Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172                                  int nblocks)
173 {
174         int ret;
175
176         /*
177          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178          * moment, get_block can be called only for blocks inside i_size since
179          * page cache has been already dropped and writes are blocked by
180          * i_mutex. So we can safely drop the i_data_sem here.
181          */
182         BUG_ON(EXT4_JOURNAL(inode) == NULL);
183         jbd_debug(2, "restarting handle %p\n", handle);
184         up_write(&EXT4_I(inode)->i_data_sem);
185         ret = ext4_journal_restart(handle, nblocks);
186         down_write(&EXT4_I(inode)->i_data_sem);
187         ext4_discard_preallocations(inode);
188
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197         handle_t *handle;
198         int err;
199         int extra_credits = 3;
200         struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202         trace_ext4_evict_inode(inode);
203
204         if (inode->i_nlink) {
205                 /*
206                  * When journalling data dirty buffers are tracked only in the
207                  * journal. So although mm thinks everything is clean and
208                  * ready for reaping the inode might still have some pages to
209                  * write in the running transaction or waiting to be
210                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
211                  * (via truncate_inode_pages()) to discard these buffers can
212                  * cause data loss. Also even if we did not discard these
213                  * buffers, we would have no way to find them after the inode
214                  * is reaped and thus user could see stale data if he tries to
215                  * read them before the transaction is checkpointed. So be
216                  * careful and force everything to disk here... We use
217                  * ei->i_datasync_tid to store the newest transaction
218                  * containing inode's data.
219                  *
220                  * Note that directories do not have this problem because they
221                  * don't use page cache.
222                  */
223                 if (inode->i_ino != EXT4_JOURNAL_INO &&
224                     ext4_should_journal_data(inode) &&
225                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226                     inode->i_data.nrpages) {
227                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230                         jbd2_complete_transaction(journal, commit_tid);
231                         filemap_write_and_wait(&inode->i_data);
232                 }
233                 truncate_inode_pages_final(&inode->i_data);
234
235                 goto no_delete;
236         }
237
238         if (is_bad_inode(inode))
239                 goto no_delete;
240         dquot_initialize(inode);
241
242         if (ext4_should_order_data(inode))
243                 ext4_begin_ordered_truncate(inode, 0);
244         truncate_inode_pages_final(&inode->i_data);
245
246         /*
247          * Protect us against freezing - iput() caller didn't have to have any
248          * protection against it
249          */
250         sb_start_intwrite(inode->i_sb);
251
252         if (!IS_NOQUOTA(inode))
253                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256                                  ext4_blocks_for_truncate(inode)+extra_credits);
257         if (IS_ERR(handle)) {
258                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259                 /*
260                  * If we're going to skip the normal cleanup, we still need to
261                  * make sure that the in-core orphan linked list is properly
262                  * cleaned up.
263                  */
264                 ext4_orphan_del(NULL, inode);
265                 sb_end_intwrite(inode->i_sb);
266                 goto no_delete;
267         }
268
269         if (IS_SYNC(inode))
270                 ext4_handle_sync(handle);
271
272         /*
273          * Set inode->i_size to 0 before calling ext4_truncate(). We need
274          * special handling of symlinks here because i_size is used to
275          * determine whether ext4_inode_info->i_data contains symlink data or
276          * block mappings. Setting i_size to 0 will remove its fast symlink
277          * status. Erase i_data so that it becomes a valid empty block map.
278          */
279         if (ext4_inode_is_fast_symlink(inode))
280                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281         inode->i_size = 0;
282         err = ext4_mark_inode_dirty(handle, inode);
283         if (err) {
284                 ext4_warning(inode->i_sb,
285                              "couldn't mark inode dirty (err %d)", err);
286                 goto stop_handle;
287         }
288         if (inode->i_blocks) {
289                 err = ext4_truncate(inode);
290                 if (err) {
291                         ext4_error(inode->i_sb,
292                                    "couldn't truncate inode %lu (err %d)",
293                                    inode->i_ino, err);
294                         goto stop_handle;
295                 }
296         }
297
298         /* Remove xattr references. */
299         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300                                       extra_credits);
301         if (err) {
302                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304                 ext4_journal_stop(handle);
305                 ext4_orphan_del(NULL, inode);
306                 sb_end_intwrite(inode->i_sb);
307                 ext4_xattr_inode_array_free(ea_inode_array);
308                 goto no_delete;
309         }
310
311         /*
312          * Kill off the orphan record which ext4_truncate created.
313          * AKPM: I think this can be inside the above `if'.
314          * Note that ext4_orphan_del() has to be able to cope with the
315          * deletion of a non-existent orphan - this is because we don't
316          * know if ext4_truncate() actually created an orphan record.
317          * (Well, we could do this if we need to, but heck - it works)
318          */
319         ext4_orphan_del(handle, inode);
320         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
321
322         /*
323          * One subtle ordering requirement: if anything has gone wrong
324          * (transaction abort, IO errors, whatever), then we can still
325          * do these next steps (the fs will already have been marked as
326          * having errors), but we can't free the inode if the mark_dirty
327          * fails.
328          */
329         if (ext4_mark_inode_dirty(handle, inode))
330                 /* If that failed, just do the required in-core inode clear. */
331                 ext4_clear_inode(inode);
332         else
333                 ext4_free_inode(handle, inode);
334         ext4_journal_stop(handle);
335         sb_end_intwrite(inode->i_sb);
336         ext4_xattr_inode_array_free(ea_inode_array);
337         return;
338 no_delete:
339         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
340 }
341
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345         return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354                                         int used, int quota_claim)
355 {
356         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357         struct ext4_inode_info *ei = EXT4_I(inode);
358
359         spin_lock(&ei->i_block_reservation_lock);
360         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361         if (unlikely(used > ei->i_reserved_data_blocks)) {
362                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363                          "with only %d reserved data blocks",
364                          __func__, inode->i_ino, used,
365                          ei->i_reserved_data_blocks);
366                 WARN_ON(1);
367                 used = ei->i_reserved_data_blocks;
368         }
369
370         /* Update per-inode reservations */
371         ei->i_reserved_data_blocks -= used;
372         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376         /* Update quota subsystem for data blocks */
377         if (quota_claim)
378                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379         else {
380                 /*
381                  * We did fallocate with an offset that is already delayed
382                  * allocated. So on delayed allocated writeback we should
383                  * not re-claim the quota for fallocated blocks.
384                  */
385                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386         }
387
388         /*
389          * If we have done all the pending block allocations and if
390          * there aren't any writers on the inode, we can discard the
391          * inode's preallocations.
392          */
393         if ((ei->i_reserved_data_blocks == 0) &&
394             !inode_is_open_for_write(inode))
395                 ext4_discard_preallocations(inode);
396 }
397
398 static int __check_block_validity(struct inode *inode, const char *func,
399                                 unsigned int line,
400                                 struct ext4_map_blocks *map)
401 {
402         if (ext4_has_feature_journal(inode->i_sb) &&
403             (inode->i_ino ==
404              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
405                 return 0;
406         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
407                                    map->m_len)) {
408                 ext4_error_inode(inode, func, line, map->m_pblk,
409                                  "lblock %lu mapped to illegal pblock %llu "
410                                  "(length %d)", (unsigned long) map->m_lblk,
411                                  map->m_pblk, map->m_len);
412                 return -EFSCORRUPTED;
413         }
414         return 0;
415 }
416
417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418                        ext4_lblk_t len)
419 {
420         int ret;
421
422         if (IS_ENCRYPTED(inode))
423                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
424
425         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426         if (ret > 0)
427                 ret = 0;
428
429         return ret;
430 }
431
432 #define check_block_validity(inode, map)        \
433         __check_block_validity((inode), __func__, __LINE__, (map))
434
435 #ifdef ES_AGGRESSIVE_TEST
436 static void ext4_map_blocks_es_recheck(handle_t *handle,
437                                        struct inode *inode,
438                                        struct ext4_map_blocks *es_map,
439                                        struct ext4_map_blocks *map,
440                                        int flags)
441 {
442         int retval;
443
444         map->m_flags = 0;
445         /*
446          * There is a race window that the result is not the same.
447          * e.g. xfstests #223 when dioread_nolock enables.  The reason
448          * is that we lookup a block mapping in extent status tree with
449          * out taking i_data_sem.  So at the time the unwritten extent
450          * could be converted.
451          */
452         down_read(&EXT4_I(inode)->i_data_sem);
453         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
455                                              EXT4_GET_BLOCKS_KEEP_SIZE);
456         } else {
457                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
458                                              EXT4_GET_BLOCKS_KEEP_SIZE);
459         }
460         up_read((&EXT4_I(inode)->i_data_sem));
461
462         /*
463          * We don't check m_len because extent will be collpased in status
464          * tree.  So the m_len might not equal.
465          */
466         if (es_map->m_lblk != map->m_lblk ||
467             es_map->m_flags != map->m_flags ||
468             es_map->m_pblk != map->m_pblk) {
469                 printk("ES cache assertion failed for inode: %lu "
470                        "es_cached ex [%d/%d/%llu/%x] != "
471                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472                        inode->i_ino, es_map->m_lblk, es_map->m_len,
473                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
474                        map->m_len, map->m_pblk, map->m_flags,
475                        retval, flags);
476         }
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.  if
493  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, @map is returned as unmapped but we still do fill map->m_len to
498  * indicate the length of a hole starting at map->m_lblk.
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503                     struct ext4_map_blocks *map, int flags)
504 {
505         struct extent_status es;
506         int retval;
507         int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509         struct ext4_map_blocks orig_map;
510
511         memcpy(&orig_map, map, sizeof(*map));
512 #endif
513
514         map->m_flags = 0;
515         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
517                   (unsigned long) map->m_lblk);
518
519         /*
520          * ext4_map_blocks returns an int, and m_len is an unsigned int
521          */
522         if (unlikely(map->m_len > INT_MAX))
523                 map->m_len = INT_MAX;
524
525         /* We can handle the block number less than EXT_MAX_BLOCKS */
526         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527                 return -EFSCORRUPTED;
528
529         /* Lookup extent status tree firstly */
530         if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
531                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532                         map->m_pblk = ext4_es_pblock(&es) +
533                                         map->m_lblk - es.es_lblk;
534                         map->m_flags |= ext4_es_is_written(&es) ?
535                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536                         retval = es.es_len - (map->m_lblk - es.es_lblk);
537                         if (retval > map->m_len)
538                                 retval = map->m_len;
539                         map->m_len = retval;
540                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541                         map->m_pblk = 0;
542                         retval = es.es_len - (map->m_lblk - es.es_lblk);
543                         if (retval > map->m_len)
544                                 retval = map->m_len;
545                         map->m_len = retval;
546                         retval = 0;
547                 } else {
548                         BUG();
549                 }
550 #ifdef ES_AGGRESSIVE_TEST
551                 ext4_map_blocks_es_recheck(handle, inode, map,
552                                            &orig_map, flags);
553 #endif
554                 goto found;
555         }
556
557         /*
558          * Try to see if we can get the block without requesting a new
559          * file system block.
560          */
561         down_read(&EXT4_I(inode)->i_data_sem);
562         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
564                                              EXT4_GET_BLOCKS_KEEP_SIZE);
565         } else {
566                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
567                                              EXT4_GET_BLOCKS_KEEP_SIZE);
568         }
569         if (retval > 0) {
570                 unsigned int status;
571
572                 if (unlikely(retval != map->m_len)) {
573                         ext4_warning(inode->i_sb,
574                                      "ES len assertion failed for inode "
575                                      "%lu: retval %d != map->m_len %d",
576                                      inode->i_ino, retval, map->m_len);
577                         WARN_ON(1);
578                 }
579
580                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
581                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
582                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
583                     !(status & EXTENT_STATUS_WRITTEN) &&
584                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
585                                        map->m_lblk + map->m_len - 1))
586                         status |= EXTENT_STATUS_DELAYED;
587                 ret = ext4_es_insert_extent(inode, map->m_lblk,
588                                             map->m_len, map->m_pblk, status);
589                 if (ret < 0)
590                         retval = ret;
591         }
592         up_read((&EXT4_I(inode)->i_data_sem));
593
594 found:
595         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
596                 ret = check_block_validity(inode, map);
597                 if (ret != 0)
598                         return ret;
599         }
600
601         /* If it is only a block(s) look up */
602         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
603                 return retval;
604
605         /*
606          * Returns if the blocks have already allocated
607          *
608          * Note that if blocks have been preallocated
609          * ext4_ext_get_block() returns the create = 0
610          * with buffer head unmapped.
611          */
612         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
613                 /*
614                  * If we need to convert extent to unwritten
615                  * we continue and do the actual work in
616                  * ext4_ext_map_blocks()
617                  */
618                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619                         return retval;
620
621         /*
622          * Here we clear m_flags because after allocating an new extent,
623          * it will be set again.
624          */
625         map->m_flags &= ~EXT4_MAP_FLAGS;
626
627         /*
628          * New blocks allocate and/or writing to unwritten extent
629          * will possibly result in updating i_data, so we take
630          * the write lock of i_data_sem, and call get_block()
631          * with create == 1 flag.
632          */
633         down_write(&EXT4_I(inode)->i_data_sem);
634
635         /*
636          * We need to check for EXT4 here because migrate
637          * could have changed the inode type in between
638          */
639         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
640                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
641         } else {
642                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
643
644                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
645                         /*
646                          * We allocated new blocks which will result in
647                          * i_data's format changing.  Force the migrate
648                          * to fail by clearing migrate flags
649                          */
650                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
651                 }
652
653                 /*
654                  * Update reserved blocks/metadata blocks after successful
655                  * block allocation which had been deferred till now. We don't
656                  * support fallocate for non extent files. So we can update
657                  * reserve space here.
658                  */
659                 if ((retval > 0) &&
660                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
661                         ext4_da_update_reserve_space(inode, retval, 1);
662         }
663
664         if (retval > 0) {
665                 unsigned int status;
666
667                 if (unlikely(retval != map->m_len)) {
668                         ext4_warning(inode->i_sb,
669                                      "ES len assertion failed for inode "
670                                      "%lu: retval %d != map->m_len %d",
671                                      inode->i_ino, retval, map->m_len);
672                         WARN_ON(1);
673                 }
674
675                 /*
676                  * We have to zeroout blocks before inserting them into extent
677                  * status tree. Otherwise someone could look them up there and
678                  * use them before they are really zeroed. We also have to
679                  * unmap metadata before zeroing as otherwise writeback can
680                  * overwrite zeros with stale data from block device.
681                  */
682                 if (flags & EXT4_GET_BLOCKS_ZERO &&
683                     map->m_flags & EXT4_MAP_MAPPED &&
684                     map->m_flags & EXT4_MAP_NEW) {
685                         ret = ext4_issue_zeroout(inode, map->m_lblk,
686                                                  map->m_pblk, map->m_len);
687                         if (ret) {
688                                 retval = ret;
689                                 goto out_sem;
690                         }
691                 }
692
693                 /*
694                  * If the extent has been zeroed out, we don't need to update
695                  * extent status tree.
696                  */
697                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
698                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
699                         if (ext4_es_is_written(&es))
700                                 goto out_sem;
701                 }
702                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
703                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
704                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
705                     !(status & EXTENT_STATUS_WRITTEN) &&
706                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
707                                        map->m_lblk + map->m_len - 1))
708                         status |= EXTENT_STATUS_DELAYED;
709                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
710                                             map->m_pblk, status);
711                 if (ret < 0) {
712                         retval = ret;
713                         goto out_sem;
714                 }
715         }
716
717 out_sem:
718         up_write((&EXT4_I(inode)->i_data_sem));
719         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
720                 ret = check_block_validity(inode, map);
721                 if (ret != 0)
722                         return ret;
723
724                 /*
725                  * Inodes with freshly allocated blocks where contents will be
726                  * visible after transaction commit must be on transaction's
727                  * ordered data list.
728                  */
729                 if (map->m_flags & EXT4_MAP_NEW &&
730                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
731                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
732                     !ext4_is_quota_file(inode) &&
733                     ext4_should_order_data(inode)) {
734                         loff_t start_byte =
735                                 (loff_t)map->m_lblk << inode->i_blkbits;
736                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
737
738                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
739                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
740                                                 start_byte, length);
741                         else
742                                 ret = ext4_jbd2_inode_add_write(handle, inode,
743                                                 start_byte, length);
744                         if (ret)
745                                 return ret;
746                 }
747         }
748         return retval;
749 }
750
751 /*
752  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
753  * we have to be careful as someone else may be manipulating b_state as well.
754  */
755 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
756 {
757         unsigned long old_state;
758         unsigned long new_state;
759
760         flags &= EXT4_MAP_FLAGS;
761
762         /* Dummy buffer_head? Set non-atomically. */
763         if (!bh->b_page) {
764                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
765                 return;
766         }
767         /*
768          * Someone else may be modifying b_state. Be careful! This is ugly but
769          * once we get rid of using bh as a container for mapping information
770          * to pass to / from get_block functions, this can go away.
771          */
772         do {
773                 old_state = READ_ONCE(bh->b_state);
774                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
775         } while (unlikely(
776                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
777 }
778
779 static int _ext4_get_block(struct inode *inode, sector_t iblock,
780                            struct buffer_head *bh, int flags)
781 {
782         struct ext4_map_blocks map;
783         int ret = 0;
784
785         if (ext4_has_inline_data(inode))
786                 return -ERANGE;
787
788         map.m_lblk = iblock;
789         map.m_len = bh->b_size >> inode->i_blkbits;
790
791         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
792                               flags);
793         if (ret > 0) {
794                 map_bh(bh, inode->i_sb, map.m_pblk);
795                 ext4_update_bh_state(bh, map.m_flags);
796                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
797                 ret = 0;
798         } else if (ret == 0) {
799                 /* hole case, need to fill in bh->b_size */
800                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
801         }
802         return ret;
803 }
804
805 int ext4_get_block(struct inode *inode, sector_t iblock,
806                    struct buffer_head *bh, int create)
807 {
808         return _ext4_get_block(inode, iblock, bh,
809                                create ? EXT4_GET_BLOCKS_CREATE : 0);
810 }
811
812 /*
813  * Get block function used when preparing for buffered write if we require
814  * creating an unwritten extent if blocks haven't been allocated.  The extent
815  * will be converted to written after the IO is complete.
816  */
817 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
818                              struct buffer_head *bh_result, int create)
819 {
820         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
821                    inode->i_ino, create);
822         return _ext4_get_block(inode, iblock, bh_result,
823                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
824 }
825
826 /* Maximum number of blocks we map for direct IO at once. */
827 #define DIO_MAX_BLOCKS 4096
828
829 /*
830  * Get blocks function for the cases that need to start a transaction -
831  * generally difference cases of direct IO and DAX IO. It also handles retries
832  * in case of ENOSPC.
833  */
834 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
835                                 struct buffer_head *bh_result, int flags)
836 {
837         int dio_credits;
838         handle_t *handle;
839         int retries = 0;
840         int ret;
841
842         /* Trim mapping request to maximum we can map at once for DIO */
843         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
844                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
845         dio_credits = ext4_chunk_trans_blocks(inode,
846                                       bh_result->b_size >> inode->i_blkbits);
847 retry:
848         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
849         if (IS_ERR(handle))
850                 return PTR_ERR(handle);
851
852         ret = _ext4_get_block(inode, iblock, bh_result, flags);
853         ext4_journal_stop(handle);
854
855         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
856                 goto retry;
857         return ret;
858 }
859
860 /* Get block function for DIO reads and writes to inodes without extents */
861 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
862                        struct buffer_head *bh, int create)
863 {
864         /* We don't expect handle for direct IO */
865         WARN_ON_ONCE(ext4_journal_current_handle());
866
867         if (!create)
868                 return _ext4_get_block(inode, iblock, bh, 0);
869         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
870 }
871
872 /*
873  * Get block function for AIO DIO writes when we create unwritten extent if
874  * blocks are not allocated yet. The extent will be converted to written
875  * after IO is complete.
876  */
877 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
878                 sector_t iblock, struct buffer_head *bh_result, int create)
879 {
880         int ret;
881
882         /* We don't expect handle for direct IO */
883         WARN_ON_ONCE(ext4_journal_current_handle());
884
885         ret = ext4_get_block_trans(inode, iblock, bh_result,
886                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
887
888         /*
889          * When doing DIO using unwritten extents, we need io_end to convert
890          * unwritten extents to written on IO completion. We allocate io_end
891          * once we spot unwritten extent and store it in b_private. Generic
892          * DIO code keeps b_private set and furthermore passes the value to
893          * our completion callback in 'private' argument.
894          */
895         if (!ret && buffer_unwritten(bh_result)) {
896                 if (!bh_result->b_private) {
897                         ext4_io_end_t *io_end;
898
899                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
900                         if (!io_end)
901                                 return -ENOMEM;
902                         bh_result->b_private = io_end;
903                         ext4_set_io_unwritten_flag(inode, io_end);
904                 }
905                 set_buffer_defer_completion(bh_result);
906         }
907
908         return ret;
909 }
910
911 /*
912  * Get block function for non-AIO DIO writes when we create unwritten extent if
913  * blocks are not allocated yet. The extent will be converted to written
914  * after IO is complete by ext4_direct_IO_write().
915  */
916 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
917                 sector_t iblock, struct buffer_head *bh_result, int create)
918 {
919         int ret;
920
921         /* We don't expect handle for direct IO */
922         WARN_ON_ONCE(ext4_journal_current_handle());
923
924         ret = ext4_get_block_trans(inode, iblock, bh_result,
925                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
926
927         /*
928          * Mark inode as having pending DIO writes to unwritten extents.
929          * ext4_direct_IO_write() checks this flag and converts extents to
930          * written.
931          */
932         if (!ret && buffer_unwritten(bh_result))
933                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
934
935         return ret;
936 }
937
938 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
939                    struct buffer_head *bh_result, int create)
940 {
941         int ret;
942
943         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
944                    inode->i_ino, create);
945         /* We don't expect handle for direct IO */
946         WARN_ON_ONCE(ext4_journal_current_handle());
947
948         ret = _ext4_get_block(inode, iblock, bh_result, 0);
949         /*
950          * Blocks should have been preallocated! ext4_file_write_iter() checks
951          * that.
952          */
953         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
954
955         return ret;
956 }
957
958
959 /*
960  * `handle' can be NULL if create is zero
961  */
962 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
963                                 ext4_lblk_t block, int map_flags)
964 {
965         struct ext4_map_blocks map;
966         struct buffer_head *bh;
967         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
968         int err;
969
970         J_ASSERT(handle != NULL || create == 0);
971
972         map.m_lblk = block;
973         map.m_len = 1;
974         err = ext4_map_blocks(handle, inode, &map, map_flags);
975
976         if (err == 0)
977                 return create ? ERR_PTR(-ENOSPC) : NULL;
978         if (err < 0)
979                 return ERR_PTR(err);
980
981         bh = sb_getblk(inode->i_sb, map.m_pblk);
982         if (unlikely(!bh))
983                 return ERR_PTR(-ENOMEM);
984         if (map.m_flags & EXT4_MAP_NEW) {
985                 J_ASSERT(create != 0);
986                 J_ASSERT(handle != NULL);
987
988                 /*
989                  * Now that we do not always journal data, we should
990                  * keep in mind whether this should always journal the
991                  * new buffer as metadata.  For now, regular file
992                  * writes use ext4_get_block instead, so it's not a
993                  * problem.
