coredump: use from_kuid/kgid when formatting corename
[linux-2.6-block.git] / fs / coredump.c
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlb.h>
39 #include <asm/exec.h>
40
41 #include <trace/events/task.h>
42 #include "internal.h"
43
44 #include <trace/events/sched.h>
45
46 int core_uses_pid;
47 unsigned int core_pipe_limit;
48 char core_pattern[CORENAME_MAX_SIZE] = "core";
49 static int core_name_size = CORENAME_MAX_SIZE;
50
51 struct core_name {
52         char *corename;
53         int used, size;
54 };
55
56 /* The maximal length of core_pattern is also specified in sysctl.c */
57
58 static int expand_corename(struct core_name *cn, int size)
59 {
60         char *corename = krealloc(cn->corename, size, GFP_KERNEL);
61
62         if (!corename)
63                 return -ENOMEM;
64
65         if (size > core_name_size) /* racy but harmless */
66                 core_name_size = size;
67
68         cn->size = ksize(corename);
69         cn->corename = corename;
70         return 0;
71 }
72
73 static int cn_vprintf(struct core_name *cn, const char *fmt, va_list arg)
74 {
75         int free, need;
76         va_list arg_copy;
77
78 again:
79         free = cn->size - cn->used;
80
81         va_copy(arg_copy, arg);
82         need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
83         va_end(arg_copy);
84
85         if (need < free) {
86                 cn->used += need;
87                 return 0;
88         }
89
90         if (!expand_corename(cn, cn->size + need - free + 1))
91                 goto again;
92
93         return -ENOMEM;
94 }
95
96 static int cn_printf(struct core_name *cn, const char *fmt, ...)
97 {
98         va_list arg;
99         int ret;
100
101         va_start(arg, fmt);
102         ret = cn_vprintf(cn, fmt, arg);
103         va_end(arg);
104
105         return ret;
106 }
107
108 static int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
109 {
110         int cur = cn->used;
111         va_list arg;
112         int ret;
113
114         va_start(arg, fmt);
115         ret = cn_vprintf(cn, fmt, arg);
116         va_end(arg);
117
118         for (; cur < cn->used; ++cur) {
119                 if (cn->corename[cur] == '/')
120                         cn->corename[cur] = '!';
121         }
122         return ret;
123 }
124
125 static int cn_print_exe_file(struct core_name *cn)
126 {
127         struct file *exe_file;
128         char *pathbuf, *path;
129         int ret;
130
131         exe_file = get_mm_exe_file(current->mm);
132         if (!exe_file)
133                 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
134
135         pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
136         if (!pathbuf) {
137                 ret = -ENOMEM;
138                 goto put_exe_file;
139         }
140
141         path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
142         if (IS_ERR(path)) {
143                 ret = PTR_ERR(path);
144                 goto free_buf;
145         }
146
147         ret = cn_esc_printf(cn, "%s", path);
148
149 free_buf:
150         kfree(pathbuf);
151 put_exe_file:
152         fput(exe_file);
153         return ret;
154 }
155
156 /* format_corename will inspect the pattern parameter, and output a
157  * name into corename, which must have space for at least
158  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
159  */
160 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
161 {
162         const struct cred *cred = current_cred();
163         const char *pat_ptr = core_pattern;
164         int ispipe = (*pat_ptr == '|');
165         int pid_in_pattern = 0;
166         int err = 0;
167
168         cn->used = 0;
169         cn->corename = NULL;
170         if (expand_corename(cn, core_name_size))
171                 return -ENOMEM;
172         cn->corename[0] = '\0';
173
174         if (ispipe)
175                 ++pat_ptr;
176
177         /* Repeat as long as we have more pattern to process and more output
178            space */
179         while (*pat_ptr) {
180                 if (*pat_ptr != '%') {
181                         err = cn_printf(cn, "%c", *pat_ptr++);
182                 } else {
183                         switch (*++pat_ptr) {
184                         /* single % at the end, drop that */
185                         case 0:
186                                 goto out;
187                         /* Double percent, output one percent */
188                         case '%':
189                                 err = cn_printf(cn, "%c", '%');
190                                 break;
191                         /* pid */
192                         case 'p':
193                                 pid_in_pattern = 1;
194                                 err = cn_printf(cn, "%d",
195                                               task_tgid_vnr(current));
196                                 break;
197                         /* global pid */
198                         case 'P':
199                                 err = cn_printf(cn, "%d",
200                                               task_tgid_nr(current));
201                                 break;
202                         case 'i':
203                                 err = cn_printf(cn, "%d",
204                                               task_pid_vnr(current));
205                                 break;
206                         case 'I':
207                                 err = cn_printf(cn, "%d",
208                                               task_pid_nr(current));
209                                 break;
210                         /* uid */
211                         case 'u':
212                                 err = cn_printf(cn, "%u",
213                                                 from_kuid(&init_user_ns,
