delousing target_core_file a bit
[linux-2.6-block.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31 #include "volumes.h"
32
33 #define BTRFS_ROOT_TRANS_TAG 0
34
35 void put_transaction(struct btrfs_transaction *transaction)
36 {
37         WARN_ON(atomic_read(&transaction->use_count) == 0);
38         if (atomic_dec_and_test(&transaction->use_count)) {
39                 BUG_ON(!list_empty(&transaction->list));
40                 WARN_ON(transaction->delayed_refs.root.rb_node);
41                 WARN_ON(!list_empty(&transaction->delayed_refs.seq_head));
42                 memset(transaction, 0, sizeof(*transaction));
43                 kmem_cache_free(btrfs_transaction_cachep, transaction);
44         }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49         free_extent_buffer(root->commit_root);
50         root->commit_root = btrfs_root_node(root);
51 }
52
53 /*
54  * either allocate a new transaction or hop into the existing one
55  */
56 static noinline int join_transaction(struct btrfs_root *root, int nofail)
57 {
58         struct btrfs_transaction *cur_trans;
59         struct btrfs_fs_info *fs_info = root->fs_info;
60
61         spin_lock(&fs_info->trans_lock);
62 loop:
63         /* The file system has been taken offline. No new transactions. */
64         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
65                 spin_unlock(&fs_info->trans_lock);
66                 return -EROFS;
67         }
68
69         if (fs_info->trans_no_join) {
70                 if (!nofail) {
71                         spin_unlock(&fs_info->trans_lock);
72                         return -EBUSY;
73                 }
74         }
75
76         cur_trans = fs_info->running_transaction;
77         if (cur_trans) {
78                 if (cur_trans->aborted) {
79                         spin_unlock(&fs_info->trans_lock);
80                         return cur_trans->aborted;
81                 }
82                 atomic_inc(&cur_trans->use_count);
83                 atomic_inc(&cur_trans->num_writers);
84                 cur_trans->num_joined++;
85                 spin_unlock(&fs_info->trans_lock);
86                 return 0;
87         }
88         spin_unlock(&fs_info->trans_lock);
89
90         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
91         if (!cur_trans)
92                 return -ENOMEM;
93
94         spin_lock(&fs_info->trans_lock);
95         if (fs_info->running_transaction) {
96                 /*
97                  * someone started a transaction after we unlocked.  Make sure
98                  * to redo the trans_no_join checks above
99                  */
100                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
101                 cur_trans = fs_info->running_transaction;
102                 goto loop;
103         } else if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
104                 spin_unlock(&root->fs_info->trans_lock);
105                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
106                 return -EROFS;
107         }
108
109         atomic_set(&cur_trans->num_writers, 1);
110         cur_trans->num_joined = 0;
111         init_waitqueue_head(&cur_trans->writer_wait);
112         init_waitqueue_head(&cur_trans->commit_wait);
113         cur_trans->in_commit = 0;
114         cur_trans->blocked = 0;
115         /*
116          * One for this trans handle, one so it will live on until we
117          * commit the transaction.
118          */
119         atomic_set(&cur_trans->use_count, 2);
120         cur_trans->commit_done = 0;
121         cur_trans->start_time = get_seconds();
122
123         cur_trans->delayed_refs.root = RB_ROOT;
124         cur_trans->delayed_refs.num_entries = 0;
125         cur_trans->delayed_refs.num_heads_ready = 0;
126         cur_trans->delayed_refs.num_heads = 0;
127         cur_trans->delayed_refs.flushing = 0;
128         cur_trans->delayed_refs.run_delayed_start = 0;
129         cur_trans->delayed_refs.seq = 1;
130
131         /*
132          * although the tree mod log is per file system and not per transaction,
133          * the log must never go across transaction boundaries.
134          */
135         smp_mb();
136         if (!list_empty(&fs_info->tree_mod_seq_list)) {
137                 printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when "
138                         "creating a fresh transaction\n");
139                 WARN_ON(1);
140         }
141         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) {
142                 printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
143                         "creating a fresh transaction\n");
144                 WARN_ON(1);
145         }
146         atomic_set(&fs_info->tree_mod_seq, 0);
147
148         init_waitqueue_head(&cur_trans->delayed_refs.seq_wait);
149         spin_lock_init(&cur_trans->commit_lock);
150         spin_lock_init(&cur_trans->delayed_refs.lock);
151         INIT_LIST_HEAD(&cur_trans->delayed_refs.seq_head);
152
153         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
154         list_add_tail(&cur_trans->list, &fs_info->trans_list);
155         extent_io_tree_init(&cur_trans->dirty_pages,
156                              fs_info->btree_inode->i_mapping);
157         fs_info->generation++;
158         cur_trans->transid = fs_info->generation;
159         fs_info->running_transaction = cur_trans;
160         cur_trans->aborted = 0;
161         spin_unlock(&fs_info->trans_lock);
162
163         return 0;
164 }
165
166 /*
167  * this does all the record keeping required to make sure that a reference
168  * counted root is properly recorded in a given transaction.  This is required
169  * to make sure the old root from before we joined the transaction is deleted
170  * when the transaction commits
171  */
172 static int record_root_in_trans(struct btrfs_trans_handle *trans,
173                                struct btrfs_root *root)
174 {
175         if (root->ref_cows && root->last_trans < trans->transid) {
176                 WARN_ON(root == root->fs_info->extent_root);
177                 WARN_ON(root->commit_root != root->node);
178
179                 /*
180                  * see below for in_trans_setup usage rules
181                  * we have the reloc mutex held now, so there
182                  * is only one writer in this function
183                  */
184                 root->in_trans_setup = 1;
185
186                 /* make sure readers find in_trans_setup before
187                  * they find our root->last_trans update
188                  */
189                 smp_wmb();
190
191                 spin_lock(&root->fs_info->fs_roots_radix_lock);
192                 if (root->last_trans == trans->transid) {
193                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
194                         return 0;
195                 }
196                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
197                            (unsigned long)root->root_key.objectid,
198                            BTRFS_ROOT_TRANS_TAG);
199                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
200                 root->last_trans = trans->transid;
201
202                 /* this is pretty tricky.  We don't want to
203                  * take the relocation lock in btrfs_record_root_in_trans
204                  * unless we're really doing the first setup for this root in
205                  * this transaction.
