thermal: armada: Add support for Armada AP806
[linux-2.6-block.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39         [TRANS_STATE_RUNNING]           = 0U,
40         [TRANS_STATE_BLOCKED]           = (__TRANS_USERSPACE |
41                                            __TRANS_START),
42         [TRANS_STATE_COMMIT_START]      = (__TRANS_USERSPACE |
43                                            __TRANS_START |
44                                            __TRANS_ATTACH),
45         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_USERSPACE |
46                                            __TRANS_START |
47                                            __TRANS_ATTACH |
48                                            __TRANS_JOIN),
49         [TRANS_STATE_UNBLOCKED]         = (__TRANS_USERSPACE |
50                                            __TRANS_START |
51                                            __TRANS_ATTACH |
52                                            __TRANS_JOIN |
53                                            __TRANS_JOIN_NOLOCK),
54         [TRANS_STATE_COMPLETED]         = (__TRANS_USERSPACE |
55                                            __TRANS_START |
56                                            __TRANS_ATTACH |
57                                            __TRANS_JOIN |
58                                            __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63         WARN_ON(refcount_read(&transaction->use_count) == 0);
64         if (refcount_dec_and_test(&transaction->use_count)) {
65                 BUG_ON(!list_empty(&transaction->list));
66                 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67                 if (transaction->delayed_refs.pending_csums)
68                         btrfs_err(transaction->fs_info,
69                                   "pending csums is %llu",
70                                   transaction->delayed_refs.pending_csums);
71                 while (!list_empty(&transaction->pending_chunks)) {
72                         struct extent_map *em;
73
74                         em = list_first_entry(&transaction->pending_chunks,
75                                               struct extent_map, list);
76                         list_del_init(&em->list);
77                         free_extent_map(em);
78                 }
79                 /*
80                  * If any block groups are found in ->deleted_bgs then it's
81                  * because the transaction was aborted and a commit did not
82                  * happen (things failed before writing the new superblock
83                  * and calling btrfs_finish_extent_commit()), so we can not
84                  * discard the physical locations of the block groups.
85                  */
86                 while (!list_empty(&transaction->deleted_bgs)) {
87                         struct btrfs_block_group_cache *cache;
88
89                         cache = list_first_entry(&transaction->deleted_bgs,
90                                                  struct btrfs_block_group_cache,
91                                                  bg_list);
92                         list_del_init(&cache->bg_list);
93                         btrfs_put_block_group_trimming(cache);
94                         btrfs_put_block_group(cache);
95                 }
96                 kfree(transaction);
97         }
98 }
99
100 static void clear_btree_io_tree(struct extent_io_tree *tree)
101 {
102         spin_lock(&tree->lock);
103         /*
104          * Do a single barrier for the waitqueue_active check here, the state
105          * of the waitqueue should not change once clear_btree_io_tree is
106          * called.
107          */
108         smp_mb();
109         while (!RB_EMPTY_ROOT(&tree->state)) {
110                 struct rb_node *node;
111                 struct extent_state *state;
112
113                 node = rb_first(&tree->state);
114                 state = rb_entry(node, struct extent_state, rb_node);
115                 rb_erase(&state->rb_node, &tree->state);
116                 RB_CLEAR_NODE(&state->rb_node);
117                 /*
118                  * btree io trees aren't supposed to have tasks waiting for
119                  * changes in the flags of extent states ever.
120                  */
121                 ASSERT(!waitqueue_active(&state->wq));
122                 free_extent_state(state);
123
124                 cond_resched_lock(&tree->lock);
125         }
126         spin_unlock(&tree->lock);
127 }
128
129 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
130                                          struct btrfs_fs_info *fs_info)
131 {
132         struct btrfs_root *root, *tmp;
133
134         down_write(&fs_info->commit_root_sem);
135         list_for_each_entry_safe(root, tmp, &trans->switch_commits,
136                                  dirty_list) {
137                 list_del_init(&root->dirty_list);
138                 free_extent_buffer(root->commit_root);
139                 root->commit_root = btrfs_root_node(root);
140                 if (is_fstree(root->objectid))
141                         btrfs_unpin_free_ino(root);
142                 clear_btree_io_tree(&root->dirty_log_pages);
143         }
144
145         /* We can free old roots now. */
146         spin_lock(&trans->dropped_roots_lock);
147         while (!list_empty(&trans->dropped_roots)) {
148                 root = list_first_entry(&trans->dropped_roots,
149                                         struct btrfs_root, root_list);
150                 list_del_init(&root->root_list);
151                 spin_unlock(&trans->dropped_roots_lock);
152                 btrfs_drop_and_free_fs_root(fs_info, root);
153                 spin_lock(&trans->dropped_roots_lock);
154         }
155         spin_unlock(&trans->dropped_roots_lock);
156         up_write(&fs_info->commit_root_sem);
157 }
158
159 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
160                                          unsigned int type)
161 {
162         if (type & TRANS_EXTWRITERS)
163                 atomic_inc(&trans->num_extwriters);
164 }
165
166 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
167                                          unsigned int type)
168 {
169         if (type & TRANS_EXTWRITERS)
170                 atomic_dec(&trans->num_extwriters);
171 }
172
173 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
174                                           unsigned int type)
175 {
176         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
177 }
178
179 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
180 {
181         return atomic_read(&trans->num_extwriters);
182 }
183
184 /*
185  * either allocate a new transaction or hop into the existing one
186  */
187 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
188                                      unsigned int type)
189 {
190         struct btrfs_transaction *cur_trans;
191
192         spin_lock(&fs_info->trans_lock);
193 loop:
194         /* The file system has been taken offline. No new transactions. */
195         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
196                 spin_unlock(&fs_info->trans_lock);
197                 return -EROFS;
198         }
199
200         cur_trans = fs_info->running_transaction;
201         if (cur_trans) {
202                 if (cur_trans->aborted) {
203                         spin_unlock(&fs_info->trans_lock);
204                         return cur_trans->aborted;
205                 }
206                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
207                         spin_unlock(&fs_info->trans_lock);
208                         return -EBUSY;
209                 }
210                 refcount_inc(&cur_trans->use_count);
211                 atomic_inc(&cur_trans->num_writers);
212                 extwriter_counter_inc(cur_trans, type);
213                 spin_unlock(&fs_info->trans_lock);
214                 return 0;
215         }
216         spin_unlock(&fs_info->trans_lock);
217
218         /*
219          * If we are ATTACH, we just want to catch the current transaction,
220          * and commit it. If there is no transaction, just return ENOENT.
221          */
222         if (type == TRANS_ATTACH)
223                 return -ENOENT;
224
225         /*
226          * JOIN_NOLOCK only happens during the transaction commit, so
227          * it is impossible that ->running_transaction is NULL
228          */
229         BUG_ON(type == TRANS_JOIN_NOLOCK);
230
231         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
232         if (!cur_trans)
233                 return -ENOMEM;
234
235         spin_lock(&fs_info->trans_lock);
236         if (fs_info->running_transaction) {
237                 /*
238                  * someone started a transaction after we unlocked.  Make sure
239                  * to redo the checks above
240                  */
241                 kfree(cur_trans);
242                 goto loop;
243         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
244                 spin_unlock(&fs_info->trans_lock);
245                 kfree(cur_trans);
246                 return -EROFS;
247         }
248
249         cur_trans->fs_info = fs_info;
250         atomic_set(&cur_trans->num_writers, 1);
251         extwriter_counter_init(cur_trans, type);
252         init_waitqueue_head(&cur_trans->writer_wait);
253         init_waitqueue_head(&cur_trans->commit_wait);
254         init_waitqueue_head(&cur_trans->pending_wait);
255         cur_trans->state = TRANS_STATE_RUNNING;
256         /*
257          * One for this trans handle, one so it will live on until we
258          * commit the transaction.
259          */
260         refcount_set(&cur_trans->use_count, 2);
261         atomic_set(&cur_trans->pending_ordered, 0);
262         cur_trans->flags = 0;
263         cur_trans->start_time = get_seconds();
264
265         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
266
267         cur_trans->delayed_refs.href_root = RB_ROOT;
268         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
269         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
270
271         /*
272          * although the tree mod log is per file system and not per transaction,
273          * the log must never go across transaction boundaries.
274          */
275         smp_mb();
276         if (!list_empty(&fs_info->tree_mod_seq_list))
277                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
279                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280         atomic64_set(&fs_info->tree_mod_seq, 0);
281
282         spin_lock_init(&cur_trans->delayed_refs.lock);
283
284         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285         INIT_LIST_HEAD(&cur_trans->pending_chunks);
286         INIT_LIST_HEAD(&cur_trans->switch_commits);
287         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288         INIT_LIST_HEAD(&cur_trans->io_bgs);
289         INIT_LIST_HEAD(&cur_trans->dropped_roots);
290         mutex_init(&cur_trans->cache_write_mutex);
291         cur_trans->num_dirty_bgs = 0;
292         spin_lock_init(&cur_trans->dirty_bgs_lock);
293         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294         spin_lock_init(&cur_trans->dropped_roots_lock);
295         list_add_tail(&cur_trans->list, &fs_info->trans_list);
296         extent_io_tree_init(&cur_trans->dirty_pages,
297                              fs_info->btree_inode);
298         fs_info->generation++;
299         cur_trans->transid = fs_info->generation;
300         fs_info->running_transaction = cur_trans;
301         cur_trans->aborted = 0;
302         spin_unlock(&fs_info->trans_lock);
303
304         return 0;
305 }
306
307 /*
308  * this does all the record keeping required to make sure that a reference
309  * counted root is properly recorded in a given transaction.  This is required
310  * to make sure the old root from before we joined the transaction is deleted
311  * when the transaction commits
312  */
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314                                struct btrfs_root *root,
315                                int force)
316 {
317         struct btrfs_fs_info *fs_info = root->fs_info;
318
319         if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
320             root->last_trans < trans->transid) || force) {
321                 WARN_ON(root == fs_info->extent_root);
322                 WARN_ON(root->commit_root != root->node);
323
324                 /*
325                  * see below for IN_TRANS_SETUP usage rules
326                  * we have the reloc mutex held now, so there
327                  * is only one writer in this function
328                  */
329                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
330
331                 /* make sure readers find IN_TRANS_SETUP before
332                  * they find our root->last_trans update
333                  */
334                 smp_wmb();
335
336                 spin_lock(&fs_info->fs_roots_radix_lock);
337                 if (root->last_trans == trans->transid && !force) {
338                         spin_unlock(&fs_info->fs_roots_radix_lock);
339                         return 0;
340                 }
341                 radix_tree_tag_set(&fs_info->fs_roots_radix,
342                                    (unsigned long)root->root_key.objectid,
343                                    BTRFS_ROOT_TRANS_TAG);
344                 spin_unlock(&fs_info->fs_roots_radix_lock);
345                 root->last_trans = trans->transid;
346
347                 /* this is pretty tricky.  We don't want to
348                  * take the relocation lock in btrfs_record_root_in_trans
349                  * unless we're really doing the first setup for this root in
350                  * this transaction.
