ALSA: hda - Fix pending unsol events at shutdown
[linux-2.6-block.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         unsigned long *older_than_this;
46         enum writeback_sync_modes sync_mode;
47         unsigned int tagged_writepages:1;
48         unsigned int for_kupdate:1;
49         unsigned int range_cyclic:1;
50         unsigned int for_background:1;
51         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
52         unsigned int auto_free:1;       /* free on completion */
53         enum wb_reason reason;          /* why was writeback initiated? */
54
55         struct list_head list;          /* pending work list */
56         struct wb_completion *done;     /* set if the caller waits */
57 };
58
59 /*
60  * If an inode is constantly having its pages dirtied, but then the
61  * updates stop dirtytime_expire_interval seconds in the past, it's
62  * possible for the worst case time between when an inode has its
63  * timestamps updated and when they finally get written out to be two
64  * dirtytime_expire_intervals.  We set the default to 12 hours (in
65  * seconds), which means most of the time inodes will have their
66  * timestamps written to disk after 12 hours, but in the worst case a
67  * few inodes might not their timestamps updated for 24 hours.
68  */
69 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
70
71 static inline struct inode *wb_inode(struct list_head *head)
72 {
73         return list_entry(head, struct inode, i_io_list);
74 }
75
76 /*
77  * Include the creation of the trace points after defining the
78  * wb_writeback_work structure and inline functions so that the definition
79  * remains local to this file.
80  */
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/writeback.h>
83
84 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
85
86 static bool wb_io_lists_populated(struct bdi_writeback *wb)
87 {
88         if (wb_has_dirty_io(wb)) {
89                 return false;
90         } else {
91                 set_bit(WB_has_dirty_io, &wb->state);
92                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
93                 atomic_long_add(wb->avg_write_bandwidth,
94                                 &wb->bdi->tot_write_bandwidth);
95                 return true;
96         }
97 }
98
99 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
100 {
101         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
102             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
103                 clear_bit(WB_has_dirty_io, &wb->state);
104                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
105                                         &wb->bdi->tot_write_bandwidth) < 0);
106         }
107 }
108
109 /**
110  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
111  * @inode: inode to be moved
112  * @wb: target bdi_writeback
113  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
114  *
115  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
116  * Returns %true if @inode is the first occupant of the !dirty_time IO
117  * lists; otherwise, %false.
118  */
119 static bool inode_io_list_move_locked(struct inode *inode,
120                                       struct bdi_writeback *wb,
121                                       struct list_head *head)
122 {
123         assert_spin_locked(&wb->list_lock);
124
125         list_move(&inode->i_io_list, head);
126
127         /* dirty_time doesn't count as dirty_io until expiration */
128         if (head != &wb->b_dirty_time)
129                 return wb_io_lists_populated(wb);
130
131         wb_io_lists_depopulated(wb);
132         return false;
133 }
134
135 /**
136  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
137  * @inode: inode to be removed
138  * @wb: bdi_writeback @inode is being removed from
139  *
140  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
141  * clear %WB_has_dirty_io if all are empty afterwards.
142  */
143 static void inode_io_list_del_locked(struct inode *inode,
144                                      struct bdi_writeback *wb)
145 {
146         assert_spin_locked(&wb->list_lock);
147
148         list_del_init(&inode->i_io_list);
149         wb_io_lists_depopulated(wb);
150 }
151
152 static void wb_wakeup(struct bdi_writeback *wb)
153 {
154         spin_lock_bh(&wb->work_lock);
155         if (test_bit(WB_registered, &wb->state))
156                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
157         spin_unlock_bh(&wb->work_lock);
158 }
159
160 static void finish_writeback_work(struct bdi_writeback *wb,
161                                   struct wb_writeback_work *work)
162 {
163         struct wb_completion *done = work->done;
164
165         if (work->auto_free)
166                 kfree(work);
167         if (done && atomic_dec_and_test(&done->cnt))
168                 wake_up_all(done->waitq);
169 }
170
171 static void wb_queue_work(struct bdi_writeback *wb,
172                           struct wb_writeback_work *work)
173 {
174         trace_writeback_queue(wb, work);
175
176         if (work->done)
177                 atomic_inc(&work->done->cnt);
178
179         spin_lock_bh(&wb->work_lock);
180
181         if (test_bit(WB_registered, &wb->state)) {
182                 list_add_tail(&work->list, &wb->work_list);
183                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
184         } else
185                 finish_writeback_work(wb, work);
186
187         spin_unlock_bh(&wb->work_lock);
188 }
189
190 /**
191  * wb_wait_for_completion - wait for completion of bdi_writeback_works
192  * @done: target wb_completion
193  *
194  * Wait for one or more work items issued to @bdi with their ->done field
195  * set to @done, which should have been initialized with
196  * DEFINE_WB_COMPLETION().  This function returns after all such work items
197  * are completed.  Work items which are waited upon aren't freed
198  * automatically on completion.
199  */
200 void wb_wait_for_completion(struct wb_completion *done)
201 {
202         atomic_dec(&done->cnt);         /* put down the initial count */
203         wait_event(*done->waitq, !atomic_read(&done->cnt));
204 }
205
206 #ifdef CONFIG_CGROUP_WRITEBACK
207
208 /*
209  * Parameters for foreign inode detection, see wbc_detach_inode() to see
210  * how they're used.
211  *
212  * These paramters are inherently heuristical as the detection target
213  * itself is fuzzy.  All we want to do is detaching an inode from the
214  * current owner if it's being written to by some other cgroups too much.
215  *
216  * The current cgroup writeback is built on the assumption that multiple
217  * cgroups writing to the same inode concurrently is very rare and a mode
218  * of operation which isn't well supported.  As such, the goal is not
219  * taking too long when a different cgroup takes over an inode while
220  * avoiding too aggressive flip-flops from occasional foreign writes.
221  *
222  * We record, very roughly, 2s worth of IO time history and if more than
223  * half of that is foreign, trigger the switch.  The recording is quantized
224  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
225  * writes smaller than 1/8 of avg size are ignored.
226  */
227 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
230 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
231
232 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234                                         /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
236                                         /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238                                         /* one round can affect upto 5 slots */
239 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
240
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
243
244 void __inode_attach_wb(struct inode *inode, struct page *page)
245 {
246         struct backing_dev_info *bdi = inode_to_bdi(inode);
247         struct bdi_writeback *wb = NULL;
248
249         if (inode_cgwb_enabled(inode)) {
250                 struct cgroup_subsys_state *memcg_css;
251
252                 if (page) {
253                         memcg_css = mem_cgroup_css_from_page(page);
254                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255                 } else {
256                         /* must pin memcg_css, see wb_get_create() */
257                         memcg_css = task_get_css(current, memory_cgrp_id);
258                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259                         css_put(memcg_css);
260                 }
261         }
262
263         if (!wb)
264                 wb = &bdi->wb;
265
266         /*
267          * There may be multiple instances of this function racing to
268          * update the same inode.  Use cmpxchg() to tell the winner.
269          */
270         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271                 wb_put(wb);
272 }
273 EXPORT_SYMBOL_GPL(__inode_attach_wb);
274
275 /**
276  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
277  * @inode: inode of interest with i_lock held
278  *
279  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
280  * held on entry and is released on return.  The returned wb is guaranteed
281  * to stay @inode's associated wb until its list_lock is released.
282  */
283 static struct bdi_writeback *
284 locked_inode_to_wb_and_lock_list(struct inode *inode)
285         __releases(&inode->i_lock)
286         __acquires(&wb->list_lock)
287 {
288         while (true) {
289                 struct bdi_writeback *wb = inode_to_wb(inode);
290
291                 /*
292                  * inode_to_wb() association is protected by both
293                  * @inode->i_lock and @wb->list_lock but list_lock nests
294                  * outside i_lock.  Drop i_lock and verify that the
295                  * association hasn't changed after acquiring list_lock.
296                  */
297                 wb_get(wb);
298                 spin_unlock(&inode->i_lock);
299                 spin_lock(&wb->list_lock);
300
301                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
302                 if (likely(wb == inode->i_wb)) {
303                         wb_put(wb);     /* @inode already has ref */
304                         return wb;
305                 }
306
307                 spin_unlock(&wb->list_lock);
308                 wb_put(wb);
309                 cpu_relax();
310                 spin_lock(&inode->i_lock);
311         }
312 }
313
314 /**
315  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
316  * @inode: inode of interest
317  *
318  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
319  * on entry.
320  */
321 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
322         __acquires(&wb->list_lock)
323 {
324         spin_lock(&inode->i_lock);
325         return locked_inode_to_wb_and_lock_list(inode);
326 }
327
328 struct inode_switch_wbs_context {
329         struct inode            *inode;
330         struct bdi_writeback    *new_wb;
331
332         struct rcu_head         rcu_head;
333         struct work_struct      work;
334 };
335
336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
337 {
338         down_write(&bdi->wb_switch_rwsem);
339 }
340
341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342 {
343         up_write(&bdi->wb_switch_rwsem);
344 }
345
346 static void inode_switch_wbs_work_fn(struct work_struct *work)
347 {
348         struct inode_switch_wbs_context *isw =
349                 container_of(work, struct inode_switch_wbs_context, work);
350         struct inode *inode = isw->inode;
351         struct backing_dev_info *bdi = inode_to_bdi(inode);
352         struct address_space *mapping = inode->i_mapping;
353         struct bdi_writeback *old_wb = inode->i_wb;
354         struct bdi_writeback *new_wb = isw->new_wb;
355         XA_STATE(xas, &mapping->i_pages, 0);
356         struct page *page;
357         bool switched = false;
358
359         /*
360          * If @inode switches cgwb membership while sync_inodes_sb() is
361          * being issued, sync_inodes_sb() might miss it.  Synchronize.
362          */
363         down_read(&bdi->wb_switch_rwsem);
364
365         /*
366          * By the time control reaches here, RCU grace period has passed
367          * since I_WB_SWITCH assertion and all wb stat update transactions
368          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
369          * synchronizing against the i_pages lock.
370          *
371          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
372          * gives us exclusion against all wb related operations on @inode
373          * including IO list manipulations and stat updates.
