Linux 6.10-rc3
[linux-2.6-block.git] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41
42 static const struct address_space_operations hugetlbfs_aops;
43 static const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48
49 struct hugetlbfs_fs_context {
50         struct hstate           *hstate;
51         unsigned long long      max_size_opt;
52         unsigned long long      min_size_opt;
53         long                    max_hpages;
54         long                    nr_inodes;
55         long                    min_hpages;
56         enum hugetlbfs_size_type max_val_type;
57         enum hugetlbfs_size_type min_val_type;
58         kuid_t                  uid;
59         kgid_t                  gid;
60         umode_t                 mode;
61 };
62
63 int sysctl_hugetlb_shm_group;
64
65 enum hugetlb_param {
66         Opt_gid,
67         Opt_min_size,
68         Opt_mode,
69         Opt_nr_inodes,
70         Opt_pagesize,
71         Opt_size,
72         Opt_uid,
73 };
74
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76         fsparam_u32   ("gid",           Opt_gid),
77         fsparam_string("min_size",      Opt_min_size),
78         fsparam_u32oct("mode",          Opt_mode),
79         fsparam_string("nr_inodes",     Opt_nr_inodes),
80         fsparam_string("pagesize",      Opt_pagesize),
81         fsparam_string("size",          Opt_size),
82         fsparam_u32   ("uid",           Opt_uid),
83         {}
84 };
85
86 /*
87  * Mask used when checking the page offset value passed in via system
88  * calls.  This value will be converted to a loff_t which is signed.
89  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
90  * value.  The extra bit (- 1 in the shift value) is to take the sign
91  * bit into account.
92  */
93 #define PGOFF_LOFFT_MAX \
94         (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
95
96 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
97 {
98         struct inode *inode = file_inode(file);
99         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
100         loff_t len, vma_len;
101         int ret;
102         struct hstate *h = hstate_file(file);
103         vm_flags_t vm_flags;
104
105         /*
106          * vma address alignment (but not the pgoff alignment) has
107          * already been checked by prepare_hugepage_range.  If you add
108          * any error returns here, do so after setting VM_HUGETLB, so
109          * is_vm_hugetlb_page tests below unmap_region go the right
110          * way when do_mmap unwinds (may be important on powerpc
111          * and ia64).
112          */
113         vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
114         vma->vm_ops = &hugetlb_vm_ops;
115
116         ret = seal_check_write(info->seals, vma);
117         if (ret)
118                 return ret;
119
120         /*
121          * page based offset in vm_pgoff could be sufficiently large to
122          * overflow a loff_t when converted to byte offset.  This can
123          * only happen on architectures where sizeof(loff_t) ==
124          * sizeof(unsigned long).  So, only check in those instances.
125          */
126         if (sizeof(unsigned long) == sizeof(loff_t)) {
127                 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
128                         return -EINVAL;
129         }
130
131         /* must be huge page aligned */
132         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
133                 return -EINVAL;
134
135         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
136         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
137         /* check for overflow */
138         if (len < vma_len)
139                 return -EINVAL;
140
141         inode_lock(inode);
142         file_accessed(file);
143
144         ret = -ENOMEM;
145
146         vm_flags = vma->vm_flags;
147         /*
148          * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
149          * reserving here. Note: only for SHM hugetlbfs file, the inode
150          * flag S_PRIVATE is set.
151          */
152         if (inode->i_flags & S_PRIVATE)
153                 vm_flags |= VM_NORESERVE;
154
155         if (!hugetlb_reserve_pages(inode,
156                                 vma->vm_pgoff >> huge_page_order(h),
157                                 len >> huge_page_shift(h), vma,
158                                 vm_flags))
159                 goto out;
160
161         ret = 0;
162         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
163                 i_size_write(inode, len);
164 out:
165         inode_unlock(inode);
166
167         return ret;
168 }
169
170 /*
171  * Called under mmap_write_lock(mm).
172  */
173
174 static unsigned long
175 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
176                 unsigned long len, unsigned long pgoff, unsigned long flags)
177 {
178         struct hstate *h = hstate_file(file);
179         struct vm_unmapped_area_info info = {};
180
181         info.length = len;
182         info.low_limit = current->mm->mmap_base;
183         info.high_limit = arch_get_mmap_end(addr, len, flags);
184         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
185         return vm_unmapped_area(&info);
186 }
187
188 static unsigned long
189 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
190                 unsigned long len, unsigned long pgoff, unsigned long flags)
191 {
192         struct hstate *h = hstate_file(file);
193         struct vm_unmapped_area_info info = {};
194
195         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
196         info.length = len;
197         info.low_limit = PAGE_SIZE;
198         info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
199         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
200         addr = vm_unmapped_area(&info);
201
202         /*
203          * A failed mmap() very likely causes application failure,
204          * so fall back to the bottom-up function here. This scenario
205          * can happen with large stack limits and large mmap()
206          * allocations.
207          */
208         if (unlikely(offset_in_page(addr))) {
209                 VM_BUG_ON(addr != -ENOMEM);
210                 info.flags = 0;
211                 info.low_limit = current->mm->mmap_base;
212                 info.high_limit = arch_get_mmap_end(addr, len, flags);
213                 addr = vm_unmapped_area(&info);
214         }
215
216         return addr;
217 }
218
219 unsigned long
220 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
221                                   unsigned long len, unsigned long pgoff,
222                                   unsigned long flags)
223 {
224         struct mm_struct *mm = current->mm;
225         struct vm_area_struct *vma;
226         struct hstate *h = hstate_file(file);
227         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
228
229         if (len & ~huge_page_mask(h))
230                 return -EINVAL;
231         if (len > TASK_SIZE)
232                 return -ENOMEM;
233
234         if (flags & MAP_FIXED) {
235                 if (prepare_hugepage_range(file, addr, len))
236                         return -EINVAL;
237                 return addr;
238         }
239
240         if (addr) {
241                 addr = ALIGN(addr, huge_page_size(h));
242                 vma = find_vma(mm, addr);
243                 if (mmap_end - len >= addr &&
244                     (!vma || addr + len <= vm_start_gap(vma)))
245                         return addr;
246         }
247
248         /*
249          * Use MMF_TOPDOWN flag as a hint to use topdown routine.
250          * If architectures have special needs, they should define their own
251          * version of hugetlb_get_unmapped_area.
