Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30
31 static struct kmem_cache *btrfs_inode_defrag_cachep;
32 /*
33  * when auto defrag is enabled we
34  * queue up these defrag structs to remember which
35  * inodes need defragging passes
36  */
37 struct inode_defrag {
38         struct rb_node rb_node;
39         /* objectid */
40         u64 ino;
41         /*
42          * transid where the defrag was added, we search for
43          * extents newer than this
44          */
45         u64 transid;
46
47         /* root objectid */
48         u64 root;
49
50         /* last offset we were able to defrag */
51         u64 last_offset;
52
53         /* if we've wrapped around back to zero once already */
54         int cycled;
55 };
56
57 static int __compare_inode_defrag(struct inode_defrag *defrag1,
58                                   struct inode_defrag *defrag2)
59 {
60         if (defrag1->root > defrag2->root)
61                 return 1;
62         else if (defrag1->root < defrag2->root)
63                 return -1;
64         else if (defrag1->ino > defrag2->ino)
65                 return 1;
66         else if (defrag1->ino < defrag2->ino)
67                 return -1;
68         else
69                 return 0;
70 }
71
72 /* pop a record for an inode into the defrag tree.  The lock
73  * must be held already
74  *
75  * If you're inserting a record for an older transid than an
76  * existing record, the transid already in the tree is lowered
77  *
78  * If an existing record is found the defrag item you
79  * pass in is freed
80  */
81 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
82                                     struct inode_defrag *defrag)
83 {
84         struct btrfs_fs_info *fs_info = inode->root->fs_info;
85         struct inode_defrag *entry;
86         struct rb_node **p;
87         struct rb_node *parent = NULL;
88         int ret;
89
90         p = &fs_info->defrag_inodes.rb_node;
91         while (*p) {
92                 parent = *p;
93                 entry = rb_entry(parent, struct inode_defrag, rb_node);
94
95                 ret = __compare_inode_defrag(defrag, entry);
96                 if (ret < 0)
97                         p = &parent->rb_left;
98                 else if (ret > 0)
99                         p = &parent->rb_right;
100                 else {
101                         /* if we're reinserting an entry for
102                          * an old defrag run, make sure to
103                          * lower the transid of our existing record
104                          */
105                         if (defrag->transid < entry->transid)
106                                 entry->transid = defrag->transid;
107                         if (defrag->last_offset > entry->last_offset)
108                                 entry->last_offset = defrag->last_offset;
109                         return -EEXIST;
110                 }
111         }
112         set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
113         rb_link_node(&defrag->rb_node, parent, p);
114         rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
115         return 0;
116 }
117
118 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
119 {
120         if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
121                 return 0;
122
123         if (btrfs_fs_closing(fs_info))
124                 return 0;
125
126         return 1;
127 }
128
129 /*
130  * insert a defrag record for this inode if auto defrag is
131  * enabled
132  */
133 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
134                            struct btrfs_inode *inode)
135 {
136         struct btrfs_root *root = inode->root;
137         struct btrfs_fs_info *fs_info = root->fs_info;
138         struct inode_defrag *defrag;
139         u64 transid;
140         int ret;
141
142         if (!__need_auto_defrag(fs_info))
143                 return 0;
144
145         if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
146                 return 0;
147
148         if (trans)
149                 transid = trans->transid;
150         else
151                 transid = inode->root->last_trans;
152
153         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
154         if (!defrag)
155                 return -ENOMEM;
156
157         defrag->ino = btrfs_ino(inode);
158         defrag->transid = transid;
159         defrag->root = root->root_key.objectid;
160
161         spin_lock(&fs_info->defrag_inodes_lock);
162         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
163                 /*
164                  * If we set IN_DEFRAG flag and evict the inode from memory,
165                  * and then re-read this inode, this new inode doesn't have
166                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
167                  */
168                 ret = __btrfs_add_inode_defrag(inode, defrag);
169                 if (ret)
170                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
171         } else {
172                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
173         }
174         spin_unlock(&fs_info->defrag_inodes_lock);
175         return 0;
176 }
177
178 /*
179  * Requeue the defrag object. If there is a defrag object that points to
180  * the same inode in the tree, we will merge them together (by
181  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
182  */
183 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
184                                        struct inode_defrag *defrag)
185 {
186         struct btrfs_fs_info *fs_info = inode->root->fs_info;
187         int ret;
188
189         if (!__need_auto_defrag(fs_info))
190                 goto out;
191
192         /*
193          * Here we don't check the IN_DEFRAG flag, because we need merge
194          * them together.
195          */
196         spin_lock(&fs_info->defrag_inodes_lock);
197         ret = __btrfs_add_inode_defrag(inode, defrag);
198         spin_unlock(&fs_info->defrag_inodes_lock);
199         if (ret)
200                 goto out;
201         return;
202 out:
203         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
204 }
205
206 /*
207  * pick the defragable inode that we want, if it doesn't exist, we will get
208  * the next one.
209  */
210 static struct inode_defrag *
211 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
212 {
213         struct inode_defrag *entry = NULL;
214         struct inode_defrag tmp;
215         struct rb_node *p;
216         struct rb_node *parent = NULL;
217         int ret;
218
219         tmp.ino = ino;
220         tmp.root = root;
221
222         spin_lock(&fs_info->defrag_inodes_lock);
223         p = fs_info->defrag_inodes.rb_node;
224         while (p) {
225                 parent = p;
226                 entry = rb_entry(parent, struct inode_defrag, rb_node);
227
228                 ret = __compare_inode_defrag(&tmp, entry);
229                 if (ret < 0)
230                         p = parent->rb_left;
231                 else if (ret > 0)
232                         p = parent->rb_right;
233                 else
234                         goto out;
235         }
236
237         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
238                 parent = rb_next(parent);
239                 if (parent)
240                         entry = rb_entry(parent, struct inode_defrag, rb_node);
241                 else
242                         entry = NULL;
243         }
244 out:
245         if (entry)
246                 rb_erase(parent, &fs_info->defrag_inodes);
247         spin_unlock(&fs_info->defrag_inodes_lock);
248         return entry;
249 }
250
251 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
252 {
253         struct inode_defrag *defrag;
254         struct rb_node *node;
255
256         spin_lock(&fs_info->defrag_inodes_lock);
257         node = rb_first(&fs_info->defrag_inodes);
258         while (node) {
259                 rb_erase(node, &fs_info->defrag_inodes);
260                 defrag = rb_entry(node, struct inode_defrag, rb_node);
261                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
262
263                 cond_resched_lock(&fs_info->defrag_inodes_lock);
264
265                 node = rb_first(&fs_info->defrag_inodes);
266         }
267         spin_unlock(&fs_info->defrag_inodes_lock);
268 }
269
270 #define BTRFS_DEFRAG_BATCH      1024
271
272 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
273                                     struct inode_defrag *defrag)
274 {
275         struct btrfs_root *inode_root;
276         struct inode *inode;
277         struct btrfs_key key;
278         struct btrfs_ioctl_defrag_range_args range;
279         int num_defrag;
280         int index;
281         int ret;
282
283         /* get the inode */
284         key.objectid = defrag->root;
285         key.type = BTRFS_ROOT_ITEM_KEY;
286         key.offset = (u64)-1;
287
288         index = srcu_read_lock(&fs_info->subvol_srcu);
289
290         inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
291         if (IS_ERR(inode_root)) {
292                 ret = PTR_ERR(inode_root);
293                 goto cleanup;
294         }
295
296         key.objectid = defrag->ino;
297         key.type = BTRFS_INODE_ITEM_KEY;
298         key.offset = 0;
299         inode = btrfs_iget(fs_info->sb, &key, inode_root);
300         if (IS_ERR(inode)) {
301                 ret = PTR_ERR(inode);
302                 goto cleanup;
303         }
304         srcu_read_unlock(&fs_info->subvol_srcu, index);
305
306         /* do a chunk of defrag */
307         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
308         memset(&range, 0, sizeof(range));
309         range.len = (u64)-1;
310         range.start = defrag->last_offset;
311
312         sb_start_write(fs_info->sb);
313         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
314                                        BTRFS_DEFRAG_BATCH);
315         sb_end_write(fs_info->sb);
316         /*
317          * if we filled the whole defrag batch, there
318          * must be more work to do.  Queue this defrag
319          * again
320          */
321         if (num_defrag == BTRFS_DEFRAG_BATCH) {
322                 defrag->last_offset = range.start;
323                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
324         } else if (defrag->last_offset && !defrag->cycled) {
325                 /*
326                  * we didn't fill our defrag batch, but
327                  * we didn't start at zero.  Make sure we loop
328                  * around to the start of the file.
329                  */
330                 defrag->last_offset = 0;
331                 defrag->cycled = 1;
332                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
333         } else {
334                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
335         }
336
337         iput(inode);
338         return 0;
339 cleanup:
340         srcu_read_unlock(&fs_info->subvol_srcu, index);
341         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
342         return ret;
343 }
344
345 /*
346  * run through the list of inodes in the FS that need
347  * defragging
348  */
349 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
350 {
351         struct inode_defrag *defrag;
352         u64 first_ino = 0;
353         u64 root_objectid = 0;
354
355         atomic_inc(&fs_info->defrag_running);
356         while (1) {
357                 /* Pause the auto defragger. */
358                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
359                              &fs_info->fs_state))
360                         break;
361
362                 if (!__need_auto_defrag(fs_info))
363                         break;
364
365                 /* find an inode to defrag */
366                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
367                                                  first_ino);
368                 if (!defrag) {
369                         if (root_objectid || first_ino) {
370                                 root_objectid = 0;
371                                 first_ino = 0;
372                                 continue;
373                         } else {
374                                 break;
375                         }
376                 }
377
378                 first_ino = defrag->ino + 1;
379                 root_objectid = defrag->root;
380
381                 __btrfs_run_defrag_inode(fs_info, defrag);
382         }
383         atomic_dec(&fs_info->defrag_running);
384
385         /*
386          * during unmount, we use the transaction_wait queue to
387          * wait for the defragger to stop
388          */
389         wake_up(&fs_info->transaction_wait);
390         return 0;
391 }
392
393 /* simple helper to fault in pages and copy.  This should go away
394  * and be replaced with calls into generic code.