374          */
375         if (old_wb < new_wb) {
376                 spin_lock(&old_wb->list_lock);
377                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
378         } else {
379                 spin_lock(&new_wb->list_lock);
380                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
381         }
382         spin_lock(&inode->i_lock);
383         xa_lock_irq(&mapping->i_pages);
384
385         /*
386          * Once I_FREEING is visible under i_lock, the eviction path owns
387          * the inode and we shouldn't modify ->i_io_list.
388          */
389         if (unlikely(inode->i_state & I_FREEING))
390                 goto skip_switch;
391
392         trace_inode_switch_wbs(inode, old_wb, new_wb);
393
394         /*
395          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
396          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
397          * pages actually under writeback.
398          */
399         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
400                 if (PageDirty(page)) {
401                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
402                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
403                 }
404         }
405
406         xas_set(&xas, 0);
407         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
408                 WARN_ON_ONCE(!PageWriteback(page));
409                 dec_wb_stat(old_wb, WB_WRITEBACK);
410                 inc_wb_stat(new_wb, WB_WRITEBACK);
411         }
412
413         wb_get(new_wb);
414
415         /*
416          * Transfer to @new_wb's IO list if necessary.  The specific list
417          * @inode was on is ignored and the inode is put on ->b_dirty which
418          * is always correct including from ->b_dirty_time.  The transfer
419          * preserves @inode->dirtied_when ordering.
420          */
421         if (!list_empty(&inode->i_io_list)) {
422                 struct inode *pos;
423
424                 inode_io_list_del_locked(inode, old_wb);
425                 inode->i_wb = new_wb;
426                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
427                         if (time_after_eq(inode->dirtied_when,
428                                           pos->dirtied_when))
429                                 break;
430                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
431         } else {
432                 inode->i_wb = new_wb;
433         }
434
435         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
436         inode->i_wb_frn_winner = 0;
437         inode->i_wb_frn_avg_time = 0;
438         inode->i_wb_frn_history = 0;
439         switched = true;
440 skip_switch:
441         /*
442          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
443          * ensures that the new wb is visible if they see !I_WB_SWITCH.
444          */
445         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
446
447         xa_unlock_irq(&mapping->i_pages);
448         spin_unlock(&inode->i_lock);
449         spin_unlock(&new_wb->list_lock);
450         spin_unlock(&old_wb->list_lock);
451
452         up_read(&bdi->wb_switch_rwsem);
453
454         if (switched) {
455                 wb_wakeup(new_wb);
456                 wb_put(old_wb);
457         }
458         wb_put(new_wb);
459
460         iput(inode);
461         kfree(isw);
462
463         atomic_dec(&isw_nr_in_flight);
464 }
465
466 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
467 {
468         struct inode_switch_wbs_context *isw = container_of(rcu_head,
469                                 struct inode_switch_wbs_context, rcu_head);
470
471         /* needs to grab bh-unsafe locks, bounce to work item */
472         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
473         queue_work(isw_wq, &isw->work);
474 }
475
476 /**
477  * inode_switch_wbs - change the wb association of an inode
478  * @inode: target inode
479  * @new_wb_id: ID of the new wb
480  *
481  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
482  * switching is performed asynchronously and may fail silently.
483  */
484 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
485 {
486         struct backing_dev_info *bdi = inode_to_bdi(inode);
487         struct cgroup_subsys_state *memcg_css;
488         struct inode_switch_wbs_context *isw;
489
490         /* noop if seems to be already in progress */
491         if (inode->i_state & I_WB_SWITCH)
492                 return;
493
494         /* avoid queueing a new switch if too many are already in flight */
495         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
496                 return;
497
498         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
499         if (!isw)
500                 return;
501
502         /* find and pin the new wb */
503         rcu_read_lock();
504         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
505         if (memcg_css)
506                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
507         rcu_read_unlock();
508         if (!isw->new_wb)
509                 goto out_free;
510
511         /* while holding I_WB_SWITCH, no one else can update the association */
512         spin_lock(&inode->i_lock);
513         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
514             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
515             inode_to_wb(inode) == isw->new_wb) {
516                 spin_unlock(&inode->i_lock);
517                 goto out_free;
518         }
519         inode->i_state |= I_WB_SWITCH;
520         __iget(inode);
521         spin_unlock(&inode->i_lock);
522
523         isw->inode = inode;
524
525         /*
526          * In addition to synchronizing among switchers, I_WB_SWITCH tells
527          * the RCU protected stat update paths to grab the i_page
528          * lock so that stat transfer can synchronize against them.
529          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
530          */
531         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
532
533         atomic_inc(&isw_nr_in_flight);
534         return;
535
536 out_free:
537         if (isw->new_wb)
538                 wb_put(isw->new_wb);
539         kfree(isw);
540 }
541
542 /**
543  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
544  * @wbc: writeback_control of interest
545  * @inode: target inode
546  *
547  * @inode is locked and about to be written back under the control of @wbc.
548  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
549  * writeback completion, wbc_detach_inode() should be called.  This is used
550  * to track the cgroup writeback context.
551  */
552 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
553                                  struct inode *inode)
554 {
555         if (!inode_cgwb_enabled(inode)) {
556                 spin_unlock(&inode->i_lock);
557                 return;
558         }
559
560         wbc->wb = inode_to_wb(inode);
561         wbc->inode = inode;
562
563         wbc->wb_id = wbc->wb->memcg_css->id;
564         wbc->wb_lcand_id = inode->i_wb_frn_winner;
565         wbc->wb_tcand_id = 0;
566         wbc->wb_bytes = 0;
567         wbc->wb_lcand_bytes = 0;
568         wbc->wb_tcand_bytes = 0;
569
570         wb_get(wbc->wb);
571         spin_unlock(&inode->i_lock);
572
573         /*
574          * A dying wb indicates that the memcg-blkcg mapping has changed
575          * and a new wb is already serving the memcg.  Switch immediately.
576          */
577         if (unlikely(wb_dying(wbc->wb)))
578                 inode_switch_wbs(inode, wbc->wb_id);
579 }
580 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
581
582 /**
583  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
584  * @wbc: writeback_control of the just finished writeback
585  *
586  * To be called after a writeback attempt of an inode finishes and undoes
587  * wbc_attach_and_unlock_inode().  Can be called under any context.
588  *
589  * As concurrent write sharing of an inode is expected to be very rare and
590  * memcg only tracks page ownership on first-use basis severely confining
591  * the usefulness of such sharing, cgroup writeback tracks ownership
592  * per-inode.  While the support for concurrent write sharing of an inode
593  * is deemed unnecessary, an inode being written to by different cgroups at
594  * different points in time is a lot more common, and, more importantly,
595  * charging only by first-use can too readily lead to grossly incorrect
596  * behaviors (single foreign page can lead to gigabytes of writeback to be
597  * incorrectly attributed).
598  *
599  * To resolve this issue, cgroup writeback detects the majority dirtier of
600  * an inode and transfers the ownership to it.  To avoid unnnecessary
601  * oscillation, the detection mechanism keeps track of history and gives
602  * out the switch verdict only if the foreign usage pattern is stable over
603  * a certain amount of time and/or writeback attempts.
604  *
605  * On each writeback attempt, @wbc tries to detect the majority writer
606  * using Boyer-Moore majority vote algorithm.  In addition to the byte
607  * count from the majority voting, it also counts the bytes written for the
608  * current wb and the last round's winner wb (max of last round's current
609  * wb, the winner from two rounds ago, and the last round's majority
610  * candidate).  Keeping track of the historical winner helps the algorithm
611  * to semi-reliably detect the most active writer even when it's not the
612  * absolute majority.
613  *
614  * Once the winner of the round is determined, whether the winner is
615  * foreign or not and how much IO time the round consumed is recorded in
616  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
617  * over a certain threshold, the switch verdict is given.
618  */
619 void wbc_detach_inode(struct writeback_control *wbc)
620 {
621         struct bdi_writeback *wb = wbc->wb;
622         struct inode *inode = wbc->inode;
623         unsigned long avg_time, max_bytes, max_time;
624         u16 history;
625         int max_id;
626
627         if (!wb)
628                 return;
629
630         history = inode->i_wb_frn_history;
631         avg_time = inode->i_wb_frn_avg_time;
632
633         /* pick the winner of this round */
634         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
635             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
636                 max_id = wbc->wb_id;
637                 max_bytes = wbc->wb_bytes;
638         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
639                 max_id = wbc->wb_lcand_id;
640                 max_bytes = wbc->wb_lcand_bytes;
641         } else {
642                 max_id = wbc->wb_tcand_id;
643                 max_bytes = wbc->wb_tcand_bytes;
644         }
645
646         /*
647          * Calculate the amount of IO time the winner consumed and fold it
648          * into the running average kept per inode.  If the consumed IO
649          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
650          * deciding whether to switch or not.  This is to prevent one-off
651          * small dirtiers from skewing the verdict.
652          */
653         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
654                                 wb->avg_write_bandwidth);
655         if (avg_time)
656                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
657                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
658         else
659                 avg_time = max_time;    /* immediate catch up on first run */
660
661         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
662                 int slots;
663
664                 /*
665                  * The switch verdict is reached if foreign wb's consume
666                  * more than a certain proportion of IO time in a
667                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
668                  * history mask where each bit represents one sixteenth of
669                  * the period.  Determine the number of slots to shift into
670                  * history from @max_time.
671                  */
672                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
673                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
674                 history <<= slots;
675                 if (wbc->wb_id != max_id)
676                         history |= (1U << slots) - 1;
677
678                 if (history)
679                         trace_inode_foreign_history(inode, wbc, history);
680
681                 /*
682                  * Switch if the current wb isn't the consistent winner.
683                  * If there are multiple closely competing dirtiers, the
684                  * inode may switch across them repeatedly over time, which
685                  * is okay.  The main goal is avoiding keeping an inode on
686                  * the wrong wb for an extended period of time.
687                  */
688                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
689                         inode_switch_wbs(inode, max_id);
690         }
691
692         /*
693          * Multiple instances of this function may race to update the
694          * following fields but we don't mind occassional inaccuracies.
695          */
696         inode->i_wb_frn_winner = max_id;
697         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
698         inode->i_wb_frn_history = history;
699
700         wb_put(wbc->wb);
701         wbc->wb = NULL;
702 }
703 EXPORT_SYMBOL_GPL(wbc_detach_inode);
704
705 /**
706  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
707  * @wbc: writeback_control of the writeback in progress
708  * @page: page being written out
709  * @bytes: number of bytes being written out
710  *
711  * @bytes from @page are about to written out during the writeback
712  * controlled by @wbc.  Keep the book for foreign inode detection.  See
713  * wbc_detach_inode().