994                  */
995                 lock_buffer(bh);
996                 BUFFER_TRACE(bh, "call get_create_access");
997                 err = ext4_journal_get_create_access(handle, bh);
998                 if (unlikely(err)) {
999                         unlock_buffer(bh);
1000                         goto errout;
1001                 }
1002                 if (!buffer_uptodate(bh)) {
1003                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1004                         set_buffer_uptodate(bh);
1005                 }
1006                 unlock_buffer(bh);
1007                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1008                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1009                 if (unlikely(err))
1010                         goto errout;
1011         } else
1012                 BUFFER_TRACE(bh, "not a new buffer");
1013         return bh;
1014 errout:
1015         brelse(bh);
1016         return ERR_PTR(err);
1017 }
1018
1019 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1020                                ext4_lblk_t block, int map_flags)
1021 {
1022         struct buffer_head *bh;
1023
1024         bh = ext4_getblk(handle, inode, block, map_flags);
1025         if (IS_ERR(bh))
1026                 return bh;
1027         if (!bh || ext4_buffer_uptodate(bh))
1028                 return bh;
1029         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1030         wait_on_buffer(bh);
1031         if (buffer_uptodate(bh))
1032                 return bh;
1033         put_bh(bh);
1034         return ERR_PTR(-EIO);
1035 }
1036
1037 /* Read a contiguous batch of blocks. */
1038 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1039                      bool wait, struct buffer_head **bhs)
1040 {
1041         int i, err;
1042
1043         for (i = 0; i < bh_count; i++) {
1044                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1045                 if (IS_ERR(bhs[i])) {
1046                         err = PTR_ERR(bhs[i]);
1047                         bh_count = i;
1048                         goto out_brelse;
1049                 }
1050         }
1051
1052         for (i = 0; i < bh_count; i++)
1053                 /* Note that NULL bhs[i] is valid because of holes. */
1054                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
1055                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1056                                     &bhs[i]);
1057
1058         if (!wait)
1059                 return 0;
1060
1061         for (i = 0; i < bh_count; i++)
1062                 if (bhs[i])
1063                         wait_on_buffer(bhs[i]);
1064
1065         for (i = 0; i < bh_count; i++) {
1066                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1067                         err = -EIO;
1068                         goto out_brelse;
1069                 }
1070         }
1071         return 0;
1072
1073 out_brelse:
1074         for (i = 0; i < bh_count; i++) {
1075                 brelse(bhs[i]);
1076                 bhs[i] = NULL;
1077         }
1078         return err;
1079 }
1080
1081 int ext4_walk_page_buffers(handle_t *handle,
1082                            struct buffer_head *head,
1083                            unsigned from,
1084                            unsigned to,
1085                            int *partial,
1086                            int (*fn)(handle_t *handle,
1087                                      struct buffer_head *bh))
1088 {
1089         struct buffer_head *bh;
1090         unsigned block_start, block_end;
1091         unsigned blocksize = head->b_size;
1092         int err, ret = 0;
1093         struct buffer_head *next;
1094
1095         for (bh = head, block_start = 0;
1096              ret == 0 && (bh != head || !block_start);
1097              block_start = block_end, bh = next) {
1098                 next = bh->b_this_page;
1099                 block_end = block_start + blocksize;
1100                 if (block_end <= from || block_start >= to) {
1101                         if (partial && !buffer_uptodate(bh))
1102                                 *partial = 1;
1103                         continue;
1104                 }
1105                 err = (*fn)(handle, bh);
1106                 if (!ret)
1107                         ret = err;
1108         }
1109         return ret;
1110 }
1111
1112 /*
1113  * To preserve ordering, it is essential that the hole instantiation and
1114  * the data write be encapsulated in a single transaction.  We cannot
1115  * close off a transaction and start a new one between the ext4_get_block()
1116  * and the commit_write().  So doing the jbd2_journal_start at the start of
1117  * prepare_write() is the right place.
1118  *
1119  * Also, this function can nest inside ext4_writepage().  In that case, we
1120  * *know* that ext4_writepage() has generated enough buffer credits to do the
1121  * whole page.  So we won't block on the journal in that case, which is good,
1122  * because the caller may be PF_MEMALLOC.
1123  *
1124  * By accident, ext4 can be reentered when a transaction is open via
1125  * quota file writes.  If we were to commit the transaction while thus
1126  * reentered, there can be a deadlock - we would be holding a quota
1127  * lock, and the commit would never complete if another thread had a
1128  * transaction open and was blocking on the quota lock - a ranking
1129  * violation.
1130  *
1131  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1132  * will _not_ run commit under these circumstances because handle->h_ref
1133  * is elevated.  We'll still have enough credits for the tiny quotafile
1134  * write.
1135  */
1136 int do_journal_get_write_access(handle_t *handle,
1137                                 struct buffer_head *bh)
1138 {
1139         int dirty = buffer_dirty(bh);
1140         int ret;
1141
1142         if (!buffer_mapped(bh) || buffer_freed(bh))
1143                 return 0;
1144         /*
1145          * __block_write_begin() could have dirtied some buffers. Clean
1146          * the dirty bit as jbd2_journal_get_write_access() could complain
1147          * otherwise about fs integrity issues. Setting of the dirty bit
1148          * by __block_write_begin() isn't a real problem here as we clear
1149          * the bit before releasing a page lock and thus writeback cannot
1150          * ever write the buffer.
1151          */
1152         if (dirty)
1153                 clear_buffer_dirty(bh);
1154         BUFFER_TRACE(bh, "get write access");
1155         ret = ext4_journal_get_write_access(handle, bh);
1156         if (!ret && dirty)
1157                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1158         return ret;
1159 }
1160
1161 #ifdef CONFIG_FS_ENCRYPTION
1162 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1163                                   get_block_t *get_block)
1164 {
1165         unsigned from = pos & (PAGE_SIZE - 1);
1166         unsigned to = from + len;
1167         struct inode *inode = page->mapping->host;
1168         unsigned block_start, block_end;
1169         sector_t block;
1170         int err = 0;
1171         unsigned blocksize = inode->i_sb->s_blocksize;
1172         unsigned bbits;
1173         struct buffer_head *bh, *head, *wait[2];
1174         int nr_wait = 0;
1175         int i;
1176
1177         BUG_ON(!PageLocked(page));
1178         BUG_ON(from > PAGE_SIZE);
1179         BUG_ON(to > PAGE_SIZE);
1180         BUG_ON(from > to);
1181
1182         if (!page_has_buffers(page))
1183                 create_empty_buffers(page, blocksize, 0);
1184         head = page_buffers(page);
1185         bbits = ilog2(blocksize);
1186         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1187
1188         for (bh = head, block_start = 0; bh != head || !block_start;
1189             block++, block_start = block_end, bh = bh->b_this_page) {
1190                 block_end = block_start + blocksize;
1191                 if (block_end <= from || block_start >= to) {
1192                         if (PageUptodate(page)) {
1193                                 if (!buffer_uptodate(bh))
1194                                         set_buffer_uptodate(bh);
1195                         }
1196                         continue;
1197                 }
1198                 if (buffer_new(bh))
1199                         clear_buffer_new(bh);
1200                 if (!buffer_mapped(bh)) {
1201                         WARN_ON(bh->b_size != blocksize);
1202                         err = get_block(inode, block, bh, 1);
1203                         if (err)
1204                                 break;
1205                         if (buffer_new(bh)) {
1206                                 if (PageUptodate(page)) {
1207                                         clear_buffer_new(bh);
1208                                         set_buffer_uptodate(bh);
1209                                         mark_buffer_dirty(bh);
1210                                         continue;
1211                                 }
1212                                 if (block_end > to || block_start < from)
1213                                         zero_user_segments(page, to, block_end,
1214                                                            block_start, from);
1215                                 continue;
1216                         }
1217                 }
1218                 if (PageUptodate(page)) {
1219                         if (!buffer_uptodate(bh))
1220                                 set_buffer_uptodate(bh);
1221                         continue;
1222                 }
1223                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1224                     !buffer_unwritten(bh) &&
1225                     (block_start < from || block_end > to)) {
1226                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1227                         wait[nr_wait++] = bh;
1228                 }
1229         }
1230         /*
1231          * If we issued read requests, let them complete.
1232          */
1233         for (i = 0; i < nr_wait; i++) {
1234                 wait_on_buffer(wait[i]);
1235                 if (!buffer_uptodate(wait[i]))
1236                         err = -EIO;
1237         }
1238         if (unlikely(err)) {
1239                 page_zero_new_buffers(page, from, to);
1240         } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1241                 for (i = 0; i < nr_wait; i++) {
1242                         int err2;
1243
1244                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1245                                                                 bh_offset(wait[i]));
1246                         if (err2) {
1247                                 clear_buffer_uptodate(wait[i]);
1248                                 err = err2;
1249                         }
1250                 }
1251         }
1252
1253         return err;
1254 }
1255 #endif
1256
1257 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1258                             loff_t pos, unsigned len, unsigned flags,
1259                             struct page **pagep, void **fsdata)
1260 {
1261         struct inode *inode = mapping->host;
1262         int ret, needed_blocks;
1263         handle_t *handle;
1264         int retries = 0;
1265         struct page *page;
1266         pgoff_t index;
1267         unsigned from, to;
1268
1269         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1270                 return -EIO;
1271
1272         trace_ext4_write_begin(inode, pos, len, flags);
1273         /*
1274          * Reserve one block more for addition to orphan list in case
1275          * we allocate blocks but write fails for some reason
1276          */
1277         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1278         index = pos >> PAGE_SHIFT;
1279         from = pos & (PAGE_SIZE - 1);
1280         to = from + len;
1281
1282         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1283                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1284                                                     flags, pagep);
1285                 if (ret < 0)
1286                         return ret;
1287                 if (ret == 1)
1288                         return 0;
1289         }
1290
1291         /*
1292          * grab_cache_page_write_begin() can take a long time if the
1293          * system is thrashing due to memory pressure, or if the page
1294          * is being written back.  So grab it first before we start
1295          * the transaction handle.  This also allows us to allocate
1296          * the page (if needed) without using GFP_NOFS.
1297          */
1298 retry_grab:
1299         page = grab_cache_page_write_begin(mapping, index, flags);
1300         if (!page)
1301                 return -ENOMEM;
1302         unlock_page(page);
1303
1304 retry_journal:
1305         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1306         if (IS_ERR(handle)) {
1307                 put_page(page);
1308                 return PTR_ERR(handle);
1309         }
1310
1311         lock_page(page);
1312         if (page->mapping != mapping) {
1313                 /* The page got truncated from under us */
1314                 unlock_page(page);
1315                 put_page(page);
1316                 ext4_journal_stop(handle);
1317                 goto retry_grab;
1318         }
1319         /* In case writeback began while the page was unlocked */
1320         wait_for_stable_page(page);
1321
1322 #ifdef CONFIG_FS_ENCRYPTION
1323         if (ext4_should_dioread_nolock(inode))
1324                 ret = ext4_block_write_begin(page, pos, len,
1325                                              ext4_get_block_unwritten);
1326         else
1327                 ret = ext4_block_write_begin(page, pos, len,
1328                                              ext4_get_block);
1329 #else
1330         if (ext4_should_dioread_nolock(inode))
1331                 ret = __block_write_begin(page, pos, len,
1332                                           ext4_get_block_unwritten);
1333         else
1334                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1335 #endif
1336         if (!ret && ext4_should_journal_data(inode)) {
1337                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1338                                              from, to, NULL,
1339                                              do_journal_get_write_access);
1340         }
1341
1342         if (ret) {
1343                 bool extended = (pos + len > inode->i_size) &&
1344                                 !ext4_verity_in_progress(inode);
1345
1346                 unlock_page(page);
1347                 /*
1348                  * __block_write_begin may have instantiated a few blocks
1349                  * outside i_size.  Trim these off again. Don't need
1350                  * i_size_read because we hold i_mutex.
1351                  *
1352                  * Add inode to orphan list in case we crash before
1353                  * truncate finishes
1354                  */
1355                 if (extended && ext4_can_truncate(inode))
1356                         ext4_orphan_add(handle, inode);
1357
1358                 ext4_journal_stop(handle);
1359                 if (extended) {
1360                         ext4_truncate_failed_write(inode);
1361                         /*
1362                          * If truncate failed early the inode might
1363                          * still be on the orphan list; we need to
1364                          * make sure the inode is removed from the
1365                          * orphan list in that case.
1366                          */
1367                         if (inode->i_nlink)
1368                                 ext4_orphan_del(NULL, inode);
1369                 }
1370
1371                 if (ret == -ENOSPC &&
1372                     ext4_should_retry_alloc(inode->i_sb, &retries))
1373                         goto retry_journal;
1374                 put_page(page);
1375                 return ret;
1376         }
1377         *pagep = page;
1378         return ret;
1379 }
1380
1381 /* For write_end() in data=journal mode */
1382 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1383 {
1384         int ret;
1385         if (!buffer_mapped(bh) || buffer_freed(bh))
1386                 return 0;
1387         set_buffer_uptodate(bh);
1388         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1389         clear_buffer_meta(bh);
1390         clear_buffer_prio(bh);
1391         return ret;
1392 }
1393
1394 /*
1395  * We need to pick up the new inode size which generic_commit_write gave us
1396  * `file' can be NULL - eg, when called from page_symlink().
1397  *
1398  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1399  * buffers are managed internally.
1400  */
1401 static int ext4_write_end(struct file *file,
1402                           struct address_space *mapping,
1403                           loff_t pos, unsigned len, unsigned copied,
1404                           struct page *page, void *fsdata)
1405 {
1406         handle_t *handle = ext4_journal_current_handle();
1407         struct inode *inode = mapping->host;
1408         loff_t old_size = inode->i_size;
1409         int ret = 0, ret2;
1410         int i_size_changed = 0;
1411         int inline_data = ext4_has_inline_data(inode);
1412         bool verity = ext4_verity_in_progress(inode);
1413
1414         trace_ext4_write_end(inode, pos, len, copied);
1415         if (inline_data) {
1416                 ret = ext4_write_inline_data_end(inode, pos, len,
1417                                                  copied, page);
1418                 if (ret < 0) {
1419                         unlock_page(page);
1420                         put_page(page);
1421                         goto errout;
1422                 }
1423                 copied = ret;
1424         } else
1425                 copied = block_write_end(file, mapping, pos,
1426                                          len, copied, page, fsdata);
1427         /*
1428          * it's important to update i_size while still holding page lock:
1429          * page writeout could otherwise come in and zero beyond i_size.
1430          *
1431          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1432          * blocks are being written past EOF, so skip the i_size update.
1433          */
1434         if (!verity)
1435                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1436         unlock_page(page);
1437         put_page(page);
1438
1439         if (old_size < pos && !verity)
1440                 pagecache_isize_extended(inode, old_size, pos);
1441         /*
1442          * Don't mark the inode dirty under page lock. First, it unnecessarily
1443          * makes the holding time of page lock longer. Second, it forces lock
1444          * ordering of page lock and transaction start for journaling
1445          * filesystems.
1446          */
1447         if (i_size_changed || inline_data)
1448                 ext4_mark_inode_dirty(handle, inode);
1449
1450         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1451                 /* if we have allocated more blocks and copied
1452                  * less. We will have blocks allocated outside
1453                  * inode->i_size. So truncate them
1454                  */
1455                 ext4_orphan_add(handle, inode);
1456 errout:
1457         ret2 = ext4_journal_stop(handle);
1458         if (!ret)
1459                 ret = ret2;
1460
1461         if (pos + len > inode->i_size && !verity) {
1462                 ext4_truncate_failed_write(inode);
1463                 /*
1464                  * If truncate failed early the inode might still be
1465                  * on the orphan list; we need to make sure the inode
1466                  * is removed from the orphan list in that case.
1467                  */
1468                 if (inode->i_nlink)
1469                         ext4_orphan_del(NULL, inode);
1470         }
1471
1472         return ret ? ret : copied;
1473 }
1474
1475 /*
1476  * This is a private version of page_zero_new_buffers() which doesn't
1477  * set the buffer to be dirty, since in data=journalled mode we need
1478  * to call ext4_handle_dirty_metadata() instead.
1479  */
1480 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1481                                             struct page *page,
1482                                             unsigned from, unsigned to)
1483 {
1484         unsigned int block_start = 0, block_end;
1485         struct buffer_head *head, *bh;
1486
1487         bh = head = page_buffers(page);
1488         do {
1489                 block_end = block_start + bh->b_size;
1490                 if (buffer_new(bh)) {
1491                         if (block_end > from && block_start < to) {
1492                                 if (!PageUptodate(page)) {
1493                                         unsigned start, size;
1494
1495                                         start = max(from, block_start);
1496                                         size = min(to, block_end) - start;
1497
1498                                         zero_user(page, start, size);
1499                                         write_end_fn(handle, bh);
1500                                 }
1501                                 clear_buffer_new(bh);
1502                         }
1503                 }
1504                 block_start = block_end;
1505                 bh = bh->b_this_page;
1506         } while (bh != head);
1507 }
1508
1509 static int ext4_journalled_write_end(struct file *file,
1510                                      struct address_space *mapping,
1511                                      loff_t pos, unsigned len, unsigned copied,
1512                                      struct page *page, void *fsdata)
1513 {
1514         handle_t *handle = ext4_journal_current_handle();
1515         struct inode *inode = mapping->host;
1516         loff_t old_size = inode->i_size;
1517         int ret = 0, ret2;
1518         int partial = 0;
1519         unsigned from, to;
1520         int size_changed = 0;
1521         int inline_data = ext4_has_inline_data(inode);
1522         bool verity = ext4_verity_in_progress(inode);
1523
1524         trace_ext4_journalled_write_end(inode, pos, len, copied);
1525         from = pos & (PAGE_SIZE - 1);
1526         to = from + len;
1527
1528         BUG_ON(!ext4_handle_valid(handle));
1529
1530         if (inline_data) {
1531                 ret = ext4_write_inline_data_end(inode, pos, len,
1532                                                  copied, page);
1533                 if (ret < 0) {
1534                         unlock_page(page);
1535                         put_page(page);
1536                         goto errout;
1537                 }
1538                 copied = ret;
1539         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1540                 copied = 0;
1541                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1542         } else {
1543                 if (unlikely(copied < len))
1544                         ext4_journalled_zero_new_buffers(handle, page,
1545                                                          from + copied, to);
1546                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1547                                              from + copied, &partial,
1548                                              write_end_fn);
1549                 if (!partial)
1550                         SetPageUptodate(page);
1551         }
1552         if (!verity)
1553                 size_changed = ext4_update_inode_size(inode, pos + copied);
1554         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1555         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1556         unlock_page(page);
1557         put_page(page);
1558
1559         if (old_size < pos && !verity)
1560                 pagecache_isize_extended(inode, old_size, pos);
1561
1562         if (size_changed || inline_data) {
1563                 ret2 = ext4_mark_inode_dirty(handle, inode);
1564                 if (!ret)
1565                         ret = ret2;
1566         }
1567
1568         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1569                 /* if we have allocated more blocks and copied
1570                  * less. We will have blocks allocated outside
1571                  * inode->i_size. So truncate them
1572                  */
1573                 ext4_orphan_add(handle, inode);
1574
1575 errout:
1576         ret2 = ext4_journal_stop(handle);
1577         if (!ret)
1578                 ret = ret2;
1579         if (pos + len > inode->i_size && !verity) {
1580                 ext4_truncate_failed_write(inode);
1581                 /*
1582                  * If truncate failed early the inode might still be
1583                  * on the orphan list; we need to make sure the inode
1584                  * is removed from the orphan list in that case.
1585                  */
1586                 if (inode->i_nlink)
1587                         ext4_orphan_del(NULL, inode);
1588         }
1589
1590         return ret ? ret : copied;
1591 }
1592
1593 /*
1594  * Reserve space for a single cluster
1595  */
1596 static int ext4_da_reserve_space(struct inode *inode)
1597 {
1598         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599         struct ext4_inode_info *ei = EXT4_I(inode);
1600         int ret;
1601
1602         /*
1603          * We will charge metadata quota at writeout time; this saves
1604          * us from metadata over-estimation, though we may go over by
1605          * a small amount in the end.  Here we just reserve for data.
1606          */
1607         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1608         if (ret)
1609                 return ret;
1610
1611         spin_lock(&ei->i_block_reservation_lock);
1612         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1613                 spin_unlock(&ei->i_block_reservation_lock);
1614                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1615                 return -ENOSPC;
1616         }
1617         ei->i_reserved_data_blocks++;
1618         trace_ext4_da_reserve_space(inode);
1619         spin_unlock(&ei->i_block_reservation_lock);
1620
1621         return 0;       /* success */
1622 }
1623
1624 void ext4_da_release_space(struct inode *inode, int to_free)
1625 {
1626         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1627         struct ext4_inode_info *ei = EXT4_I(inode);
1628
1629         if (!to_free)
1630                 return;         /* Nothing to release, exit */
1631
1632         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1633
1634         trace_ext4_da_release_space(inode, to_free);
1635         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1636                 /*
1637                  * if there aren't enough reserved blocks, then the
1638                  * counter is messed up somewhere.  Since this
1639                  * function is called from invalidate page, it's
1640                  * harmless to return without any action.
1641                  */
1642                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1643                          "ino %lu, to_free %d with only %d reserved "
1644                          "data blocks", inode->i_ino, to_free,
1645                          ei->i_reserved_data_blocks);
1646                 WARN_ON(1);
1647                 to_free = ei->i_reserved_data_blocks;
1648         }
1649         ei->i_reserved_data_blocks -= to_free;
1650
1651         /* update fs dirty data blocks counter */
1652         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1653
1654         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1655
1656         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1657 }
1658
1659 /*
1660  * Delayed allocation stuff
1661  */
1662
1663 struct mpage_da_data {
1664         struct inode *inode;
1665         struct writeback_control *wbc;
1666
1667         pgoff_t first_page;     /* The first page to write */
1668         pgoff_t next_page;      /* Current page to examine */
1669         pgoff_t last_page;      /* Last page to examine */
1670         /*
1671          * Extent to map - this can be after first_page because that can be
1672          * fully mapped. We somewhat abuse m_flags to store whether the extent
1673          * is delalloc or unwritten.
1674          */
1675         struct ext4_map_blocks map;
1676         struct ext4_io_submit io_submit;        /* IO submission data */
1677         unsigned int do_map:1;
1678 };
1679
1680 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1681                                        bool invalidate)
1682 {
1683         int nr_pages, i;
1684         pgoff_t index, end;
1685         struct pagevec pvec;
1686         struct inode *inode = mpd->inode;
1687         struct address_space *mapping = inode->i_mapping;
1688
1689         /* This is necessary when next_page == 0. */
1690         if (mpd->first_page >= mpd->next_page)
1691                 return;
1692
1693         index = mpd->first_page;
1694         end   = mpd->next_page - 1;
1695         if (invalidate) {
1696                 ext4_lblk_t start, last;
1697                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1698                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1699                 ext4_es_remove_extent(inode, start, last - start + 1);
1700         }
1701
1702         pagevec_init(&pvec);
1703         while (index <= end) {
1704                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1705                 if (nr_pages == 0)
1706                         break;
1707                 for (i = 0; i < nr_pages; i++) {
1708                         struct page *page = pvec.pages[i];
1709
1710                         BUG_ON(!PageLocked(page));
1711                         BUG_ON(PageWriteback(page));
1712                         if (invalidate) {
1713                                 if (page_mapped(page))
1714                                         clear_page_dirty_for_io(page);
1715                                 block_invalidatepage(page, 0, PAGE_SIZE);
1716                                 ClearPageUptodate(page);
1717                         }
1718                         unlock_page(page);
1719                 }
1720                 pagevec_release(&pvec);
1721         }
1722 }
1723
1724 static void ext4_print_free_blocks(struct inode *inode)
1725 {
1726         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1727         struct super_block *sb = inode->i_sb;
1728         struct ext4_inode_info *ei = EXT4_I(inode);
1729
1730         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1731                EXT4_C2B(EXT4_SB(inode->i_sb),
1732                         ext4_count_free_clusters(sb)));
1733         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1734         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1735                (long long) EXT4_C2B(EXT4_SB(sb),
1736                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1737         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1738                (long long) EXT4_C2B(EXT4_SB(sb),
1739                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1740         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1741         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1742                  ei->i_reserved_data_blocks);
1743         return;
1744 }
1745
1746 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1747 {
1748         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1749 }
1750
1751 /*
1752  * ext4_insert_delayed_block - adds a delayed block to the extents status
1753  *                             tree, incrementing the reserved cluster/block
1754  *                             count or making a pending reservation
1755  *                             where needed
1756  *
1757  * @inode - file containing the newly added block
1758  * @lblk - logical block to be added
1759  *
1760  * Returns 0 on success, negative error code on failure.
1761  */
1762 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1763 {
1764         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1765         int ret;
1766         bool allocated = false;
1767
1768         /*
1769          * If the cluster containing lblk is shared with a delayed,
1770          * written, or unwritten extent in a bigalloc file system, it's
1771          * already been accounted for and does not need to be reserved.
1772          * A pending reservation must be made for the cluster if it's
1773          * shared with a written or unwritten extent and doesn't already
1774          * have one.  Written and unwritten extents can be purged from the
1775          * extents status tree if the system is under memory pressure, so
1776          * it's necessary to examine the extent tree if a search of the
1777          * extents status tree doesn't get a match.