395  */
396 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
397                                          struct page **prepared_pages,
398                                          struct iov_iter *i)
399 {
400         size_t copied = 0;
401         size_t total_copied = 0;
402         int pg = 0;
403         int offset = offset_in_page(pos);
404
405         while (write_bytes > 0) {
406                 size_t count = min_t(size_t,
407                                      PAGE_SIZE - offset, write_bytes);
408                 struct page *page = prepared_pages[pg];
409                 /*
410                  * Copy data from userspace to the current page
411                  */
412                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
413
414                 /* Flush processor's dcache for this page */
415                 flush_dcache_page(page);
416
417                 /*
418                  * if we get a partial write, we can end up with
419                  * partially up to date pages.  These add
420                  * a lot of complexity, so make sure they don't
421                  * happen by forcing this copy to be retried.
422                  *
423                  * The rest of the btrfs_file_write code will fall
424                  * back to page at a time copies after we return 0.
425                  */
426                 if (!PageUptodate(page) && copied < count)
427                         copied = 0;
428
429                 iov_iter_advance(i, copied);
430                 write_bytes -= copied;
431                 total_copied += copied;
432
433                 /* Return to btrfs_file_write_iter to fault page */
434                 if (unlikely(copied == 0))
435                         break;
436
437                 if (copied < PAGE_SIZE - offset) {
438                         offset += copied;
439                 } else {
440                         pg++;
441                         offset = 0;
442                 }
443         }
444         return total_copied;
445 }
446
447 /*
448  * unlocks pages after btrfs_file_write is done with them
449  */
450 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
451 {
452         size_t i;
453         for (i = 0; i < num_pages; i++) {
454                 /* page checked is some magic around finding pages that
455                  * have been modified without going through btrfs_set_page_dirty
456                  * clear it here. There should be no need to mark the pages
457                  * accessed as prepare_pages should have marked them accessed
458                  * in prepare_pages via find_or_create_page()
459                  */
460                 ClearPageChecked(pages[i]);
461                 unlock_page(pages[i]);
462                 put_page(pages[i]);
463         }
464 }
465
466 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
467                                          const u64 start,
468                                          const u64 len,
469                                          struct extent_state **cached_state)
470 {
471         u64 search_start = start;
472         const u64 end = start + len - 1;
473
474         while (search_start < end) {
475                 const u64 search_len = end - search_start + 1;
476                 struct extent_map *em;
477                 u64 em_len;
478                 int ret = 0;
479
480                 em = btrfs_get_extent(inode, NULL, 0, search_start,
481                                       search_len, 0);
482                 if (IS_ERR(em))
483                         return PTR_ERR(em);
484
485                 if (em->block_start != EXTENT_MAP_HOLE)
486                         goto next;
487
488                 em_len = em->len;
489                 if (em->start < search_start)
490                         em_len -= search_start - em->start;
491                 if (em_len > search_len)
492                         em_len = search_len;
493
494                 ret = set_extent_bit(&inode->io_tree, search_start,
495                                      search_start + em_len - 1,
496                                      EXTENT_DELALLOC_NEW,
497                                      NULL, cached_state, GFP_NOFS);
498 next:
499                 search_start = extent_map_end(em);
500                 free_extent_map(em);
501                 if (ret)
502                         return ret;
503         }
504         return 0;
505 }
506
507 /*
508  * after copy_from_user, pages need to be dirtied and we need to make
509  * sure holes are created between the current EOF and the start of
510  * any next extents (if required).
511  *
512  * this also makes the decision about creating an inline extent vs
513  * doing real data extents, marking pages dirty and delalloc as required.
514  */
515 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
516                       size_t num_pages, loff_t pos, size_t write_bytes,
517                       struct extent_state **cached)
518 {
519         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
520         int err = 0;
521         int i;
522         u64 num_bytes;
523         u64 start_pos;
524         u64 end_of_last_block;
525         u64 end_pos = pos + write_bytes;
526         loff_t isize = i_size_read(inode);
527         unsigned int extra_bits = 0;
528
529         start_pos = pos & ~((u64) fs_info->sectorsize - 1);
530         num_bytes = round_up(write_bytes + pos - start_pos,
531                              fs_info->sectorsize);
532
533         end_of_last_block = start_pos + num_bytes - 1;
534
535         /*
536          * The pages may have already been dirty, clear out old accounting so
537          * we can set things up properly
538          */
539         clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
540                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
541                          0, 0, cached);
542
543         if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
544                 if (start_pos >= isize &&
545                     !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
546                         /*
547                          * There can't be any extents following eof in this case
548                          * so just set the delalloc new bit for the range
549                          * directly.
550                          */
551                         extra_bits |= EXTENT_DELALLOC_NEW;
552                 } else {
553                         err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
554                                                             start_pos,
555                                                             num_bytes, cached);
556                         if (err)
557                                 return err;
558                 }
559         }
560
561         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
562                                         extra_bits, cached);
563         if (err)
564                 return err;
565
566         for (i = 0; i < num_pages; i++) {
567                 struct page *p = pages[i];
568                 SetPageUptodate(p);
569                 ClearPageChecked(p);
570                 set_page_dirty(p);
571         }
572
573         /*
574          * we've only changed i_size in ram, and we haven't updated
575          * the disk i_size.  There is no need to log the inode
576          * at this time.
577          */
578         if (end_pos > isize)
579                 i_size_write(inode, end_pos);
580         return 0;
581 }
582
583 /*
584  * this drops all the extents in the cache that intersect the range
585  * [start, end].  Existing extents are split as required.
586  */
587 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
588                              int skip_pinned)
589 {
590         struct extent_map *em;
591         struct extent_map *split = NULL;
592         struct extent_map *split2 = NULL;
593         struct extent_map_tree *em_tree = &inode->extent_tree;
594         u64 len = end - start + 1;
595         u64 gen;
596         int ret;
597         int testend = 1;
598         unsigned long flags;
599         int compressed = 0;
600         bool modified;
601
602         WARN_ON(end < start);
603         if (end == (u64)-1) {
604                 len = (u64)-1;
605                 testend = 0;
606         }
607         while (1) {
608                 int no_splits = 0;
609
610                 modified = false;
611                 if (!split)
612                         split = alloc_extent_map();
613                 if (!split2)
614                         split2 = alloc_extent_map();
615                 if (!split || !split2)
616                         no_splits = 1;
617
618                 write_lock(&em_tree->lock);
619                 em = lookup_extent_mapping(em_tree, start, len);
620                 if (!em) {
621                         write_unlock(&em_tree->lock);
622                         break;
623                 }
624                 flags = em->flags;
625                 gen = em->generation;
626                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
627                         if (testend && em->start + em->len >= start + len) {
628                                 free_extent_map(em);
629                                 write_unlock(&em_tree->lock);
630                                 break;
631                         }
632                         start = em->start + em->len;
633                         if (testend)
634                                 len = start + len - (em->start + em->len);
635                         free_extent_map(em);
636                         write_unlock(&em_tree->lock);
637                         continue;
638                 }
639                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
640                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
641                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
642                 modified = !list_empty(&em->list);
643                 if (no_splits)
644                         goto next;
645
646                 if (em->start < start) {
647                         split->start = em->start;
648                         split->len = start - em->start;
649
650                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
651                                 split->orig_start = em->orig_start;
652                                 split->block_start = em->block_start;
653
654                                 if (compressed)
655                                         split->block_len = em->block_len;
656                                 else
657                                         split->block_len = split->len;
658                                 split->orig_block_len = max(split->block_len,
659                                                 em->orig_block_len);
660                                 split->ram_bytes = em->ram_bytes;
661                         } else {
662                                 split->orig_start = split->start;
663                                 split->block_len = 0;
664                                 split->block_start = em->block_start;
665                                 split->orig_block_len = 0;
666                                 split->ram_bytes = split->len;
667                         }
668
669                         split->generation = gen;
670                         split->flags = flags;
671                         split->compress_type = em->compress_type;
672                         replace_extent_mapping(em_tree, em, split, modified);
673                         free_extent_map(split);
674                         split = split2;
675                         split2 = NULL;
676                 }
677                 if (testend && em->start + em->len > start + len) {
678                         u64 diff = start + len - em->start;
679
680                         split->start = start + len;
681                         split->len = em->start + em->len - (start + len);
682                         split->flags = flags;
683                         split->compress_type = em->compress_type;
684                         split->generation = gen;
685
686                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
687                                 split->orig_block_len = max(em->block_len,
688                                                     em->orig_block_len);
689
690                                 split->ram_bytes = em->ram_bytes;
691                                 if (compressed) {
692                                         split->block_len = em->block_len;
693                                         split->block_start = em->block_start;
694                                         split->orig_start = em->orig_start;
695                                 } else {
696                                         split->block_len = split->len;
697                                         split->block_start = em->block_start
698                                                 + diff;
699                                         split->orig_start = em->orig_start;
700                                 }
701                         } else {
702                                 split->ram_bytes = split->len;
703                                 split->orig_start = split->start;
704                                 split->block_len = 0;
705                                 split->block_start = em->block_start;
706                                 split->orig_block_len = 0;
707                         }
708
709                         if (extent_map_in_tree(em)) {
710                                 replace_extent_mapping(em_tree, em, split,
711                                                        modified);
712                         } else {
713                                 ret = add_extent_mapping(em_tree, split,
714                                                          modified);
715                                 ASSERT(ret == 0); /* Logic error */
716                         }
717                         free_extent_map(split);
718                         split = NULL;
719                 }
720 next:
721                 if (extent_map_in_tree(em))
722                         remove_extent_mapping(em_tree, em);
723                 write_unlock(&em_tree->lock);
724
725                 /* once for us */
726                 free_extent_map(em);
727                 /* once for the tree*/
728                 free_extent_map(em);
729         }
730         if (split)
731                 free_extent_map(split);
732         if (split2)
733                 free_extent_map(split2);
734 }
735
736 /*
737  * this is very complex, but the basic idea is to drop all extents
738  * in the range start - end.  hint_block is filled in with a block number
739  * that would be a good hint to the block allocator for this file.
