         if (!ocfs2_sparse_alloc(osb)) {
195                 if (p_blkno == 0) {
196                         err = -EIO;
197                         mlog(ML_ERROR,
198                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199                              (unsigned long long)iblock,
200                              (unsigned long long)p_blkno,
201                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
202                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203                         dump_stack();
204                         goto bail;
205                 }
206         }
207
208         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211                                   (unsigned long long)past_eof);
212         if (create && (iblock >= past_eof))
213                 set_buffer_new(bh_result);
214
215 bail:
216         if (err < 0)
217                 err = -EIO;
218
219         return err;
220 }
221
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223                            struct buffer_head *di_bh)
224 {
225         void *kaddr;
226         loff_t size;
227         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
232                 return -EROFS;
233         }
234
235         size = i_size_read(inode);
236
237         if (size > PAGE_CACHE_SIZE ||
238             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239                 ocfs2_error(inode->i_sb,
240                             "Inode %llu has with inline data has bad size: %Lu",
241                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
242                             (unsigned long long)size);
243                 return -EROFS;
244         }
245
246         kaddr = kmap_atomic(page);
247         if (size)
248                 memcpy(kaddr, di->id2.i_data.id_data, size);
249         /* Clear the remaining part of the page */
250         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251         flush_dcache_page(page);
252         kunmap_atomic(kaddr);
253
254         SetPageUptodate(page);
255
256         return 0;
257 }
258
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261         int ret;
262         struct buffer_head *di_bh = NULL;
263
264         BUG_ON(!PageLocked(page));
265         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267         ret = ocfs2_read_inode_block(inode, &di_bh);
268         if (ret) {
269                 mlog_errno(ret);
270                 goto out;
271         }
272
273         ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275         unlock_page(page);
276
277         brelse(di_bh);
278         return ret;
279 }
280
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283         struct inode *inode = page->mapping->host;
284         struct ocfs2_inode_info *oi = OCFS2_I(inode);
285         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286         int ret, unlock = 1;
287
288         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289                              (page ? page->index : 0));
290
291         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292         if (ret != 0) {
293                 if (ret == AOP_TRUNCATED_PAGE)
294                         unlock = 0;
295                 mlog_errno(ret);
296                 goto out;
297         }
298
299         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300                 /*
301                  * Unlock the page and cycle ip_alloc_sem so that we don't
302                  * busyloop waiting for ip_alloc_sem to unlock
303                  */
304                 ret = AOP_TRUNCATED_PAGE;
305                 unlock_page(page);
306                 unlock = 0;
307                 down_read(&oi->ip_alloc_sem);
308                 up_read(&oi->ip_alloc_sem);
309                 goto out_inode_unlock;
310         }
311
312         /*
313          * i_size might have just been updated as we grabed the meta lock.  We
314          * might now be discovering a truncate that hit on another node.
315          * block_read_full_page->get_block freaks out if it is asked to read
316          * beyond the end of a file, so we check here.  Callers
317          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318          * and notice that the page they just read isn't needed.
319          *
320          * XXX sys_readahead() seems to get that wrong?
321          */
322         if (start >= i_size_read(inode)) {
323                 zero_user(page, 0, PAGE_SIZE);
324                 SetPageUptodate(page);
325                 ret = 0;
326                 goto out_alloc;
327         }
328
329         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330                 ret = ocfs2_readpage_inline(inode, page);
331         else
332                 ret = block_read_full_page(page, ocfs2_get_block);
333         unlock = 0;
334
335 out_alloc:
336         up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338         ocfs2_inode_unlock(inode, 0);
339 out:
340         if (unlock)
341                 unlock_page(page);
342         return ret;
343 }
344
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355                            struct list_head *pages, unsigned nr_pages)
356 {
357         int ret, err = -EIO;
358         struct inode *inode = mapping->host;
359         struct ocfs2_inode_info *oi = OCFS2_I(inode);
360         loff_t start;
361         struct page *last;
362
363         /*
364          * Use the nonblocking flag for the dlm code to avoid page
365          * lock inversion, but don't bother with retrying.
366          */
367         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368         if (ret)
369                 return err;
370
371         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372                 ocfs2_inode_unlock(inode, 0);
373                 return err;
374         }
375
376         /*
377          * Don't bother with inline-data. There isn't anything
378          * to read-ahead in that case anyway...
379          */
380         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381                 goto out_unlock;
382
383         /*
384          * Check whether a remote node truncated this file - we just
385          * drop out in that case as it's not worth handling here.
386          */
387         last = list_entry(pages->prev, struct page, lru);
388         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389         if (start >= i_size_read(inode))
390                 goto out_unlock;
391
392         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394 out_unlock:
395         up_read(&oi->ip_alloc_sem);
396         ocfs2_inode_unlock(inode, 0);
397
398         return err;
399 }
400
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414         trace_ocfs2_writepage(
415                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416                 page->index);
417
418         return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(  handle_t *handle,
426                         struct buffer_head *head,
427                         unsigned from,
428                         unsigned to,
429                         int *partial,
430                         int (*fn)(      handle_t *handle,
431                                         struct buffer_head *bh))
432 {
433         struct buffer_head *bh;
434         unsigned block_start, block_end;
435         unsigned blocksize = head->b_size;
436         int err, ret = 0;
437         struct buffer_head *next;
438
439         for (   bh = head, block_start = 0;
440                 ret == 0 && (bh != head || !block_start);
441                 block_start = block_end, bh = next)
442         {
443                 next = bh->b_this_page;
444                 block_end = block_start + blocksize;
445                 if (block_end <= from || block_start >= to) {
446                         if (partial && !buffer_uptodate(bh))
447                                 *partial = 1;
448                         continue;
449                 }
450                 err = (*fn)(handle, bh);
451                 if (!ret)
452                         ret = err;
453         }
454         return ret;
455 }
456
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459         sector_t status;
460         u64 p_blkno = 0;
461         int err = 0;
462         struct inode *inode = mapping->host;
463
464         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465                          (unsigned long long)block);
466
467         /* We don't need to lock journal system files, since they aren't
468          * accessed concurrently from multiple nodes.
469          */
470         if (!INODE_JOURNAL(inode)) {
471                 err = ocfs2_inode_lock(inode, NULL, 0);
472                 if (err) {
473                         if (err != -ENOENT)
474                                 mlog_errno(err);
475                         goto bail;
476                 }
477                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478         }
479
480         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482                                                   NULL);
483
484         if (!INODE_JOURNAL(inode)) {
485                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486                 ocfs2_inode_unlock(inode, 0);
487         }
488
489         if (err) {
490                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491                      (unsigned long long)block);
492                 mlog_errno(err);
493                 goto bail;
494         }
495
496 bail:
497         status = err ? 0 : p_blkno;
498
499         return status;
500 }
501
502 /*
503  * TODO: Make this into a generic get_blocks function.
504  *
505  * From do_direct_io in direct-io.c:
506  *  "So what we do is to permit the ->get_blocks function to populate
507  *   bh.b_size with the size of IO which is permitted at this offset and
508  *   this i_blkbits."
509  *
510  * This function is called directly from get_more_blocks in direct-io.c.