351                  *
352                  * Normally we'd use root->last_trans as a flag to decide
353                  * if we want to take the expensive mutex.
354                  *
355                  * But, we have to set root->last_trans before we
356                  * init the relocation root, otherwise, we trip over warnings
357                  * in ctree.c.  The solution used here is to flag ourselves
358                  * with root IN_TRANS_SETUP.  When this is 1, we're still
359                  * fixing up the reloc trees and everyone must wait.
360                  *
361                  * When this is zero, they can trust root->last_trans and fly
362                  * through btrfs_record_root_in_trans without having to take the
363                  * lock.  smp_wmb() makes sure that all the writes above are
364                  * done before we pop in the zero below
365                  */
366                 btrfs_init_reloc_root(trans, root);
367                 smp_mb__before_atomic();
368                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
369         }
370         return 0;
371 }
372
373
374 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
375                             struct btrfs_root *root)
376 {
377         struct btrfs_fs_info *fs_info = root->fs_info;
378         struct btrfs_transaction *cur_trans = trans->transaction;
379
380         /* Add ourselves to the transaction dropped list */
381         spin_lock(&cur_trans->dropped_roots_lock);
382         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
383         spin_unlock(&cur_trans->dropped_roots_lock);
384
385         /* Make sure we don't try to update the root at commit time */
386         spin_lock(&fs_info->fs_roots_radix_lock);
387         radix_tree_tag_clear(&fs_info->fs_roots_radix,
388                              (unsigned long)root->root_key.objectid,
389                              BTRFS_ROOT_TRANS_TAG);
390         spin_unlock(&fs_info->fs_roots_radix_lock);
391 }
392
393 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
394                                struct btrfs_root *root)
395 {
396         struct btrfs_fs_info *fs_info = root->fs_info;
397
398         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
399                 return 0;
400
401         /*
402          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
403          * and barriers
404          */
405         smp_rmb();
406         if (root->last_trans == trans->transid &&
407             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
408                 return 0;
409
410         mutex_lock(&fs_info->reloc_mutex);
411         record_root_in_trans(trans, root, 0);
412         mutex_unlock(&fs_info->reloc_mutex);
413
414         return 0;
415 }
416
417 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
418 {
419         return (trans->state >= TRANS_STATE_BLOCKED &&
420                 trans->state < TRANS_STATE_UNBLOCKED &&
421                 !trans->aborted);
422 }
423
424 /* wait for commit against the current transaction to become unblocked
425  * when this is done, it is safe to start a new transaction, but the current
426  * transaction might not be fully on disk.
427  */
428 static void wait_current_trans(struct btrfs_fs_info *fs_info)
429 {
430         struct btrfs_transaction *cur_trans;
431
432         spin_lock(&fs_info->trans_lock);
433         cur_trans = fs_info->running_transaction;
434         if (cur_trans && is_transaction_blocked(cur_trans)) {
435                 refcount_inc(&cur_trans->use_count);
436                 spin_unlock(&fs_info->trans_lock);
437
438                 wait_event(fs_info->transaction_wait,
439                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
440                            cur_trans->aborted);
441                 btrfs_put_transaction(cur_trans);
442         } else {
443                 spin_unlock(&fs_info->trans_lock);
444         }
445 }
446
447 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
448 {
449         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
450                 return 0;
451
452         if (type == TRANS_USERSPACE)
453                 return 1;
454
455         if (type == TRANS_START &&
456             !atomic_read(&fs_info->open_ioctl_trans))
457                 return 1;
458
459         return 0;
460 }
461
462 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
463 {
464         struct btrfs_fs_info *fs_info = root->fs_info;
465
466         if (!fs_info->reloc_ctl ||
467             !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
468             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
469             root->reloc_root)
470                 return false;
471
472         return true;
473 }
474
475 static struct btrfs_trans_handle *
476 start_transaction(struct btrfs_root *root, unsigned int num_items,
477                   unsigned int type, enum btrfs_reserve_flush_enum flush,
478                   bool enforce_qgroups)
479 {
480         struct btrfs_fs_info *fs_info = root->fs_info;
481
482         struct btrfs_trans_handle *h;
483         struct btrfs_transaction *cur_trans;
484         u64 num_bytes = 0;
485         u64 qgroup_reserved = 0;
486         bool reloc_reserved = false;
487         int ret;
488
489         /* Send isn't supposed to start transactions. */
490         ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
491
492         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
493                 return ERR_PTR(-EROFS);
494
495         if (current->journal_info) {
496                 WARN_ON(type & TRANS_EXTWRITERS);
497                 h = current->journal_info;
498                 h->use_count++;
499                 WARN_ON(h->use_count > 2);
500                 h->orig_rsv = h->block_rsv;
501                 h->block_rsv = NULL;
502                 goto got_it;
503         }
504
505         /*
506          * Do the reservation before we join the transaction so we can do all
507          * the appropriate flushing if need be.
508          */
509         if (num_items && root != fs_info->chunk_root) {
510                 qgroup_reserved = num_items * fs_info->nodesize;
511                 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved,
512                                                 enforce_qgroups);
513                 if (ret)
514                         return ERR_PTR(ret);
515
516                 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
517                 /*
518                  * Do the reservation for the relocation root creation
519                  */
520                 if (need_reserve_reloc_root(root)) {
521                         num_bytes += fs_info->nodesize;
522                         reloc_reserved = true;
523                 }
524
525                 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
526                                           num_bytes, flush);
527                 if (ret)
528                         goto reserve_fail;
529         }
530 again:
531         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
532         if (!h) {
533                 ret = -ENOMEM;
534                 goto alloc_fail;
535         }
536
537         /*
538          * If we are JOIN_NOLOCK we're already committing a transaction and
539          * waiting on this guy, so we don't need to do the sb_start_intwrite
540          * because we're already holding a ref.  We need this because we could
541          * have raced in and did an fsync() on a file which can kick a commit
542          * and then we deadlock with somebody doing a freeze.
543          *
544          * If we are ATTACH, it means we just want to catch the current
545          * transaction and commit it, so we needn't do sb_start_intwrite(). 
546          */
547         if (type & __TRANS_FREEZABLE)
548                 sb_start_intwrite(fs_info->sb);
549
550         if (may_wait_transaction(fs_info, type))
551                 wait_current_trans(fs_info);
552
553         do {
554                 ret = join_transaction(fs_info, type);
555                 if (ret == -EBUSY) {
556                         wait_current_trans(fs_info);
557                         if (unlikely(type == TRANS_ATTACH))
558                                 ret = -ENOENT;
559                 }
560         } while (ret == -EBUSY);
561
562         if (ret < 0)
563                 goto join_fail;
564
565         cur_trans = fs_info->running_transaction;
566
567         h->transid = cur_trans->transid;
568         h->transaction = cur_trans;
569         h->root = root;
570         h->use_count = 1;
571         h->fs_info = root->fs_info;
572
573         h->type = type;
574         h->can_flush_pending_bgs = true;
575         INIT_LIST_HEAD(&h->new_bgs);
576
577         smp_mb();
578         if (cur_trans->state >= TRANS_STATE_BLOCKED &&
579             may_wait_transaction(fs_info, type)) {
580                 current->journal_info = h;
581                 btrfs_commit_transaction(h);
582                 goto again;
583         }
584
585         if (num_bytes) {
586                 trace_btrfs_space_reservation(fs_info, "transaction",
587                                               h->transid, num_bytes, 1);
588                 h->block_rsv = &fs_info->trans_block_rsv;
589                 h->bytes_reserved = num_bytes;
590                 h->reloc_reserved = reloc_reserved;
591         }
592
593 got_it:
594         btrfs_record_root_in_trans(h, root);
595
596         if (!current->journal_info && type != TRANS_USERSPACE)
597                 current->journal_info = h;
598         return h;
599
600 join_fail:
601         if (type & __TRANS_FREEZABLE)
602                 sb_end_intwrite(fs_info->sb);
603         kmem_cache_free(btrfs_trans_handle_cachep, h);
604 alloc_fail:
605         if (num_bytes)
606                 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
607                                         num_bytes);
608 reserve_fail:
609         btrfs_qgroup_free_meta(root, qgroup_reserved);
610         return ERR_PTR(ret);
611 }
612
613 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
614                                                    unsigned int num_items)
615 {
616         return start_transaction(root, num_items, TRANS_START,
617                                  BTRFS_RESERVE_FLUSH_ALL, true);
618 }
619
620 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
621                                         struct btrfs_root *root,
622                                         unsigned int num_items,
623                                         int min_factor)
624 {
625         struct btrfs_fs_info *fs_info = root->fs_info;
626         struct btrfs_trans_handle *trans;
627         u64 num_bytes;
628         int ret;
629
630         /*
631          * We have two callers: unlink and block group removal.  The
632          * former should succeed even if we will temporarily exceed
633          * quota and the latter operates on the extent root so
634          * qgroup enforcement is ignored anyway.