1778          */
1779         if (sbi->s_cluster_ratio == 1) {
1780                 ret = ext4_da_reserve_space(inode);
1781                 if (ret != 0)   /* ENOSPC */
1782                         goto errout;
1783         } else {   /* bigalloc */
1784                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1785                         if (!ext4_es_scan_clu(inode,
1786                                               &ext4_es_is_mapped, lblk)) {
1787                                 ret = ext4_clu_mapped(inode,
1788                                                       EXT4_B2C(sbi, lblk));
1789                                 if (ret < 0)
1790                                         goto errout;
1791                                 if (ret == 0) {
1792                                         ret = ext4_da_reserve_space(inode);
1793                                         if (ret != 0)   /* ENOSPC */
1794                                                 goto errout;
1795                                 } else {
1796                                         allocated = true;
1797                                 }
1798                         } else {
1799                                 allocated = true;
1800                         }
1801                 }
1802         }
1803
1804         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1805
1806 errout:
1807         return ret;
1808 }
1809
1810 /*
1811  * This function is grabs code from the very beginning of
1812  * ext4_map_blocks, but assumes that the caller is from delayed write
1813  * time. This function looks up the requested blocks and sets the
1814  * buffer delay bit under the protection of i_data_sem.
1815  */
1816 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1817                               struct ext4_map_blocks *map,
1818                               struct buffer_head *bh)
1819 {
1820         struct extent_status es;
1821         int retval;
1822         sector_t invalid_block = ~((sector_t) 0xffff);
1823 #ifdef ES_AGGRESSIVE_TEST
1824         struct ext4_map_blocks orig_map;
1825
1826         memcpy(&orig_map, map, sizeof(*map));
1827 #endif
1828
1829         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1830                 invalid_block = ~0;
1831
1832         map->m_flags = 0;
1833         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1834                   "logical block %lu\n", inode->i_ino, map->m_len,
1835                   (unsigned long) map->m_lblk);
1836
1837         /* Lookup extent status tree firstly */
1838         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1839                 if (ext4_es_is_hole(&es)) {
1840                         retval = 0;
1841                         down_read(&EXT4_I(inode)->i_data_sem);
1842                         goto add_delayed;
1843                 }
1844
1845                 /*
1846                  * Delayed extent could be allocated by fallocate.
1847                  * So we need to check it.
1848                  */
1849                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1850                         map_bh(bh, inode->i_sb, invalid_block);
1851                         set_buffer_new(bh);
1852                         set_buffer_delay(bh);
1853                         return 0;
1854                 }
1855
1856                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1857                 retval = es.es_len - (iblock - es.es_lblk);
1858                 if (retval > map->m_len)
1859                         retval = map->m_len;
1860                 map->m_len = retval;
1861                 if (ext4_es_is_written(&es))
1862                         map->m_flags |= EXT4_MAP_MAPPED;
1863                 else if (ext4_es_is_unwritten(&es))
1864                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1865                 else
1866                         BUG();
1867
1868 #ifdef ES_AGGRESSIVE_TEST
1869                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1870 #endif
1871                 return retval;
1872         }
1873
1874         /*
1875          * Try to see if we can get the block without requesting a new
1876          * file system block.
1877          */
1878         down_read(&EXT4_I(inode)->i_data_sem);
1879         if (ext4_has_inline_data(inode))
1880                 retval = 0;
1881         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1882                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1883         else
1884                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1885
1886 add_delayed:
1887         if (retval == 0) {
1888                 int ret;
1889
1890                 /*
1891                  * XXX: __block_prepare_write() unmaps passed block,
1892                  * is it OK?
1893                  */
1894
1895                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1896                 if (ret != 0) {
1897                         retval = ret;
1898                         goto out_unlock;
1899                 }
1900
1901                 map_bh(bh, inode->i_sb, invalid_block);
1902                 set_buffer_new(bh);
1903                 set_buffer_delay(bh);
1904         } else if (retval > 0) {
1905                 int ret;
1906                 unsigned int status;
1907
1908                 if (unlikely(retval != map->m_len)) {
1909                         ext4_warning(inode->i_sb,
1910                                      "ES len assertion failed for inode "
1911                                      "%lu: retval %d != map->m_len %d",
1912                                      inode->i_ino, retval, map->m_len);
1913                         WARN_ON(1);
1914                 }
1915
1916                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1917                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1918                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1919                                             map->m_pblk, status);
1920                 if (ret != 0)
1921                         retval = ret;
1922         }
1923
1924 out_unlock:
1925         up_read((&EXT4_I(inode)->i_data_sem));
1926
1927         return retval;
1928 }
1929
1930 /*
1931  * This is a special get_block_t callback which is used by
1932  * ext4_da_write_begin().  It will either return mapped block or
1933  * reserve space for a single block.
1934  *
1935  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1936  * We also have b_blocknr = -1 and b_bdev initialized properly
1937  *
1938  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1939  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1940  * initialized properly.
1941  */
1942 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1943                            struct buffer_head *bh, int create)
1944 {
1945         struct ext4_map_blocks map;
1946         int ret = 0;
1947
1948         BUG_ON(create == 0);
1949         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1950
1951         map.m_lblk = iblock;
1952         map.m_len = 1;
1953
1954         /*
1955          * first, we need to know whether the block is allocated already
1956          * preallocated blocks are unmapped but should treated
1957          * the same as allocated blocks.
1958          */
1959         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1960         if (ret <= 0)
1961                 return ret;
1962
1963         map_bh(bh, inode->i_sb, map.m_pblk);
1964         ext4_update_bh_state(bh, map.m_flags);
1965
1966         if (buffer_unwritten(bh)) {
1967                 /* A delayed write to unwritten bh should be marked
1968                  * new and mapped.  Mapped ensures that we don't do
1969                  * get_block multiple times when we write to the same
1970                  * offset and new ensures that we do proper zero out
1971                  * for partial write.
1972                  */
1973                 set_buffer_new(bh);
1974                 set_buffer_mapped(bh);
1975         }
1976         return 0;
1977 }
1978
1979 static int bget_one(handle_t *handle, struct buffer_head *bh)
1980 {
1981         get_bh(bh);
1982         return 0;
1983 }
1984
1985 static int bput_one(handle_t *handle, struct buffer_head *bh)
1986 {
1987         put_bh(bh);
1988         return 0;
1989 }
1990
1991 static int __ext4_journalled_writepage(struct page *page,
1992                                        unsigned int len)
1993 {
1994         struct address_space *mapping = page->mapping;
1995         struct inode *inode = mapping->host;
1996         struct buffer_head *page_bufs = NULL;
1997         handle_t *handle = NULL;
1998         int ret = 0, err = 0;
1999         int inline_data = ext4_has_inline_data(inode);
2000         struct buffer_head *inode_bh = NULL;
2001
2002         ClearPageChecked(page);
2003
2004         if (inline_data) {
2005                 BUG_ON(page->index != 0);
2006                 BUG_ON(len > ext4_get_max_inline_size(inode));
2007                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2008                 if (inode_bh == NULL)
2009                         goto out;
2010         } else {
2011                 page_bufs = page_buffers(page);
2012                 if (!page_bufs) {
2013                         BUG();
2014                         goto out;
2015                 }
2016                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2017                                        NULL, bget_one);
2018         }
2019         /*
2020          * We need to release the page lock before we start the
2021          * journal, so grab a reference so the page won't disappear
2022          * out from under us.
2023          */
2024         get_page(page);
2025         unlock_page(page);
2026
2027         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2028                                     ext4_writepage_trans_blocks(inode));
2029         if (IS_ERR(handle)) {
2030                 ret = PTR_ERR(handle);
2031                 put_page(page);
2032                 goto out_no_pagelock;
2033         }
2034         BUG_ON(!ext4_handle_valid(handle));
2035
2036         lock_page(page);
2037         put_page(page);
2038         if (page->mapping != mapping) {
2039                 /* The page got truncated from under us */
2040                 ext4_journal_stop(handle);
2041                 ret = 0;
2042                 goto out;
2043         }
2044
2045         if (inline_data) {
2046                 ret = ext4_mark_inode_dirty(handle, inode);
2047         } else {
2048                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2049                                              do_journal_get_write_access);
2050
2051                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2052                                              write_end_fn);
2053         }
2054         if (ret == 0)
2055                 ret = err;
2056         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2057         err = ext4_journal_stop(handle);
2058         if (!ret)
2059                 ret = err;
2060
2061         if (!ext4_has_inline_data(inode))
2062                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2063                                        NULL, bput_one);
2064         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2065 out:
2066         unlock_page(page);
2067 out_no_pagelock:
2068         brelse(inode_bh);
2069         return ret;
2070 }
2071
2072 /*
2073  * Note that we don't need to start a transaction unless we're journaling data
2074  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2075  * need to file the inode to the transaction's list in ordered mode because if
2076  * we are writing back data added by write(), the inode is already there and if
2077  * we are writing back data modified via mmap(), no one guarantees in which
2078  * transaction the data will hit the disk. In case we are journaling data, we
2079  * cannot start transaction directly because transaction start ranks above page
2080  * lock so we have to do some magic.
2081  *
2082  * This function can get called via...
2083  *   - ext4_writepages after taking page lock (have journal handle)
2084  *   - journal_submit_inode_data_buffers (no journal handle)
2085  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2086  *   - grab_page_cache when doing write_begin (have journal handle)
2087  *
2088  * We don't do any block allocation in this function. If we have page with
2089  * multiple blocks we need to write those buffer_heads that are mapped. This
2090  * is important for mmaped based write. So if we do with blocksize 1K
2091  * truncate(f, 1024);
2092  * a = mmap(f, 0, 4096);
2093  * a[0] = 'a';
2094  * truncate(f, 4096);
2095  * we have in the page first buffer_head mapped via page_mkwrite call back
2096  * but other buffer_heads would be unmapped but dirty (dirty done via the
2097  * do_wp_page). So writepage should write the first block. If we modify
2098  * the mmap area beyond 1024 we will again get a page_fault and the
2099  * page_mkwrite callback will do the block allocation and mark the
2100  * buffer_heads mapped.
2101  *
2102  * We redirty the page if we have any buffer_heads that is either delay or
2103  * unwritten in the page.
2104  *
2105  * We can get recursively called as show below.
2106  *
2107  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2108  *              ext4_writepage()
2109  *
2110  * But since we don't do any block allocation we should not deadlock.
2111  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2112  */
2113 static int ext4_writepage(struct page *page,
2114                           struct writeback_control *wbc)
2115 {
2116         int ret = 0;
2117         loff_t size;
2118         unsigned int len;
2119         struct buffer_head *page_bufs = NULL;
2120         struct inode *inode = page->mapping->host;
2121         struct ext4_io_submit io_submit;
2122         bool keep_towrite = false;
2123
2124         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2125                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2126                 unlock_page(page);
2127                 return -EIO;
2128         }
2129
2130         trace_ext4_writepage(page);
2131         size = i_size_read(inode);
2132         if (page->index == size >> PAGE_SHIFT &&
2133             !ext4_verity_in_progress(inode))
2134                 len = size & ~PAGE_MASK;
2135         else
2136                 len = PAGE_SIZE;
2137
2138         page_bufs = page_buffers(page);
2139         /*
2140          * We cannot do block allocation or other extent handling in this
2141          * function. If there are buffers needing that, we have to redirty
2142          * the page. But we may reach here when we do a journal commit via
2143          * journal_submit_inode_data_buffers() and in that case we must write
2144          * allocated buffers to achieve data=ordered mode guarantees.
2145          *
2146          * Also, if there is only one buffer per page (the fs block
2147          * size == the page size), if one buffer needs block
2148          * allocation or needs to modify the extent tree to clear the
2149          * unwritten flag, we know that the page can't be written at
2150          * all, so we might as well refuse the write immediately.
2151          * Unfortunately if the block size != page size, we can't as
2152          * easily detect this case using ext4_walk_page_buffers(), but
2153          * for the extremely common case, this is an optimization that
2154          * skips a useless round trip through ext4_bio_write_page().
2155          */
2156         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2157                                    ext4_bh_delay_or_unwritten)) {
2158                 redirty_page_for_writepage(wbc, page);
2159                 if ((current->flags & PF_MEMALLOC) ||
2160                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2161                         /*
2162                          * For memory cleaning there's no point in writing only
2163                          * some buffers. So just bail out. Warn if we came here
2164                          * from direct reclaim.
2165                          */
2166                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2167                                                         == PF_MEMALLOC);
2168                         unlock_page(page);
2169                         return 0;
2170                 }
2171                 keep_towrite = true;
2172         }
2173
2174         if (PageChecked(page) && ext4_should_journal_data(inode))
2175                 /*
2176                  * It's mmapped pagecache.  Add buffers and journal it.  There
2177                  * doesn't seem much point in redirtying the page here.
2178                  */
2179                 return __ext4_journalled_writepage(page, len);
2180
2181         ext4_io_submit_init(&io_submit, wbc);
2182         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2183         if (!io_submit.io_end) {
2184                 redirty_page_for_writepage(wbc, page);
2185                 unlock_page(page);
2186                 return -ENOMEM;
2187         }
2188         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2189         ext4_io_submit(&io_submit);
2190         /* Drop io_end reference we got from init */
2191         ext4_put_io_end_defer(io_submit.io_end);
2192         return ret;
2193 }
2194
2195 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2196 {
2197         int len;
2198         loff_t size;
2199         int err;
2200
2201         BUG_ON(page->index != mpd->first_page);
2202         clear_page_dirty_for_io(page);
2203         /*
2204          * We have to be very careful here!  Nothing protects writeback path
2205          * against i_size changes and the page can be writeably mapped into
2206          * page tables. So an application can be growing i_size and writing
2207          * data through mmap while writeback runs. clear_page_dirty_for_io()
2208          * write-protects our page in page tables and the page cannot get
2209          * written to again until we release page lock. So only after
2210          * clear_page_dirty_for_io() we are safe to sample i_size for
2211          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2212          * on the barrier provided by TestClearPageDirty in
2213          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2214          * after page tables are updated.
2215          */
2216         size = i_size_read(mpd->inode);
2217         if (page->index == size >> PAGE_SHIFT &&
2218             !ext4_verity_in_progress(mpd->inode))
2219                 len = size & ~PAGE_MASK;
2220         else
2221                 len = PAGE_SIZE;
2222         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2223         if (!err)
2224                 mpd->wbc->nr_to_write--;
2225         mpd->first_page++;
2226
2227         return err;
2228 }
2229
2230 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2231
2232 /*
2233  * mballoc gives us at most this number of blocks...
2234  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2235  * The rest of mballoc seems to handle chunks up to full group size.
2236  */
2237 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2238
2239 /*
2240  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2241  *
2242  * @mpd - extent of blocks
2243  * @lblk - logical number of the block in the file
2244  * @bh - buffer head we want to add to the extent
2245  *
2246  * The function is used to collect contig. blocks in the same state. If the
2247  * buffer doesn't require mapping for writeback and we haven't started the
2248  * extent of buffers to map yet, the function returns 'true' immediately - the
2249  * caller can write the buffer right away. Otherwise the function returns true
2250  * if the block has been added to the extent, false if the block couldn't be
2251  * added.
2252  */
2253 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2254                                    struct buffer_head *bh)
2255 {
2256         struct ext4_map_blocks *map = &mpd->map;
2257
2258         /* Buffer that doesn't need mapping for writeback? */
2259         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2260             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2261                 /* So far no extent to map => we write the buffer right away */
2262                 if (map->m_len == 0)
2263                         return true;
2264                 return false;
2265         }
2266
2267         /* First block in the extent? */
2268         if (map->m_len == 0) {
2269                 /* We cannot map unless handle is started... */
2270                 if (!mpd->do_map)
2271                         return false;
2272                 map->m_lblk = lblk;
2273                 map->m_len = 1;
2274                 map->m_flags = bh->b_state & BH_FLAGS;
2275                 return true;
2276         }
2277
2278         /* Don't go larger than mballoc is willing to allocate */
2279         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2280                 return false;
2281
2282         /* Can we merge the block to our big extent? */
2283         if (lblk == map->m_lblk + map->m_len &&
2284             (bh->b_state & BH_FLAGS) == map->m_flags) {
2285                 map->m_len++;
2286                 return true;
2287         }
2288         return false;
2289 }
2290
2291 /*
2292  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2293  *
2294  * @mpd - extent of blocks for mapping
2295  * @head - the first buffer in the page
2296  * @bh - buffer we should start processing from
2297  * @lblk - logical number of the block in the file corresponding to @bh
2298  *
2299  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2300  * the page for IO if all buffers in this page were mapped and there's no
2301  * accumulated extent of buffers to map or add buffers in the page to the
2302  * extent of buffers to map. The function returns 1 if the caller can continue
2303  * by processing the next page, 0 if it should stop adding buffers to the
2304  * extent to map because we cannot extend it anymore. It can also return value
2305  * < 0 in case of error during IO submission.
2306  */
2307 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2308                                    struct buffer_head *head,
2309                                    struct buffer_head *bh,
2310                                    ext4_lblk_t lblk)
2311 {
2312         struct inode *inode = mpd->inode;
2313         int err;
2314         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2315                                                         >> inode->i_blkbits;
2316
2317         if (ext4_verity_in_progress(inode))
2318                 blocks = EXT_MAX_BLOCKS;
2319
2320         do {
2321                 BUG_ON(buffer_locked(bh));
2322
2323                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2324                         /* Found extent to map? */
2325                         if (mpd->map.m_len)
2326                                 return 0;
2327                         /* Buffer needs mapping and handle is not started? */
2328                         if (!mpd->do_map)
2329                                 return 0;
2330                         /* Everything mapped so far and we hit EOF */
2331                         break;
2332                 }
2333         } while (lblk++, (bh = bh->b_this_page) != head);
2334         /* So far everything mapped? Submit the page for IO. */
2335         if (mpd->map.m_len == 0) {
2336                 err = mpage_submit_page(mpd, head->b_page);
2337                 if (err < 0)
2338                         return err;
2339         }
2340         return lblk < blocks;
2341 }
2342
2343 /*
2344  * mpage_map_buffers - update buffers corresponding to changed extent and
2345  *                     submit fully mapped pages for IO
2346  *
2347  * @mpd - description of extent to map, on return next extent to map
2348  *
2349  * Scan buffers corresponding to changed extent (we expect corresponding pages
2350  * to be already locked) and update buffer state according to new extent state.
2351  * We map delalloc buffers to their physical location, clear unwritten bits,
2352  * and mark buffers as uninit when we perform writes to unwritten extents
2353  * and do extent conversion after IO is finished. If the last page is not fully
2354  * mapped, we update @map to the next extent in the last page that needs
2355  * mapping. Otherwise we submit the page for IO.
2356  */
2357 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2358 {
2359         struct pagevec pvec;
2360         int nr_pages, i;
2361         struct inode *inode = mpd->inode;
2362         struct buffer_head *head, *bh;
2363         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2364         pgoff_t start, end;
2365         ext4_lblk_t lblk;
2366         sector_t pblock;
2367         int err;
2368
2369         start = mpd->map.m_lblk >> bpp_bits;
2370         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2371         lblk = start << bpp_bits;
2372         pblock = mpd->map.m_pblk;
2373
2374         pagevec_init(&pvec);
2375         while (start <= end) {
2376                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2377                                                 &start, end);
2378                 if (nr_pages == 0)
2379                         break;
2380                 for (i = 0; i < nr_pages; i++) {
2381                         struct page *page = pvec.pages[i];
2382
2383                         bh = head = page_buffers(page);
2384                         do {
2385                                 if (lblk < mpd->map.m_lblk)
2386                                         continue;
2387                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2388                                         /*
2389                                          * Buffer after end of mapped extent.
2390                                          * Find next buffer in the page to map.
2391                                          */
2392                                         mpd->map.m_len = 0;
2393                                         mpd->map.m_flags = 0;
2394                                         /*
2395                                          * FIXME: If dioread_nolock supports
2396                                          * blocksize < pagesize, we need to make
2397                                          * sure we add size mapped so far to
2398                                          * io_end->size as the following call
2399                                          * can submit the page for IO.
2400                                          */
2401                                         err = mpage_process_page_bufs(mpd, head,
2402                                                                       bh, lblk);
2403                                         pagevec_release(&pvec);
2404                                         if (err > 0)
2405                                                 err = 0;
2406                                         return err;
2407                                 }
2408                                 if (buffer_delay(bh)) {
2409                                         clear_buffer_delay(bh);
2410                                         bh->b_blocknr = pblock++;
2411                                 }
2412                                 clear_buffer_unwritten(bh);
2413                         } while (lblk++, (bh = bh->b_this_page) != head);
2414
2415                         /*
2416                          * FIXME: This is going to break if dioread_nolock
2417                          * supports blocksize < pagesize as we will try to
2418                          * convert potentially unmapped parts of inode.
2419                          */
2420                         mpd->io_submit.io_end->size += PAGE_SIZE;
2421                         /* Page fully mapped - let IO run! */
2422                         err = mpage_submit_page(mpd, page);
2423                         if (err < 0) {
2424                                 pagevec_release(&pvec);
2425                                 return err;
2426                         }
2427                 }
2428                 pagevec_release(&pvec);
2429         }
2430         /* Extent fully mapped and matches with page boundary. We are done. */
2431         mpd->map.m_len = 0;
2432         mpd->map.m_flags = 0;
2433         return 0;
2434 }
2435
2436 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2437 {
2438         struct inode *inode = mpd->inode;
2439         struct ext4_map_blocks *map = &mpd->map;
2440         int get_blocks_flags;
2441         int err, dioread_nolock;
2442
2443         trace_ext4_da_write_pages_extent(inode, map);
2444         /*
2445          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2446          * to convert an unwritten extent to be initialized (in the case
2447          * where we have written into one or more preallocated blocks).  It is
2448          * possible that we're going to need more metadata blocks than
2449          * previously reserved. However we must not fail because we're in
2450          * writeback and there is nothing we can do about it so it might result
2451          * in data loss.  So use reserved blocks to allocate metadata if
2452          * possible.
2453          *
2454          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2455          * the blocks in question are delalloc blocks.  This indicates
2456          * that the blocks and quotas has already been checked when
2457          * the data was copied into the page cache.
2458          */
2459         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2460                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2461                            EXT4_GET_BLOCKS_IO_SUBMIT;
2462         dioread_nolock = ext4_should_dioread_nolock(inode);
2463         if (dioread_nolock)
2464                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2465         if (map->m_flags & (1 << BH_Delay))
2466                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2467
2468         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2469         if (err < 0)
2470                 return err;
2471         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2472                 if (!mpd->io_submit.io_end->handle &&
2473                     ext4_handle_valid(handle)) {
2474                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2475                         handle->h_rsv_handle = NULL;
2476                 }
2477                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2478         }
2479
2480         BUG_ON(map->m_len == 0);
2481         return 0;
2482 }
2483
2484 /*
2485  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2486  *                               mpd->len and submit pages underlying it for IO
2487  *
2488  * @handle - handle for journal operations
2489  * @mpd - extent to map
2490  * @give_up_on_write - we set this to true iff there is a fatal error and there
2491  *                     is no hope of writing the data. The caller should discard
2492  *                     dirty pages to avoid infinite loops.
2493  *
2494  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2495  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2496  * them to initialized or split the described range from larger unwritten
2497  * extent. Note that we need not map all the described range since allocation
2498  * can return less blocks or the range is covered by more unwritten extents. We
2499  * cannot map more because we are limited by reserved transaction credits. On
2500  * the other hand we always make sure that the last touched page is fully
2501  * mapped so that it can be written out (and thus forward progress is
2502  * guaranteed). After mapping we submit all mapped pages for IO.
2503  */
2504 static int mpage_map_and_submit_extent(handle_t *handle,
2505                                        struct mpage_da_data *mpd,
2506                                        bool *give_up_on_write)
2507 {
2508         struct inode *inode = mpd->inode;
2509         struct ext4_map_blocks *map = &mpd->map;
2510         int err;
2511         loff_t disksize;
2512         int progress = 0;
2513
2514         mpd->io_submit.io_end->offset =
2515                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2516         do {
2517                 err = mpage_map_one_extent(handle, mpd);
2518                 if (err < 0) {
2519                         struct super_block *sb = inode->i_sb;
2520
2521                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2522                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2523                                 goto invalidate_dirty_pages;
2524                         /*
2525                          * Let the uper layers retry transient errors.
2526                          * In the case of ENOSPC, if ext4_count_free_blocks()
2527                          * is non-zero, a commit should free up blocks.