252          */
253         if (test_bit(MMF_TOPDOWN, &mm->flags))
254                 return hugetlb_get_unmapped_area_topdown(file, addr, len,
255                                 pgoff, flags);
256         return hugetlb_get_unmapped_area_bottomup(file, addr, len,
257                         pgoff, flags);
258 }
259
260 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
261 static unsigned long
262 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
263                           unsigned long len, unsigned long pgoff,
264                           unsigned long flags)
265 {
266         return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
267 }
268 #endif
269
270 /*
271  * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
272  * Returns the maximum number of bytes one can read without touching the 1st raw
273  * HWPOISON subpage.
274  *
275  * The implementation borrows the iteration logic from copy_page_to_iter*.
276  */
277 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
278 {
279         size_t n = 0;
280         size_t res = 0;
281
282         /* First subpage to start the loop. */
283         page = nth_page(page, offset / PAGE_SIZE);
284         offset %= PAGE_SIZE;
285         while (1) {
286                 if (is_raw_hwpoison_page_in_hugepage(page))
287                         break;
288
289                 /* Safe to read n bytes without touching HWPOISON subpage. */
290                 n = min(bytes, (size_t)PAGE_SIZE - offset);
291                 res += n;
292                 bytes -= n;
293                 if (!bytes || !n)
294                         break;
295                 offset += n;
296                 if (offset == PAGE_SIZE) {
297                         page = nth_page(page, 1);
298                         offset = 0;
299                 }
300         }
301
302         return res;
303 }
304
305 /*
306  * Support for read() - Find the page attached to f_mapping and copy out the
307  * data. This provides functionality similar to filemap_read().
308  */
309 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
310 {
311         struct file *file = iocb->ki_filp;
312         struct hstate *h = hstate_file(file);
313         struct address_space *mapping = file->f_mapping;
314         struct inode *inode = mapping->host;
315         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
316         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
317         unsigned long end_index;
318         loff_t isize;
319         ssize_t retval = 0;
320
321         while (iov_iter_count(to)) {
322                 struct folio *folio;
323                 size_t nr, copied, want;
324
325                 /* nr is the maximum number of bytes to copy from this page */
326                 nr = huge_page_size(h);
327                 isize = i_size_read(inode);
328                 if (!isize)
329                         break;
330                 end_index = (isize - 1) >> huge_page_shift(h);
331                 if (index > end_index)
332                         break;
333                 if (index == end_index) {
334                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
335                         if (nr <= offset)
336                                 break;
337                 }
338                 nr = nr - offset;
339
340                 /* Find the folio */
341                 folio = filemap_lock_hugetlb_folio(h, mapping, index);
342                 if (IS_ERR(folio)) {
343                         /*
344                          * We have a HOLE, zero out the user-buffer for the
345                          * length of the hole or request.
346                          */
347                         copied = iov_iter_zero(nr, to);
348                 } else {
349                         folio_unlock(folio);
350
351                         if (!folio_test_hwpoison(folio))
352                                 want = nr;
353                         else {
354                                 /*
355                                  * Adjust how many bytes safe to read without
356                                  * touching the 1st raw HWPOISON subpage after
357                                  * offset.
358                                  */
359                                 want = adjust_range_hwpoison(&folio->page, offset, nr);
360                                 if (want == 0) {
361                                         folio_put(folio);
362                                         retval = -EIO;
363                                         break;
364                                 }
365                         }
366
367                         /*
368                          * We have the folio, copy it to user space buffer.
369                          */
370                         copied = copy_folio_to_iter(folio, offset, want, to);
371                         folio_put(folio);
372                 }
373                 offset += copied;
374                 retval += copied;
375                 if (copied != nr && iov_iter_count(to)) {
376                         if (!retval)
377                                 retval = -EFAULT;
378                         break;
379                 }
380                 index += offset >> huge_page_shift(h);
381                 offset &= ~huge_page_mask(h);
382         }
383         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
384         return retval;
385 }
386
387 static int hugetlbfs_write_begin(struct file *file,
388                         struct address_space *mapping,
389                         loff_t pos, unsigned len,
390                         struct page **pagep, void **fsdata)
391 {
392         return -EINVAL;
393 }
394
395 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
396                         loff_t pos, unsigned len, unsigned copied,
397                         struct page *page, void *fsdata)
398 {
399         BUG();
400         return -EINVAL;
401 }
402
403 static void hugetlb_delete_from_page_cache(struct folio *folio)
404 {
405         folio_clear_dirty(folio);
406         folio_clear_uptodate(folio);
407         filemap_remove_folio(folio);
408 }
409
410 /*
411  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
412  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
413  * mutex for the page in the mapping.  So, we can not race with page being
414  * faulted into the vma.
415  */
416 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
417                                 unsigned long addr, struct page *page)
418 {
419         pte_t *ptep, pte;
420
421         ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
422         if (!ptep)
423                 return false;
424
425         pte = huge_ptep_get(ptep);
426         if (huge_pte_none(pte) || !pte_present(pte))
427                 return false;
428
429         if (pte_page(pte) == page)
430                 return true;
431
432         return false;
433 }
434
435 /*
436  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
437  * No, because the interval tree returns us only those vmas
438  * which overlap the truncated area starting at pgoff,
439  * and no vma on a 32-bit arch can span beyond the 4GB.
440  */
441 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
442 {
443         unsigned long offset = 0;
444
445         if (vma->vm_pgoff < start)
446                 offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
447
448         return vma->vm_start + offset;
449 }
450
451 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
452 {
453         unsigned long t_end;
454
455         if (!end)
456                 return vma->vm_end;
457
458         t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
459         if (t_end > vma->vm_end)
460                 t_end = vma->vm_end;
461         return t_end;
462 }
463
464 /*
465  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
466  * this folio can be created while executing the routine.
467  */
468 static void hugetlb_unmap_file_folio(struct hstate *h,
469                                         struct address_space *mapping,
470                                         struct folio *folio, pgoff_t index)
471 {
472         struct rb_root_cached *root = &mapping->i_mmap;
473         struct hugetlb_vma_lock *vma_lock;
474         struct page *page = &folio->page;
475         struct vm_area_struct *vma;
476         unsigned long v_start;
477         unsigned long v_end;
478         pgoff_t start, end;
479
480         start = index * pages_per_huge_page(h);
481         end = (index + 1) * pages_per_huge_page(h);
482
483         i_mmap_lock_write(mapping);
484 retry:
485         vma_lock = NULL;
486         vma_interval_tree_foreach(vma, root, start, end - 1) {
487                 v_start = vma_offset_start(vma, start);
488                 v_end = vma_offset_end(vma, end);
489
490                 if (!hugetlb_vma_maps_page(vma, v_start, page))
491                         continue;
492
493                 if (!hugetlb_vma_trylock_write(vma)) {
494                         vma_lock = vma->vm_private_data;
495                         /*
496                          * If we can not get vma lock, we need to drop
497                          * immap_sema and take locks in order.  First,
498                          * take a ref on the vma_lock structure so that
499                          * we can be guaranteed it will not go away when
500                          * dropping immap_sema.