635          */
636         trans = start_transaction(root, num_items, TRANS_START,
637                                   BTRFS_RESERVE_FLUSH_ALL, false);
638         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
639                 return trans;
640
641         trans = btrfs_start_transaction(root, 0);
642         if (IS_ERR(trans))
643                 return trans;
644
645         num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
646         ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
647                                        num_bytes, min_factor);
648         if (ret) {
649                 btrfs_end_transaction(trans);
650                 return ERR_PTR(ret);
651         }
652
653         trans->block_rsv = &fs_info->trans_block_rsv;
654         trans->bytes_reserved = num_bytes;
655         trace_btrfs_space_reservation(fs_info, "transaction",
656                                       trans->transid, num_bytes, 1);
657
658         return trans;
659 }
660
661 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
662                                         struct btrfs_root *root,
663                                         unsigned int num_items)
664 {
665         return start_transaction(root, num_items, TRANS_START,
666                                  BTRFS_RESERVE_FLUSH_LIMIT, true);
667 }
668
669 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
670 {
671         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
672                                  true);
673 }
674
675 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
676 {
677         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
678                                  BTRFS_RESERVE_NO_FLUSH, true);
679 }
680
681 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
682 {
683         return start_transaction(root, 0, TRANS_USERSPACE,
684                                  BTRFS_RESERVE_NO_FLUSH, true);
685 }
686
687 /*
688  * btrfs_attach_transaction() - catch the running transaction
689  *
690  * It is used when we want to commit the current the transaction, but
691  * don't want to start a new one.
692  *
693  * Note: If this function return -ENOENT, it just means there is no
694  * running transaction. But it is possible that the inactive transaction
695  * is still in the memory, not fully on disk. If you hope there is no
696  * inactive transaction in the fs when -ENOENT is returned, you should
697  * invoke
698  *     btrfs_attach_transaction_barrier()
699  */
700 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
701 {
702         return start_transaction(root, 0, TRANS_ATTACH,
703                                  BTRFS_RESERVE_NO_FLUSH, true);
704 }
705
706 /*
707  * btrfs_attach_transaction_barrier() - catch the running transaction
708  *
709  * It is similar to the above function, the differentia is this one
710  * will wait for all the inactive transactions until they fully
711  * complete.
712  */
713 struct btrfs_trans_handle *
714 btrfs_attach_transaction_barrier(struct btrfs_root *root)
715 {
716         struct btrfs_trans_handle *trans;
717
718         trans = start_transaction(root, 0, TRANS_ATTACH,
719                                   BTRFS_RESERVE_NO_FLUSH, true);
720         if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
721                 btrfs_wait_for_commit(root->fs_info, 0);
722
723         return trans;
724 }
725
726 /* wait for a transaction commit to be fully complete */
727 static noinline void wait_for_commit(struct btrfs_transaction *commit)
728 {
729         wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
730 }
731
732 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
733 {
734         struct btrfs_transaction *cur_trans = NULL, *t;
735         int ret = 0;
736
737         if (transid) {
738                 if (transid <= fs_info->last_trans_committed)
739                         goto out;
740
741                 /* find specified transaction */
742                 spin_lock(&fs_info->trans_lock);
743                 list_for_each_entry(t, &fs_info->trans_list, list) {
744                         if (t->transid == transid) {
745                                 cur_trans = t;
746                                 refcount_inc(&cur_trans->use_count);
747                                 ret = 0;
748                                 break;
749                         }
750                         if (t->transid > transid) {
751                                 ret = 0;
752                                 break;
753                         }
754                 }
755                 spin_unlock(&fs_info->trans_lock);
756
757                 /*
758                  * The specified transaction doesn't exist, or we
759                  * raced with btrfs_commit_transaction
760                  */
761                 if (!cur_trans) {
762                         if (transid > fs_info->last_trans_committed)
763                                 ret = -EINVAL;
764                         goto out;
765                 }
766         } else {
767                 /* find newest transaction that is committing | committed */
768                 spin_lock(&fs_info->trans_lock);
769                 list_for_each_entry_reverse(t, &fs_info->trans_list,
770                                             list) {
771                         if (t->state >= TRANS_STATE_COMMIT_START) {
772                                 if (t->state == TRANS_STATE_COMPLETED)
773                                         break;
774                                 cur_trans = t;
775                                 refcount_inc(&cur_trans->use_count);
776                                 break;
777                         }
778                 }
779                 spin_unlock(&fs_info->trans_lock);
780                 if (!cur_trans)
781                         goto out;  /* nothing committing|committed */
782         }
783
784         wait_for_commit(cur_trans);
785         btrfs_put_transaction(cur_trans);
786 out:
787         return ret;
788 }
789
790 void btrfs_throttle(struct btrfs_fs_info *fs_info)
791 {
792         if (!atomic_read(&fs_info->open_ioctl_trans))
793                 wait_current_trans(fs_info);
794 }
795
796 static int should_end_transaction(struct btrfs_trans_handle *trans)
797 {
798         struct btrfs_fs_info *fs_info = trans->fs_info;
799
800         if (btrfs_check_space_for_delayed_refs(trans, fs_info))
801                 return 1;
802
803         return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
804 }
805
806 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
807 {
808         struct btrfs_transaction *cur_trans = trans->transaction;
809         struct btrfs_fs_info *fs_info = trans->fs_info;
810         int updates;
811         int err;
812
813         smp_mb();
814         if (cur_trans->state >= TRANS_STATE_BLOCKED ||
815             cur_trans->delayed_refs.flushing)
816                 return 1;
817
818         updates = trans->delayed_ref_updates;
819         trans->delayed_ref_updates = 0;
820         if (updates) {
821                 err = btrfs_run_delayed_refs(trans, fs_info, updates * 2);
822                 if (err) /* Error code will also eval true */
823                         return err;
824         }
825
826         return should_end_transaction(trans);
827 }
828
829 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
830                                    int throttle)
831 {
832         struct btrfs_fs_info *info = trans->fs_info;
833         struct btrfs_transaction *cur_trans = trans->transaction;
834         u64 transid = trans->transid;
835         unsigned long cur = trans->delayed_ref_updates;
836         int lock = (trans->type != TRANS_JOIN_NOLOCK);
837         int err = 0;
838         int must_run_delayed_refs = 0;
839
840         if (trans->use_count > 1) {
841                 trans->use_count--;
842                 trans->block_rsv = trans->orig_rsv;
843                 return 0;
844         }
845
846         btrfs_trans_release_metadata(trans, info);
847         trans->block_rsv = NULL;
848
849         if (!list_empty(&trans->new_bgs))
850                 btrfs_create_pending_block_groups(trans, info);
851
852         trans->delayed_ref_updates = 0;
853         if (!trans->sync) {
854                 must_run_delayed_refs =
855                         btrfs_should_throttle_delayed_refs(trans, info);
856                 cur = max_t(unsigned long, cur, 32);
857
858                 /*
859                  * don't make the caller wait if they are from a NOLOCK
860                  * or ATTACH transaction, it will deadlock with commit
861                  */
862                 if (must_run_delayed_refs == 1 &&
863                     (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
864                         must_run_delayed_refs = 2;
865         }
866
867         btrfs_trans_release_metadata(trans, info);
868         trans->block_rsv = NULL;
869
870         if (!list_empty(&trans->new_bgs))
871                 btrfs_create_pending_block_groups(trans, info);
872
873         btrfs_trans_release_chunk_metadata(trans);
874
875         if (lock && !atomic_read(&info->open_ioctl_trans) &&
876             should_end_transaction(trans) &&
877             READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
878                 spin_lock(&info->trans_lock);
879                 if (cur_trans->state == TRANS_STATE_RUNNING)
880                         cur_trans->state = TRANS_STATE_BLOCKED;
881                 spin_unlock(&info->trans_lock);
882         }
883
884         if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
885                 if (throttle)
886                         return btrfs_commit_transaction(trans);
887                 else
888                         wake_up_process(info->transaction_kthread);
889         }
890
891         if (trans->type & __TRANS_FREEZABLE)
892                 sb_end_intwrite(info->sb);
893
894         WARN_ON(cur_trans != info->running_transaction);
895         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
896         atomic_dec(&cur_trans->num_writers);
897         extwriter_counter_dec(cur_trans, trans->type);
898
899         /*
900          * Make sure counter is updated before we wake up waiters.