2528                          */
2529                         if ((err == -ENOMEM) ||
2530                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2531                                 if (progress)
2532                                         goto update_disksize;
2533                                 return err;
2534                         }
2535                         ext4_msg(sb, KERN_CRIT,
2536                                  "Delayed block allocation failed for "
2537                                  "inode %lu at logical offset %llu with"
2538                                  " max blocks %u with error %d",
2539                                  inode->i_ino,
2540                                  (unsigned long long)map->m_lblk,
2541                                  (unsigned)map->m_len, -err);
2542                         ext4_msg(sb, KERN_CRIT,
2543                                  "This should not happen!! Data will "
2544                                  "be lost\n");
2545                         if (err == -ENOSPC)
2546                                 ext4_print_free_blocks(inode);
2547                 invalidate_dirty_pages:
2548                         *give_up_on_write = true;
2549                         return err;
2550                 }
2551                 progress = 1;
2552                 /*
2553                  * Update buffer state, submit mapped pages, and get us new
2554                  * extent to map
2555                  */
2556                 err = mpage_map_and_submit_buffers(mpd);
2557                 if (err < 0)
2558                         goto update_disksize;
2559         } while (map->m_len);
2560
2561 update_disksize:
2562         /*
2563          * Update on-disk size after IO is submitted.  Races with
2564          * truncate are avoided by checking i_size under i_data_sem.
2565          */
2566         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2567         if (disksize > EXT4_I(inode)->i_disksize) {
2568                 int err2;
2569                 loff_t i_size;
2570
2571                 down_write(&EXT4_I(inode)->i_data_sem);
2572                 i_size = i_size_read(inode);
2573                 if (disksize > i_size)
2574                         disksize = i_size;
2575                 if (disksize > EXT4_I(inode)->i_disksize)
2576                         EXT4_I(inode)->i_disksize = disksize;
2577                 up_write(&EXT4_I(inode)->i_data_sem);
2578                 err2 = ext4_mark_inode_dirty(handle, inode);
2579                 if (err2)
2580                         ext4_error(inode->i_sb,
2581                                    "Failed to mark inode %lu dirty",
2582                                    inode->i_ino);
2583                 if (!err)
2584                         err = err2;
2585         }
2586         return err;
2587 }
2588
2589 /*
2590  * Calculate the total number of credits to reserve for one writepages
2591  * iteration. This is called from ext4_writepages(). We map an extent of
2592  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2593  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2594  * bpp - 1 blocks in bpp different extents.
2595  */
2596 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2597 {
2598         int bpp = ext4_journal_blocks_per_page(inode);
2599
2600         return ext4_meta_trans_blocks(inode,
2601                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2602 }
2603
2604 /*
2605  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2606  *                               and underlying extent to map
2607  *
2608  * @mpd - where to look for pages
2609  *
2610  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2611  * IO immediately. When we find a page which isn't mapped we start accumulating
2612  * extent of buffers underlying these pages that needs mapping (formed by
2613  * either delayed or unwritten buffers). We also lock the pages containing
2614  * these buffers. The extent found is returned in @mpd structure (starting at
2615  * mpd->lblk with length mpd->len blocks).
2616  *
2617  * Note that this function can attach bios to one io_end structure which are
2618  * neither logically nor physically contiguous. Although it may seem as an
2619  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2620  * case as we need to track IO to all buffers underlying a page in one io_end.
2621  */
2622 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2623 {
2624         struct address_space *mapping = mpd->inode->i_mapping;
2625         struct pagevec pvec;
2626         unsigned int nr_pages;
2627         long left = mpd->wbc->nr_to_write;
2628         pgoff_t index = mpd->first_page;
2629         pgoff_t end = mpd->last_page;
2630         xa_mark_t tag;
2631         int i, err = 0;
2632         int blkbits = mpd->inode->i_blkbits;
2633         ext4_lblk_t lblk;
2634         struct buffer_head *head;
2635
2636         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2637                 tag = PAGECACHE_TAG_TOWRITE;
2638         else
2639                 tag = PAGECACHE_TAG_DIRTY;
2640
2641         pagevec_init(&pvec);
2642         mpd->map.m_len = 0;
2643         mpd->next_page = index;
2644         while (index <= end) {
2645                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2646                                 tag);
2647                 if (nr_pages == 0)
2648                         goto out;
2649
2650                 for (i = 0; i < nr_pages; i++) {
2651                         struct page *page = pvec.pages[i];
2652
2653                         /*
2654                          * Accumulated enough dirty pages? This doesn't apply
2655                          * to WB_SYNC_ALL mode. For integrity sync we have to
2656                          * keep going because someone may be concurrently
2657                          * dirtying pages, and we might have synced a lot of
2658                          * newly appeared dirty pages, but have not synced all
2659                          * of the old dirty pages.
2660                          */
2661                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2662                                 goto out;
2663
2664                         /* If we can't merge this page, we are done. */
2665                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2666                                 goto out;
2667
2668                         lock_page(page);
2669                         /*
2670                          * If the page is no longer dirty, or its mapping no
2671                          * longer corresponds to inode we are writing (which
2672                          * means it has been truncated or invalidated), or the
2673                          * page is already under writeback and we are not doing
2674                          * a data integrity writeback, skip the page
2675                          */
2676                         if (!PageDirty(page) ||
2677                             (PageWriteback(page) &&
2678                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2679                             unlikely(page->mapping != mapping)) {
2680                                 unlock_page(page);
2681                                 continue;
2682                         }
2683
2684                         wait_on_page_writeback(page);
2685                         BUG_ON(PageWriteback(page));
2686
2687                         if (mpd->map.m_len == 0)
2688                                 mpd->first_page = page->index;
2689                         mpd->next_page = page->index + 1;
2690                         /* Add all dirty buffers to mpd */
2691                         lblk = ((ext4_lblk_t)page->index) <<
2692                                 (PAGE_SHIFT - blkbits);
2693                         head = page_buffers(page);
2694                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2695                         if (err <= 0)
2696                                 goto out;
2697                         err = 0;
2698                         left--;
2699                 }
2700                 pagevec_release(&pvec);
2701                 cond_resched();
2702         }
2703         return 0;
2704 out:
2705         pagevec_release(&pvec);
2706         return err;
2707 }
2708
2709 static int ext4_writepages(struct address_space *mapping,
2710                            struct writeback_control *wbc)
2711 {
2712         pgoff_t writeback_index = 0;
2713         long nr_to_write = wbc->nr_to_write;
2714         int range_whole = 0;
2715         int cycled = 1;
2716         handle_t *handle = NULL;
2717         struct mpage_da_data mpd;
2718         struct inode *inode = mapping->host;
2719         int needed_blocks, rsv_blocks = 0, ret = 0;
2720         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2721         bool done;
2722         struct blk_plug plug;
2723         bool give_up_on_write = false;
2724
2725         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2726                 return -EIO;
2727
2728         percpu_down_read(&sbi->s_journal_flag_rwsem);
2729         trace_ext4_writepages(inode, wbc);
2730
2731         /*
2732          * No pages to write? This is mainly a kludge to avoid starting
2733          * a transaction for special inodes like journal inode on last iput()
2734          * because that could violate lock ordering on umount
2735          */
2736         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2737                 goto out_writepages;
2738
2739         if (ext4_should_journal_data(inode)) {
2740                 ret = generic_writepages(mapping, wbc);
2741                 goto out_writepages;
2742         }
2743
2744         /*
2745          * If the filesystem has aborted, it is read-only, so return
2746          * right away instead of dumping stack traces later on that
2747          * will obscure the real source of the problem.  We test
2748          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2749          * the latter could be true if the filesystem is mounted
2750          * read-only, and in that case, ext4_writepages should
2751          * *never* be called, so if that ever happens, we would want
2752          * the stack trace.
2753          */
2754         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2755                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2756                 ret = -EROFS;
2757                 goto out_writepages;
2758         }
2759
2760         /*
2761          * If we have inline data and arrive here, it means that
2762          * we will soon create the block for the 1st page, so
2763          * we'd better clear the inline data here.
2764          */
2765         if (ext4_has_inline_data(inode)) {
2766                 /* Just inode will be modified... */
2767                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2768                 if (IS_ERR(handle)) {
2769                         ret = PTR_ERR(handle);
2770                         goto out_writepages;
2771                 }
2772                 BUG_ON(ext4_test_inode_state(inode,
2773                                 EXT4_STATE_MAY_INLINE_DATA));
2774                 ext4_destroy_inline_data(handle, inode);
2775                 ext4_journal_stop(handle);
2776         }
2777
2778         if (ext4_should_dioread_nolock(inode)) {
2779                 /*
2780                  * We may need to convert up to one extent per block in
2781                  * the page and we may dirty the inode.
2782                  */
2783                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2784                                                 PAGE_SIZE >> inode->i_blkbits);
2785         }
2786
2787         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2788                 range_whole = 1;
2789
2790         if (wbc->range_cyclic) {
2791                 writeback_index = mapping->writeback_index;
2792                 if (writeback_index)
2793                         cycled = 0;
2794                 mpd.first_page = writeback_index;
2795                 mpd.last_page = -1;
2796         } else {
2797                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2798                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2799         }
2800
2801         mpd.inode = inode;
2802         mpd.wbc = wbc;
2803         ext4_io_submit_init(&mpd.io_submit, wbc);
2804 retry:
2805         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2806                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2807         done = false;
2808         blk_start_plug(&plug);
2809
2810         /*
2811          * First writeback pages that don't need mapping - we can avoid
2812          * starting a transaction unnecessarily and also avoid being blocked
2813          * in the block layer on device congestion while having transaction
2814          * started.
2815          */
2816         mpd.do_map = 0;
2817         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2818         if (!mpd.io_submit.io_end) {
2819                 ret = -ENOMEM;
2820                 goto unplug;
2821         }
2822         ret = mpage_prepare_extent_to_map(&mpd);
2823         /* Unlock pages we didn't use */
2824         mpage_release_unused_pages(&mpd, false);
2825         /* Submit prepared bio */
2826         ext4_io_submit(&mpd.io_submit);
2827         ext4_put_io_end_defer(mpd.io_submit.io_end);
2828         mpd.io_submit.io_end = NULL;
2829         if (ret < 0)
2830                 goto unplug;
2831
2832         while (!done && mpd.first_page <= mpd.last_page) {
2833                 /* For each extent of pages we use new io_end */
2834                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2835                 if (!mpd.io_submit.io_end) {
2836                         ret = -ENOMEM;
2837                         break;
2838                 }
2839
2840                 /*
2841                  * We have two constraints: We find one extent to map and we
2842                  * must always write out whole page (makes a difference when
2843                  * blocksize < pagesize) so that we don't block on IO when we
2844                  * try to write out the rest of the page. Journalled mode is
2845                  * not supported by delalloc.
2846                  */
2847                 BUG_ON(ext4_should_journal_data(inode));
2848                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2849
2850                 /* start a new transaction */
2851                 handle = ext4_journal_start_with_reserve(inode,
2852                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2853                 if (IS_ERR(handle)) {
2854                         ret = PTR_ERR(handle);
2855                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2856                                "%ld pages, ino %lu; err %d", __func__,
2857                                 wbc->nr_to_write, inode->i_ino, ret);
2858                         /* Release allocated io_end */
2859                         ext4_put_io_end(mpd.io_submit.io_end);
2860                         mpd.io_submit.io_end = NULL;
2861                         break;
2862                 }
2863                 mpd.do_map = 1;
2864
2865                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2866                 ret = mpage_prepare_extent_to_map(&mpd);
2867                 if (!ret) {
2868                         if (mpd.map.m_len)
2869                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2870                                         &give_up_on_write);
2871                         else {
2872                                 /*
2873                                  * We scanned the whole range (or exhausted
2874                                  * nr_to_write), submitted what was mapped and
2875                                  * didn't find anything needing mapping. We are
2876                                  * done.
2877                                  */
2878                                 done = true;
2879                         }
2880                 }
2881                 /*
2882                  * Caution: If the handle is synchronous,
2883                  * ext4_journal_stop() can wait for transaction commit
2884                  * to finish which may depend on writeback of pages to
2885                  * complete or on page lock to be released.  In that
2886                  * case, we have to wait until after after we have
2887                  * submitted all the IO, released page locks we hold,
2888                  * and dropped io_end reference (for extent conversion
2889                  * to be able to complete) before stopping the handle.
2890                  */
2891                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2892                         ext4_journal_stop(handle);
2893                         handle = NULL;
2894                         mpd.do_map = 0;
2895                 }
2896                 /* Unlock pages we didn't use */
2897                 mpage_release_unused_pages(&mpd, give_up_on_write);
2898                 /* Submit prepared bio */
2899                 ext4_io_submit(&mpd.io_submit);
2900
2901                 /*
2902                  * Drop our io_end reference we got from init. We have
2903                  * to be careful and use deferred io_end finishing if
2904                  * we are still holding the transaction as we can
2905                  * release the last reference to io_end which may end
2906                  * up doing unwritten extent conversion.
2907                  */
2908                 if (handle) {
2909                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2910                         ext4_journal_stop(handle);
2911                 } else
2912                         ext4_put_io_end(mpd.io_submit.io_end);
2913                 mpd.io_submit.io_end = NULL;
2914
2915                 if (ret == -ENOSPC && sbi->s_journal) {
2916                         /*
2917                          * Commit the transaction which would
2918                          * free blocks released in the transaction
2919                          * and try again
2920                          */
2921                         jbd2_journal_force_commit_nested(sbi->s_journal);
2922                         ret = 0;
2923                         continue;
2924                 }
2925                 /* Fatal error - ENOMEM, EIO... */
2926                 if (ret)
2927                         break;
2928         }
2929 unplug:
2930         blk_finish_plug(&plug);
2931         if (!ret && !cycled && wbc->nr_to_write > 0) {
2932                 cycled = 1;
2933                 mpd.last_page = writeback_index - 1;
2934                 mpd.first_page = 0;
2935                 goto retry;
2936         }
2937
2938         /* Update index */
2939         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2940                 /*
2941                  * Set the writeback_index so that range_cyclic
2942                  * mode will write it back later
2943                  */
2944                 mapping->writeback_index = mpd.first_page;
2945
2946 out_writepages:
2947         trace_ext4_writepages_result(inode, wbc, ret,
2948                                      nr_to_write - wbc->nr_to_write);
2949         percpu_up_read(&sbi->s_journal_flag_rwsem);
2950         return ret;
2951 }
2952
2953 static int ext4_dax_writepages(struct address_space *mapping,
2954                                struct writeback_control *wbc)
2955 {
2956         int ret;
2957         long nr_to_write = wbc->nr_to_write;
2958         struct inode *inode = mapping->host;
2959         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2960
2961         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2962                 return -EIO;
2963
2964         percpu_down_read(&sbi->s_journal_flag_rwsem);
2965         trace_ext4_writepages(inode, wbc);
2966
2967         ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2968         trace_ext4_writepages_result(inode, wbc, ret,
2969                                      nr_to_write - wbc->nr_to_write);
2970         percpu_up_read(&sbi->s_journal_flag_rwsem);
2971         return ret;
2972 }
2973
2974 static int ext4_nonda_switch(struct super_block *sb)
2975 {
2976         s64 free_clusters, dirty_clusters;
2977         struct ext4_sb_info *sbi = EXT4_SB(sb);
2978
2979         /*
2980          * switch to non delalloc mode if we are running low
2981          * on free block. The free block accounting via percpu
2982          * counters can get slightly wrong with percpu_counter_batch getting
2983          * accumulated on each CPU without updating global counters
2984          * Delalloc need an accurate free block accounting. So switch
2985          * to non delalloc when we are near to error range.
2986          */
2987         free_clusters =
2988                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2989         dirty_clusters =
2990                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2991         /*
2992          * Start pushing delalloc when 1/2 of free blocks are dirty.
2993          */
2994         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2995                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2996
2997         if (2 * free_clusters < 3 * dirty_clusters ||
2998             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2999                 /*
3000                  * free block count is less than 150% of dirty blocks
3001                  * or free blocks is less than watermark
3002                  */
3003                 return 1;
3004         }
3005         return 0;
3006 }
3007
3008 /* We always reserve for an inode update; the superblock could be there too */
3009 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3010 {
3011         if (likely(ext4_has_feature_large_file(inode->i_sb)))
3012                 return 1;
3013
3014         if (pos + len <= 0x7fffffffULL)
3015                 return 1;
3016
3017         /* We might need to update the superblock to set LARGE_FILE */
3018         return 2;
3019 }
3020
3021 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3022                                loff_t pos, unsigned len, unsigned flags,
3023                                struct page **pagep, void **fsdata)
3024 {
3025         int ret, retries = 0;
3026         struct page *page;
3027         pgoff_t index;
3028         struct inode *inode = mapping->host;
3029         handle_t *handle;
3030
3031         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3032                 return -EIO;
3033
3034         index = pos >> PAGE_SHIFT;
3035
3036         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
3037             ext4_verity_in_progress(inode)) {
3038                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3039                 return ext4_write_begin(file, mapping, pos,
3040                                         len, flags, pagep, fsdata);
3041         }
3042         *fsdata = (void *)0;
3043         trace_ext4_da_write_begin(inode, pos, len, flags);
3044
3045         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3046                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3047                                                       pos, len, flags,
3048                                                       pagep, fsdata);
3049                 if (ret < 0)
3050                         return ret;
3051                 if (ret == 1)
3052                         return 0;
3053         }
3054
3055         /*
3056          * grab_cache_page_write_begin() can take a long time if the
3057          * system is thrashing due to memory pressure, or if the page
3058          * is being written back.  So grab it first before we start
3059          * the transaction handle.  This also allows us to allocate
3060          * the page (if needed) without using GFP_NOFS.
3061          */
3062 retry_grab:
3063         page = grab_cache_page_write_begin(mapping, index, flags);
3064         if (!page)
3065                 return -ENOMEM;
3066         unlock_page(page);
3067
3068         /*
3069          * With delayed allocation, we don't log the i_disksize update
3070          * if there is delayed block allocation. But we still need
3071          * to journalling the i_disksize update if writes to the end
3072          * of file which has an already mapped buffer.
3073          */
3074 retry_journal:
3075         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3076                                 ext4_da_write_credits(inode, pos, len));
3077         if (IS_ERR(handle)) {
3078                 put_page(page);
3079                 return PTR_ERR(handle);
3080         }
3081
3082         lock_page(page);
3083         if (page->mapping != mapping) {
3084                 /* The page got truncated from under us */
3085                 unlock_page(page);
3086                 put_page(page);
3087                 ext4_journal_stop(handle);
3088                 goto retry_grab;
3089         }
3090         /* In case writeback began while the page was unlocked */
3091         wait_for_stable_page(page);
3092
3093 #ifdef CONFIG_FS_ENCRYPTION
3094         ret = ext4_block_write_begin(page, pos, len,
3095                                      ext4_da_get_block_prep);
3096 #else
3097         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3098 #endif
3099         if (ret < 0) {
3100                 unlock_page(page);
3101                 ext4_journal_stop(handle);
3102                 /*
3103                  * block_write_begin may have instantiated a few blocks
3104                  * outside i_size.  Trim these off again. Don't need
3105                  * i_size_read because we hold i_mutex.
3106                  */
3107                 if (pos + len > inode->i_size)
3108                         ext4_truncate_failed_write(inode);
3109
3110                 if (ret == -ENOSPC &&
3111                     ext4_should_retry_alloc(inode->i_sb, &retries))
3112                         goto retry_journal;
3113
3114                 put_page(page);
3115                 return ret;
3116         }
3117
3118         *pagep = page;
3119         return ret;
3120 }
3121
3122 /*
3123  * Check if we should update i_disksize
3124  * when write to the end of file but not require block allocation
3125  */
3126 static int ext4_da_should_update_i_disksize(struct page *page,
3127                                             unsigned long offset)
3128 {
3129         struct buffer_head *bh;
3130         struct inode *inode = page->mapping->host;
3131         unsigned int idx;
3132         int i;
3133
3134         bh = page_buffers(page);
3135         idx = offset >> inode->i_blkbits;
3136
3137         for (i = 0; i < idx; i++)
3138                 bh = bh->b_this_page;
3139
3140         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3141                 return 0;
3142         return 1;
3143 }
3144
3145 static int ext4_da_write_end(struct file *file,
3146                              struct address_space *mapping,
3147                              loff_t pos, unsigned len, unsigned copied,
3148                              struct page *page, void *fsdata)
3149 {
3150         struct inode *inode = mapping->host;
3151         int ret = 0, ret2;
3152         handle_t *handle = ext4_journal_current_handle();
3153         loff_t new_i_size;
3154         unsigned long start, end;
3155         int write_mode = (int)(unsigned long)fsdata;
3156
3157         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3158                 return ext4_write_end(file, mapping, pos,
3159                                       len, copied, page, fsdata);
3160
3161         trace_ext4_da_write_end(inode, pos, len, copied);
3162         start = pos & (PAGE_SIZE - 1);
3163         end = start + copied - 1;
3164
3165         /*
3166          * generic_write_end() will run mark_inode_dirty() if i_size
3167          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3168          * into that.
3169          */
3170         new_i_size = pos + copied;
3171         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3172                 if (ext4_has_inline_data(inode) ||
3173                     ext4_da_should_update_i_disksize(page, end)) {
3174                         ext4_update_i_disksize(inode, new_i_size);
3175                         /* We need to mark inode dirty even if
3176                          * new_i_size is less that inode->i_size
3177                          * bu greater than i_disksize.(hint delalloc)
3178                          */
3179                         ext4_mark_inode_dirty(handle, inode);
3180                 }
3181         }
3182
3183         if (write_mode != CONVERT_INLINE_DATA &&
3184             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3185             ext4_has_inline_data(inode))
3186                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3187                                                      page);
3188         else
3189                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3190                                                         page, fsdata);
3191
3192         copied = ret2;
3193         if (ret2 < 0)
3194                 ret = ret2;
3195         ret2 = ext4_journal_stop(handle);
3196         if (!ret)
3197                 ret = ret2;
3198
3199         return ret ? ret : copied;
3200 }
3201
3202 /*
3203  * Force all delayed allocation blocks to be allocated for a given inode.
3204  */
3205 int ext4_alloc_da_blocks(struct inode *inode)
3206 {
3207         trace_ext4_alloc_da_blocks(inode);
3208
3209         if (!EXT4_I(inode)->i_reserved_data_blocks)
3210                 return 0;
3211
3212         /*
3213          * We do something simple for now.  The filemap_flush() will
3214          * also start triggering a write of the data blocks, which is
3215          * not strictly speaking necessary (and for users of
3216          * laptop_mode, not even desirable).  However, to do otherwise
3217          * would require replicating code paths in:
3218          *
3219          * ext4_writepages() ->
3220          *    write_cache_pages() ---> (via passed in callback function)
3221          *        __mpage_da_writepage() -->
3222          *           mpage_add_bh_to_extent()
3223          *           mpage_da_map_blocks()
3224          *
3225          * The problem is that write_cache_pages(), located in
3226          * mm/page-writeback.c, marks pages clean in preparation for
3227          * doing I/O, which is not desirable if we're not planning on
3228          * doing I/O at all.
3229          *
3230          * We could call write_cache_pages(), and then redirty all of
3231          * the pages by calling redirty_page_for_writepage() but that
3232          * would be ugly in the extreme.  So instead we would need to
3233          * replicate parts of the code in the above functions,
3234          * simplifying them because we wouldn't actually intend to
3235          * write out the pages, but rather only collect contiguous
3236          * logical block extents, call the multi-block allocator, and
3237          * then update the buffer heads with the block allocations.
3238          *
3239          * For now, though, we'll cheat by calling filemap_flush(),
3240          * which will map the blocks, and start the I/O, but not
3241          * actually wait for the I/O to complete.
3242          */
3243         return filemap_flush(inode->i_mapping);
3244 }
3245
3246 /*
3247  * bmap() is special.  It gets used by applications such as lilo and by
3248  * the swapper to find the on-disk block of a specific piece of data.
3249  *
3250  * Naturally, this is dangerous if the block concerned is still in the
3251  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3252  * filesystem and enables swap, then they may get a nasty shock when the
3253  * data getting swapped to that swapfile suddenly gets overwritten by
3254  * the original zero's written out previously to the journal and
3255  * awaiting writeback in the kernel's buffer cache.
3256  *
3257  * So, if we see any bmap calls here on a modified, data-journaled file,
3258  * take extra steps to flush any blocks which might be in the cache.
3259  */
3260 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3261 {
3262         struct inode *inode = mapping->host;
3263         journal_t *journal;
3264         int err;
3265
3266         /*
3267          * We can get here for an inline file via the FIBMAP ioctl
3268          */
3269         if (ext4_has_inline_data(inode))
3270                 return 0;
3271
3272         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3273                         test_opt(inode->i_sb, DELALLOC)) {
3274                 /*
3275                  * With delalloc we want to sync the file
3276                  * so that we can make sure we allocate
3277                  * blocks for file
3278                  */
3279                 filemap_write_and_wait(mapping);
3280         }
3281
3282         if (EXT4_JOURNAL(inode) &&
3283             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3284                 /*
3285                  * This is a REALLY heavyweight approach, but the use of
3286                  * bmap on dirty files is expected to be extremely rare:
3287                  * only if we run lilo or swapon on a freshly made file
3288                  * do we expect this to happen.