501                          */
502                         kref_get(&vma_lock->refs);
503                         break;
504                 }
505
506                 unmap_hugepage_range(vma, v_start, v_end, NULL,
507                                      ZAP_FLAG_DROP_MARKER);
508                 hugetlb_vma_unlock_write(vma);
509         }
510
511         i_mmap_unlock_write(mapping);
512
513         if (vma_lock) {
514                 /*
515                  * Wait on vma_lock.  We know it is still valid as we have
516                  * a reference.  We must 'open code' vma locking as we do
517                  * not know if vma_lock is still attached to vma.
518                  */
519                 down_write(&vma_lock->rw_sema);
520                 i_mmap_lock_write(mapping);
521
522                 vma = vma_lock->vma;
523                 if (!vma) {
524                         /*
525                          * If lock is no longer attached to vma, then just
526                          * unlock, drop our reference and retry looking for
527                          * other vmas.
528                          */
529                         up_write(&vma_lock->rw_sema);
530                         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
531                         goto retry;
532                 }
533
534                 /*
535                  * vma_lock is still attached to vma.  Check to see if vma
536                  * still maps page and if so, unmap.
537                  */
538                 v_start = vma_offset_start(vma, start);
539                 v_end = vma_offset_end(vma, end);
540                 if (hugetlb_vma_maps_page(vma, v_start, page))
541                         unmap_hugepage_range(vma, v_start, v_end, NULL,
542                                              ZAP_FLAG_DROP_MARKER);
543
544                 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
545                 hugetlb_vma_unlock_write(vma);
546
547                 goto retry;
548         }
549 }
550
551 static void
552 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
553                       zap_flags_t zap_flags)
554 {
555         struct vm_area_struct *vma;
556
557         /*
558          * end == 0 indicates that the entire range after start should be
559          * unmapped.  Note, end is exclusive, whereas the interval tree takes
560          * an inclusive "last".
561          */
562         vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
563                 unsigned long v_start;
564                 unsigned long v_end;
565
566                 if (!hugetlb_vma_trylock_write(vma))
567                         continue;
568
569                 v_start = vma_offset_start(vma, start);
570                 v_end = vma_offset_end(vma, end);
571
572                 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
573
574                 /*
575                  * Note that vma lock only exists for shared/non-private
576                  * vmas.  Therefore, lock is not held when calling
577                  * unmap_hugepage_range for private vmas.
578                  */
579                 hugetlb_vma_unlock_write(vma);
580         }
581 }
582
583 /*
584  * Called with hugetlb fault mutex held.
585  * Returns true if page was actually removed, false otherwise.
586  */
587 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
588                                         struct address_space *mapping,
589                                         struct folio *folio, pgoff_t index,
590                                         bool truncate_op)
591 {
592         bool ret = false;
593
594         /*
595          * If folio is mapped, it was faulted in after being
596          * unmapped in caller.  Unmap (again) while holding
597          * the fault mutex.  The mutex will prevent faults
598          * until we finish removing the folio.
599          */
600         if (unlikely(folio_mapped(folio)))
601                 hugetlb_unmap_file_folio(h, mapping, folio, index);
602
603         folio_lock(folio);
604         /*
605          * We must remove the folio from page cache before removing
606          * the region/ reserve map (hugetlb_unreserve_pages).  In
607          * rare out of memory conditions, removal of the region/reserve
608          * map could fail.  Correspondingly, the subpool and global
609          * reserve usage count can need to be adjusted.
610          */
611         VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
612         hugetlb_delete_from_page_cache(folio);
613         ret = true;
614         if (!truncate_op) {
615                 if (unlikely(hugetlb_unreserve_pages(inode, index,
616                                                         index + 1, 1)))
617                         hugetlb_fix_reserve_counts(inode);
618         }
619
620         folio_unlock(folio);
621         return ret;
622 }
623
624 /*
625  * remove_inode_hugepages handles two distinct cases: truncation and hole
626  * punch.  There are subtle differences in operation for each case.
627  *
628  * truncation is indicated by end of range being LLONG_MAX
629  *      In this case, we first scan the range and release found pages.
630  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
631  *      maps and global counts.  Page faults can race with truncation.
632  *      During faults, hugetlb_no_page() checks i_size before page allocation,
633  *      and again after obtaining page table lock.  It will 'back out'
634  *      allocations in the truncated range.
635  * hole punch is indicated if end is not LLONG_MAX
636  *      In the hole punch case we scan the range and release found pages.
637  *      Only when releasing a page is the associated region/reserve map
638  *      deleted.  The region/reserve map for ranges without associated
639  *      pages are not modified.  Page faults can race with hole punch.
640  *      This is indicated if we find a mapped page.
641  * Note: If the passed end of range value is beyond the end of file, but
642  * not LLONG_MAX this routine still performs a hole punch operation.
643  */
644 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
645                                    loff_t lend)
646 {
647         struct hstate *h = hstate_inode(inode);
648         struct address_space *mapping = &inode->i_data;
649         const pgoff_t end = lend >> PAGE_SHIFT;
650         struct folio_batch fbatch;
651         pgoff_t next, index;
652         int i, freed = 0;
653         bool truncate_op = (lend == LLONG_MAX);
654
655         folio_batch_init(&fbatch);
656         next = lstart >> PAGE_SHIFT;
657         while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
658                 for (i = 0; i < folio_batch_count(&fbatch); ++i) {
659                         struct folio *folio = fbatch.folios[i];
660                         u32 hash = 0;
661
662                         index = folio->index >> huge_page_order(h);
663                         hash = hugetlb_fault_mutex_hash(mapping, index);
664                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
665
666                         /*
667                          * Remove folio that was part of folio_batch.
668                          */
669                         if (remove_inode_single_folio(h, inode, mapping, folio,
670                                                         index, truncate_op))
671                                 freed++;
672
673                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
674                 }
675                 folio_batch_release(&fbatch);
676                 cond_resched();
677         }
678
679         if (truncate_op)
680                 (void)hugetlb_unreserve_pages(inode,
681                                 lstart >> huge_page_shift(h),
682                                 LONG_MAX, freed);
683 }
684
685 static void hugetlbfs_evict_inode(struct inode *inode)
686 {
687         struct resv_map *resv_map;
688
689         remove_inode_hugepages(inode, 0, LLONG_MAX);
690
691         /*
692          * Get the resv_map from the address space embedded in the inode.