901          */
902         smp_mb();
903         if (waitqueue_active(&cur_trans->writer_wait))
904                 wake_up(&cur_trans->writer_wait);
905         btrfs_put_transaction(cur_trans);
906
907         if (current->journal_info == trans)
908                 current->journal_info = NULL;
909
910         if (throttle)
911                 btrfs_run_delayed_iputs(info);
912
913         if (trans->aborted ||
914             test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
915                 wake_up_process(info->transaction_kthread);
916                 err = -EIO;
917         }
918
919         kmem_cache_free(btrfs_trans_handle_cachep, trans);
920         if (must_run_delayed_refs) {
921                 btrfs_async_run_delayed_refs(info, cur, transid,
922                                              must_run_delayed_refs == 1);
923         }
924         return err;
925 }
926
927 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
928 {
929         return __btrfs_end_transaction(trans, 0);
930 }
931
932 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
933 {
934         return __btrfs_end_transaction(trans, 1);
935 }
936
937 /*
938  * when btree blocks are allocated, they have some corresponding bits set for
939  * them in one of two extent_io trees.  This is used to make sure all of
940  * those extents are sent to disk but does not wait on them
941  */
942 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
943                                struct extent_io_tree *dirty_pages, int mark)
944 {
945         int err = 0;
946         int werr = 0;
947         struct address_space *mapping = fs_info->btree_inode->i_mapping;
948         struct extent_state *cached_state = NULL;
949         u64 start = 0;
950         u64 end;
951
952         atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
953         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
954                                       mark, &cached_state)) {
955                 bool wait_writeback = false;
956
957                 err = convert_extent_bit(dirty_pages, start, end,
958                                          EXTENT_NEED_WAIT,
959                                          mark, &cached_state);
960                 /*
961                  * convert_extent_bit can return -ENOMEM, which is most of the
962                  * time a temporary error. So when it happens, ignore the error
963                  * and wait for writeback of this range to finish - because we
964                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
965                  * to __btrfs_wait_marked_extents() would not know that
966                  * writeback for this range started and therefore wouldn't
967                  * wait for it to finish - we don't want to commit a
968                  * superblock that points to btree nodes/leafs for which
969                  * writeback hasn't finished yet (and without errors).
970                  * We cleanup any entries left in the io tree when committing
971                  * the transaction (through clear_btree_io_tree()).
972                  */
973                 if (err == -ENOMEM) {
974                         err = 0;
975                         wait_writeback = true;
976                 }
977                 if (!err)
978                         err = filemap_fdatawrite_range(mapping, start, end);
979                 if (err)
980                         werr = err;
981                 else if (wait_writeback)
982                         werr = filemap_fdatawait_range(mapping, start, end);
983                 free_extent_state(cached_state);
984                 cached_state = NULL;
985                 cond_resched();
986                 start = end + 1;
987         }
988         atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
989         return werr;
990 }
991
992 /*
993  * when btree blocks are allocated, they have some corresponding bits set for
994  * them in one of two extent_io trees.  This is used to make sure all of
995  * those extents are on disk for transaction or log commit.  We wait
996  * on all the pages and clear them from the dirty pages state tree
997  */
998 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
999                                        struct extent_io_tree *dirty_pages)
1000 {
1001         int err = 0;
1002         int werr = 0;
1003         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1004         struct extent_state *cached_state = NULL;
1005         u64 start = 0;
1006         u64 end;
1007
1008         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1009                                       EXTENT_NEED_WAIT, &cached_state)) {
1010                 /*
1011                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1012                  * When committing the transaction, we'll remove any entries
1013                  * left in the io tree. For a log commit, we don't remove them
1014                  * after committing the log because the tree can be accessed
1015                  * concurrently - we do it only at transaction commit time when
1016                  * it's safe to do it (through clear_btree_io_tree()).
1017                  */
1018                 err = clear_extent_bit(dirty_pages, start, end,
1019                                        EXTENT_NEED_WAIT,
1020                                        0, 0, &cached_state, GFP_NOFS);
1021                 if (err == -ENOMEM)
1022                         err = 0;
1023                 if (!err)
1024                         err = filemap_fdatawait_range(mapping, start, end);
1025                 if (err)
1026                         werr = err;
1027                 free_extent_state(cached_state);
1028                 cached_state = NULL;
1029                 cond_resched();
1030                 start = end + 1;
1031         }
1032         if (err)
1033                 werr = err;
1034         return werr;
1035 }
1036
1037 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1038                        struct extent_io_tree *dirty_pages)
1039 {
1040         bool errors = false;
1041         int err;
1042
1043         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1044         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1045                 errors = true;
1046
1047         if (errors && !err)
1048                 err = -EIO;
1049         return err;
1050 }
1051
1052 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1053 {
1054         struct btrfs_fs_info *fs_info = log_root->fs_info;
1055         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1056         bool errors = false;
1057         int err;
1058
1059         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1060
1061         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1062         if ((mark & EXTENT_DIRTY) &&
1063             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1064                 errors = true;
1065
1066         if ((mark & EXTENT_NEW) &&
1067             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1068                 errors = true;
1069
1070         if (errors && !err)
1071                 err = -EIO;
1072         return err;
1073 }
1074
1075 /*
1076  * when btree blocks are allocated, they have some corresponding bits set for
1077  * them in one of two extent_io trees.  This is used to make sure all of
1078  * those extents are on disk for transaction or log commit
1079  */
1080 static int btrfs_write_and_wait_marked_extents(struct btrfs_fs_info *fs_info,
1081                                 struct extent_io_tree *dirty_pages, int mark)
1082 {
1083         int ret;
1084         int ret2;
1085         struct blk_plug plug;
1086
1087         blk_start_plug(&plug);
1088         ret = btrfs_write_marked_extents(fs_info, dirty_pages, mark);
1089         blk_finish_plug(&plug);
1090         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1091
1092         if (ret)
1093                 return ret;
1094         if (ret2)
1095                 return ret2;
1096         return 0;
1097 }
1098
1099 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1100                                             struct btrfs_fs_info *fs_info)
1101 {
1102         int ret;
1103
1104         ret = btrfs_write_and_wait_marked_extents(fs_info,
1105                                            &trans->transaction->dirty_pages,
1106                                            EXTENT_DIRTY);
1107         clear_btree_io_tree(&trans->transaction->dirty_pages);
1108
1109         return ret;
1110 }
1111
1112 /*
1113  * this is used to update the root pointer in the tree of tree roots.
1114  *
1115  * But, in the case of the extent allocation tree, updating the root
1116  * pointer may allocate blocks which may change the root of the extent
1117  * allocation tree.
1118  *
1119  * So, this loops and repeats and makes sure the cowonly root didn't
1120  * change while the root pointer was being updated in the metadata.
1121  */
1122 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1123                                struct btrfs_root *root)
1124 {
1125         int ret;
1126         u64 old_root_bytenr;
1127         u64 old_root_used;
1128         struct btrfs_fs_info *fs_info = root->fs_info;
1129         struct btrfs_root *tree_root = fs_info->tree_root;
1130
1131         old_root_used = btrfs_root_used(&root->root_item);
1132
1133         while (1) {
1134                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1135                 if (old_root_bytenr == root->node->start &&
1136                     old_root_used == btrfs_root_used(&root->root_item))
1137                         break;
1138
1139                 btrfs_set_root_node(&root->root_item, root->node);
1140                 ret = btrfs_update_root(trans, tree_root,
1141                                         &root->root_key,
1142                                         &root->root_item);
1143                 if (ret)
1144                         return ret;
1145
1146                 old_root_used = btrfs_root_used(&root->root_item);
1147         }
1148
1149         return 0;
1150 }
1151
1152 /*
1153  * update all the cowonly tree roots on disk
1154  *
1155  * The error handling in this function may not be obvious. Any of the
1156  * failures will cause the file system to go offline. We still need
1157  * to clean up the delayed refs.
1158  */
1159 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1160                                          struct btrfs_fs_info *fs_info)
1161 {
1162         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1163         struct list_head *io_bgs = &trans->transaction->io_bgs;
1164         struct list_head *next;
1165         struct extent_buffer *eb;
1166         int ret;
1167
1168         eb = btrfs_lock_root_node(fs_info->tree_root);
1169         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1170                               0, &eb);
1171         btrfs_tree_unlock(eb);
1172         free_extent_buffer(eb);
1173
1174         if (ret)
1175                 return ret;
1176
1177         ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1178         if (ret)
1179                 return ret;
1180
1181         ret = btrfs_run_dev_stats(trans, fs_info);
1182         if (ret)
1183                 return ret;
1184         ret = btrfs_run_dev_replace(trans, fs_info);
1185         if (ret)
1186                 return ret;
1187         ret = btrfs_run_qgroups(trans, fs_info);
1188         if (ret)
1189                 return ret;
1190
1191         ret = btrfs_setup_space_cache(trans, fs_info);
1192         if (ret)
1193                 return ret;
1194
1195         /* run_qgroups might have added some more refs */
1196         ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1197         if (ret)
1198                 return ret;
1199 again:
1200         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1201                 struct btrfs_root *root;
1202                 next = fs_info->dirty_cowonly_roots.next;
1203                 list_del_init(next);
1204                 root = list_entry(next, struct btrfs_root, dirty_list);
1205                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1206
1207                 if (root != fs_info->extent_root)
1208                         list_add_tail(&root->dirty_list,
1209                                       &trans->transaction->switch_commits);
1210                 ret = update_cowonly_root(trans, root);
1211                 if (ret)
1212                         return ret;
1213                 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1214                 if (ret)
1215                         return ret;
1216         }
1217
1218         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1219                 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1220                 if (ret)
1221                         return ret;
1222                 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1223                 if (ret)
1224                         return ret;
1225         }
1226
1227         if (!list_empty(&fs_info->dirty_cowonly_roots))
1228                 goto again;
1229
1230         list_add_tail(&fs_info->extent_root->dirty_list,
1231                       &trans->transaction->switch_commits);
1232         btrfs_after_dev_replace_commit(fs_info);
1233
1234         return 0;
1235 }
1236
1237 /*
1238  * dead roots are old snapshots that need to be deleted.  This allocates
1239  * a dirty root struct and adds it into the list of dead roots that need to
1240  * be deleted
1241  */
1242 void btrfs_add_dead_root(struct btrfs_root *root)
1243 {
1244         struct btrfs_fs_info *fs_info = root->fs_info;
1245
1246         spin_lock(&fs_info->trans_lock);
1247         if (list_empty(&root->root_list))
1248                 list_add_tail(&root->root_list, &fs_info->dead_roots);
1249         spin_unlock(&fs_info->trans_lock);
1250 }
1251
1252 /*
1253  * update all the cowonly tree roots on disk
1254  */
1255 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1256                                     struct btrfs_fs_info *fs_info)
1257 {
1258         struct btrfs_root *gang[8];
1259         int i;
1260         int ret;
1261         int err = 0;
1262
1263         spin_lock(&fs_info->fs_roots_radix_lock);
1264         while (1) {
1265                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1266                                                  (void **)gang, 0,
1267                                                  ARRAY_SIZE(gang),
1268                                                  BTRFS_ROOT_TRANS_TAG);
1269                 if (ret == 0)
1270                         break;
1271                 for (i = 0; i < ret; i++) {
1272                         struct btrfs_root *root = gang[i];
1273                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1274                                         (unsigned long)root->root_key.objectid,
1275                                         BTRFS_ROOT_TRANS_TAG);
1276                         spin_unlock(&fs_info->fs_roots_radix_lock);
1277
1278                         btrfs_free_log(trans, root);
1279                         btrfs_update_reloc_root(trans, root);
1280                         btrfs_orphan_commit_root(trans, root);
1281
1282                         btrfs_save_ino_cache(root, trans);
1283
1284                         /* see comments in should_cow_block() */
1285                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1286                         smp_mb__after_atomic();
1287
1288                         if (root->commit_root != root->node) {
1289                                 list_add_tail(&root->dirty_list,
1290                                         &trans->transaction->switch_commits);
1291                                 btrfs_set_root_node(&root->root_item,
1292                                                     root->node);
1293                         }
1294
1295                         err = btrfs_update_root(trans, fs_info->tree_root,
1296                                                 &root->root_key,
1297                                                 &root->root_item);
1298                         spin_lock(&fs_info->fs_roots_radix_lock);
1299                         if (err)
1300                                 break;
1301                         btrfs_qgroup_free_meta_all(root);
1302                 }
1303         }
1304         spin_unlock(&fs_info->fs_roots_radix_lock);
1305         return err;
1306 }
1307
1308 /*
1309  * defrag a given btree.