714  */
715 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
716                               size_t bytes)
717 {
718         struct cgroup_subsys_state *css;
719         int id;
720
721         /*
722          * pageout() path doesn't attach @wbc to the inode being written
723          * out.  This is intentional as we don't want the function to block
724          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
725          * regular writeback instead of writing things out itself.
726          */
727         if (!wbc->wb || wbc->no_cgroup_owner)
728                 return;
729
730         css = mem_cgroup_css_from_page(page);
731         /* dead cgroups shouldn't contribute to inode ownership arbitration */
732         if (!(css->flags & CSS_ONLINE))
733                 return;
734
735         id = css->id;
736
737         if (id == wbc->wb_id) {
738                 wbc->wb_bytes += bytes;
739                 return;
740         }
741
742         if (id == wbc->wb_lcand_id)
743                 wbc->wb_lcand_bytes += bytes;
744
745         /* Boyer-Moore majority vote algorithm */
746         if (!wbc->wb_tcand_bytes)
747                 wbc->wb_tcand_id = id;
748         if (id == wbc->wb_tcand_id)
749                 wbc->wb_tcand_bytes += bytes;
750         else
751                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
752 }
753 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
754
755 /**
756  * inode_congested - test whether an inode is congested
757  * @inode: inode to test for congestion (may be NULL)
758  * @cong_bits: mask of WB_[a]sync_congested bits to test
759  *
760  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
761  * bits to test and the return value is the mask of set bits.
762  *
763  * If cgroup writeback is enabled for @inode, the congestion state is
764  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
765  * associated with @inode is congested; otherwise, the root wb's congestion
766  * state is used.
767  *
768  * @inode is allowed to be NULL as this function is often called on
769  * mapping->host which is NULL for the swapper space.
770  */
771 int inode_congested(struct inode *inode, int cong_bits)
772 {
773         /*
774          * Once set, ->i_wb never becomes NULL while the inode is alive.
775          * Start transaction iff ->i_wb is visible.
776          */
777         if (inode && inode_to_wb_is_valid(inode)) {
778                 struct bdi_writeback *wb;
779                 struct wb_lock_cookie lock_cookie = {};
780                 bool congested;
781
782                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
783                 congested = wb_congested(wb, cong_bits);
784                 unlocked_inode_to_wb_end(inode, &lock_cookie);
785                 return congested;
786         }
787
788         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
789 }
790 EXPORT_SYMBOL_GPL(inode_congested);
791
792 /**
793  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
794  * @wb: target bdi_writeback to split @nr_pages to
795  * @nr_pages: number of pages to write for the whole bdi
796  *
797  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
798  * relation to the total write bandwidth of all wb's w/ dirty inodes on
799  * @wb->bdi.
800  */
801 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
802 {
803         unsigned long this_bw = wb->avg_write_bandwidth;
804         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
805
806         if (nr_pages == LONG_MAX)
807                 return LONG_MAX;
808
809         /*
810          * This may be called on clean wb's and proportional distribution
811          * may not make sense, just use the original @nr_pages in those
812          * cases.  In general, we wanna err on the side of writing more.
813          */
814         if (!tot_bw || this_bw >= tot_bw)
815                 return nr_pages;
816         else
817                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
818 }
819
820 /**
821  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
822  * @bdi: target backing_dev_info
823  * @base_work: wb_writeback_work to issue
824  * @skip_if_busy: skip wb's which already have writeback in progress
825  *
826  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
827  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
828  * distributed to the busy wbs according to each wb's proportion in the
829  * total active write bandwidth of @bdi.
830  */
831 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
832                                   struct wb_writeback_work *base_work,
833                                   bool skip_if_busy)
834 {
835         struct bdi_writeback *last_wb = NULL;
836         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
837                                               struct bdi_writeback, bdi_node);
838
839         might_sleep();
840 restart:
841         rcu_read_lock();
842         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
843                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
844                 struct wb_writeback_work fallback_work;
845                 struct wb_writeback_work *work;
846                 long nr_pages;
847
848                 if (last_wb) {
849                         wb_put(last_wb);
850                         last_wb = NULL;
851                 }
852
853                 /* SYNC_ALL writes out I_DIRTY_TIME too */
854                 if (!wb_has_dirty_io(wb) &&
855                     (base_work->sync_mode == WB_SYNC_NONE ||
856                      list_empty(&wb->b_dirty_time)))
857                         continue;
858                 if (skip_if_busy && writeback_in_progress(wb))
859                         continue;
860
861                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
862
863                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
864                 if (work) {
865                         *work = *base_work;
866                         work->nr_pages = nr_pages;
867                         work->auto_free = 1;
868                         wb_queue_work(wb, work);
869                         continue;
870                 }
871
872                 /* alloc failed, execute synchronously using on-stack fallback */
873                 work = &fallback_work;
874                 *work = *base_work;
875                 work->nr_pages = nr_pages;
876                 work->auto_free = 0;
877                 work->done = &fallback_work_done;
878
879                 wb_queue_work(wb, work);
880
881                 /*
882                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
883                  * continuing iteration from @wb after dropping and
884                  * regrabbing rcu read lock.
885                  */
886                 wb_get(wb);
887                 last_wb = wb;
888
889                 rcu_read_unlock();
890                 wb_wait_for_completion(&fallback_work_done);
891                 goto restart;
892         }
893         rcu_read_unlock();
894
895         if (last_wb)
896                 wb_put(last_wb);
897 }
898
899 /**
900  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
901  * @bdi_id: target bdi id
902  * @memcg_id: target memcg css id
903  * @nr_pages: number of pages to write, 0 for best-effort dirty flushing
904  * @reason: reason why some writeback work initiated
905  * @done: target wb_completion
906  *
907  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
908  * with the specified parameters.
909  */
910 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
911                            enum wb_reason reason, struct wb_completion *done)
912 {
913         struct backing_dev_info *bdi;
914         struct cgroup_subsys_state *memcg_css;
915         struct bdi_writeback *wb;
916         struct wb_writeback_work *work;
917         int ret;
918
919         /* lookup bdi and memcg */
920         bdi = bdi_get_by_id(bdi_id);
921         if (!bdi)
922                 return -ENOENT;
923
924         rcu_read_lock();
925         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
926         if (memcg_css && !css_tryget(memcg_css))
927                 memcg_css = NULL;
928         rcu_read_unlock();
929         if (!memcg_css) {
930                 ret = -ENOENT;
931                 goto out_bdi_put;
932         }
933
934         /*
935          * And find the associated wb.  If the wb isn't there already
936          * there's nothing to flush, don't create one.
937          */
938         wb = wb_get_lookup(bdi, memcg_css);
939         if (!wb) {
940                 ret = -ENOENT;
941                 goto out_css_put;
942         }
943
944         /*
945          * If @nr is zero, the caller is attempting to write out most of
946          * the currently dirty pages.  Let's take the current dirty page
947          * count and inflate it by 25% which should be large enough to
948          * flush out most dirty pages while avoiding getting livelocked by
949          * concurrent dirtiers.
950          */
951         if (!nr) {
952                 unsigned long filepages, headroom, dirty, writeback;
953
954                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
955                                       &writeback);
956                 nr = dirty * 10 / 8;
957         }
958
959         /* issue the writeback work */
960         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
961         if (work) {
962                 work->nr_pages = nr;
963                 work->sync_mode = WB_SYNC_NONE;
964                 work->range_cyclic = 1;
965                 work->reason = reason;
966                 work->done = done;
967                 work->auto_free = 1;
968                 wb_queue_work(wb, work);
969                 ret = 0;
970         } else {
971                 ret = -ENOMEM;
972         }
973
974         wb_put(wb);
975 out_css_put:
976         css_put(memcg_css);
977 out_bdi_put:
978         bdi_put(bdi);
979         return ret;
980 }
981
982 /**
983  * cgroup_writeback_umount - flush inode wb switches for umount
984  *
985  * This function is called when a super_block is about to be destroyed and
986  * flushes in-flight inode wb switches.  An inode wb switch goes through
987  * RCU and then workqueue, so the two need to be flushed in order to ensure
988  * that all previously scheduled switches are finished.  As wb switches are
989  * rare occurrences and synchronize_rcu() can take a while, perform
990  * flushing iff wb switches are in flight.
991  */
992 void cgroup_writeback_umount(void)
993 {
994         if (atomic_read(&isw_nr_in_flight)) {
995                 /*
996                  * Use rcu_barrier() to wait for all pending callbacks to
997                  * ensure that all in-flight wb switches are in the workqueue.
998                  */
999                 rcu_barrier();
1000                 flush_workqueue(isw_wq);
1001         }
1002 }
1003
1004 static int __init cgroup_writeback_init(void)
1005 {
1006         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1007         if (!isw_wq)
1008                 return -ENOMEM;
1009         return 0;
1010 }
1011 fs_initcall(cgroup_writeback_init);
1012
1013 #else   /* CONFIG_CGROUP_WRITEBACK */
1014
1015 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1016 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1017
1018 static struct bdi_writeback *
1019 locked_inode_to_wb_and_lock_list(struct inode *inode)
1020         __releases(&inode->i_lock)
1021         __acquires(&wb->list_lock)
1022 {
1023         struct bdi_writeback *wb = inode_to_wb(inode);
1024
1025         spin_unlock(&inode->i_lock);
1026         spin_lock(&wb->list_lock);
1027         return wb;
1028 }
1029
1030 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1031         __acquires(&wb->list_lock)
1032 {
1033         struct bdi_writeback *wb = inode_to_wb(inode);
1034
1035         spin_lock(&wb->list_lock);
1036         return wb;
1037 }
1038
1039 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1040 {
1041         return nr_pages;
1042 }
1043
1044 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1045                                   struct wb_writeback_work *base_work,
1046                                   bool skip_if_busy)
1047 {
1048         might_sleep();
1049
1050         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1051                 base_work->auto_free = 0;
1052                 wb_queue_work(&bdi->wb, base_work);
1053         }
1054 }
1055
1056 #endif  /* CONFIG_CGROUP_WRITEBACK */
1057
1058 /*
1059  * Add in the number of potentially dirty inodes, because each inode
1060  * write can dirty pagecache in the underlying blockdev.