214                                                           cred->uid));
215                                 break;
216                         /* gid */
217                         case 'g':
218                                 err = cn_printf(cn, "%u",
219                                                 from_kgid(&init_user_ns,
220                                                           cred->gid));
221                                 break;
222                         case 'd':
223                                 err = cn_printf(cn, "%d",
224                                         __get_dumpable(cprm->mm_flags));
225                                 break;
226                         /* signal that caused the coredump */
227                         case 's':
228                                 err = cn_printf(cn, "%ld", cprm->siginfo->si_signo);
229                                 break;
230                         /* UNIX time of coredump */
231                         case 't': {
232                                 struct timeval tv;
233                                 do_gettimeofday(&tv);
234                                 err = cn_printf(cn, "%lu", tv.tv_sec);
235                                 break;
236                         }
237                         /* hostname */
238                         case 'h':
239                                 down_read(&uts_sem);
240                                 err = cn_esc_printf(cn, "%s",
241                                               utsname()->nodename);
242                                 up_read(&uts_sem);
243                                 break;
244                         /* executable */
245                         case 'e':
246                                 err = cn_esc_printf(cn, "%s", current->comm);
247                                 break;
248                         case 'E':
249                                 err = cn_print_exe_file(cn);
250                                 break;
251                         /* core limit size */
252                         case 'c':
253                                 err = cn_printf(cn, "%lu",
254                                               rlimit(RLIMIT_CORE));
255                                 break;
256                         default:
257                                 break;
258                         }
259                         ++pat_ptr;
260                 }
261
262                 if (err)
263                         return err;
264         }
265
266 out:
267         /* Backward compatibility with core_uses_pid:
268          *
269          * If core_pattern does not include a %p (as is the default)
270          * and core_uses_pid is set, then .%pid will be appended to
271          * the filename. Do not do this for piped commands. */
272         if (!ispipe && !pid_in_pattern && core_uses_pid) {
273                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
274                 if (err)
275                         return err;
276         }
277         return ispipe;
278 }
279
280 static int zap_process(struct task_struct *start, int exit_code)
281 {
282         struct task_struct *t;
283         int nr = 0;
284
285         start->signal->group_exit_code = exit_code;
286         start->signal->group_stop_count = 0;
287
288         t = start;
289         do {
290                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
291                 if (t != current && t->mm) {
292                         sigaddset(&t->pending.signal, SIGKILL);
293                         signal_wake_up(t, 1);
294                         nr++;
295                 }
296         } while_each_thread(start, t);
297
298         return nr;
299 }
300
301 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
302                         struct core_state *core_state, int exit_code)
303 {
304         struct task_struct *g, *p;
305         unsigned long flags;
306         int nr = -EAGAIN;
307
308         spin_lock_irq(&tsk->sighand->siglock);
309         if (!signal_group_exit(tsk->signal)) {
310                 mm->core_state = core_state;
311                 nr = zap_process(tsk, exit_code);
312                 tsk->signal->group_exit_task = tsk;
313                 /* ignore all signals except SIGKILL, see prepare_signal() */
314                 tsk->signal->flags = SIGNAL_GROUP_COREDUMP;
315                 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
316         }
317         spin_unlock_irq(&tsk->sighand->siglock);
318         if (unlikely(nr < 0))
319                 return nr;
320
321         tsk->flags |= PF_DUMPCORE;
322         if (atomic_read(&mm->mm_users) == nr + 1)
323                 goto done;
324         /*
325          * We should find and kill all tasks which use this mm, and we should
326          * count them correctly into ->nr_threads. We don't take tasklist
327          * lock, but this is safe wrt:
328          *
329          * fork:
330          *      None of sub-threads can fork after zap_process(leader). All
331          *      processes which were created before this point should be
332          *      visible to zap_threads() because copy_process() adds the new
333          *      process to the tail of init_task.tasks list, and lock/unlock
334          *      of ->siglock provides a memory barrier.
335          *
336          * do_exit:
337          *      The caller holds mm->mmap_sem. This means that the task which
338          *      uses this mm can't pass exit_mm(), so it can't exit or clear
339          *      its ->mm.
340          *
341          * de_thread:
342          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
343          *      we must see either old or new leader, this does not matter.