693          * This is the address space which points to any resv_map allocated
694          * at inode creation time.  If this is a device special inode,
695          * i_mapping may not point to the original address space.
696          */
697         resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
698         /* Only regular and link inodes have associated reserve maps */
699         if (resv_map)
700                 resv_map_release(&resv_map->refs);
701         clear_inode(inode);
702 }
703
704 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
705 {
706         pgoff_t pgoff;
707         struct address_space *mapping = inode->i_mapping;
708         struct hstate *h = hstate_inode(inode);
709
710         BUG_ON(offset & ~huge_page_mask(h));
711         pgoff = offset >> PAGE_SHIFT;
712
713         i_size_write(inode, offset);
714         i_mmap_lock_write(mapping);
715         if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
716                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
717                                       ZAP_FLAG_DROP_MARKER);
718         i_mmap_unlock_write(mapping);
719         remove_inode_hugepages(inode, offset, LLONG_MAX);
720 }
721
722 static void hugetlbfs_zero_partial_page(struct hstate *h,
723                                         struct address_space *mapping,
724                                         loff_t start,
725                                         loff_t end)
726 {
727         pgoff_t idx = start >> huge_page_shift(h);
728         struct folio *folio;
729
730         folio = filemap_lock_hugetlb_folio(h, mapping, idx);
731         if (IS_ERR(folio))
732                 return;
733
734         start = start & ~huge_page_mask(h);
735         end = end & ~huge_page_mask(h);
736         if (!end)
737                 end = huge_page_size(h);
738
739         folio_zero_segment(folio, (size_t)start, (size_t)end);
740
741         folio_unlock(folio);
742         folio_put(folio);
743 }
744
745 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
746 {
747         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
748         struct address_space *mapping = inode->i_mapping;
749         struct hstate *h = hstate_inode(inode);
750         loff_t hpage_size = huge_page_size(h);
751         loff_t hole_start, hole_end;
752
753         /*
754          * hole_start and hole_end indicate the full pages within the hole.
755          */
756         hole_start = round_up(offset, hpage_size);
757         hole_end = round_down(offset + len, hpage_size);
758
759         inode_lock(inode);
760
761         /* protected by i_rwsem */
762         if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
763                 inode_unlock(inode);
764                 return -EPERM;
765         }
766
767         i_mmap_lock_write(mapping);
768
769         /* If range starts before first full page, zero partial page. */
770         if (offset < hole_start)
771                 hugetlbfs_zero_partial_page(h, mapping,
772                                 offset, min(offset + len, hole_start));
773
774         /* Unmap users of full pages in the hole. */
775         if (hole_end > hole_start) {
776                 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
777                         hugetlb_vmdelete_list(&mapping->i_mmap,
778                                               hole_start >> PAGE_SHIFT,
779                                               hole_end >> PAGE_SHIFT, 0);
780         }
781
782         /* If range extends beyond last full page, zero partial page. */
783         if ((offset + len) > hole_end && (offset + len) > hole_start)
784                 hugetlbfs_zero_partial_page(h, mapping,
785                                 hole_end, offset + len);
786
787         i_mmap_unlock_write(mapping);
788
789         /* Remove full pages from the file. */
790         if (hole_end > hole_start)
791                 remove_inode_hugepages(inode, hole_start, hole_end);
792
793         inode_unlock(inode);
794
795         return 0;
796 }
797
798 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
799                                 loff_t len)
800 {
801         struct inode *inode = file_inode(file);
802         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
803         struct address_space *mapping = inode->i_mapping;
804         struct hstate *h = hstate_inode(inode);
805         struct vm_area_struct pseudo_vma;
806         struct mm_struct *mm = current->mm;
807         loff_t hpage_size = huge_page_size(h);
808         unsigned long hpage_shift = huge_page_shift(h);
809         pgoff_t start, index, end;
810         int error;
811         u32 hash;
812
813         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
814                 return -EOPNOTSUPP;
815
816         if (mode & FALLOC_FL_PUNCH_HOLE)
817                 return hugetlbfs_punch_hole(inode, offset, len);
818
819         /*
820          * Default preallocate case.
821          * For this range, start is rounded down and end is rounded up
822          * as well as being converted to page offsets.
823          */
824         start = offset >> hpage_shift;
825         end = (offset + len + hpage_size - 1) >> hpage_shift;
826
827         inode_lock(inode);
828
829         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
830         error = inode_newsize_ok(inode, offset + len);
831         if (error)
832                 goto out;
833
834         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
835                 error = -EPERM;
836                 goto out;
837         }
838
839         /*
840          * Initialize a pseudo vma as this is required by the huge page
841          * allocation routines.
842          */
843         vma_init(&pseudo_vma, mm);
844         vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
845         pseudo_vma.vm_file = file;
846
847         for (index = start; index < end; index++) {
848                 /*
849                  * This is supposed to be the vaddr where the page is being
850                  * faulted in, but we have no vaddr here.
851                  */
852                 struct folio *folio;
853                 unsigned long addr;
854
855                 cond_resched();
856
857                 /*
858                  * fallocate(2) manpage permits EINTR; we may have been
859                  * interrupted because we are using up too much memory.
860                  */
861                 if (signal_pending(current)) {
862                         error = -EINTR;
863                         break;
864                 }
865
866                 /* addr is the offset within the file (zero based) */
867                 addr = index * hpage_size;
868
869                 /* mutex taken here, fault path and hole punch */
870                 hash = hugetlb_fault_mutex_hash(mapping, index);
871                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
872
873                 /* See if already present in mapping to avoid alloc/free */
874                 folio = filemap_get_folio(mapping, index << huge_page_order(h));
875                 if (!IS_ERR(folio)) {
876                         folio_put(folio);
877                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
878                         continue;
879                 }
880
881                 /*
882                  * Allocate folio without setting the avoid_reserve argument.
883                  * There certainly are no reserves associated with the
884                  * pseudo_vma.  However, there could be shared mappings with
885                  * reserves for the file at the inode level.  If we fallocate
886                  * folios in these areas, we need to consume the reserves
887                  * to keep reservation accounting consistent.