1061  */
1062 static unsigned long get_nr_dirty_pages(void)
1063 {
1064         return global_node_page_state(NR_FILE_DIRTY) +
1065                 global_node_page_state(NR_UNSTABLE_NFS) +
1066                 get_nr_dirty_inodes();
1067 }
1068
1069 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1070 {
1071         if (!wb_has_dirty_io(wb))
1072                 return;
1073
1074         /*
1075          * All callers of this function want to start writeback of all
1076          * dirty pages. Places like vmscan can call this at a very
1077          * high frequency, causing pointless allocations of tons of
1078          * work items and keeping the flusher threads busy retrieving
1079          * that work. Ensure that we only allow one of them pending and
1080          * inflight at the time.
1081          */
1082         if (test_bit(WB_start_all, &wb->state) ||
1083             test_and_set_bit(WB_start_all, &wb->state))
1084                 return;
1085
1086         wb->start_all_reason = reason;
1087         wb_wakeup(wb);
1088 }
1089
1090 /**
1091  * wb_start_background_writeback - start background writeback
1092  * @wb: bdi_writback to write from
1093  *
1094  * Description:
1095  *   This makes sure WB_SYNC_NONE background writeback happens. When
1096  *   this function returns, it is only guaranteed that for given wb
1097  *   some IO is happening if we are over background dirty threshold.
1098  *   Caller need not hold sb s_umount semaphore.
1099  */
1100 void wb_start_background_writeback(struct bdi_writeback *wb)
1101 {
1102         /*
1103          * We just wake up the flusher thread. It will perform background
1104          * writeback as soon as there is no other work to do.
1105          */
1106         trace_writeback_wake_background(wb);
1107         wb_wakeup(wb);
1108 }
1109
1110 /*
1111  * Remove the inode from the writeback list it is on.
1112  */
1113 void inode_io_list_del(struct inode *inode)
1114 {
1115         struct bdi_writeback *wb;
1116
1117         wb = inode_to_wb_and_lock_list(inode);
1118         inode_io_list_del_locked(inode, wb);
1119         spin_unlock(&wb->list_lock);
1120 }
1121
1122 /*
1123  * mark an inode as under writeback on the sb
1124  */
1125 void sb_mark_inode_writeback(struct inode *inode)
1126 {
1127         struct super_block *sb = inode->i_sb;
1128         unsigned long flags;
1129
1130         if (list_empty(&inode->i_wb_list)) {
1131                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1132                 if (list_empty(&inode->i_wb_list)) {
1133                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1134                         trace_sb_mark_inode_writeback(inode);
1135                 }
1136                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1137         }
1138 }
1139
1140 /*
1141  * clear an inode as under writeback on the sb
1142  */
1143 void sb_clear_inode_writeback(struct inode *inode)
1144 {
1145         struct super_block *sb = inode->i_sb;
1146         unsigned long flags;
1147
1148         if (!list_empty(&inode->i_wb_list)) {
1149                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1150                 if (!list_empty(&inode->i_wb_list)) {
1151                         list_del_init(&inode->i_wb_list);
1152                         trace_sb_clear_inode_writeback(inode);
1153                 }
1154                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1155         }
1156 }
1157
1158 /*
1159  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1160  * furthest end of its superblock's dirty-inode list.
1161  *
1162  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1163  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1164  * the case then the inode must have been redirtied while it was being written
1165  * out and we don't reset its dirtied_when.
1166  */
1167 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1168 {
1169         if (!list_empty(&wb->b_dirty)) {
1170                 struct inode *tail;
1171
1172                 tail = wb_inode(wb->b_dirty.next);
1173                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1174                         inode->dirtied_when = jiffies;
1175         }
1176         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1177 }
1178
1179 /*
1180  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1181  */
1182 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1183 {
1184         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1185 }
1186
1187 static void inode_sync_complete(struct inode *inode)
1188 {
1189         inode->i_state &= ~I_SYNC;
1190         /* If inode is clean an unused, put it into LRU now... */
1191         inode_add_lru(inode);
1192         /* Waiters must see I_SYNC cleared before being woken up */
1193         smp_mb();
1194         wake_up_bit(&inode->i_state, __I_SYNC);
1195 }
1196
1197 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1198 {
1199         bool ret = time_after(inode->dirtied_when, t);
1200 #ifndef CONFIG_64BIT
1201         /*
1202          * For inodes being constantly redirtied, dirtied_when can get stuck.
1203          * It _appears_ to be in the future, but is actually in distant past.
1204          * This test is necessary to prevent such wrapped-around relative times
1205          * from permanently stopping the whole bdi writeback.
1206          */
1207         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1208 #endif
1209         return ret;
1210 }
1211
1212 #define EXPIRE_DIRTY_ATIME 0x0001
1213
1214 /*
1215  * Move expired (dirtied before work->older_than_this) dirty inodes from
1216  * @delaying_queue to @dispatch_queue.
1217  */
1218 static int move_expired_inodes(struct list_head *delaying_queue,
1219                                struct list_head *dispatch_queue,
1220                                int flags,
1221                                struct wb_writeback_work *work)
1222 {
1223         unsigned long *older_than_this = NULL;
1224         unsigned long expire_time;
1225         LIST_HEAD(tmp);
1226         struct list_head *pos, *node;
1227         struct super_block *sb = NULL;
1228         struct inode *inode;
1229         int do_sb_sort = 0;
1230         int moved = 0;
1231
1232         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1233                 older_than_this = work->older_than_this;
1234         else if (!work->for_sync) {
1235                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1236                 older_than_this = &expire_time;
1237         }
1238         while (!list_empty(delaying_queue)) {
1239                 inode = wb_inode(delaying_queue->prev);
1240                 if (older_than_this &&
1241                     inode_dirtied_after(inode, *older_than_this))
1242                         break;
1243                 list_move(&inode->i_io_list, &tmp);
1244                 moved++;
1245                 if (flags & EXPIRE_DIRTY_ATIME)
1246                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1247                 if (sb_is_blkdev_sb(inode->i_sb))
1248                         continue;
1249                 if (sb && sb != inode->i_sb)
1250                         do_sb_sort = 1;
1251                 sb = inode->i_sb;
1252         }
1253
1254         /* just one sb in list, splice to dispatch_queue and we're done */
1255         if (!do_sb_sort) {
1256                 list_splice(&tmp, dispatch_queue);
1257                 goto out;
1258         }
1259
1260         /* Move inodes from one superblock together */
1261         while (!list_empty(&tmp)) {
1262                 sb = wb_inode(tmp.prev)->i_sb;
1263                 list_for_each_prev_safe(pos, node, &tmp) {
1264                         inode = wb_inode(pos);
1265                         if (inode->i_sb == sb)
1266                                 list_move(&inode->i_io_list, dispatch_queue);
1267                 }
1268         }
1269 out:
1270         return moved;
1271 }
1272
1273 /*
1274  * Queue all expired dirty inodes for io, eldest first.
1275  * Before
1276  *         newly dirtied     b_dirty    b_io    b_more_io
1277  *         =============>    gf         edc     BA
1278  * After
1279  *         newly dirtied     b_dirty    b_io    b_more_io
1280  *         =============>    g          fBAedc
1281  *                                           |
1282  *                                           +--> dequeue for IO
1283  */
1284 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1285 {
1286         int moved;
1287
1288         assert_spin_locked(&wb->list_lock);
1289         list_splice_init(&wb->b_more_io, &wb->b_io);
1290         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1291         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1292                                      EXPIRE_DIRTY_ATIME, work);
1293         if (moved)
1294                 wb_io_lists_populated(wb);
1295         trace_writeback_queue_io(wb, work, moved);
1296 }
1297
1298 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1299 {
1300         int ret;
1301
1302         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1303                 trace_writeback_write_inode_start(inode, wbc);
1304                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1305                 trace_writeback_write_inode(inode, wbc);
1306                 return ret;
1307         }
1308         return 0;
1309 }
1310
1311 /*
1312  * Wait for writeback on an inode to complete. Called with i_lock held.
1313  * Caller must make sure inode cannot go away when we drop i_lock.
1314  */
1315 static void __inode_wait_for_writeback(struct inode *inode)
1316         __releases(inode->i_lock)
1317         __acquires(inode->i_lock)
1318 {
1319         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1320         wait_queue_head_t *wqh;
1321
1322         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1323         while (inode->i_state & I_SYNC) {
1324                 spin_unlock(&inode->i_lock);
1325                 __wait_on_bit(wqh, &wq, bit_wait,
1326                               TASK_UNINTERRUPTIBLE);
1327                 spin_lock(&inode->i_lock);
1328         }
1329 }
1330
1331 /*
1332  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1333  */
1334 void inode_wait_for_writeback(struct inode *inode)
1335 {
1336         spin_lock(&inode->i_lock);
1337         __inode_wait_for_writeback(inode);
1338         spin_unlock(&inode->i_lock);
1339 }
1340
1341 /*
1342  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1343  * held and drops it. It is aimed for callers not holding any inode reference
1344  * so once i_lock is dropped, inode can go away.
1345  */
1346 static void inode_sleep_on_writeback(struct inode *inode)
1347         __releases(inode->i_lock)
1348 {
1349         DEFINE_WAIT(wait);
1350         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1351         int sleep;
1352
1353         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1354         sleep = inode->i_state & I_SYNC;
1355         spin_unlock(&inode->i_lock);
1356         if (sleep)
1357                 schedule();
1358         finish_wait(wqh, &wait);
1359 }
1360
1361 /*
1362  * Find proper writeback list for the inode depending on its current state and
1363  * possibly also change of its state while we were doing writeback.  Here we
1364  * handle things such as livelock prevention or fairness of writeback among
1365  * inodes. This function can be called only by flusher thread - noone else
1366  * processes all inodes in writeback lists and requeueing inodes behind flusher
1367  * thread's back can have unexpected consequences.
1368  */
1369 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1370                           struct writeback_control *wbc)
1371 {
1372         if (inode->i_state & I_FREEING)
1373                 return;
1374
1375         /*
1376          * Sync livelock prevention. Each inode is tagged and synced in one
1377          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1378          * the dirty time to prevent enqueue and sync it again.