206                  *
207                  * Normally we'd use root->last_trans as a flag to decide
208                  * if we want to take the expensive mutex.
209                  *
210                  * But, we have to set root->last_trans before we
211                  * init the relocation root, otherwise, we trip over warnings
212                  * in ctree.c.  The solution used here is to flag ourselves
213                  * with root->in_trans_setup.  When this is 1, we're still
214                  * fixing up the reloc trees and everyone must wait.
215                  *
216                  * When this is zero, they can trust root->last_trans and fly
217                  * through btrfs_record_root_in_trans without having to take the
218                  * lock.  smp_wmb() makes sure that all the writes above are
219                  * done before we pop in the zero below
220                  */
221                 btrfs_init_reloc_root(trans, root);
222                 smp_wmb();
223                 root->in_trans_setup = 0;
224         }
225         return 0;
226 }
227
228
229 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
230                                struct btrfs_root *root)
231 {
232         if (!root->ref_cows)
233                 return 0;
234
235         /*
236          * see record_root_in_trans for comments about in_trans_setup usage
237          * and barriers
238          */
239         smp_rmb();
240         if (root->last_trans == trans->transid &&
241             !root->in_trans_setup)
242                 return 0;
243
244         mutex_lock(&root->fs_info->reloc_mutex);
245         record_root_in_trans(trans, root);
246         mutex_unlock(&root->fs_info->reloc_mutex);
247
248         return 0;
249 }
250
251 /* wait for commit against the current transaction to become unblocked
252  * when this is done, it is safe to start a new transaction, but the current
253  * transaction might not be fully on disk.
254  */
255 static void wait_current_trans(struct btrfs_root *root)
256 {
257         struct btrfs_transaction *cur_trans;
258
259         spin_lock(&root->fs_info->trans_lock);
260         cur_trans = root->fs_info->running_transaction;
261         if (cur_trans && cur_trans->blocked) {
262                 atomic_inc(&cur_trans->use_count);
263                 spin_unlock(&root->fs_info->trans_lock);
264
265                 wait_event(root->fs_info->transaction_wait,
266                            !cur_trans->blocked);
267                 put_transaction(cur_trans);
268         } else {
269                 spin_unlock(&root->fs_info->trans_lock);
270         }
271 }
272
273 enum btrfs_trans_type {
274         TRANS_START,
275         TRANS_JOIN,
276         TRANS_USERSPACE,
277         TRANS_JOIN_NOLOCK,
278 };
279
280 static int may_wait_transaction(struct btrfs_root *root, int type)
281 {
282         if (root->fs_info->log_root_recovering)
283                 return 0;
284
285         if (type == TRANS_USERSPACE)
286                 return 1;
287
288         if (type == TRANS_START &&
289             !atomic_read(&root->fs_info->open_ioctl_trans))
290                 return 1;
291
292         return 0;
293 }
294
295 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
296                                                     u64 num_items, int type)
297 {
298         struct btrfs_trans_handle *h;
299         struct btrfs_transaction *cur_trans;
300         u64 num_bytes = 0;
301         int ret;
302
303         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
304                 return ERR_PTR(-EROFS);
305
306         if (current->journal_info) {
307                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
308                 h = current->journal_info;
309                 h->use_count++;
310                 h->orig_rsv = h->block_rsv;
311                 h->block_rsv = NULL;
312                 goto got_it;
313         }
314
315         /*
316          * Do the reservation before we join the transaction so we can do all
317          * the appropriate flushing if need be.
318          */
319         if (num_items > 0 && root != root->fs_info->chunk_root) {
320                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
321                 ret = btrfs_block_rsv_add(root,
322                                           &root->fs_info->trans_block_rsv,
323                                           num_bytes);
324                 if (ret)
325                         return ERR_PTR(ret);
326         }
327 again:
328         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
329         if (!h)
330                 return ERR_PTR(-ENOMEM);
331
332         sb_start_intwrite(root->fs_info->sb);
333
334         if (may_wait_transaction(root, type))
335                 wait_current_trans(root);
336
337         do {
338                 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
339                 if (ret == -EBUSY)
340                         wait_current_trans(root);
341         } while (ret == -EBUSY);
342
343         if (ret < 0) {
344                 sb_end_intwrite(root->fs_info->sb);
345                 kmem_cache_free(btrfs_trans_handle_cachep, h);
346                 return ERR_PTR(ret);
347         }
348
349         cur_trans = root->fs_info->running_transaction;
350
351         h->transid = cur_trans->transid;
352         h->transaction = cur_trans;
353         h->blocks_used = 0;
354         h->bytes_reserved = 0;
355         h->delayed_ref_updates = 0;
356         h->use_count = 1;
357         h->block_rsv = NULL;
358         h->orig_rsv = NULL;
359         h->aborted = 0;
360
361         smp_mb();
362         if (cur_trans->blocked && may_wait_transaction(root, type)) {
363                 btrfs_commit_transaction(h, root);
364                 goto again;
365         }
366
367         if (num_bytes) {
368                 trace_btrfs_space_reservation(root->fs_info, "transaction",
369                                               h->transid, num_bytes, 1);
370                 h->block_rsv = &root->fs_info->trans_block_rsv;
371                 h->bytes_reserved = num_bytes;
372         }
373
374 got_it:
375         btrfs_record_root_in_trans(h, root);
376
377         if (!current->journal_info && type != TRANS_USERSPACE)
378                 current->journal_info = h;
379         return h;
380 }
381
382 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
383                                                    int num_items)
384 {
385         return start_transaction(root, num_items, TRANS_START);
386 }
387 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
388 {
389         return start_transaction(root, 0, TRANS_JOIN);
390 }
391
392 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
393 {
394         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
395 }
396
397 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
398 {
399         return start_transaction(root, 0, TRANS_USERSPACE);
400 }
401
402 /* wait for a transaction commit to be fully complete */
403 static noinline void wait_for_commit(struct btrfs_root *root,
404                                     struct btrfs_transaction *commit)
405 {
406         wait_event(commit->commit_wait, commit->commit_done);
407 }
408
409 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
410 {
411         struct btrfs_transaction *cur_trans = NULL, *t;
412         int ret;
413
414         ret = 0;
415         if (transid) {
416                 if (transid <= root->fs_info->last_trans_committed)
417                         goto out;
418
419                 /* find specified transaction */
420                 spin_lock(&root->fs_info->trans_lock);
421                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
422                         if (t->transid == transid) {
423                                 cur_trans = t;
424                                 atomic_inc(&cur_trans->use_count);
425                                 break;
426                         }
427                         if (t->transid > transid)
428                                 break;
429                 }
430                 spin_unlock(&root->fs_info->trans_lock);
431                 ret = -EINVAL;
432                 if (!cur_trans)
433                         goto out;  /* bad transid */
434         } else {