344          *      However, it can change p->sighand, so lock_task_sighand(p)
345          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
346          *      it can't fail.
347          *
348          *      Note also that "g" can be the old leader with ->mm == NULL
349          *      and already unhashed and thus removed from ->thread_group.
350          *      This is OK, __unhash_process()->list_del_rcu() does not
351          *      clear the ->next pointer, we will find the new leader via
352          *      next_thread().
353          */
354         rcu_read_lock();
355         for_each_process(g) {
356                 if (g == tsk->group_leader)
357                         continue;
358                 if (g->flags & PF_KTHREAD)
359                         continue;
360                 p = g;
361                 do {
362                         if (p->mm) {
363                                 if (unlikely(p->mm == mm)) {
364                                         lock_task_sighand(p, &flags);
365                                         nr += zap_process(p, exit_code);
366                                         p->signal->flags = SIGNAL_GROUP_EXIT;
367                                         unlock_task_sighand(p, &flags);
368                                 }
369                                 break;
370                         }
371                 } while_each_thread(g, p);
372         }
373         rcu_read_unlock();
374 done:
375         atomic_set(&core_state->nr_threads, nr);
376         return nr;
377 }
378
379 static int coredump_wait(int exit_code, struct core_state *core_state)
380 {
381         struct task_struct *tsk = current;
382         struct mm_struct *mm = tsk->mm;
383         int core_waiters = -EBUSY;
384
385         init_completion(&core_state->startup);
386         core_state->dumper.task = tsk;
387         core_state->dumper.next = NULL;
388
389         down_write(&mm->mmap_sem);
390         if (!mm->core_state)
391                 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
392         up_write(&mm->mmap_sem);
393
394         if (core_waiters > 0) {
395                 struct core_thread *ptr;
396
397                 wait_for_completion(&core_state->startup);
398                 /*
399                  * Wait for all the threads to become inactive, so that
400                  * all the thread context (extended register state, like
401                  * fpu etc) gets copied to the memory.
402                  */
403                 ptr = core_state->dumper.next;
404                 while (ptr != NULL) {
405                         wait_task_inactive(ptr->task, 0);
406                         ptr = ptr->next;
407                 }
408         }
409
410         return core_waiters;
411 }
412
413 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
414 {
415         struct core_thread *curr, *next;
416         struct task_struct *task;
417
418         spin_lock_irq(&current->sighand->siglock);
419         if (core_dumped && !__fatal_signal_pending(current))
420                 current->signal->group_exit_code |= 0x80;
421         current->signal->group_exit_task = NULL;
422         current->signal->flags = SIGNAL_GROUP_EXIT;
423         spin_unlock_irq(&current->sighand->siglock);
424
425         next = mm->core_state->dumper.next;
426         while ((curr = next) != NULL) {
427                 next = curr->next;
428                 task = curr->task;
429                 /*
430                  * see exit_mm(), curr->task must not see
431                  * ->task == NULL before we read ->next.
432                  */
433                 smp_mb();
434                 curr->task = NULL;
435                 wake_up_process(task);
436         }
437
438         mm->core_state = NULL;
439 }
440
441 static bool dump_interrupted(void)
442 {
443         /*
444          * SIGKILL or freezing() interrupt the coredumping. Perhaps we
445          * can do try_to_freeze() and check __fatal_signal_pending(),
446          * but then we need to teach dump_write() to restart and clear
447          * TIF_SIGPENDING.
448          */
449         return signal_pending(current);
450 }
451
452 static void wait_for_dump_helpers(struct file *file)
453 {
454         struct pipe_inode_info *pipe = file->private_data;
455
456         pipe_lock(pipe);
457         pipe->readers++;
458         pipe->writers--;
459         wake_up_interruptible_sync(&pipe->wait);
460         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
461         pipe_unlock(pipe);
462
463         /*
464          * We actually want wait_event_freezable() but then we need
465          * to clear TIF_SIGPENDING and improve dump_interrupted().
466          */
467         wait_event_interruptible(pipe->wait, pipe->readers == 1);
468
469         pipe_lock(pipe);
470         pipe->readers--;
471         pipe->writers++;
472         pipe_unlock(pipe);
473 }
474
475 /*
476  * umh_pipe_setup
477  * helper function to customize the process used
478  * to collect the core in userspace.  Specifically
479  * it sets up a pipe and installs it as fd 0 (stdin)
480  * for the process.  Returns 0 on success, or
481  * PTR_ERR on failure.