1379          */
1380         if ((inode->i_state & I_DIRTY) &&
1381             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1382                 inode->dirtied_when = jiffies;
1383
1384         if (wbc->pages_skipped) {
1385                 /*
1386                  * writeback is not making progress due to locked
1387                  * buffers. Skip this inode for now.
1388                  */
1389                 redirty_tail(inode, wb);
1390                 return;
1391         }
1392
1393         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1394                 /*
1395                  * We didn't write back all the pages.  nfs_writepages()
1396                  * sometimes bales out without doing anything.
1397                  */
1398                 if (wbc->nr_to_write <= 0) {
1399                         /* Slice used up. Queue for next turn. */
1400                         requeue_io(inode, wb);
1401                 } else {
1402                         /*
1403                          * Writeback blocked by something other than
1404                          * congestion. Delay the inode for some time to
1405                          * avoid spinning on the CPU (100% iowait)
1406                          * retrying writeback of the dirty page/inode
1407                          * that cannot be performed immediately.
1408                          */
1409                         redirty_tail(inode, wb);
1410                 }
1411         } else if (inode->i_state & I_DIRTY) {
1412                 /*
1413                  * Filesystems can dirty the inode during writeback operations,
1414                  * such as delayed allocation during submission or metadata
1415                  * updates after data IO completion.
1416                  */
1417                 redirty_tail(inode, wb);
1418         } else if (inode->i_state & I_DIRTY_TIME) {
1419                 inode->dirtied_when = jiffies;
1420                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1421         } else {
1422                 /* The inode is clean. Remove from writeback lists. */
1423                 inode_io_list_del_locked(inode, wb);
1424         }
1425 }
1426
1427 /*
1428  * Write out an inode and its dirty pages. Do not update the writeback list
1429  * linkage. That is left to the caller. The caller is also responsible for
1430  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1431  */
1432 static int
1433 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1434 {
1435         struct address_space *mapping = inode->i_mapping;
1436         long nr_to_write = wbc->nr_to_write;
1437         unsigned dirty;
1438         int ret;
1439
1440         WARN_ON(!(inode->i_state & I_SYNC));
1441
1442         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1443
1444         ret = do_writepages(mapping, wbc);
1445
1446         /*
1447          * Make sure to wait on the data before writing out the metadata.
1448          * This is important for filesystems that modify metadata on data
1449          * I/O completion. We don't do it for sync(2) writeback because it has a
1450          * separate, external IO completion path and ->sync_fs for guaranteeing
1451          * inode metadata is written back correctly.
1452          */
1453         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1454                 int err = filemap_fdatawait(mapping);
1455                 if (ret == 0)
1456                         ret = err;
1457         }
1458
1459         /*
1460          * Some filesystems may redirty the inode during the writeback
1461          * due to delalloc, clear dirty metadata flags right before
1462          * write_inode()
1463          */
1464         spin_lock(&inode->i_lock);
1465
1466         dirty = inode->i_state & I_DIRTY;
1467         if (inode->i_state & I_DIRTY_TIME) {
1468                 if ((dirty & I_DIRTY_INODE) ||
1469                     wbc->sync_mode == WB_SYNC_ALL ||
1470                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1471                     unlikely(time_after(jiffies,
1472                                         (inode->dirtied_time_when +
1473                                          dirtytime_expire_interval * HZ)))) {
1474                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1475                         trace_writeback_lazytime(inode);
1476                 }
1477         } else
1478                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1479         inode->i_state &= ~dirty;
1480
1481         /*
1482          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1483          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1484          * either they see the I_DIRTY bits cleared or we see the dirtied
1485          * inode.
1486          *
1487          * I_DIRTY_PAGES is always cleared together above even if @mapping
1488          * still has dirty pages.  The flag is reinstated after smp_mb() if
1489          * necessary.  This guarantees that either __mark_inode_dirty()
1490          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1491          */
1492         smp_mb();
1493
1494         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1495                 inode->i_state |= I_DIRTY_PAGES;
1496
1497         spin_unlock(&inode->i_lock);
1498
1499         if (dirty & I_DIRTY_TIME)
1500                 mark_inode_dirty_sync(inode);
1501         /* Don't write the inode if only I_DIRTY_PAGES was set */
1502         if (dirty & ~I_DIRTY_PAGES) {
1503                 int err = write_inode(inode, wbc);
1504                 if (ret == 0)
1505                         ret = err;
1506         }
1507         trace_writeback_single_inode(inode, wbc, nr_to_write);
1508         return ret;
1509 }
1510
1511 /*
1512  * Write out an inode's dirty pages. Either the caller has an active reference
1513  * on the inode or the inode has I_WILL_FREE set.
1514  *
1515  * This function is designed to be called for writing back one inode which
1516  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1517  * and does more profound writeback list handling in writeback_sb_inodes().
1518  */
1519 static int writeback_single_inode(struct inode *inode,
1520                                   struct writeback_control *wbc)
1521 {
1522         struct bdi_writeback *wb;
1523         int ret = 0;
1524
1525         spin_lock(&inode->i_lock);
1526         if (!atomic_read(&inode->i_count))
1527                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1528         else
1529                 WARN_ON(inode->i_state & I_WILL_FREE);
1530
1531         if (inode->i_state & I_SYNC) {
1532                 if (wbc->sync_mode != WB_SYNC_ALL)
1533                         goto out;
1534                 /*
1535                  * It's a data-integrity sync. We must wait. Since callers hold
1536                  * inode reference or inode has I_WILL_FREE set, it cannot go
1537                  * away under us.
1538                  */
1539                 __inode_wait_for_writeback(inode);
1540         }
1541         WARN_ON(inode->i_state & I_SYNC);
1542         /*
1543          * Skip inode if it is clean and we have no outstanding writeback in
1544          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1545          * function since flusher thread may be doing for example sync in
1546          * parallel and if we move the inode, it could get skipped. So here we
1547          * make sure inode is on some writeback list and leave it there unless
1548          * we have completely cleaned the inode.
1549          */
1550         if (!(inode->i_state & I_DIRTY_ALL) &&
1551             (wbc->sync_mode != WB_SYNC_ALL ||
1552              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1553                 goto out;
1554         inode->i_state |= I_SYNC;
1555         wbc_attach_and_unlock_inode(wbc, inode);
1556
1557         ret = __writeback_single_inode(inode, wbc);
1558
1559         wbc_detach_inode(wbc);
1560
1561         wb = inode_to_wb_and_lock_list(inode);
1562         spin_lock(&inode->i_lock);
1563         /*
1564          * If inode is clean, remove it from writeback lists. Otherwise don't
1565          * touch it. See comment above for explanation.
1566          */
1567         if (!(inode->i_state & I_DIRTY_ALL))
1568                 inode_io_list_del_locked(inode, wb);
1569         spin_unlock(&wb->list_lock);
1570         inode_sync_complete(inode);
1571 out:
1572         spin_unlock(&inode->i_lock);
1573         return ret;
1574 }
1575
1576 static long writeback_chunk_size(struct bdi_writeback *wb,
1577                                  struct wb_writeback_work *work)
1578 {
1579         long pages;
1580
1581         /*
1582          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1583          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1584          * here avoids calling into writeback_inodes_wb() more than once.
1585          *
1586          * The intended call sequence for WB_SYNC_ALL writeback is:
1587          *
1588          *      wb_writeback()
1589          *          writeback_sb_inodes()       <== called only once
1590          *              write_cache_pages()     <== called once for each inode
1591          *                   (quickly) tag currently dirty pages
1592          *                   (maybe slowly) sync all tagged pages
1593          */
1594         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1595                 pages = LONG_MAX;
1596         else {
1597                 pages = min(wb->avg_write_bandwidth / 2,
1598                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1599                 pages = min(pages, work->nr_pages);
1600                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1601                                    MIN_WRITEBACK_PAGES);
1602         }
1603
1604         return pages;
1605 }
1606
1607 /*
1608  * Write a portion of b_io inodes which belong to @sb.
1609  *
1610  * Return the number of pages and/or inodes written.
1611  *
1612  * NOTE! This is called with wb->list_lock held, and will
1613  * unlock and relock that for each inode it ends up doing
1614  * IO for.
1615  */
1616 static long writeback_sb_inodes(struct super_block *sb,
1617                                 struct bdi_writeback *wb,
1618                                 struct wb_writeback_work *work)
1619 {
1620         struct writeback_control wbc = {
1621                 .sync_mode              = work->sync_mode,
1622                 .tagged_writepages      = work->tagged_writepages,
1623                 .for_kupdate            = work->for_kupdate,
1624                 .for_background         = work->for_background,
1625                 .for_sync               = work->for_sync,
1626                 .range_cyclic           = work->range_cyclic,
1627                 .range_start            = 0,
1628                 .range_end              = LLONG_MAX,
1629         };
1630         unsigned long start_time = jiffies;
1631         long write_chunk;
1632         long wrote = 0;  /* count both pages and inodes */
1633
1634         while (!list_empty(&wb->b_io)) {
1635                 struct inode *inode = wb_inode(wb->b_io.prev);
1636                 struct bdi_writeback *tmp_wb;
1637
1638                 if (inode->i_sb != sb) {
1639                         if (work->sb) {
1640                                 /*
1641                                  * We only want to write back data for this
1642                                  * superblock, move all inodes not belonging
1643                                  * to it back onto the dirty list.
1644                                  */
1645                                 redirty_tail(inode, wb);
1646                                 continue;
1647                         }
1648
1649                         /*
1650                          * The inode belongs to a different superblock.
1651                          * Bounce back to the caller to unpin this and
1652                          * pin the next superblock.
1653                          */
1654                         break;
1655                 }
1656
1657                 /*
1658                  * Don't bother with new inodes or inodes being freed, first
1659                  * kind does not need periodic writeout yet, and for the latter
1660                  * kind writeout is handled by the freer.
1661                  */
1662                 spin_lock(&inode->i_lock);
1663                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1664                         spin_unlock(&inode->i_lock);
1665                         redirty_tail(inode, wb);
1666                         continue;
1667                 }
1668                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1669                         /*
1670                          * If this inode is locked for writeback and we are not
1671                          * doing writeback-for-data-integrity, move it to
1672                          * b_more_io so that writeback can proceed with the
1673                          * other inodes on s_io.