435                 /* find newest transaction that is committing | committed */
436                 spin_lock(&root->fs_info->trans_lock);
437                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
438                                             list) {
439                         if (t->in_commit) {
440                                 if (t->commit_done)
441                                         break;
442                                 cur_trans = t;
443                                 atomic_inc(&cur_trans->use_count);
444                                 break;
445                         }
446                 }
447                 spin_unlock(&root->fs_info->trans_lock);
448                 if (!cur_trans)
449                         goto out;  /* nothing committing|committed */
450         }
451
452         wait_for_commit(root, cur_trans);
453
454         put_transaction(cur_trans);
455         ret = 0;
456 out:
457         return ret;
458 }
459
460 void btrfs_throttle(struct btrfs_root *root)
461 {
462         if (!atomic_read(&root->fs_info->open_ioctl_trans))
463                 wait_current_trans(root);
464 }
465
466 static int should_end_transaction(struct btrfs_trans_handle *trans,
467                                   struct btrfs_root *root)
468 {
469         int ret;
470
471         ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
472         return ret ? 1 : 0;
473 }
474
475 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
476                                  struct btrfs_root *root)
477 {
478         struct btrfs_transaction *cur_trans = trans->transaction;
479         struct btrfs_block_rsv *rsv = trans->block_rsv;
480         int updates;
481         int err;
482
483         smp_mb();
484         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
485                 return 1;
486
487         /*
488          * We need to do this in case we're deleting csums so the global block
489          * rsv get's used instead of the csum block rsv.
490          */
491         trans->block_rsv = NULL;
492
493         updates = trans->delayed_ref_updates;
494         trans->delayed_ref_updates = 0;
495         if (updates) {
496                 err = btrfs_run_delayed_refs(trans, root, updates);
497                 if (err) /* Error code will also eval true */
498                         return err;
499         }
500
501         trans->block_rsv = rsv;
502
503         return should_end_transaction(trans, root);
504 }
505
506 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
507                           struct btrfs_root *root, int throttle, int lock)
508 {
509         struct btrfs_transaction *cur_trans = trans->transaction;
510         struct btrfs_fs_info *info = root->fs_info;
511         int count = 0;
512         int err = 0;
513
514         if (--trans->use_count) {
515                 trans->block_rsv = trans->orig_rsv;
516                 return 0;
517         }
518
519         btrfs_trans_release_metadata(trans, root);
520         trans->block_rsv = NULL;
521         while (count < 2) {
522                 unsigned long cur = trans->delayed_ref_updates;
523                 trans->delayed_ref_updates = 0;
524                 if (cur &&
525                     trans->transaction->delayed_refs.num_heads_ready > 64) {
526                         trans->delayed_ref_updates = 0;
527                         btrfs_run_delayed_refs(trans, root, cur);
528                 } else {
529                         break;
530                 }
531                 count++;
532         }
533
534         sb_end_intwrite(root->fs_info->sb);
535
536         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
537             should_end_transaction(trans, root)) {
538                 trans->transaction->blocked = 1;
539                 smp_wmb();
540         }
541
542         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
543                 if (throttle) {
544                         /*
545                          * We may race with somebody else here so end up having
546                          * to call end_transaction on ourselves again, so inc
547                          * our use_count.
548                          */
549                         trans->use_count++;
550                         return btrfs_commit_transaction(trans, root);
551                 } else {
552                         wake_up_process(info->transaction_kthread);
553                 }
554         }
555
556         WARN_ON(cur_trans != info->running_transaction);
557         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
558         atomic_dec(&cur_trans->num_writers);
559
560         smp_mb();
561         if (waitqueue_active(&cur_trans->writer_wait))
562                 wake_up(&cur_trans->writer_wait);
563         put_transaction(cur_trans);
564
565         if (current->journal_info == trans)
566                 current->journal_info = NULL;
567
568         if (throttle)
569                 btrfs_run_delayed_iputs(root);
570
571         if (trans->aborted ||
572             root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
573                 err = -EIO;
574         }
575
576         memset(trans, 0, sizeof(*trans));
577         kmem_cache_free(btrfs_trans_handle_cachep, trans);
578         return err;
579 }
580
581 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
582                           struct btrfs_root *root)
583 {
584         int ret;
585
586         ret = __btrfs_end_transaction(trans, root, 0, 1);
587         if (ret)
588                 return ret;
589         return 0;
590 }
591
592 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
593                                    struct btrfs_root *root)
594 {
595         int ret;
596
597         ret = __btrfs_end_transaction(trans, root, 1, 1);
598         if (ret)
599                 return ret;
600         return 0;
601 }
602
603 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
604                                  struct btrfs_root *root)
605 {
606         int ret;
607
608         ret = __btrfs_end_transaction(trans, root, 0, 0);
609         if (ret)
610                 return ret;
611         return 0;
612 }
613
614 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
615                                 struct btrfs_root *root)
616 {
617         return __btrfs_end_transaction(trans, root, 1, 1);
618 }
619
620 /*
621  * when btree blocks are allocated, they have some corresponding bits set for
622  * them in one of two extent_io trees.  This is used to make sure all of
623  * those extents are sent to disk but does not wait on them
624  */
625 int btrfs_write_marked_extents(struct btrfs_root *root,
626                                struct extent_io_tree *dirty_pages, int mark)
627 {
628         int err = 0;
629         int werr = 0;
630         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
631         u64 start = 0;
632         u64 end;
633
634         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
635                                       mark)) {
636                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
637                                    GFP_NOFS);
638                 err = filemap_fdatawrite_range(mapping, start, end);
639                 if (err)
640                         werr = err;
641                 cond_resched();
642                 start = end + 1;
643         }
644         if (err)
645                 werr = err;
646         return werr;
647 }
648
649 /*
650  * when btree blocks are allocated, they have some corresponding bits set for
651  * them in one of two extent_io trees.  This is used to make sure all of
652  * those extents are on disk for transaction or log commit.  We wait
653  * on all the pages and clear them from the dirty pages state tree
654  */
655 int btrfs_wait_marked_extents(struct btrfs_root *root,
656                               struct extent_io_tree *dirty_pages, int mark)
657 {
658         int err = 0;
659         int werr = 0;
660         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
661         u64 start = 0;
662         u64 end;
663
664         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
665                                       EXTENT_NEED_WAIT)) {
666                 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