888                  */
889                 folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
890                 if (IS_ERR(folio)) {
891                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
892                         error = PTR_ERR(folio);
893                         goto out;
894                 }
895                 clear_huge_page(&folio->page, addr, pages_per_huge_page(h));
896                 __folio_mark_uptodate(folio);
897                 error = hugetlb_add_to_page_cache(folio, mapping, index);
898                 if (unlikely(error)) {
899                         restore_reserve_on_error(h, &pseudo_vma, addr, folio);
900                         folio_put(folio);
901                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
902                         goto out;
903                 }
904
905                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
906
907                 folio_set_hugetlb_migratable(folio);
908                 /*
909                  * folio_unlock because locked by hugetlb_add_to_page_cache()
910                  * folio_put() due to reference from alloc_hugetlb_folio()
911                  */
912                 folio_unlock(folio);
913                 folio_put(folio);
914         }
915
916         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
917                 i_size_write(inode, offset + len);
918         inode_set_ctime_current(inode);
919 out:
920         inode_unlock(inode);
921         return error;
922 }
923
924 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
925                              struct dentry *dentry, struct iattr *attr)
926 {
927         struct inode *inode = d_inode(dentry);
928         struct hstate *h = hstate_inode(inode);
929         int error;
930         unsigned int ia_valid = attr->ia_valid;
931         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
932
933         error = setattr_prepare(idmap, dentry, attr);
934         if (error)
935                 return error;
936
937         if (ia_valid & ATTR_SIZE) {
938                 loff_t oldsize = inode->i_size;
939                 loff_t newsize = attr->ia_size;
940
941                 if (newsize & ~huge_page_mask(h))
942                         return -EINVAL;
943                 /* protected by i_rwsem */
944                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
945                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
946                         return -EPERM;
947                 hugetlb_vmtruncate(inode, newsize);
948         }
949
950         setattr_copy(idmap, inode, attr);
951         mark_inode_dirty(inode);
952         return 0;
953 }
954
955 static struct inode *hugetlbfs_get_root(struct super_block *sb,
956                                         struct hugetlbfs_fs_context *ctx)
957 {
958         struct inode *inode;
959
960         inode = new_inode(sb);
961         if (inode) {
962                 inode->i_ino = get_next_ino();
963                 inode->i_mode = S_IFDIR | ctx->mode;
964                 inode->i_uid = ctx->uid;
965                 inode->i_gid = ctx->gid;
966                 simple_inode_init_ts(inode);
967                 inode->i_op = &hugetlbfs_dir_inode_operations;
968                 inode->i_fop = &simple_dir_operations;
969                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
970                 inc_nlink(inode);
971                 lockdep_annotate_inode_mutex_key(inode);
972         }
973         return inode;
974 }
975
976 /*
977  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
978  * be taken from reclaim -- unlike regular filesystems. This needs an
979  * annotation because huge_pmd_share() does an allocation under hugetlb's
980  * i_mmap_rwsem.
981  */
982 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
983
984 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
985                                         struct mnt_idmap *idmap,
986                                         struct inode *dir,
987                                         umode_t mode, dev_t dev)
988 {
989         struct inode *inode;
990         struct resv_map *resv_map = NULL;
991
992         /*
993          * Reserve maps are only needed for inodes that can have associated
994          * page allocations.
995          */
996         if (S_ISREG(mode) || S_ISLNK(mode)) {
997                 resv_map = resv_map_alloc();
998                 if (!resv_map)
999                         return NULL;
1000         }
1001
1002         inode = new_inode(sb);
1003         if (inode) {
1004                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1005
1006                 inode->i_ino = get_next_ino();
1007                 inode_init_owner(idmap, inode, dir, mode);
1008                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
1009                                 &hugetlbfs_i_mmap_rwsem_key);
1010                 inode->i_mapping->a_ops = &hugetlbfs_aops;
1011                 simple_inode_init_ts(inode);
1012                 inode->i_mapping->i_private_data = resv_map;
1013                 info->seals = F_SEAL_SEAL;
1014                 switch (mode & S_IFMT) {
1015                 default:
1016                         init_special_inode(inode, mode, dev);
1017                         break;
1018                 case S_IFREG:
1019                         inode->i_op = &hugetlbfs_inode_operations;
1020                         inode->i_fop = &hugetlbfs_file_operations;
1021                         break;
1022                 case S_IFDIR:
1023                         inode->i_op = &hugetlbfs_dir_inode_operations;
1024                         inode->i_fop = &simple_dir_operations;
1025
1026                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
1027                         inc_nlink(inode);
1028                         break;
1029                 case S_IFLNK:
1030                         inode->i_op = &page_symlink_inode_operations;
1031                         inode_nohighmem(inode);
1032                         break;
1033                 }
1034                 lockdep_annotate_inode_mutex_key(inode);
1035         } else {
1036                 if (resv_map)
1037                         kref_put(&resv_map->refs, resv_map_release);
1038         }
1039
1040         return inode;
1041 }
1042
1043 /*
1044  * File creation. Allocate an inode, and we're done..
1045  */
1046 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
1047                            struct dentry *dentry, umode_t mode, dev_t dev)
1048 {
1049         struct inode *inode;
1050
1051         inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
1052         if (!inode)
1053                 return -ENOSPC;
1054         inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1055         d_instantiate(dentry, inode);
1056         dget(dentry);/* Extra count - pin the dentry in core */
1057         return 0;
1058 }
1059
1060 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1061                            struct dentry *dentry, umode_t mode)
1062 {
1063         int retval = hugetlbfs_mknod(idmap, dir, dentry,
1064                                      mode | S_IFDIR, 0);
1065         if (!retval)
1066                 inc_nlink(dir);
1067         return retval;
1068 }
1069
1070 static int hugetlbfs_create(struct mnt_idmap *idmap,
1071                             struct inode *dir, struct dentry *dentry,
1072                             umode_t mode, bool excl)
1073 {
1074         return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
1075 }
1076
1077 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1078                              struct inode *dir, struct file *file,
1079                              umode_t mode)
1080 {
1081         struct inode *inode;
1082
1083         inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1084         if (!inode)
1085                 return -ENOSPC;
1086         inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1087         d_tmpfile(file, inode);
1088         return finish_open_simple(file, 0);
1089 }
1090
1091 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1092                              struct inode *dir, struct dentry *dentry,
1093                              const char *symname)
1094 {
1095         const umode_t mode = S_IFLNK|S_IRWXUGO;
1096         struct inode *inode;
1097         int error = -ENOSPC;
1098
1099         inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1100         if (inode) {
1101                 int l = strlen(symname)+1;
1102                 error = page_symlink(inode, symname, l);
1103                 if (!error) {
1104                         d_instantiate(dentry, inode);
1105                         dget(dentry);
1106                 } else
1107                         iput(inode);
1108         }
1109         inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1110
1111         return error;
1112 }
1113
1114 #ifdef CONFIG_MIGRATION
1115 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1116                                 struct folio *dst, struct folio *src,
1117                                 enum migrate_mode mode)
1118 {
1119         int rc;
1120
1121         rc = migrate_huge_page_move_mapping(mapping, dst, src);
1122         if (rc != MIGRATEPAGE_SUCCESS)
1123                 return rc;
1124
1125         if (hugetlb_folio_subpool(src)) {
1126                 hugetlb_set_folio_subpool(dst,
1127                                         hugetlb_folio_subpool(src));
1128                 hugetlb_set_folio_subpool(src, NULL);
1129         }
1130
1131         if (mode != MIGRATE_SYNC_NO_COPY)
1132                 folio_migrate_copy(dst, src);
1133         else
1134                 folio_migrate_flags(dst, src);
1135
1136         return MIGRATEPAGE_SUCCESS;
1137 }
1138 #else
1139 #define hugetlbfs_migrate_folio NULL
1140 #endif
1141
1142 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1143                                 struct folio *folio)
1144 {
1145         return 0;
1146 }
1147
1148 /*
1149  * Display the mount options in /proc/mounts.