740  *
741  * If an extent intersects the range but is not entirely inside the range
742  * it is either truncated or split.  Anything entirely inside the range
743  * is deleted from the tree.
744  */
745 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
746                          struct btrfs_root *root, struct inode *inode,
747                          struct btrfs_path *path, u64 start, u64 end,
748                          u64 *drop_end, int drop_cache,
749                          int replace_extent,
750                          u32 extent_item_size,
751                          int *key_inserted)
752 {
753         struct btrfs_fs_info *fs_info = root->fs_info;
754         struct extent_buffer *leaf;
755         struct btrfs_file_extent_item *fi;
756         struct btrfs_ref ref = { 0 };
757         struct btrfs_key key;
758         struct btrfs_key new_key;
759         u64 ino = btrfs_ino(BTRFS_I(inode));
760         u64 search_start = start;
761         u64 disk_bytenr = 0;
762         u64 num_bytes = 0;
763         u64 extent_offset = 0;
764         u64 extent_end = 0;
765         u64 last_end = start;
766         int del_nr = 0;
767         int del_slot = 0;
768         int extent_type;
769         int recow;
770         int ret;
771         int modify_tree = -1;
772         int update_refs;
773         int found = 0;
774         int leafs_visited = 0;
775
776         if (drop_cache)
777                 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
778
779         if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
780                 modify_tree = 0;
781
782         update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
783                        root == fs_info->tree_root);
784         while (1) {
785                 recow = 0;
786                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
787                                                search_start, modify_tree);
788                 if (ret < 0)
789                         break;
790                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
791                         leaf = path->nodes[0];
792                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
793                         if (key.objectid == ino &&
794                             key.type == BTRFS_EXTENT_DATA_KEY)
795                                 path->slots[0]--;
796                 }
797                 ret = 0;
798                 leafs_visited++;
799 next_slot:
800                 leaf = path->nodes[0];
801                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
802                         BUG_ON(del_nr > 0);
803                         ret = btrfs_next_leaf(root, path);
804                         if (ret < 0)
805                                 break;
806                         if (ret > 0) {
807                                 ret = 0;
808                                 break;
809                         }
810                         leafs_visited++;
811                         leaf = path->nodes[0];
812                         recow = 1;
813                 }
814
815                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
816
817                 if (key.objectid > ino)
818                         break;
819                 if (WARN_ON_ONCE(key.objectid < ino) ||
820                     key.type < BTRFS_EXTENT_DATA_KEY) {
821                         ASSERT(del_nr == 0);
822                         path->slots[0]++;
823                         goto next_slot;
824                 }
825                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
826                         break;
827
828                 fi = btrfs_item_ptr(leaf, path->slots[0],
829                                     struct btrfs_file_extent_item);
830                 extent_type = btrfs_file_extent_type(leaf, fi);
831
832                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
833                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
834                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
835                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
836                         extent_offset = btrfs_file_extent_offset(leaf, fi);
837                         extent_end = key.offset +
838                                 btrfs_file_extent_num_bytes(leaf, fi);
839                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
840                         extent_end = key.offset +
841                                 btrfs_file_extent_ram_bytes(leaf, fi);
842                 } else {
843                         /* can't happen */
844                         BUG();
845                 }
846
847                 /*
848                  * Don't skip extent items representing 0 byte lengths. They
849                  * used to be created (bug) if while punching holes we hit
850                  * -ENOSPC condition. So if we find one here, just ensure we
851                  * delete it, otherwise we would insert a new file extent item
852                  * with the same key (offset) as that 0 bytes length file
853                  * extent item in the call to setup_items_for_insert() later
854                  * in this function.
855                  */
856                 if (extent_end == key.offset && extent_end >= search_start) {
857                         last_end = extent_end;
858                         goto delete_extent_item;
859                 }
860
861                 if (extent_end <= search_start) {
862                         path->slots[0]++;
863                         goto next_slot;
864                 }
865
866                 found = 1;
867                 search_start = max(key.offset, start);
868                 if (recow || !modify_tree) {
869                         modify_tree = -1;
870                         btrfs_release_path(path);
871                         continue;
872                 }
873
874                 /*
875                  *     | - range to drop - |
876                  *  | -------- extent -------- |
877                  */
878                 if (start > key.offset && end < extent_end) {
879                         BUG_ON(del_nr > 0);
880                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
881                                 ret = -EOPNOTSUPP;
882                                 break;
883                         }
884
885                         memcpy(&new_key, &key, sizeof(new_key));
886                         new_key.offset = start;
887                         ret = btrfs_duplicate_item(trans, root, path,
888                                                    &new_key);
889                         if (ret == -EAGAIN) {
890                                 btrfs_release_path(path);
891                                 continue;
892                         }
893                         if (ret < 0)
894                                 break;
895
896                         leaf = path->nodes[0];
897                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
898                                             struct btrfs_file_extent_item);
899                         btrfs_set_file_extent_num_bytes(leaf, fi,
900                                                         start - key.offset);
901
902                         fi = btrfs_item_ptr(leaf, path->slots[0],
903                                             struct btrfs_file_extent_item);
904
905                         extent_offset += start - key.offset;
906                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
907                         btrfs_set_file_extent_num_bytes(leaf, fi,
908                                                         extent_end - start);
909                         btrfs_mark_buffer_dirty(leaf);
910
911                         if (update_refs && disk_bytenr > 0) {
912                                 btrfs_init_generic_ref(&ref,
913                                                 BTRFS_ADD_DELAYED_REF,
914                                                 disk_bytenr, num_bytes, 0);
915                                 btrfs_init_data_ref(&ref,
916                                                 root->root_key.objectid,
917                                                 new_key.objectid,
918                                                 start - extent_offset);
919                                 ret = btrfs_inc_extent_ref(trans, &ref);
920                                 BUG_ON(ret); /* -ENOMEM */
921                         }
922                         key.offset = start;
923                 }
924                 /*
925                  * From here on out we will have actually dropped something, so
926                  * last_end can be updated.
927                  */
928                 last_end = extent_end;
929
930                 /*
931                  *  | ---- range to drop ----- |
932                  *      | -------- extent -------- |
933                  */
934                 if (start <= key.offset && end < extent_end) {
935                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
936                                 ret = -EOPNOTSUPP;
937                                 break;
938                         }
939
940                         memcpy(&new_key, &key, sizeof(new_key));
941                         new_key.offset = end;
942                         btrfs_set_item_key_safe(fs_info, path, &new_key);
943
944                         extent_offset += end - key.offset;
945                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
946                         btrfs_set_file_extent_num_bytes(leaf, fi,
947                                                         extent_end - end);
948                         btrfs_mark_buffer_dirty(leaf);
949                         if (update_refs && disk_bytenr > 0)
950                                 inode_sub_bytes(inode, end - key.offset);
951                         break;
952                 }
953
954                 search_start = extent_end;
955                 /*
956                  *       | ---- range to drop ----- |
957                  *  | -------- extent -------- |
958                  */
959                 if (start > key.offset && end >= extent_end) {
960                         BUG_ON(del_nr > 0);
961                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
962                                 ret = -EOPNOTSUPP;
963                                 break;
964                         }
965
966                         btrfs_set_file_extent_num_bytes(leaf, fi,
967                                                         start - key.offset);
968                         btrfs_mark_buffer_dirty(leaf);
969                         if (update_refs && disk_bytenr > 0)
970                                 inode_sub_bytes(inode, extent_end - start);
971                         if (end == extent_end)
972                                 break;
973
974                         path->slots[0]++;
975                         goto next_slot;
976                 }
977
978                 /*
979                  *  | ---- range to drop ----- |
980                  *    | ------ extent ------ |
981                  */
982                 if (start <= key.offset && end >= extent_end) {
983 delete_extent_item:
984                         if (del_nr == 0) {
985                                 del_slot = path->slots[0];
986                                 del_nr = 1;
987                         } else {
988                                 BUG_ON(del_slot + del_nr != path->slots[0]);
989                                 del_nr++;
990                         }
991
992                         if (update_refs &&
993                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
994                                 inode_sub_bytes(inode,
995                                                 extent_end - key.offset);
996                                 extent_end = ALIGN(extent_end,
997                                                    fs_info->sectorsize);
998                         } else if (update_refs && disk_bytenr > 0) {
999                                 btrfs_init_generic_ref(&ref,
1000                                                 BTRFS_DROP_DELAYED_REF,
1001                                                 disk_bytenr, num_bytes, 0);
1002                                 btrfs_init_data_ref(&ref,
1003                                                 root->root_key.objectid,
1004                                                 key.objectid,
1005                                                 key.offset - extent_offset);
1006                                 ret = btrfs_free_extent(trans, &ref);
1007                                 BUG_ON(ret); /* -ENOMEM */
1008                                 inode_sub_bytes(inode,
1009                                                 extent_end - key.offset);
1010                         }
1011
1012                         if (end == extent_end)
1013                                 break;
1014
1015                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1016                                 path->slots[0]++;
1017                                 goto next_slot;
1018                         }
1019
1020                         ret = btrfs_del_items(trans, root, path, del_slot,
1021                                               del_nr);
1022                         if (ret) {
1023                                 btrfs_abort_transaction(trans, ret);
1024                                 break;
1025                         }
1026
1027                         del_nr = 0;
1028                         del_slot = 0;
1029
1030                         btrfs_release_path(path);
1031                         continue;
1032                 }
1033
1034                 BUG();
1035         }
1036
1037         if (!ret && del_nr > 0) {
1038                 /*
1039                  * Set path->slots[0] to first slot, so that after the delete
1040                  * if items are move off from our leaf to its immediate left or
1041                  * right neighbor leafs, we end up with a correct and adjusted
1042                  * path->slots[0] for our insertion (if replace_extent != 0).