667                 err = filemap_fdatawait_range(mapping, start, end);
668                 if (err)
669                         werr = err;
670                 cond_resched();
671                 start = end + 1;
672         }
673         if (err)
674                 werr = err;
675         return werr;
676 }
677
678 /*
679  * when btree blocks are allocated, they have some corresponding bits set for
680  * them in one of two extent_io trees.  This is used to make sure all of
681  * those extents are on disk for transaction or log commit
682  */
683 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
684                                 struct extent_io_tree *dirty_pages, int mark)
685 {
686         int ret;
687         int ret2;
688
689         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
690         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
691
692         if (ret)
693                 return ret;
694         if (ret2)
695                 return ret2;
696         return 0;
697 }
698
699 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
700                                      struct btrfs_root *root)
701 {
702         if (!trans || !trans->transaction) {
703                 struct inode *btree_inode;
704                 btree_inode = root->fs_info->btree_inode;
705                 return filemap_write_and_wait(btree_inode->i_mapping);
706         }
707         return btrfs_write_and_wait_marked_extents(root,
708                                            &trans->transaction->dirty_pages,
709                                            EXTENT_DIRTY);
710 }
711
712 /*
713  * this is used to update the root pointer in the tree of tree roots.
714  *
715  * But, in the case of the extent allocation tree, updating the root
716  * pointer may allocate blocks which may change the root of the extent
717  * allocation tree.
718  *
719  * So, this loops and repeats and makes sure the cowonly root didn't
720  * change while the root pointer was being updated in the metadata.
721  */
722 static int update_cowonly_root(struct btrfs_trans_handle *trans,
723                                struct btrfs_root *root)
724 {
725         int ret;
726         u64 old_root_bytenr;
727         u64 old_root_used;
728         struct btrfs_root *tree_root = root->fs_info->tree_root;
729
730         old_root_used = btrfs_root_used(&root->root_item);
731         btrfs_write_dirty_block_groups(trans, root);
732
733         while (1) {
734                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
735                 if (old_root_bytenr == root->node->start &&
736                     old_root_used == btrfs_root_used(&root->root_item))
737                         break;
738
739                 btrfs_set_root_node(&root->root_item, root->node);
740                 ret = btrfs_update_root(trans, tree_root,
741                                         &root->root_key,
742                                         &root->root_item);
743                 if (ret)
744                         return ret;
745
746                 old_root_used = btrfs_root_used(&root->root_item);
747                 ret = btrfs_write_dirty_block_groups(trans, root);
748                 if (ret)
749                         return ret;
750         }
751
752         if (root != root->fs_info->extent_root)
753                 switch_commit_root(root);
754
755         return 0;
756 }
757
758 /*
759  * update all the cowonly tree roots on disk
760  *
761  * The error handling in this function may not be obvious. Any of the
762  * failures will cause the file system to go offline. We still need
763  * to clean up the delayed refs.
764  */
765 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
766                                          struct btrfs_root *root)
767 {
768         struct btrfs_fs_info *fs_info = root->fs_info;
769         struct list_head *next;
770         struct extent_buffer *eb;
771         int ret;
772
773         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
774         if (ret)
775                 return ret;
776
777         eb = btrfs_lock_root_node(fs_info->tree_root);
778         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
779                               0, &eb);
780         btrfs_tree_unlock(eb);
781         free_extent_buffer(eb);
782
783         if (ret)
784                 return ret;
785
786         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
787         if (ret)
788                 return ret;
789
790         ret = btrfs_run_dev_stats(trans, root->fs_info);
791         BUG_ON(ret);
792
793         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
794                 next = fs_info->dirty_cowonly_roots.next;
795                 list_del_init(next);
796                 root = list_entry(next, struct btrfs_root, dirty_list);
797
798                 ret = update_cowonly_root(trans, root);
799                 if (ret)
800                         return ret;
801         }
802
803         down_write(&fs_info->extent_commit_sem);
804         switch_commit_root(fs_info->extent_root);
805         up_write(&fs_info->extent_commit_sem);
806
807         return 0;
808 }
809
810 /*
811  * dead roots are old snapshots that need to be deleted.  This allocates
812  * a dirty root struct and adds it into the list of dead roots that need to
813  * be deleted
814  */
815 int btrfs_add_dead_root(struct btrfs_root *root)
816 {
817         spin_lock(&root->fs_info->trans_lock);
818         list_add(&root->root_list, &root->fs_info->dead_roots);
819         spin_unlock(&root->fs_info->trans_lock);
820         return 0;
821 }
822
823 /*
824  * update all the cowonly tree roots on disk
825  */
826 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
827                                     struct btrfs_root *root)
828 {
829         struct btrfs_root *gang[8];
830         struct btrfs_fs_info *fs_info = root->fs_info;
831         int i;
832         int ret;
833         int err = 0;
834
835         spin_lock(&fs_info->fs_roots_radix_lock);
836         while (1) {
837                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
838                                                  (void **)gang, 0,
839                                                  ARRAY_SIZE(gang),
840                                                  BTRFS_ROOT_TRANS_TAG);
841                 if (ret == 0)
842                         break;
843                 for (i = 0; i < ret; i++) {
844                         root = gang[i];
845                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
846                                         (unsigned long)root->root_key.objectid,
847                                         BTRFS_ROOT_TRANS_TAG);
848                         spin_unlock(&fs_info->fs_roots_radix_lock);
849
850                         btrfs_free_log(trans, root);
851                         btrfs_update_reloc_root(trans, root);
852                         btrfs_orphan_commit_root(trans, root);
853
854                         btrfs_save_ino_cache(root, trans);
855
856                         /* see comments in should_cow_block() */
857                         root->force_cow = 0;
858                         smp_wmb();
859
860                         if (root->commit_root != root->node) {
861                                 mutex_lock(&root->fs_commit_mutex);
862                                 switch_commit_root(root);
863                                 btrfs_unpin_free_ino(root);
864                                 mutex_unlock(&root->fs_commit_mutex);
865
866                                 btrfs_set_root_node(&root->root_item,
867                                                     root->node);
868                         }
869
870                         err = btrfs_update_root(trans, fs_info->tree_root,
871                                                 &root->root_key,
872                                                 &root->root_item);
873                         spin_lock(&fs_info->fs_roots_radix_lock);
874                         if (err)
875                                 break;
876                 }
877         }
878         spin_unlock(&fs_info->fs_roots_radix_lock);
879         return err;
880 }
881
882 /*
883  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
884  * otherwise every leaf in the btree is read and defragged.