511  *
512  * called like this: dio->get_blocks(dio->inode, fs_startblk,
513  *                                      fs_count, map_bh, dio->rw == WRITE);
514  */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516                                      struct buffer_head *bh_result, int create)
517 {
518         int ret;
519         u32 cpos = 0;
520         int alloc_locked = 0;
521         u64 p_blkno, inode_blocks, contig_blocks;
522         unsigned int ext_flags;
523         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525         unsigned long len = bh_result->b_size;
526         unsigned int clusters_to_alloc = 0, contig_clusters = 0;
527
528         cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529
530         /* This function won't even be called if the request isn't all
531          * nicely aligned and of the right size, so there's no need
532          * for us to check any of that. */
533
534         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535
536         /* This figures out the size of the next contiguous block, and
537          * our logical offset */
538         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
539                                           &contig_blocks, &ext_flags);
540         if (ret) {
541                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542                      (unsigned long long)iblock);
543                 ret = -EIO;
544                 goto bail;
545         }
546
547         /* We should already CoW the refcounted extent in case of create. */
548         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549
550         /* allocate blocks if no p_blkno is found, and create == 1 */
551         if (!p_blkno && create) {
552                 ret = ocfs2_inode_lock(inode, NULL, 1);
553                 if (ret < 0) {
554                         mlog_errno(ret);
555                         goto bail;
556                 }
557
558                 alloc_locked = 1;
559
560                 /* fill hole, allocate blocks can't be larger than the size
561                  * of the hole */
562                 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563                 contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
564                                 contig_blocks);
565                 if (clusters_to_alloc > contig_clusters)
566                         clusters_to_alloc = contig_clusters;
567
568                 /* allocate extent and insert them into the extent tree */
569                 ret = ocfs2_extend_allocation(inode, cpos,
570                                 clusters_to_alloc, 0);
571                 if (ret < 0) {
572                         mlog_errno(ret);
573                         goto bail;
574                 }
575
576                 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
577                                 &contig_blocks, &ext_flags);
578                 if (ret < 0) {
579                         mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
580                                         (unsigned long long)iblock);
581                         ret = -EIO;
582                         goto bail;
583                 }
584         }
585
586         /*
587          * get_more_blocks() expects us to describe a hole by clearing
588          * the mapped bit on bh_result().
589          *
590          * Consider an unwritten extent as a hole.
591          */
592         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
593                 map_bh(bh_result, inode->i_sb, p_blkno);
594         else
595                 clear_buffer_mapped(bh_result);
596
597         /* make sure we don't map more than max_blocks blocks here as
598            that's all the kernel will handle at this point. */
599         if (max_blocks < contig_blocks)
600                 contig_blocks = max_blocks;
601         bh_result->b_size = contig_blocks << blocksize_bits;
602 bail:
603         if (alloc_locked)
604                 ocfs2_inode_unlock(inode, 1);
605         return ret;
606 }
607
608 /*
609  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
610  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
611  * to protect io on one node from truncation on another.
612  */
613 static void ocfs2_dio_end_io(struct kiocb *iocb,
614                              loff_t offset,
615                              ssize_t bytes,
616                              void *private)
617 {
618         struct inode *inode = file_inode(iocb->ki_filp);
619         int level;
620
621         /* this io's submitter should not have unlocked this before we could */
622         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
623
624         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
625                 ocfs2_iocb_clear_unaligned_aio(iocb);
626
627                 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
628         }
629
630         /* Let rw unlock to be done later to protect append direct io write */
631         if (offset + bytes <= i_size_read(inode)) {
632                 ocfs2_iocb_clear_rw_locked(iocb);
633
634                 level = ocfs2_iocb_rw_locked_level(iocb);
635                 ocfs2_rw_unlock(inode, level);
636         }
637 }
638
639 static int ocfs2_releasepage(struct page *page, gfp_t wait)
640 {
641         if (!page_has_buffers(page))
642                 return 0;
643         return try_to_free_buffers(page);
644 }
645
646 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
647                 struct inode *inode, loff_t offset)
648 {
649         int ret = 0;
650         u32 v_cpos = 0;
651         u32 p_cpos = 0;
652         unsigned int num_clusters = 0;
653         unsigned int ext_flags = 0;
654
655         v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
656         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
657                         &num_clusters, &ext_flags);
658         if (ret < 0) {
659                 mlog_errno(ret);
660                 return ret;
661         }
662
663         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
664                 return 1;
665
666         return 0;
667 }
668
669 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
670                 struct inode *inode, loff_t offset,
671                 u64 zero_len, int cluster_align)
672 {
673         u32 p_cpos = 0;
674         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
675         unsigned int num_clusters = 0;
676         unsigned int ext_flags = 0;
677         int ret = 0;
678
679         if (offset <= i_size_read(inode) || cluster_align)
680                 return 0;
681
682         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
683                         &ext_flags);
684         if (ret < 0) {
685                 mlog_errno(ret);
686                 return ret;
687         }
688
689         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
690                 u64 s = i_size_read(inode);
691                 sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
692                         (do_div(s, osb->s_clustersize) >> 9);
693
694                 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
695                                 zero_len >> 9, GFP_NOFS, false);
696                 if (ret < 0)
697                         mlog_errno(ret);
698         }
699
700         return ret;
701 }
702
703 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
704                 struct inode *inode, loff_t offset)
705 {
706         u64 zero_start, zero_len, total_zero_len;
707         u32 p_cpos = 0, clusters_to_add;
708         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
709         unsigned int num_clusters = 0;
710         unsigned int ext_flags = 0;
711         u32 size_div, offset_div;
712         int ret = 0;
713
714         {
715                 u64 o = offset;
716                 u64 s = i_size_read(inode);
717
718                 offset_div = do_div(o, osb->s_clustersize);
719                 size_div = do_div(s, osb->s_clustersize);
720         }
721
722         if (offset <= i_size_read(inode))
723                 return 0;
724
725         clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
726                 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
727         total_zero_len = offset - i_size_read(inode);
728         if (clusters_to_add)
729                 total_zero_len -= offset_div;
730
731         /* Allocate clusters to fill out holes, and this is only needed
732          * when we add more than one clusters. Otherwise the cluster will
733          * be allocated during direct IO */
734         if (clusters_to_add > 1) {
735                 ret = ocfs2_extend_allocation(inode,
736                                 OCFS2_I(inode)->ip_clusters,
737                                 clusters_to_add - 1, 0);
738                 if (ret) {
739                         mlog_errno(ret);
740                         goto out;
741                 }
742         }
743
744         while (total_zero_len) {
745                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
746                                 &ext_flags);
747                 if (ret < 0) {
748                         mlog_errno(ret);
749                         goto out;
750                 }
751
752                 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
753                         size_div;
754                 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
755                         size_div;
756                 zero_len = min(total_zero_len, zero_len);
757
758                 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
759                         ret = blkdev_issue_zeroout(osb->sb->s_bdev,
760                                         zero_start >> 9, zero_len >> 9,
761                                         GFP_NOFS, false);
762                         if (ret < 0) {
763                                 mlog_errno(ret);
764                                 goto out;
765                         }
766                 }
767
768                 total_zero_len -= zero_len;
769                 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
770
771                 /* Only at first iteration can be cluster not aligned.
772                  * So set size_div to 0 for the rest */
773                 size_div = 0;
774         }
775
776 out:
777         return ret;
778 }
779
780 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
781                 struct iov_iter *iter,
782                 loff_t offset)
783 {
784         ssize_t ret = 0;
785         ssize_t written = 0;
786         bool orphaned = false;
787         int is_overwrite = 0;
788         struct file *file = iocb->ki_filp;
789         struct inode *inode = file_inode(file)->i_mapping->host;
790         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
791         struct buffer_head *di_bh = NULL;
792         size_t count = iter->count;
793         journal_t *journal = osb->journal->j_journal;
794         u64 zero_len_head, zero_len_tail;
795         int cluster_align_head, cluster_align_tail;
796         loff_t final_size = offset + count;
797         int append_write = offset >= i_size_read(inode) ? 1 : 0;
798         unsigned int num_clusters = 0;
799         unsigned int ext_flags = 0;
800
801         {
802                 u64 o = offset;
803                 u64 s = i_size_read(inode);
804
805                 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
806                 cluster_align_head = !zero_len_head;
807
808                 zero_len_tail = osb->s_clustersize -
809                         do_div(s, osb->s_clustersize);
810                 if ((offset - i_size_read(inode)) < zero_len_tail)
811                         zero_len_tail = offset - i_size_read(inode);
812                 cluster_align_tail = !zero_len_tail;
813         }
814
815         /*
816          * when final_size > inode->i_size, inode->i_size will be
817          * updated after direct write, so add the inode to orphan
818          * dir first.