1310  * Every leaf in the btree is read and defragged.
1311  */
1312 int btrfs_defrag_root(struct btrfs_root *root)
1313 {
1314         struct btrfs_fs_info *info = root->fs_info;
1315         struct btrfs_trans_handle *trans;
1316         int ret;
1317
1318         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1319                 return 0;
1320
1321         while (1) {
1322                 trans = btrfs_start_transaction(root, 0);
1323                 if (IS_ERR(trans))
1324                         return PTR_ERR(trans);
1325
1326                 ret = btrfs_defrag_leaves(trans, root);
1327
1328                 btrfs_end_transaction(trans);
1329                 btrfs_btree_balance_dirty(info);
1330                 cond_resched();
1331
1332                 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1333                         break;
1334
1335                 if (btrfs_defrag_cancelled(info)) {
1336                         btrfs_debug(info, "defrag_root cancelled");
1337                         ret = -EAGAIN;
1338                         break;
1339                 }
1340         }
1341         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1342         return ret;
1343 }
1344
1345 /*
1346  * Do all special snapshot related qgroup dirty hack.
1347  *
1348  * Will do all needed qgroup inherit and dirty hack like switch commit
1349  * roots inside one transaction and write all btree into disk, to make
1350  * qgroup works.
1351  */
1352 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1353                                    struct btrfs_root *src,
1354                                    struct btrfs_root *parent,
1355                                    struct btrfs_qgroup_inherit *inherit,
1356                                    u64 dst_objectid)
1357 {
1358         struct btrfs_fs_info *fs_info = src->fs_info;
1359         int ret;
1360
1361         /*
1362          * Save some performance in the case that qgroups are not
1363          * enabled. If this check races with the ioctl, rescan will
1364          * kick in anyway.
1365          */
1366         if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1367                 return 0;
1368
1369         /*
1370          * We are going to commit transaction, see btrfs_commit_transaction()
1371          * comment for reason locking tree_log_mutex
1372          */
1373         mutex_lock(&fs_info->tree_log_mutex);
1374
1375         ret = commit_fs_roots(trans, fs_info);
1376         if (ret)
1377                 goto out;
1378         ret = btrfs_qgroup_account_extents(trans, fs_info);
1379         if (ret < 0)
1380                 goto out;
1381
1382         /* Now qgroup are all updated, we can inherit it to new qgroups */
1383         ret = btrfs_qgroup_inherit(trans, fs_info,
1384                                    src->root_key.objectid, dst_objectid,
1385                                    inherit);
1386         if (ret < 0)
1387                 goto out;
1388
1389         /*
1390          * Now we do a simplified commit transaction, which will:
1391          * 1) commit all subvolume and extent tree
1392          *    To ensure all subvolume and extent tree have a valid
1393          *    commit_root to accounting later insert_dir_item()
1394          * 2) write all btree blocks onto disk
1395          *    This is to make sure later btree modification will be cowed
1396          *    Or commit_root can be populated and cause wrong qgroup numbers
1397          * In this simplified commit, we don't really care about other trees
1398          * like chunk and root tree, as they won't affect qgroup.
1399          * And we don't write super to avoid half committed status.
1400          */
1401         ret = commit_cowonly_roots(trans, fs_info);
1402         if (ret)
1403                 goto out;
1404         switch_commit_roots(trans->transaction, fs_info);
1405         ret = btrfs_write_and_wait_transaction(trans, fs_info);
1406         if (ret)
1407                 btrfs_handle_fs_error(fs_info, ret,
1408                         "Error while writing out transaction for qgroup");
1409
1410 out:
1411         mutex_unlock(&fs_info->tree_log_mutex);
1412
1413         /*
1414          * Force parent root to be updated, as we recorded it before so its
1415          * last_trans == cur_transid.
1416          * Or it won't be committed again onto disk after later
1417          * insert_dir_item()
1418          */
1419         if (!ret)
1420                 record_root_in_trans(trans, parent, 1);
1421         return ret;
1422 }
1423
1424 /*
1425  * new snapshots need to be created at a very specific time in the
1426  * transaction commit.  This does the actual creation.
1427  *
1428  * Note:
1429  * If the error which may affect the commitment of the current transaction
1430  * happens, we should return the error number. If the error which just affect
1431  * the creation of the pending snapshots, just return 0.
1432  */
1433 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1434                                    struct btrfs_fs_info *fs_info,
1435                                    struct btrfs_pending_snapshot *pending)
1436 {
1437         struct btrfs_key key;
1438         struct btrfs_root_item *new_root_item;
1439         struct btrfs_root *tree_root = fs_info->tree_root;
1440         struct btrfs_root *root = pending->root;
1441         struct btrfs_root *parent_root;
1442         struct btrfs_block_rsv *rsv;
1443         struct inode *parent_inode;
1444         struct btrfs_path *path;
1445         struct btrfs_dir_item *dir_item;
1446         struct dentry *dentry;
1447         struct extent_buffer *tmp;
1448         struct extent_buffer *old;
1449         struct timespec cur_time;
1450         int ret = 0;
1451         u64 to_reserve = 0;
1452         u64 index = 0;
1453         u64 objectid;
1454         u64 root_flags;
1455         uuid_le new_uuid;
1456
1457         ASSERT(pending->path);
1458         path = pending->path;
1459
1460         ASSERT(pending->root_item);
1461         new_root_item = pending->root_item;
1462
1463         pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1464         if (pending->error)
1465                 goto no_free_objectid;
1466
1467         /*
1468          * Make qgroup to skip current new snapshot's qgroupid, as it is
1469          * accounted by later btrfs_qgroup_inherit().
