Merge tag 'mm-stable-2024-05-24-11-49' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
53
54 #include "internal.h"
55
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58                           enum rw_hint hint, struct writeback_control *wbc);
59
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61
62 inline void touch_buffer(struct buffer_head *bh)
63 {
64         trace_block_touch_buffer(bh);
65         folio_mark_accessed(bh->b_folio);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68
69 void __lock_buffer(struct buffer_head *bh)
70 {
71         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74
75 void unlock_buffer(struct buffer_head *bh)
76 {
77         clear_bit_unlock(BH_Lock, &bh->b_state);
78         smp_mb__after_atomic();
79         wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82
83 /*
84  * Returns if the folio has dirty or writeback buffers. If all the buffers
85  * are unlocked and clean then the folio_test_dirty information is stale. If
86  * any of the buffers are locked, it is assumed they are locked for IO.
87  */
88 void buffer_check_dirty_writeback(struct folio *folio,
89                                      bool *dirty, bool *writeback)
90 {
91         struct buffer_head *head, *bh;
92         *dirty = false;
93         *writeback = false;
94
95         BUG_ON(!folio_test_locked(folio));
96
97         head = folio_buffers(folio);
98         if (!head)
99                 return;
100
101         if (folio_test_writeback(folio))
102                 *writeback = true;
103
104         bh = head;
105         do {
106                 if (buffer_locked(bh))
107                         *writeback = true;
108
109                 if (buffer_dirty(bh))
110                         *dirty = true;
111
112                 bh = bh->b_this_page;
113         } while (bh != head);
114 }
115
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129         if (!test_bit(BH_Quiet, &bh->b_state))
130                 printk_ratelimited(KERN_ERR
131                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
132                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145         if (uptodate) {
146                 set_buffer_uptodate(bh);
147         } else {
148                 /* This happens, due to failed read-ahead attempts. */
149                 clear_buffer_uptodate(bh);
150         }
151         unlock_buffer(bh);
152 }
153
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160         __end_buffer_read_notouch(bh, uptodate);
161         put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167         if (uptodate) {
168                 set_buffer_uptodate(bh);
169         } else {
170                 buffer_io_error(bh, ", lost sync page write");
171                 mark_buffer_write_io_error(bh);
172                 clear_buffer_uptodate(bh);
173         }
174         unlock_buffer(bh);
175         put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * i_private_lock.
184  *
185  * Hack idea: for the blockdev mapping, i_private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take i_private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192         struct address_space *bd_mapping = bdev->bd_mapping;
193         const int blkbits = bd_mapping->host->i_blkbits;
194         struct buffer_head *ret = NULL;
195         pgoff_t index;
196         struct buffer_head *bh;
197         struct buffer_head *head;
198         struct folio *folio;
199         int all_mapped = 1;
200         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201
202         index = ((loff_t)block << blkbits) / PAGE_SIZE;
203         folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204         if (IS_ERR(folio))
205                 goto out;
206
207         spin_lock(&bd_mapping->i_private_lock);
208         head = folio_buffers(folio);
209         if (!head)
210                 goto out_unlock;
211         bh = head;
212         do {
213                 if (!buffer_mapped(bh))
214                         all_mapped = 0;
215                 else if (bh->b_blocknr == block) {
216                         ret = bh;
217                         get_bh(bh);
218                         goto out_unlock;
219                 }
220                 bh = bh->b_this_page;
221         } while (bh != head);
222
223         /* we might be here because some of the buffers on this page are
224          * not mapped.  This is due to various races between
225          * file io on the block device and getblk.  It gets dealt with
226          * elsewhere, don't buffer_error if we had some unmapped buffers
227          */
228         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229         if (all_mapped && __ratelimit(&last_warned)) {
230                 printk("__find_get_block_slow() failed. block=%llu, "
231                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232                        "device %pg blocksize: %d\n",
233                        (unsigned long long)block,
234                        (unsigned long long)bh->b_blocknr,
235                        bh->b_state, bh->b_size, bdev,
236                        1 << blkbits);
237         }
238 out_unlock:
239         spin_unlock(&bd_mapping->i_private_lock);
240         folio_put(folio);
241 out:
242         return ret;
243 }
244
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247         unsigned long flags;
248         struct buffer_head *first;
249         struct buffer_head *tmp;
250         struct folio *folio;
251         int folio_uptodate = 1;
252
253         BUG_ON(!buffer_async_read(bh));
254
255         folio = bh->b_folio;
256         if (uptodate) {
257                 set_buffer_uptodate(bh);
258         } else {
259                 clear_buffer_uptodate(bh);
260                 buffer_io_error(bh, ", async page read");
261                 folio_set_error(folio);
262         }
263
264         /*
265          * Be _very_ careful from here on. Bad things can happen if
266          * two buffer heads end IO at almost the same time and both
267          * decide that the page is now completely done.
268          */
269         first = folio_buffers(folio);
270         spin_lock_irqsave(&first->b_uptodate_lock, flags);
271         clear_buffer_async_read(bh);
272         unlock_buffer(bh);
273         tmp = bh;
274         do {
275                 if (!buffer_uptodate(tmp))
276                         folio_uptodate = 0;
277                 if (buffer_async_read(tmp)) {
278                         BUG_ON(!buffer_locked(tmp));
279                         goto still_busy;
280                 }
281                 tmp = tmp->b_this_page;
282         } while (tmp != bh);
283         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284
285         folio_end_read(folio, folio_uptodate);
286         return;
287
288 still_busy:
289         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
290         return;
291 }
292
293 struct postprocess_bh_ctx {
294         struct work_struct work;
295         struct buffer_head *bh;
296 };
297
298 static void verify_bh(struct work_struct *work)
299 {
300         struct postprocess_bh_ctx *ctx =
301                 container_of(work, struct postprocess_bh_ctx, work);
302         struct buffer_head *bh = ctx->bh;
303         bool valid;
304
305         valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
306         end_buffer_async_read(bh, valid);
307         kfree(ctx);
308 }
309
310 static bool need_fsverity(struct buffer_head *bh)
311 {
312         struct folio *folio = bh->b_folio;
313         struct inode *inode = folio->mapping->host;
314
315         return fsverity_active(inode) &&
316                 /* needed by ext4 */
317                 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
318 }
319
320 static void decrypt_bh(struct work_struct *work)
321 {
322         struct postprocess_bh_ctx *ctx =
323                 container_of(work, struct postprocess_bh_ctx, work);
324         struct buffer_head *bh = ctx->bh;
325         int err;
326
327         err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
328                                                bh_offset(bh));
329         if (err == 0 && need_fsverity(bh)) {
330                 /*
331                  * We use different work queues for decryption and for verity
332                  * because verity may require reading metadata pages that need
333                  * decryption, and we shouldn't recurse to the same workqueue.
334                  */
335                 INIT_WORK(&ctx->work, verify_bh);
336                 fsverity_enqueue_verify_work(&ctx->work);
337                 return;
338         }
339         end_buffer_async_read(bh, err == 0);
340         kfree(ctx);
341 }
342
343 /*
344  * I/O completion handler for block_read_full_folio() - pages
345  * which come unlocked at the end of I/O.
346  */
347 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
348 {
349         struct inode *inode = bh->b_folio->mapping->host;
350         bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
351         bool verify = need_fsverity(bh);
352
353         /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
354         if (uptodate && (decrypt || verify)) {
355                 struct postprocess_bh_ctx *ctx =
356                         kmalloc(sizeof(*ctx), GFP_ATOMIC);
357
358                 if (ctx) {
359                         ctx->bh = bh;
360                         if (decrypt) {
361                                 INIT_WORK(&ctx->work, decrypt_bh);
362                                 fscrypt_enqueue_decrypt_work(&ctx->work);
363                         } else {
364                                 INIT_WORK(&ctx->work, verify_bh);
365                                 fsverity_enqueue_verify_work(&ctx->work);
366                         }
367                         return;
368                 }
369                 uptodate = 0;
370         }
371         end_buffer_async_read(bh, uptodate);
372 }
373
374 /*
375  * Completion handler for block_write_full_folio() - folios which are unlocked
376  * during I/O, and which have the writeback flag cleared upon I/O completion.
377  */
378 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
379 {
380         unsigned long flags;
381         struct buffer_head *first;
382         struct buffer_head *tmp;
383         struct folio *folio;
384
385         BUG_ON(!buffer_async_write(bh));
386
387         folio = bh->b_folio;
388         if (uptodate) {
389                 set_buffer_uptodate(bh);
390         } else {
391                 buffer_io_error(bh, ", lost async page write");
392                 mark_buffer_write_io_error(bh);
393                 clear_buffer_uptodate(bh);
394                 folio_set_error(folio);
395         }
396
397         first = folio_buffers(folio);
398         spin_lock_irqsave(&first->b_uptodate_lock, flags);
399
400         clear_buffer_async_write(bh);
401         unlock_buffer(bh);
402         tmp = bh->b_this_page;
403         while (tmp != bh) {
404                 if (buffer_async_write(tmp)) {
405                         BUG_ON(!buffer_locked(tmp));
406                         goto still_busy;
407                 }
408                 tmp = tmp->b_this_page;
409         }
410         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
411         folio_end_writeback(folio);
412         return;
413
414 still_busy:
415         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416         return;
417 }
418
419 /*
420  * If a page's buffers are under async readin (end_buffer_async_read
421  * completion) then there is a possibility that another thread of
422  * control could lock one of the buffers after it has completed
423  * but while some of the other buffers have not completed.  This
424  * locked buffer would confuse end_buffer_async_read() into not unlocking
425  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
426  * that this buffer is not under async I/O.
427  *
428  * The page comes unlocked when it has no locked buffer_async buffers
429  * left.
430  *
431  * PageLocked prevents anyone starting new async I/O reads any of
432  * the buffers.
433  *
434  * PageWriteback is used to prevent simultaneous writeout of the same
435  * page.
436  *
437  * PageLocked prevents anyone from starting writeback of a page which is
438  * under read I/O (PageWriteback is only ever set against a locked page).
439  */
440 static void mark_buffer_async_read(struct buffer_head *bh)
441 {
442         bh->b_end_io = end_buffer_async_read_io;
443         set_buffer_async_read(bh);
444 }
445
446 static void mark_buffer_async_write_endio(struct buffer_head *bh,
447                                           bh_end_io_t *handler)
448 {
449         bh->b_end_io = handler;
450         set_buffer_async_write(bh);
451 }
452
453 void mark_buffer_async_write(struct buffer_head *bh)
454 {
455         mark_buffer_async_write_endio(bh, end_buffer_async_write);
456 }
457 EXPORT_SYMBOL(mark_buffer_async_write);
458
459
460 /*
461  * fs/buffer.c contains helper functions for buffer-backed address space's
462  * fsync functions.  A common requirement for buffer-based filesystems is
463  * that certain data from the backing blockdev needs to be written out for
464  * a successful fsync().  For example, ext2 indirect blocks need to be
465  * written back and waited upon before fsync() returns.
466  *
467  * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
468  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
469  * management of a list of dependent buffers at ->i_mapping->i_private_list.
470  *
471  * Locking is a little subtle: try_to_free_buffers() will remove buffers
472  * from their controlling inode's queue when they are being freed.  But
473  * try_to_free_buffers() will be operating against the *blockdev* mapping
474  * at the time, not against the S_ISREG file which depends on those buffers.
475  * So the locking for i_private_list is via the i_private_lock in the address_space
476  * which backs the buffers.  Which is different from the address_space 
477  * against which the buffers are listed.  So for a particular address_space,
478  * mapping->i_private_lock does *not* protect mapping->i_private_list!  In fact,
479  * mapping->i_private_list will always be protected by the backing blockdev's
480  * ->i_private_lock.
481  *
482  * Which introduces a requirement: all buffers on an address_space's
483  * ->i_private_list must be from the same address_space: the blockdev's.
484  *
485  * address_spaces which do not place buffers at ->i_private_list via these
486  * utility functions are free to use i_private_lock and i_private_list for
487  * whatever they want.  The only requirement is that list_empty(i_private_list)
488  * be true at clear_inode() time.
489  *
490  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
491  * filesystems should do that.  invalidate_inode_buffers() should just go
492  * BUG_ON(!list_empty).
493  *
494  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
495  * take an address_space, not an inode.  And it should be called
496  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
497  * queued up.