819          */
820         if (final_size > i_size_read(inode)) {
821                 ret = ocfs2_add_inode_to_orphan(osb, inode);
822                 if (ret < 0) {
823                         mlog_errno(ret);
824                         goto out;
825                 }
826                 orphaned = true;
827         }
828
829         if (append_write) {
830                 ret = ocfs2_inode_lock(inode, NULL, 1);
831                 if (ret < 0) {
832                         mlog_errno(ret);
833                         goto clean_orphan;
834                 }
835
836                 /* zeroing out the previously allocated cluster tail
837                  * that but not zeroed */
838                 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
839                         ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
840                                         zero_len_tail, cluster_align_tail);
841                 else
842                         ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
843                                         offset);
844                 if (ret < 0) {
845                         mlog_errno(ret);
846                         ocfs2_inode_unlock(inode, 1);
847                         goto clean_orphan;
848                 }
849
850                 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
851                 if (is_overwrite < 0) {
852                         mlog_errno(is_overwrite);
853                         ocfs2_inode_unlock(inode, 1);
854                         goto clean_orphan;
855                 }
856
857                 ocfs2_inode_unlock(inode, 1);
858         }
859
860         written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
861                                        offset, ocfs2_direct_IO_get_blocks,
862                                        ocfs2_dio_end_io, NULL, 0);
863         if (unlikely(written < 0)) {
864                 loff_t i_size = i_size_read(inode);
865
866                 if (offset + count > i_size) {
867                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
868                         if (ret < 0) {
869                                 mlog_errno(ret);
870                                 goto clean_orphan;
871                         }
872
873                         if (i_size == i_size_read(inode)) {
874                                 ret = ocfs2_truncate_file(inode, di_bh,
875                                                 i_size);
876                                 if (ret < 0) {
877                                         if (ret != -ENOSPC)
878                                                 mlog_errno(ret);
879
880                                         ocfs2_inode_unlock(inode, 1);
881                                         brelse(di_bh);
882                                         goto clean_orphan;
883                                 }
884                         }
885
886                         ocfs2_inode_unlock(inode, 1);
887                         brelse(di_bh);
888
889                         ret = jbd2_journal_force_commit(journal);
890                         if (ret < 0)
891                                 mlog_errno(ret);
892                 }
893         } else if (written > 0 && append_write && !is_overwrite &&
894                         !cluster_align_head) {
895                 /* zeroing out the allocated cluster head */
896                 u32 p_cpos = 0;
897                 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
898
899                 ret = ocfs2_inode_lock(inode, NULL, 0);
900                 if (ret < 0) {
901                         mlog_errno(ret);
902                         goto clean_orphan;
903                 }
904
905                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
906                                 &num_clusters, &ext_flags);
907                 if (ret < 0) {
908                         mlog_errno(ret);
909                         ocfs2_inode_unlock(inode, 0);
910                         goto clean_orphan;
911                 }
912
913                 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
914
915                 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
916                                 (u64)p_cpos << (osb->s_clustersize_bits - 9),
917                                 zero_len_head >> 9, GFP_NOFS, false);
918                 if (ret < 0)
919                         mlog_errno(ret);
920
921                 ocfs2_inode_unlock(inode, 0);
922         }
923
924 clean_orphan:
925         if (orphaned) {
926                 int tmp_ret;
927                 int update_isize = written > 0 ? 1 : 0;
928                 loff_t end = update_isize ? offset + written : 0;
929
930                 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
931                 if (tmp_ret < 0) {
932                         ret = tmp_ret;
933                         mlog_errno(ret);
934                         goto out;
935                 }
936
937                 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
938                                 update_isize, end);
939                 if (tmp_ret < 0) {
940                         ret = tmp_ret;
941                         mlog_errno(ret);
942                         goto out;
943                 }
944
945                 ocfs2_inode_unlock(inode, 1);
946
947                 tmp_ret = jbd2_journal_force_commit(journal);
948                 if (tmp_ret < 0) {
949                         ret = tmp_ret;
950                         mlog_errno(tmp_ret);
951                 }
952         }
953
954 out:
955         if (ret >= 0)
956                 ret = written;
957         return ret;
958 }
959
960 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
961                                loff_t offset)
962 {
963         struct file *file = iocb->ki_filp;
964         struct inode *inode = file_inode(file)->i_mapping->host;
965         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
966         int full_coherency = !(osb->s_mount_opt &
967                         OCFS2_MOUNT_COHERENCY_BUFFERED);
968
969         /*
970          * Fallback to buffered I/O if we see an inode without
971          * extents.
972          */
973         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
974                 return 0;
975
976         /* Fallback to buffered I/O if we are appending and
977          * concurrent O_DIRECT writes are allowed.
978          */
979         if (i_size_read(inode) <= offset && !full_coherency)
980                 return 0;
981
982         if (iov_iter_rw(iter) == READ)
983                 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
984                                             iter, offset,
985                                             ocfs2_direct_IO_get_blocks,
986                                             ocfs2_dio_end_io, NULL, 0);
987         else
988                 return ocfs2_direct_IO_write(iocb, iter, offset);
989 }
990
991 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
992                                             u32 cpos,
993                                             unsigned int *start,
994                                             unsigned int *end)
995 {
996         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
997
998         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
999                 unsigned int cpp;
1000
1001                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1002
1003                 cluster_start = cpos % cpp;
1004                 cluster_start = cluster_start << osb->s_clustersize_bits;
1005
1006                 cluster_end = cluster_start + osb->s_clustersize;
1007         }
1008
1009         BUG_ON(cluster_start > PAGE_SIZE);
1010         BUG_ON(cluster_end > PAGE_SIZE);
1011
1012         if (start)
1013                 *start = cluster_start;
1014         if (end)
1015                 *end = cluster_end;
1016 }
1017
1018 /*
1019  * 'from' and 'to' are the region in the page to avoid zeroing.
1020  *
1021  * If pagesize > clustersize, this function will avoid zeroing outside
1022  * of the cluster boundary.
1023  *
1024  * from == to == 0 is code for "zero the entire cluster region"
1025  */
1026 static void ocfs2_clear_page_regions(struct page *page,
1027                                      struct ocfs2_super *osb, u32 cpos,
1028                                      unsigned from, unsigned to)
1029 {
1030         void *kaddr;
1031         unsigned int cluster_start, cluster_end;
1032
1033         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1034
1035         kaddr = kmap_atomic(page);
1036
1037         if (from || to) {
1038                 if (from > cluster_start)
1039                         memset(kaddr + cluster_start, 0, from - cluster_start);
1040                 if (to < cluster_end)
1041                         memset(kaddr + to, 0, cluster_end - to);
1042         } else {
1043                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1044         }
1045
1046         kunmap_atomic(kaddr);
1047 }
1048
1049 /*
1050  * Nonsparse file systems fully allocate before we get to the write
1051  * code. This prevents ocfs2_write() from tagging the write as an
1052  * allocating one, which means ocfs2_map_page_blocks() might try to
1053  * read-in the blocks at the tail of our file. Avoid reading them by
1054  * testing i_size against each block offset.
1055  */
1056 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1057                                  unsigned int block_start)
1058 {
1059         u64 offset = page_offset(page) + block_start;
1060
1061         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1062                 return 1;
1063
1064         if (i_size_read(inode) > offset)
1065                 return 1;
1066
1067         return 0;
1068 }
1069
1070 /*
1071  * Some of this taken from __block_write_begin(). We already have our
1072  * mapping by now though, and the entire write will be allocating or
1073  * it won't, so not much need to use BH_New.
1074  *
1075  * This will also skip zeroing, which is handled externally.
1076  */
1077 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1078                           struct inode *inode, unsigned int from,
1079                           unsigned int to, int new)
1080 {
1081         int ret = 0;
1082         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1083         unsigned int block_end, block_start;
1084         unsigned int bsize = 1 << inode->i_blkbits;
1085
1086         if (!page_has_buffers(page))
1087                 create_empty_buffers(page, bsize, 0);
1088
1089         head = page_buffers(page);
1090         for (bh = head, block_start = 0; bh != head || !block_start;
1091              bh = bh->b_this_page, block_start += bsize) {
1092                 block_end = block_start + bsize;
1093
1094                 clear_buffer_new(bh);
1095
1096                 /*
1097                  * Ignore blocks outside of our i/o range -
1098                  * they may belong to unallocated clusters.