885  */
886 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
887 {
888         struct btrfs_fs_info *info = root->fs_info;
889         struct btrfs_trans_handle *trans;
890         int ret;
891         unsigned long nr;
892
893         if (xchg(&root->defrag_running, 1))
894                 return 0;
895
896         while (1) {
897                 trans = btrfs_start_transaction(root, 0);
898                 if (IS_ERR(trans))
899                         return PTR_ERR(trans);
900
901                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
902
903                 nr = trans->blocks_used;
904                 btrfs_end_transaction(trans, root);
905                 btrfs_btree_balance_dirty(info->tree_root, nr);
906                 cond_resched();
907
908                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
909                         break;
910         }
911         root->defrag_running = 0;
912         return ret;
913 }
914
915 /*
916  * new snapshots need to be created at a very specific time in the
917  * transaction commit.  This does the actual creation
918  */
919 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
920                                    struct btrfs_fs_info *fs_info,
921                                    struct btrfs_pending_snapshot *pending)
922 {
923         struct btrfs_key key;
924         struct btrfs_root_item *new_root_item;
925         struct btrfs_root *tree_root = fs_info->tree_root;
926         struct btrfs_root *root = pending->root;
927         struct btrfs_root *parent_root;
928         struct btrfs_block_rsv *rsv;
929         struct inode *parent_inode;
930         struct dentry *parent;
931         struct dentry *dentry;
932         struct extent_buffer *tmp;
933         struct extent_buffer *old;
934         int ret;
935         u64 to_reserve = 0;
936         u64 index = 0;
937         u64 objectid;
938         u64 root_flags;
939
940         rsv = trans->block_rsv;
941
942         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
943         if (!new_root_item) {
944                 ret = pending->error = -ENOMEM;
945                 goto fail;
946         }
947
948         ret = btrfs_find_free_objectid(tree_root, &objectid);
949         if (ret) {
950                 pending->error = ret;
951                 goto fail;
952         }
953
954         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
955
956         if (to_reserve > 0) {
957                 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
958                                                   to_reserve);
959                 if (ret) {
960                         pending->error = ret;
961                         goto fail;
962                 }
963         }
964
965         key.objectid = objectid;
966         key.offset = (u64)-1;
967         key.type = BTRFS_ROOT_ITEM_KEY;
968
969         trans->block_rsv = &pending->block_rsv;
970
971         dentry = pending->dentry;
972         parent = dget_parent(dentry);
973         parent_inode = parent->d_inode;
974         parent_root = BTRFS_I(parent_inode)->root;
975         record_root_in_trans(trans, parent_root);
976
977         /*
978          * insert the directory item
979          */
980         ret = btrfs_set_inode_index(parent_inode, &index);
981         BUG_ON(ret); /* -ENOMEM */
982         ret = btrfs_insert_dir_item(trans, parent_root,
983                                 dentry->d_name.name, dentry->d_name.len,
984                                 parent_inode, &key,
985                                 BTRFS_FT_DIR, index);
986         if (ret == -EEXIST) {
987                 pending->error = -EEXIST;
988                 dput(parent);
989                 goto fail;
990         } else if (ret) {
991                 goto abort_trans_dput;
992         }
993
994         btrfs_i_size_write(parent_inode, parent_inode->i_size +
995                                          dentry->d_name.len * 2);
996         ret = btrfs_update_inode(trans, parent_root, parent_inode);
997         if (ret)
998                 goto abort_trans_dput;
999
1000         /*
1001          * pull in the delayed directory update
1002          * and the delayed inode item
1003          * otherwise we corrupt the FS during
1004          * snapshot
1005          */
1006         ret = btrfs_run_delayed_items(trans, root);
1007         if (ret) { /* Transaction aborted */
1008                 dput(parent);
1009                 goto fail;
1010         }
1011
1012         record_root_in_trans(trans, root);
1013         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1014         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1015         btrfs_check_and_init_root_item(new_root_item);
1016
1017         root_flags = btrfs_root_flags(new_root_item);
1018         if (pending->readonly)
1019                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1020         else
1021                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1022         btrfs_set_root_flags(new_root_item, root_flags);
1023
1024         old = btrfs_lock_root_node(root);
1025         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1026         if (ret) {
1027                 btrfs_tree_unlock(old);
1028                 free_extent_buffer(old);
1029                 goto abort_trans_dput;
1030         }
1031
1032         btrfs_set_lock_blocking(old);
1033
1034         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1035         /* clean up in any case */
1036         btrfs_tree_unlock(old);
1037         free_extent_buffer(old);
1038         if (ret)
1039                 goto abort_trans_dput;
1040
1041         /* see comments in should_cow_block() */
1042         root->force_cow = 1;
1043         smp_wmb();
1044
1045         btrfs_set_root_node(new_root_item, tmp);
1046         /* record when the snapshot was created in key.offset */
1047         key.offset = trans->transid;
1048         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1049         btrfs_tree_unlock(tmp);
1050         free_extent_buffer(tmp);
1051         if (ret)
1052                 goto abort_trans_dput;
1053
1054         /*