498  *
499  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
500  * list if it is already on a list.  Because if the buffer is on a list,
501  * it *must* already be on the right one.  If not, the filesystem is being
502  * silly.  This will save a ton of locking.  But first we have to ensure
503  * that buffers are taken *off* the old inode's list when they are freed
504  * (presumably in truncate).  That requires careful auditing of all
505  * filesystems (do it inside bforget()).  It could also be done by bringing
506  * b_inode back.
507  */
508
509 /*
510  * The buffer's backing address_space's i_private_lock must be held
511  */
512 static void __remove_assoc_queue(struct buffer_head *bh)
513 {
514         list_del_init(&bh->b_assoc_buffers);
515         WARN_ON(!bh->b_assoc_map);
516         bh->b_assoc_map = NULL;
517 }
518
519 int inode_has_buffers(struct inode *inode)
520 {
521         return !list_empty(&inode->i_data.i_private_list);
522 }
523
524 /*
525  * osync is designed to support O_SYNC io.  It waits synchronously for
526  * all already-submitted IO to complete, but does not queue any new
527  * writes to the disk.
528  *
529  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
530  * as you dirty the buffers, and then use osync_inode_buffers to wait for
531  * completion.  Any other dirty buffers which are not yet queued for
532  * write will not be flushed to disk by the osync.
533  */
534 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
535 {
536         struct buffer_head *bh;
537         struct list_head *p;
538         int err = 0;
539
540         spin_lock(lock);
541 repeat:
542         list_for_each_prev(p, list) {
543                 bh = BH_ENTRY(p);
544                 if (buffer_locked(bh)) {
545                         get_bh(bh);
546                         spin_unlock(lock);
547                         wait_on_buffer(bh);
548                         if (!buffer_uptodate(bh))
549                                 err = -EIO;
550                         brelse(bh);
551                         spin_lock(lock);
552                         goto repeat;
553                 }
554         }
555         spin_unlock(lock);
556         return err;
557 }
558
559 /**
560  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
561  * @mapping: the mapping which wants those buffers written
562  *
563  * Starts I/O against the buffers at mapping->i_private_list, and waits upon
564  * that I/O.
565  *
566  * Basically, this is a convenience function for fsync().
567  * @mapping is a file or directory which needs those buffers to be written for
568  * a successful fsync().
569  */
570 int sync_mapping_buffers(struct address_space *mapping)
571 {
572         struct address_space *buffer_mapping = mapping->i_private_data;
573
574         if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
575                 return 0;
576
577         return fsync_buffers_list(&buffer_mapping->i_private_lock,
578                                         &mapping->i_private_list);
579 }
580 EXPORT_SYMBOL(sync_mapping_buffers);
581
582 /**
583  * generic_buffers_fsync_noflush - generic buffer fsync implementation
584  * for simple filesystems with no inode lock
585  *
586  * @file:       file to synchronize
587  * @start:      start offset in bytes
588  * @end:        end offset in bytes (inclusive)
589  * @datasync:   only synchronize essential metadata if true
590  *
591  * This is a generic implementation of the fsync method for simple
592  * filesystems which track all non-inode metadata in the buffers list
593  * hanging off the address_space structure.
594  */
595 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
596                                   bool datasync)
597 {
598         struct inode *inode = file->f_mapping->host;
599         int err;
600         int ret;
601
602         err = file_write_and_wait_range(file, start, end);
603         if (err)
604                 return err;
605
606         ret = sync_mapping_buffers(inode->i_mapping);
607         if (!(inode->i_state & I_DIRTY_ALL))
608                 goto out;
609         if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
610                 goto out;
611
612         err = sync_inode_metadata(inode, 1);
613         if (ret == 0)
614                 ret = err;
615
616 out:
617         /* check and advance again to catch errors after syncing out buffers */
618         err = file_check_and_advance_wb_err(file);
619         if (ret == 0)
620                 ret = err;
621         return ret;
622 }
623 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
624
625 /**
626  * generic_buffers_fsync - generic buffer fsync implementation
627  * for simple filesystems with no inode lock
628  *
629  * @file:       file to synchronize
630  * @start:      start offset in bytes
631  * @end:        end offset in bytes (inclusive)
632  * @datasync:   only synchronize essential metadata if true
633  *
634  * This is a generic implementation of the fsync method for simple
635  * filesystems which track all non-inode metadata in the buffers list
636  * hanging off the address_space structure. This also makes sure that
637  * a device cache flush operation is called at the end.
638  */
639 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
640                           bool datasync)
641 {
642         struct inode *inode = file->f_mapping->host;
643         int ret;
644
645         ret = generic_buffers_fsync_noflush(file, start, end, datasync);
646         if (!ret)
647                 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
648         return ret;
649 }
650 EXPORT_SYMBOL(generic_buffers_fsync);
651
652 /*
653  * Called when we've recently written block `bblock', and it is known that
654  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
655  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
656  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
657  */
658 void write_boundary_block(struct block_device *bdev,
659                         sector_t bblock, unsigned blocksize)
660 {
661         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
662         if (bh) {
663                 if (buffer_dirty(bh))
664                         write_dirty_buffer(bh, 0);
665                 put_bh(bh);
666         }
667 }
668
669 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
670 {
671         struct address_space *mapping = inode->i_mapping;
672         struct address_space *buffer_mapping = bh->b_folio->mapping;
673
674         mark_buffer_dirty(bh);
675         if (!mapping->i_private_data) {
676                 mapping->i_private_data = buffer_mapping;
677         } else {
678                 BUG_ON(mapping->i_private_data != buffer_mapping);
679         }
680         if (!bh->b_assoc_map) {
681                 spin_lock(&buffer_mapping->i_private_lock);
682                 list_move_tail(&bh->b_assoc_buffers,
683                                 &mapping->i_private_list);
684                 bh->b_assoc_map = mapping;
685                 spin_unlock(&buffer_mapping->i_private_lock);
686         }
687 }
688 EXPORT_SYMBOL(mark_buffer_dirty_inode);
689
690 /**
691  * block_dirty_folio - Mark a folio as dirty.
692  * @mapping: The address space containing this folio.
693  * @folio: The folio to mark dirty.
694  *
695  * Filesystems which use buffer_heads can use this function as their
696  * ->dirty_folio implementation.  Some filesystems need to do a little
697  * work before calling this function.  Filesystems which do not use
698  * buffer_heads should call filemap_dirty_folio() instead.
699  *
700  * If the folio has buffers, the uptodate buffers are set dirty, to
701  * preserve dirty-state coherency between the folio and the buffers.
702  * Buffers added to a dirty folio are created dirty.
703  *
704  * The buffers are dirtied before the folio is dirtied.  There's a small
705  * race window in which writeback may see the folio cleanness but not the
706  * buffer dirtiness.  That's fine.  If this code were to set the folio
707  * dirty before the buffers, writeback could clear the folio dirty flag,
708  * see a bunch of clean buffers and we'd end up with dirty buffers/clean
709  * folio on the dirty folio list.
710  *
711  * We use i_private_lock to lock against try_to_free_buffers() while
712  * using the folio's buffer list.  This also prevents clean buffers
713  * being added to the folio after it was set dirty.
714  *
715  * Context: May only be called from process context.  Does not sleep.
716  * Caller must ensure that @folio cannot be truncated during this call,
717  * typically by holding the folio lock or having a page in the folio
718  * mapped and holding the page table lock.
719  *
720  * Return: True if the folio was dirtied; false if it was already dirtied.
721  */
722 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
723 {
724         struct buffer_head *head;
725         bool newly_dirty;
726
727         spin_lock(&mapping->i_private_lock);
728         head = folio_buffers(folio);
729         if (head) {
730                 struct buffer_head *bh = head;
731
732                 do {
733                         set_buffer_dirty(bh);
734                         bh = bh->b_this_page;
735                 } while (bh != head);
736         }
737         /*
738          * Lock out page's memcg migration to keep PageDirty
739          * synchronized with per-memcg dirty page counters.
740          */
741         folio_memcg_lock(folio);
742         newly_dirty = !folio_test_set_dirty(folio);
743         spin_unlock(&mapping->i_private_lock);
744
745         if (newly_dirty)
746                 __folio_mark_dirty(folio, mapping, 1);
747
748         folio_memcg_unlock(folio);
749
750         if (newly_dirty)
751                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
752
753         return newly_dirty;
754 }
755 EXPORT_SYMBOL(block_dirty_folio);
756
757 /*
758  * Write out and wait upon a list of buffers.
759  *
760  * We have conflicting pressures: we want to make sure that all
761  * initially dirty buffers get waited on, but that any subsequently
762  * dirtied buffers don't.  After all, we don't want fsync to last
763  * forever if somebody is actively writing to the file.
764  *
765  * Do this in two main stages: first we copy dirty buffers to a
766  * temporary inode list, queueing the writes as we go.  Then we clean
767  * up, waiting for those writes to complete.
768  * 
769  * During this second stage, any subsequent updates to the file may end
770  * up refiling the buffer on the original inode's dirty list again, so
771  * there is a chance we will end up with a buffer queued for write but
772  * not yet completed on that list.  So, as a final cleanup we go through
773  * the osync code to catch these locked, dirty buffers without requeuing
774  * any newly dirty buffers for write.
775  */
776 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
777 {
778         struct buffer_head *bh;
779         struct list_head tmp;
780         struct address_space *mapping;
781         int err = 0, err2;
782         struct blk_plug plug;
783
784         INIT_LIST_HEAD(&tmp);
785         blk_start_plug(&plug);
786
787         spin_lock(lock);
788         while (!list_empty(list)) {
789                 bh = BH_ENTRY(list->next);
790                 mapping = bh->b_assoc_map;
791                 __remove_assoc_queue(bh);
792                 /* Avoid race with mark_buffer_dirty_inode() which does
793                  * a lockless check and we rely on seeing the dirty bit */
794                 smp_mb();
795                 if (buffer_dirty(bh) || buffer_locked(bh)) {
796                         list_add(&bh->b_assoc_buffers, &tmp);
797                         bh->b_assoc_map = mapping;
798                         if (buffer_dirty(bh)) {
799                                 get_bh(bh);
800                                 spin_unlock(lock);
801                                 /*
802                                  * Ensure any pending I/O completes so that
803                                  * write_dirty_buffer() actually writes the
804                                  * current contents - it is a noop if I/O is
805                                  * still in flight on potentially older
806                                  * contents.
807                                  */
808                                 write_dirty_buffer(bh, REQ_SYNC);
809
810                                 /*
811                                  * Kick off IO for the previous mapping. Note
812                                  * that we will not run the very last mapping,
813                                  * wait_on_buffer() will do that for us
814                                  * through sync_buffer().
815                                  */
816                                 brelse(bh);
817                                 spin_lock(lock);
818                         }
819                 }
820         }
821
822         spin_unlock(lock);
823         blk_finish_plug(&plug);
824         spin_lock(lock);
825
826         while (!list_empty(&tmp)) {
827                 bh = BH_ENTRY(tmp.prev);
828                 get_bh(bh);
829                 mapping = bh->b_assoc_map;
830                 __remove_assoc_queue(bh);
831                 /* Avoid race with mark_buffer_dirty_inode() which does
832                  * a lockless check and we rely on seeing the dirty bit */
833                 smp_mb();
834                 if (buffer_dirty(bh)) {
835                         list_add(&bh->b_assoc_buffers,
836                                  &mapping->i_private_list);
837                         bh->b_assoc_map = mapping;
838                 }
839                 spin_unlock(lock);
840                 wait_on_buffer(bh);
841                 if (!buffer_uptodate(bh))
842                         err = -EIO;
843                 brelse(bh);
844                 spin_lock(lock);
845         }
846         
847         spin_unlock(lock);
848         err2 = osync_buffers_list(lock, list);
849         if (err)
850                 return err;
851         else
852                 return err2;
853 }
854
855 /*
856  * Invalidate any and all dirty buffers on a given inode.  We are
857  * probably unmounting the fs, but that doesn't mean we have already
858  * done a sync().  Just drop the buffers from the inode list.
859  *
860  * NOTE: we take the inode's blockdev's mapping's i_private_lock.  Which
861  * assumes that all the buffers are against the blockdev.  Not true
862  * for reiserfs.