3289                  *
3290                  * (bmap requires CAP_SYS_RAWIO so this does not
3291                  * represent an unprivileged user DOS attack --- we'd be
3292                  * in trouble if mortal users could trigger this path at
3293                  * will.)
3294                  *
3295                  * NB. EXT4_STATE_JDATA is not set on files other than
3296                  * regular files.  If somebody wants to bmap a directory
3297                  * or symlink and gets confused because the buffer
3298                  * hasn't yet been flushed to disk, they deserve
3299                  * everything they get.
3300                  */
3301
3302                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3303                 journal = EXT4_JOURNAL(inode);
3304                 jbd2_journal_lock_updates(journal);
3305                 err = jbd2_journal_flush(journal);
3306                 jbd2_journal_unlock_updates(journal);
3307
3308                 if (err)
3309                         return 0;
3310         }
3311
3312         return generic_block_bmap(mapping, block, ext4_get_block);
3313 }
3314
3315 static int ext4_readpage(struct file *file, struct page *page)
3316 {
3317         int ret = -EAGAIN;
3318         struct inode *inode = page->mapping->host;
3319
3320         trace_ext4_readpage(page);
3321
3322         if (ext4_has_inline_data(inode))
3323                 ret = ext4_readpage_inline(inode, page);
3324
3325         if (ret == -EAGAIN)
3326                 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3327                                                 false);
3328
3329         return ret;
3330 }
3331
3332 static int
3333 ext4_readpages(struct file *file, struct address_space *mapping,
3334                 struct list_head *pages, unsigned nr_pages)
3335 {
3336         struct inode *inode = mapping->host;
3337
3338         /* If the file has inline data, no need to do readpages. */
3339         if (ext4_has_inline_data(inode))
3340                 return 0;
3341
3342         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3343 }
3344
3345 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3346                                 unsigned int length)
3347 {
3348         trace_ext4_invalidatepage(page, offset, length);
3349
3350         /* No journalling happens on data buffers when this function is used */
3351         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3352
3353         block_invalidatepage(page, offset, length);
3354 }
3355
3356 static int __ext4_journalled_invalidatepage(struct page *page,
3357                                             unsigned int offset,
3358                                             unsigned int length)
3359 {
3360         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3361
3362         trace_ext4_journalled_invalidatepage(page, offset, length);
3363
3364         /*
3365          * If it's a full truncate we just forget about the pending dirtying
3366          */
3367         if (offset == 0 && length == PAGE_SIZE)
3368                 ClearPageChecked(page);
3369
3370         return jbd2_journal_invalidatepage(journal, page, offset, length);
3371 }
3372
3373 /* Wrapper for aops... */
3374 static void ext4_journalled_invalidatepage(struct page *page,
3375                                            unsigned int offset,
3376                                            unsigned int length)
3377 {
3378         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3379 }
3380
3381 static int ext4_releasepage(struct page *page, gfp_t wait)
3382 {
3383         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3384
3385         trace_ext4_releasepage(page);
3386
3387         /* Page has dirty journalled data -> cannot release */
3388         if (PageChecked(page))
3389                 return 0;
3390         if (journal)
3391                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3392         else
3393                 return try_to_free_buffers(page);
3394 }
3395
3396 static bool ext4_inode_datasync_dirty(struct inode *inode)
3397 {
3398         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3399
3400         if (journal)
3401                 return !jbd2_transaction_committed(journal,
3402                                         EXT4_I(inode)->i_datasync_tid);
3403         /* Any metadata buffers to write? */
3404         if (!list_empty(&inode->i_mapping->private_list))
3405                 return true;
3406         return inode->i_state & I_DIRTY_DATASYNC;
3407 }
3408
3409 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3410                             unsigned flags, struct iomap *iomap)
3411 {
3412         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3413         unsigned int blkbits = inode->i_blkbits;
3414         unsigned long first_block, last_block;
3415         struct ext4_map_blocks map;
3416         bool delalloc = false;
3417         int ret;
3418
3419         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3420                 return -EINVAL;
3421         first_block = offset >> blkbits;
3422         last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3423                            EXT4_MAX_LOGICAL_BLOCK);
3424
3425         if (flags & IOMAP_REPORT) {
3426                 if (ext4_has_inline_data(inode)) {
3427                         ret = ext4_inline_data_iomap(inode, iomap);
3428                         if (ret != -EAGAIN) {
3429                                 if (ret == 0 && offset >= iomap->length)
3430                                         ret = -ENOENT;
3431                                 return ret;
3432                         }
3433                 }
3434         } else {
3435                 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3436                         return -ERANGE;
3437         }
3438
3439         map.m_lblk = first_block;
3440         map.m_len = last_block - first_block + 1;
3441
3442         if (flags & IOMAP_REPORT) {
3443                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3444                 if (ret < 0)
3445                         return ret;
3446
3447                 if (ret == 0) {
3448                         ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3449                         struct extent_status es;
3450
3451                         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3452                                                   map.m_lblk, end, &es);
3453
3454                         if (!es.es_len || es.es_lblk > end) {
3455                                 /* entire range is a hole */
3456                         } else if (es.es_lblk > map.m_lblk) {
3457                                 /* range starts with a hole */
3458                                 map.m_len = es.es_lblk - map.m_lblk;
3459                         } else {
3460                                 ext4_lblk_t offs = 0;
3461
3462                                 if (es.es_lblk < map.m_lblk)
3463                                         offs = map.m_lblk - es.es_lblk;
3464                                 map.m_lblk = es.es_lblk + offs;
3465                                 map.m_len = es.es_len - offs;
3466                                 delalloc = true;
3467                         }
3468                 }
3469         } else if (flags & IOMAP_WRITE) {
3470                 int dio_credits;
3471                 handle_t *handle;
3472                 int retries = 0;
3473
3474                 /* Trim mapping request to maximum we can map at once for DIO */
3475                 if (map.m_len > DIO_MAX_BLOCKS)
3476                         map.m_len = DIO_MAX_BLOCKS;
3477                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3478 retry:
3479                 /*
3480                  * Either we allocate blocks and then we don't get unwritten
3481                  * extent so we have reserved enough credits, or the blocks
3482                  * are already allocated and unwritten and in that case
3483                  * extent conversion fits in the credits as well.
3484                  */
3485                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3486                                             dio_credits);
3487                 if (IS_ERR(handle))
3488                         return PTR_ERR(handle);
3489
3490                 ret = ext4_map_blocks(handle, inode, &map,
3491                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3492                 if (ret < 0) {
3493                         ext4_journal_stop(handle);
3494                         if (ret == -ENOSPC &&
3495                             ext4_should_retry_alloc(inode->i_sb, &retries))
3496                                 goto retry;
3497                         return ret;
3498                 }
3499
3500                 /*
3501                  * If we added blocks beyond i_size, we need to make sure they
3502                  * will get truncated if we crash before updating i_size in
3503                  * ext4_iomap_end(). For faults we don't need to do that (and
3504                  * even cannot because for orphan list operations inode_lock is
3505                  * required) - if we happen to instantiate block beyond i_size,
3506                  * it is because we race with truncate which has already added
3507                  * the inode to the orphan list.
3508                  */
3509                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3510                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3511                         int err;
3512
3513                         err = ext4_orphan_add(handle, inode);
3514                         if (err < 0) {
3515                                 ext4_journal_stop(handle);
3516                                 return err;
3517                         }
3518                 }
3519                 ext4_journal_stop(handle);
3520         } else {
3521                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3522                 if (ret < 0)
3523                         return ret;
3524         }
3525
3526         iomap->flags = 0;
3527         if (ext4_inode_datasync_dirty(inode))
3528                 iomap->flags |= IOMAP_F_DIRTY;
3529         iomap->bdev = inode->i_sb->s_bdev;
3530         iomap->dax_dev = sbi->s_daxdev;
3531         iomap->offset = (u64)first_block << blkbits;
3532         iomap->length = (u64)map.m_len << blkbits;
3533
3534         if (ret == 0) {
3535                 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3536                 iomap->addr = IOMAP_NULL_ADDR;
3537         } else {
3538                 if (map.m_flags & EXT4_MAP_MAPPED) {
3539                         iomap->type = IOMAP_MAPPED;
3540                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3541                         iomap->type = IOMAP_UNWRITTEN;
3542                 } else {
3543                         WARN_ON_ONCE(1);
3544                         return -EIO;
3545                 }
3546                 iomap->addr = (u64)map.m_pblk << blkbits;
3547         }
3548
3549         if (map.m_flags & EXT4_MAP_NEW)
3550                 iomap->flags |= IOMAP_F_NEW;
3551
3552         return 0;
3553 }
3554
3555 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3556                           ssize_t written, unsigned flags, struct iomap *iomap)
3557 {
3558         int ret = 0;
3559         handle_t *handle;
3560         int blkbits = inode->i_blkbits;
3561         bool truncate = false;
3562
3563         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3564                 return 0;
3565
3566         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3567         if (IS_ERR(handle)) {
3568                 ret = PTR_ERR(handle);
3569                 goto orphan_del;
3570         }
3571         if (ext4_update_inode_size(inode, offset + written))
3572                 ext4_mark_inode_dirty(handle, inode);
3573         /*
3574          * We may need to truncate allocated but not written blocks beyond EOF.
3575          */
3576         if (iomap->offset + iomap->length > 
3577             ALIGN(inode->i_size, 1 << blkbits)) {
3578                 ext4_lblk_t written_blk, end_blk;
3579
3580                 written_blk = (offset + written) >> blkbits;
3581                 end_blk = (offset + length) >> blkbits;
3582                 if (written_blk < end_blk && ext4_can_truncate(inode))
3583                         truncate = true;
3584         }
3585         /*
3586          * Remove inode from orphan list if we were extending a inode and
3587          * everything went fine.
3588          */
3589         if (!truncate && inode->i_nlink &&
3590             !list_empty(&EXT4_I(inode)->i_orphan))
3591                 ext4_orphan_del(handle, inode);
3592         ext4_journal_stop(handle);
3593         if (truncate) {
3594                 ext4_truncate_failed_write(inode);
3595 orphan_del:
3596                 /*
3597                  * If truncate failed early the inode might still be on the
3598                  * orphan list; we need to make sure the inode is removed from
3599                  * the orphan list in that case.
3600                  */
3601                 if (inode->i_nlink)
3602                         ext4_orphan_del(NULL, inode);
3603         }
3604         return ret;
3605 }
3606
3607 const struct iomap_ops ext4_iomap_ops = {
3608         .iomap_begin            = ext4_iomap_begin,
3609         .iomap_end              = ext4_iomap_end,
3610 };
3611
3612 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3613                             ssize_t size, void *private)
3614 {
3615         ext4_io_end_t *io_end = private;
3616
3617         /* if not async direct IO just return */
3618         if (!io_end)
3619                 return 0;
3620
3621         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3622                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3623                   io_end, io_end->inode->i_ino, iocb, offset, size);
3624
3625         /*
3626          * Error during AIO DIO. We cannot convert unwritten extents as the
3627          * data was not written. Just clear the unwritten flag and drop io_end.
3628          */
3629         if (size <= 0) {
3630                 ext4_clear_io_unwritten_flag(io_end);
3631                 size = 0;
3632         }
3633         io_end->offset = offset;
3634         io_end->size = size;
3635         ext4_put_io_end(io_end);
3636
3637         return 0;
3638 }
3639
3640 /*
3641  * Handling of direct IO writes.
3642  *
3643  * For ext4 extent files, ext4 will do direct-io write even to holes,
3644  * preallocated extents, and those write extend the file, no need to
3645  * fall back to buffered IO.
3646  *
3647  * For holes, we fallocate those blocks, mark them as unwritten
3648  * If those blocks were preallocated, we mark sure they are split, but
3649  * still keep the range to write as unwritten.
3650  *
3651  * The unwritten extents will be converted to written when DIO is completed.
3652  * For async direct IO, since the IO may still pending when return, we
3653  * set up an end_io call back function, which will do the conversion
3654  * when async direct IO completed.
3655  *
3656  * If the O_DIRECT write will extend the file then add this inode to the
3657  * orphan list.  So recovery will truncate it back to the original size
3658  * if the machine crashes during the write.
3659  *
3660  */
3661 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3662 {
3663         struct file *file = iocb->ki_filp;
3664         struct inode *inode = file->f_mapping->host;
3665         struct ext4_inode_info *ei = EXT4_I(inode);
3666         ssize_t ret;
3667         loff_t offset = iocb->ki_pos;
3668         size_t count = iov_iter_count(iter);
3669         int overwrite = 0;
3670         get_block_t *get_block_func = NULL;
3671         int dio_flags = 0;
3672         loff_t final_size = offset + count;
3673         int orphan = 0;
3674         handle_t *handle;
3675
3676         if (final_size > inode->i_size || final_size > ei->i_disksize) {
3677                 /* Credits for sb + inode write */
3678                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3679                 if (IS_ERR(handle)) {
3680                         ret = PTR_ERR(handle);
3681                         goto out;
3682                 }
3683                 ret = ext4_orphan_add(handle, inode);
3684                 if (ret) {
3685                         ext4_journal_stop(handle);
3686                         goto out;
3687                 }
3688                 orphan = 1;
3689                 ext4_update_i_disksize(inode, inode->i_size);
3690                 ext4_journal_stop(handle);
3691         }
3692
3693         BUG_ON(iocb->private == NULL);
3694
3695         /*
3696          * Make all waiters for direct IO properly wait also for extent
3697          * conversion. This also disallows race between truncate() and
3698          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3699          */
3700         inode_dio_begin(inode);
3701
3702         /* If we do a overwrite dio, i_mutex locking can be released */
3703         overwrite = *((int *)iocb->private);
3704
3705         if (overwrite)
3706                 inode_unlock(inode);
3707
3708         /*
3709          * For extent mapped files we could direct write to holes and fallocate.
3710          *
3711          * Allocated blocks to fill the hole are marked as unwritten to prevent
3712          * parallel buffered read to expose the stale data before DIO complete
3713          * the data IO.
3714          *
3715          * As to previously fallocated extents, ext4 get_block will just simply
3716          * mark the buffer mapped but still keep the extents unwritten.
3717          *
3718          * For non AIO case, we will convert those unwritten extents to written
3719          * after return back from blockdev_direct_IO. That way we save us from
3720          * allocating io_end structure and also the overhead of offloading
3721          * the extent convertion to a workqueue.
3722          *
3723          * For async DIO, the conversion needs to be deferred when the
3724          * IO is completed. The ext4 end_io callback function will be
3725          * called to take care of the conversion work.  Here for async
3726          * case, we allocate an io_end structure to hook to the iocb.
3727          */
3728         iocb->private = NULL;
3729         if (overwrite)
3730                 get_block_func = ext4_dio_get_block_overwrite;
3731         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3732                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3733                 get_block_func = ext4_dio_get_block;
3734                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3735         } else if (is_sync_kiocb(iocb)) {
3736                 get_block_func = ext4_dio_get_block_unwritten_sync;
3737                 dio_flags = DIO_LOCKING;
3738         } else {
3739                 get_block_func = ext4_dio_get_block_unwritten_async;
3740                 dio_flags = DIO_LOCKING;
3741         }
3742         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3743                                    get_block_func, ext4_end_io_dio, NULL,
3744                                    dio_flags);
3745
3746         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3747                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3748                 int err;
3749                 /*
3750                  * for non AIO case, since the IO is already
3751                  * completed, we could do the conversion right here
3752                  */
3753                 err = ext4_convert_unwritten_extents(NULL, inode,
3754                                                      offset, ret);
3755                 if (err < 0)
3756                         ret = err;
3757                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3758         }
3759
3760         inode_dio_end(inode);
3761         /* take i_mutex locking again if we do a ovewrite dio */
3762         if (overwrite)
3763                 inode_lock(inode);
3764
3765         if (ret < 0 && final_size > inode->i_size)
3766                 ext4_truncate_failed_write(inode);
3767
3768         /* Handle extending of i_size after direct IO write */
3769         if (orphan) {
3770                 int err;
3771
3772                 /* Credits for sb + inode write */
3773                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3774                 if (IS_ERR(handle)) {
3775                         /*
3776                          * We wrote the data but cannot extend
3777                          * i_size. Bail out. In async io case, we do
3778                          * not return error here because we have
3779                          * already submmitted the corresponding
3780                          * bio. Returning error here makes the caller
3781                          * think that this IO is done and failed
3782                          * resulting in race with bio's completion
3783                          * handler.
3784                          */
3785                         if (!ret)
3786                                 ret = PTR_ERR(handle);
3787                         if (inode->i_nlink)
3788                                 ext4_orphan_del(NULL, inode);
3789
3790                         goto out;
3791                 }
3792                 if (inode->i_nlink)
3793                         ext4_orphan_del(handle, inode);
3794                 if (ret > 0) {
3795                         loff_t end = offset + ret;
3796                         if (end > inode->i_size || end > ei->i_disksize) {
3797                                 ext4_update_i_disksize(inode, end);
3798                                 if (end > inode->i_size)
3799                                         i_size_write(inode, end);
3800                                 /*
3801                                  * We're going to return a positive `ret'
3802                                  * here due to non-zero-length I/O, so there's
3803                                  * no way of reporting error returns from
3804                                  * ext4_mark_inode_dirty() to userspace.  So
3805                                  * ignore it.
3806                                  */
3807                                 ext4_mark_inode_dirty(handle, inode);
3808                         }
3809                 }
3810                 err = ext4_journal_stop(handle);
3811                 if (ret == 0)
3812                         ret = err;
3813         }
3814 out:
3815         return ret;
3816 }
3817
3818 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3819 {
3820         struct address_space *mapping = iocb->ki_filp->f_mapping;
3821         struct inode *inode = mapping->host;
3822         size_t count = iov_iter_count(iter);
3823         ssize_t ret;
3824
3825         /*
3826          * Shared inode_lock is enough for us - it protects against concurrent
3827          * writes & truncates and since we take care of writing back page cache,
3828          * we are protected against page writeback as well.
3829          */
3830         inode_lock_shared(inode);
3831         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3832                                            iocb->ki_pos + count - 1);
3833         if (ret)
3834                 goto out_unlock;
3835         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3836                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3837 out_unlock:
3838         inode_unlock_shared(inode);
3839         return ret;
3840 }
3841
3842 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3843 {
3844         struct file *file = iocb->ki_filp;
3845         struct inode *inode = file->f_mapping->host;
3846         size_t count = iov_iter_count(iter);
3847         loff_t offset = iocb->ki_pos;
3848         ssize_t ret;
3849
3850 #ifdef CONFIG_FS_ENCRYPTION
3851         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
3852                 return 0;
3853 #endif
3854         if (fsverity_active(inode))
3855                 return 0;
3856
3857         /*
3858          * If we are doing data journalling we don't support O_DIRECT
3859          */
3860         if (ext4_should_journal_data(inode))
3861                 return 0;
3862
3863         /* Let buffer I/O handle the inline data case. */
3864         if (ext4_has_inline_data(inode))
3865                 return 0;
3866
3867         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3868         if (iov_iter_rw(iter) == READ)
3869                 ret = ext4_direct_IO_read(iocb, iter);
3870         else
3871                 ret = ext4_direct_IO_write(iocb, iter);
3872         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3873         return ret;
3874 }
3875
3876 /*
3877  * Pages can be marked dirty completely asynchronously from ext4's journalling
3878  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3879  * much here because ->set_page_dirty is called under VFS locks.  The page is
3880  * not necessarily locked.
3881  *
3882  * We cannot just dirty the page and leave attached buffers clean, because the
3883  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3884  * or jbddirty because all the journalling code will explode.
3885  *
3886  * So what we do is to mark the page "pending dirty" and next time writepage
3887  * is called, propagate that into the buffers appropriately.
3888  */
3889 static int ext4_journalled_set_page_dirty(struct page *page)
3890 {
3891         SetPageChecked(page);
3892         return __set_page_dirty_nobuffers(page);
3893 }
3894
3895 static int ext4_set_page_dirty(struct page *page)
3896 {
3897         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3898         WARN_ON_ONCE(!page_has_buffers(page));
3899         return __set_page_dirty_buffers(page);
3900 }
3901
3902 static const struct address_space_operations ext4_aops = {
3903         .readpage               = ext4_readpage,
3904         .readpages              = ext4_readpages,
3905         .writepage              = ext4_writepage,
3906         .writepages             = ext4_writepages,
3907         .write_begin            = ext4_write_begin,
3908         .write_end              = ext4_write_end,
3909         .set_page_dirty         = ext4_set_page_dirty,
3910         .bmap                   = ext4_bmap,
3911         .invalidatepage         = ext4_invalidatepage,
3912         .releasepage            = ext4_releasepage,
3913         .direct_IO              = ext4_direct_IO,
3914         .migratepage            = buffer_migrate_page,
3915         .is_partially_uptodate  = block_is_partially_uptodate,
3916         .error_remove_page      = generic_error_remove_page,
3917 };
3918
3919 static const struct address_space_operations ext4_journalled_aops = {
3920         .readpage               = ext4_readpage,
3921         .readpages              = ext4_readpages,
3922         .writepage              = ext4_writepage,
3923         .writepages             = ext4_writepages,
3924         .write_begin            = ext4_write_begin,
3925         .write_end              = ext4_journalled_write_end,
3926         .set_page_dirty         = ext4_journalled_set_page_dirty,
3927         .bmap                   = ext4_bmap,
3928         .invalidatepage         = ext4_journalled_invalidatepage,
3929         .releasepage            = ext4_releasepage,
3930         .direct_IO              = ext4_direct_IO,
3931         .is_partially_uptodate  = block_is_partially_uptodate,
3932         .error_remove_page      = generic_error_remove_page,
3933 };
3934
3935 static const struct address_space_operations ext4_da_aops = {
3936         .readpage               = ext4_readpage,
3937         .readpages              = ext4_readpages,
3938         .writepage              = ext4_writepage,
3939         .writepages             = ext4_writepages,
3940         .write_begin            = ext4_da_write_begin,
3941         .write_end              = ext4_da_write_end,
3942         .set_page_dirty         = ext4_set_page_dirty,
3943         .bmap                   = ext4_bmap,
3944         .invalidatepage         = ext4_invalidatepage,
3945         .releasepage            = ext4_releasepage,
3946         .direct_IO              = ext4_direct_IO,
3947         .migratepage            = buffer_migrate_page,
3948         .is_partially_uptodate  = block_is_partially_uptodate,
3949         .error_remove_page      = generic_error_remove_page,
3950 };
3951
3952 static const struct address_space_operations ext4_dax_aops = {
3953         .writepages             = ext4_dax_writepages,
3954         .direct_IO              = noop_direct_IO,
3955         .set_page_dirty         = noop_set_page_dirty,
3956         .bmap                   = ext4_bmap,
3957         .invalidatepage         = noop_invalidatepage,
3958 };
3959
3960 void ext4_set_aops(struct inode *inode)
3961 {
3962         switch (ext4_inode_journal_mode(inode)) {
3963         case EXT4_INODE_ORDERED_DATA_MODE:
3964         case EXT4_INODE_WRITEBACK_DATA_MODE:
3965                 break;
3966         case EXT4_INODE_JOURNAL_DATA_MODE:
3967                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3968                 return;
3969         default:
3970                 BUG();
3971         }
3972         if (IS_DAX(inode))
3973                 inode->i_mapping->a_ops = &ext4_dax_aops;
3974         else if (test_opt(inode->i_sb, DELALLOC))
3975                 inode->i_mapping->a_ops = &ext4_da_aops;
3976         else
3977                 inode->i_mapping->a_ops = &ext4_aops;
3978 }
3979
3980 static int __ext4_block_zero_page_range(handle_t *handle,
3981                 struct address_space *mapping, loff_t from, loff_t length)
3982 {
3983         ext4_fsblk_t index = from >> PAGE_SHIFT;
3984         unsigned offset = from & (PAGE_SIZE-1);
3985         unsigned blocksize, pos;
3986         ext4_lblk_t iblock;
3987         struct inode *inode = mapping->host;
3988         struct buffer_head *bh;
3989         struct page *page;
3990         int err = 0;
3991
3992         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3993                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3994         if (!page)
3995                 return -ENOMEM;
3996
3997         blocksize = inode->i_sb->s_blocksize;
3998
3999         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4000
4001         if (!page_has_buffers(page))
4002                 create_empty_buffers(page, blocksize, 0);
4003
4004         /* Find the buffer that contains "offset" */
4005         bh = page_buffers(page);
4006         pos = blocksize;
4007         while (offset >= pos) {
4008                 bh = bh->b_this_page;
4009                 iblock++;
4010                 pos += blocksize;
4011         }
4012         if (buffer_freed(bh)) {
4013                 BUFFER_TRACE(bh, "freed: skip");
4014                 goto unlock;
4015         }
4016         if (!buffer_mapped(bh)) {
4017                 BUFFER_TRACE(bh, "unmapped");
4018                 ext4_get_block(inode, iblock, bh, 0);
4019                 /* unmapped? It's a hole - nothing to do */
4020                 if (!buffer_mapped(bh)) {
4021                         BUFFER_TRACE(bh, "still unmapped");
4022                         goto unlock;
4023                 }
4024         }
4025
4026         /* Ok, it's mapped. Make sure it's up-to-date */
4027         if (PageUptodate(page))
4028                 set_buffer_uptodate(bh);
4029
4030         if (!buffer_uptodate(bh)) {
4031                 err = -EIO;
4032                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4033                 wait_on_buffer(bh);
4034                 /* Uhhuh. Read error. Complain and punt. */
4035                 if (!buffer_uptodate(bh))
4036                         goto unlock;
4037                 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
4038                         /* We expect the key to be set. */
4039                         BUG_ON(!fscrypt_has_encryption_key(inode));
4040                         WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
4041                                         page, blocksize, bh_offset(bh)));
4042                 }
4043         }
4044         if (ext4_should_journal_data(inode)) {
4045                 BUFFER_TRACE(bh, "get write access");
4046                 err = ext4_journal_get_write_access(handle, bh);
4047                 if (err)
4048                         goto unlock;
4049         }
4050         zero_user(page, offset, length);
4051         BUFFER_TRACE(bh, "zeroed end of block");
4052
4053         if (ext4_should_journal_data(inode)) {
4054                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4055         } else {
4056                 err = 0;
4057                 mark_buffer_dirty(bh);
4058                 if (ext4_should_order_data(inode))
4059                         err = ext4_jbd2_inode_add_write(handle, inode, from,
4060                                         length);
4061         }
4062
4063 unlock:
4064         unlock_page(page);
4065         put_page(page);
4066         return err;
4067 }
4068
4069 /*
4070  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4071  * starting from file offset 'from'.  The range to be zero'd must
4072  * be contained with in one block.  If the specified range exceeds
4073  * the end of the block it will be shortened to end of the block
4074  * that cooresponds to 'from'
4075  */
4076 static int ext4_block_zero_page_range(handle_t *handle,
4077                 struct address_space *mapping, loff_t from, loff_t length)
4078 {
4079         struct inode *inode = mapping->host;
4080         unsigned offset = from & (PAGE_SIZE-1);
4081         unsigned blocksize = inode->i_sb->s_blocksize;
4082         unsigned max = blocksize - (offset & (blocksize - 1));
4083
4084         /*
4085          * correct length if it does not fall between
4086          * 'from' and the end of the block
4087          */
4088         if (length > max || length < 0)
4089                 length = max;
4090
4091         if (IS_DAX(inode)) {
4092                 return iomap_zero_range(inode, from, length, NULL,
4093                                         &ext4_iomap_ops);
4094         }
4095         return __ext4_block_zero_page_range(handle, mapping, from, length);
4096 }
4097
4098 /*
4099  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4100  * up to the end of the block which corresponds to `from'.