1470          */
1471         btrfs_set_skip_qgroup(trans, objectid);
1472
1473         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1474
1475         if (to_reserve > 0) {
1476                 pending->error = btrfs_block_rsv_add(root,
1477                                                      &pending->block_rsv,
1478                                                      to_reserve,
1479                                                      BTRFS_RESERVE_NO_FLUSH);
1480                 if (pending->error)
1481                         goto clear_skip_qgroup;
1482         }
1483
1484         key.objectid = objectid;
1485         key.offset = (u64)-1;
1486         key.type = BTRFS_ROOT_ITEM_KEY;
1487
1488         rsv = trans->block_rsv;
1489         trans->block_rsv = &pending->block_rsv;
1490         trans->bytes_reserved = trans->block_rsv->reserved;
1491         trace_btrfs_space_reservation(fs_info, "transaction",
1492                                       trans->transid,
1493                                       trans->bytes_reserved, 1);
1494         dentry = pending->dentry;
1495         parent_inode = pending->dir;
1496         parent_root = BTRFS_I(parent_inode)->root;
1497         record_root_in_trans(trans, parent_root, 0);
1498
1499         cur_time = current_time(parent_inode);
1500
1501         /*
1502          * insert the directory item
1503          */
1504         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1505         BUG_ON(ret); /* -ENOMEM */
1506
1507         /* check if there is a file/dir which has the same name. */
1508         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1509                                          btrfs_ino(BTRFS_I(parent_inode)),
1510                                          dentry->d_name.name,
1511                                          dentry->d_name.len, 0);
1512         if (dir_item != NULL && !IS_ERR(dir_item)) {
1513                 pending->error = -EEXIST;
1514                 goto dir_item_existed;
1515         } else if (IS_ERR(dir_item)) {
1516                 ret = PTR_ERR(dir_item);
1517                 btrfs_abort_transaction(trans, ret);
1518                 goto fail;
1519         }
1520         btrfs_release_path(path);
1521
1522         /*
1523          * pull in the delayed directory update
1524          * and the delayed inode item
1525          * otherwise we corrupt the FS during
1526          * snapshot
1527          */
1528         ret = btrfs_run_delayed_items(trans, fs_info);
1529         if (ret) {      /* Transaction aborted */
1530                 btrfs_abort_transaction(trans, ret);
1531                 goto fail;
1532         }
1533
1534         record_root_in_trans(trans, root, 0);
1535         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1536         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1537         btrfs_check_and_init_root_item(new_root_item);
1538
1539         root_flags = btrfs_root_flags(new_root_item);
1540         if (pending->readonly)
1541                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1542         else
1543                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1544         btrfs_set_root_flags(new_root_item, root_flags);
1545
1546         btrfs_set_root_generation_v2(new_root_item,
1547                         trans->transid);
1548         uuid_le_gen(&new_uuid);
1549         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1550         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1551                         BTRFS_UUID_SIZE);
1552         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1553                 memset(new_root_item->received_uuid, 0,
1554                        sizeof(new_root_item->received_uuid));
1555                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1556                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1557                 btrfs_set_root_stransid(new_root_item, 0);
1558                 btrfs_set_root_rtransid(new_root_item, 0);
1559         }
1560         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1561         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1562         btrfs_set_root_otransid(new_root_item, trans->transid);
1563
1564         old = btrfs_lock_root_node(root);
1565         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1566         if (ret) {
1567                 btrfs_tree_unlock(old);
1568                 free_extent_buffer(old);
1569                 btrfs_abort_transaction(trans, ret);
1570                 goto fail;
1571         }
1572
1573         btrfs_set_lock_blocking(old);
1574
1575         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1576         /* clean up in any case */
1577         btrfs_tree_unlock(old);
1578         free_extent_buffer(old);
1579         if (ret) {
1580                 btrfs_abort_transaction(trans, ret);
1581                 goto fail;
1582         }
1583         /* see comments in should_cow_block() */
1584         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1585         smp_wmb();
1586
1587         btrfs_set_root_node(new_root_item, tmp);
1588         /* record when the snapshot was created in key.offset */
1589         key.offset = trans->transid;
1590         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1591         btrfs_tree_unlock(tmp);
1592         free_extent_buffer(tmp);
1593         if (ret) {
1594                 btrfs_abort_transaction(trans, ret);
1595                 goto fail;
1596         }
1597
1598         /*
1599          * insert root back/forward references
1600          */
1601         ret = btrfs_add_root_ref(trans, fs_info, objectid,
1602                                  parent_root->root_key.objectid,
1603                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1604                                  dentry->d_name.name, dentry->d_name.len);
1605         if (ret) {
1606                 btrfs_abort_transaction(trans, ret);
1607                 goto fail;
1608         }
1609
1610         key.offset = (u64)-1;
1611         pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1612         if (IS_ERR(pending->snap)) {
1613                 ret = PTR_ERR(pending->snap);
1614                 btrfs_abort_transaction(trans, ret);
1615                 goto fail;
1616         }
1617
1618         ret = btrfs_reloc_post_snapshot(trans, pending);
1619         if (ret) {
1620                 btrfs_abort_transaction(trans, ret);
1621                 goto fail;
1622         }
1623
1624         ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1625         if (ret) {
1626                 btrfs_abort_transaction(trans, ret);
1627                 goto fail;
1628         }
1629
1630         /*
1631          * Do special qgroup accounting for snapshot, as we do some qgroup
1632          * snapshot hack to do fast snapshot.
1633          * To co-operate with that hack, we do hack again.
1634          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1635          */
1636         ret = qgroup_account_snapshot(trans, root, parent_root,
1637                                       pending->inherit, objectid);
1638         if (ret < 0)
1639                 goto fail;
1640
1641         ret = btrfs_insert_dir_item(trans, parent_root,
1642                                     dentry->d_name.name, dentry->d_name.len,
1643                                     BTRFS_I(parent_inode), &key,
1644                                     BTRFS_FT_DIR, index);
1645         /* We have check then name at the beginning, so it is impossible. */
1646         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1647         if (ret) {
1648                 btrfs_abort_transaction(trans, ret);
1649                 goto fail;
1650         }
1651
1652         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1653                                          dentry->d_name.len * 2);
1654         parent_inode->i_mtime = parent_inode->i_ctime =
1655                 current_time(parent_inode);
1656         ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1657         if (ret) {
1658                 btrfs_abort_transaction(trans, ret);
1659                 goto fail;
1660         }
1661         ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1662                                   BTRFS_UUID_KEY_SUBVOL, objectid);
1663         if (ret) {
1664                 btrfs_abort_transaction(trans, ret);
1665                 goto fail;
1666         }
1667         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1668                 ret = btrfs_uuid_tree_add(trans, fs_info,
1669                                           new_root_item->received_uuid,
1670                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1671                                           objectid);
1672                 if (ret && ret != -EEXIST) {
1673                         btrfs_abort_transaction(trans, ret);
1674                         goto fail;
1675                 }
1676         }
1677
1678         ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1679         if (ret) {
1680                 btrfs_abort_transaction(trans, ret);
1681                 goto fail;
1682         }
1683
1684 fail:
1685         pending->error = ret;
1686 dir_item_existed:
1687         trans->block_rsv = rsv;
1688         trans->bytes_reserved = 0;
1689 clear_skip_qgroup:
1690         btrfs_clear_skip_qgroup(trans);
1691 no_free_objectid:
1692         kfree(new_root_item);
1693         pending->root_item = NULL;
1694         btrfs_free_path(path);
1695         pending->path = NULL;
1696
1697         return ret;
1698 }
1699
1700 /*
1701  * create all the snapshots we've scheduled for creation
1702  */
1703 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1704                                              struct btrfs_fs_info *fs_info)
1705 {
1706         struct btrfs_pending_snapshot *pending, *next;
1707         struct list_head *head = &trans->transaction->pending_snapshots;
1708         int ret = 0;
1709
1710         list_for_each_entry_safe(pending, next, head, list) {
1711                 list_del(&pending->list);
1712                 ret = create_pending_snapshot(trans, fs_info, pending);
1713                 if (ret)
1714                         break;
1715         }
1716         return ret;
1717 }
1718
1719 static void update_super_roots(struct btrfs_fs_info *fs_info)
1720 {
1721         struct btrfs_root_item *root_item;
1722         struct btrfs_super_block *super;
1723
1724         super = fs_info->super_copy;
1725
1726         root_item = &fs_info->chunk_root->root_item;
1727         super->chunk_root = root_item->bytenr;
1728         super->chunk_root_generation = root_item->generation;
1729         super->chunk_root_level = root_item->level;
1730
1731         root_item = &fs_info->tree_root->root_item;
1732         super->root = root_item->bytenr;
1733         super->generation = root_item->generation;
1734         super->root_level = root_item->level;
1735         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1736                 super->cache_generation = root_item->generation;
1737         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1738                 super->uuid_tree_generation = root_item->generation;
1739 }
1740
1741 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1742 {
1743         struct btrfs_transaction *trans;
1744         int ret = 0;
1745
1746         spin_lock(&info->trans_lock);
1747         trans = info->running_transaction;
1748         if (trans)
1749                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1750         spin_unlock(&info->trans_lock);
1751         return ret;
1752 }
1753
1754 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1755 {
1756         struct btrfs_transaction *trans;
1757         int ret = 0;
1758
1759         spin_lock(&info->trans_lock);
1760         trans = info->running_transaction;
1761         if (trans)
1762                 ret = is_transaction_blocked(trans);
1763         spin_unlock(&info->trans_lock);
1764         return ret;
1765 }
1766
1767 /*
1768  * wait for the current transaction commit to start and block subsequent
1769  * transaction joins
1770  */
1771 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1772                                             struct btrfs_transaction *trans)
1773 {
1774         wait_event(fs_info->transaction_blocked_wait,
1775                    trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1776 }
1777
1778 /*
1779  * wait for the current transaction to start and then become unblocked.
1780  * caller holds ref.
1781  */
1782 static void wait_current_trans_commit_start_and_unblock(
1783                                         struct btrfs_fs_info *fs_info,
1784                                         struct btrfs_transaction *trans)
1785 {
1786         wait_event(fs_info->transaction_wait,
1787                    trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1788 }
1789
1790 /*
1791  * commit transactions asynchronously. once btrfs_commit_transaction_async
1792  * returns, any subsequent transaction will not be allowed to join.
1793  */
1794 struct btrfs_async_commit {
1795         struct btrfs_trans_handle *newtrans;
1796         struct work_struct work;
1797 };
1798
1799 static void do_async_commit(struct work_struct *work)
1800 {
1801         struct btrfs_async_commit *ac =
1802                 container_of(work, struct btrfs_async_commit, work);
1803
1804         /*
1805          * We've got freeze protection passed with the transaction.
1806          * Tell lockdep about it.
1807          */
1808         if (ac->newtrans->type & __TRANS_FREEZABLE)
1809                 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1810
1811         current->journal_info = ac->newtrans;
1812
1813         btrfs_commit_transaction(ac->newtrans);
1814         kfree(ac);
1815 }
1816
1817 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1818                                    int wait_for_unblock)
1819 {
1820         struct btrfs_fs_info *fs_info = trans->fs_info;
1821         struct btrfs_async_commit *ac;
1822         struct btrfs_transaction *cur_trans;
1823
1824         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1825         if (!ac)
1826                 return -ENOMEM;
1827
1828         INIT_WORK(&ac->work, do_async_commit);
1829         ac->newtrans = btrfs_join_transaction(trans->root);
1830         if (IS_ERR(ac->newtrans)) {
1831                 int err = PTR_ERR(ac->newtrans);
1832                 kfree(ac);
1833                 return err;
1834         }
1835
1836         /* take transaction reference */
1837         cur_trans = trans->transaction;
1838         refcount_inc(&cur_trans->use_count);
1839
1840         btrfs_end_transaction(trans);
1841
1842         /*
1843          * Tell lockdep we've released the freeze rwsem, since the
1844          * async commit thread will be the one to unlock it.