863  */
864 void invalidate_inode_buffers(struct inode *inode)
865 {
866         if (inode_has_buffers(inode)) {
867                 struct address_space *mapping = &inode->i_data;
868                 struct list_head *list = &mapping->i_private_list;
869                 struct address_space *buffer_mapping = mapping->i_private_data;
870
871                 spin_lock(&buffer_mapping->i_private_lock);
872                 while (!list_empty(list))
873                         __remove_assoc_queue(BH_ENTRY(list->next));
874                 spin_unlock(&buffer_mapping->i_private_lock);
875         }
876 }
877 EXPORT_SYMBOL(invalidate_inode_buffers);
878
879 /*
880  * Remove any clean buffers from the inode's buffer list.  This is called
881  * when we're trying to free the inode itself.  Those buffers can pin it.
882  *
883  * Returns true if all buffers were removed.
884  */
885 int remove_inode_buffers(struct inode *inode)
886 {
887         int ret = 1;
888
889         if (inode_has_buffers(inode)) {
890                 struct address_space *mapping = &inode->i_data;
891                 struct list_head *list = &mapping->i_private_list;
892                 struct address_space *buffer_mapping = mapping->i_private_data;
893
894                 spin_lock(&buffer_mapping->i_private_lock);
895                 while (!list_empty(list)) {
896                         struct buffer_head *bh = BH_ENTRY(list->next);
897                         if (buffer_dirty(bh)) {
898                                 ret = 0;
899                                 break;
900                         }
901                         __remove_assoc_queue(bh);
902                 }
903                 spin_unlock(&buffer_mapping->i_private_lock);
904         }
905         return ret;
906 }
907
908 /*
909  * Create the appropriate buffers when given a folio for data area and
910  * the size of each buffer.. Use the bh->b_this_page linked list to
911  * follow the buffers created.  Return NULL if unable to create more
912  * buffers.
913  *
914  * The retry flag is used to differentiate async IO (paging, swapping)
915  * which may not fail from ordinary buffer allocations.
916  */
917 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
918                                         gfp_t gfp)
919 {
920         struct buffer_head *bh, *head;
921         long offset;
922         struct mem_cgroup *memcg, *old_memcg;
923
924         /* The folio lock pins the memcg */
925         memcg = folio_memcg(folio);
926         old_memcg = set_active_memcg(memcg);
927
928         head = NULL;
929         offset = folio_size(folio);
930         while ((offset -= size) >= 0) {
931                 bh = alloc_buffer_head(gfp);
932                 if (!bh)
933                         goto no_grow;
934
935                 bh->b_this_page = head;
936                 bh->b_blocknr = -1;
937                 head = bh;
938
939                 bh->b_size = size;
940
941                 /* Link the buffer to its folio */
942                 folio_set_bh(bh, folio, offset);
943         }
944 out:
945         set_active_memcg(old_memcg);
946         return head;
947 /*
948  * In case anything failed, we just free everything we got.
949  */
950 no_grow:
951         if (head) {
952                 do {
953                         bh = head;
954                         head = head->b_this_page;
955                         free_buffer_head(bh);
956                 } while (head);
957         }
958
959         goto out;
960 }
961 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
962
963 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
964                                        bool retry)
965 {
966         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
967         if (retry)
968                 gfp |= __GFP_NOFAIL;
969
970         return folio_alloc_buffers(page_folio(page), size, gfp);
971 }
972 EXPORT_SYMBOL_GPL(alloc_page_buffers);
973
974 static inline void link_dev_buffers(struct folio *folio,
975                 struct buffer_head *head)
976 {
977         struct buffer_head *bh, *tail;
978
979         bh = head;
980         do {
981                 tail = bh;
982                 bh = bh->b_this_page;
983         } while (bh);
984         tail->b_this_page = head;
985         folio_attach_private(folio, head);
986 }
987
988 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
989 {
990         sector_t retval = ~((sector_t)0);
991         loff_t sz = bdev_nr_bytes(bdev);
992
993         if (sz) {
994                 unsigned int sizebits = blksize_bits(size);
995                 retval = (sz >> sizebits);
996         }
997         return retval;
998 }
999
1000 /*
1001  * Initialise the state of a blockdev folio's buffers.
1002  */ 
1003 static sector_t folio_init_buffers(struct folio *folio,
1004                 struct block_device *bdev, unsigned size)
1005 {
1006         struct buffer_head *head = folio_buffers(folio);
1007         struct buffer_head *bh = head;
1008         bool uptodate = folio_test_uptodate(folio);
1009         sector_t block = div_u64(folio_pos(folio), size);
1010         sector_t end_block = blkdev_max_block(bdev, size);
1011
1012         do {
1013                 if (!buffer_mapped(bh)) {
1014                         bh->b_end_io = NULL;
1015                         bh->b_private = NULL;
1016                         bh->b_bdev = bdev;
1017                         bh->b_blocknr = block;
1018                         if (uptodate)
1019                                 set_buffer_uptodate(bh);
1020                         if (block < end_block)
1021                                 set_buffer_mapped(bh);
1022                 }
1023                 block++;
1024                 bh = bh->b_this_page;
1025         } while (bh != head);
1026
1027         /*
1028          * Caller needs to validate requested block against end of device.
1029          */
1030         return end_block;
1031 }
1032
1033 /*
1034  * Create the page-cache folio that contains the requested block.
1035  *
1036  * This is used purely for blockdev mappings.
1037  *
1038  * Returns false if we have a failure which cannot be cured by retrying
1039  * without sleeping.  Returns true if we succeeded, or the caller should retry.
1040  */
1041 static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1042                 pgoff_t index, unsigned size, gfp_t gfp)
1043 {
1044         struct address_space *mapping = bdev->bd_mapping;
1045         struct folio *folio;
1046         struct buffer_head *bh;
1047         sector_t end_block = 0;
1048
1049         folio = __filemap_get_folio(mapping, index,
1050                         FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1051         if (IS_ERR(folio))
1052                 return false;
1053
1054         bh = folio_buffers(folio);
1055         if (bh) {
1056                 if (bh->b_size == size) {
1057                         end_block = folio_init_buffers(folio, bdev, size);
1058                         goto unlock;
1059                 }
1060
1061                 /*
1062                  * Retrying may succeed; for example the folio may finish
1063                  * writeback, or buffers may be cleaned.  This should not
1064                  * happen very often; maybe we have old buffers attached to
1065                  * this blockdev's page cache and we're trying to change
1066                  * the block size?
1067                  */
1068                 if (!try_to_free_buffers(folio)) {
1069                         end_block = ~0ULL;
1070                         goto unlock;
1071                 }
1072         }
1073
1074         bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1075         if (!bh)
1076                 goto unlock;
1077
1078         /*
1079          * Link the folio to the buffers and initialise them.  Take the
1080          * lock to be atomic wrt __find_get_block(), which does not
1081          * run under the folio lock.
1082          */
1083         spin_lock(&mapping->i_private_lock);
1084         link_dev_buffers(folio, bh);
1085         end_block = folio_init_buffers(folio, bdev, size);
1086         spin_unlock(&mapping->i_private_lock);
1087 unlock:
1088         folio_unlock(folio);
1089         folio_put(folio);
1090         return block < end_block;
1091 }
1092
1093 /*
1094  * Create buffers for the specified block device block's folio.  If
1095  * that folio was dirty, the buffers are set dirty also.  Returns false
1096  * if we've hit a permanent error.
1097  */
1098 static bool grow_buffers(struct block_device *bdev, sector_t block,
1099                 unsigned size, gfp_t gfp)
1100 {
1101         loff_t pos;
1102
1103         /*
1104          * Check for a block which lies outside our maximum possible
1105          * pagecache index.
1106          */
1107         if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1108                 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1109                         __func__, (unsigned long long)block,
1110                         bdev);
1111                 return false;
1112         }
1113
1114         /* Create a folio with the proper size buffers */
1115         return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1116 }
1117
1118 static struct buffer_head *
1119 __getblk_slow(struct block_device *bdev, sector_t block,
1120              unsigned size, gfp_t gfp)
1121 {
1122         /* Size must be multiple of hard sectorsize */
1123         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1124                         (size < 512 || size > PAGE_SIZE))) {
1125                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1126                                         size);
1127                 printk(KERN_ERR "logical block size: %d\n",
1128                                         bdev_logical_block_size(bdev));
1129
1130                 dump_stack();
1131                 return NULL;
1132         }
1133
1134         for (;;) {
1135                 struct buffer_head *bh;
1136
1137                 bh = __find_get_block(bdev, block, size);
1138                 if (bh)
1139                         return bh;
1140
1141                 if (!grow_buffers(bdev, block, size, gfp))
1142                         return NULL;
1143         }
1144 }
1145
1146 /*
1147  * The relationship between dirty buffers and dirty pages:
1148  *
1149  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1150  * the page is tagged dirty in the page cache.
1151  *
1152  * At all times, the dirtiness of the buffers represents the dirtiness of
1153  * subsections of the page.  If the page has buffers, the page dirty bit is
1154  * merely a hint about the true dirty state.
1155  *
1156  * When a page is set dirty in its entirety, all its buffers are marked dirty
1157  * (if the page has buffers).
1158  *
1159  * When a buffer is marked dirty, its page is dirtied, but the page's other
1160  * buffers are not.
1161  *
1162  * Also.  When blockdev buffers are explicitly read with bread(), they
1163  * individually become uptodate.  But their backing page remains not
1164  * uptodate - even if all of its buffers are uptodate.  A subsequent
1165  * block_read_full_folio() against that folio will discover all the uptodate
1166  * buffers, will set the folio uptodate and will perform no I/O.
1167  */
1168
1169 /**
1170  * mark_buffer_dirty - mark a buffer_head as needing writeout
1171  * @bh: the buffer_head to mark dirty
1172  *
1173  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1174  * its backing page dirty, then tag the page as dirty in the page cache
1175  * and then attach the address_space's inode to its superblock's dirty
1176  * inode list.
1177  *
1178  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->i_private_lock,
1179  * i_pages lock and mapping->host->i_lock.
1180  */
1181 void mark_buffer_dirty(struct buffer_head *bh)
1182 {
1183         WARN_ON_ONCE(!buffer_uptodate(bh));
1184
1185         trace_block_dirty_buffer(bh);
1186
1187         /*
1188          * Very *carefully* optimize the it-is-already-dirty case.
1189          *
1190          * Don't let the final "is it dirty" escape to before we
1191          * perhaps modified the buffer.
1192          */
1193         if (buffer_dirty(bh)) {
1194                 smp_mb();
1195                 if (buffer_dirty(bh))
1196                         return;
1197         }
1198
1199         if (!test_set_buffer_dirty(bh)) {
1200                 struct folio *folio = bh->b_folio;
1201                 struct address_space *mapping = NULL;
1202
1203                 folio_memcg_lock(folio);
1204                 if (!folio_test_set_dirty(folio)) {
1205                         mapping = folio->mapping;
1206                         if (mapping)
1207                                 __folio_mark_dirty(folio, mapping, 0);
1208                 }
1209                 folio_memcg_unlock(folio);
1210                 if (mapping)
1211                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1212         }
1213 }
1214 EXPORT_SYMBOL(mark_buffer_dirty);
1215
1216 void mark_buffer_write_io_error(struct buffer_head *bh)
1217 {
1218         set_buffer_write_io_error(bh);
1219         /* FIXME: do we need to set this in both places? */
1220         if (bh->b_folio && bh->b_folio->mapping)
1221                 mapping_set_error(bh->b_folio->mapping, -EIO);
1222         if (bh->b_assoc_map) {
1223                 mapping_set_error(bh->b_assoc_map, -EIO);
1224                 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1225         }
1226 }
1227 EXPORT_SYMBOL(mark_buffer_write_io_error);
1228
1229 /**
1230  * __brelse - Release a buffer.
1231  * @bh: The buffer to release.
1232  *
1233  * This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1234  */
1235 void __brelse(struct buffer_head *bh)
1236 {
1237         if (atomic_read(&bh->b_count)) {
1238                 put_bh(bh);
1239                 return;
1240         }
1241         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1242 }
1243 EXPORT_SYMBOL(__brelse);
1244
1245 /**
1246  * __bforget - Discard any dirty data in a buffer.
1247  * @bh: The buffer to forget.
1248  *
1249  * This variant of bforget() can be called if @bh is guaranteed to not
1250  * be NULL.