1055          * insert root back/forward references
1056          */
1057         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1058                                  parent_root->root_key.objectid,
1059                                  btrfs_ino(parent_inode), index,
1060                                  dentry->d_name.name, dentry->d_name.len);
1061         dput(parent);
1062         if (ret)
1063                 goto fail;
1064
1065         key.offset = (u64)-1;
1066         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1067         if (IS_ERR(pending->snap)) {
1068                 ret = PTR_ERR(pending->snap);
1069                 goto abort_trans;
1070         }
1071
1072         ret = btrfs_reloc_post_snapshot(trans, pending);
1073         if (ret)
1074                 goto abort_trans;
1075         ret = 0;
1076 fail:
1077         kfree(new_root_item);
1078         trans->block_rsv = rsv;
1079         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1080         return ret;
1081
1082 abort_trans_dput:
1083         dput(parent);
1084 abort_trans:
1085         btrfs_abort_transaction(trans, root, ret);
1086         goto fail;
1087 }
1088
1089 /*
1090  * create all the snapshots we've scheduled for creation
1091  */
1092 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1093                                              struct btrfs_fs_info *fs_info)
1094 {
1095         struct btrfs_pending_snapshot *pending;
1096         struct list_head *head = &trans->transaction->pending_snapshots;
1097
1098         list_for_each_entry(pending, head, list)
1099                 create_pending_snapshot(trans, fs_info, pending);
1100         return 0;
1101 }
1102
1103 static void update_super_roots(struct btrfs_root *root)
1104 {
1105         struct btrfs_root_item *root_item;
1106         struct btrfs_super_block *super;
1107
1108         super = root->fs_info->super_copy;
1109
1110         root_item = &root->fs_info->chunk_root->root_item;
1111         super->chunk_root = root_item->bytenr;
1112         super->chunk_root_generation = root_item->generation;
1113         super->chunk_root_level = root_item->level;
1114
1115         root_item = &root->fs_info->tree_root->root_item;
1116         super->root = root_item->bytenr;
1117         super->generation = root_item->generation;
1118         super->root_level = root_item->level;
1119         if (btrfs_test_opt(root, SPACE_CACHE))
1120                 super->cache_generation = root_item->generation;
1121 }
1122
1123 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1124 {
1125         int ret = 0;
1126         spin_lock(&info->trans_lock);
1127         if (info->running_transaction)
1128                 ret = info->running_transaction->in_commit;
1129         spin_unlock(&info->trans_lock);
1130         return ret;
1131 }
1132
1133 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1134 {
1135         int ret = 0;
1136         spin_lock(&info->trans_lock);
1137         if (info->running_transaction)
1138                 ret = info->running_transaction->blocked;
1139         spin_unlock(&info->trans_lock);
1140         return ret;
1141 }
1142
1143 /*
1144  * wait for the current transaction commit to start and block subsequent
1145  * transaction joins
1146  */
1147 static void wait_current_trans_commit_start(struct btrfs_root *root,
1148                                             struct btrfs_transaction *trans)
1149 {
1150         wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1151 }
1152
1153 /*
1154  * wait for the current transaction to start and then become unblocked.
1155  * caller holds ref.
1156  */
1157 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1158                                          struct btrfs_transaction *trans)
1159 {
1160         wait_event(root->fs_info->transaction_wait,
1161                    trans->commit_done || (trans->in_commit && !trans->blocked));
1162 }
1163
1164 /*
1165  * commit transactions asynchronously. once btrfs_commit_transaction_async
1166  * returns, any subsequent transaction will not be allowed to join.
1167  */
1168 struct btrfs_async_commit {
1169         struct btrfs_trans_handle *newtrans;
1170         struct btrfs_root *root;
1171         struct delayed_work work;
1172 };
1173
1174 static void do_async_commit(struct work_struct *work)
1175 {
1176         struct btrfs_async_commit *ac =
1177                 container_of(work, struct btrfs_async_commit, work.work);
1178
1179         btrfs_commit_transaction(ac->newtrans, ac->root);
1180         kfree(ac);
1181 }
1182
1183 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1184                                    struct btrfs_root *root,
1185                                    int wait_for_unblock)
1186 {
1187         struct btrfs_async_commit *ac;
1188         struct btrfs_transaction *cur_trans;
1189
1190         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1191         if (!ac)
1192                 return -ENOMEM;
1193
1194         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1195         ac->root = root;
1196         ac->newtrans = btrfs_join_transaction(root);
1197         if (IS_ERR(ac->newtrans)) {
1198                 int err = PTR_ERR(ac->newtrans);
1199                 kfree(ac);
1200                 return err;
1201         }
1202
1203         /* take transaction reference */
1204         cur_trans = trans->transaction;
1205         atomic_inc(&cur_trans->use_count);
1206
1207         btrfs_end_transaction(trans, root);
1208         schedule_delayed_work(&ac->work, 0);
1209
1210         /* wait for transaction to start and unblock */
1211         if (wait_for_unblock)
1212                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1213         else
1214                 wait_current_trans_commit_start(root, cur_trans);
1215
1216         if (current->journal_info == trans)
1217                 current->journal_info = NULL;
1218
1219         put_transaction(cur_trans);
1220         return 0;
1221 }
1222
1223
1224 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1225                                 struct btrfs_root *root, int err)
1226 {