1845          */
1846         if (ac->newtrans->type & __TRANS_FREEZABLE)
1847                 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1848
1849         schedule_work(&ac->work);
1850
1851         /* wait for transaction to start and unblock */
1852         if (wait_for_unblock)
1853                 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1854         else
1855                 wait_current_trans_commit_start(fs_info, cur_trans);
1856
1857         if (current->journal_info == trans)
1858                 current->journal_info = NULL;
1859
1860         btrfs_put_transaction(cur_trans);
1861         return 0;
1862 }
1863
1864
1865 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1866                                 struct btrfs_root *root, int err)
1867 {
1868         struct btrfs_fs_info *fs_info = root->fs_info;
1869         struct btrfs_transaction *cur_trans = trans->transaction;
1870         DEFINE_WAIT(wait);
1871
1872         WARN_ON(trans->use_count > 1);
1873
1874         btrfs_abort_transaction(trans, err);
1875
1876         spin_lock(&fs_info->trans_lock);
1877
1878         /*
1879          * If the transaction is removed from the list, it means this
1880          * transaction has been committed successfully, so it is impossible
1881          * to call the cleanup function.
1882          */
1883         BUG_ON(list_empty(&cur_trans->list));
1884
1885         list_del_init(&cur_trans->list);
1886         if (cur_trans == fs_info->running_transaction) {
1887                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1888                 spin_unlock(&fs_info->trans_lock);
1889                 wait_event(cur_trans->writer_wait,
1890                            atomic_read(&cur_trans->num_writers) == 1);
1891
1892                 spin_lock(&fs_info->trans_lock);
1893         }
1894         spin_unlock(&fs_info->trans_lock);
1895
1896         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1897
1898         spin_lock(&fs_info->trans_lock);
1899         if (cur_trans == fs_info->running_transaction)
1900                 fs_info->running_transaction = NULL;
1901         spin_unlock(&fs_info->trans_lock);
1902
1903         if (trans->type & __TRANS_FREEZABLE)
1904                 sb_end_intwrite(fs_info->sb);
1905         btrfs_put_transaction(cur_trans);
1906         btrfs_put_transaction(cur_trans);
1907
1908         trace_btrfs_transaction_commit(root);
1909
1910         if (current->journal_info == trans)
1911                 current->journal_info = NULL;
1912         btrfs_scrub_cancel(fs_info);
1913
1914         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1915 }
1916
1917 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1918 {
1919         /*
1920          * We use writeback_inodes_sb here because if we used
1921          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1922          * Currently are holding the fs freeze lock, if we do an async flush
1923          * we'll do btrfs_join_transaction() and deadlock because we need to
1924          * wait for the fs freeze lock.  Using the direct flushing we benefit
1925          * from already being in a transaction and our join_transaction doesn't
1926          * have to re-take the fs freeze lock.
1927          */
1928         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1929                 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1930         return 0;
1931 }
1932
1933 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1934 {
1935         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1936                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1937 }
1938
1939 static inline void
1940 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1941 {
1942         wait_event(cur_trans->pending_wait,
1943                    atomic_read(&cur_trans->pending_ordered) == 0);
1944 }
1945
1946 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1947 {
1948         struct btrfs_fs_info *fs_info = trans->fs_info;
1949         struct btrfs_transaction *cur_trans = trans->transaction;
1950         struct btrfs_transaction *prev_trans = NULL;
1951         int ret;
1952
1953         /* Stop the commit early if ->aborted is set */
1954         if (unlikely(READ_ONCE(cur_trans->aborted))) {
1955                 ret = cur_trans->aborted;
1956                 btrfs_end_transaction(trans);
1957                 return ret;
1958         }
1959
1960         /* make a pass through all the delayed refs we have so far
1961          * any runnings procs may add more while we are here
1962          */
1963         ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1964         if (ret) {
1965                 btrfs_end_transaction(trans);
1966                 return ret;
1967         }
1968
1969         btrfs_trans_release_metadata(trans, fs_info);
1970         trans->block_rsv = NULL;
1971
1972         cur_trans = trans->transaction;
1973
1974         /*
1975          * set the flushing flag so procs in this transaction have to
1976          * start sending their work down.
1977          */
1978         cur_trans->delayed_refs.flushing = 1;
1979         smp_wmb();
1980
1981         if (!list_empty(&trans->new_bgs))
1982                 btrfs_create_pending_block_groups(trans, fs_info);
1983
1984         ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1985         if (ret) {
1986                 btrfs_end_transaction(trans);
1987                 return ret;
1988         }
1989
1990         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1991                 int run_it = 0;
1992
1993                 /* this mutex is also taken before trying to set
1994                  * block groups readonly.  We need to make sure
1995                  * that nobody has set a block group readonly
1996                  * after a extents from that block group have been
1997                  * allocated for cache files.  btrfs_set_block_group_ro
1998                  * will wait for the transaction to commit if it
1999                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2000                  *
2001                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2002                  * only one process starts all the block group IO.  It wouldn't
2003                  * hurt to have more than one go through, but there's no
2004                  * real advantage to it either.
2005                  */
2006                 mutex_lock(&fs_info->ro_block_group_mutex);
2007                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2008                                       &cur_trans->flags))
2009                         run_it = 1;
2010                 mutex_unlock(&fs_info->ro_block_group_mutex);
2011
2012                 if (run_it)
2013                         ret = btrfs_start_dirty_block_groups(trans, fs_info);
2014         }
2015         if (ret) {
2016                 btrfs_end_transaction(trans);
2017                 return ret;
2018         }
2019
2020         spin_lock(&fs_info->trans_lock);
2021         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2022                 spin_unlock(&fs_info->trans_lock);
2023                 refcount_inc(&cur_trans->use_count);
2024                 ret = btrfs_end_transaction(trans);
2025
2026                 wait_for_commit(cur_trans);
2027
2028                 if (unlikely(cur_trans->aborted))
2029                         ret = cur_trans->aborted;
2030
2031                 btrfs_put_transaction(cur_trans);
2032
2033                 return ret;
2034         }
2035
2036         cur_trans->state = TRANS_STATE_COMMIT_START;
2037         wake_up(&fs_info->transaction_blocked_wait);
2038
2039         if (cur_trans->list.prev != &fs_info->trans_list) {
2040                 prev_trans = list_entry(cur_trans->list.prev,
2041                                         struct btrfs_transaction, list);
2042                 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2043                         refcount_inc(&prev_trans->use_count);
2044                         spin_unlock(&fs_info->trans_lock);
2045
2046                         wait_for_commit(prev_trans);
2047                         ret = prev_trans->aborted;
2048
2049                         btrfs_put_transaction(prev_trans);
2050                         if (ret)
2051                                 goto cleanup_transaction;
2052                 } else {
2053                         spin_unlock(&fs_info->trans_lock);
2054                 }
2055         } else {
2056                 spin_unlock(&fs_info->trans_lock);
2057         }
2058
2059         extwriter_counter_dec(cur_trans, trans->type);
2060
2061         ret = btrfs_start_delalloc_flush(fs_info);
2062         if (ret)
2063                 goto cleanup_transaction;
2064
2065         ret = btrfs_run_delayed_items(trans, fs_info);
2066         if (ret)
2067                 goto cleanup_transaction;
2068
2069         wait_event(cur_trans->writer_wait,
2070                    extwriter_counter_read(cur_trans) == 0);
2071
2072         /* some pending stuffs might be added after the previous flush. */
2073         ret = btrfs_run_delayed_items(trans, fs_info);
2074         if (ret)
2075                 goto cleanup_transaction;
2076
2077         btrfs_wait_delalloc_flush(fs_info);
2078
2079         btrfs_wait_pending_ordered(cur_trans);
2080
2081         btrfs_scrub_pause(fs_info);
2082         /*
2083          * Ok now we need to make sure to block out any other joins while we
2084          * commit the transaction.  We could have started a join before setting
2085          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2086          */
2087         spin_lock(&fs_info->trans_lock);
2088         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2089         spin_unlock(&fs_info->trans_lock);
2090         wait_event(cur_trans->writer_wait,
2091                    atomic_read(&cur_trans->num_writers) == 1);
2092
2093         /* ->aborted might be set after the previous check, so check it */
2094         if (unlikely(READ_ONCE(cur_trans->aborted))) {
2095                 ret = cur_trans->aborted;
2096                 goto scrub_continue;
2097         }
2098         /*
2099          * the reloc mutex makes sure that we stop
2100          * the balancing code from coming in and moving
2101          * extents around in the middle of the commit
2102          */
2103         mutex_lock(&fs_info->reloc_mutex);
2104
2105         /*
2106          * We needn't worry about the delayed items because we will
2107          * deal with them in create_pending_snapshot(), which is the
2108          * core function of the snapshot creation.
2109          */
2110         ret = create_pending_snapshots(trans, fs_info);
2111         if (ret) {
2112                 mutex_unlock(&fs_info->reloc_mutex);
2113                 goto scrub_continue;
2114         }
2115
2116         /*
2117          * We insert the dir indexes of the snapshots and update the inode
2118          * of the snapshots' parents after the snapshot creation, so there
2119          * are some delayed items which are not dealt with. Now deal with
2120          * them.
2121          *
2122          * We needn't worry that this operation will corrupt the snapshots,
2123          * because all the tree which are snapshoted will be forced to COW
2124          * the nodes and leaves.