1251  */
1252 void __bforget(struct buffer_head *bh)
1253 {
1254         clear_buffer_dirty(bh);
1255         if (bh->b_assoc_map) {
1256                 struct address_space *buffer_mapping = bh->b_folio->mapping;
1257
1258                 spin_lock(&buffer_mapping->i_private_lock);
1259                 list_del_init(&bh->b_assoc_buffers);
1260                 bh->b_assoc_map = NULL;
1261                 spin_unlock(&buffer_mapping->i_private_lock);
1262         }
1263         __brelse(bh);
1264 }
1265 EXPORT_SYMBOL(__bforget);
1266
1267 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1268 {
1269         lock_buffer(bh);
1270         if (buffer_uptodate(bh)) {
1271                 unlock_buffer(bh);
1272                 return bh;
1273         } else {
1274                 get_bh(bh);
1275                 bh->b_end_io = end_buffer_read_sync;
1276                 submit_bh(REQ_OP_READ, bh);
1277                 wait_on_buffer(bh);
1278                 if (buffer_uptodate(bh))
1279                         return bh;
1280         }
1281         brelse(bh);
1282         return NULL;
1283 }
1284
1285 /*
1286  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1287  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1288  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1289  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1290  * CPU's LRUs at the same time.
1291  *
1292  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1293  * sb_find_get_block().
1294  *
1295  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1296  * a local interrupt disable for that.
1297  */
1298
1299 #define BH_LRU_SIZE     16
1300
1301 struct bh_lru {
1302         struct buffer_head *bhs[BH_LRU_SIZE];
1303 };
1304
1305 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1306
1307 #ifdef CONFIG_SMP
1308 #define bh_lru_lock()   local_irq_disable()
1309 #define bh_lru_unlock() local_irq_enable()
1310 #else
1311 #define bh_lru_lock()   preempt_disable()
1312 #define bh_lru_unlock() preempt_enable()
1313 #endif
1314
1315 static inline void check_irqs_on(void)
1316 {
1317 #ifdef irqs_disabled
1318         BUG_ON(irqs_disabled());
1319 #endif
1320 }
1321
1322 /*
1323  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1324  * inserted at the front, and the buffer_head at the back if any is evicted.
1325  * Or, if already in the LRU it is moved to the front.
1326  */
1327 static void bh_lru_install(struct buffer_head *bh)
1328 {
1329         struct buffer_head *evictee = bh;
1330         struct bh_lru *b;
1331         int i;
1332
1333         check_irqs_on();
1334         bh_lru_lock();
1335
1336         /*
1337          * the refcount of buffer_head in bh_lru prevents dropping the
1338          * attached page(i.e., try_to_free_buffers) so it could cause
1339          * failing page migration.
1340          * Skip putting upcoming bh into bh_lru until migration is done.
1341          */
1342         if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1343                 bh_lru_unlock();
1344                 return;
1345         }
1346
1347         b = this_cpu_ptr(&bh_lrus);
1348         for (i = 0; i < BH_LRU_SIZE; i++) {
1349                 swap(evictee, b->bhs[i]);
1350                 if (evictee == bh) {
1351                         bh_lru_unlock();
1352                         return;
1353                 }
1354         }
1355
1356         get_bh(bh);
1357         bh_lru_unlock();
1358         brelse(evictee);
1359 }
1360
1361 /*
1362  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1363  */
1364 static struct buffer_head *
1365 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1366 {
1367         struct buffer_head *ret = NULL;
1368         unsigned int i;
1369
1370         check_irqs_on();
1371         bh_lru_lock();
1372         if (cpu_is_isolated(smp_processor_id())) {
1373                 bh_lru_unlock();
1374                 return NULL;
1375         }
1376         for (i = 0; i < BH_LRU_SIZE; i++) {
1377                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1378
1379                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1380                     bh->b_size == size) {
1381                         if (i) {
1382                                 while (i) {
1383                                         __this_cpu_write(bh_lrus.bhs[i],
1384                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1385                                         i--;
1386                                 }
1387                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1388                         }
1389                         get_bh(bh);
1390                         ret = bh;
1391                         break;
1392                 }
1393         }
1394         bh_lru_unlock();
1395         return ret;
1396 }
1397
1398 /*
1399  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1400  * it in the LRU and mark it as accessed.  If it is not present then return
1401  * NULL
1402  */
1403 struct buffer_head *
1404 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1405 {
1406         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1407
1408         if (bh == NULL) {
1409                 /* __find_get_block_slow will mark the page accessed */
1410                 bh = __find_get_block_slow(bdev, block);
1411                 if (bh)
1412                         bh_lru_install(bh);
1413         } else
1414                 touch_buffer(bh);
1415
1416         return bh;
1417 }
1418 EXPORT_SYMBOL(__find_get_block);
1419
1420 /**
1421  * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1422  * @bdev: The block device.
1423  * @block: The block number.
1424  * @size: The size of buffer_heads for this @bdev.
1425  * @gfp: The memory allocation flags to use.
1426  *
1427  * The returned buffer head has its reference count incremented, but is
1428  * not locked.  The caller should call brelse() when it has finished
1429  * with the buffer.  The buffer may not be uptodate.  If needed, the
1430  * caller can bring it uptodate either by reading it or overwriting it.
1431  *
1432  * Return: The buffer head, or NULL if memory could not be allocated.
1433  */
1434 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1435                 unsigned size, gfp_t gfp)
1436 {
1437         struct buffer_head *bh = __find_get_block(bdev, block, size);
1438
1439         might_alloc(gfp);
1440         if (bh)
1441                 return bh;
1442
1443         return __getblk_slow(bdev, block, size, gfp);
1444 }
1445 EXPORT_SYMBOL(bdev_getblk);
1446
1447 /*
1448  * Do async read-ahead on a buffer..
1449  */
1450 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1451 {
1452         struct buffer_head *bh = bdev_getblk(bdev, block, size,
1453                         GFP_NOWAIT | __GFP_MOVABLE);
1454
1455         if (likely(bh)) {
1456                 bh_readahead(bh, REQ_RAHEAD);
1457                 brelse(bh);
1458         }
1459 }
1460 EXPORT_SYMBOL(__breadahead);
1461
1462 /**
1463  * __bread_gfp() - Read a block.
1464  * @bdev: The block device to read from.
1465  * @block: Block number in units of block size.
1466  * @size: The block size of this device in bytes.
1467  * @gfp: Not page allocation flags; see below.
1468  *
1469  * You are not expected to call this function.  You should use one of
1470  * sb_bread(), sb_bread_unmovable() or __bread().
1471  *
1472  * Read a specified block, and return the buffer head that refers to it.
1473  * If @gfp is 0, the memory will be allocated using the block device's
1474  * default GFP flags.  If @gfp is __GFP_MOVABLE, the memory may be
1475  * allocated from a movable area.  Do not pass in a complete set of
1476  * GFP flags.
1477  *
1478  * The returned buffer head has its refcount increased.  The caller should
1479  * call brelse() when it has finished with the buffer.
1480  *
1481  * Context: May sleep waiting for I/O.
1482  * Return: NULL if the block was unreadable.
1483  */
1484 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
1485                 unsigned size, gfp_t gfp)
1486 {
1487         struct buffer_head *bh;
1488
1489         gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
1490
1491         /*
1492          * Prefer looping in the allocator rather than here, at least that
1493          * code knows what it's doing.
1494          */
1495         gfp |= __GFP_NOFAIL;
1496
1497         bh = bdev_getblk(bdev, block, size, gfp);
1498
1499         if (likely(bh) && !buffer_uptodate(bh))
1500                 bh = __bread_slow(bh);
1501         return bh;
1502 }
1503 EXPORT_SYMBOL(__bread_gfp);
1504
1505 static void __invalidate_bh_lrus(struct bh_lru *b)
1506 {
1507         int i;
1508
1509         for (i = 0; i < BH_LRU_SIZE; i++) {
1510                 brelse(b->bhs[i]);
1511                 b->bhs[i] = NULL;
1512         }
1513 }
1514 /*
1515  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1516  * This doesn't race because it runs in each cpu either in irq
1517  * or with preempt disabled.
1518  */
1519 static void invalidate_bh_lru(void *arg)
1520 {
1521         struct bh_lru *b = &get_cpu_var(bh_lrus);
1522
1523         __invalidate_bh_lrus(b);
1524         put_cpu_var(bh_lrus);
1525 }
1526
1527 bool has_bh_in_lru(int cpu, void *dummy)
1528 {
1529         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1530         int i;
1531         
1532         for (i = 0; i < BH_LRU_SIZE; i++) {
1533                 if (b->bhs[i])
1534                         return true;
1535         }
1536
1537         return false;
1538 }
1539
1540 void invalidate_bh_lrus(void)
1541 {
1542         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1543 }
1544 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1545
1546 /*
1547  * It's called from workqueue context so we need a bh_lru_lock to close
1548  * the race with preemption/irq.
1549  */
1550 void invalidate_bh_lrus_cpu(void)
1551 {
1552         struct bh_lru *b;
1553
1554         bh_lru_lock();
1555         b = this_cpu_ptr(&bh_lrus);
1556         __invalidate_bh_lrus(b);
1557         bh_lru_unlock();
1558 }
1559
1560 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1561                   unsigned long offset)
1562 {
1563         bh->b_folio = folio;
1564         BUG_ON(offset >= folio_size(folio));
1565         if (folio_test_highmem(folio))
1566                 /*
1567                  * This catches illegal uses and preserves the offset:
1568                  */
1569                 bh->b_data = (char *)(0 + offset);
1570         else
1571                 bh->b_data = folio_address(folio) + offset;
1572 }
1573 EXPORT_SYMBOL(folio_set_bh);
1574
1575 /*
1576  * Called when truncating a buffer on a page completely.
1577  */
1578
1579 /* Bits that are cleared during an invalidate */
1580 #define BUFFER_FLAGS_DISCARD \
1581         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1582          1 << BH_Delay | 1 << BH_Unwritten)
1583
1584 static void discard_buffer(struct buffer_head * bh)
1585 {
1586         unsigned long b_state;
1587
1588         lock_buffer(bh);
1589         clear_buffer_dirty(bh);
1590         bh->b_bdev = NULL;
1591         b_state = READ_ONCE(bh->b_state);
1592         do {
1593         } while (!try_cmpxchg(&bh->b_state, &b_state,
1594                               b_state & ~BUFFER_FLAGS_DISCARD));
1595         unlock_buffer(bh);
1596 }
1597
1598 /**
1599  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1600  * @folio: The folio which is affected.
1601  * @offset: start of the range to invalidate
1602  * @length: length of the range to invalidate
1603  *
1604  * block_invalidate_folio() is called when all or part of the folio has been
1605  * invalidated by a truncate operation.
1606  *
1607  * block_invalidate_folio() does not have to release all buffers, but it must
1608  * ensure that no dirty buffer is left outside @offset and that no I/O
1609  * is underway against any of the blocks which are outside the truncation
1610  * point.  Because the caller is about to free (and possibly reuse) those
1611  * blocks on-disk.
1612  */
1613 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1614 {
1615         struct buffer_head *head, *bh, *next;
1616         size_t curr_off = 0;
1617         size_t stop = length + offset;
1618
1619         BUG_ON(!folio_test_locked(folio));
1620
1621         /*
1622          * Check for overflow
1623          */
1624         BUG_ON(stop > folio_size(folio) || stop < length);
1625
1626         head = folio_buffers(folio);
1627         if (!head)
1628                 return;
1629
1630         bh = head;
1631         do {
1632                 size_t next_off = curr_off + bh->b_size;
1633                 next = bh->b_this_page;
1634
1635                 /*
1636                  * Are we still fully in range ?
1637                  */
1638                 if (next_off > stop)
1639                         goto out;
1640
1641                 /*
1642                  * is this block fully invalidated?
1643                  */
1644                 if (offset <= curr_off)
1645                         discard_buffer(bh);
1646                 curr_off = next_off;
1647                 bh = next;
1648         } while (bh != head);
1649
1650         /*
1651          * We release buffers only if the entire folio is being invalidated.
1652          * The get_block cached value has been unconditionally invalidated,
1653          * so real IO is not possible anymore.
1654          */
1655         if (length == folio_size(folio))
1656                 filemap_release_folio(folio, 0);
1657 out:
1658         return;
1659 }
1660 EXPORT_SYMBOL(block_invalidate_folio);
1661
1662 /*
1663  * We attach and possibly dirty the buffers atomically wrt
1664  * block_dirty_folio() via i_private_lock.  try_to_free_buffers
1665  * is already excluded via the folio lock.