4101  * This required during truncate. We need to physically zero the tail end
4102  * of that block so it doesn't yield old data if the file is later grown.
4103  */
4104 static int ext4_block_truncate_page(handle_t *handle,
4105                 struct address_space *mapping, loff_t from)
4106 {
4107         unsigned offset = from & (PAGE_SIZE-1);
4108         unsigned length;
4109         unsigned blocksize;
4110         struct inode *inode = mapping->host;
4111
4112         /* If we are processing an encrypted inode during orphan list handling */
4113         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4114                 return 0;
4115
4116         blocksize = inode->i_sb->s_blocksize;
4117         length = blocksize - (offset & (blocksize - 1));
4118
4119         return ext4_block_zero_page_range(handle, mapping, from, length);
4120 }
4121
4122 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4123                              loff_t lstart, loff_t length)
4124 {
4125         struct super_block *sb = inode->i_sb;
4126         struct address_space *mapping = inode->i_mapping;
4127         unsigned partial_start, partial_end;
4128         ext4_fsblk_t start, end;
4129         loff_t byte_end = (lstart + length - 1);
4130         int err = 0;
4131
4132         partial_start = lstart & (sb->s_blocksize - 1);
4133         partial_end = byte_end & (sb->s_blocksize - 1);
4134
4135         start = lstart >> sb->s_blocksize_bits;
4136         end = byte_end >> sb->s_blocksize_bits;
4137
4138         /* Handle partial zero within the single block */
4139         if (start == end &&
4140             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4141                 err = ext4_block_zero_page_range(handle, mapping,
4142                                                  lstart, length);
4143                 return err;
4144         }
4145         /* Handle partial zero out on the start of the range */
4146         if (partial_start) {
4147                 err = ext4_block_zero_page_range(handle, mapping,
4148                                                  lstart, sb->s_blocksize);
4149                 if (err)
4150                         return err;
4151         }
4152         /* Handle partial zero out on the end of the range */
4153         if (partial_end != sb->s_blocksize - 1)
4154                 err = ext4_block_zero_page_range(handle, mapping,
4155                                                  byte_end - partial_end,
4156                                                  partial_end + 1);
4157         return err;
4158 }
4159
4160 int ext4_can_truncate(struct inode *inode)
4161 {
4162         if (S_ISREG(inode->i_mode))
4163                 return 1;
4164         if (S_ISDIR(inode->i_mode))
4165                 return 1;
4166         if (S_ISLNK(inode->i_mode))
4167                 return !ext4_inode_is_fast_symlink(inode);
4168         return 0;
4169 }
4170
4171 /*
4172  * We have to make sure i_disksize gets properly updated before we truncate
4173  * page cache due to hole punching or zero range. Otherwise i_disksize update
4174  * can get lost as it may have been postponed to submission of writeback but
4175  * that will never happen after we truncate page cache.
4176  */
4177 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4178                                       loff_t len)
4179 {
4180         handle_t *handle;
4181         loff_t size = i_size_read(inode);
4182
4183         WARN_ON(!inode_is_locked(inode));
4184         if (offset > size || offset + len < size)
4185                 return 0;
4186
4187         if (EXT4_I(inode)->i_disksize >= size)
4188                 return 0;
4189
4190         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4191         if (IS_ERR(handle))
4192                 return PTR_ERR(handle);
4193         ext4_update_i_disksize(inode, size);
4194         ext4_mark_inode_dirty(handle, inode);
4195         ext4_journal_stop(handle);
4196
4197         return 0;
4198 }
4199
4200 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4201 {
4202         up_write(&ei->i_mmap_sem);
4203         schedule();
4204         down_write(&ei->i_mmap_sem);
4205 }
4206
4207 int ext4_break_layouts(struct inode *inode)
4208 {
4209         struct ext4_inode_info *ei = EXT4_I(inode);
4210         struct page *page;
4211         int error;
4212
4213         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4214                 return -EINVAL;
4215
4216         do {
4217                 page = dax_layout_busy_page(inode->i_mapping);
4218                 if (!page)
4219                         return 0;
4220
4221                 error = ___wait_var_event(&page->_refcount,
4222                                 atomic_read(&page->_refcount) == 1,
4223                                 TASK_INTERRUPTIBLE, 0, 0,
4224                                 ext4_wait_dax_page(ei));
4225         } while (error == 0);
4226
4227         return error;
4228 }
4229
4230 /*
4231  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4232  * associated with the given offset and length
4233  *
4234  * @inode:  File inode
4235  * @offset: The offset where the hole will begin
4236  * @len:    The length of the hole
4237  *
4238  * Returns: 0 on success or negative on failure
4239  */
4240
4241 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4242 {
4243         struct super_block *sb = inode->i_sb;
4244         ext4_lblk_t first_block, stop_block;
4245         struct address_space *mapping = inode->i_mapping;
4246         loff_t first_block_offset, last_block_offset;
4247         handle_t *handle;
4248         unsigned int credits;
4249         int ret = 0;
4250
4251         if (!S_ISREG(inode->i_mode))
4252                 return -EOPNOTSUPP;
4253
4254         trace_ext4_punch_hole(inode, offset, length, 0);
4255
4256         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4257         if (ext4_has_inline_data(inode)) {
4258                 down_write(&EXT4_I(inode)->i_mmap_sem);
4259                 ret = ext4_convert_inline_data(inode);
4260                 up_write(&EXT4_I(inode)->i_mmap_sem);
4261                 if (ret)
4262                         return ret;
4263         }
4264
4265         /*
4266          * Write out all dirty pages to avoid race conditions
4267          * Then release them.
4268          */
4269         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4270                 ret = filemap_write_and_wait_range(mapping, offset,
4271                                                    offset + length - 1);
4272                 if (ret)
4273                         return ret;
4274         }
4275
4276         inode_lock(inode);
4277
4278         /* No need to punch hole beyond i_size */
4279         if (offset >= inode->i_size)
4280                 goto out_mutex;
4281
4282         /*
4283          * If the hole extends beyond i_size, set the hole
4284          * to end after the page that contains i_size
4285          */
4286         if (offset + length > inode->i_size) {
4287                 length = inode->i_size +
4288                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4289                    offset;
4290         }
4291
4292         if (offset & (sb->s_blocksize - 1) ||
4293             (offset + length) & (sb->s_blocksize - 1)) {
4294                 /*
4295                  * Attach jinode to inode for jbd2 if we do any zeroing of
4296                  * partial block
4297                  */
4298                 ret = ext4_inode_attach_jinode(inode);
4299                 if (ret < 0)
4300                         goto out_mutex;
4301
4302         }
4303
4304         /* Wait all existing dio workers, newcomers will block on i_mutex */
4305         inode_dio_wait(inode);
4306
4307         /*
4308          * Prevent page faults from reinstantiating pages we have released from
4309          * page cache.
4310          */
4311         down_write(&EXT4_I(inode)->i_mmap_sem);
4312
4313         ret = ext4_break_layouts(inode);
4314         if (ret)
4315                 goto out_dio;
4316
4317         first_block_offset = round_up(offset, sb->s_blocksize);
4318         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4319
4320         /* Now release the pages and zero block aligned part of pages*/
4321         if (last_block_offset > first_block_offset) {
4322                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4323                 if (ret)
4324                         goto out_dio;
4325                 truncate_pagecache_range(inode, first_block_offset,
4326                                          last_block_offset);
4327         }
4328
4329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4330                 credits = ext4_writepage_trans_blocks(inode);
4331         else
4332                 credits = ext4_blocks_for_truncate(inode);
4333         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4334         if (IS_ERR(handle)) {
4335                 ret = PTR_ERR(handle);
4336                 ext4_std_error(sb, ret);
4337                 goto out_dio;
4338         }
4339
4340         ret = ext4_zero_partial_blocks(handle, inode, offset,
4341                                        length);
4342         if (ret)
4343                 goto out_stop;
4344
4345         first_block = (offset + sb->s_blocksize - 1) >>
4346                 EXT4_BLOCK_SIZE_BITS(sb);
4347         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4348
4349         /* If there are blocks to remove, do it */
4350         if (stop_block > first_block) {
4351
4352                 down_write(&EXT4_I(inode)->i_data_sem);
4353                 ext4_discard_preallocations(inode);
4354
4355                 ret = ext4_es_remove_extent(inode, first_block,
4356                                             stop_block - first_block);
4357                 if (ret) {
4358                         up_write(&EXT4_I(inode)->i_data_sem);
4359                         goto out_stop;
4360                 }
4361
4362                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4363                         ret = ext4_ext_remove_space(inode, first_block,
4364                                                     stop_block - 1);
4365                 else
4366                         ret = ext4_ind_remove_space(handle, inode, first_block,
4367                                                     stop_block);
4368
4369                 up_write(&EXT4_I(inode)->i_data_sem);
4370         }
4371         if (IS_SYNC(inode))
4372                 ext4_handle_sync(handle);
4373
4374         inode->i_mtime = inode->i_ctime = current_time(inode);
4375         ext4_mark_inode_dirty(handle, inode);
4376         if (ret >= 0)
4377                 ext4_update_inode_fsync_trans(handle, inode, 1);
4378 out_stop:
4379         ext4_journal_stop(handle);
4380 out_dio:
4381         up_write(&EXT4_I(inode)->i_mmap_sem);
4382 out_mutex:
4383         inode_unlock(inode);
4384         return ret;
4385 }
4386
4387 int ext4_inode_attach_jinode(struct inode *inode)
4388 {
4389         struct ext4_inode_info *ei = EXT4_I(inode);
4390         struct jbd2_inode *jinode;
4391
4392         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4393                 return 0;
4394
4395         jinode = jbd2_alloc_inode(GFP_KERNEL);
4396         spin_lock(&inode->i_lock);
4397         if (!ei->jinode) {
4398                 if (!jinode) {
4399                         spin_unlock(&inode->i_lock);
4400                         return -ENOMEM;
4401                 }
4402                 ei->jinode = jinode;
4403                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4404                 jinode = NULL;
4405         }
4406         spin_unlock(&inode->i_lock);
4407         if (unlikely(jinode != NULL))
4408                 jbd2_free_inode(jinode);
4409         return 0;
4410 }
4411
4412 /*
4413  * ext4_truncate()
4414  *
4415  * We block out ext4_get_block() block instantiations across the entire
4416  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4417  * simultaneously on behalf of the same inode.
4418  *
4419  * As we work through the truncate and commit bits of it to the journal there
4420  * is one core, guiding principle: the file's tree must always be consistent on
4421  * disk.  We must be able to restart the truncate after a crash.
4422  *
4423  * The file's tree may be transiently inconsistent in memory (although it
4424  * probably isn't), but whenever we close off and commit a journal transaction,
4425  * the contents of (the filesystem + the journal) must be consistent and
4426  * restartable.  It's pretty simple, really: bottom up, right to left (although
4427  * left-to-right works OK too).
4428  *
4429  * Note that at recovery time, journal replay occurs *before* the restart of
4430  * truncate against the orphan inode list.
4431  *
4432  * The committed inode has the new, desired i_size (which is the same as
4433  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4434  * that this inode's truncate did not complete and it will again call
4435  * ext4_truncate() to have another go.  So there will be instantiated blocks
4436  * to the right of the truncation point in a crashed ext4 filesystem.  But
4437  * that's fine - as long as they are linked from the inode, the post-crash
4438  * ext4_truncate() run will find them and release them.
4439  */
4440 int ext4_truncate(struct inode *inode)
4441 {
4442         struct ext4_inode_info *ei = EXT4_I(inode);
4443         unsigned int credits;
4444         int err = 0;
4445         handle_t *handle;
4446         struct address_space *mapping = inode->i_mapping;
4447
4448         /*
4449          * There is a possibility that we're either freeing the inode
4450          * or it's a completely new inode. In those cases we might not
4451          * have i_mutex locked because it's not necessary.
4452          */
4453         if (!(inode->i_state & (I_NEW|I_FREEING)))
4454                 WARN_ON(!inode_is_locked(inode));
4455         trace_ext4_truncate_enter(inode);
4456
4457         if (!ext4_can_truncate(inode))
4458                 return 0;
4459
4460         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4461
4462         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4463                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4464
4465         if (ext4_has_inline_data(inode)) {
4466                 int has_inline = 1;
4467
4468                 err = ext4_inline_data_truncate(inode, &has_inline);
4469                 if (err)
4470                         return err;
4471                 if (has_inline)
4472                         return 0;
4473         }
4474
4475         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4476         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4477                 if (ext4_inode_attach_jinode(inode) < 0)
4478                         return 0;
4479         }
4480
4481         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4482                 credits = ext4_writepage_trans_blocks(inode);
4483         else
4484                 credits = ext4_blocks_for_truncate(inode);
4485
4486         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4487         if (IS_ERR(handle))
4488                 return PTR_ERR(handle);
4489
4490         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4491                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4492
4493         /*
4494          * We add the inode to the orphan list, so that if this
4495          * truncate spans multiple transactions, and we crash, we will
4496          * resume the truncate when the filesystem recovers.  It also
4497          * marks the inode dirty, to catch the new size.
4498          *
4499          * Implication: the file must always be in a sane, consistent
4500          * truncatable state while each transaction commits.
4501          */
4502         err = ext4_orphan_add(handle, inode);
4503         if (err)
4504                 goto out_stop;
4505
4506         down_write(&EXT4_I(inode)->i_data_sem);
4507
4508         ext4_discard_preallocations(inode);
4509
4510         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4511                 err = ext4_ext_truncate(handle, inode);
4512         else
4513                 ext4_ind_truncate(handle, inode);
4514
4515         up_write(&ei->i_data_sem);
4516         if (err)
4517                 goto out_stop;
4518
4519         if (IS_SYNC(inode))
4520                 ext4_handle_sync(handle);
4521
4522 out_stop:
4523         /*
4524          * If this was a simple ftruncate() and the file will remain alive,
4525          * then we need to clear up the orphan record which we created above.
4526          * However, if this was a real unlink then we were called by
4527          * ext4_evict_inode(), and we allow that function to clean up the
4528          * orphan info for us.
4529          */
4530         if (inode->i_nlink)
4531                 ext4_orphan_del(handle, inode);
4532
4533         inode->i_mtime = inode->i_ctime = current_time(inode);
4534         ext4_mark_inode_dirty(handle, inode);
4535         ext4_journal_stop(handle);
4536
4537         trace_ext4_truncate_exit(inode);
4538         return err;
4539 }
4540
4541 /*
4542  * ext4_get_inode_loc returns with an extra refcount against the inode's
4543  * underlying buffer_head on success. If 'in_mem' is true, we have all
4544  * data in memory that is needed to recreate the on-disk version of this
4545  * inode.
4546  */
4547 static int __ext4_get_inode_loc(struct inode *inode,
4548                                 struct ext4_iloc *iloc, int in_mem)
4549 {
4550         struct ext4_group_desc  *gdp;
4551         struct buffer_head      *bh;
4552         struct super_block      *sb = inode->i_sb;
4553         ext4_fsblk_t            block;
4554         struct blk_plug         plug;
4555         int                     inodes_per_block, inode_offset;
4556
4557         iloc->bh = NULL;
4558         if (inode->i_ino < EXT4_ROOT_INO ||
4559             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4560                 return -EFSCORRUPTED;
4561
4562         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4563         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4564         if (!gdp)
4565                 return -EIO;
4566
4567         /*
4568          * Figure out the offset within the block group inode table
4569          */
4570         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4571         inode_offset = ((inode->i_ino - 1) %
4572                         EXT4_INODES_PER_GROUP(sb));
4573         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4574         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4575
4576         bh = sb_getblk(sb, block);
4577         if (unlikely(!bh))
4578                 return -ENOMEM;
4579         if (!buffer_uptodate(bh)) {
4580                 lock_buffer(bh);
4581
4582                 /*
4583                  * If the buffer has the write error flag, we have failed
4584                  * to write out another inode in the same block.  In this
4585                  * case, we don't have to read the block because we may
4586                  * read the old inode data successfully.
4587                  */
4588                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4589                         set_buffer_uptodate(bh);
4590
4591                 if (buffer_uptodate(bh)) {
4592                         /* someone brought it uptodate while we waited */
4593                         unlock_buffer(bh);
4594                         goto has_buffer;
4595                 }
4596
4597                 /*
4598                  * If we have all information of the inode in memory and this
4599                  * is the only valid inode in the block, we need not read the
4600                  * block.
4601                  */
4602                 if (in_mem) {
4603                         struct buffer_head *bitmap_bh;
4604                         int i, start;
4605
4606                         start = inode_offset & ~(inodes_per_block - 1);
4607
4608                         /* Is the inode bitmap in cache? */
4609                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4610                         if (unlikely(!bitmap_bh))
4611                                 goto make_io;
4612
4613                         /*
4614                          * If the inode bitmap isn't in cache then the
4615                          * optimisation may end up performing two reads instead
4616                          * of one, so skip it.
4617                          */
4618                         if (!buffer_uptodate(bitmap_bh)) {
4619                                 brelse(bitmap_bh);
4620                                 goto make_io;
4621                         }
4622                         for (i = start; i < start + inodes_per_block; i++) {
4623                                 if (i == inode_offset)
4624                                         continue;
4625                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4626                                         break;
4627                         }
4628                         brelse(bitmap_bh);
4629                         if (i == start + inodes_per_block) {
4630                                 /* all other inodes are free, so skip I/O */
4631                                 memset(bh->b_data, 0, bh->b_size);
4632                                 set_buffer_uptodate(bh);
4633                                 unlock_buffer(bh);
4634                                 goto has_buffer;
4635                         }
4636                 }
4637
4638 make_io:
4639                 /*
4640                  * If we need to do any I/O, try to pre-readahead extra
4641                  * blocks from the inode table.
4642                  */
4643                 blk_start_plug(&plug);
4644                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4645                         ext4_fsblk_t b, end, table;
4646                         unsigned num;
4647                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4648
4649                         table = ext4_inode_table(sb, gdp);
4650                         /* s_inode_readahead_blks is always a power of 2 */
4651                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4652                         if (table > b)
4653                                 b = table;
4654                         end = b + ra_blks;
4655                         num = EXT4_INODES_PER_GROUP(sb);
4656                         if (ext4_has_group_desc_csum(sb))
4657                                 num -= ext4_itable_unused_count(sb, gdp);
4658                         table += num / inodes_per_block;
4659                         if (end > table)
4660                                 end = table;
4661                         while (b <= end)
4662                                 sb_breadahead(sb, b++);
4663                 }
4664
4665                 /*
4666                  * There are other valid inodes in the buffer, this inode
4667                  * has in-inode xattrs, or we don't have this inode in memory.
4668                  * Read the block from disk.
4669                  */
4670                 trace_ext4_load_inode(inode);
4671                 get_bh(bh);
4672                 bh->b_end_io = end_buffer_read_sync;
4673                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4674                 blk_finish_plug(&plug);
4675                 wait_on_buffer(bh);
4676                 if (!buffer_uptodate(bh)) {
4677                         EXT4_ERROR_INODE_BLOCK(inode, block,
4678                                                "unable to read itable block");
4679                         brelse(bh);
4680                         return -EIO;
4681                 }
4682         }
4683 has_buffer:
4684         iloc->bh = bh;
4685         return 0;
4686 }
4687
4688 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4689 {
4690         /* We have all inode data except xattrs in memory here. */
4691         return __ext4_get_inode_loc(inode, iloc,
4692                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4693 }
4694
4695 static bool ext4_should_use_dax(struct inode *inode)
4696 {
4697         if (!test_opt(inode->i_sb, DAX))
4698                 return false;
4699         if (!S_ISREG(inode->i_mode))
4700                 return false;
4701         if (ext4_should_journal_data(inode))
4702                 return false;
4703         if (ext4_has_inline_data(inode))
4704                 return false;
4705         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4706                 return false;
4707         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4708                 return false;
4709         return true;
4710 }
4711
4712 void ext4_set_inode_flags(struct inode *inode)
4713 {
4714         unsigned int flags = EXT4_I(inode)->i_flags;
4715         unsigned int new_fl = 0;
4716
4717         if (flags & EXT4_SYNC_FL)
4718                 new_fl |= S_SYNC;
4719         if (flags & EXT4_APPEND_FL)
4720                 new_fl |= S_APPEND;
4721         if (flags & EXT4_IMMUTABLE_FL)
4722                 new_fl |= S_IMMUTABLE;
4723         if (flags & EXT4_NOATIME_FL)
4724                 new_fl |= S_NOATIME;
4725         if (flags & EXT4_DIRSYNC_FL)
4726                 new_fl |= S_DIRSYNC;
4727         if (ext4_should_use_dax(inode))
4728                 new_fl |= S_DAX;
4729         if (flags & EXT4_ENCRYPT_FL)
4730                 new_fl |= S_ENCRYPTED;
4731         if (flags & EXT4_CASEFOLD_FL)
4732                 new_fl |= S_CASEFOLD;
4733         if (flags & EXT4_VERITY_FL)
4734                 new_fl |= S_VERITY;
4735         inode_set_flags(inode, new_fl,
4736                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4737                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4738 }
4739
4740 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4741                                   struct ext4_inode_info *ei)
4742 {
4743         blkcnt_t i_blocks ;
4744         struct inode *inode = &(ei->vfs_inode);
4745         struct super_block *sb = inode->i_sb;
4746
4747         if (ext4_has_feature_huge_file(sb)) {
4748                 /* we are using combined 48 bit field */
4749                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4750                                         le32_to_cpu(raw_inode->i_blocks_lo);
4751                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4752                         /* i_blocks represent file system block size */
4753                         return i_blocks  << (inode->i_blkbits - 9);
4754                 } else {
4755                         return i_blocks;
4756                 }
4757         } else {
4758                 return le32_to_cpu(raw_inode->i_blocks_lo);
4759         }
4760 }
4761
4762 static inline int ext4_iget_extra_inode(struct inode *inode,
4763                                          struct ext4_inode *raw_inode,
4764                                          struct ext4_inode_info *ei)
4765 {
4766         __le32 *magic = (void *)raw_inode +
4767                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4768
4769         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4770             EXT4_INODE_SIZE(inode->i_sb) &&
4771             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4772                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4773                 return ext4_find_inline_data_nolock(inode);
4774         } else
4775                 EXT4_I(inode)->i_inline_off = 0;
4776         return 0;
4777 }
4778
4779 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4780 {
4781         if (!ext4_has_feature_project(inode->i_sb))
4782                 return -EOPNOTSUPP;
4783         *projid = EXT4_I(inode)->i_projid;
4784         return 0;
4785 }
4786
4787 /*
4788  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4789  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4790  * set.