1043                  */
1044                 path->slots[0] = del_slot;
1045                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1046                 if (ret)
1047                         btrfs_abort_transaction(trans, ret);
1048         }
1049
1050         leaf = path->nodes[0];
1051         /*
1052          * If btrfs_del_items() was called, it might have deleted a leaf, in
1053          * which case it unlocked our path, so check path->locks[0] matches a
1054          * write lock.
1055          */
1056         if (!ret && replace_extent && leafs_visited == 1 &&
1057             (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1058              path->locks[0] == BTRFS_WRITE_LOCK) &&
1059             btrfs_leaf_free_space(leaf) >=
1060             sizeof(struct btrfs_item) + extent_item_size) {
1061
1062                 key.objectid = ino;
1063                 key.type = BTRFS_EXTENT_DATA_KEY;
1064                 key.offset = start;
1065                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1066                         struct btrfs_key slot_key;
1067
1068                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1069                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1070                                 path->slots[0]++;
1071                 }
1072                 setup_items_for_insert(root, path, &key,
1073                                        &extent_item_size,
1074                                        extent_item_size,
1075                                        sizeof(struct btrfs_item) +
1076                                        extent_item_size, 1);
1077                 *key_inserted = 1;
1078         }
1079
1080         if (!replace_extent || !(*key_inserted))
1081                 btrfs_release_path(path);
1082         if (drop_end)
1083                 *drop_end = found ? min(end, last_end) : end;
1084         return ret;
1085 }
1086
1087 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1088                        struct btrfs_root *root, struct inode *inode, u64 start,
1089                        u64 end, int drop_cache)
1090 {
1091         struct btrfs_path *path;
1092         int ret;
1093
1094         path = btrfs_alloc_path();
1095         if (!path)
1096                 return -ENOMEM;
1097         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1098                                    drop_cache, 0, 0, NULL);
1099         btrfs_free_path(path);
1100         return ret;
1101 }
1102
1103 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1104                             u64 objectid, u64 bytenr, u64 orig_offset,
1105                             u64 *start, u64 *end)
1106 {
1107         struct btrfs_file_extent_item *fi;
1108         struct btrfs_key key;
1109         u64 extent_end;
1110
1111         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1112                 return 0;
1113
1114         btrfs_item_key_to_cpu(leaf, &key, slot);
1115         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1116                 return 0;
1117
1118         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1119         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1120             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1121             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1122             btrfs_file_extent_compression(leaf, fi) ||
1123             btrfs_file_extent_encryption(leaf, fi) ||
1124             btrfs_file_extent_other_encoding(leaf, fi))
1125                 return 0;
1126
1127         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1128         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1129                 return 0;
1130
1131         *start = key.offset;
1132         *end = extent_end;
1133         return 1;
1134 }
1135
1136 /*
1137  * Mark extent in the range start - end as written.
1138  *
1139  * This changes extent type from 'pre-allocated' to 'regular'. If only
1140  * part of extent is marked as written, the extent will be split into
1141  * two or three.
1142  */
1143 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1144                               struct btrfs_inode *inode, u64 start, u64 end)
1145 {
1146         struct btrfs_fs_info *fs_info = trans->fs_info;
1147         struct btrfs_root *root = inode->root;
1148         struct extent_buffer *leaf;
1149         struct btrfs_path *path;
1150         struct btrfs_file_extent_item *fi;
1151         struct btrfs_ref ref = { 0 };
1152         struct btrfs_key key;
1153         struct btrfs_key new_key;
1154         u64 bytenr;
1155         u64 num_bytes;
1156         u64 extent_end;
1157         u64 orig_offset;
1158         u64 other_start;
1159         u64 other_end;
1160         u64 split;
1161         int del_nr = 0;
1162         int del_slot = 0;
1163         int recow;
1164         int ret;
1165         u64 ino = btrfs_ino(inode);
1166
1167         path = btrfs_alloc_path();
1168         if (!path)
1169                 return -ENOMEM;
1170 again:
1171         recow = 0;
1172         split = start;
1173         key.objectid = ino;
1174         key.type = BTRFS_EXTENT_DATA_KEY;
1175         key.offset = split;
1176
1177         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1178         if (ret < 0)
1179                 goto out;
1180         if (ret > 0 && path->slots[0] > 0)
1181                 path->slots[0]--;
1182
1183         leaf = path->nodes[0];
1184         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1185         if (key.objectid != ino ||
1186             key.type != BTRFS_EXTENT_DATA_KEY) {
1187                 ret = -EINVAL;
1188                 btrfs_abort_transaction(trans, ret);
1189                 goto out;
1190         }
1191         fi = btrfs_item_ptr(leaf, path->slots[0],
1192                             struct btrfs_file_extent_item);
1193         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1194                 ret = -EINVAL;
1195                 btrfs_abort_transaction(trans, ret);
1196                 goto out;
1197         }
1198         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1199         if (key.offset > start || extent_end < end) {
1200                 ret = -EINVAL;
1201                 btrfs_abort_transaction(trans, ret);
1202                 goto out;
1203         }
1204
1205         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1206         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1207         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1208         memcpy(&new_key, &key, sizeof(new_key));
1209
1210         if (start == key.offset && end < extent_end) {
1211                 other_start = 0;
1212                 other_end = start;
1213                 if (extent_mergeable(leaf, path->slots[0] - 1,
1214                                      ino, bytenr, orig_offset,
1215                                      &other_start, &other_end)) {
1216                         new_key.offset = end;
1217                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1218                         fi = btrfs_item_ptr(leaf, path->slots[0],
1219                                             struct btrfs_file_extent_item);
1220                         btrfs_set_file_extent_generation(leaf, fi,
1221                                                          trans->transid);
1222                         btrfs_set_file_extent_num_bytes(leaf, fi,
1223                                                         extent_end - end);
1224                         btrfs_set_file_extent_offset(leaf, fi,
1225                                                      end - orig_offset);
1226                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1227                                             struct btrfs_file_extent_item);
1228                         btrfs_set_file_extent_generation(leaf, fi,
1229                                                          trans->transid);
1230                         btrfs_set_file_extent_num_bytes(leaf, fi,
1231                                                         end - other_start);
1232                         btrfs_mark_buffer_dirty(leaf);
1233                         goto out;
1234                 }
1235         }
1236
1237         if (start > key.offset && end == extent_end) {
1238                 other_start = end;
1239                 other_end = 0;
1240                 if (extent_mergeable(leaf, path->slots[0] + 1,
1241                                      ino, bytenr, orig_offset,
1242                                      &other_start, &other_end)) {
1243                         fi = btrfs_item_ptr(leaf, path->slots[0],
1244                                             struct btrfs_file_extent_item);
1245                         btrfs_set_file_extent_num_bytes(leaf, fi,
1246                                                         start - key.offset);
1247                         btrfs_set_file_extent_generation(leaf, fi,
1248                                                          trans->transid);
1249                         path->slots[0]++;
1250                         new_key.offset = start;
1251                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1252
1253                         fi = btrfs_item_ptr(leaf, path->slots[0],
1254                                             struct btrfs_file_extent_item);
1255                         btrfs_set_file_extent_generation(leaf, fi,
1256                                                          trans->transid);
1257                         btrfs_set_file_extent_num_bytes(leaf, fi,
1258                                                         other_end - start);
1259                         btrfs_set_file_extent_offset(leaf, fi,
1260                                                      start - orig_offset);
1261                         btrfs_mark_buffer_dirty(leaf);
1262                         goto out;
1263                 }
1264         }
1265
1266         while (start > key.offset || end < extent_end) {
1267                 if (key.offset == start)
1268                         split = end;
1269
1270                 new_key.offset = split;
1271                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1272                 if (ret == -EAGAIN) {
1273                         btrfs_release_path(path);
1274                         goto again;
1275                 }
1276                 if (ret < 0) {
1277                         btrfs_abort_transaction(trans, ret);
1278                         goto out;
1279                 }
1280
1281                 leaf = path->nodes[0];
1282                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1283                                     struct btrfs_file_extent_item);
1284                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1285                 btrfs_set_file_extent_num_bytes(leaf, fi,
1286                                                 split - key.offset);
1287
1288                 fi = btrfs_item_ptr(leaf, path->slots[0],
1289                                     struct btrfs_file_extent_item);
1290
1291                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1292                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1293                 btrfs_set_file_extent_num_bytes(leaf, fi,
1294                                                 extent_end - split);
1295                 btrfs_mark_buffer_dirty(leaf);
1296
1297                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1298                                        num_bytes, 0);
1299                 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1300                                     orig_offset);
1301                 ret = btrfs_inc_extent_ref(trans, &ref);
1302                 if (ret) {
1303                         btrfs_abort_transaction(trans, ret);
1304                         goto out;
1305                 }
1306
1307                 if (split == start) {
1308                         key.offset = start;
1309                 } else {
1310                         if (start != key.offset) {
1311                                 ret = -EINVAL;
1312                                 btrfs_abort_transaction(trans, ret);
1313                                 goto out;
1314                         }
1315                         path->slots[0]--;
1316                         extent_end = end;
1317                 }
1318                 recow = 1;
1319         }
1320
1321         other_start = end;
1322         other_end = 0;
1323         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1324                                num_bytes, 0);
1325         btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1326         if (extent_mergeable(leaf, path->slots[0] + 1,
1327                              ino, bytenr, orig_offset,
1328                              &other_start, &other_end)) {
1329                 if (recow) {
1330                         btrfs_release_path(path);
1331                         goto again;
1332                 }
1333                 extent_end = other_end;
1334                 del_slot = path->slots[0] + 1;
1335                 del_nr++;
1336                 ret = btrfs_free_extent(trans, &ref);
1337                 if (ret) {
1338                         btrfs_abort_transaction(trans, ret);
1339                         goto out;
1340                 }
1341         }
1342         other_start = 0;
1343         other_end = start;
1344         if (extent_mergeable(leaf, path->slots[0] - 1,
1345                              ino, bytenr, orig_offset,
1346                              &other_start, &other_end)) {
1347                 if (recow) {
1348                         btrfs_release_path(path);
1349                         goto again;
1350                 }
1351                 key.offset = other_start;
1352                 del_slot = path->slots[0];
1353                 del_nr++;
1354                 ret = btrfs_free_extent(trans, &ref);
1355                 if (ret) {
1356                         btrfs_abort_transaction(trans, ret);
1357                         goto out;
1358                 }
1359         }
1360         if (del_nr == 0) {
1361                 fi = btrfs_item_ptr(leaf, path->slots[0],
1362                            struct btrfs_file_extent_item);
1363                 btrfs_set_file_extent_type(leaf, fi,
1364                                            BTRFS_FILE_EXTENT_REG);
1365                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1366                 btrfs_mark_buffer_dirty(leaf);
1367         } else {
1368                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1369                            struct btrfs_file_extent_item);
1370                 btrfs_set_file_extent_type(leaf, fi,
1371                                            BTRFS_FILE_EXTENT_REG);
1372                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1373                 btrfs_set_file_extent_num_bytes(leaf, fi,
1374                                                 extent_end - key.offset);
1375                 btrfs_mark_buffer_dirty(leaf);
1376
1377                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1378                 if (ret < 0) {
1379                         btrfs_abort_transaction(trans, ret);
1380                         goto out;
1381                 }
1382         }
1383 out:
1384         btrfs_free_path(path);
1385         return 0;
1386 }
1387
1388 /*
1389  * on error we return an unlocked page and the error value
1390  * on success we return a locked page and 0
1391  */
1392 static int prepare_uptodate_page(struct inode *inode,
1393                                  struct page *page, u64 pos,
1394                                  bool force_uptodate)
1395 {
1396         int ret = 0;
1397
1398         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1399             !PageUptodate(page)) {
1400                 ret = btrfs_readpage(NULL, page);
1401                 if (ret)
1402                         return ret;
1403                 lock_page(page);
1404                 if (!PageUptodate(page)) {
1405                         unlock_page(page);
1406                         return -EIO;
1407                 }
1408                 if (page->mapping != inode->i_mapping) {
1409                         unlock_page(page);
1410                         return -EAGAIN;
1411                 }
1412         }
1413         return 0;
1414 }
1415
1416 /*
1417  * this just gets pages into the page cache and locks them down.