1099                  */
1100                 if (block_start >= to || block_end <= from) {
1101                         if (PageUptodate(page))
1102                                 set_buffer_uptodate(bh);
1103                         continue;
1104                 }
1105
1106                 /*
1107                  * For an allocating write with cluster size >= page
1108                  * size, we always write the entire page.
1109                  */
1110                 if (new)
1111                         set_buffer_new(bh);
1112
1113                 if (!buffer_mapped(bh)) {
1114                         map_bh(bh, inode->i_sb, *p_blkno);
1115                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1116                 }
1117
1118                 if (PageUptodate(page)) {
1119                         if (!buffer_uptodate(bh))
1120                                 set_buffer_uptodate(bh);
1121                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1122                            !buffer_new(bh) &&
1123                            ocfs2_should_read_blk(inode, page, block_start) &&
1124                            (block_start < from || block_end > to)) {
1125                         ll_rw_block(READ, 1, &bh);
1126                         *wait_bh++=bh;
1127                 }
1128
1129                 *p_blkno = *p_blkno + 1;
1130         }
1131
1132         /*
1133          * If we issued read requests - let them complete.
1134          */
1135         while(wait_bh > wait) {
1136                 wait_on_buffer(*--wait_bh);
1137                 if (!buffer_uptodate(*wait_bh))
1138                         ret = -EIO;
1139         }
1140
1141         if (ret == 0 || !new)
1142                 return ret;
1143
1144         /*
1145          * If we get -EIO above, zero out any newly allocated blocks
1146          * to avoid exposing stale data.
1147          */
1148         bh = head;
1149         block_start = 0;
1150         do {
1151                 block_end = block_start + bsize;
1152                 if (block_end <= from)
1153                         goto next_bh;
1154                 if (block_start >= to)
1155                         break;
1156
1157                 zero_user(page, block_start, bh->b_size);
1158                 set_buffer_uptodate(bh);
1159                 mark_buffer_dirty(bh);
1160
1161 next_bh:
1162                 block_start = block_end;
1163                 bh = bh->b_this_page;
1164         } while (bh != head);
1165
1166         return ret;
1167 }
1168
1169 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1170 #define OCFS2_MAX_CTXT_PAGES    1
1171 #else
1172 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1173 #endif
1174
1175 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1176
1177 /*
1178  * Describe the state of a single cluster to be written to.
1179  */
1180 struct ocfs2_write_cluster_desc {
1181         u32             c_cpos;
1182         u32             c_phys;
1183         /*
1184          * Give this a unique field because c_phys eventually gets
1185          * filled.
1186          */
1187         unsigned        c_new;
1188         unsigned        c_unwritten;
1189         unsigned        c_needs_zero;
1190 };
1191
1192 struct ocfs2_write_ctxt {
1193         /* Logical cluster position / len of write */
1194         u32                             w_cpos;
1195         u32                             w_clen;
1196
1197         /* First cluster allocated in a nonsparse extend */
1198         u32                             w_first_new_cpos;
1199
1200         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1201
1202         /*
1203          * This is true if page_size > cluster_size.
1204          *
1205          * It triggers a set of special cases during write which might
1206          * have to deal with allocating writes to partial pages.
1207          */
1208         unsigned int                    w_large_pages;
1209
1210         /*
1211          * Pages involved in this write.
1212          *
1213          * w_target_page is the page being written to by the user.
1214          *
1215          * w_pages is an array of pages which always contains
1216          * w_target_page, and in the case of an allocating write with
1217          * page_size < cluster size, it will contain zero'd and mapped
1218          * pages adjacent to w_target_page which need to be written
1219          * out in so that future reads from that region will get
1220          * zero's.
1221          */
1222         unsigned int                    w_num_pages;
1223         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1224         struct page                     *w_target_page;
1225
1226         /*
1227          * w_target_locked is used for page_mkwrite path indicating no unlocking
1228          * against w_target_page in ocfs2_write_end_nolock.
1229          */
1230         unsigned int                    w_target_locked:1;
1231
1232         /*
1233          * ocfs2_write_end() uses this to know what the real range to
1234          * write in the target should be.
1235          */
1236         unsigned int                    w_target_from;
1237         unsigned int                    w_target_to;
1238
1239         /*
1240          * We could use journal_current_handle() but this is cleaner,
1241          * IMHO -Mark
1242          */
1243         handle_t                        *w_handle;
1244
1245         struct buffer_head              *w_di_bh;
1246
1247         struct ocfs2_cached_dealloc_ctxt w_dealloc;
1248 };
1249
1250 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1251 {
1252         int i;
1253
1254         for(i = 0; i < num_pages; i++) {
1255                 if (pages[i]) {
1256                         unlock_page(pages[i]);
1257                         mark_page_accessed(pages[i]);
1258                         page_cache_release(pages[i]);
1259                 }
1260         }
1261 }
1262
1263 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1264 {
1265         int i;
1266
1267         /*
1268          * w_target_locked is only set to true in the page_mkwrite() case.
1269          * The intent is to allow us to lock the target page from write_begin()
1270          * to write_end(). The caller must hold a ref on w_target_page.
1271          */
1272         if (wc->w_target_locked) {
1273                 BUG_ON(!wc->w_target_page);
1274                 for (i = 0; i < wc->w_num_pages; i++) {
1275                         if (wc->w_target_page == wc->w_pages[i]) {
1276                                 wc->w_pages[i] = NULL;
1277                                 break;
1278                         }
1279                 }
1280                 mark_page_accessed(wc->w_target_page);
1281                 page_cache_release(wc->w_target_page);
1282         }
1283         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1284 }
1285
1286 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1287 {
1288         ocfs2_unlock_pages(wc);
1289         brelse(wc->w_di_bh);
1290         kfree(wc);
1291 }
1292
1293 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1294                                   struct ocfs2_super *osb, loff_t pos,
1295                                   unsigned len, struct buffer_head *di_bh)
1296 {
1297         u32 cend;
1298         struct ocfs2_write_ctxt *wc;
1299
1300         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1301         if (!wc)
1302                 return -ENOMEM;
1303
1304         wc->w_cpos = pos >> osb->s_clustersize_bits;
1305         wc->w_first_new_cpos = UINT_MAX;
1306         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1307         wc->w_clen = cend - wc->w_cpos + 1;
1308         get_bh(di_bh);
1309         wc->w_di_bh = di_bh;
1310
1311         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1312                 wc->w_large_pages = 1;
1313         else
1314                 wc->w_large_pages = 0;
1315
1316         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1317
1318         *wcp = wc;
1319
1320         return 0;
1321 }
1322
1323 /*
1324  * If a page has any new buffers, zero them out here, and mark them uptodate
1325  * and dirty so they'll be written out (in order to prevent uninitialised
1326  * block data from leaking). And clear the new bit.
1327  */
1328 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1329 {
1330         unsigned int block_start, block_end;
1331         struct buffer_head *head, *bh;
1332
1333         BUG_ON(!PageLocked(page));
1334         if (!page_has_buffers(page))
1335                 return;
1336
1337         bh = head = page_buffers(page);
1338         block_start = 0;
1339         do {
1340                 block_end = block_start + bh->b_size;
1341
1342                 if (buffer_new(bh)) {
1343                         if (block_end > from && block_start < to) {
1344                                 if (!PageUptodate(page)) {
1345                                         unsigned start, end;
1346
1347                                         start = max(from, block_start);
1348                                         end = min(to, block_end);
1349
1350                                         zero_user_segment(page, start, end);
1351                                         set_buffer_uptodate(bh);
1352                                 }
1353
1354                                 clear_buffer_new(bh);
1355                                 mark_buffer_dirty(bh);
1356                         }
1357                 }
1358
1359                 block_start = block_end;
1360                 bh = bh->b_this_page;
1361         } while (bh != head);
1362 }
1363
1364 /*
1365  * Only called when we have a failure during allocating write to write
1366  * zero's to the newly allocated region.