1150  */
1151 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1152 {
1153         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1154         struct hugepage_subpool *spool = sbinfo->spool;
1155         unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1156         unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1157         char mod;
1158
1159         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1160                 seq_printf(m, ",uid=%u",
1161                            from_kuid_munged(&init_user_ns, sbinfo->uid));
1162         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1163                 seq_printf(m, ",gid=%u",
1164                            from_kgid_munged(&init_user_ns, sbinfo->gid));
1165         if (sbinfo->mode != 0755)
1166                 seq_printf(m, ",mode=%o", sbinfo->mode);
1167         if (sbinfo->max_inodes != -1)
1168                 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1169
1170         hpage_size /= 1024;
1171         mod = 'K';
1172         if (hpage_size >= 1024) {
1173                 hpage_size /= 1024;
1174                 mod = 'M';
1175         }
1176         seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1177         if (spool) {
1178                 if (spool->max_hpages != -1)
1179                         seq_printf(m, ",size=%llu",
1180                                    (unsigned long long)spool->max_hpages << hpage_shift);
1181                 if (spool->min_hpages != -1)
1182                         seq_printf(m, ",min_size=%llu",
1183                                    (unsigned long long)spool->min_hpages << hpage_shift);
1184         }
1185         return 0;
1186 }
1187
1188 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1189 {
1190         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1191         struct hstate *h = hstate_inode(d_inode(dentry));
1192         u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1193
1194         buf->f_fsid = u64_to_fsid(id);
1195         buf->f_type = HUGETLBFS_MAGIC;
1196         buf->f_bsize = huge_page_size(h);
1197         if (sbinfo) {
1198                 spin_lock(&sbinfo->stat_lock);
1199                 /* If no limits set, just report 0 or -1 for max/free/used
1200                  * blocks, like simple_statfs() */
1201                 if (sbinfo->spool) {
1202                         long free_pages;
1203
1204                         spin_lock_irq(&sbinfo->spool->lock);
1205                         buf->f_blocks = sbinfo->spool->max_hpages;
1206                         free_pages = sbinfo->spool->max_hpages
1207                                 - sbinfo->spool->used_hpages;
1208                         buf->f_bavail = buf->f_bfree = free_pages;
1209                         spin_unlock_irq(&sbinfo->spool->lock);
1210                         buf->f_files = sbinfo->max_inodes;
1211                         buf->f_ffree = sbinfo->free_inodes;
1212                 }
1213                 spin_unlock(&sbinfo->stat_lock);
1214         }
1215         buf->f_namelen = NAME_MAX;
1216         return 0;
1217 }
1218
1219 static void hugetlbfs_put_super(struct super_block *sb)
1220 {
1221         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1222
1223         if (sbi) {
1224                 sb->s_fs_info = NULL;
1225
1226                 if (sbi->spool)
1227                         hugepage_put_subpool(sbi->spool);
1228
1229                 kfree(sbi);
1230         }
1231 }
1232
1233 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1234 {
1235         if (sbinfo->free_inodes >= 0) {
1236                 spin_lock(&sbinfo->stat_lock);
1237                 if (unlikely(!sbinfo->free_inodes)) {
1238                         spin_unlock(&sbinfo->stat_lock);
1239                         return 0;
1240                 }
1241                 sbinfo->free_inodes--;
1242                 spin_unlock(&sbinfo->stat_lock);
1243         }
1244
1245         return 1;
1246 }
1247
1248 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1249 {
1250         if (sbinfo->free_inodes >= 0) {
1251                 spin_lock(&sbinfo->stat_lock);
1252                 sbinfo->free_inodes++;
1253                 spin_unlock(&sbinfo->stat_lock);
1254         }
1255 }
1256
1257
1258 static struct kmem_cache *hugetlbfs_inode_cachep;
1259
1260 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1261 {
1262         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1263         struct hugetlbfs_inode_info *p;
1264
1265         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1266                 return NULL;
1267         p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1268         if (unlikely(!p)) {
1269                 hugetlbfs_inc_free_inodes(sbinfo);
1270                 return NULL;
1271         }
1272         return &p->vfs_inode;
1273 }
1274
1275 static void hugetlbfs_free_inode(struct inode *inode)
1276 {
1277         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1278 }
1279
1280 static void hugetlbfs_destroy_inode(struct inode *inode)
1281 {
1282         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1283 }
1284
1285 static const struct address_space_operations hugetlbfs_aops = {
1286         .write_begin    = hugetlbfs_write_begin,
1287         .write_end      = hugetlbfs_write_end,
1288         .dirty_folio    = noop_dirty_folio,
1289         .migrate_folio  = hugetlbfs_migrate_folio,
1290         .error_remove_folio     = hugetlbfs_error_remove_folio,
1291 };
1292
1293
1294 static void init_once(void *foo)
1295 {
1296         struct hugetlbfs_inode_info *ei = foo;
1297
1298         inode_init_once(&ei->vfs_inode);
1299 }
1300
1301 static const struct file_operations hugetlbfs_file_operations = {
1302         .read_iter              = hugetlbfs_read_iter,
1303         .mmap                   = hugetlbfs_file_mmap,
1304         .fsync                  = noop_fsync,
1305         .get_unmapped_area      = hugetlb_get_unmapped_area,
1306         .llseek                 = default_llseek,
1307         .fallocate              = hugetlbfs_fallocate,
1308         .fop_flags              = FOP_HUGE_PAGES,
1309 };
1310
1311 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1312         .create         = hugetlbfs_create,
1313         .lookup         = simple_lookup,
1314         .link           = simple_link,
1315         .unlink         = simple_unlink,
1316         .symlink        = hugetlbfs_symlink,
1317         .mkdir          = hugetlbfs_mkdir,
1318         .rmdir          = simple_rmdir,
1319         .mknod          = hugetlbfs_mknod,
1320         .rename         = simple_rename,
1321         .setattr        = hugetlbfs_setattr,
1322         .tmpfile        = hugetlbfs_tmpfile,
1323 };
1324
1325 static const struct inode_operations hugetlbfs_inode_operations = {
1326         .setattr        = hugetlbfs_setattr,
1327 };
1328
1329 static const struct super_operations hugetlbfs_ops = {
1330         .alloc_inode    = hugetlbfs_alloc_inode,
1331         .free_inode     = hugetlbfs_free_inode,
1332         .destroy_inode  = hugetlbfs_destroy_inode,
1333         .evict_inode    = hugetlbfs_evict_inode,
1334         .statfs         = hugetlbfs_statfs,
1335         .put_super      = hugetlbfs_put_super,
1336         .show_options   = hugetlbfs_show_options,
1337 };
1338
1339 /*
1340  * Convert size option passed from command line to number of huge pages
1341  * in the pool specified by hstate.  Size option could be in bytes
1342  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1343  */
1344 static long
1345 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1346                          enum hugetlbfs_size_type val_type)
1347 {
1348         if (val_type == NO_SIZE)
1349                 return -1;
1350
1351         if (val_type == SIZE_PERCENT) {
1352                 size_opt <<= huge_page_shift(h);
1353                 size_opt *= h->max_huge_pages;
1354                 do_div(size_opt, 100);
1355         }
1356
1357         size_opt >>= huge_page_shift(h);
1358         return size_opt;
1359 }
1360
1361 /*
1362  * Parse one mount parameter.