1674                          *
1675                          * We'll have another go at writing back this inode
1676                          * when we completed a full scan of b_io.
1677                          */
1678                         spin_unlock(&inode->i_lock);
1679                         requeue_io(inode, wb);
1680                         trace_writeback_sb_inodes_requeue(inode);
1681                         continue;
1682                 }
1683                 spin_unlock(&wb->list_lock);
1684
1685                 /*
1686                  * We already requeued the inode if it had I_SYNC set and we
1687                  * are doing WB_SYNC_NONE writeback. So this catches only the
1688                  * WB_SYNC_ALL case.
1689                  */
1690                 if (inode->i_state & I_SYNC) {
1691                         /* Wait for I_SYNC. This function drops i_lock... */
1692                         inode_sleep_on_writeback(inode);
1693                         /* Inode may be gone, start again */
1694                         spin_lock(&wb->list_lock);
1695                         continue;
1696                 }
1697                 inode->i_state |= I_SYNC;
1698                 wbc_attach_and_unlock_inode(&wbc, inode);
1699
1700                 write_chunk = writeback_chunk_size(wb, work);
1701                 wbc.nr_to_write = write_chunk;
1702                 wbc.pages_skipped = 0;
1703
1704                 /*
1705                  * We use I_SYNC to pin the inode in memory. While it is set
1706                  * evict_inode() will wait so the inode cannot be freed.
1707                  */
1708                 __writeback_single_inode(inode, &wbc);
1709
1710                 wbc_detach_inode(&wbc);
1711                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1712                 wrote += write_chunk - wbc.nr_to_write;
1713
1714                 if (need_resched()) {
1715                         /*
1716                          * We're trying to balance between building up a nice
1717                          * long list of IOs to improve our merge rate, and
1718                          * getting those IOs out quickly for anyone throttling
1719                          * in balance_dirty_pages().  cond_resched() doesn't
1720                          * unplug, so get our IOs out the door before we
1721                          * give up the CPU.
1722                          */
1723                         blk_flush_plug(current);
1724                         cond_resched();
1725                 }
1726
1727                 /*
1728                  * Requeue @inode if still dirty.  Be careful as @inode may
1729                  * have been switched to another wb in the meantime.
1730                  */
1731                 tmp_wb = inode_to_wb_and_lock_list(inode);
1732                 spin_lock(&inode->i_lock);
1733                 if (!(inode->i_state & I_DIRTY_ALL))
1734                         wrote++;
1735                 requeue_inode(inode, tmp_wb, &wbc);
1736                 inode_sync_complete(inode);
1737                 spin_unlock(&inode->i_lock);
1738
1739                 if (unlikely(tmp_wb != wb)) {
1740                         spin_unlock(&tmp_wb->list_lock);
1741                         spin_lock(&wb->list_lock);
1742                 }
1743
1744                 /*
1745                  * bail out to wb_writeback() often enough to check
1746                  * background threshold and other termination conditions.
1747                  */
1748                 if (wrote) {
1749                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1750                                 break;
1751                         if (work->nr_pages <= 0)
1752                                 break;
1753                 }
1754         }
1755         return wrote;
1756 }
1757
1758 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1759                                   struct wb_writeback_work *work)
1760 {
1761         unsigned long start_time = jiffies;
1762         long wrote = 0;
1763
1764         while (!list_empty(&wb->b_io)) {
1765                 struct inode *inode = wb_inode(wb->b_io.prev);
1766                 struct super_block *sb = inode->i_sb;
1767
1768                 if (!trylock_super(sb)) {
1769                         /*
1770                          * trylock_super() may fail consistently due to
1771                          * s_umount being grabbed by someone else. Don't use
1772                          * requeue_io() to avoid busy retrying the inode/sb.
1773                          */
1774                         redirty_tail(inode, wb);
1775                         continue;
1776                 }
1777                 wrote += writeback_sb_inodes(sb, wb, work);
1778                 up_read(&sb->s_umount);
1779
1780                 /* refer to the same tests at the end of writeback_sb_inodes */
1781                 if (wrote) {
1782                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1783                                 break;
1784                         if (work->nr_pages <= 0)
1785                                 break;
1786                 }
1787         }
1788         /* Leave any unwritten inodes on b_io */
1789         return wrote;
1790 }
1791
1792 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1793                                 enum wb_reason reason)
1794 {
1795         struct wb_writeback_work work = {
1796                 .nr_pages       = nr_pages,
1797                 .sync_mode      = WB_SYNC_NONE,
1798                 .range_cyclic   = 1,
1799                 .reason         = reason,
1800         };
1801         struct blk_plug plug;
1802
1803         blk_start_plug(&plug);
1804         spin_lock(&wb->list_lock);
1805         if (list_empty(&wb->b_io))
1806                 queue_io(wb, &work);
1807         __writeback_inodes_wb(wb, &work);
1808         spin_unlock(&wb->list_lock);
1809         blk_finish_plug(&plug);
1810
1811         return nr_pages - work.nr_pages;
1812 }
1813
1814 /*
1815  * Explicit flushing or periodic writeback of "old" data.
1816  *
1817  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1818  * dirtying-time in the inode's address_space.  So this periodic writeback code
1819  * just walks the superblock inode list, writing back any inodes which are
1820  * older than a specific point in time.
1821  *
1822  * Try to run once per dirty_writeback_interval.  But if a writeback event
1823  * takes longer than a dirty_writeback_interval interval, then leave a
1824  * one-second gap.
1825  *
1826  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1827  * all dirty pages if they are all attached to "old" mappings.
1828  */
1829 static long wb_writeback(struct bdi_writeback *wb,
1830                          struct wb_writeback_work *work)
1831 {
1832         unsigned long wb_start = jiffies;
1833         long nr_pages = work->nr_pages;
1834         unsigned long oldest_jif;
1835         struct inode *inode;
1836         long progress;
1837         struct blk_plug plug;
1838
1839         oldest_jif = jiffies;
1840         work->older_than_this = &oldest_jif;
1841
1842         blk_start_plug(&plug);
1843         spin_lock(&wb->list_lock);
1844         for (;;) {
1845                 /*
1846                  * Stop writeback when nr_pages has been consumed
1847                  */
1848                 if (work->nr_pages <= 0)
1849                         break;
1850
1851                 /*
1852                  * Background writeout and kupdate-style writeback may
1853                  * run forever. Stop them if there is other work to do
1854                  * so that e.g. sync can proceed. They'll be restarted
1855                  * after the other works are all done.
1856                  */
1857                 if ((work->for_background || work->for_kupdate) &&
1858                     !list_empty(&wb->work_list))
1859                         break;
1860
1861                 /*
1862                  * For background writeout, stop when we are below the
1863                  * background dirty threshold
1864                  */
1865                 if (work->for_background && !wb_over_bg_thresh(wb))
1866                         break;
1867
1868                 /*
1869                  * Kupdate and background works are special and we want to
1870                  * include all inodes that need writing. Livelock avoidance is
1871                  * handled by these works yielding to any other work so we are
1872                  * safe.
1873                  */
1874                 if (work->for_kupdate) {
1875                         oldest_jif = jiffies -
1876                                 msecs_to_jiffies(dirty_expire_interval * 10);
1877                 } else if (work->for_background)
1878                         oldest_jif = jiffies;
1879
1880                 trace_writeback_start(wb, work);
1881                 if (list_empty(&wb->b_io))
1882                         queue_io(wb, work);
1883                 if (work->sb)
1884                         progress = writeback_sb_inodes(work->sb, wb, work);
1885                 else
1886                         progress = __writeback_inodes_wb(wb, work);
1887                 trace_writeback_written(wb, work);
1888
1889                 wb_update_bandwidth(wb, wb_start);
1890
1891                 /*
1892                  * Did we write something? Try for more
1893                  *
1894                  * Dirty inodes are moved to b_io for writeback in batches.
1895                  * The completion of the current batch does not necessarily
1896                  * mean the overall work is done. So we keep looping as long
1897                  * as made some progress on cleaning pages or inodes.
1898                  */
1899                 if (progress)
1900                         continue;
1901                 /*
1902                  * No more inodes for IO, bail
1903                  */
1904                 if (list_empty(&wb->b_more_io))
1905                         break;
1906                 /*
1907                  * Nothing written. Wait for some inode to
1908                  * become available for writeback. Otherwise
1909                  * we'll just busyloop.
1910                  */
1911                 trace_writeback_wait(wb, work);
1912                 inode = wb_inode(wb->b_more_io.prev);
1913                 spin_lock(&inode->i_lock);
1914                 spin_unlock(&wb->list_lock);
1915                 /* This function drops i_lock... */
1916                 inode_sleep_on_writeback(inode);
1917                 spin_lock(&wb->list_lock);
1918         }
1919         spin_unlock(&wb->list_lock);
1920         blk_finish_plug(&plug);
1921
1922         return nr_pages - work->nr_pages;
1923 }
1924
1925 /*
1926  * Return the next wb_writeback_work struct that hasn't been processed yet.