1367  */
1368 static void ocfs2_write_failure(struct inode *inode,
1369                                 struct ocfs2_write_ctxt *wc,
1370                                 loff_t user_pos, unsigned user_len)
1371 {
1372         int i;
1373         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1374                 to = user_pos + user_len;
1375         struct page *tmppage;
1376
1377         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1378
1379         for(i = 0; i < wc->w_num_pages; i++) {
1380                 tmppage = wc->w_pages[i];
1381
1382                 if (page_has_buffers(tmppage)) {
1383                         if (ocfs2_should_order_data(inode))
1384                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1385
1386                         block_commit_write(tmppage, from, to);
1387                 }
1388         }
1389 }
1390
1391 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1392                                         struct ocfs2_write_ctxt *wc,
1393                                         struct page *page, u32 cpos,
1394                                         loff_t user_pos, unsigned user_len,
1395                                         int new)
1396 {
1397         int ret;
1398         unsigned int map_from = 0, map_to = 0;
1399         unsigned int cluster_start, cluster_end;
1400         unsigned int user_data_from = 0, user_data_to = 0;
1401
1402         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1403                                         &cluster_start, &cluster_end);
1404
1405         /* treat the write as new if the a hole/lseek spanned across
1406          * the page boundary.
1407          */
1408         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1409                         (page_offset(page) <= user_pos));
1410
1411         if (page == wc->w_target_page) {
1412                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1413                 map_to = map_from + user_len;
1414
1415                 if (new)
1416                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1417                                                     cluster_start, cluster_end,
1418                                                     new);
1419                 else
1420                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1421                                                     map_from, map_to, new);
1422                 if (ret) {
1423                         mlog_errno(ret);
1424                         goto out;
1425                 }
1426
1427                 user_data_from = map_from;
1428                 user_data_to = map_to;
1429                 if (new) {
1430                         map_from = cluster_start;
1431                         map_to = cluster_end;
1432                 }
1433         } else {
1434                 /*
1435                  * If we haven't allocated the new page yet, we
1436                  * shouldn't be writing it out without copying user
1437                  * data. This is likely a math error from the caller.
1438                  */
1439                 BUG_ON(!new);
1440
1441                 map_from = cluster_start;
1442                 map_to = cluster_end;
1443
1444                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1445                                             cluster_start, cluster_end, new);
1446                 if (ret) {
1447                         mlog_errno(ret);
1448                         goto out;
1449                 }
1450         }
1451
1452         /*
1453          * Parts of newly allocated pages need to be zero'd.
1454          *
1455          * Above, we have also rewritten 'to' and 'from' - as far as
1456          * the rest of the function is concerned, the entire cluster
1457          * range inside of a page needs to be written.
1458          *
1459          * We can skip this if the page is up to date - it's already
1460          * been zero'd from being read in as a hole.
1461          */
1462         if (new && !PageUptodate(page))
1463                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1464                                          cpos, user_data_from, user_data_to);
1465
1466         flush_dcache_page(page);
1467
1468 out:
1469         return ret;
1470 }
1471
1472 /*
1473  * This function will only grab one clusters worth of pages.
1474  */
1475 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1476                                       struct ocfs2_write_ctxt *wc,
1477                                       u32 cpos, loff_t user_pos,
1478                                       unsigned user_len, int new,
1479                                       struct page *mmap_page)
1480 {
1481         int ret = 0, i;
1482         unsigned long start, target_index, end_index, index;
1483         struct inode *inode = mapping->host;
1484         loff_t last_byte;
1485
1486         target_index = user_pos >> PAGE_CACHE_SHIFT;
1487
1488         /*
1489          * Figure out how many pages we'll be manipulating here. For
1490          * non allocating write, we just change the one
1491          * page. Otherwise, we'll need a whole clusters worth.  If we're
1492          * writing past i_size, we only need enough pages to cover the
1493          * last page of the write.
1494          */
1495         if (new) {
1496                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1497                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1498                 /*
1499                  * We need the index *past* the last page we could possibly
1500                  * touch.  This is the page past the end of the write or
1501                  * i_size, whichever is greater.
1502                  */
1503                 last_byte = max(user_pos + user_len, i_size_read(inode));
1504                 BUG_ON(last_byte < 1);
1505                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1506                 if ((start + wc->w_num_pages) > end_index)
1507                         wc->w_num_pages = end_index - start;
1508         } else {
1509                 wc->w_num_pages = 1;
1510                 start = target_index;
1511         }
1512
1513         for(i = 0; i < wc->w_num_pages; i++) {
1514                 index = start + i;
1515
1516                 if (index == target_index && mmap_page) {
1517                         /*
1518                          * ocfs2_pagemkwrite() is a little different
1519                          * and wants us to directly use the page
1520                          * passed in.
1521                          */
1522                         lock_page(mmap_page);
1523
1524                         /* Exit and let the caller retry */
1525                         if (mmap_page->mapping != mapping) {
1526                                 WARN_ON(mmap_page->mapping);
1527                                 unlock_page(mmap_page);
1528                                 ret = -EAGAIN;
1529                                 goto out;
1530                         }
1531
1532                         page_cache_get(mmap_page);
1533                         wc->w_pages[i] = mmap_page;
1534                         wc->w_target_locked = true;
1535                 } else {
1536                         wc->w_pages[i] = find_or_create_page(mapping, index,
1537                                                              GFP_NOFS);
1538                         if (!wc->w_pages[i]) {
1539                                 ret = -ENOMEM;
1540                                 mlog_errno(ret);
1541                                 goto out;
1542                         }
1543                 }
1544                 wait_for_stable_page(wc->w_pages[i]);
1545
1546                 if (index == target_index)
1547                         wc->w_target_page = wc->w_pages[i];
1548         }
1549 out:
1550         if (ret)
1551                 wc->w_target_locked = false;
1552         return ret;
1553 }
1554
1555 /*
1556  * Prepare a single cluster for write one cluster into the file.
1557  */
1558 static int ocfs2_write_cluster(struct address_space *mapping,
1559                                u32 phys, unsigned int unwritten,
1560                                unsigned int should_zero,
1561                                struct ocfs2_alloc_context *data_ac,
1562                                struct ocfs2_alloc_context *meta_ac,
1563                                struct ocfs2_write_ctxt *wc, u32 cpos,
1564                                loff_t user_pos, unsigned user_len)
1565 {
1566         int ret, i, new;
1567         u64 v_blkno, p_blkno;
1568         struct inode *inode = mapping->host;
1569         struct ocfs2_extent_tree et;
1570
1571         new = phys == 0 ? 1 : 0;
1572         if (new) {
1573                 u32 tmp_pos;
1574
1575                 /*
1576                  * This is safe to call with the page locks - it won't take
1577                  * any additional semaphores or cluster locks.
1578                  */
1579                 tmp_pos = cpos;
1580                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1581                                            &tmp_pos, 1, 0, wc->w_di_bh,
1582                                            wc->w_handle, data_ac,
1583                                            meta_ac, NULL);
1584                 /*
1585                  * This shouldn't happen because we must have already
1586                  * calculated the correct meta data allocation required. The
1587                  * internal tree allocation code should know how to increase
1588                  * transaction credits itself.
1589                  *
1590                  * If need be, we could handle -EAGAIN for a
1591                  * RESTART_TRANS here.
1592                  */
1593                 mlog_bug_on_msg(ret == -EAGAIN,
1594                                 "Inode %llu: EAGAIN return during allocation.\n",
1595                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1596                 if (ret < 0) {
1597                         mlog_errno(ret);
1598                         goto out;
1599                 }
1600         } else if (unwritten) {
1601                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1602                                               wc->w_di_bh);
1603                 ret = ocfs2_mark_extent_written(inode, &et,
1604                                                 wc->w_handle, cpos, 1, phys,
1605                                                 meta_ac, &wc->w_dealloc);
1606                 if (ret < 0) {
1607                         mlog_errno(ret);
1608                         goto out;
1609                 }
1610         }
1611
1612         if (should_zero)
1613                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1614         else
1615                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1616
1617         /*
1618          * The only reason this should fail is due to an inability to
1619          * find the extent added.