1363  */
1364 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1365 {
1366         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1367         struct fs_parse_result result;
1368         struct hstate *h;
1369         char *rest;
1370         unsigned long ps;
1371         int opt;
1372
1373         opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1374         if (opt < 0)
1375                 return opt;
1376
1377         switch (opt) {
1378         case Opt_uid:
1379                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1380                 if (!uid_valid(ctx->uid))
1381                         goto bad_val;
1382                 return 0;
1383
1384         case Opt_gid:
1385                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1386                 if (!gid_valid(ctx->gid))
1387                         goto bad_val;
1388                 return 0;
1389
1390         case Opt_mode:
1391                 ctx->mode = result.uint_32 & 01777U;
1392                 return 0;
1393
1394         case Opt_size:
1395                 /* memparse() will accept a K/M/G without a digit */
1396                 if (!param->string || !isdigit(param->string[0]))
1397                         goto bad_val;
1398                 ctx->max_size_opt = memparse(param->string, &rest);
1399                 ctx->max_val_type = SIZE_STD;
1400                 if (*rest == '%')
1401                         ctx->max_val_type = SIZE_PERCENT;
1402                 return 0;
1403
1404         case Opt_nr_inodes:
1405                 /* memparse() will accept a K/M/G without a digit */
1406                 if (!param->string || !isdigit(param->string[0]))
1407                         goto bad_val;
1408                 ctx->nr_inodes = memparse(param->string, &rest);
1409                 return 0;
1410
1411         case Opt_pagesize:
1412                 ps = memparse(param->string, &rest);
1413                 h = size_to_hstate(ps);
1414                 if (!h) {
1415                         pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1416                         return -EINVAL;
1417                 }
1418                 ctx->hstate = h;
1419                 return 0;
1420
1421         case Opt_min_size:
1422                 /* memparse() will accept a K/M/G without a digit */
1423                 if (!param->string || !isdigit(param->string[0]))
1424                         goto bad_val;
1425                 ctx->min_size_opt = memparse(param->string, &rest);
1426                 ctx->min_val_type = SIZE_STD;
1427                 if (*rest == '%')
1428                         ctx->min_val_type = SIZE_PERCENT;
1429                 return 0;
1430
1431         default:
1432                 return -EINVAL;
1433         }
1434
1435 bad_val:
1436         return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1437                       param->string, param->key);
1438 }
1439
1440 /*
1441  * Validate the parsed options.
1442  */
1443 static int hugetlbfs_validate(struct fs_context *fc)
1444 {
1445         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1446
1447         /*
1448          * Use huge page pool size (in hstate) to convert the size
1449          * options to number of huge pages.  If NO_SIZE, -1 is returned.
1450          */
1451         ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1452                                                    ctx->max_size_opt,
1453                                                    ctx->max_val_type);
1454         ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1455                                                    ctx->min_size_opt,
1456                                                    ctx->min_val_type);
1457
1458         /*
1459          * If max_size was specified, then min_size must be smaller
1460          */
1461         if (ctx->max_val_type > NO_SIZE &&
1462             ctx->min_hpages > ctx->max_hpages) {
1463                 pr_err("Minimum size can not be greater than maximum size\n");
1464                 return -EINVAL;
1465         }
1466
1467         return 0;
1468 }
1469
1470 static int
1471 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1472 {
1473         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1474         struct hugetlbfs_sb_info *sbinfo;
1475
1476         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1477         if (!sbinfo)
1478                 return -ENOMEM;
1479         sb->s_fs_info = sbinfo;
1480         spin_lock_init(&sbinfo->stat_lock);
1481         sbinfo->hstate          = ctx->hstate;
1482         sbinfo->max_inodes      = ctx->nr_inodes;
1483         sbinfo->free_inodes     = ctx->nr_inodes;
1484         sbinfo->spool           = NULL;
1485         sbinfo->uid             = ctx->uid;
1486         sbinfo->gid             = ctx->gid;
1487         sbinfo->mode            = ctx->mode;
1488
1489         /*
1490          * Allocate and initialize subpool if maximum or minimum size is
1491          * specified.  Any needed reservations (for minimum size) are taken
1492          * when the subpool is created.
1493          */
1494         if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1495                 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1496                                                      ctx->max_hpages,
1497                                                      ctx->min_hpages);
1498                 if (!sbinfo->spool)
1499                         goto out_free;
1500         }
1501         sb->s_maxbytes = MAX_LFS_FILESIZE;
1502         sb->s_blocksize = huge_page_size(ctx->hstate);
1503         sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1504         sb->s_magic = HUGETLBFS_MAGIC;
1505         sb->s_op = &hugetlbfs_ops;
1506         sb->s_time_gran = 1;
1507
1508         /*
1509          * Due to the special and limited functionality of hugetlbfs, it does
1510          * not work well as a stacking filesystem.