1418  */
1419 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1420                                   size_t num_pages, loff_t pos,
1421                                   size_t write_bytes, bool force_uptodate)
1422 {
1423         int i;
1424         unsigned long index = pos >> PAGE_SHIFT;
1425         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1426         int err = 0;
1427         int faili;
1428
1429         for (i = 0; i < num_pages; i++) {
1430 again:
1431                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1432                                                mask | __GFP_WRITE);
1433                 if (!pages[i]) {
1434                         faili = i - 1;
1435                         err = -ENOMEM;
1436                         goto fail;
1437                 }
1438
1439                 if (i == 0)
1440                         err = prepare_uptodate_page(inode, pages[i], pos,
1441                                                     force_uptodate);
1442                 if (!err && i == num_pages - 1)
1443                         err = prepare_uptodate_page(inode, pages[i],
1444                                                     pos + write_bytes, false);
1445                 if (err) {
1446                         put_page(pages[i]);
1447                         if (err == -EAGAIN) {
1448                                 err = 0;
1449                                 goto again;
1450                         }
1451                         faili = i - 1;
1452                         goto fail;
1453                 }
1454                 wait_on_page_writeback(pages[i]);
1455         }
1456
1457         return 0;
1458 fail:
1459         while (faili >= 0) {
1460                 unlock_page(pages[faili]);
1461                 put_page(pages[faili]);
1462                 faili--;
1463         }
1464         return err;
1465
1466 }
1467
1468 /*
1469  * This function locks the extent and properly waits for data=ordered extents
1470  * to finish before allowing the pages to be modified if need.
1471  *
1472  * The return value:
1473  * 1 - the extent is locked
1474  * 0 - the extent is not locked, and everything is OK
1475  * -EAGAIN - need re-prepare the pages
1476  * the other < 0 number - Something wrong happens
1477  */
1478 static noinline int
1479 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1480                                 size_t num_pages, loff_t pos,
1481                                 size_t write_bytes,
1482                                 u64 *lockstart, u64 *lockend,
1483                                 struct extent_state **cached_state)
1484 {
1485         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1486         u64 start_pos;
1487         u64 last_pos;
1488         int i;
1489         int ret = 0;
1490
1491         start_pos = round_down(pos, fs_info->sectorsize);
1492         last_pos = start_pos
1493                 + round_up(pos + write_bytes - start_pos,
1494                            fs_info->sectorsize) - 1;
1495
1496         if (start_pos < inode->vfs_inode.i_size) {
1497                 struct btrfs_ordered_extent *ordered;
1498
1499                 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1500                                 cached_state);
1501                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1502                                                      last_pos - start_pos + 1);
1503                 if (ordered &&
1504                     ordered->file_offset + ordered->len > start_pos &&
1505                     ordered->file_offset <= last_pos) {
1506                         unlock_extent_cached(&inode->io_tree, start_pos,
1507                                         last_pos, cached_state);
1508                         for (i = 0; i < num_pages; i++) {
1509                                 unlock_page(pages[i]);
1510                                 put_page(pages[i]);
1511                         }
1512                         btrfs_start_ordered_extent(&inode->vfs_inode,
1513                                         ordered, 1);
1514                         btrfs_put_ordered_extent(ordered);
1515                         return -EAGAIN;
1516                 }
1517                 if (ordered)
1518                         btrfs_put_ordered_extent(ordered);
1519
1520                 *lockstart = start_pos;
1521                 *lockend = last_pos;
1522                 ret = 1;
1523         }
1524
1525         /*
1526          * It's possible the pages are dirty right now, but we don't want
1527          * to clean them yet because copy_from_user may catch a page fault
1528          * and we might have to fall back to one page at a time.  If that
1529          * happens, we'll unlock these pages and we'd have a window where
1530          * reclaim could sneak in and drop the once-dirty page on the floor
1531          * without writing it.
1532          *
1533          * We have the pages locked and the extent range locked, so there's
1534          * no way someone can start IO on any dirty pages in this range.
1535          *
1536          * We'll call btrfs_dirty_pages() later on, and that will flip around
1537          * delalloc bits and dirty the pages as required.
1538          */
1539         for (i = 0; i < num_pages; i++) {
1540                 set_page_extent_mapped(pages[i]);
1541                 WARN_ON(!PageLocked(pages[i]));
1542         }
1543
1544         return ret;
1545 }
1546
1547 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1548                                     size_t *write_bytes)
1549 {
1550         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1551         struct btrfs_root *root = inode->root;
1552         u64 lockstart, lockend;
1553         u64 num_bytes;
1554         int ret;
1555
1556         ret = btrfs_start_write_no_snapshotting(root);
1557         if (!ret)
1558                 return -EAGAIN;
1559
1560         lockstart = round_down(pos, fs_info->sectorsize);
1561         lockend = round_up(pos + *write_bytes,
1562                            fs_info->sectorsize) - 1;
1563
1564         btrfs_lock_and_flush_ordered_range(&inode->io_tree, inode, lockstart,
1565                                            lockend, NULL);
1566
1567         num_bytes = lockend - lockstart + 1;
1568         ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1569                         NULL, NULL, NULL);
1570         if (ret <= 0) {
1571                 ret = 0;
1572                 btrfs_end_write_no_snapshotting(root);
1573         } else {
1574                 *write_bytes = min_t(size_t, *write_bytes ,
1575                                      num_bytes - pos + lockstart);
1576         }
1577
1578         unlock_extent(&inode->io_tree, lockstart, lockend);
1579
1580         return ret;
1581 }
1582
1583 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1584                                                struct iov_iter *i)
1585 {
1586         struct file *file = iocb->ki_filp;
1587         loff_t pos = iocb->ki_pos;
1588         struct inode *inode = file_inode(file);
1589         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1590         struct btrfs_root *root = BTRFS_I(inode)->root;
1591         struct page **pages = NULL;
1592         struct extent_changeset *data_reserved = NULL;
1593         u64 release_bytes = 0;
1594         u64 lockstart;
1595         u64 lockend;
1596         size_t num_written = 0;
1597         int nrptrs;
1598         int ret = 0;
1599         bool only_release_metadata = false;
1600         bool force_page_uptodate = false;
1601
1602         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1603                         PAGE_SIZE / (sizeof(struct page *)));
1604         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1605         nrptrs = max(nrptrs, 8);
1606         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1607         if (!pages)
1608                 return -ENOMEM;
1609
1610         while (iov_iter_count(i) > 0) {
1611                 struct extent_state *cached_state = NULL;
1612                 size_t offset = offset_in_page(pos);
1613                 size_t sector_offset;
1614                 size_t write_bytes = min(iov_iter_count(i),
1615                                          nrptrs * (size_t)PAGE_SIZE -
1616                                          offset);
1617                 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1618                                                 PAGE_SIZE);
1619                 size_t reserve_bytes;
1620                 size_t dirty_pages;
1621                 size_t copied;
1622                 size_t dirty_sectors;
1623                 size_t num_sectors;
1624                 int extents_locked;
1625
1626                 WARN_ON(num_pages > nrptrs);
1627
1628                 /*
1629                  * Fault pages before locking them in prepare_pages
1630                  * to avoid recursive lock
1631                  */
1632                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1633                         ret = -EFAULT;
1634                         break;
1635                 }
1636
1637                 only_release_metadata = false;
1638                 sector_offset = pos & (fs_info->sectorsize - 1);
1639                 reserve_bytes = round_up(write_bytes + sector_offset,
1640                                 fs_info->sectorsize);
1641
1642                 extent_changeset_release(data_reserved);
1643                 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1644                                                   write_bytes);
1645                 if (ret < 0) {
1646                         if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1647                                                       BTRFS_INODE_PREALLOC)) &&
1648                             check_can_nocow(BTRFS_I(inode), pos,
1649                                         &write_bytes) > 0) {
1650                                 /*
1651                                  * For nodata cow case, no need to reserve
1652                                  * data space.