1620          */
1621         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1622                                           NULL);
1623         if (ret < 0) {
1624                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1625                             "at logical block %llu",
1626                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1627                             (unsigned long long)v_blkno);
1628                 goto out;
1629         }
1630
1631         BUG_ON(p_blkno == 0);
1632
1633         for(i = 0; i < wc->w_num_pages; i++) {
1634                 int tmpret;
1635
1636                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1637                                                       wc->w_pages[i], cpos,
1638                                                       user_pos, user_len,
1639                                                       should_zero);
1640                 if (tmpret) {
1641                         mlog_errno(tmpret);
1642                         if (ret == 0)
1643                                 ret = tmpret;
1644                 }
1645         }
1646
1647         /*
1648          * We only have cleanup to do in case of allocating write.
1649          */
1650         if (ret && new)
1651                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1652
1653 out:
1654
1655         return ret;
1656 }
1657
1658 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1659                                        struct ocfs2_alloc_context *data_ac,
1660                                        struct ocfs2_alloc_context *meta_ac,
1661                                        struct ocfs2_write_ctxt *wc,
1662                                        loff_t pos, unsigned len)
1663 {
1664         int ret, i;
1665         loff_t cluster_off;
1666         unsigned int local_len = len;
1667         struct ocfs2_write_cluster_desc *desc;
1668         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1669
1670         for (i = 0; i < wc->w_clen; i++) {
1671                 desc = &wc->w_desc[i];
1672
1673                 /*
1674                  * We have to make sure that the total write passed in
1675                  * doesn't extend past a single cluster.
1676                  */
1677                 local_len = len;
1678                 cluster_off = pos & (osb->s_clustersize - 1);
1679                 if ((cluster_off + local_len) > osb->s_clustersize)
1680                         local_len = osb->s_clustersize - cluster_off;
1681
1682                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1683                                           desc->c_unwritten,
1684                                           desc->c_needs_zero,
1685                                           data_ac, meta_ac,
1686                                           wc, desc->c_cpos, pos, local_len);
1687                 if (ret) {
1688                         mlog_errno(ret);
1689                         goto out;
1690                 }
1691
1692                 len -= local_len;
1693                 pos += local_len;
1694         }
1695
1696         ret = 0;
1697 out:
1698         return ret;
1699 }
1700
1701 /*
1702  * ocfs2_write_end() wants to know which parts of the target page it
1703  * should complete the write on. It's easiest to compute them ahead of
1704  * time when a more complete view of the write is available.
1705  */
1706 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1707                                         struct ocfs2_write_ctxt *wc,
1708                                         loff_t pos, unsigned len, int alloc)
1709 {
1710         struct ocfs2_write_cluster_desc *desc;
1711
1712         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1713         wc->w_target_to = wc->w_target_from + len;
1714
1715         if (alloc == 0)
1716                 return;
1717
1718         /*
1719          * Allocating write - we may have different boundaries based
1720          * on page size and cluster size.
1721          *
1722          * NOTE: We can no longer compute one value from the other as
1723          * the actual write length and user provided length may be
1724          * different.
1725          */
1726
1727         if (wc->w_large_pages) {
1728                 /*
1729                  * We only care about the 1st and last cluster within
1730                  * our range and whether they should be zero'd or not. Either
1731                  * value may be extended out to the start/end of a
1732                  * newly allocated cluster.
1733                  */
1734                 desc = &wc->w_desc[0];
1735                 if (desc->c_needs_zero)
1736                         ocfs2_figure_cluster_boundaries(osb,
1737                                                         desc->c_cpos,
1738                                                         &wc->w_target_from,
1739                                                         NULL);
1740
1741                 desc = &wc->w_desc[wc->w_clen - 1];
1742                 if (desc->c_needs_zero)
1743                         ocfs2_figure_cluster_boundaries(osb,
1744                                                         desc->c_cpos,
1745                                                         NULL,
1746                                                         &wc->w_target_to);
1747         } else {
1748                 wc->w_target_from = 0;
1749                 wc->w_target_to = PAGE_CACHE_SIZE;
1750         }
1751 }
1752
1753 /*
1754  * Populate each single-cluster write descriptor in the write context
1755  * with information about the i/o to be done.
1756  *
1757  * Returns the number of clusters that will have to be allocated, as
1758  * well as a worst case estimate of the number of extent records that
1759  * would have to be created during a write to an unwritten region.
1760  */
1761 static int ocfs2_populate_write_desc(struct inode *inode,
1762                                      struct ocfs2_write_ctxt *wc,
1763                                      unsigned int *clusters_to_alloc,
1764                                      unsigned int *extents_to_split)
1765 {
1766         int ret;
1767         struct ocfs2_write_cluster_desc *desc;
1768         unsigned int num_clusters = 0;
1769         unsigned int ext_flags = 0;
1770         u32 phys = 0;
1771         int i;
1772
1773         *clusters_to_alloc = 0;
1774         *extents_to_split = 0;
1775
1776         for (i = 0; i < wc->w_clen; i++) {
1777                 desc = &wc->w_desc[i];
1778                 desc->c_cpos = wc->w_cpos + i;
1779
1780                 if (num_clusters == 0) {
1781                         /*
1782                          * Need to look up the next extent record.
1783                          */
1784                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1785                                                  &num_clusters, &ext_flags);
1786                         if (ret) {
1787                                 mlog_errno(ret);
1788                                 goto out;
1789                         }
1790
1791                         /* We should already CoW the refcountd extent. */
1792                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1793
1794                         /*
1795                          * Assume worst case - that we're writing in
1796                          * the middle of the extent.
1797                          *
1798                          * We can assume that the write proceeds from
1799                          * left to right, in which case the extent
1800                          * insert code is smart enough to coalesce the
1801                          * next splits into the previous records created.
1802                          */
1803                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1804                                 *extents_to_split = *extents_to_split + 2;
1805                 } else if (phys) {
1806                         /*
1807                          * Only increment phys if it doesn't describe
1808                          * a hole.
1809                          */
1810                         phys++;
1811                 }
1812
1813                 /*
1814                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1815                  * file that got extended.  w_first_new_cpos tells us
1816                  * where the newly allocated clusters are so we can
1817                  * zero them.
1818                  */
1819                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1820                         BUG_ON(phys == 0);
1821                         desc->c_needs_zero = 1;
1822                 }
1823
1824                 desc->c_phys = phys;
1825                 if (phys == 0) {
1826                         desc->c_new = 1;
1827                         desc->c_needs_zero = 1;
1828                         *clusters_to_alloc = *clusters_to_alloc + 1;
1829                 }
1830
1831                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1832                         desc->c_unwritten = 1;
1833                         desc->c_needs_zero = 1;
1834                 }
1835
1836                 num_clusters--;
1837         }
1838
1839         ret = 0;
1840 out:
1841         return ret;
1842 }
1843
1844 static int ocfs2_write_begin_inline(struct address_space *mapping,
1845                                     struct inode *inode,
1846                                     struct ocfs2_write_ctxt *wc)
1847 {
1848         int ret;
1849         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1850         struct page *page;
1851         handle_t *handle;
1852         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1853
1854         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1855         if (IS_ERR(handle)) {
1856                 ret = PTR_ERR(handle);
1857                 mlog_errno(ret);
1858                 goto out;
1859         }
1860
1861         page = find_or_create_page(mapping, 0, GFP_NOFS);
1862         if (!page) {
1863                 ocfs2_commit_trans(osb, handle);
1864                 ret = -ENOMEM;
1865                 mlog_errno(ret);
1866                 goto out;
1867         }
1868         /*
1869          * If we don't set w_num_pages then this page won't get unlocked
1870          * and freed on cleanup of the write context.