482  * Note that it also sets the core limit to 1.  This
483  * is a special value that we use to trap recursive
484  * core dumps
485  */
486 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
487 {
488         struct file *files[2];
489         struct coredump_params *cp = (struct coredump_params *)info->data;
490         int err = create_pipe_files(files, 0);
491         if (err)
492                 return err;
493
494         cp->file = files[1];
495
496         err = replace_fd(0, files[0], 0);
497         fput(files[0]);
498         /* and disallow core files too */
499         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
500
501         return err;
502 }
503
504 void do_coredump(const siginfo_t *siginfo)
505 {
506         struct core_state core_state;
507         struct core_name cn;
508         struct mm_struct *mm = current->mm;
509         struct linux_binfmt * binfmt;
510         const struct cred *old_cred;
511         struct cred *cred;
512         int retval = 0;
513         int flag = 0;
514         int ispipe;
515         struct files_struct *displaced;
516         bool need_nonrelative = false;
517         bool core_dumped = false;
518         static atomic_t core_dump_count = ATOMIC_INIT(0);
519         struct coredump_params cprm = {
520                 .siginfo = siginfo,
521                 .regs = signal_pt_regs(),
522                 .limit = rlimit(RLIMIT_CORE),
523                 /*
524                  * We must use the same mm->flags while dumping core to avoid
525                  * inconsistency of bit flags, since this flag is not protected
526                  * by any locks.
527                  */
528                 .mm_flags = mm->flags,
529         };
530
531         audit_core_dumps(siginfo->si_signo);
532
533         binfmt = mm->binfmt;
534         if (!binfmt || !binfmt->core_dump)
535                 goto fail;
536         if (!__get_dumpable(cprm.mm_flags))
537                 goto fail;
538
539         cred = prepare_creds();
540         if (!cred)
541                 goto fail;
542         /*
543          * We cannot trust fsuid as being the "true" uid of the process
544          * nor do we know its entire history. We only know it was tainted
545          * so we dump it as root in mode 2, and only into a controlled
546          * environment (pipe handler or fully qualified path).
547          */
548         if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
549                 /* Setuid core dump mode */
550                 flag = O_EXCL;          /* Stop rewrite attacks */
551                 cred->fsuid = GLOBAL_ROOT_UID;  /* Dump root private */
552                 need_nonrelative = true;
553         }
554
555         retval = coredump_wait(siginfo->si_signo, &core_state);
556         if (retval < 0)
557                 goto fail_creds;
558
559         old_cred = override_creds(cred);
560
561         ispipe = format_corename(&cn, &cprm);
562
563         if (ispipe) {
564                 int dump_count;
565                 char **helper_argv;
566                 struct subprocess_info *sub_info;
567
568                 if (ispipe < 0) {
569                         printk(KERN_WARNING "format_corename failed\n");
570                         printk(KERN_WARNING "Aborting core\n");
571                         goto fail_unlock;
572                 }
573
574                 if (cprm.limit == 1) {
575                         /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
576                          *
577                          * Normally core limits are irrelevant to pipes, since
578                          * we're not writing to the file system, but we use
579                          * cprm.limit of 1 here as a special value, this is a
580                          * consistent way to catch recursive crashes.
581                          * We can still crash if the core_pattern binary sets
582                          * RLIM_CORE = !1, but it runs as root, and can do
583                          * lots of stupid things.
584                          *
585                          * Note that we use task_tgid_vnr here to grab the pid
586                          * of the process group leader.  That way we get the
587                          * right pid if a thread in a multi-threaded
588                          * core_pattern process dies.