1666  */
1667 struct buffer_head *create_empty_buffers(struct folio *folio,
1668                 unsigned long blocksize, unsigned long b_state)
1669 {
1670         struct buffer_head *bh, *head, *tail;
1671         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1672
1673         head = folio_alloc_buffers(folio, blocksize, gfp);
1674         bh = head;
1675         do {
1676                 bh->b_state |= b_state;
1677                 tail = bh;
1678                 bh = bh->b_this_page;
1679         } while (bh);
1680         tail->b_this_page = head;
1681
1682         spin_lock(&folio->mapping->i_private_lock);
1683         if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1684                 bh = head;
1685                 do {
1686                         if (folio_test_dirty(folio))
1687                                 set_buffer_dirty(bh);
1688                         if (folio_test_uptodate(folio))
1689                                 set_buffer_uptodate(bh);
1690                         bh = bh->b_this_page;
1691                 } while (bh != head);
1692         }
1693         folio_attach_private(folio, head);
1694         spin_unlock(&folio->mapping->i_private_lock);
1695
1696         return head;
1697 }
1698 EXPORT_SYMBOL(create_empty_buffers);
1699
1700 /**
1701  * clean_bdev_aliases: clean a range of buffers in block device
1702  * @bdev: Block device to clean buffers in
1703  * @block: Start of a range of blocks to clean
1704  * @len: Number of blocks to clean
1705  *
1706  * We are taking a range of blocks for data and we don't want writeback of any
1707  * buffer-cache aliases starting from return from this function and until the
1708  * moment when something will explicitly mark the buffer dirty (hopefully that
1709  * will not happen until we will free that block ;-) We don't even need to mark
1710  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1711  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1712  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1713  * would confuse anyone who might pick it with bread() afterwards...
1714  *
1715  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1716  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1717  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1718  * need to.  That happens here.
1719  */
1720 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1721 {
1722         struct address_space *bd_mapping = bdev->bd_mapping;
1723         const int blkbits = bd_mapping->host->i_blkbits;
1724         struct folio_batch fbatch;
1725         pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
1726         pgoff_t end;
1727         int i, count;
1728         struct buffer_head *bh;
1729         struct buffer_head *head;
1730
1731         end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
1732         folio_batch_init(&fbatch);
1733         while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1734                 count = folio_batch_count(&fbatch);
1735                 for (i = 0; i < count; i++) {
1736                         struct folio *folio = fbatch.folios[i];
1737
1738                         if (!folio_buffers(folio))
1739                                 continue;
1740                         /*
1741                          * We use folio lock instead of bd_mapping->i_private_lock
1742                          * to pin buffers here since we can afford to sleep and
1743                          * it scales better than a global spinlock lock.
1744                          */
1745                         folio_lock(folio);
1746                         /* Recheck when the folio is locked which pins bhs */
1747                         head = folio_buffers(folio);
1748                         if (!head)
1749                                 goto unlock_page;
1750                         bh = head;
1751                         do {
1752                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1753                                         goto next;
1754                                 if (bh->b_blocknr >= block + len)
1755                                         break;
1756                                 clear_buffer_dirty(bh);
1757                                 wait_on_buffer(bh);
1758                                 clear_buffer_req(bh);
1759 next:
1760                                 bh = bh->b_this_page;
1761                         } while (bh != head);
1762 unlock_page:
1763                         folio_unlock(folio);
1764                 }
1765                 folio_batch_release(&fbatch);
1766                 cond_resched();
1767                 /* End of range already reached? */
1768                 if (index > end || !index)
1769                         break;
1770         }
1771 }
1772 EXPORT_SYMBOL(clean_bdev_aliases);
1773
1774 static struct buffer_head *folio_create_buffers(struct folio *folio,
1775                                                 struct inode *inode,
1776                                                 unsigned int b_state)
1777 {
1778         struct buffer_head *bh;
1779
1780         BUG_ON(!folio_test_locked(folio));
1781
1782         bh = folio_buffers(folio);
1783         if (!bh)
1784                 bh = create_empty_buffers(folio,
1785                                 1 << READ_ONCE(inode->i_blkbits), b_state);
1786         return bh;
1787 }
1788
1789 /*
1790  * NOTE! All mapped/uptodate combinations are valid:
1791  *
1792  *      Mapped  Uptodate        Meaning
1793  *
1794  *      No      No              "unknown" - must do get_block()
1795  *      No      Yes             "hole" - zero-filled
1796  *      Yes     No              "allocated" - allocated on disk, not read in
1797  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1798  *
1799  * "Dirty" is valid only with the last case (mapped+uptodate).
1800  */
1801
1802 /*
1803  * While block_write_full_folio is writing back the dirty buffers under
1804  * the page lock, whoever dirtied the buffers may decide to clean them
1805  * again at any time.  We handle that by only looking at the buffer
1806  * state inside lock_buffer().
1807  *
1808  * If block_write_full_folio() is called for regular writeback
1809  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1810  * locked buffer.   This only can happen if someone has written the buffer
1811  * directly, with submit_bh().  At the address_space level PageWriteback
1812  * prevents this contention from occurring.
1813  *
1814  * If block_write_full_folio() is called with wbc->sync_mode ==
1815  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1816  * causes the writes to be flagged as synchronous writes.
1817  */
1818 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1819                         get_block_t *get_block, struct writeback_control *wbc)
1820 {
1821         int err;
1822         sector_t block;
1823         sector_t last_block;
1824         struct buffer_head *bh, *head;
1825         size_t blocksize;
1826         int nr_underway = 0;
1827         blk_opf_t write_flags = wbc_to_write_flags(wbc);
1828
1829         head = folio_create_buffers(folio, inode,
1830                                     (1 << BH_Dirty) | (1 << BH_Uptodate));
1831
1832         /*
1833          * Be very careful.  We have no exclusion from block_dirty_folio
1834          * here, and the (potentially unmapped) buffers may become dirty at
1835          * any time.  If a buffer becomes dirty here after we've inspected it
1836          * then we just miss that fact, and the folio stays dirty.
1837          *
1838          * Buffers outside i_size may be dirtied by block_dirty_folio;
1839          * handle that here by just cleaning them.
1840          */
1841
1842         bh = head;
1843         blocksize = bh->b_size;
1844
1845         block = div_u64(folio_pos(folio), blocksize);
1846         last_block = div_u64(i_size_read(inode) - 1, blocksize);
1847
1848         /*
1849          * Get all the dirty buffers mapped to disk addresses and
1850          * handle any aliases from the underlying blockdev's mapping.
1851          */
1852         do {
1853                 if (block > last_block) {
1854                         /*
1855                          * mapped buffers outside i_size will occur, because
1856                          * this folio can be outside i_size when there is a
1857                          * truncate in progress.
1858                          */
1859                         /*
1860                          * The buffer was zeroed by block_write_full_folio()
1861                          */
1862                         clear_buffer_dirty(bh);
1863                         set_buffer_uptodate(bh);
1864                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1865                            buffer_dirty(bh)) {
1866                         WARN_ON(bh->b_size != blocksize);
1867                         err = get_block(inode, block, bh, 1);
1868                         if (err)
1869                                 goto recover;
1870                         clear_buffer_delay(bh);
1871                         if (buffer_new(bh)) {
1872                                 /* blockdev mappings never come here */
1873                                 clear_buffer_new(bh);
1874                                 clean_bdev_bh_alias(bh);
1875                         }
1876                 }
1877                 bh = bh->b_this_page;
1878                 block++;
1879         } while (bh != head);
1880
1881         do {
1882                 if (!buffer_mapped(bh))
1883                         continue;
1884                 /*
1885                  * If it's a fully non-blocking write attempt and we cannot
1886                  * lock the buffer then redirty the folio.  Note that this can
1887                  * potentially cause a busy-wait loop from writeback threads
1888                  * and kswapd activity, but those code paths have their own
1889                  * higher-level throttling.
1890                  */
1891                 if (wbc->sync_mode != WB_SYNC_NONE) {
1892                         lock_buffer(bh);
1893                 } else if (!trylock_buffer(bh)) {
1894                         folio_redirty_for_writepage(wbc, folio);
1895                         continue;
1896                 }
1897                 if (test_clear_buffer_dirty(bh)) {
1898                         mark_buffer_async_write_endio(bh,
1899                                 end_buffer_async_write);
1900                 } else {
1901                         unlock_buffer(bh);
1902                 }
1903         } while ((bh = bh->b_this_page) != head);
1904
1905         /*
1906          * The folio and its buffers are protected by the writeback flag,
1907          * so we can drop the bh refcounts early.
1908          */
1909         BUG_ON(folio_test_writeback(folio));
1910         folio_start_writeback(folio);
1911
1912         do {
1913                 struct buffer_head *next = bh->b_this_page;
1914                 if (buffer_async_write(bh)) {
1915                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1916                                       inode->i_write_hint, wbc);
1917                         nr_underway++;
1918                 }
1919                 bh = next;
1920         } while (bh != head);
1921         folio_unlock(folio);
1922
1923         err = 0;
1924 done:
1925         if (nr_underway == 0) {
1926                 /*
1927                  * The folio was marked dirty, but the buffers were
1928                  * clean.  Someone wrote them back by hand with
1929                  * write_dirty_buffer/submit_bh.  A rare case.
1930                  */
1931                 folio_end_writeback(folio);
1932
1933                 /*
1934                  * The folio and buffer_heads can be released at any time from
1935                  * here on.
1936                  */
1937         }
1938         return err;
1939
1940 recover:
1941         /*
1942          * ENOSPC, or some other error.  We may already have added some
1943          * blocks to the file, so we need to write these out to avoid
1944          * exposing stale data.
1945          * The folio is currently locked and not marked for writeback
1946          */
1947         bh = head;
1948         /* Recovery: lock and submit the mapped buffers */
1949         do {
1950                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1951                     !buffer_delay(bh)) {
1952                         lock_buffer(bh);
1953                         mark_buffer_async_write_endio(bh,
1954                                 end_buffer_async_write);
1955                 } else {
1956                         /*
1957                          * The buffer may have been set dirty during
1958                          * attachment to a dirty folio.
1959                          */
1960                         clear_buffer_dirty(bh);
1961                 }
1962         } while ((bh = bh->b_this_page) != head);
1963         folio_set_error(folio);
1964         BUG_ON(folio_test_writeback(folio));
1965         mapping_set_error(folio->mapping, err);
1966         folio_start_writeback(folio);
1967         do {
1968                 struct buffer_head *next = bh->b_this_page;
1969                 if (buffer_async_write(bh)) {
1970                         clear_buffer_dirty(bh);
1971                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1972                                       inode->i_write_hint, wbc);
1973                         nr_underway++;
1974                 }
1975                 bh = next;
1976         } while (bh != head);
1977         folio_unlock(folio);
1978         goto done;
1979 }
1980 EXPORT_SYMBOL(__block_write_full_folio);
1981
1982 /*
1983  * If a folio has any new buffers, zero them out here, and mark them uptodate
1984  * and dirty so they'll be written out (in order to prevent uninitialised
1985  * block data from leaking). And clear the new bit.
1986  */
1987 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1988 {
1989         size_t block_start, block_end;
1990         struct buffer_head *head, *bh;
1991
1992         BUG_ON(!folio_test_locked(folio));
1993         head = folio_buffers(folio);
1994         if (!head)
1995                 return;
1996
1997         bh = head;
1998         block_start = 0;
1999         do {
2000                 block_end = block_start + bh->b_size;
2001
2002                 if (buffer_new(bh)) {
2003                         if (block_end > from && block_start < to) {
2004                                 if (!folio_test_uptodate(folio)) {
2005                                         size_t start, xend;
2006
2007                                         start = max(from, block_start);
2008                                         xend = min(to, block_end);
2009
2010                                         folio_zero_segment(folio, start, xend);
2011                                         set_buffer_uptodate(bh);
2012                                 }
2013
2014                                 clear_buffer_new(bh);
2015                                 mark_buffer_dirty(bh);
2016                         }
2017                 }
2018
2019                 block_start = block_end;
2020                 bh = bh->b_this_page;
2021         } while (bh != head);
2022 }
2023 EXPORT_SYMBOL(folio_zero_new_buffers);
2024
2025 static int
2026 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2027                 const struct iomap *iomap)
2028 {
2029         loff_t offset = (loff_t)block << inode->i_blkbits;
2030
2031         bh->b_bdev = iomap->bdev;
2032
2033         /*
2034          * Block points to offset in file we need to map, iomap contains
2035          * the offset at which the map starts. If the map ends before the
2036          * current block, then do not map the buffer and let the caller
2037          * handle it.