1871          */
1872         wc->w_pages[0] = wc->w_target_page = page;
1873         wc->w_num_pages = 1;
1874
1875         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1876                                       OCFS2_JOURNAL_ACCESS_WRITE);
1877         if (ret) {
1878                 ocfs2_commit_trans(osb, handle);
1879
1880                 mlog_errno(ret);
1881                 goto out;
1882         }
1883
1884         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1885                 ocfs2_set_inode_data_inline(inode, di);
1886
1887         if (!PageUptodate(page)) {
1888                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1889                 if (ret) {
1890                         ocfs2_commit_trans(osb, handle);
1891
1892                         goto out;
1893                 }
1894         }
1895
1896         wc->w_handle = handle;
1897 out:
1898         return ret;
1899 }
1900
1901 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1902 {
1903         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1904
1905         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1906                 return 1;
1907         return 0;
1908 }
1909
1910 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1911                                           struct inode *inode, loff_t pos,
1912                                           unsigned len, struct page *mmap_page,
1913                                           struct ocfs2_write_ctxt *wc)
1914 {
1915         int ret, written = 0;
1916         loff_t end = pos + len;
1917         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1918         struct ocfs2_dinode *di = NULL;
1919
1920         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1921                                              len, (unsigned long long)pos,
1922                                              oi->ip_dyn_features);
1923
1924         /*
1925          * Handle inodes which already have inline data 1st.
1926          */
1927         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1928                 if (mmap_page == NULL &&
1929                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1930                         goto do_inline_write;
1931
1932                 /*
1933                  * The write won't fit - we have to give this inode an
1934                  * inline extent list now.
1935                  */
1936                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1937                 if (ret)
1938                         mlog_errno(ret);
1939                 goto out;
1940         }
1941
1942         /*
1943          * Check whether the inode can accept inline data.
1944          */
1945         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1946                 return 0;
1947
1948         /*
1949          * Check whether the write can fit.
1950          */
1951         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1952         if (mmap_page ||
1953             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1954                 return 0;
1955
1956 do_inline_write:
1957         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1958         if (ret) {
1959                 mlog_errno(ret);
1960                 goto out;
1961         }
1962
1963         /*
1964          * This signals to the caller that the data can be written
1965          * inline.
1966          */
1967         written = 1;
1968 out:
1969         return written ? written : ret;
1970 }
1971
1972 /*
1973  * This function only does anything for file systems which can't
1974  * handle sparse files.
1975  *
1976  * What we want to do here is fill in any hole between the current end
1977  * of allocation and the end of our write. That way the rest of the
1978  * write path can treat it as an non-allocating write, which has no
1979  * special case code for sparse/nonsparse files.
1980  */
1981 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1982                                         struct buffer_head *di_bh,
1983                                         loff_t pos, unsigned len,
1984                                         struct ocfs2_write_ctxt *wc)
1985 {
1986         int ret;
1987         loff_t newsize = pos + len;
1988
1989         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1990
1991         if (newsize <= i_size_read(inode))
1992                 return 0;
1993
1994         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1995         if (ret)
1996                 mlog_errno(ret);
1997
1998         wc->w_first_new_cpos =
1999                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
2000
2001         return ret;
2002 }
2003
2004 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2005                            loff_t pos)
2006 {
2007         int ret = 0;
2008
2009         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2010         if (pos > i_size_read(inode))
2011                 ret = ocfs2_zero_extend(inode, di_bh, pos);
2012
2013         return ret;
2014 }
2015
2016 /*
2017  * Try to flush truncate logs if we can free enough clusters from it.
2018  * As for return value, "< 0" means error, "0" no space and "1" means
2019  * we have freed enough spaces and let the caller try to allocate again.
2020  */
2021 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2022                                           unsigned int needed)
2023 {
2024         tid_t target;
2025         int ret = 0;
2026         unsigned int truncated_clusters;
2027
2028         mutex_lock(&osb->osb_tl_inode->i_mutex);
2029         truncated_clusters = osb->truncated_clusters;
2030         mutex_unlock(&osb->osb_tl_inode->i_mutex);
2031
2032         /*
2033          * Check whether we can succeed in allocating if we free
2034          * the truncate log.
2035          */
2036         if (truncated_clusters < needed)
2037                 goto out;
2038
2039         ret = ocfs2_flush_truncate_log(osb);
2040         if (ret) {
2041                 mlog_errno(ret);
2042                 goto out;
2043         }
2044
2045         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2046                 jbd2_log_wait_commit(osb->journal->j_journal, target);
2047                 ret = 1;
2048         }
2049 out:
2050         return ret;
2051 }
2052
2053 int ocfs2_write_begin_nolock(struct file *filp,
2054                              struct address_space *mapping,
2055                              loff_t pos, unsigned len, unsigned flags,
2056                              struct page **pagep, void **fsdata,
2057                              struct buffer_head *di_bh, struct page *mmap_page)
2058 {
2059         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2060         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2061         struct ocfs2_write_ctxt *wc;
2062         struct inode *inode = mapping->host;
2063         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2064         struct ocfs2_dinode *di;
2065         struct ocfs2_alloc_context *data_ac = NULL;
2066         struct ocfs2_alloc_context *meta_ac = NULL;
2067         handle_t *handle;
2068         struct ocfs2_extent_tree et;
2069         int try_free = 1, ret1;
2070
2071 try_again:
2072         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2073         if (ret) {
2074                 mlog_errno(ret);
2075                 return ret;
2076         }
2077
2078         if (ocfs2_supports_inline_data(osb)) {
2079                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2080                                                      mmap_page, wc);
2081                 if (ret == 1) {
2082                         ret = 0;
2083                         goto success;
2084                 }
2085                 if (ret < 0) {
2086                         mlog_errno(ret);
2087                         goto out;
2088                 }
2089         }
2090
2091         if (ocfs2_sparse_alloc(osb))
2092                 ret = ocfs2_zero_tail(inode, di_bh, pos);
2093         else
2094                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2095                                                    wc);
2096         if (ret) {
2097                 mlog_errno(ret);
2098                 goto out;
2099         }
2100
2101         ret = ocfs2_check_range_for_refcount(inode, pos, len);
2102         if (ret < 0) {
2103                 mlog_errno(ret);
2104                 goto out;
2105         } else if (ret == 1) {
2106                 clusters_need = wc->w_clen;
2107                 ret = ocfs2_refcount_cow(inode, di_bh,
2108                                          wc->w_cpos, wc->w_clen, UINT_MAX);
2109                 if (ret) {
2110                         mlog_errno(ret);
2111                         goto out;
2112                 }
2113         }
2114
2115         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2116                                         &extents_to_split);
2117         if (ret) {
2118                 mlog_errno(ret);
2119                 goto out;
2120         }
2121         clusters_need += clusters_to_alloc;
2122
2123         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2124
2125         trace_ocfs2_write_begin_nolock(
2126                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2127                         (long long)i_size_read(inode),
2128                         le32_to_cpu(di->i_clusters),
2129                         pos, len, flags, mmap_page,
2130                         clusters_to_alloc, extents_to_split);
2131
2132         /*
2133          * We set w_target_from, w_target_to here so that
2134          * ocfs2_write_end() knows which range in the target page to
2135          * write out. An allocation requires that we write the entire
2136          * cluster range.
2137          */
2138         if (clusters_to_alloc || extents_to_split) {
2139                 /*
2140                  * XXX: We are stretching the limits of
2141                  * ocfs2_lock_allocators(). It greatly over-estimates
2142                  * the work to be done.
2143                  */
2144                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2145                                               wc->w_di_bh);
2146                 ret = ocfs2_lock_allocators(inode, &et,
2147                                             clusters_to_alloc, extents_to_split,
2148                                             &data_ac, &meta_ac);
2149                 if (ret) {
2150                         mlog_errno(ret);
2151                         goto out;
2152                 }
2153
2154                 if (data_ac)
2155                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2156
2157                 credits = ocfs2_calc_extend_credits(inode->i_sb,
2158                                                     &di->id2.i_list);
2159
2160         }
2161
2162         /*
2163          * We have to zero sparse allocated clusters, unwritten extent clusters,
2164          * and non-sparse clusters we just extended.  For non-sparse writes,
2165          * we know zeros will only be needed in the first and/or last cluster.
2166          */
2167         if (clusters_to_alloc || extents_to_split ||
2168             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2169                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2170                 cluster_of_pages = 1;
2171         else
2172                 cluster_of_pages = 0;
2173
2174         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2175
2176         handle = ocfs2_start_trans(osb, credits);
2177         if (IS_ERR(handle)) {
2178                 ret = PTR_ERR(handle);
2179                 mlog_errno(ret);
2180                 goto out;
2181         }
2182
2183         wc->w_handle = handle;
2184
2185         if (clusters_to_alloc) {
2186                 ret = dquot_alloc_space_nodirty(inode,
2187                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2188                 if (ret)
2189                         goto out_commit;
2190         }
2191         /*
2192          * We don't want this to fail in ocfs2_write_end(), so do it
2193          * here.