1927  */
1928 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1929 {
1930         struct wb_writeback_work *work = NULL;
1931
1932         spin_lock_bh(&wb->work_lock);
1933         if (!list_empty(&wb->work_list)) {
1934                 work = list_entry(wb->work_list.next,
1935                                   struct wb_writeback_work, list);
1936                 list_del_init(&work->list);
1937         }
1938         spin_unlock_bh(&wb->work_lock);
1939         return work;
1940 }
1941
1942 static long wb_check_background_flush(struct bdi_writeback *wb)
1943 {
1944         if (wb_over_bg_thresh(wb)) {
1945
1946                 struct wb_writeback_work work = {
1947                         .nr_pages       = LONG_MAX,
1948                         .sync_mode      = WB_SYNC_NONE,
1949                         .for_background = 1,
1950                         .range_cyclic   = 1,
1951                         .reason         = WB_REASON_BACKGROUND,
1952                 };
1953
1954                 return wb_writeback(wb, &work);
1955         }
1956
1957         return 0;
1958 }
1959
1960 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1961 {
1962         unsigned long expired;
1963         long nr_pages;
1964
1965         /*
1966          * When set to zero, disable periodic writeback
1967          */
1968         if (!dirty_writeback_interval)
1969                 return 0;
1970
1971         expired = wb->last_old_flush +
1972                         msecs_to_jiffies(dirty_writeback_interval * 10);
1973         if (time_before(jiffies, expired))
1974                 return 0;
1975
1976         wb->last_old_flush = jiffies;
1977         nr_pages = get_nr_dirty_pages();
1978
1979         if (nr_pages) {
1980                 struct wb_writeback_work work = {
1981                         .nr_pages       = nr_pages,
1982                         .sync_mode      = WB_SYNC_NONE,
1983                         .for_kupdate    = 1,
1984                         .range_cyclic   = 1,
1985                         .reason         = WB_REASON_PERIODIC,
1986                 };
1987
1988                 return wb_writeback(wb, &work);
1989         }
1990
1991         return 0;
1992 }
1993
1994 static long wb_check_start_all(struct bdi_writeback *wb)
1995 {
1996         long nr_pages;
1997
1998         if (!test_bit(WB_start_all, &wb->state))
1999                 return 0;
2000
2001         nr_pages = get_nr_dirty_pages();
2002         if (nr_pages) {
2003                 struct wb_writeback_work work = {
2004                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2005                         .sync_mode      = WB_SYNC_NONE,
2006                         .range_cyclic   = 1,
2007                         .reason         = wb->start_all_reason,
2008                 };
2009
2010                 nr_pages = wb_writeback(wb, &work);
2011         }
2012
2013         clear_bit(WB_start_all, &wb->state);
2014         return nr_pages;
2015 }
2016
2017
2018 /*
2019  * Retrieve work items and do the writeback they describe
2020  */
2021 static long wb_do_writeback(struct bdi_writeback *wb)
2022 {
2023         struct wb_writeback_work *work;
2024         long wrote = 0;
2025
2026         set_bit(WB_writeback_running, &wb->state);
2027         while ((work = get_next_work_item(wb)) != NULL) {
2028                 trace_writeback_exec(wb, work);
2029                 wrote += wb_writeback(wb, work);
2030                 finish_writeback_work(wb, work);
2031         }
2032
2033         /*
2034          * Check for a flush-everything request
2035          */
2036         wrote += wb_check_start_all(wb);
2037
2038         /*
2039          * Check for periodic writeback, kupdated() style
2040          */
2041         wrote += wb_check_old_data_flush(wb);
2042         wrote += wb_check_background_flush(wb);
2043         clear_bit(WB_writeback_running, &wb->state);
2044
2045         return wrote;
2046 }
2047
2048 /*
2049  * Handle writeback of dirty data for the device backed by this bdi. Also
2050  * reschedules periodically and does kupdated style flushing.
2051  */
2052 void wb_workfn(struct work_struct *work)
2053 {
2054         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2055                                                 struct bdi_writeback, dwork);
2056         long pages_written;
2057
2058         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
2059         current->flags |= PF_SWAPWRITE;
2060
2061         if (likely(!current_is_workqueue_rescuer() ||
2062                    !test_bit(WB_registered, &wb->state))) {
2063                 /*
2064                  * The normal path.  Keep writing back @wb until its
2065                  * work_list is empty.  Note that this path is also taken
2066                  * if @wb is shutting down even when we're running off the
2067                  * rescuer as work_list needs to be drained.
2068                  */
2069                 do {
2070                         pages_written = wb_do_writeback(wb);
2071                         trace_writeback_pages_written(pages_written);
2072                 } while (!list_empty(&wb->work_list));
2073         } else {
2074                 /*
2075                  * bdi_wq can't get enough workers and we're running off
2076                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2077                  * enough for efficient IO.
2078                  */
2079                 pages_written = writeback_inodes_wb(wb, 1024,
2080                                                     WB_REASON_FORKER_THREAD);
2081                 trace_writeback_pages_written(pages_written);
2082         }
2083
2084         if (!list_empty(&wb->work_list))
2085                 wb_wakeup(wb);
2086         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2087                 wb_wakeup_delayed(wb);
2088
2089         current->flags &= ~PF_SWAPWRITE;
2090 }
2091
2092 /*
2093  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2094  * write back the whole world.
2095  */
2096 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2097                                          enum wb_reason reason)
2098 {
2099         struct bdi_writeback *wb;
2100
2101         if (!bdi_has_dirty_io(bdi))
2102                 return;
2103
2104         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2105                 wb_start_writeback(wb, reason);
2106 }
2107
2108 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2109                                 enum wb_reason reason)
2110 {
2111         rcu_read_lock();
2112         __wakeup_flusher_threads_bdi(bdi, reason);
2113         rcu_read_unlock();
2114 }
2115
2116 /*
2117  * Wakeup the flusher threads to start writeback of all currently dirty pages
2118  */
2119 void wakeup_flusher_threads(enum wb_reason reason)
2120 {
2121         struct backing_dev_info *bdi;
2122
2123         /*
2124          * If we are expecting writeback progress we must submit plugged IO.
2125          */
2126         if (blk_needs_flush_plug(current))
2127                 blk_schedule_flush_plug(current);
2128
2129         rcu_read_lock();
2130         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2131                 __wakeup_flusher_threads_bdi(bdi, reason);
2132         rcu_read_unlock();
2133 }
2134
2135 /*
2136  * Wake up bdi's periodically to make sure dirtytime inodes gets
2137  * written back periodically.  We deliberately do *not* check the
2138  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2139  * kernel to be constantly waking up once there are any dirtytime
2140  * inodes on the system.  So instead we define a separate delayed work
2141  * function which gets called much more rarely.  (By default, only
2142  * once every 12 hours.)
2143  *
2144  * If there is any other write activity going on in the file system,
2145  * this function won't be necessary.  But if the only thing that has
2146  * happened on the file system is a dirtytime inode caused by an atime
2147  * update, we need this infrastructure below to make sure that inode
2148  * eventually gets pushed out to disk.
2149  */
2150 static void wakeup_dirtytime_writeback(struct work_struct *w);
2151 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2152
2153 static void wakeup_dirtytime_writeback(struct work_struct *w)
2154 {
2155         struct backing_dev_info *bdi;
2156
2157         rcu_read_lock();
2158         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2159                 struct bdi_writeback *wb;
2160
2161                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2162                         if (!list_empty(&wb->b_dirty_time))
2163                                 wb_wakeup(wb);
2164         }
2165         rcu_read_unlock();
2166         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2167 }
2168
2169 static int __init start_dirtytime_writeback(void)
2170 {
2171         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2172         return 0;
2173 }
2174 __initcall(start_dirtytime_writeback);
2175
2176 int dirtytime_interval_handler(struct ctl_table *table, int write,
2177                                void __user *buffer, size_t *lenp, loff_t *ppos)
2178 {
2179         int ret;
2180
2181         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2182         if (ret == 0 && write)
2183                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2184         return ret;
2185 }
2186
2187 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2188 {
2189         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2190                 struct dentry *dentry;
2191                 const char *name = "?";
2192
2193                 dentry = d_find_alias(inode);
2194                 if (dentry) {
2195                         spin_lock(&dentry->d_lock);
2196                         name = (const char *) dentry->d_name.name;
2197                 }
2198                 printk(KERN_DEBUG
2199                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2200                        current->comm, task_pid_nr(current), inode->i_ino,
2201                        name, inode->i_sb->s_id);
2202                 if (dentry) {
2203                         spin_unlock(&dentry->d_lock);
2204                         dput(dentry);
2205                 }
2206         }
2207 }
2208
2209 /**
2210  * __mark_inode_dirty - internal function
2211  *
2212  * @inode: inode to mark
2213  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2214  *
2215  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2216  * mark_inode_dirty_sync.
2217  *
2218  * Put the inode on the super block's dirty list.
2219  *
2220  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2221  * dirty list only if it is hashed or if it refers to a blockdev.
2222  * If it was not hashed, it will never be added to the dirty list
2223  * even if it is later hashed, as it will have been marked dirty already.
2224  *
2225  * In short, make sure you hash any inodes _before_ you start marking
2226  * them dirty.
2227  *
2228  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2229  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2230  * the kernel-internal blockdev inode represents the dirtying time of the
2231  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2232  * page->mapping->host, so the page-dirtying time is recorded in the internal
2233  * blockdev inode.
2234  */
2235 void __mark_inode_dirty(struct inode *inode, int flags)
2236 {
2237         struct super_block *sb = inode->i_sb;
2238         int dirtytime;
2239
2240         trace_writeback_mark_inode_dirty(inode, flags);
2241
2242         /*
2243          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2244          * dirty the inode itself
2245          */
2246         if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2247                 trace_writeback_dirty_inode_start(inode, flags);
2248
2249                 if (sb->s_op->dirty_inode)
2250                         sb->s_op->dirty_inode(inode, flags);
2251
2252                 trace_writeback_dirty_inode(inode, flags);
2253         }
2254         if (flags & I_DIRTY_INODE)
2255                 flags &= ~I_DIRTY_TIME;
2256         dirtytime = flags & I_DIRTY_TIME;
2257
2258         /*
2259          * Paired with smp_mb() in __writeback_single_inode() for the
2260          * following lockless i_state test.  See there for details.
2261          */
2262         smp_mb();
2263
2264         if (((inode->i_state & flags) == flags) ||
2265             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2266                 return;
2267
2268         if (unlikely(block_dump))
2269                 block_dump___mark_inode_dirty(inode);
2270
2271         spin_lock(&inode->i_lock);
2272         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2273                 goto out_unlock_inode;
2274         if ((inode->i_state & flags) != flags) {
2275                 const int was_dirty = inode->i_state & I_DIRTY;
2276
2277                 inode_attach_wb(inode, NULL);
2278
2279                 if (flags & I_DIRTY_INODE)
2280                         inode->i_state &= ~I_DIRTY_TIME;
2281                 inode->i_state |= flags;
2282
2283                 /*
2284                  * If the inode is being synced, just update its dirty state.
2285                  * The unlocker will place the inode on the appropriate
2286                  * superblock list, based upon its state.
2287                  */
2288                 if (inode->i_state & I_SYNC)
2289                         goto out_unlock_inode;
2290
2291                 /*
2292                  * Only add valid (hashed) inodes to the superblock's
2293                  * dirty list.  Add blockdev inodes as well.