2038          */
2039         if (offset >= iomap->offset + iomap->length)
2040                 return -EIO;
2041
2042         switch (iomap->type) {
2043         case IOMAP_HOLE:
2044                 /*
2045                  * If the buffer is not up to date or beyond the current EOF,
2046                  * we need to mark it as new to ensure sub-block zeroing is
2047                  * executed if necessary.
2048                  */
2049                 if (!buffer_uptodate(bh) ||
2050                     (offset >= i_size_read(inode)))
2051                         set_buffer_new(bh);
2052                 return 0;
2053         case IOMAP_DELALLOC:
2054                 if (!buffer_uptodate(bh) ||
2055                     (offset >= i_size_read(inode)))
2056                         set_buffer_new(bh);
2057                 set_buffer_uptodate(bh);
2058                 set_buffer_mapped(bh);
2059                 set_buffer_delay(bh);
2060                 return 0;
2061         case IOMAP_UNWRITTEN:
2062                 /*
2063                  * For unwritten regions, we always need to ensure that regions
2064                  * in the block we are not writing to are zeroed. Mark the
2065                  * buffer as new to ensure this.
2066                  */
2067                 set_buffer_new(bh);
2068                 set_buffer_unwritten(bh);
2069                 fallthrough;
2070         case IOMAP_MAPPED:
2071                 if ((iomap->flags & IOMAP_F_NEW) ||
2072                     offset >= i_size_read(inode)) {
2073                         /*
2074                          * This can happen if truncating the block device races
2075                          * with the check in the caller as i_size updates on
2076                          * block devices aren't synchronized by i_rwsem for
2077                          * block devices.
2078                          */
2079                         if (S_ISBLK(inode->i_mode))
2080                                 return -EIO;
2081                         set_buffer_new(bh);
2082                 }
2083                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2084                                 inode->i_blkbits;
2085                 set_buffer_mapped(bh);
2086                 return 0;
2087         default:
2088                 WARN_ON_ONCE(1);
2089                 return -EIO;
2090         }
2091 }
2092
2093 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2094                 get_block_t *get_block, const struct iomap *iomap)
2095 {
2096         size_t from = offset_in_folio(folio, pos);
2097         size_t to = from + len;
2098         struct inode *inode = folio->mapping->host;
2099         size_t block_start, block_end;
2100         sector_t block;
2101         int err = 0;
2102         size_t blocksize;
2103         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2104
2105         BUG_ON(!folio_test_locked(folio));
2106         BUG_ON(to > folio_size(folio));
2107         BUG_ON(from > to);
2108
2109         head = folio_create_buffers(folio, inode, 0);
2110         blocksize = head->b_size;
2111         block = div_u64(folio_pos(folio), blocksize);
2112
2113         for (bh = head, block_start = 0; bh != head || !block_start;
2114             block++, block_start=block_end, bh = bh->b_this_page) {
2115                 block_end = block_start + blocksize;
2116                 if (block_end <= from || block_start >= to) {
2117                         if (folio_test_uptodate(folio)) {
2118                                 if (!buffer_uptodate(bh))
2119                                         set_buffer_uptodate(bh);
2120                         }
2121                         continue;
2122                 }
2123                 if (buffer_new(bh))
2124                         clear_buffer_new(bh);
2125                 if (!buffer_mapped(bh)) {
2126                         WARN_ON(bh->b_size != blocksize);
2127                         if (get_block)
2128                                 err = get_block(inode, block, bh, 1);
2129                         else
2130                                 err = iomap_to_bh(inode, block, bh, iomap);
2131                         if (err)
2132                                 break;
2133
2134                         if (buffer_new(bh)) {
2135                                 clean_bdev_bh_alias(bh);
2136                                 if (folio_test_uptodate(folio)) {
2137                                         clear_buffer_new(bh);
2138                                         set_buffer_uptodate(bh);
2139                                         mark_buffer_dirty(bh);
2140                                         continue;
2141                                 }
2142                                 if (block_end > to || block_start < from)
2143                                         folio_zero_segments(folio,
2144                                                 to, block_end,
2145                                                 block_start, from);
2146                                 continue;
2147                         }
2148                 }
2149                 if (folio_test_uptodate(folio)) {
2150                         if (!buffer_uptodate(bh))
2151                                 set_buffer_uptodate(bh);
2152                         continue; 
2153                 }
2154                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2155                     !buffer_unwritten(bh) &&
2156                      (block_start < from || block_end > to)) {
2157                         bh_read_nowait(bh, 0);
2158                         *wait_bh++=bh;
2159                 }
2160         }
2161         /*
2162          * If we issued read requests - let them complete.
2163          */
2164         while(wait_bh > wait) {
2165                 wait_on_buffer(*--wait_bh);
2166                 if (!buffer_uptodate(*wait_bh))
2167                         err = -EIO;
2168         }
2169         if (unlikely(err))
2170                 folio_zero_new_buffers(folio, from, to);
2171         return err;
2172 }
2173
2174 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2175                 get_block_t *get_block)
2176 {
2177         return __block_write_begin_int(page_folio(page), pos, len, get_block,
2178                                        NULL);
2179 }
2180 EXPORT_SYMBOL(__block_write_begin);
2181
2182 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2183 {
2184         size_t block_start, block_end;
2185         bool partial = false;
2186         unsigned blocksize;
2187         struct buffer_head *bh, *head;
2188
2189         bh = head = folio_buffers(folio);
2190         blocksize = bh->b_size;
2191
2192         block_start = 0;
2193         do {
2194                 block_end = block_start + blocksize;
2195                 if (block_end <= from || block_start >= to) {
2196                         if (!buffer_uptodate(bh))
2197                                 partial = true;
2198                 } else {
2199                         set_buffer_uptodate(bh);
2200                         mark_buffer_dirty(bh);
2201                 }
2202                 if (buffer_new(bh))
2203                         clear_buffer_new(bh);
2204
2205                 block_start = block_end;
2206                 bh = bh->b_this_page;
2207         } while (bh != head);
2208
2209         /*
2210          * If this is a partial write which happened to make all buffers
2211          * uptodate then we can optimize away a bogus read_folio() for
2212          * the next read(). Here we 'discover' whether the folio went
2213          * uptodate as a result of this (potentially partial) write.
2214          */
2215         if (!partial)
2216                 folio_mark_uptodate(folio);
2217 }
2218
2219 /*
2220  * block_write_begin takes care of the basic task of block allocation and
2221  * bringing partial write blocks uptodate first.
2222  *
2223  * The filesystem needs to handle block truncation upon failure.
2224  */
2225 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2226                 struct page **pagep, get_block_t *get_block)
2227 {
2228         pgoff_t index = pos >> PAGE_SHIFT;
2229         struct page *page;
2230         int status;
2231
2232         page = grab_cache_page_write_begin(mapping, index);
2233         if (!page)
2234                 return -ENOMEM;
2235
2236         status = __block_write_begin(page, pos, len, get_block);
2237         if (unlikely(status)) {
2238                 unlock_page(page);
2239                 put_page(page);
2240                 page = NULL;
2241         }
2242
2243         *pagep = page;
2244         return status;
2245 }
2246 EXPORT_SYMBOL(block_write_begin);
2247
2248 int block_write_end(struct file *file, struct address_space *mapping,
2249                         loff_t pos, unsigned len, unsigned copied,
2250                         struct page *page, void *fsdata)
2251 {
2252         struct folio *folio = page_folio(page);
2253         size_t start = pos - folio_pos(folio);
2254
2255         if (unlikely(copied < len)) {
2256                 /*
2257                  * The buffers that were written will now be uptodate, so
2258                  * we don't have to worry about a read_folio reading them
2259                  * and overwriting a partial write. However if we have
2260                  * encountered a short write and only partially written
2261                  * into a buffer, it will not be marked uptodate, so a
2262                  * read_folio might come in and destroy our partial write.
2263                  *
2264                  * Do the simplest thing, and just treat any short write to a
2265                  * non uptodate folio as a zero-length write, and force the
2266                  * caller to redo the whole thing.
2267                  */
2268                 if (!folio_test_uptodate(folio))
2269                         copied = 0;
2270
2271                 folio_zero_new_buffers(folio, start+copied, start+len);
2272         }
2273         flush_dcache_folio(folio);
2274
2275         /* This could be a short (even 0-length) commit */
2276         __block_commit_write(folio, start, start + copied);
2277
2278         return copied;
2279 }
2280 EXPORT_SYMBOL(block_write_end);
2281
2282 int generic_write_end(struct file *file, struct address_space *mapping,
2283                         loff_t pos, unsigned len, unsigned copied,
2284                         struct page *page, void *fsdata)
2285 {
2286         struct inode *inode = mapping->host;
2287         loff_t old_size = inode->i_size;
2288         bool i_size_changed = false;
2289
2290         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2291
2292         /*
2293          * No need to use i_size_read() here, the i_size cannot change under us
2294          * because we hold i_rwsem.
2295          *
2296          * But it's important to update i_size while still holding page lock:
2297          * page writeout could otherwise come in and zero beyond i_size.
2298          */
2299         if (pos + copied > inode->i_size) {
2300                 i_size_write(inode, pos + copied);
2301                 i_size_changed = true;
2302         }
2303
2304         unlock_page(page);
2305         put_page(page);
2306
2307         if (old_size < pos)
2308                 pagecache_isize_extended(inode, old_size, pos);
2309         /*
2310          * Don't mark the inode dirty under page lock. First, it unnecessarily
2311          * makes the holding time of page lock longer. Second, it forces lock
2312          * ordering of page lock and transaction start for journaling
2313          * filesystems.
2314          */
2315         if (i_size_changed)
2316                 mark_inode_dirty(inode);
2317         return copied;
2318 }
2319 EXPORT_SYMBOL(generic_write_end);
2320
2321 /*
2322  * block_is_partially_uptodate checks whether buffers within a folio are
2323  * uptodate or not.
2324  *
2325  * Returns true if all buffers which correspond to the specified part
2326  * of the folio are uptodate.
2327  */
2328 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2329 {
2330         unsigned block_start, block_end, blocksize;
2331         unsigned to;
2332         struct buffer_head *bh, *head;
2333         bool ret = true;
2334
2335         head = folio_buffers(folio);
2336         if (!head)
2337                 return false;
2338         blocksize = head->b_size;
2339         to = min_t(unsigned, folio_size(folio) - from, count);
2340         to = from + to;
2341         if (from < blocksize && to > folio_size(folio) - blocksize)
2342                 return false;
2343
2344         bh = head;
2345         block_start = 0;
2346         do {
2347                 block_end = block_start + blocksize;
2348                 if (block_end > from && block_start < to) {
2349                         if (!buffer_uptodate(bh)) {
2350                                 ret = false;
2351                                 break;
2352                         }
2353                         if (block_end >= to)
2354                                 break;
2355                 }
2356                 block_start = block_end;
2357                 bh = bh->b_this_page;
2358         } while (bh != head);
2359
2360         return ret;
2361 }
2362 EXPORT_SYMBOL(block_is_partially_uptodate);
2363
2364 /*
2365  * Generic "read_folio" function for block devices that have the normal
2366  * get_block functionality. This is most of the block device filesystems.
2367  * Reads the folio asynchronously --- the unlock_buffer() and
2368  * set/clear_buffer_uptodate() functions propagate buffer state into the
2369  * folio once IO has completed.