4791  */
4792 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4793 {
4794         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4795                 inode_set_iversion_raw(inode, val);
4796         else
4797                 inode_set_iversion_queried(inode, val);
4798 }
4799 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4800 {
4801         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4802                 return inode_peek_iversion_raw(inode);
4803         else
4804                 return inode_peek_iversion(inode);
4805 }
4806
4807 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4808                           ext4_iget_flags flags, const char *function,
4809                           unsigned int line)
4810 {
4811         struct ext4_iloc iloc;
4812         struct ext4_inode *raw_inode;
4813         struct ext4_inode_info *ei;
4814         struct inode *inode;
4815         journal_t *journal = EXT4_SB(sb)->s_journal;
4816         long ret;
4817         loff_t size;
4818         int block;
4819         uid_t i_uid;
4820         gid_t i_gid;
4821         projid_t i_projid;
4822
4823         if ((!(flags & EXT4_IGET_SPECIAL) &&
4824              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4825             (ino < EXT4_ROOT_INO) ||
4826             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4827                 if (flags & EXT4_IGET_HANDLE)
4828                         return ERR_PTR(-ESTALE);
4829                 __ext4_error(sb, function, line,
4830                              "inode #%lu: comm %s: iget: illegal inode #",
4831                              ino, current->comm);
4832                 return ERR_PTR(-EFSCORRUPTED);
4833         }
4834
4835         inode = iget_locked(sb, ino);
4836         if (!inode)
4837                 return ERR_PTR(-ENOMEM);
4838         if (!(inode->i_state & I_NEW))
4839                 return inode;
4840
4841         ei = EXT4_I(inode);
4842         iloc.bh = NULL;
4843
4844         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4845         if (ret < 0)
4846                 goto bad_inode;
4847         raw_inode = ext4_raw_inode(&iloc);
4848
4849         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4850                 ext4_error_inode(inode, function, line, 0,
4851                                  "iget: root inode unallocated");
4852                 ret = -EFSCORRUPTED;
4853                 goto bad_inode;
4854         }
4855
4856         if ((flags & EXT4_IGET_HANDLE) &&
4857             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4858                 ret = -ESTALE;
4859                 goto bad_inode;
4860         }
4861
4862         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4863                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4864                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4865                         EXT4_INODE_SIZE(inode->i_sb) ||
4866                     (ei->i_extra_isize & 3)) {
4867                         ext4_error_inode(inode, function, line, 0,
4868                                          "iget: bad extra_isize %u "
4869                                          "(inode size %u)",
4870                                          ei->i_extra_isize,
4871                                          EXT4_INODE_SIZE(inode->i_sb));
4872                         ret = -EFSCORRUPTED;
4873                         goto bad_inode;
4874                 }
4875         } else
4876                 ei->i_extra_isize = 0;
4877
4878         /* Precompute checksum seed for inode metadata */
4879         if (ext4_has_metadata_csum(sb)) {
4880                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4881                 __u32 csum;
4882                 __le32 inum = cpu_to_le32(inode->i_ino);
4883                 __le32 gen = raw_inode->i_generation;
4884                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4885                                    sizeof(inum));
4886                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4887                                               sizeof(gen));
4888         }
4889
4890         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4891                 ext4_error_inode(inode, function, line, 0,
4892                                  "iget: checksum invalid");
4893                 ret = -EFSBADCRC;
4894                 goto bad_inode;
4895         }
4896
4897         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4898         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4899         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4900         if (ext4_has_feature_project(sb) &&
4901             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4902             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4903                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4904         else
4905                 i_projid = EXT4_DEF_PROJID;
4906
4907         if (!(test_opt(inode->i_sb, NO_UID32))) {
4908                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4909                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4910         }
4911         i_uid_write(inode, i_uid);
4912         i_gid_write(inode, i_gid);
4913         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4914         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4915
4916         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4917         ei->i_inline_off = 0;
4918         ei->i_dir_start_lookup = 0;
4919         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4920         /* We now have enough fields to check if the inode was active or not.
4921          * This is needed because nfsd might try to access dead inodes
4922          * the test is that same one that e2fsck uses
4923          * NeilBrown 1999oct15
4924          */
4925         if (inode->i_nlink == 0) {
4926                 if ((inode->i_mode == 0 ||
4927                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4928                     ino != EXT4_BOOT_LOADER_INO) {
4929                         /* this inode is deleted */
4930                         ret = -ESTALE;
4931                         goto bad_inode;
4932                 }
4933                 /* The only unlinked inodes we let through here have
4934                  * valid i_mode and are being read by the orphan
4935                  * recovery code: that's fine, we're about to complete
4936                  * the process of deleting those.
4937                  * OR it is the EXT4_BOOT_LOADER_INO which is
4938                  * not initialized on a new filesystem. */
4939         }
4940         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4941         ext4_set_inode_flags(inode);
4942         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4943         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4944         if (ext4_has_feature_64bit(sb))
4945                 ei->i_file_acl |=
4946                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4947         inode->i_size = ext4_isize(sb, raw_inode);
4948         if ((size = i_size_read(inode)) < 0) {
4949                 ext4_error_inode(inode, function, line, 0,
4950                                  "iget: bad i_size value: %lld", size);
4951                 ret = -EFSCORRUPTED;
4952                 goto bad_inode;
4953         }
4954         ei->i_disksize = inode->i_size;
4955 #ifdef CONFIG_QUOTA
4956         ei->i_reserved_quota = 0;
4957 #endif
4958         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4959         ei->i_block_group = iloc.block_group;
4960         ei->i_last_alloc_group = ~0;
4961         /*
4962          * NOTE! The in-memory inode i_data array is in little-endian order
4963          * even on big-endian machines: we do NOT byteswap the block numbers!
4964          */
4965         for (block = 0; block < EXT4_N_BLOCKS; block++)
4966                 ei->i_data[block] = raw_inode->i_block[block];
4967         INIT_LIST_HEAD(&ei->i_orphan);
4968
4969         /*
4970          * Set transaction id's of transactions that have to be committed
4971          * to finish f[data]sync. We set them to currently running transaction
4972          * as we cannot be sure that the inode or some of its metadata isn't
4973          * part of the transaction - the inode could have been reclaimed and
4974          * now it is reread from disk.
4975          */
4976         if (journal) {
4977                 transaction_t *transaction;
4978                 tid_t tid;
4979
4980                 read_lock(&journal->j_state_lock);
4981                 if (journal->j_running_transaction)
4982                         transaction = journal->j_running_transaction;
4983                 else
4984                         transaction = journal->j_committing_transaction;
4985                 if (transaction)
4986                         tid = transaction->t_tid;
4987                 else
4988                         tid = journal->j_commit_sequence;
4989                 read_unlock(&journal->j_state_lock);
4990                 ei->i_sync_tid = tid;
4991                 ei->i_datasync_tid = tid;
4992         }
4993
4994         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4995                 if (ei->i_extra_isize == 0) {
4996                         /* The extra space is currently unused. Use it. */
4997                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4998                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4999                                             EXT4_GOOD_OLD_INODE_SIZE;
5000                 } else {
5001                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5002                         if (ret)
5003                                 goto bad_inode;
5004                 }
5005         }
5006
5007         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5008         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5009         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5010         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5011
5012         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5013                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5014
5015                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5016                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5017                                 ivers |=
5018                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5019                 }
5020                 ext4_inode_set_iversion_queried(inode, ivers);
5021         }
5022
5023         ret = 0;
5024         if (ei->i_file_acl &&
5025             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5026                 ext4_error_inode(inode, function, line, 0,
5027                                  "iget: bad extended attribute block %llu",
5028                                  ei->i_file_acl);
5029                 ret = -EFSCORRUPTED;
5030                 goto bad_inode;
5031         } else if (!ext4_has_inline_data(inode)) {
5032                 /* validate the block references in the inode */
5033                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5034                    (S_ISLNK(inode->i_mode) &&
5035                     !ext4_inode_is_fast_symlink(inode))) {
5036                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5037                                 ret = ext4_ext_check_inode(inode);
5038                         else
5039                                 ret = ext4_ind_check_inode(inode);
5040                 }
5041         }
5042         if (ret)
5043                 goto bad_inode;
5044
5045         if (S_ISREG(inode->i_mode)) {
5046                 inode->i_op = &ext4_file_inode_operations;
5047                 inode->i_fop = &ext4_file_operations;
5048                 ext4_set_aops(inode);
5049         } else if (S_ISDIR(inode->i_mode)) {
5050                 inode->i_op = &ext4_dir_inode_operations;
5051                 inode->i_fop = &ext4_dir_operations;
5052         } else if (S_ISLNK(inode->i_mode)) {
5053                 /* VFS does not allow setting these so must be corruption */
5054                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5055                         ext4_error_inode(inode, function, line, 0,
5056                                          "iget: immutable or append flags "
5057                                          "not allowed on symlinks");
5058                         ret = -EFSCORRUPTED;
5059                         goto bad_inode;
5060                 }
5061                 if (IS_ENCRYPTED(inode)) {
5062                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5063                         ext4_set_aops(inode);
5064                 } else if (ext4_inode_is_fast_symlink(inode)) {
5065                         inode->i_link = (char *)ei->i_data;
5066                         inode->i_op = &ext4_fast_symlink_inode_operations;
5067                         nd_terminate_link(ei->i_data, inode->i_size,
5068                                 sizeof(ei->i_data) - 1);
5069                 } else {
5070                         inode->i_op = &ext4_symlink_inode_operations;
5071                         ext4_set_aops(inode);
5072                 }
5073                 inode_nohighmem(inode);
5074         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5075               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5076                 inode->i_op = &ext4_special_inode_operations;
5077                 if (raw_inode->i_block[0])
5078                         init_special_inode(inode, inode->i_mode,
5079                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5080                 else
5081                         init_special_inode(inode, inode->i_mode,
5082                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5083         } else if (ino == EXT4_BOOT_LOADER_INO) {
5084                 make_bad_inode(inode);
5085         } else {
5086                 ret = -EFSCORRUPTED;
5087                 ext4_error_inode(inode, function, line, 0,
5088                                  "iget: bogus i_mode (%o)", inode->i_mode);
5089                 goto bad_inode;
5090         }
5091         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5092                 ext4_error_inode(inode, function, line, 0,
5093                                  "casefold flag without casefold feature");
5094         brelse(iloc.bh);
5095
5096         unlock_new_inode(inode);
5097         return inode;
5098
5099 bad_inode:
5100         brelse(iloc.bh);
5101         iget_failed(inode);
5102         return ERR_PTR(ret);
5103 }
5104
5105 static int ext4_inode_blocks_set(handle_t *handle,
5106                                 struct ext4_inode *raw_inode,
5107                                 struct ext4_inode_info *ei)
5108 {
5109         struct inode *inode = &(ei->vfs_inode);
5110         u64 i_blocks = inode->i_blocks;
5111         struct super_block *sb = inode->i_sb;
5112
5113         if (i_blocks <= ~0U) {
5114                 /*
5115                  * i_blocks can be represented in a 32 bit variable
5116                  * as multiple of 512 bytes
5117                  */
5118                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5119                 raw_inode->i_blocks_high = 0;
5120                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5121                 return 0;
5122         }
5123         if (!ext4_has_feature_huge_file(sb))
5124                 return -EFBIG;
5125
5126         if (i_blocks <= 0xffffffffffffULL) {
5127                 /*
5128                  * i_blocks can be represented in a 48 bit variable
5129                  * as multiple of 512 bytes
5130                  */
5131                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5132                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5133                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5134         } else {
5135                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5136                 /* i_block is stored in file system block size */
5137                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5138                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5139                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5140         }
5141         return 0;
5142 }
5143
5144 struct other_inode {
5145         unsigned long           orig_ino;
5146         struct ext4_inode       *raw_inode;
5147 };
5148
5149 static int other_inode_match(struct inode * inode, unsigned long ino,
5150                              void *data)
5151 {
5152         struct other_inode *oi = (struct other_inode *) data;
5153
5154         if ((inode->i_ino != ino) ||
5155             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5156                                I_DIRTY_INODE)) ||
5157             ((inode->i_state & I_DIRTY_TIME) == 0))
5158                 return 0;
5159         spin_lock(&inode->i_lock);
5160         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5161                                 I_DIRTY_INODE)) == 0) &&
5162             (inode->i_state & I_DIRTY_TIME)) {
5163                 struct ext4_inode_info  *ei = EXT4_I(inode);
5164
5165                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5166                 spin_unlock(&inode->i_lock);
5167
5168                 spin_lock(&ei->i_raw_lock);
5169                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5170                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5171                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5172                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5173                 spin_unlock(&ei->i_raw_lock);
5174                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5175                 return -1;
5176         }
5177         spin_unlock(&inode->i_lock);
5178         return -1;
5179 }
5180
5181 /*
5182  * Opportunistically update the other time fields for other inodes in
5183  * the same inode table block.
5184  */
5185 static void ext4_update_other_inodes_time(struct super_block *sb,
5186                                           unsigned long orig_ino, char *buf)
5187 {
5188         struct other_inode oi;
5189         unsigned long ino;
5190         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5191         int inode_size = EXT4_INODE_SIZE(sb);
5192
5193         oi.orig_ino = orig_ino;
5194         /*
5195          * Calculate the first inode in the inode table block.  Inode
5196          * numbers are one-based.  That is, the first inode in a block
5197          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5198          */
5199         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5200         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5201                 if (ino == orig_ino)
5202                         continue;
5203                 oi.raw_inode = (struct ext4_inode *) buf;
5204                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5205         }
5206 }
5207
5208 /*
5209  * Post the struct inode info into an on-disk inode location in the
5210  * buffer-cache.  This gobbles the caller's reference to the
5211  * buffer_head in the inode location struct.
5212  *
5213  * The caller must have write access to iloc->bh.
5214  */
5215 static int ext4_do_update_inode(handle_t *handle,
5216                                 struct inode *inode,
5217                                 struct ext4_iloc *iloc)
5218 {
5219         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5220         struct ext4_inode_info *ei = EXT4_I(inode);
5221         struct buffer_head *bh = iloc->bh;
5222         struct super_block *sb = inode->i_sb;
5223         int err = 0, rc, block;
5224         int need_datasync = 0, set_large_file = 0;
5225         uid_t i_uid;
5226         gid_t i_gid;
5227         projid_t i_projid;
5228
5229         spin_lock(&ei->i_raw_lock);
5230
5231         /* For fields not tracked in the in-memory inode,
5232          * initialise them to zero for new inodes. */
5233         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5234                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5235
5236         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5237         i_uid = i_uid_read(inode);
5238         i_gid = i_gid_read(inode);
5239         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5240         if (!(test_opt(inode->i_sb, NO_UID32))) {
5241                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5242                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5243 /*
5244  * Fix up interoperability with old kernels. Otherwise, old inodes get
5245  * re-used with the upper 16 bits of the uid/gid intact
5246  */
5247                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5248                         raw_inode->i_uid_high = 0;
5249                         raw_inode->i_gid_high = 0;
5250                 } else {
5251                         raw_inode->i_uid_high =
5252                                 cpu_to_le16(high_16_bits(i_uid));
5253                         raw_inode->i_gid_high =
5254                                 cpu_to_le16(high_16_bits(i_gid));
5255                 }
5256         } else {
5257                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5258                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5259                 raw_inode->i_uid_high = 0;
5260                 raw_inode->i_gid_high = 0;
5261         }
5262         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5263
5264         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5265         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5266         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5267         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5268
5269         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5270         if (err) {
5271                 spin_unlock(&ei->i_raw_lock);
5272                 goto out_brelse;
5273         }
5274         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5275         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5276         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5277                 raw_inode->i_file_acl_high =
5278                         cpu_to_le16(ei->i_file_acl >> 32);
5279         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5280         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5281                 ext4_isize_set(raw_inode, ei->i_disksize);
5282                 need_datasync = 1;
5283         }
5284         if (ei->i_disksize > 0x7fffffffULL) {
5285                 if (!ext4_has_feature_large_file(sb) ||
5286                                 EXT4_SB(sb)->s_es->s_rev_level ==
5287                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5288                         set_large_file = 1;
5289         }
5290         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5291         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5292                 if (old_valid_dev(inode->i_rdev)) {
5293                         raw_inode->i_block[0] =
5294                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5295                         raw_inode->i_block[1] = 0;
5296                 } else {
5297                         raw_inode->i_block[0] = 0;
5298                         raw_inode->i_block[1] =
5299                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5300                         raw_inode->i_block[2] = 0;
5301                 }
5302         } else if (!ext4_has_inline_data(inode)) {
5303                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5304                         raw_inode->i_block[block] = ei->i_data[block];
5305         }
5306
5307         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5308                 u64 ivers = ext4_inode_peek_iversion(inode);
5309
5310                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5311                 if (ei->i_extra_isize) {
5312                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5313                                 raw_inode->i_version_hi =
5314                                         cpu_to_le32(ivers >> 32);
5315                         raw_inode->i_extra_isize =
5316                                 cpu_to_le16(ei->i_extra_isize);
5317                 }
5318         }
5319
5320         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5321                i_projid != EXT4_DEF_PROJID);
5322
5323         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5324             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5325                 raw_inode->i_projid = cpu_to_le32(i_projid);
5326
5327         ext4_inode_csum_set(inode, raw_inode, ei);
5328         spin_unlock(&ei->i_raw_lock);
5329         if (inode->i_sb->s_flags & SB_LAZYTIME)
5330                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5331                                               bh->b_data);
5332
5333         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5334         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5335         if (!err)
5336                 err = rc;
5337         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5338         if (set_large_file) {
5339                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5340                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5341                 if (err)
5342                         goto out_brelse;
5343                 ext4_set_feature_large_file(sb);
5344                 ext4_handle_sync(handle);
5345                 err = ext4_handle_dirty_super(handle, sb);
5346         }
5347         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5348 out_brelse:
5349         brelse(bh);
5350         ext4_std_error(inode->i_sb, err);
5351         return err;
5352 }
5353
5354 /*
5355  * ext4_write_inode()
5356  *
5357  * We are called from a few places:
5358  *
5359  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5360  *   Here, there will be no transaction running. We wait for any running
5361  *   transaction to commit.
5362  *
5363  * - Within flush work (sys_sync(), kupdate and such).
5364  *   We wait on commit, if told to.
5365  *
5366  * - Within iput_final() -> write_inode_now()
5367  *   We wait on commit, if told to.
5368  *
5369  * In all cases it is actually safe for us to return without doing anything,
5370  * because the inode has been copied into a raw inode buffer in
5371  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5372  * writeback.
5373  *
5374  * Note that we are absolutely dependent upon all inode dirtiers doing the
5375  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5376  * which we are interested.
5377  *
5378  * It would be a bug for them to not do this.  The code:
5379  *
5380  *      mark_inode_dirty(inode)
5381  *      stuff();
5382  *      inode->i_size = expr;
5383  *
5384  * is in error because write_inode() could occur while `stuff()' is running,
5385  * and the new i_size will be lost.  Plus the inode will no longer be on the
5386  * superblock's dirty inode list.
5387  */
5388 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5389 {
5390         int err;
5391
5392         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5393             sb_rdonly(inode->i_sb))
5394                 return 0;
5395
5396         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5397                 return -EIO;
5398
5399         if (EXT4_SB(inode->i_sb)->s_journal) {
5400                 if (ext4_journal_current_handle()) {
5401                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5402                         dump_stack();
5403                         return -EIO;
5404                 }
5405
5406                 /*
5407                  * No need to force transaction in WB_SYNC_NONE mode. Also
5408                  * ext4_sync_fs() will force the commit after everything is
5409                  * written.
5410                  */
5411                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5412                         return 0;
5413
5414                 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5415                                                 EXT4_I(inode)->i_sync_tid);
5416         } else {
5417                 struct ext4_iloc iloc;
5418
5419                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5420                 if (err)
5421                         return err;
5422                 /*
5423                  * sync(2) will flush the whole buffer cache. No need to do
5424                  * it here separately for each inode.
5425                  */
5426                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5427                         sync_dirty_buffer(iloc.bh);
5428                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5429                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5430                                          "IO error syncing inode");
5431                         err = -EIO;
5432                 }
5433                 brelse(iloc.bh);
5434         }
5435         return err;
5436 }
5437
5438 /*
5439  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5440  * buffers that are attached to a page stradding i_size and are undergoing
5441  * commit. In that case we have to wait for commit to finish and try again.
5442  */
5443 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5444 {
5445         struct page *page;
5446         unsigned offset;
5447         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5448         tid_t commit_tid = 0;
5449         int ret;
5450
5451         offset = inode->i_size & (PAGE_SIZE - 1);
5452         /*
5453          * All buffers in the last page remain valid? Then there's nothing to
5454          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5455          * blocksize case
5456          */
5457         if (offset > PAGE_SIZE - i_blocksize(inode))
5458                 return;
5459         while (1) {
5460                 page = find_lock_page(inode->i_mapping,
5461                                       inode->i_size >> PAGE_SHIFT);
5462                 if (!page)
5463                         return;
5464                 ret = __ext4_journalled_invalidatepage(page, offset,
5465                                                 PAGE_SIZE - offset);
5466                 unlock_page(page);
5467                 put_page(page);
5468                 if (ret != -EBUSY)
5469                         return;
5470                 commit_tid = 0;
5471                 read_lock(&journal->j_state_lock);
5472                 if (journal->j_committing_transaction)
5473                         commit_tid = journal->j_committing_transaction->t_tid;
5474                 read_unlock(&journal->j_state_lock);
5475                 if (commit_tid)
5476                         jbd2_log_wait_commit(journal, commit_tid);
5477         }
5478 }
5479
5480 /*
5481  * ext4_setattr()
5482  *
5483  * Called from notify_change.
5484  *
5485  * We want to trap VFS attempts to truncate the file as soon as
5486  * possible.  In particular, we want to make sure that when the VFS
5487  * shrinks i_size, we put the inode on the orphan list and modify
5488  * i_disksize immediately, so that during the subsequent flushing of
5489  * dirty pages and freeing of disk blocks, we can guarantee that any
5490  * commit will leave the blocks being flushed in an unused state on
5491  * disk.  (On recovery, the inode will get truncated and the blocks will
5492  * be freed, so we have a strong guarantee that no future commit will
5493  * leave these blocks visible to the user.)
5494  *
5495  * Another thing we have to assure is that if we are in ordered mode
5496  * and inode is still attached to the committing transaction, we must
5497  * we start writeout of all the dirty pages which are being truncated.
5498  * This way we are sure that all the data written in the previous
5499  * transaction are already on disk (truncate waits for pages under
5500  * writeback).
5501  *
5502  * Called with inode->i_mutex down.