2294                  */
2295                 if (!S_ISBLK(inode->i_mode)) {
2296                         if (inode_unhashed(inode))
2297                                 goto out_unlock_inode;
2298                 }
2299                 if (inode->i_state & I_FREEING)
2300                         goto out_unlock_inode;
2301
2302                 /*
2303                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2304                  * reposition it (that would break b_dirty time-ordering).
2305                  */
2306                 if (!was_dirty) {
2307                         struct bdi_writeback *wb;
2308                         struct list_head *dirty_list;
2309                         bool wakeup_bdi = false;
2310
2311                         wb = locked_inode_to_wb_and_lock_list(inode);
2312
2313                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2314                              !test_bit(WB_registered, &wb->state),
2315                              "bdi-%s not registered\n", wb->bdi->name);
2316
2317                         inode->dirtied_when = jiffies;
2318                         if (dirtytime)
2319                                 inode->dirtied_time_when = jiffies;
2320
2321                         if (inode->i_state & I_DIRTY)
2322                                 dirty_list = &wb->b_dirty;
2323                         else
2324                                 dirty_list = &wb->b_dirty_time;
2325
2326                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2327                                                                dirty_list);
2328
2329                         spin_unlock(&wb->list_lock);
2330                         trace_writeback_dirty_inode_enqueue(inode);
2331
2332                         /*
2333                          * If this is the first dirty inode for this bdi,
2334                          * we have to wake-up the corresponding bdi thread
2335                          * to make sure background write-back happens
2336                          * later.
2337                          */
2338                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2339                                 wb_wakeup_delayed(wb);
2340                         return;
2341                 }
2342         }
2343 out_unlock_inode:
2344         spin_unlock(&inode->i_lock);
2345 }
2346 EXPORT_SYMBOL(__mark_inode_dirty);
2347
2348 /*
2349  * The @s_sync_lock is used to serialise concurrent sync operations
2350  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2351  * Concurrent callers will block on the s_sync_lock rather than doing contending
2352  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2353  * has been issued up to the time this function is enter is guaranteed to be
2354  * completed by the time we have gained the lock and waited for all IO that is
2355  * in progress regardless of the order callers are granted the lock.
2356  */
2357 static void wait_sb_inodes(struct super_block *sb)
2358 {
2359         LIST_HEAD(sync_list);
2360
2361         /*
2362          * We need to be protected against the filesystem going from
2363          * r/o to r/w or vice versa.
2364          */
2365         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2366
2367         mutex_lock(&sb->s_sync_lock);
2368
2369         /*
2370          * Splice the writeback list onto a temporary list to avoid waiting on
2371          * inodes that have started writeback after this point.
2372          *
2373          * Use rcu_read_lock() to keep the inodes around until we have a
2374          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2375          * the local list because inodes can be dropped from either by writeback
2376          * completion.
2377          */
2378         rcu_read_lock();
2379         spin_lock_irq(&sb->s_inode_wblist_lock);
2380         list_splice_init(&sb->s_inodes_wb, &sync_list);
2381
2382         /*
2383          * Data integrity sync. Must wait for all pages under writeback, because
2384          * there may have been pages dirtied before our sync call, but which had
2385          * writeout started before we write it out.  In which case, the inode
2386          * may not be on the dirty list, but we still have to wait for that
2387          * writeout.
2388          */
2389         while (!list_empty(&sync_list)) {
2390                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2391                                                        i_wb_list);
2392                 struct address_space *mapping = inode->i_mapping;
2393
2394                 /*
2395                  * Move each inode back to the wb list before we drop the lock
2396                  * to preserve consistency between i_wb_list and the mapping
2397                  * writeback tag. Writeback completion is responsible to remove
2398                  * the inode from either list once the writeback tag is cleared.
2399                  */
2400                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2401
2402                 /*
2403                  * The mapping can appear untagged while still on-list since we
2404                  * do not have the mapping lock. Skip it here, wb completion
2405                  * will remove it.
2406                  */
2407                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2408                         continue;
2409
2410                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2411
2412                 spin_lock(&inode->i_lock);
2413                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2414                         spin_unlock(&inode->i_lock);
2415
2416                         spin_lock_irq(&sb->s_inode_wblist_lock);
2417                         continue;
2418                 }
2419                 __iget(inode);
2420                 spin_unlock(&inode->i_lock);
2421                 rcu_read_unlock();
2422
2423                 /*
2424                  * We keep the error status of individual mapping so that
2425                  * applications can catch the writeback error using fsync(2).
2426                  * See filemap_fdatawait_keep_errors() for details.
2427                  */
2428                 filemap_fdatawait_keep_errors(mapping);
2429
2430                 cond_resched();
2431
2432                 iput(inode);
2433
2434                 rcu_read_lock();
2435                 spin_lock_irq(&sb->s_inode_wblist_lock);
2436         }
2437         spin_unlock_irq(&sb->s_inode_wblist_lock);
2438         rcu_read_unlock();
2439         mutex_unlock(&sb->s_sync_lock);
2440 }
2441
2442 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2443                                      enum wb_reason reason, bool skip_if_busy)
2444 {
2445         struct backing_dev_info *bdi = sb->s_bdi;
2446         DEFINE_WB_COMPLETION(done, bdi);
2447         struct wb_writeback_work work = {
2448                 .sb                     = sb,
2449                 .sync_mode              = WB_SYNC_NONE,
2450                 .tagged_writepages      = 1,
2451                 .done                   = &done,
2452                 .nr_pages               = nr,
2453                 .reason                 = reason,
2454         };
2455
2456         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2457                 return;
2458         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2459
2460         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2461         wb_wait_for_completion(&done);
2462 }
2463
2464 /**
2465  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2466  * @sb: the superblock
2467  * @nr: the number of pages to write
2468  * @reason: reason why some writeback work initiated
2469  *
2470  * Start writeback on some inodes on this super_block. No guarantees are made
2471  * on how many (if any) will be written, and this function does not wait
2472  * for IO completion of submitted IO.
2473  */
2474 void writeback_inodes_sb_nr(struct super_block *sb,
2475                             unsigned long nr,
2476                             enum wb_reason reason)
2477 {
2478         __writeback_inodes_sb_nr(sb, nr, reason, false);
2479 }
2480 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2481
2482 /**
2483  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2484  * @sb: the superblock
2485  * @reason: reason why some writeback work was initiated
2486  *
2487  * Start writeback on some inodes on this super_block. No guarantees are made
2488  * on how many (if any) will be written, and this function does not wait
2489  * for IO completion of submitted IO.
2490  */
2491 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2492 {
2493         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2494 }
2495 EXPORT_SYMBOL(writeback_inodes_sb);
2496
2497 /**
2498  * try_to_writeback_inodes_sb - try to start writeback if none underway
2499  * @sb: the superblock
2500  * @reason: reason why some writeback work was initiated
2501  *
2502  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2503  */
2504 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2505 {
2506         if (!down_read_trylock(&sb->s_umount))
2507                 return;
2508
2509         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2510         up_read(&sb->s_umount);
2511 }
2512 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2513
2514 /**
2515  * sync_inodes_sb       -       sync sb inode pages
2516  * @sb: the superblock
2517  *
2518  * This function writes and waits on any dirty inode belonging to this
2519  * super_block.
2520  */
2521 void sync_inodes_sb(struct super_block *sb)
2522 {
2523         struct backing_dev_info *bdi = sb->s_bdi;
2524         DEFINE_WB_COMPLETION(done, bdi);
2525         struct wb_writeback_work work = {
2526                 .sb             = sb,
2527                 .sync_mode      = WB_SYNC_ALL,
2528                 .nr_pages       = LONG_MAX,
2529                 .range_cyclic   = 0,
2530                 .done           = &done,
2531                 .reason         = WB_REASON_SYNC,
2532                 .for_sync       = 1,
2533         };
2534
2535         /*
2536          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2537          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2538          * bdi_has_dirty() need to be written out too.
2539          */
2540         if (bdi == &noop_backing_dev_info)
2541                 return;
2542         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2543
2544         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2545         bdi_down_write_wb_switch_rwsem(bdi);
2546         bdi_split_work_to_wbs(bdi, &work, false);
2547         wb_wait_for_completion(&done);
2548         bdi_up_write_wb_switch_rwsem(bdi);
2549
2550         wait_sb_inodes(sb);
2551 }
2552 EXPORT_SYMBOL(sync_inodes_sb);
2553
2554 /**
2555  * write_inode_now      -       write an inode to disk
2556  * @inode: inode to write to disk
2557  * @sync: whether the write should be synchronous or not
2558  *
2559  * This function commits an inode to disk immediately if it is dirty. This is
2560  * primarily needed by knfsd.
2561  *
2562  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2563  */
2564 int write_inode_now(struct inode *inode, int sync)
2565 {
2566         struct writeback_control wbc = {
2567                 .nr_to_write = LONG_MAX,
2568                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2569                 .range_start = 0,
2570                 .range_end = LLONG_MAX,
2571         };
2572
2573         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2574                 wbc.nr_to_write = 0;
2575
2576         might_sleep();
2577         return writeback_single_inode(inode, &wbc);
2578 }
2579 EXPORT_SYMBOL(write_inode_now);
2580
2581 /**
2582  * sync_inode - write an inode and its pages to disk.
2583  * @inode: the inode to sync
2584  * @wbc: controls the writeback mode
2585  *
2586  * sync_inode() will write an inode and its pages to disk.  It will also
2587  * correctly update the inode on its superblock's dirty inode lists and will
2588  * update inode->i_state.
2589  *
2590  * The caller must have a ref on the inode.
2591  */
2592 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2593 {
2594         return writeback_single_inode(inode, wbc);
2595 }
2596 EXPORT_SYMBOL(sync_inode);
2597
2598 /**
2599  * sync_inode_metadata - write an inode to disk
2600  * @inode: the inode to sync
2601  * @wait: wait for I/O to complete.
2602  *
2603  * Write an inode to disk and adjust its dirty state after completion.
2604  *
2605  * Note: only writes the actual inode, no associated data or other metadata.
2606  */
2607 int sync_inode_metadata(struct inode *inode, int wait)
2608 {
2609         struct writeback_control wbc = {
2610                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2611                 .nr_to_write = 0, /* metadata-only */
2612         };
2613
2614         return sync_inode(inode, &wbc);
2615 }
2616 EXPORT_SYMBOL(sync_inode_metadata);