2370  */
2371 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2372 {
2373         struct inode *inode = folio->mapping->host;
2374         sector_t iblock, lblock;
2375         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2376         size_t blocksize;
2377         int nr, i;
2378         int fully_mapped = 1;
2379         bool page_error = false;
2380         loff_t limit = i_size_read(inode);
2381
2382         /* This is needed for ext4. */
2383         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2384                 limit = inode->i_sb->s_maxbytes;
2385
2386         VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2387
2388         head = folio_create_buffers(folio, inode, 0);
2389         blocksize = head->b_size;
2390
2391         iblock = div_u64(folio_pos(folio), blocksize);
2392         lblock = div_u64(limit + blocksize - 1, blocksize);
2393         bh = head;
2394         nr = 0;
2395         i = 0;
2396
2397         do {
2398                 if (buffer_uptodate(bh))
2399                         continue;
2400
2401                 if (!buffer_mapped(bh)) {
2402                         int err = 0;
2403
2404                         fully_mapped = 0;
2405                         if (iblock < lblock) {
2406                                 WARN_ON(bh->b_size != blocksize);
2407                                 err = get_block(inode, iblock, bh, 0);
2408                                 if (err) {
2409                                         folio_set_error(folio);
2410                                         page_error = true;
2411                                 }
2412                         }
2413                         if (!buffer_mapped(bh)) {
2414                                 folio_zero_range(folio, i * blocksize,
2415                                                 blocksize);
2416                                 if (!err)
2417                                         set_buffer_uptodate(bh);
2418                                 continue;
2419                         }
2420                         /*
2421                          * get_block() might have updated the buffer
2422                          * synchronously
2423                          */
2424                         if (buffer_uptodate(bh))
2425                                 continue;
2426                 }
2427                 arr[nr++] = bh;
2428         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2429
2430         if (fully_mapped)
2431                 folio_set_mappedtodisk(folio);
2432
2433         if (!nr) {
2434                 /*
2435                  * All buffers are uptodate or get_block() returned an
2436                  * error when trying to map them - we can finish the read.
2437                  */
2438                 folio_end_read(folio, !page_error);
2439                 return 0;
2440         }
2441
2442         /* Stage two: lock the buffers */
2443         for (i = 0; i < nr; i++) {
2444                 bh = arr[i];
2445                 lock_buffer(bh);
2446                 mark_buffer_async_read(bh);
2447         }
2448
2449         /*
2450          * Stage 3: start the IO.  Check for uptodateness
2451          * inside the buffer lock in case another process reading
2452          * the underlying blockdev brought it uptodate (the sct fix).
2453          */
2454         for (i = 0; i < nr; i++) {
2455                 bh = arr[i];
2456                 if (buffer_uptodate(bh))
2457                         end_buffer_async_read(bh, 1);
2458                 else
2459                         submit_bh(REQ_OP_READ, bh);
2460         }
2461         return 0;
2462 }
2463 EXPORT_SYMBOL(block_read_full_folio);
2464
2465 /* utility function for filesystems that need to do work on expanding
2466  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2467  * deal with the hole.  
2468  */
2469 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2470 {
2471         struct address_space *mapping = inode->i_mapping;
2472         const struct address_space_operations *aops = mapping->a_ops;
2473         struct page *page;
2474         void *fsdata = NULL;
2475         int err;
2476
2477         err = inode_newsize_ok(inode, size);
2478         if (err)
2479                 goto out;
2480
2481         err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2482         if (err)
2483                 goto out;
2484
2485         err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2486         BUG_ON(err > 0);
2487
2488 out:
2489         return err;
2490 }
2491 EXPORT_SYMBOL(generic_cont_expand_simple);
2492
2493 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2494                             loff_t pos, loff_t *bytes)
2495 {
2496         struct inode *inode = mapping->host;
2497         const struct address_space_operations *aops = mapping->a_ops;
2498         unsigned int blocksize = i_blocksize(inode);
2499         struct page *page;
2500         void *fsdata = NULL;
2501         pgoff_t index, curidx;
2502         loff_t curpos;
2503         unsigned zerofrom, offset, len;
2504         int err = 0;
2505
2506         index = pos >> PAGE_SHIFT;
2507         offset = pos & ~PAGE_MASK;
2508
2509         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2510                 zerofrom = curpos & ~PAGE_MASK;
2511                 if (zerofrom & (blocksize-1)) {
2512                         *bytes |= (blocksize-1);
2513                         (*bytes)++;
2514                 }
2515                 len = PAGE_SIZE - zerofrom;
2516
2517                 err = aops->write_begin(file, mapping, curpos, len,
2518                                             &page, &fsdata);
2519                 if (err)
2520                         goto out;
2521                 zero_user(page, zerofrom, len);
2522                 err = aops->write_end(file, mapping, curpos, len, len,
2523                                                 page, fsdata);
2524                 if (err < 0)
2525                         goto out;
2526                 BUG_ON(err != len);
2527                 err = 0;
2528
2529                 balance_dirty_pages_ratelimited(mapping);
2530
2531                 if (fatal_signal_pending(current)) {
2532                         err = -EINTR;
2533                         goto out;
2534                 }
2535         }
2536
2537         /* page covers the boundary, find the boundary offset */
2538         if (index == curidx) {
2539                 zerofrom = curpos & ~PAGE_MASK;
2540                 /* if we will expand the thing last block will be filled */
2541                 if (offset <= zerofrom) {
2542                         goto out;
2543                 }
2544                 if (zerofrom & (blocksize-1)) {
2545                         *bytes |= (blocksize-1);
2546                         (*bytes)++;
2547                 }
2548                 len = offset - zerofrom;
2549
2550                 err = aops->write_begin(file, mapping, curpos, len,
2551                                             &page, &fsdata);
2552                 if (err)
2553                         goto out;
2554                 zero_user(page, zerofrom, len);
2555                 err = aops->write_end(file, mapping, curpos, len, len,
2556                                                 page, fsdata);
2557                 if (err < 0)
2558                         goto out;
2559                 BUG_ON(err != len);
2560                 err = 0;
2561         }
2562 out:
2563         return err;
2564 }
2565
2566 /*
2567  * For moronic filesystems that do not allow holes in file.
2568  * We may have to extend the file.
2569  */
2570 int cont_write_begin(struct file *file, struct address_space *mapping,
2571                         loff_t pos, unsigned len,
2572                         struct page **pagep, void **fsdata,
2573                         get_block_t *get_block, loff_t *bytes)
2574 {
2575         struct inode *inode = mapping->host;
2576         unsigned int blocksize = i_blocksize(inode);
2577         unsigned int zerofrom;
2578         int err;
2579
2580         err = cont_expand_zero(file, mapping, pos, bytes);
2581         if (err)
2582                 return err;
2583
2584         zerofrom = *bytes & ~PAGE_MASK;
2585         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2586                 *bytes |= (blocksize-1);
2587                 (*bytes)++;
2588         }
2589
2590         return block_write_begin(mapping, pos, len, pagep, get_block);
2591 }
2592 EXPORT_SYMBOL(cont_write_begin);
2593
2594 void block_commit_write(struct page *page, unsigned from, unsigned to)
2595 {
2596         struct folio *folio = page_folio(page);
2597         __block_commit_write(folio, from, to);
2598 }
2599 EXPORT_SYMBOL(block_commit_write);
2600
2601 /*
2602  * block_page_mkwrite() is not allowed to change the file size as it gets
2603  * called from a page fault handler when a page is first dirtied. Hence we must
2604  * be careful to check for EOF conditions here. We set the page up correctly
2605  * for a written page which means we get ENOSPC checking when writing into
2606  * holes and correct delalloc and unwritten extent mapping on filesystems that
2607  * support these features.
2608  *
2609  * We are not allowed to take the i_mutex here so we have to play games to
2610  * protect against truncate races as the page could now be beyond EOF.  Because
2611  * truncate writes the inode size before removing pages, once we have the
2612  * page lock we can determine safely if the page is beyond EOF. If it is not
2613  * beyond EOF, then the page is guaranteed safe against truncation until we
2614  * unlock the page.
2615  *
2616  * Direct callers of this function should protect against filesystem freezing
2617  * using sb_start_pagefault() - sb_end_pagefault() functions.
2618  */
2619 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2620                          get_block_t get_block)
2621 {
2622         struct folio *folio = page_folio(vmf->page);
2623         struct inode *inode = file_inode(vma->vm_file);
2624         unsigned long end;
2625         loff_t size;
2626         int ret;
2627
2628         folio_lock(folio);
2629         size = i_size_read(inode);
2630         if ((folio->mapping != inode->i_mapping) ||
2631             (folio_pos(folio) >= size)) {
2632                 /* We overload EFAULT to mean page got truncated */
2633                 ret = -EFAULT;
2634                 goto out_unlock;
2635         }
2636
2637         end = folio_size(folio);
2638         /* folio is wholly or partially inside EOF */
2639         if (folio_pos(folio) + end > size)
2640                 end = size - folio_pos(folio);
2641
2642         ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2643         if (unlikely(ret))
2644                 goto out_unlock;
2645
2646         __block_commit_write(folio, 0, end);
2647
2648         folio_mark_dirty(folio);
2649         folio_wait_stable(folio);
2650         return 0;
2651 out_unlock:
2652         folio_unlock(folio);
2653         return ret;
2654 }
2655 EXPORT_SYMBOL(block_page_mkwrite);
2656
2657 int block_truncate_page(struct address_space *mapping,
2658                         loff_t from, get_block_t *get_block)
2659 {
2660         pgoff_t index = from >> PAGE_SHIFT;
2661         unsigned blocksize;
2662         sector_t iblock;
2663         size_t offset, length, pos;
2664         struct inode *inode = mapping->host;
2665         struct folio *folio;
2666         struct buffer_head *bh;
2667         int err = 0;
2668
2669         blocksize = i_blocksize(inode);
2670         length = from & (blocksize - 1);
2671
2672         /* Block boundary? Nothing to do */
2673         if (!length)
2674                 return 0;
2675
2676         length = blocksize - length;
2677         iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2678
2679         folio = filemap_grab_folio(mapping, index);
2680         if (IS_ERR(folio))
2681                 return PTR_ERR(folio);
2682
2683         bh = folio_buffers(folio);
2684         if (!bh)
2685                 bh = create_empty_buffers(folio, blocksize, 0);
2686
2687         /* Find the buffer that contains "offset" */
2688         offset = offset_in_folio(folio, from);
2689         pos = blocksize;
2690         while (offset >= pos) {
2691                 bh = bh->b_this_page;
2692                 iblock++;
2693                 pos += blocksize;
2694         }
2695
2696         if (!buffer_mapped(bh)) {
2697                 WARN_ON(bh->b_size != blocksize);
2698                 err = get_block(inode, iblock, bh, 0);
2699                 if (err)
2700                         goto unlock;
2701                 /* unmapped? It's a hole - nothing to do */
2702                 if (!buffer_mapped(bh))
2703                         goto unlock;
2704         }
2705
2706         /* Ok, it's mapped. Make sure it's up-to-date */
2707         if (folio_test_uptodate(folio))
2708                 set_buffer_uptodate(bh);
2709
2710         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2711                 err = bh_read(bh, 0);
2712                 /* Uhhuh. Read error. Complain and punt. */
2713                 if (err < 0)
2714                         goto unlock;
2715         }
2716
2717         folio_zero_range(folio, offset, length);
2718         mark_buffer_dirty(bh);
2719
2720 unlock:
2721         folio_unlock(folio);
2722         folio_put(folio);
2723
2724         return err;
2725 }
2726 EXPORT_SYMBOL(block_truncate_page);
2727
2728 /*
2729  * The generic ->writepage function for buffer-backed address_spaces
2730  */
2731 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2732                 void *get_block)
2733 {
2734         struct inode * const inode = folio->mapping->host;
2735         loff_t i_size = i_size_read(inode);
2736
2737         /* Is the folio fully inside i_size? */
2738         if (folio_pos(folio) + folio_size(folio) <= i_size)
2739                 return __block_write_full_folio(inode, folio, get_block, wbc);
2740
2741         /* Is the folio fully outside i_size? (truncate in progress) */
2742         if (folio_pos(folio) >= i_size) {
2743                 folio_unlock(folio);
2744                 return 0; /* don't care */
2745         }
2746
2747         /*
2748          * The folio straddles i_size.  It must be zeroed out on each and every
2749          * writepage invocation because it may be mmapped.  "A file is mapped
2750          * in multiples of the page size.  For a file that is not a multiple of
2751          * the page size, the remaining memory is zeroed when mapped, and
2752          * writes to that region are not written out to the file."