5503  */
5504 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5505 {
5506         struct inode *inode = d_inode(dentry);
5507         int error, rc = 0;
5508         int orphan = 0;
5509         const unsigned int ia_valid = attr->ia_valid;
5510
5511         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5512                 return -EIO;
5513
5514         if (unlikely(IS_IMMUTABLE(inode)))
5515                 return -EPERM;
5516
5517         if (unlikely(IS_APPEND(inode) &&
5518                      (ia_valid & (ATTR_MODE | ATTR_UID |
5519                                   ATTR_GID | ATTR_TIMES_SET))))
5520                 return -EPERM;
5521
5522         error = setattr_prepare(dentry, attr);
5523         if (error)
5524                 return error;
5525
5526         error = fscrypt_prepare_setattr(dentry, attr);
5527         if (error)
5528                 return error;
5529
5530         error = fsverity_prepare_setattr(dentry, attr);
5531         if (error)
5532                 return error;
5533
5534         if (is_quota_modification(inode, attr)) {
5535                 error = dquot_initialize(inode);
5536                 if (error)
5537                         return error;
5538         }
5539         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5540             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5541                 handle_t *handle;
5542
5543                 /* (user+group)*(old+new) structure, inode write (sb,
5544                  * inode block, ? - but truncate inode update has it) */
5545                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5546                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5547                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5548                 if (IS_ERR(handle)) {
5549                         error = PTR_ERR(handle);
5550                         goto err_out;
5551                 }
5552
5553                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5554                  * counts xattr inode references.
5555                  */
5556                 down_read(&EXT4_I(inode)->xattr_sem);
5557                 error = dquot_transfer(inode, attr);
5558                 up_read(&EXT4_I(inode)->xattr_sem);
5559
5560                 if (error) {
5561                         ext4_journal_stop(handle);
5562                         return error;
5563                 }
5564                 /* Update corresponding info in inode so that everything is in
5565                  * one transaction */
5566                 if (attr->ia_valid & ATTR_UID)
5567                         inode->i_uid = attr->ia_uid;
5568                 if (attr->ia_valid & ATTR_GID)
5569                         inode->i_gid = attr->ia_gid;
5570                 error = ext4_mark_inode_dirty(handle, inode);
5571                 ext4_journal_stop(handle);
5572         }
5573
5574         if (attr->ia_valid & ATTR_SIZE) {
5575                 handle_t *handle;
5576                 loff_t oldsize = inode->i_size;
5577                 int shrink = (attr->ia_size < inode->i_size);
5578
5579                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5580                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5581
5582                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5583                                 return -EFBIG;
5584                 }
5585                 if (!S_ISREG(inode->i_mode))
5586                         return -EINVAL;
5587
5588                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5589                         inode_inc_iversion(inode);
5590
5591                 if (shrink) {
5592                         if (ext4_should_order_data(inode)) {
5593                                 error = ext4_begin_ordered_truncate(inode,
5594                                                             attr->ia_size);
5595                                 if (error)
5596                                         goto err_out;
5597                         }
5598                         /*
5599                          * Blocks are going to be removed from the inode. Wait
5600                          * for dio in flight.
5601                          */
5602                         inode_dio_wait(inode);
5603                 }
5604
5605                 down_write(&EXT4_I(inode)->i_mmap_sem);
5606
5607                 rc = ext4_break_layouts(inode);
5608                 if (rc) {
5609                         up_write(&EXT4_I(inode)->i_mmap_sem);
5610                         return rc;
5611                 }
5612
5613                 if (attr->ia_size != inode->i_size) {
5614                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5615                         if (IS_ERR(handle)) {
5616                                 error = PTR_ERR(handle);
5617                                 goto out_mmap_sem;
5618                         }
5619                         if (ext4_handle_valid(handle) && shrink) {
5620                                 error = ext4_orphan_add(handle, inode);
5621                                 orphan = 1;
5622                         }
5623                         /*
5624                          * Update c/mtime on truncate up, ext4_truncate() will
5625                          * update c/mtime in shrink case below
5626                          */
5627                         if (!shrink) {
5628                                 inode->i_mtime = current_time(inode);
5629                                 inode->i_ctime = inode->i_mtime;
5630                         }
5631                         down_write(&EXT4_I(inode)->i_data_sem);
5632                         EXT4_I(inode)->i_disksize = attr->ia_size;
5633                         rc = ext4_mark_inode_dirty(handle, inode);
5634                         if (!error)
5635                                 error = rc;
5636                         /*
5637                          * We have to update i_size under i_data_sem together
5638                          * with i_disksize to avoid races with writeback code
5639                          * running ext4_wb_update_i_disksize().
5640                          */
5641                         if (!error)
5642                                 i_size_write(inode, attr->ia_size);
5643                         up_write(&EXT4_I(inode)->i_data_sem);
5644                         ext4_journal_stop(handle);
5645                         if (error)
5646                                 goto out_mmap_sem;
5647                         if (!shrink) {
5648                                 pagecache_isize_extended(inode, oldsize,
5649                                                          inode->i_size);
5650                         } else if (ext4_should_journal_data(inode)) {
5651                                 ext4_wait_for_tail_page_commit(inode);
5652                         }
5653                 }
5654
5655                 /*
5656                  * Truncate pagecache after we've waited for commit
5657                  * in data=journal mode to make pages freeable.
5658                  */
5659                 truncate_pagecache(inode, inode->i_size);
5660                 /*
5661                  * Call ext4_truncate() even if i_size didn't change to
5662                  * truncate possible preallocated blocks.
5663                  */
5664                 if (attr->ia_size <= oldsize) {
5665                         rc = ext4_truncate(inode);
5666                         if (rc)
5667                                 error = rc;
5668                 }
5669 out_mmap_sem:
5670                 up_write(&EXT4_I(inode)->i_mmap_sem);
5671         }
5672
5673         if (!error) {
5674                 setattr_copy(inode, attr);
5675                 mark_inode_dirty(inode);
5676         }
5677
5678         /*
5679          * If the call to ext4_truncate failed to get a transaction handle at
5680          * all, we need to clean up the in-core orphan list manually.
5681          */
5682         if (orphan && inode->i_nlink)
5683                 ext4_orphan_del(NULL, inode);
5684
5685         if (!error && (ia_valid & ATTR_MODE))
5686                 rc = posix_acl_chmod(inode, inode->i_mode);
5687
5688 err_out:
5689         ext4_std_error(inode->i_sb, error);
5690         if (!error)
5691                 error = rc;
5692         return error;
5693 }
5694
5695 int ext4_getattr(const struct path *path, struct kstat *stat,
5696                  u32 request_mask, unsigned int query_flags)
5697 {
5698         struct inode *inode = d_inode(path->dentry);
5699         struct ext4_inode *raw_inode;
5700         struct ext4_inode_info *ei = EXT4_I(inode);
5701         unsigned int flags;
5702
5703         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5704                 stat->result_mask |= STATX_BTIME;
5705                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5706                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5707         }
5708
5709         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5710         if (flags & EXT4_APPEND_FL)
5711                 stat->attributes |= STATX_ATTR_APPEND;
5712         if (flags & EXT4_COMPR_FL)
5713                 stat->attributes |= STATX_ATTR_COMPRESSED;
5714         if (flags & EXT4_ENCRYPT_FL)
5715                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5716         if (flags & EXT4_IMMUTABLE_FL)
5717                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5718         if (flags & EXT4_NODUMP_FL)
5719                 stat->attributes |= STATX_ATTR_NODUMP;
5720         if (flags & EXT4_VERITY_FL)
5721                 stat->attributes |= STATX_ATTR_VERITY;
5722
5723         stat->attributes_mask |= (STATX_ATTR_APPEND |
5724                                   STATX_ATTR_COMPRESSED |
5725                                   STATX_ATTR_ENCRYPTED |
5726                                   STATX_ATTR_IMMUTABLE |
5727                                   STATX_ATTR_NODUMP |
5728                                   STATX_ATTR_VERITY);
5729
5730         generic_fillattr(inode, stat);
5731         return 0;
5732 }
5733
5734 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5735                       u32 request_mask, unsigned int query_flags)
5736 {
5737         struct inode *inode = d_inode(path->dentry);
5738         u64 delalloc_blocks;
5739
5740         ext4_getattr(path, stat, request_mask, query_flags);
5741
5742         /*
5743          * If there is inline data in the inode, the inode will normally not
5744          * have data blocks allocated (it may have an external xattr block).
5745          * Report at least one sector for such files, so tools like tar, rsync,
5746          * others don't incorrectly think the file is completely sparse.
5747          */
5748         if (unlikely(ext4_has_inline_data(inode)))
5749                 stat->blocks += (stat->size + 511) >> 9;
5750
5751         /*
5752          * We can't update i_blocks if the block allocation is delayed
5753          * otherwise in the case of system crash before the real block
5754          * allocation is done, we will have i_blocks inconsistent with
5755          * on-disk file blocks.
5756          * We always keep i_blocks updated together with real
5757          * allocation. But to not confuse with user, stat
5758          * will return the blocks that include the delayed allocation
5759          * blocks for this file.
5760          */
5761         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5762                                    EXT4_I(inode)->i_reserved_data_blocks);
5763         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5764         return 0;
5765 }
5766
5767 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5768                                    int pextents)
5769 {
5770         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5771                 return ext4_ind_trans_blocks(inode, lblocks);
5772         return ext4_ext_index_trans_blocks(inode, pextents);
5773 }
5774
5775 /*
5776  * Account for index blocks, block groups bitmaps and block group
5777  * descriptor blocks if modify datablocks and index blocks
5778  * worse case, the indexs blocks spread over different block groups
5779  *
5780  * If datablocks are discontiguous, they are possible to spread over
5781  * different block groups too. If they are contiguous, with flexbg,
5782  * they could still across block group boundary.
5783  *
5784  * Also account for superblock, inode, quota and xattr blocks
5785  */
5786 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5787                                   int pextents)
5788 {
5789         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5790         int gdpblocks;
5791         int idxblocks;
5792         int ret = 0;
5793
5794         /*
5795          * How many index blocks need to touch to map @lblocks logical blocks
5796          * to @pextents physical extents?
5797          */
5798         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5799
5800         ret = idxblocks;
5801
5802         /*
5803          * Now let's see how many group bitmaps and group descriptors need
5804          * to account
5805          */
5806         groups = idxblocks + pextents;
5807         gdpblocks = groups;
5808         if (groups > ngroups)
5809                 groups = ngroups;
5810         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5811                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5812
5813         /* bitmaps and block group descriptor blocks */
5814         ret += groups + gdpblocks;
5815
5816         /* Blocks for super block, inode, quota and xattr blocks */
5817         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5818
5819         return ret;
5820 }
5821
5822 /*
5823  * Calculate the total number of credits to reserve to fit
5824  * the modification of a single pages into a single transaction,
5825  * which may include multiple chunks of block allocations.
5826  *
5827  * This could be called via ext4_write_begin()
5828  *
5829  * We need to consider the worse case, when
5830  * one new block per extent.
5831  */
5832 int ext4_writepage_trans_blocks(struct inode *inode)
5833 {
5834         int bpp = ext4_journal_blocks_per_page(inode);
5835         int ret;
5836
5837         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5838
5839         /* Account for data blocks for journalled mode */
5840         if (ext4_should_journal_data(inode))
5841                 ret += bpp;
5842         return ret;
5843 }
5844
5845 /*
5846  * Calculate the journal credits for a chunk of data modification.
5847  *
5848  * This is called from DIO, fallocate or whoever calling
5849  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5850  *
5851  * journal buffers for data blocks are not included here, as DIO
5852  * and fallocate do no need to journal data buffers.
5853  */
5854 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5855 {
5856         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5857 }
5858
5859 /*
5860  * The caller must have previously called ext4_reserve_inode_write().
5861  * Give this, we know that the caller already has write access to iloc->bh.
5862  */
5863 int ext4_mark_iloc_dirty(handle_t *handle,
5864                          struct inode *inode, struct ext4_iloc *iloc)
5865 {
5866         int err = 0;
5867
5868         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5869                 put_bh(iloc->bh);
5870                 return -EIO;
5871         }
5872         if (IS_I_VERSION(inode))
5873                 inode_inc_iversion(inode);
5874
5875         /* the do_update_inode consumes one bh->b_count */
5876         get_bh(iloc->bh);
5877
5878         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5879         err = ext4_do_update_inode(handle, inode, iloc);
5880         put_bh(iloc->bh);
5881         return err;
5882 }
5883
5884 /*
5885  * On success, We end up with an outstanding reference count against
5886  * iloc->bh.  This _must_ be cleaned up later.
5887  */
5888
5889 int
5890 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5891                          struct ext4_iloc *iloc)
5892 {
5893         int err;
5894
5895         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5896                 return -EIO;
5897
5898         err = ext4_get_inode_loc(inode, iloc);
5899         if (!err) {
5900                 BUFFER_TRACE(iloc->bh, "get_write_access");
5901                 err = ext4_journal_get_write_access(handle, iloc->bh);
5902                 if (err) {
5903                         brelse(iloc->bh);
5904                         iloc->bh = NULL;
5905                 }
5906         }
5907         ext4_std_error(inode->i_sb, err);
5908         return err;
5909 }
5910
5911 static int __ext4_expand_extra_isize(struct inode *inode,
5912                                      unsigned int new_extra_isize,
5913                                      struct ext4_iloc *iloc,
5914                                      handle_t *handle, int *no_expand)
5915 {
5916         struct ext4_inode *raw_inode;
5917         struct ext4_xattr_ibody_header *header;
5918         int error;
5919
5920         raw_inode = ext4_raw_inode(iloc);
5921
5922         header = IHDR(inode, raw_inode);
5923
5924         /* No extended attributes present */
5925         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5926             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5927                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5928                        EXT4_I(inode)->i_extra_isize, 0,
5929                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5930                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5931                 return 0;
5932         }
5933
5934         /* try to expand with EAs present */
5935         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5936                                            raw_inode, handle);
5937         if (error) {
5938                 /*
5939                  * Inode size expansion failed; don't try again
5940                  */
5941                 *no_expand = 1;
5942         }
5943
5944         return error;
5945 }
5946
5947 /*
5948  * Expand an inode by new_extra_isize bytes.
5949  * Returns 0 on success or negative error number on failure.
5950  */
5951 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5952                                           unsigned int new_extra_isize,
5953                                           struct ext4_iloc iloc,
5954                                           handle_t *handle)
5955 {
5956         int no_expand;
5957         int error;
5958
5959         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5960                 return -EOVERFLOW;
5961
5962         /*
5963          * In nojournal mode, we can immediately attempt to expand
5964          * the inode.  When journaled, we first need to obtain extra
5965          * buffer credits since we may write into the EA block
5966          * with this same handle. If journal_extend fails, then it will
5967          * only result in a minor loss of functionality for that inode.
5968          * If this is felt to be critical, then e2fsck should be run to
5969          * force a large enough s_min_extra_isize.
5970          */
5971         if (ext4_handle_valid(handle) &&
5972             jbd2_journal_extend(handle,
5973                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5974                 return -ENOSPC;
5975
5976         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5977                 return -EBUSY;
5978
5979         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5980                                           handle, &no_expand);
5981         ext4_write_unlock_xattr(inode, &no_expand);
5982
5983         return error;
5984 }
5985
5986 int ext4_expand_extra_isize(struct inode *inode,
5987                             unsigned int new_extra_isize,
5988                             struct ext4_iloc *iloc)
5989 {
5990         handle_t *handle;
5991         int no_expand;
5992         int error, rc;
5993
5994         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5995                 brelse(iloc->bh);
5996                 return -EOVERFLOW;
5997         }
5998
5999         handle = ext4_journal_start(inode, EXT4_HT_INODE,
6000                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6001         if (IS_ERR(handle)) {
6002                 error = PTR_ERR(handle);
6003                 brelse(iloc->bh);
6004                 return error;
6005         }
6006
6007         ext4_write_lock_xattr(inode, &no_expand);
6008
6009         BUFFER_TRACE(iloc->bh, "get_write_access");
6010         error = ext4_journal_get_write_access(handle, iloc->bh);
6011         if (error) {
6012                 brelse(iloc->bh);
6013                 goto out_stop;
6014         }
6015
6016         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6017                                           handle, &no_expand);
6018
6019         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6020         if (!error)
6021                 error = rc;
6022
6023         ext4_write_unlock_xattr(inode, &no_expand);
6024 out_stop:
6025         ext4_journal_stop(handle);
6026         return error;
6027 }
6028
6029 /*
6030  * What we do here is to mark the in-core inode as clean with respect to inode
6031  * dirtiness (it may still be data-dirty).
6032  * This means that the in-core inode may be reaped by prune_icache
6033  * without having to perform any I/O.  This is a very good thing,
6034  * because *any* task may call prune_icache - even ones which
6035  * have a transaction open against a different journal.
6036  *
6037  * Is this cheating?  Not really.  Sure, we haven't written the
6038  * inode out, but prune_icache isn't a user-visible syncing function.
6039  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6040  * we start and wait on commits.
6041  */
6042 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6043 {
6044         struct ext4_iloc iloc;
6045         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6046         int err;
6047
6048         might_sleep();
6049         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6050         err = ext4_reserve_inode_write(handle, inode, &iloc);
6051         if (err)
6052                 return err;
6053
6054         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6055                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6056                                                iloc, handle);
6057
6058         return ext4_mark_iloc_dirty(handle, inode, &iloc);
6059 }
6060
6061 /*
6062  * ext4_dirty_inode() is called from __mark_inode_dirty()
6063  *
6064  * We're really interested in the case where a file is being extended.
6065  * i_size has been changed by generic_commit_write() and we thus need
6066  * to include the updated inode in the current transaction.
6067  *
6068  * Also, dquot_alloc_block() will always dirty the inode when blocks
6069  * are allocated to the file.
6070  *
6071  * If the inode is marked synchronous, we don't honour that here - doing
6072  * so would cause a commit on atime updates, which we don't bother doing.
6073  * We handle synchronous inodes at the highest possible level.
6074  *
6075  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6076  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6077  * to copy into the on-disk inode structure are the timestamp files.
6078  */
6079 void ext4_dirty_inode(struct inode *inode, int flags)
6080 {
6081         handle_t *handle;
6082
6083         if (flags == I_DIRTY_TIME)
6084                 return;
6085         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6086         if (IS_ERR(handle))
6087                 goto out;
6088
6089         ext4_mark_inode_dirty(handle, inode);
6090
6091         ext4_journal_stop(handle);
6092 out:
6093         return;
6094 }
6095
6096 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6097 {
6098         journal_t *journal;
6099         handle_t *handle;
6100         int err;
6101         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6102
6103         /*
6104          * We have to be very careful here: changing a data block's
6105          * journaling status dynamically is dangerous.  If we write a
6106          * data block to the journal, change the status and then delete
6107          * that block, we risk forgetting to revoke the old log record
6108          * from the journal and so a subsequent replay can corrupt data.
6109          * So, first we make sure that the journal is empty and that
6110          * nobody is changing anything.
6111          */
6112
6113         journal = EXT4_JOURNAL(inode);
6114         if (!journal)
6115                 return 0;
6116         if (is_journal_aborted(journal))
6117                 return -EROFS;
6118
6119         /* Wait for all existing dio workers */
6120         inode_dio_wait(inode);
6121
6122         /*
6123          * Before flushing the journal and switching inode's aops, we have
6124          * to flush all dirty data the inode has. There can be outstanding
6125          * delayed allocations, there can be unwritten extents created by
6126          * fallocate or buffered writes in dioread_nolock mode covered by
6127          * dirty data which can be converted only after flushing the dirty
6128          * data (and journalled aops don't know how to handle these cases).
6129          */
6130         if (val) {
6131                 down_write(&EXT4_I(inode)->i_mmap_sem);
6132                 err = filemap_write_and_wait(inode->i_mapping);
6133                 if (err < 0) {
6134                         up_write(&EXT4_I(inode)->i_mmap_sem);
6135                         return err;
6136                 }
6137         }
6138
6139         percpu_down_write(&sbi->s_journal_flag_rwsem);
6140         jbd2_journal_lock_updates(journal);
6141
6142         /*
6143          * OK, there are no updates running now, and all cached data is
6144          * synced to disk.  We are now in a completely consistent state
6145          * which doesn't have anything in the journal, and we know that
6146          * no filesystem updates are running, so it is safe to modify
6147          * the inode's in-core data-journaling state flag now.
6148          */
6149
6150         if (val)
6151                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6152         else {
6153                 err = jbd2_journal_flush(journal);
6154                 if (err < 0) {
6155                         jbd2_journal_unlock_updates(journal);
6156                         percpu_up_write(&sbi->s_journal_flag_rwsem);
6157                         return err;
6158                 }
6159                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6160         }
6161         ext4_set_aops(inode);
6162
6163         jbd2_journal_unlock_updates(journal);
6164         percpu_up_write(&sbi->s_journal_flag_rwsem);
6165
6166         if (val)
6167                 up_write(&EXT4_I(inode)->i_mmap_sem);
6168
6169         /* Finally we can mark the inode as dirty. */
6170
6171         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6172         if (IS_ERR(handle))
6173                 return PTR_ERR(handle);
6174
6175         err = ext4_mark_inode_dirty(handle, inode);
6176         ext4_handle_sync(handle);
6177         ext4_journal_stop(handle);
6178         ext4_std_error(inode->i_sb, err);
6179
6180         return err;
6181 }
6182
6183 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6184 {
6185         return !buffer_mapped(bh);
6186 }
6187
6188 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6189 {
6190         struct vm_area_struct *vma = vmf->vma;
6191         struct page *page = vmf->page;
6192         loff_t size;
6193         unsigned long len;
6194         int err;
6195         vm_fault_t ret;
6196         struct file *file = vma->vm_file;
6197         struct inode *inode = file_inode(file);
6198         struct address_space *mapping = inode->i_mapping;
6199         handle_t *handle;
6200         get_block_t *get_block;
6201         int retries = 0;
6202
6203         if (unlikely(IS_IMMUTABLE(inode)))
6204                 return VM_FAULT_SIGBUS;
6205
6206         sb_start_pagefault(inode->i_sb);
6207         file_update_time(vma->vm_file);
6208
6209         down_read(&EXT4_I(inode)->i_mmap_sem);
6210
6211         err = ext4_convert_inline_data(inode);
6212         if (err)
6213                 goto out_ret;
6214
6215         /* Delalloc case is easy... */
6216         if (test_opt(inode->i_sb, DELALLOC) &&
6217             !ext4_should_journal_data(inode) &&
6218             !ext4_nonda_switch(inode->i_sb)) {
6219                 do {
6220                         err = block_page_mkwrite(vma, vmf,
6221                                                    ext4_da_get_block_prep);
6222                 } while (err == -ENOSPC &&
6223                        ext4_should_retry_alloc(inode->i_sb, &retries));
6224                 goto out_ret;
6225         }
6226
6227         lock_page(page);
6228         size = i_size_read(inode);
6229         /* Page got truncated from under us? */
6230         if (page->mapping != mapping || page_offset(page) > size) {
6231                 unlock_page(page);
6232                 ret = VM_FAULT_NOPAGE;
6233                 goto out;
6234         }
6235
6236         if (page->index == size >> PAGE_SHIFT)
6237                 len = size & ~PAGE_MASK;
6238         else
6239                 len = PAGE_SIZE;
6240         /*
6241          * Return if we have all the buffers mapped. This avoids the need to do
6242          * journal_start/journal_stop which can block and take a long time
6243          */
6244         if (page_has_buffers(page)) {
6245                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6246                                             0, len, NULL,
6247                                             ext4_bh_unmapped)) {
6248                         /* Wait so that we don't change page under IO */
6249                         wait_for_stable_page(page);
6250                         ret = VM_FAULT_LOCKED;
6251                         goto out;
6252                 }
6253         }
6254         unlock_page(page);
6255         /* OK, we need to fill the hole... */
6256         if (ext4_should_dioread_nolock(inode))
6257                 get_block = ext4_get_block_unwritten;
6258         else
6259                 get_block = ext4_get_block;
6260 retry_alloc:
6261         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6262                                     ext4_writepage_trans_blocks(inode));
6263         if (IS_ERR(handle)) {
6264                 ret = VM_FAULT_SIGBUS;
6265                 goto out;
6266         }
6267         err = block_page_mkwrite(vma, vmf, get_block);
6268         if (!err && ext4_should_journal_data(inode)) {
6269                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6270                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6271                         unlock_page(page);
6272                         ret = VM_FAULT_SIGBUS;
6273                         ext4_journal_stop(handle);
6274                         goto out;
6275                 }
6276                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6277         }
6278         ext4_journal_stop(handle);
6279         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6280                 goto retry_alloc;
6281 out_ret:
6282         ret = block_page_mkwrite_return(err);
6283 out:
6284         up_read(&EXT4_I(inode)->i_mmap_sem);
6285         sb_end_pagefault(inode->i_sb);
6286         return ret;
6287 }
6288
6289 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6290 {
6291         struct inode *inode = file_inode(vmf->vma->vm_file);
6292         vm_fault_t ret;
6293
6294         down_read(&EXT4_I(inode)->i_mmap_sem);
6295         ret = filemap_fault(vmf);
6296         up_read(&EXT4_I(inode)->i_mmap_sem);
6297
6298         return ret;
6299 }