589                          */
590                         printk(KERN_WARNING
591                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
592                                 task_tgid_vnr(current), current->comm);
593                         printk(KERN_WARNING "Aborting core\n");
594                         goto fail_unlock;
595                 }
596                 cprm.limit = RLIM_INFINITY;
597
598                 dump_count = atomic_inc_return(&core_dump_count);
599                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
600                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
601                                task_tgid_vnr(current), current->comm);
602                         printk(KERN_WARNING "Skipping core dump\n");
603                         goto fail_dropcount;
604                 }
605
606                 helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
607                 if (!helper_argv) {
608                         printk(KERN_WARNING "%s failed to allocate memory\n",
609                                __func__);
610                         goto fail_dropcount;
611                 }
612
613                 retval = -ENOMEM;
614                 sub_info = call_usermodehelper_setup(helper_argv[0],
615                                                 helper_argv, NULL, GFP_KERNEL,
616                                                 umh_pipe_setup, NULL, &cprm);
617                 if (sub_info)
618                         retval = call_usermodehelper_exec(sub_info,
619                                                           UMH_WAIT_EXEC);
620
621                 argv_free(helper_argv);
622                 if (retval) {
623                         printk(KERN_INFO "Core dump to |%s pipe failed\n",
624                                cn.corename);
625                         goto close_fail;
626                 }
627         } else {
628                 struct inode *inode;
629
630                 if (cprm.limit < binfmt->min_coredump)
631                         goto fail_unlock;
632
633                 if (need_nonrelative && cn.corename[0] != '/') {
634                         printk(KERN_WARNING "Pid %d(%s) can only dump core "\
635                                 "to fully qualified path!\n",
636                                 task_tgid_vnr(current), current->comm);
637                         printk(KERN_WARNING "Skipping core dump\n");
638                         goto fail_unlock;
639                 }
640
641                 cprm.file = filp_open(cn.corename,
642                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
643                                  0600);
644                 if (IS_ERR(cprm.file))
645                         goto fail_unlock;
646
647                 inode = file_inode(cprm.file);
648                 if (inode->i_nlink > 1)
649                         goto close_fail;
650                 if (d_unhashed(cprm.file->f_path.dentry))
651                         goto close_fail;
652                 /*
653                  * AK: actually i see no reason to not allow this for named
654                  * pipes etc, but keep the previous behaviour for now.
655                  */
656                 if (!S_ISREG(inode->i_mode))
657                         goto close_fail;
658                 /*
659                  * Dont allow local users get cute and trick others to coredump
660                  * into their pre-created files.
661                  */
662                 if (!uid_eq(inode->i_uid, current_fsuid()))
663                         goto close_fail;
664                 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
665                         goto close_fail;
666                 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
667                         goto close_fail;
668         }
669
670         /* get us an unshared descriptor table; almost always a no-op */
671         retval = unshare_files(&displaced);
672         if (retval)
673                 goto close_fail;
674         if (displaced)
675                 put_files_struct(displaced);
676         if (!dump_interrupted()) {
677                 file_start_write(cprm.file);
678                 core_dumped = binfmt->core_dump(&cprm);
679                 file_end_write(cprm.file);
680         }
681         if (ispipe && core_pipe_limit)
682                 wait_for_dump_helpers(cprm.file);
683 close_fail:
684         if (cprm.file)
685                 filp_close(cprm.file, NULL);
686 fail_dropcount:
687         if (ispipe)
688                 atomic_dec(&core_dump_count);
689 fail_unlock:
690         kfree(cn.corename);
691         coredump_finish(mm, core_dumped);
692         revert_creds(old_cred);
693 fail_creds:
694         put_cred(cred);
695 fail:
696         return;
697 }
698
699 /*
700  * Core dumping helper functions.  These are the only things you should
701  * do on a core-file: use only these functions to write out all the
702  * necessary info.
703  */
704 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
705 {
706         struct file *file = cprm->file;
707         loff_t pos = file->f_pos;
708         ssize_t n;
709         if (cprm->written + nr > cprm->limit)
710                 return 0;
711         while (nr) {
712                 if (dump_interrupted())
713                         return 0;
714                 n = __kernel_write(file, addr, nr, &pos);
715                 if (n <= 0)
716                         return 0;
717                 file->f_pos = pos;
718                 cprm->written += n;
719                 nr -= n;
720         }
721         return 1;
722 }
723 EXPORT_SYMBOL(dump_emit);
724
725 int dump_skip(struct coredump_params *cprm, size_t nr)
726 {
727         static char zeroes[PAGE_SIZE];
728         struct file *file = cprm->file;
729         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
730                 if (cprm->written + nr > cprm->limit)
731                         return 0;
732                 if (dump_interrupted() ||
733                     file->f_op->llseek(file, nr, SEEK_CUR) < 0)
734                         return 0;
735                 cprm->written += nr;
736                 return 1;
737         } else {
738                 while (nr > PAGE_SIZE) {
739                         if (!dump_emit(cprm, zeroes, PAGE_SIZE))
740                                 return 0;
741                         nr -= PAGE_SIZE;
742                 }
743                 return dump_emit(cprm, zeroes, nr);
744         }
745 }
746 EXPORT_SYMBOL(dump_skip);
747
748 int dump_align(struct coredump_params *cprm, int align)
749 {
750         unsigned mod = cprm->written & (align - 1);
751         if (align & (align - 1))
752                 return 0;
753         return mod ? dump_skip(cprm, align - mod) : 1;
754 }
755 EXPORT_SYMBOL(dump_align);