1653                                  */
1654                                 only_release_metadata = true;
1655                                 /*
1656                                  * our prealloc extent may be smaller than
1657                                  * write_bytes, so scale down.
1658                                  */
1659                                 num_pages = DIV_ROUND_UP(write_bytes + offset,
1660                                                          PAGE_SIZE);
1661                                 reserve_bytes = round_up(write_bytes +
1662                                                          sector_offset,
1663                                                          fs_info->sectorsize);
1664                         } else {
1665                                 break;
1666                         }
1667                 }
1668
1669                 WARN_ON(reserve_bytes == 0);
1670                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1671                                 reserve_bytes);
1672                 if (ret) {
1673                         if (!only_release_metadata)
1674                                 btrfs_free_reserved_data_space(inode,
1675                                                 data_reserved, pos,
1676                                                 write_bytes);
1677                         else
1678                                 btrfs_end_write_no_snapshotting(root);
1679                         break;
1680                 }
1681
1682                 release_bytes = reserve_bytes;
1683 again:
1684                 /*
1685                  * This is going to setup the pages array with the number of
1686                  * pages we want, so we don't really need to worry about the
1687                  * contents of pages from loop to loop
1688                  */
1689                 ret = prepare_pages(inode, pages, num_pages,
1690                                     pos, write_bytes,
1691                                     force_page_uptodate);
1692                 if (ret) {
1693                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1694                                                        reserve_bytes);
1695                         break;
1696                 }
1697
1698                 extents_locked = lock_and_cleanup_extent_if_need(
1699                                 BTRFS_I(inode), pages,
1700                                 num_pages, pos, write_bytes, &lockstart,
1701                                 &lockend, &cached_state);
1702                 if (extents_locked < 0) {
1703                         if (extents_locked == -EAGAIN)
1704                                 goto again;
1705                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1706                                                        reserve_bytes);
1707                         ret = extents_locked;
1708                         break;
1709                 }
1710
1711                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1712
1713                 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1714                 dirty_sectors = round_up(copied + sector_offset,
1715                                         fs_info->sectorsize);
1716                 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1717
1718                 /*
1719                  * if we have trouble faulting in the pages, fall
1720                  * back to one page at a time
1721                  */
1722                 if (copied < write_bytes)
1723                         nrptrs = 1;
1724
1725                 if (copied == 0) {
1726                         force_page_uptodate = true;
1727                         dirty_sectors = 0;
1728                         dirty_pages = 0;
1729                 } else {
1730                         force_page_uptodate = false;
1731                         dirty_pages = DIV_ROUND_UP(copied + offset,
1732                                                    PAGE_SIZE);
1733                 }
1734
1735                 if (num_sectors > dirty_sectors) {
1736                         /* release everything except the sectors we dirtied */
1737                         release_bytes -= dirty_sectors <<
1738                                                 fs_info->sb->s_blocksize_bits;
1739                         if (only_release_metadata) {
1740                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1741                                                         release_bytes, true);
1742                         } else {
1743                                 u64 __pos;
1744
1745                                 __pos = round_down(pos,
1746                                                    fs_info->sectorsize) +
1747                                         (dirty_pages << PAGE_SHIFT);
1748                                 btrfs_delalloc_release_space(inode,
1749                                                 data_reserved, __pos,
1750                                                 release_bytes, true);
1751                         }
1752                 }
1753
1754                 release_bytes = round_up(copied + sector_offset,
1755                                         fs_info->sectorsize);
1756
1757                 if (copied > 0)
1758                         ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1759                                                 pos, copied, &cached_state);
1760
1761                 /*
1762                  * If we have not locked the extent range, because the range's
1763                  * start offset is >= i_size, we might still have a non-NULL
1764                  * cached extent state, acquired while marking the extent range
1765                  * as delalloc through btrfs_dirty_pages(). Therefore free any
1766                  * possible cached extent state to avoid a memory leak.
1767                  */
1768                 if (extents_locked)
1769                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1770                                              lockstart, lockend, &cached_state);
1771                 else
1772                         free_extent_state(cached_state);
1773
1774                 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1775                 if (ret) {
1776                         btrfs_drop_pages(pages, num_pages);
1777                         break;
1778                 }
1779
1780                 release_bytes = 0;
1781                 if (only_release_metadata)
1782                         btrfs_end_write_no_snapshotting(root);
1783
1784                 if (only_release_metadata && copied > 0) {
1785                         lockstart = round_down(pos,
1786                                                fs_info->sectorsize);
1787                         lockend = round_up(pos + copied,
1788                                            fs_info->sectorsize) - 1;
1789
1790                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1791                                        lockend, EXTENT_NORESERVE, NULL,
1792                                        NULL, GFP_NOFS);
1793                 }
1794
1795                 btrfs_drop_pages(pages, num_pages);
1796
1797                 cond_resched();
1798
1799                 balance_dirty_pages_ratelimited(inode->i_mapping);
1800                 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1801                         btrfs_btree_balance_dirty(fs_info);
1802
1803                 pos += copied;
1804                 num_written += copied;
1805         }
1806
1807         kfree(pages);
1808
1809         if (release_bytes) {
1810                 if (only_release_metadata) {
1811                         btrfs_end_write_no_snapshotting(root);
1812                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
1813                                         release_bytes, true);
1814                 } else {
1815                         btrfs_delalloc_release_space(inode, data_reserved,
1816                                         round_down(pos, fs_info->sectorsize),
1817                                         release_bytes, true);
1818                 }
1819         }
1820
1821         extent_changeset_free(data_reserved);
1822         return num_written ? num_written : ret;
1823 }
1824
1825 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1826 {
1827         struct file *file = iocb->ki_filp;
1828         struct inode *inode = file_inode(file);
1829         loff_t pos;
1830         ssize_t written;
1831         ssize_t written_buffered;
1832         loff_t endbyte;
1833         int err;
1834
1835         written = generic_file_direct_write(iocb, from);
1836
1837         if (written < 0 || !iov_iter_count(from))
1838                 return written;
1839
1840         pos = iocb->ki_pos;
1841         written_buffered = btrfs_buffered_write(iocb, from);
1842         if (written_buffered < 0) {
1843                 err = written_buffered;
1844                 goto out;
1845         }
1846         /*
1847          * Ensure all data is persisted. We want the next direct IO read to be
1848          * able to read what was just written.
1849          */
1850         endbyte = pos + written_buffered - 1;
1851         err = btrfs_fdatawrite_range(inode, pos, endbyte);
1852         if (err)
1853                 goto out;
1854         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1855         if (err)
1856                 goto out;
1857         written += written_buffered;
1858         iocb->ki_pos = pos + written_buffered;
1859         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1860                                  endbyte >> PAGE_SHIFT);
1861 out:
1862         return written ? written : err;
1863 }
1864
1865 static void update_time_for_write(struct inode *inode)
1866 {
1867         struct timespec64 now;
1868
1869         if (IS_NOCMTIME(inode))
1870                 return;
1871
1872         now = current_time(inode);
1873         if (!timespec64_equal(&inode->i_mtime, &now))
1874                 inode->i_mtime = now;
1875
1876         if (!timespec64_equal(&inode->i_ctime, &now))
1877                 inode->i_ctime = now;
1878
1879         if (IS_I_VERSION(inode))
1880                 inode_inc_iversion(inode);
1881 }
1882
1883 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1884                                     struct iov_iter *from)
1885 {
1886         struct file *file = iocb->ki_filp;
1887         struct inode *inode = file_inode(file);
1888         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1889         struct btrfs_root *root = BTRFS_I(inode)->root;
1890         u64 start_pos;
1891         u64 end_pos;
1892         ssize_t num_written = 0;
1893         const bool sync = iocb->ki_flags & IOCB_DSYNC;
1894         ssize_t err;
1895         loff_t pos;
1896         size_t count;
1897         loff_t oldsize;
1898         int clean_page = 0;
1899
1900         if (!(iocb->ki_flags & IOCB_DIRECT) &&
1901             (iocb->ki_flags & IOCB_NOWAIT))
1902                 return -EOPNOTSUPP;
1903
1904         if (iocb->ki_flags & IOCB_NOWAIT) {
1905                 if (!inode_trylock(inode))
1906                         return -EAGAIN;
1907         } else {
1908                 inode_lock(inode);
1909         }
1910
1911         err = generic_write_checks(iocb, from);
1912         if (err <= 0) {
1913                 inode_unlock(inode);
1914                 return err;
1915         }
1916
1917         pos = iocb->ki_pos;
1918         count = iov_iter_count(from);
1919         if (iocb->ki_flags & IOCB_NOWAIT) {
1920                 /*
1921                  * We will allocate space in case nodatacow is not set,
1922                  * so bail
1923                  */
1924                 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1925                                               BTRFS_INODE_PREALLOC)) ||
1926                     check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1927                         inode_unlock(inode);
1928                         return -EAGAIN;
1929                 }
1930         }
1931
1932         current->backing_dev_info = inode_to_bdi(inode);
1933         err = file_remove_privs(file);
1934         if (err) {
1935                 inode_unlock(inode);
1936                 goto out;
1937         }
1938
1939         /*
1940          * If BTRFS flips readonly due to some impossible error
1941          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1942          * although we have opened a file as writable, we have
1943          * to stop this write operation to ensure FS consistency.
1944          */
1945         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1946                 inode_unlock(inode);
1947                 err = -EROFS;
1948                 goto out;
1949         }
1950
1951         /*
1952          * We reserve space for updating the inode when we reserve space for the
1953          * extent we are going to write, so we will enospc out there.  We don't
1954          * need to start yet another transaction to update the inode as we will
1955          * update the inode when we finish writing whatever data we write.