1227         struct btrfs_transaction *cur_trans = trans->transaction;
1228
1229         WARN_ON(trans->use_count > 1);
1230
1231         btrfs_abort_transaction(trans, root, err);
1232
1233         spin_lock(&root->fs_info->trans_lock);
1234         list_del_init(&cur_trans->list);
1235         if (cur_trans == root->fs_info->running_transaction) {
1236                 root->fs_info->running_transaction = NULL;
1237                 root->fs_info->trans_no_join = 0;
1238         }
1239         spin_unlock(&root->fs_info->trans_lock);
1240
1241         btrfs_cleanup_one_transaction(trans->transaction, root);
1242
1243         put_transaction(cur_trans);
1244         put_transaction(cur_trans);
1245
1246         trace_btrfs_transaction_commit(root);
1247
1248         btrfs_scrub_continue(root);
1249
1250         if (current->journal_info == trans)
1251                 current->journal_info = NULL;
1252
1253         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1254 }
1255
1256 /*
1257  * btrfs_transaction state sequence:
1258  *    in_commit = 0, blocked = 0  (initial)
1259  *    in_commit = 1, blocked = 1
1260  *    blocked = 0
1261  *    commit_done = 1
1262  */
1263 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1264                              struct btrfs_root *root)
1265 {
1266         unsigned long joined = 0;
1267         struct btrfs_transaction *cur_trans = trans->transaction;
1268         struct btrfs_transaction *prev_trans = NULL;
1269         DEFINE_WAIT(wait);
1270         int ret = -EIO;
1271         int should_grow = 0;
1272         unsigned long now = get_seconds();
1273         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1274
1275         btrfs_run_ordered_operations(root, 0);
1276
1277         btrfs_trans_release_metadata(trans, root);
1278         trans->block_rsv = NULL;
1279
1280         if (cur_trans->aborted)
1281                 goto cleanup_transaction;
1282
1283         /* make a pass through all the delayed refs we have so far
1284          * any runnings procs may add more while we are here
1285          */
1286         ret = btrfs_run_delayed_refs(trans, root, 0);
1287         if (ret)
1288                 goto cleanup_transaction;
1289
1290         cur_trans = trans->transaction;
1291
1292         /*
1293          * set the flushing flag so procs in this transaction have to
1294          * start sending their work down.
1295          */
1296         cur_trans->delayed_refs.flushing = 1;
1297
1298         ret = btrfs_run_delayed_refs(trans, root, 0);
1299         if (ret)
1300                 goto cleanup_transaction;
1301
1302         spin_lock(&cur_trans->commit_lock);
1303         if (cur_trans->in_commit) {
1304                 spin_unlock(&cur_trans->commit_lock);
1305                 atomic_inc(&cur_trans->use_count);
1306                 ret = btrfs_end_transaction(trans, root);
1307
1308                 wait_for_commit(root, cur_trans);
1309
1310                 put_transaction(cur_trans);
1311
1312                 return ret;
1313         }
1314
1315         trans->transaction->in_commit = 1;
1316         trans->transaction->blocked = 1;
1317         spin_unlock(&cur_trans->commit_lock);
1318         wake_up(&root->fs_info->transaction_blocked_wait);
1319
1320         spin_lock(&root->fs_info->trans_lock);
1321         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1322                 prev_trans = list_entry(cur_trans->list.prev,
1323                                         struct btrfs_transaction, list);
1324                 if (!prev_trans->commit_done) {
1325                         atomic_inc(&prev_trans->use_count);
1326                         spin_unlock(&root->fs_info->trans_lock);
1327
1328                         wait_for_commit(root, prev_trans);
1329
1330                         put_transaction(prev_trans);
1331                 } else {
1332                         spin_unlock(&root->fs_info->trans_lock);
1333                 }
1334         } else {
1335                 spin_unlock(&root->fs_info->trans_lock);
1336         }
1337
1338         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1339                 should_grow = 1;
1340
1341         do {
1342                 int snap_pending = 0;
1343
1344                 joined = cur_trans->num_joined;
1345                 if (!list_empty(&trans->transaction->pending_snapshots))
1346                         snap_pending = 1;
1347
1348                 WARN_ON(cur_trans != trans->transaction);
1349
1350                 if (flush_on_commit || snap_pending) {
1351                         btrfs_start_delalloc_inodes(root, 1);
1352                         btrfs_wait_ordered_extents(root, 0, 1);
1353                 }
1354
1355                 ret = btrfs_run_delayed_items(trans, root);
1356                 if (ret)
1357                         goto cleanup_transaction;
1358
1359                 /*
1360                  * rename don't use btrfs_join_transaction, so, once we
1361                  * set the transaction to blocked above, we aren't going
1362                  * to get any new ordered operations.  We can safely run
1363                  * it here and no for sure that nothing new will be added
1364                  * to the list
1365                  */
1366                 btrfs_run_ordered_operations(root, 1);
1367
1368                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1369                                 TASK_UNINTERRUPTIBLE);
1370
1371                 if (atomic_read(&cur_trans->num_writers) > 1)
1372                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1373                 else if (should_grow)
1374                         schedule_timeout(1);
1375
1376                 finish_wait(&cur_trans->writer_wait, &wait);
1377         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1378                  (should_grow && cur_trans->num_joined != joined));
1379
1380         /*
1381          * Ok now we need to make sure to block out any other joins while we
1382          * commit the transaction.  We could have started a join before setting
1383          * no_join so make sure to wait for num_writers to == 1 again.