2753          */
2754         folio_zero_segment(folio, offset_in_folio(folio, i_size),
2755                         folio_size(folio));
2756         return __block_write_full_folio(inode, folio, get_block, wbc);
2757 }
2758
2759 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2760                             get_block_t *get_block)
2761 {
2762         struct inode *inode = mapping->host;
2763         struct buffer_head tmp = {
2764                 .b_size = i_blocksize(inode),
2765         };
2766
2767         get_block(inode, block, &tmp, 0);
2768         return tmp.b_blocknr;
2769 }
2770 EXPORT_SYMBOL(generic_block_bmap);
2771
2772 static void end_bio_bh_io_sync(struct bio *bio)
2773 {
2774         struct buffer_head *bh = bio->bi_private;
2775
2776         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2777                 set_bit(BH_Quiet, &bh->b_state);
2778
2779         bh->b_end_io(bh, !bio->bi_status);
2780         bio_put(bio);
2781 }
2782
2783 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2784                           enum rw_hint write_hint,
2785                           struct writeback_control *wbc)
2786 {
2787         const enum req_op op = opf & REQ_OP_MASK;
2788         struct bio *bio;
2789
2790         BUG_ON(!buffer_locked(bh));
2791         BUG_ON(!buffer_mapped(bh));
2792         BUG_ON(!bh->b_end_io);
2793         BUG_ON(buffer_delay(bh));
2794         BUG_ON(buffer_unwritten(bh));
2795
2796         /*
2797          * Only clear out a write error when rewriting
2798          */
2799         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2800                 clear_buffer_write_io_error(bh);
2801
2802         if (buffer_meta(bh))
2803                 opf |= REQ_META;
2804         if (buffer_prio(bh))
2805                 opf |= REQ_PRIO;
2806
2807         bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2808
2809         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2810
2811         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2812         bio->bi_write_hint = write_hint;
2813
2814         __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2815
2816         bio->bi_end_io = end_bio_bh_io_sync;
2817         bio->bi_private = bh;
2818
2819         /* Take care of bh's that straddle the end of the device */
2820         guard_bio_eod(bio);
2821
2822         if (wbc) {
2823                 wbc_init_bio(wbc, bio);
2824                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2825         }
2826
2827         submit_bio(bio);
2828 }
2829
2830 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2831 {
2832         submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2833 }
2834 EXPORT_SYMBOL(submit_bh);
2835
2836 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2837 {
2838         lock_buffer(bh);
2839         if (!test_clear_buffer_dirty(bh)) {
2840                 unlock_buffer(bh);
2841                 return;
2842         }
2843         bh->b_end_io = end_buffer_write_sync;
2844         get_bh(bh);
2845         submit_bh(REQ_OP_WRITE | op_flags, bh);
2846 }
2847 EXPORT_SYMBOL(write_dirty_buffer);
2848
2849 /*
2850  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2851  * and then start new I/O and then wait upon it.  The caller must have a ref on
2852  * the buffer_head.
2853  */
2854 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2855 {
2856         WARN_ON(atomic_read(&bh->b_count) < 1);
2857         lock_buffer(bh);
2858         if (test_clear_buffer_dirty(bh)) {
2859                 /*
2860                  * The bh should be mapped, but it might not be if the
2861                  * device was hot-removed. Not much we can do but fail the I/O.
2862                  */
2863                 if (!buffer_mapped(bh)) {
2864                         unlock_buffer(bh);
2865                         return -EIO;
2866                 }
2867
2868                 get_bh(bh);
2869                 bh->b_end_io = end_buffer_write_sync;
2870                 submit_bh(REQ_OP_WRITE | op_flags, bh);
2871                 wait_on_buffer(bh);
2872                 if (!buffer_uptodate(bh))
2873                         return -EIO;
2874         } else {
2875                 unlock_buffer(bh);
2876         }
2877         return 0;
2878 }
2879 EXPORT_SYMBOL(__sync_dirty_buffer);
2880
2881 int sync_dirty_buffer(struct buffer_head *bh)
2882 {
2883         return __sync_dirty_buffer(bh, REQ_SYNC);
2884 }
2885 EXPORT_SYMBOL(sync_dirty_buffer);
2886
2887 static inline int buffer_busy(struct buffer_head *bh)
2888 {
2889         return atomic_read(&bh->b_count) |
2890                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2891 }
2892
2893 static bool
2894 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2895 {
2896         struct buffer_head *head = folio_buffers(folio);
2897         struct buffer_head *bh;
2898
2899         bh = head;
2900         do {
2901                 if (buffer_busy(bh))
2902                         goto failed;
2903                 bh = bh->b_this_page;
2904         } while (bh != head);
2905
2906         do {
2907                 struct buffer_head *next = bh->b_this_page;
2908
2909                 if (bh->b_assoc_map)
2910                         __remove_assoc_queue(bh);
2911                 bh = next;
2912         } while (bh != head);
2913         *buffers_to_free = head;
2914         folio_detach_private(folio);
2915         return true;
2916 failed:
2917         return false;
2918 }
2919
2920 /**
2921  * try_to_free_buffers - Release buffers attached to this folio.
2922  * @folio: The folio.
2923  *
2924  * If any buffers are in use (dirty, under writeback, elevated refcount),
2925  * no buffers will be freed.
2926  *
2927  * If the folio is dirty but all the buffers are clean then we need to
2928  * be sure to mark the folio clean as well.  This is because the folio
2929  * may be against a block device, and a later reattachment of buffers
2930  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2931  * filesystem data on the same device.
2932  *
2933  * The same applies to regular filesystem folios: if all the buffers are
2934  * clean then we set the folio clean and proceed.  To do that, we require
2935  * total exclusion from block_dirty_folio().  That is obtained with
2936  * i_private_lock.
2937  *
2938  * Exclusion against try_to_free_buffers may be obtained by either
2939  * locking the folio or by holding its mapping's i_private_lock.
2940  *
2941  * Context: Process context.  @folio must be locked.  Will not sleep.
2942  * Return: true if all buffers attached to this folio were freed.
2943  */
2944 bool try_to_free_buffers(struct folio *folio)
2945 {
2946         struct address_space * const mapping = folio->mapping;
2947         struct buffer_head *buffers_to_free = NULL;
2948         bool ret = 0;
2949
2950         BUG_ON(!folio_test_locked(folio));
2951         if (folio_test_writeback(folio))
2952                 return false;
2953
2954         if (mapping == NULL) {          /* can this still happen? */
2955                 ret = drop_buffers(folio, &buffers_to_free);
2956                 goto out;
2957         }
2958
2959         spin_lock(&mapping->i_private_lock);
2960         ret = drop_buffers(folio, &buffers_to_free);
2961
2962         /*
2963          * If the filesystem writes its buffers by hand (eg ext3)
2964          * then we can have clean buffers against a dirty folio.  We
2965          * clean the folio here; otherwise the VM will never notice
2966          * that the filesystem did any IO at all.
2967          *
2968          * Also, during truncate, discard_buffer will have marked all
2969          * the folio's buffers clean.  We discover that here and clean
2970          * the folio also.
2971          *
2972          * i_private_lock must be held over this entire operation in order
2973          * to synchronise against block_dirty_folio and prevent the
2974          * dirty bit from being lost.
2975          */
2976         if (ret)
2977                 folio_cancel_dirty(folio);
2978         spin_unlock(&mapping->i_private_lock);
2979 out:
2980         if (buffers_to_free) {
2981                 struct buffer_head *bh = buffers_to_free;
2982
2983                 do {
2984                         struct buffer_head *next = bh->b_this_page;
2985                         free_buffer_head(bh);
2986                         bh = next;
2987                 } while (bh != buffers_to_free);
2988         }
2989         return ret;
2990 }
2991 EXPORT_SYMBOL(try_to_free_buffers);
2992
2993 /*
2994  * Buffer-head allocation
2995  */
2996 static struct kmem_cache *bh_cachep __ro_after_init;
2997
2998 /*
2999  * Once the number of bh's in the machine exceeds this level, we start
3000  * stripping them in writeback.
3001  */
3002 static unsigned long max_buffer_heads __ro_after_init;
3003
3004 int buffer_heads_over_limit;
3005
3006 struct bh_accounting {
3007         int nr;                 /* Number of live bh's */
3008         int ratelimit;          /* Limit cacheline bouncing */
3009 };
3010
3011 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3012
3013 static void recalc_bh_state(void)
3014 {
3015         int i;
3016         int tot = 0;
3017
3018         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3019                 return;
3020         __this_cpu_write(bh_accounting.ratelimit, 0);
3021         for_each_online_cpu(i)
3022                 tot += per_cpu(bh_accounting, i).nr;
3023         buffer_heads_over_limit = (tot > max_buffer_heads);
3024 }
3025
3026 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3027 {
3028         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3029         if (ret) {
3030                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3031                 spin_lock_init(&ret->b_uptodate_lock);
3032                 preempt_disable();
3033                 __this_cpu_inc(bh_accounting.nr);
3034                 recalc_bh_state();
3035                 preempt_enable();
3036         }
3037         return ret;
3038 }
3039 EXPORT_SYMBOL(alloc_buffer_head);
3040
3041 void free_buffer_head(struct buffer_head *bh)
3042 {
3043         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3044         kmem_cache_free(bh_cachep, bh);
3045         preempt_disable();
3046         __this_cpu_dec(bh_accounting.nr);
3047         recalc_bh_state();
3048         preempt_enable();
3049 }
3050 EXPORT_SYMBOL(free_buffer_head);
3051
3052 static int buffer_exit_cpu_dead(unsigned int cpu)
3053 {
3054         int i;
3055         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3056
3057         for (i = 0; i < BH_LRU_SIZE; i++) {
3058                 brelse(b->bhs[i]);
3059                 b->bhs[i] = NULL;
3060         }
3061         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3062         per_cpu(bh_accounting, cpu).nr = 0;
3063         return 0;
3064 }
3065
3066 /**
3067  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3068  * @bh: struct buffer_head
3069  *
3070  * Return true if the buffer is up-to-date and false,
3071  * with the buffer locked, if not.
3072  */
3073 int bh_uptodate_or_lock(struct buffer_head *bh)
3074 {
3075         if (!buffer_uptodate(bh)) {
3076                 lock_buffer(bh);
3077                 if (!buffer_uptodate(bh))
3078                         return 0;
3079                 unlock_buffer(bh);
3080         }
3081         return 1;
3082 }
3083 EXPORT_SYMBOL(bh_uptodate_or_lock);
3084
3085 /**
3086  * __bh_read - Submit read for a locked buffer
3087  * @bh: struct buffer_head
3088  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3089  * @wait: wait until reading finish
3090  *
3091  * Returns zero on success or don't wait, and -EIO on error.
3092  */
3093 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3094 {
3095         int ret = 0;
3096
3097         BUG_ON(!buffer_locked(bh));
3098
3099         get_bh(bh);
3100         bh->b_end_io = end_buffer_read_sync;
3101         submit_bh(REQ_OP_READ | op_flags, bh);
3102         if (wait) {
3103                 wait_on_buffer(bh);
3104                 if (!buffer_uptodate(bh))
3105                         ret = -EIO;
3106         }
3107         return ret;
3108 }
3109 EXPORT_SYMBOL(__bh_read);
3110
3111 /**
3112  * __bh_read_batch - Submit read for a batch of unlocked buffers
3113  * @nr: entry number of the buffer batch
3114  * @bhs: a batch of struct buffer_head
3115  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3116  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3117  *              buffer that cannot lock.
3118  *
3119  * Returns zero on success or don't wait, and -EIO on error.
3120  */
3121 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3122                      blk_opf_t op_flags, bool force_lock)
3123 {
3124         int i;
3125
3126         for (i = 0; i < nr; i++) {
3127                 struct buffer_head *bh = bhs[i];
3128
3129                 if (buffer_uptodate(bh))
3130                         continue;
3131
3132                 if (force_lock)
3133                         lock_buffer(bh);
3134                 else
3135                         if (!trylock_buffer(bh))
3136                                 continue;
3137
3138                 if (buffer_uptodate(bh)) {
3139                         unlock_buffer(bh);
3140                         continue;
3141                 }
3142
3143                 bh->b_end_io = end_buffer_read_sync;
3144                 get_bh(bh);
3145                 submit_bh(REQ_OP_READ | op_flags, bh);
3146         }
3147 }
3148 EXPORT_SYMBOL(__bh_read_batch);
3149
3150 void __init buffer_init(void)
3151 {
3152         unsigned long nrpages;
3153         int ret;
3154
3155         bh_cachep = KMEM_CACHE(buffer_head,
3156                                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3157         /*
3158          * Limit the bh occupancy to 10% of ZONE_NORMAL
3159          */
3160         nrpages = (nr_free_buffer_pages() * 10) / 100;
3161         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3162         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3163                                         NULL, buffer_exit_cpu_dead);
3164         WARN_ON(ret < 0);
3165 }