1956          */
1957         update_time_for_write(inode);
1958
1959         start_pos = round_down(pos, fs_info->sectorsize);
1960         oldsize = i_size_read(inode);
1961         if (start_pos > oldsize) {
1962                 /* Expand hole size to cover write data, preventing empty gap */
1963                 end_pos = round_up(pos + count,
1964                                    fs_info->sectorsize);
1965                 err = btrfs_cont_expand(inode, oldsize, end_pos);
1966                 if (err) {
1967                         inode_unlock(inode);
1968                         goto out;
1969                 }
1970                 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1971                         clean_page = 1;
1972         }
1973
1974         if (sync)
1975                 atomic_inc(&BTRFS_I(inode)->sync_writers);
1976
1977         if (iocb->ki_flags & IOCB_DIRECT) {
1978                 num_written = __btrfs_direct_write(iocb, from);
1979         } else {
1980                 num_written = btrfs_buffered_write(iocb, from);
1981                 if (num_written > 0)
1982                         iocb->ki_pos = pos + num_written;
1983                 if (clean_page)
1984                         pagecache_isize_extended(inode, oldsize,
1985                                                 i_size_read(inode));
1986         }
1987
1988         inode_unlock(inode);
1989
1990         /*
1991          * We also have to set last_sub_trans to the current log transid,
1992          * otherwise subsequent syncs to a file that's been synced in this
1993          * transaction will appear to have already occurred.
1994          */
1995         spin_lock(&BTRFS_I(inode)->lock);
1996         BTRFS_I(inode)->last_sub_trans = root->log_transid;
1997         spin_unlock(&BTRFS_I(inode)->lock);
1998         if (num_written > 0)
1999                 num_written = generic_write_sync(iocb, num_written);
2000
2001         if (sync)
2002                 atomic_dec(&BTRFS_I(inode)->sync_writers);
2003 out:
2004         current->backing_dev_info = NULL;
2005         return num_written ? num_written : err;
2006 }
2007
2008 int btrfs_release_file(struct inode *inode, struct file *filp)
2009 {
2010         struct btrfs_file_private *private = filp->private_data;
2011
2012         if (private && private->filldir_buf)
2013                 kfree(private->filldir_buf);
2014         kfree(private);
2015         filp->private_data = NULL;
2016
2017         /*
2018          * ordered_data_close is set by setattr when we are about to truncate
2019          * a file from a non-zero size to a zero size.  This tries to
2020          * flush down new bytes that may have been written if the
2021          * application were using truncate to replace a file in place.
2022          */
2023         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2024                                &BTRFS_I(inode)->runtime_flags))
2025                         filemap_flush(inode->i_mapping);
2026         return 0;
2027 }
2028
2029 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2030 {
2031         int ret;
2032         struct blk_plug plug;
2033
2034         /*
2035          * This is only called in fsync, which would do synchronous writes, so
2036          * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2037          * multiple disks using raid profile, a large IO can be split to
2038          * several segments of stripe length (currently 64K).
2039          */
2040         blk_start_plug(&plug);
2041         atomic_inc(&BTRFS_I(inode)->sync_writers);
2042         ret = btrfs_fdatawrite_range(inode, start, end);
2043         atomic_dec(&BTRFS_I(inode)->sync_writers);
2044         blk_finish_plug(&plug);
2045
2046         return ret;
2047 }
2048
2049 /*
2050  * fsync call for both files and directories.  This logs the inode into
2051  * the tree log instead of forcing full commits whenever possible.
2052  *
2053  * It needs to call filemap_fdatawait so that all ordered extent updates are
2054  * in the metadata btree are up to date for copying to the log.
2055  *
2056  * It drops the inode mutex before doing the tree log commit.  This is an
2057  * important optimization for directories because holding the mutex prevents
2058  * new operations on the dir while we write to disk.
2059  */
2060 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2061 {
2062         struct dentry *dentry = file_dentry(file);
2063         struct inode *inode = d_inode(dentry);
2064         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2065         struct btrfs_root *root = BTRFS_I(inode)->root;
2066         struct btrfs_trans_handle *trans;
2067         struct btrfs_log_ctx ctx;
2068         int ret = 0, err;
2069
2070         trace_btrfs_sync_file(file, datasync);
2071
2072         btrfs_init_log_ctx(&ctx, inode);
2073
2074         /*
2075          * We write the dirty pages in the range and wait until they complete
2076          * out of the ->i_mutex. If so, we can flush the dirty pages by
2077          * multi-task, and make the performance up.  See
2078          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2079          */
2080         ret = start_ordered_ops(inode, start, end);
2081         if (ret)
2082                 goto out;
2083
2084         inode_lock(inode);
2085
2086         /*
2087          * We take the dio_sem here because the tree log stuff can race with
2088          * lockless dio writes and get an extent map logged for an extent we
2089          * never waited on.  We need it this high up for lockdep reasons.
2090          */
2091         down_write(&BTRFS_I(inode)->dio_sem);
2092
2093         atomic_inc(&root->log_batch);
2094
2095         /*
2096          * If the inode needs a full sync, make sure we use a full range to
2097          * avoid log tree corruption, due to hole detection racing with ordered
2098          * extent completion for adjacent ranges, and assertion failures during
2099          * hole detection. Do this while holding the inode lock, to avoid races
2100          * with other tasks.
2101          */
2102         if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2103                      &BTRFS_I(inode)->runtime_flags)) {
2104                 start = 0;
2105                 end = LLONG_MAX;
2106         }
2107
2108         /*
2109          * Before we acquired the inode's lock, someone may have dirtied more
2110          * pages in the target range. We need to make sure that writeback for
2111          * any such pages does not start while we are logging the inode, because
2112          * if it does, any of the following might happen when we are not doing a
2113          * full inode sync:
2114          *
2115          * 1) We log an extent after its writeback finishes but before its
2116          *    checksums are added to the csum tree, leading to -EIO errors
2117          *    when attempting to read the extent after a log replay.
2118          *
2119          * 2) We can end up logging an extent before its writeback finishes.
2120          *    Therefore after the log replay we will have a file extent item
2121          *    pointing to an unwritten extent (and no data checksums as well).
2122          *
2123          * So trigger writeback for any eventual new dirty pages and then we
2124          * wait for all ordered extents to complete below.
2125          */
2126         ret = start_ordered_ops(inode, start, end);
2127         if (ret) {
2128                 inode_unlock(inode);
2129                 goto out;
2130         }
2131
2132         /*
2133          * We have to do this here to avoid the priority inversion of waiting on
2134          * IO of a lower priority task while holding a transaction open.
2135          *
2136          * Also, the range length can be represented by u64, we have to do the
2137          * typecasts to avoid signed overflow if it's [0, LLONG_MAX].
2138          */
2139         ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
2140         if (ret) {
2141                 up_write(&BTRFS_I(inode)->dio_sem);
2142                 inode_unlock(inode);
2143                 goto out;
2144         }
2145         atomic_inc(&root->log_batch);
2146
2147         smp_mb();
2148         if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2149             BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2150                 /*
2151                  * We've had everything committed since the last time we were
2152                  * modified so clear this flag in case it was set for whatever
2153                  * reason, it's no longer relevant.
2154                  */
2155                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2156                           &BTRFS_I(inode)->runtime_flags);
2157                 /*
2158                  * An ordered extent might have started before and completed
2159                  * already with io errors, in which case the inode was not
2160                  * updated and we end up here. So check the inode's mapping
2161                  * for any errors that might have happened since we last
2162                  * checked called fsync.
2163                  */
2164                 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2165                 up_write(&BTRFS_I(inode)->dio_sem);
2166                 inode_unlock(inode);
2167                 goto out;
2168         }
2169
2170         /*
2171          * We use start here because we will need to wait on the IO to complete
2172          * in btrfs_sync_log, which could require joining a transaction (for
2173          * example checking cross references in the nocow path).  If we use join
2174          * here we could get into a situation where we're waiting on IO to
2175          * happen that is blocked on a transaction trying to commit.  With start
2176          * we inc the extwriter counter, so we wait for all extwriters to exit
2177          * before we start blocking joiners.  This comment is to keep somebody
2178          * from thinking they are super smart and changing this to
2179          * btrfs_join_transaction *cough*Josef*cough*.
2180          */
2181         trans = btrfs_start_transaction(root, 0);
2182         if (IS_ERR(trans)) {
2183                 ret = PTR_ERR(trans);
2184                 up_write(&BTRFS_I(inode)->dio_sem);
2185                 inode_unlock(inode);
2186                 goto out;
2187         }
2188
2189         ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2190         if (ret < 0) {
2191                 /* Fallthrough and commit/free transaction. */
2192                 ret = 1;
2193         }
2194
2195         /* we've logged all the items and now have a consistent
2196          * version of the file in the log.  It is possible that
2197          * someone will come in and modify the file, but that's
2198          * fine because the log is consistent on disk, and we
2199          * have references to all of the file's extents
2200          *
2201          * It is possible that someone will come in and log the
2202          * file again, but that will end up using the synchronization
2203          * inside btrfs_sync_log to keep things safe.