2125          */
2126         ret = btrfs_run_delayed_items(trans, fs_info);
2127         if (ret) {
2128                 mutex_unlock(&fs_info->reloc_mutex);
2129                 goto scrub_continue;
2130         }
2131
2132         ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2133         if (ret) {
2134                 mutex_unlock(&fs_info->reloc_mutex);
2135                 goto scrub_continue;
2136         }
2137
2138         /*
2139          * make sure none of the code above managed to slip in a
2140          * delayed item
2141          */
2142         btrfs_assert_delayed_root_empty(fs_info);
2143
2144         WARN_ON(cur_trans != trans->transaction);
2145
2146         /* btrfs_commit_tree_roots is responsible for getting the
2147          * various roots consistent with each other.  Every pointer
2148          * in the tree of tree roots has to point to the most up to date
2149          * root for every subvolume and other tree.  So, we have to keep
2150          * the tree logging code from jumping in and changing any
2151          * of the trees.
2152          *
2153          * At this point in the commit, there can't be any tree-log
2154          * writers, but a little lower down we drop the trans mutex
2155          * and let new people in.  By holding the tree_log_mutex
2156          * from now until after the super is written, we avoid races
2157          * with the tree-log code.
2158          */
2159         mutex_lock(&fs_info->tree_log_mutex);
2160
2161         ret = commit_fs_roots(trans, fs_info);
2162         if (ret) {
2163                 mutex_unlock(&fs_info->tree_log_mutex);
2164                 mutex_unlock(&fs_info->reloc_mutex);
2165                 goto scrub_continue;
2166         }
2167
2168         /*
2169          * Since the transaction is done, we can apply the pending changes
2170          * before the next transaction.
2171          */
2172         btrfs_apply_pending_changes(fs_info);
2173
2174         /* commit_fs_roots gets rid of all the tree log roots, it is now
2175          * safe to free the root of tree log roots
2176          */
2177         btrfs_free_log_root_tree(trans, fs_info);
2178
2179         /*
2180          * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2181          * new delayed refs. Must handle them or qgroup can be wrong.
2182          */
2183         ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2184         if (ret) {
2185                 mutex_unlock(&fs_info->tree_log_mutex);
2186                 mutex_unlock(&fs_info->reloc_mutex);
2187                 goto scrub_continue;
2188         }
2189
2190         /*
2191          * Since fs roots are all committed, we can get a quite accurate
2192          * new_roots. So let's do quota accounting.
2193          */
2194         ret = btrfs_qgroup_account_extents(trans, fs_info);
2195         if (ret < 0) {
2196                 mutex_unlock(&fs_info->tree_log_mutex);
2197                 mutex_unlock(&fs_info->reloc_mutex);
2198                 goto scrub_continue;
2199         }
2200
2201         ret = commit_cowonly_roots(trans, fs_info);
2202         if (ret) {
2203                 mutex_unlock(&fs_info->tree_log_mutex);
2204                 mutex_unlock(&fs_info->reloc_mutex);
2205                 goto scrub_continue;
2206         }
2207
2208         /*
2209          * The tasks which save the space cache and inode cache may also
2210          * update ->aborted, check it.
2211          */
2212         if (unlikely(READ_ONCE(cur_trans->aborted))) {
2213                 ret = cur_trans->aborted;
2214                 mutex_unlock(&fs_info->tree_log_mutex);
2215                 mutex_unlock(&fs_info->reloc_mutex);
2216                 goto scrub_continue;
2217         }
2218
2219         btrfs_prepare_extent_commit(fs_info);
2220
2221         cur_trans = fs_info->running_transaction;
2222
2223         btrfs_set_root_node(&fs_info->tree_root->root_item,
2224                             fs_info->tree_root->node);
2225         list_add_tail(&fs_info->tree_root->dirty_list,
2226                       &cur_trans->switch_commits);
2227
2228         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2229                             fs_info->chunk_root->node);
2230         list_add_tail(&fs_info->chunk_root->dirty_list,
2231                       &cur_trans->switch_commits);
2232
2233         switch_commit_roots(cur_trans, fs_info);
2234
2235         ASSERT(list_empty(&cur_trans->dirty_bgs));
2236         ASSERT(list_empty(&cur_trans->io_bgs));
2237         update_super_roots(fs_info);
2238
2239         btrfs_set_super_log_root(fs_info->super_copy, 0);
2240         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2241         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2242                sizeof(*fs_info->super_copy));
2243
2244         btrfs_update_commit_device_size(fs_info);
2245         btrfs_update_commit_device_bytes_used(fs_info, cur_trans);
2246
2247         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2248         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2249
2250         btrfs_trans_release_chunk_metadata(trans);
2251
2252         spin_lock(&fs_info->trans_lock);
2253         cur_trans->state = TRANS_STATE_UNBLOCKED;
2254         fs_info->running_transaction = NULL;
2255         spin_unlock(&fs_info->trans_lock);
2256         mutex_unlock(&fs_info->reloc_mutex);
2257
2258         wake_up(&fs_info->transaction_wait);
2259
2260         ret = btrfs_write_and_wait_transaction(trans, fs_info);
2261         if (ret) {
2262                 btrfs_handle_fs_error(fs_info, ret,
2263                                       "Error while writing out transaction");
2264                 mutex_unlock(&fs_info->tree_log_mutex);
2265                 goto scrub_continue;
2266         }
2267
2268         ret = write_all_supers(fs_info, 0);
2269         if (ret) {
2270                 mutex_unlock(&fs_info->tree_log_mutex);
2271                 goto scrub_continue;
2272         }
2273
2274         /*
2275          * the super is written, we can safely allow the tree-loggers
2276          * to go about their business
2277          */
2278         mutex_unlock(&fs_info->tree_log_mutex);
2279
2280         btrfs_finish_extent_commit(trans, fs_info);
2281
2282         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2283                 btrfs_clear_space_info_full(fs_info);
2284
2285         fs_info->last_trans_committed = cur_trans->transid;
2286         /*
2287          * We needn't acquire the lock here because there is no other task
2288          * which can change it.
2289          */
2290         cur_trans->state = TRANS_STATE_COMPLETED;
2291         wake_up(&cur_trans->commit_wait);
2292
2293         spin_lock(&fs_info->trans_lock);
2294         list_del_init(&cur_trans->list);
2295         spin_unlock(&fs_info->trans_lock);
2296
2297         btrfs_put_transaction(cur_trans);
2298         btrfs_put_transaction(cur_trans);
2299
2300         if (trans->type & __TRANS_FREEZABLE)
2301                 sb_end_intwrite(fs_info->sb);
2302
2303         trace_btrfs_transaction_commit(trans->root);
2304
2305         btrfs_scrub_continue(fs_info);
2306
2307         if (current->journal_info == trans)
2308                 current->journal_info = NULL;
2309
2310         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2311
2312         /*
2313          * If fs has been frozen, we can not handle delayed iputs, otherwise
2314          * it'll result in deadlock about SB_FREEZE_FS.
2315          */
2316         if (current != fs_info->transaction_kthread &&
2317             current != fs_info->cleaner_kthread &&
2318             !test_bit(BTRFS_FS_FROZEN, &fs_info->flags))
2319                 btrfs_run_delayed_iputs(fs_info);
2320
2321         return ret;
2322
2323 scrub_continue:
2324         btrfs_scrub_continue(fs_info);
2325 cleanup_transaction:
2326         btrfs_trans_release_metadata(trans, fs_info);
2327         btrfs_trans_release_chunk_metadata(trans);
2328         trans->block_rsv = NULL;
2329         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2330         if (current->journal_info == trans)
2331                 current->journal_info = NULL;
2332         cleanup_transaction(trans, trans->root, ret);
2333
2334         return ret;
2335 }
2336
2337 /*
2338  * return < 0 if error
2339  * 0 if there are no more dead_roots at the time of call
2340  * 1 there are more to be processed, call me again
2341  *
2342  * The return value indicates there are certainly more snapshots to delete, but
2343  * if there comes a new one during processing, it may return 0. We don't mind,
2344  * because btrfs_commit_super will poke cleaner thread and it will process it a
2345  * few seconds later.
2346  */
2347 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2348 {
2349         int ret;
2350         struct btrfs_fs_info *fs_info = root->fs_info;
2351
2352         spin_lock(&fs_info->trans_lock);
2353         if (list_empty(&fs_info->dead_roots)) {
2354                 spin_unlock(&fs_info->trans_lock);
2355                 return 0;
2356         }
2357         root = list_first_entry(&fs_info->dead_roots,
2358                         struct btrfs_root, root_list);
2359         list_del_init(&root->root_list);
2360         spin_unlock(&fs_info->trans_lock);
2361
2362         btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2363
2364         btrfs_kill_all_delayed_nodes(root);
2365
2366         if (btrfs_header_backref_rev(root->node) <
2367                         BTRFS_MIXED_BACKREF_REV)
2368                 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2369         else
2370                 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2371
2372         return (ret < 0) ? 0 : 1;
2373 }
2374
2375 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2376 {
2377         unsigned long prev;
2378         unsigned long bit;
2379
2380         prev = xchg(&fs_info->pending_changes, 0);
2381         if (!prev)
2382                 return;
2383
2384         bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2385         if (prev & bit)
2386                 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2387         prev &= ~bit;
2388
2389         bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2390         if (prev & bit)
2391                 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2392         prev &= ~bit;
2393
2394         bit = 1 << BTRFS_PENDING_COMMIT;
2395         if (prev & bit)
2396                 btrfs_debug(fs_info, "pending commit done");
2397         prev &= ~bit;
2398
2399         if (prev)
2400                 btrfs_warn(fs_info,
2401                         "unknown pending changes left 0x%lx, ignoring", prev);
2402 }