1511          */
1512         sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1513         sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1514         if (!sb->s_root)
1515                 goto out_free;
1516         return 0;
1517 out_free:
1518         kfree(sbinfo->spool);
1519         kfree(sbinfo);
1520         return -ENOMEM;
1521 }
1522
1523 static int hugetlbfs_get_tree(struct fs_context *fc)
1524 {
1525         int err = hugetlbfs_validate(fc);
1526         if (err)
1527                 return err;
1528         return get_tree_nodev(fc, hugetlbfs_fill_super);
1529 }
1530
1531 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1532 {
1533         kfree(fc->fs_private);
1534 }
1535
1536 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1537         .free           = hugetlbfs_fs_context_free,
1538         .parse_param    = hugetlbfs_parse_param,
1539         .get_tree       = hugetlbfs_get_tree,
1540 };
1541
1542 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1543 {
1544         struct hugetlbfs_fs_context *ctx;
1545
1546         ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1547         if (!ctx)
1548                 return -ENOMEM;
1549
1550         ctx->max_hpages = -1; /* No limit on size by default */
1551         ctx->nr_inodes  = -1; /* No limit on number of inodes by default */
1552         ctx->uid        = current_fsuid();
1553         ctx->gid        = current_fsgid();
1554         ctx->mode       = 0755;
1555         ctx->hstate     = &default_hstate;
1556         ctx->min_hpages = -1; /* No default minimum size */
1557         ctx->max_val_type = NO_SIZE;
1558         ctx->min_val_type = NO_SIZE;
1559         fc->fs_private = ctx;
1560         fc->ops = &hugetlbfs_fs_context_ops;
1561         return 0;
1562 }
1563
1564 static struct file_system_type hugetlbfs_fs_type = {
1565         .name                   = "hugetlbfs",
1566         .init_fs_context        = hugetlbfs_init_fs_context,
1567         .parameters             = hugetlb_fs_parameters,
1568         .kill_sb                = kill_litter_super,
1569         .fs_flags               = FS_ALLOW_IDMAP,
1570 };
1571
1572 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1573
1574 static int can_do_hugetlb_shm(void)
1575 {
1576         kgid_t shm_group;
1577         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1578         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1579 }
1580
1581 static int get_hstate_idx(int page_size_log)
1582 {
1583         struct hstate *h = hstate_sizelog(page_size_log);
1584
1585         if (!h)
1586                 return -1;
1587         return hstate_index(h);
1588 }
1589
1590 /*
1591  * Note that size should be aligned to proper hugepage size in caller side,
1592  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1593  */
1594 struct file *hugetlb_file_setup(const char *name, size_t size,
1595                                 vm_flags_t acctflag, int creat_flags,
1596                                 int page_size_log)
1597 {
1598         struct inode *inode;
1599         struct vfsmount *mnt;
1600         int hstate_idx;
1601         struct file *file;
1602
1603         hstate_idx = get_hstate_idx(page_size_log);
1604         if (hstate_idx < 0)
1605                 return ERR_PTR(-ENODEV);
1606
1607         mnt = hugetlbfs_vfsmount[hstate_idx];
1608         if (!mnt)
1609                 return ERR_PTR(-ENOENT);
1610
1611         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1612                 struct ucounts *ucounts = current_ucounts();
1613
1614                 if (user_shm_lock(size, ucounts)) {
1615                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1616                                 current->comm, current->pid);
1617                         user_shm_unlock(size, ucounts);
1618                 }
1619                 return ERR_PTR(-EPERM);
1620         }
1621
1622         file = ERR_PTR(-ENOSPC);
1623         /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts.  */
1624         inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1625                                     S_IFREG | S_IRWXUGO, 0);
1626         if (!inode)
1627                 goto out;
1628         if (creat_flags == HUGETLB_SHMFS_INODE)
1629                 inode->i_flags |= S_PRIVATE;
1630
1631         inode->i_size = size;
1632         clear_nlink(inode);
1633
1634         if (!hugetlb_reserve_pages(inode, 0,
1635                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1636                         acctflag))
1637                 file = ERR_PTR(-ENOMEM);
1638         else
1639                 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1640                                         &hugetlbfs_file_operations);
1641         if (!IS_ERR(file))
1642                 return file;
1643
1644         iput(inode);
1645 out:
1646         return file;
1647 }
1648
1649 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1650 {
1651         struct fs_context *fc;
1652         struct vfsmount *mnt;
1653
1654         fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1655         if (IS_ERR(fc)) {
1656                 mnt = ERR_CAST(fc);
1657         } else {
1658                 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1659                 ctx->hstate = h;
1660                 mnt = fc_mount(fc);
1661                 put_fs_context(fc);
1662         }
1663         if (IS_ERR(mnt))
1664                 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1665                        huge_page_size(h) / SZ_1K);
1666         return mnt;
1667 }
1668
1669 static int __init init_hugetlbfs_fs(void)
1670 {
1671         struct vfsmount *mnt;
1672         struct hstate *h;
1673         int error;
1674         int i;
1675
1676         if (!hugepages_supported()) {
1677                 pr_info("disabling because there are no supported hugepage sizes\n");
1678                 return -ENOTSUPP;
1679         }
1680
1681         error = -ENOMEM;
1682         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1683                                         sizeof(struct hugetlbfs_inode_info),
1684                                         0, SLAB_ACCOUNT, init_once);
1685         if (hugetlbfs_inode_cachep == NULL)
1686                 goto out;
1687
1688         error = register_filesystem(&hugetlbfs_fs_type);
1689         if (error)
1690                 goto out_free;
1691
1692         /* default hstate mount is required */
1693         mnt = mount_one_hugetlbfs(&default_hstate);
1694         if (IS_ERR(mnt)) {
1695                 error = PTR_ERR(mnt);
1696                 goto out_unreg;
1697         }
1698         hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1699
1700         /* other hstates are optional */
1701         i = 0;
1702         for_each_hstate(h) {
1703                 if (i == default_hstate_idx) {
1704                         i++;
1705                         continue;
1706                 }
1707
1708                 mnt = mount_one_hugetlbfs(h);
1709                 if (IS_ERR(mnt))
1710                         hugetlbfs_vfsmount[i] = NULL;
1711                 else
1712                         hugetlbfs_vfsmount[i] = mnt;
1713                 i++;
1714         }
1715
1716         return 0;
1717
1718  out_unreg:
1719         (void)unregister_filesystem(&hugetlbfs_fs_type);
1720  out_free:
1721         kmem_cache_destroy(hugetlbfs_inode_cachep);
1722  out:
1723         return error;
1724 }
1725 fs_initcall(init_hugetlbfs_fs)