2194          */
2195         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2196                                       OCFS2_JOURNAL_ACCESS_WRITE);
2197         if (ret) {
2198                 mlog_errno(ret);
2199                 goto out_quota;
2200         }
2201
2202         /*
2203          * Fill our page array first. That way we've grabbed enough so
2204          * that we can zero and flush if we error after adding the
2205          * extent.
2206          */
2207         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2208                                          cluster_of_pages, mmap_page);
2209         if (ret && ret != -EAGAIN) {
2210                 mlog_errno(ret);
2211                 goto out_quota;
2212         }
2213
2214         /*
2215          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2216          * the target page. In this case, we exit with no error and no target
2217          * page. This will trigger the caller, page_mkwrite(), to re-try
2218          * the operation.
2219          */
2220         if (ret == -EAGAIN) {
2221                 BUG_ON(wc->w_target_page);
2222                 ret = 0;
2223                 goto out_quota;
2224         }
2225
2226         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2227                                           len);
2228         if (ret) {
2229                 mlog_errno(ret);
2230                 goto out_quota;
2231         }
2232
2233         if (data_ac)
2234                 ocfs2_free_alloc_context(data_ac);
2235         if (meta_ac)
2236                 ocfs2_free_alloc_context(meta_ac);
2237
2238 success:
2239         *pagep = wc->w_target_page;
2240         *fsdata = wc;
2241         return 0;
2242 out_quota:
2243         if (clusters_to_alloc)
2244                 dquot_free_space(inode,
2245                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2246 out_commit:
2247         ocfs2_commit_trans(osb, handle);
2248
2249 out:
2250         ocfs2_free_write_ctxt(wc);
2251
2252         if (data_ac) {
2253                 ocfs2_free_alloc_context(data_ac);
2254                 data_ac = NULL;
2255         }
2256         if (meta_ac) {
2257                 ocfs2_free_alloc_context(meta_ac);
2258                 meta_ac = NULL;
2259         }
2260
2261         if (ret == -ENOSPC && try_free) {
2262                 /*
2263                  * Try to free some truncate log so that we can have enough
2264                  * clusters to allocate.
2265                  */
2266                 try_free = 0;
2267
2268                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2269                 if (ret1 == 1)
2270                         goto try_again;
2271
2272                 if (ret1 < 0)
2273                         mlog_errno(ret1);
2274         }
2275
2276         return ret;
2277 }
2278
2279 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2280                              loff_t pos, unsigned len, unsigned flags,
2281                              struct page **pagep, void **fsdata)
2282 {
2283         int ret;
2284         struct buffer_head *di_bh = NULL;
2285         struct inode *inode = mapping->host;
2286
2287         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2288         if (ret) {
2289                 mlog_errno(ret);
2290                 return ret;
2291         }
2292
2293         /*
2294          * Take alloc sem here to prevent concurrent lookups. That way
2295          * the mapping, zeroing and tree manipulation within
2296          * ocfs2_write() will be safe against ->readpage(). This
2297          * should also serve to lock out allocation from a shared
2298          * writeable region.
2299          */
2300         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2301
2302         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2303                                        fsdata, di_bh, NULL);
2304         if (ret) {
2305                 mlog_errno(ret);
2306                 goto out_fail;
2307         }
2308
2309         brelse(di_bh);
2310
2311         return 0;
2312
2313 out_fail:
2314         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2315
2316         brelse(di_bh);
2317         ocfs2_inode_unlock(inode, 1);
2318
2319         return ret;
2320 }
2321
2322 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2323                                    unsigned len, unsigned *copied,
2324                                    struct ocfs2_dinode *di,
2325                                    struct ocfs2_write_ctxt *wc)
2326 {
2327         void *kaddr;
2328
2329         if (unlikely(*copied < len)) {
2330                 if (!PageUptodate(wc->w_target_page)) {
2331                         *copied = 0;
2332                         return;
2333                 }
2334         }
2335
2336         kaddr = kmap_atomic(wc->w_target_page);
2337         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2338         kunmap_atomic(kaddr);
2339
2340         trace_ocfs2_write_end_inline(
2341              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2342              (unsigned long long)pos, *copied,
2343              le16_to_cpu(di->id2.i_data.id_count),
2344              le16_to_cpu(di->i_dyn_features));
2345 }
2346
2347 int ocfs2_write_end_nolock(struct address_space *mapping,
2348                            loff_t pos, unsigned len, unsigned copied,
2349                            struct page *page, void *fsdata)
2350 {
2351         int i;
2352         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2353         struct inode *inode = mapping->host;
2354         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2355         struct ocfs2_write_ctxt *wc = fsdata;
2356         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2357         handle_t *handle = wc->w_handle;
2358         struct page *tmppage;
2359
2360         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2361                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2362                 goto out_write_size;
2363         }
2364
2365         if (unlikely(copied < len)) {
2366                 if (!PageUptodate(wc->w_target_page))
2367                         copied = 0;
2368
2369                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2370                                        start+len);
2371         }
2372         flush_dcache_page(wc->w_target_page);
2373
2374         for(i = 0; i < wc->w_num_pages; i++) {
2375                 tmppage = wc->w_pages[i];
2376
2377                 if (tmppage == wc->w_target_page) {
2378                         from = wc->w_target_from;
2379                         to = wc->w_target_to;
2380
2381                         BUG_ON(from > PAGE_CACHE_SIZE ||
2382                                to > PAGE_CACHE_SIZE ||
2383                                to < from);
2384                 } else {
2385                         /*
2386                          * Pages adjacent to the target (if any) imply
2387                          * a hole-filling write in which case we want
2388                          * to flush their entire range.
2389                          */
2390                         from = 0;
2391                         to = PAGE_CACHE_SIZE;
2392                 }
2393
2394                 if (page_has_buffers(tmppage)) {
2395                         if (ocfs2_should_order_data(inode))
2396                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2397                         block_commit_write(tmppage, from, to);
2398                 }
2399         }
2400
2401 out_write_size:
2402         pos += copied;
2403         if (pos > i_size_read(inode)) {
2404                 i_size_write(inode, pos);
2405                 mark_inode_dirty(inode);
2406         }
2407         inode->i_blocks = ocfs2_inode_sector_count(inode);
2408         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2409         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2410         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2411         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2412         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2413         ocfs2_journal_dirty(handle, wc->w_di_bh);
2414
2415         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2416          * lock, or it will cause a deadlock since journal commit threads holds
2417          * this lock and will ask for the page lock when flushing the data.
2418          * put it here to preserve the unlock order.
2419          */
2420         ocfs2_unlock_pages(wc);
2421
2422         ocfs2_commit_trans(osb, handle);
2423
2424         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2425
2426         brelse(wc->w_di_bh);
2427         kfree(wc);
2428
2429         return copied;
2430 }
2431
2432 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2433                            loff_t pos, unsigned len, unsigned copied,
2434                            struct page *page, void *fsdata)
2435 {
2436         int ret;
2437         struct inode *inode = mapping->host;
2438
2439         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2440
2441         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2442         ocfs2_inode_unlock(inode, 1);
2443
2444         return ret;
2445 }
2446
2447 const struct address_space_operations ocfs2_aops = {
2448         .readpage               = ocfs2_readpage,
2449         .readpages              = ocfs2_readpages,
2450         .writepage              = ocfs2_writepage,
2451         .write_begin            = ocfs2_write_begin,
2452         .write_end              = ocfs2_write_end,
2453         .bmap                   = ocfs2_bmap,
2454         .direct_IO              = ocfs2_direct_IO,
2455         .invalidatepage         = block_invalidatepage,
2456         .releasepage            = ocfs2_releasepage,
2457         .migratepage            = buffer_migrate_page,
2458         .is_partially_uptodate  = block_is_partially_uptodate,
2459         .error_remove_page      = generic_error_remove_page,
2460 };