1384          */
1385         spin_lock(&root->fs_info->trans_lock);
1386         root->fs_info->trans_no_join = 1;
1387         spin_unlock(&root->fs_info->trans_lock);
1388         wait_event(cur_trans->writer_wait,
1389                    atomic_read(&cur_trans->num_writers) == 1);
1390
1391         /*
1392          * the reloc mutex makes sure that we stop
1393          * the balancing code from coming in and moving
1394          * extents around in the middle of the commit
1395          */
1396         mutex_lock(&root->fs_info->reloc_mutex);
1397
1398         ret = btrfs_run_delayed_items(trans, root);
1399         if (ret) {
1400                 mutex_unlock(&root->fs_info->reloc_mutex);
1401                 goto cleanup_transaction;
1402         }
1403
1404         ret = create_pending_snapshots(trans, root->fs_info);
1405         if (ret) {
1406                 mutex_unlock(&root->fs_info->reloc_mutex);
1407                 goto cleanup_transaction;
1408         }
1409
1410         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1411         if (ret) {
1412                 mutex_unlock(&root->fs_info->reloc_mutex);
1413                 goto cleanup_transaction;
1414         }
1415
1416         /*
1417          * make sure none of the code above managed to slip in a
1418          * delayed item
1419          */
1420         btrfs_assert_delayed_root_empty(root);
1421
1422         WARN_ON(cur_trans != trans->transaction);
1423
1424         btrfs_scrub_pause(root);
1425         /* btrfs_commit_tree_roots is responsible for getting the
1426          * various roots consistent with each other.  Every pointer
1427          * in the tree of tree roots has to point to the most up to date
1428          * root for every subvolume and other tree.  So, we have to keep
1429          * the tree logging code from jumping in and changing any
1430          * of the trees.
1431          *
1432          * At this point in the commit, there can't be any tree-log
1433          * writers, but a little lower down we drop the trans mutex
1434          * and let new people in.  By holding the tree_log_mutex
1435          * from now until after the super is written, we avoid races
1436          * with the tree-log code.
1437          */
1438         mutex_lock(&root->fs_info->tree_log_mutex);
1439
1440         ret = commit_fs_roots(trans, root);
1441         if (ret) {
1442                 mutex_unlock(&root->fs_info->tree_log_mutex);
1443                 mutex_unlock(&root->fs_info->reloc_mutex);
1444                 goto cleanup_transaction;
1445         }
1446
1447         /* commit_fs_roots gets rid of all the tree log roots, it is now
1448          * safe to free the root of tree log roots
1449          */
1450         btrfs_free_log_root_tree(trans, root->fs_info);
1451
1452         ret = commit_cowonly_roots(trans, root);
1453         if (ret) {
1454                 mutex_unlock(&root->fs_info->tree_log_mutex);
1455                 mutex_unlock(&root->fs_info->reloc_mutex);
1456                 goto cleanup_transaction;
1457         }
1458
1459         btrfs_prepare_extent_commit(trans, root);
1460
1461         cur_trans = root->fs_info->running_transaction;
1462
1463         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1464                             root->fs_info->tree_root->node);
1465         switch_commit_root(root->fs_info->tree_root);
1466
1467         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1468                             root->fs_info->chunk_root->node);
1469         switch_commit_root(root->fs_info->chunk_root);
1470
1471         update_super_roots(root);
1472
1473         if (!root->fs_info->log_root_recovering) {
1474                 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1475                 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1476         }
1477
1478         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1479                sizeof(*root->fs_info->super_copy));
1480
1481         trans->transaction->blocked = 0;
1482         spin_lock(&root->fs_info->trans_lock);
1483         root->fs_info->running_transaction = NULL;
1484         root->fs_info->trans_no_join = 0;
1485         spin_unlock(&root->fs_info->trans_lock);
1486         mutex_unlock(&root->fs_info->reloc_mutex);
1487
1488         wake_up(&root->fs_info->transaction_wait);
1489
1490         ret = btrfs_write_and_wait_transaction(trans, root);
1491         if (ret) {
1492                 btrfs_error(root->fs_info, ret,
1493                             "Error while writing out transaction.");
1494                 mutex_unlock(&root->fs_info->tree_log_mutex);
1495                 goto cleanup_transaction;
1496         }
1497
1498         ret = write_ctree_super(trans, root, 0);
1499         if (ret) {
1500                 mutex_unlock(&root->fs_info->tree_log_mutex);
1501                 goto cleanup_transaction;
1502         }
1503
1504         /*
1505          * the super is written, we can safely allow the tree-loggers
1506          * to go about their business
1507          */
1508         mutex_unlock(&root->fs_info->tree_log_mutex);
1509
1510         btrfs_finish_extent_commit(trans, root);
1511
1512         cur_trans->commit_done = 1;
1513
1514         root->fs_info->last_trans_committed = cur_trans->transid;
1515
1516         wake_up(&cur_trans->commit_wait);
1517
1518         spin_lock(&root->fs_info->trans_lock);
1519         list_del_init(&cur_trans->list);
1520         spin_unlock(&root->fs_info->trans_lock);
1521
1522         put_transaction(cur_trans);
1523         put_transaction(cur_trans);
1524
1525         sb_end_intwrite(root->fs_info->sb);
1526
1527         trace_btrfs_transaction_commit(root);
1528
1529         btrfs_scrub_continue(root);
1530
1531         if (current->journal_info == trans)
1532                 current->journal_info = NULL;
1533
1534         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1535
1536         if (current != root->fs_info->transaction_kthread)
1537                 btrfs_run_delayed_iputs(root);
1538
1539         return ret;
1540
1541 cleanup_transaction:
1542         btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1543 //      WARN_ON(1);
1544         if (current->journal_info == trans)
1545                 current->journal_info = NULL;
1546         cleanup_transaction(trans, root, ret);
1547
1548         return ret;
1549 }
1550
1551 /*
1552  * interface function to delete all the snapshots we have scheduled for deletion
1553  */
1554 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1555 {
1556         LIST_HEAD(list);
1557         struct btrfs_fs_info *fs_info = root->fs_info;
1558
1559         spin_lock(&fs_info->trans_lock);
1560         list_splice_init(&fs_info->dead_roots, &list);
1561         spin_unlock(&fs_info->trans_lock);
1562
1563         while (!list_empty(&list)) {
1564                 int ret;
1565
1566                 root = list_entry(list.next, struct btrfs_root, root_list);
1567                 list_del(&root->root_list);
1568
1569                 btrfs_kill_all_delayed_nodes(root);
1570
1571                 if (btrfs_header_backref_rev(root->node) <
1572                     BTRFS_MIXED_BACKREF_REV)
1573                         ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1574                 else
1575                         ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1576                 BUG_ON(ret < 0);
1577         }
1578         return 0;
1579 }