2204          */
2205         up_write(&BTRFS_I(inode)->dio_sem);
2206         inode_unlock(inode);
2207
2208         if (ret != BTRFS_NO_LOG_SYNC) {
2209                 if (!ret) {
2210                         ret = btrfs_sync_log(trans, root, &ctx);
2211                         if (!ret) {
2212                                 ret = btrfs_end_transaction(trans);
2213                                 goto out;
2214                         }
2215                 }
2216                 ret = btrfs_commit_transaction(trans);
2217         } else {
2218                 ret = btrfs_end_transaction(trans);
2219         }
2220 out:
2221         ASSERT(list_empty(&ctx.list));
2222         err = file_check_and_advance_wb_err(file);
2223         if (!ret)
2224                 ret = err;
2225         return ret > 0 ? -EIO : ret;
2226 }
2227
2228 static const struct vm_operations_struct btrfs_file_vm_ops = {
2229         .fault          = filemap_fault,
2230         .map_pages      = filemap_map_pages,
2231         .page_mkwrite   = btrfs_page_mkwrite,
2232 };
2233
2234 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2235 {
2236         struct address_space *mapping = filp->f_mapping;
2237
2238         if (!mapping->a_ops->readpage)
2239                 return -ENOEXEC;
2240
2241         file_accessed(filp);
2242         vma->vm_ops = &btrfs_file_vm_ops;
2243
2244         return 0;
2245 }
2246
2247 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2248                           int slot, u64 start, u64 end)
2249 {
2250         struct btrfs_file_extent_item *fi;
2251         struct btrfs_key key;
2252
2253         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2254                 return 0;
2255
2256         btrfs_item_key_to_cpu(leaf, &key, slot);
2257         if (key.objectid != btrfs_ino(inode) ||
2258             key.type != BTRFS_EXTENT_DATA_KEY)
2259                 return 0;
2260
2261         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2262
2263         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2264                 return 0;
2265
2266         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2267                 return 0;
2268
2269         if (key.offset == end)
2270                 return 1;
2271         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2272                 return 1;
2273         return 0;
2274 }
2275
2276 static int fill_holes(struct btrfs_trans_handle *trans,
2277                 struct btrfs_inode *inode,
2278                 struct btrfs_path *path, u64 offset, u64 end)
2279 {
2280         struct btrfs_fs_info *fs_info = trans->fs_info;
2281         struct btrfs_root *root = inode->root;
2282         struct extent_buffer *leaf;
2283         struct btrfs_file_extent_item *fi;
2284         struct extent_map *hole_em;
2285         struct extent_map_tree *em_tree = &inode->extent_tree;
2286         struct btrfs_key key;
2287         int ret;
2288
2289         if (btrfs_fs_incompat(fs_info, NO_HOLES))
2290                 goto out;
2291
2292         key.objectid = btrfs_ino(inode);
2293         key.type = BTRFS_EXTENT_DATA_KEY;
2294         key.offset = offset;
2295
2296         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2297         if (ret <= 0) {
2298                 /*
2299                  * We should have dropped this offset, so if we find it then
2300                  * something has gone horribly wrong.
2301                  */
2302                 if (ret == 0)
2303                         ret = -EINVAL;
2304                 return ret;
2305         }
2306
2307         leaf = path->nodes[0];
2308         if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2309                 u64 num_bytes;
2310
2311                 path->slots[0]--;
2312                 fi = btrfs_item_ptr(leaf, path->slots[0],
2313                                     struct btrfs_file_extent_item);
2314                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2315                         end - offset;
2316                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2317                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2318                 btrfs_set_file_extent_offset(leaf, fi, 0);
2319                 btrfs_mark_buffer_dirty(leaf);
2320                 goto out;
2321         }
2322
2323         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2324                 u64 num_bytes;
2325
2326                 key.offset = offset;
2327                 btrfs_set_item_key_safe(fs_info, path, &key);
2328                 fi = btrfs_item_ptr(leaf, path->slots[0],
2329                                     struct btrfs_file_extent_item);
2330                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2331                         offset;
2332                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2333                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2334                 btrfs_set_file_extent_offset(leaf, fi, 0);
2335                 btrfs_mark_buffer_dirty(leaf);
2336                 goto out;
2337         }
2338         btrfs_release_path(path);
2339
2340         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2341                         offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2342         if (ret)
2343                 return ret;
2344
2345 out:
2346         btrfs_release_path(path);
2347
2348         hole_em = alloc_extent_map();
2349         if (!hole_em) {
2350                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2351                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2352         } else {
2353                 hole_em->start = offset;
2354                 hole_em->len = end - offset;
2355                 hole_em->ram_bytes = hole_em->len;
2356                 hole_em->orig_start = offset;
2357
2358                 hole_em->block_start = EXTENT_MAP_HOLE;
2359                 hole_em->block_len = 0;
2360                 hole_em->orig_block_len = 0;
2361                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2362                 hole_em->generation = trans->transid;
2363
2364                 do {
2365                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2366                         write_lock(&em_tree->lock);
2367                         ret = add_extent_mapping(em_tree, hole_em, 1);
2368                         write_unlock(&em_tree->lock);
2369                 } while (ret == -EEXIST);
2370                 free_extent_map(hole_em);
2371                 if (ret)
2372                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2373                                         &inode->runtime_flags);
2374         }
2375
2376         return 0;
2377 }
2378
2379 /*
2380  * Find a hole extent on given inode and change start/len to the end of hole
2381  * extent.(hole/vacuum extent whose em->start <= start &&
2382  *         em->start + em->len > start)
2383  * When a hole extent is found, return 1 and modify start/len.
2384  */
2385 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2386 {
2387         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2388         struct extent_map *em;
2389         int ret = 0;
2390
2391         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2392                               round_down(*start, fs_info->sectorsize),
2393                               round_up(*len, fs_info->sectorsize), 0);
2394         if (IS_ERR(em))
2395                 return PTR_ERR(em);
2396
2397         /* Hole or vacuum extent(only exists in no-hole mode) */
2398         if (em->block_start == EXTENT_MAP_HOLE) {
2399                 ret = 1;
2400                 *len = em->start + em->len > *start + *len ?
2401                        0 : *start + *len - em->start - em->len;
2402                 *start = em->start + em->len;
2403         }
2404         free_extent_map(em);
2405         return ret;
2406 }
2407
2408 static int btrfs_punch_hole_lock_range(struct inode *inode,
2409                                        const u64 lockstart,
2410                                        const u64 lockend,
2411                                        struct extent_state **cached_state)
2412 {
2413         while (1) {
2414                 struct btrfs_ordered_extent *ordered;
2415                 int ret;
2416
2417                 truncate_pagecache_range(inode, lockstart, lockend);
2418
2419                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2420                                  cached_state);
2421                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2422
2423                 /*
2424                  * We need to make sure we have no ordered extents in this range
2425                  * and nobody raced in and read a page in this range, if we did
2426                  * we need to try again.
2427                  */
2428                 if ((!ordered ||
2429                     (ordered->file_offset + ordered->len <= lockstart ||
2430                      ordered->file_offset > lockend)) &&
2431                      !filemap_range_has_page(inode->i_mapping,
2432                                              lockstart, lockend)) {
2433                         if (ordered)
2434                                 btrfs_put_ordered_extent(ordered);
2435                         break;
2436                 }
2437                 if (ordered)
2438                         btrfs_put_ordered_extent(ordered);
2439                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2440                                      lockend, cached_state);
2441                 ret = btrfs_wait_ordered_range(inode, lockstart,
2442                                                lockend - lockstart + 1);
2443                 if (ret)
2444                         return ret;
2445         }
2446         return 0;
2447 }
2448
2449 static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
2450                                      struct inode *inode,
2451                                      struct btrfs_path *path,
2452                                      struct btrfs_clone_extent_info *clone_info,
2453                                      const u64 clone_len)
2454 {
2455         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2456         struct btrfs_root *root = BTRFS_I(inode)->root;
2457         struct btrfs_file_extent_item *extent;
2458         struct extent_buffer *leaf;
2459         struct btrfs_key key;
2460         int slot;
2461         struct btrfs_ref ref = { 0 };
2462         u64 ref_offset;
2463         int ret;
2464
2465         if (clone_len == 0)
2466                 return 0;
2467
2468         if (clone_info->disk_offset == 0 &&
2469             btrfs_fs_incompat(fs_info, NO_HOLES))
2470                 return 0;
2471
2472         key.objectid = btrfs_ino(BTRFS_I(inode));
2473         key.type = BTRFS_EXTENT_DATA_KEY;
2474         key.offset = clone_info->file_offset;
2475         ret = btrfs_insert_empty_item(trans, root, path, &key,
2476                                       clone_info->item_size);
2477         if (ret)
2478                 return ret;
2479         leaf = path->nodes[0];
2480         slot = path->slots[0];
2481         write_extent_buffer(leaf, clone_info->extent_buf,
2482                             btrfs_item_ptr_offset(leaf, slot),
2483                             clone_info->item_size);
2484         extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2485         btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
2486         btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
2487         btrfs_mark_buffer_dirty(leaf);
2488         btrfs_release_path(path);
2489
2490         /* If it's a hole, nothing more needs to be done. */
2491         if (clone_info->disk_offset == 0)
2492                 return 0;
2493
2494         inode_add_bytes(inode, clone_len);
2495         btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2496                                clone_info->disk_offset,
2497                                clone_info->disk_len, 0);
2498         ref_offset = clone_info->file_offset - clone_info->data_offset;
2499         btrfs_init_data_ref(&ref, root->root_key.objectid,
2500                             btrfs_ino(BTRFS_I(inode)), ref_offset);
2501         ret = btrfs_inc_extent_ref(trans, &ref);
2502
2503         return ret;
2504 }
2505
2506 /*
2507  * The respective range must have been previously locked, as well as the inode.
2508  * The end offset is inclusive (last byte of the range).
2509  * @clone_info is NULL for fallocate's hole punching and non-NULL for extent
2510  * cloning.
2511  * When cloning, we don't want to end up in a state where we dropped extents
2512  * without inserting a new one, so we must abort the transaction to avoid a
2513  * corruption.
2514  */
2515 int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
2516                            const u64 start, const u64 end,
2517                            struct btrfs_clone_extent_info *clone_info,
2518                            struct btrfs_trans_handle **trans_out)
2519 {
2520         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2521         u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2522         u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2523         struct btrfs_root *root = BTRFS_I(inode)->root;
2524         struct btrfs_trans_handle *trans = NULL;
2525         struct btrfs_block_rsv *rsv;
2526         unsigned int rsv_count;
2527         u64 cur_offset;
2528         u64 drop_end;
2529         u64 len = end - start;
2530         int ret = 0;
2531
2532         if (end <= start)
2533                 return -EINVAL;
2534
2535         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2536         if (!rsv) {
2537                 ret = -ENOMEM;
2538                 goto out;
2539         }
2540         rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2541         rsv->failfast = 1;
2542
2543         /*
2544          * 1 - update the inode
2545          * 1 - removing the extents in the range
2546          * 1 - adding the hole extent if no_holes isn't set or if we are cloning
2547          *     an extent
2548          */
2549         if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
2550                 rsv_count = 3;
2551         else
2552                 rsv_count = 2;
2553
2554         trans = btrfs_start_transaction(root, rsv_count);
2555         if (IS_ERR(trans)) {
2556                 ret = PTR_ERR(trans);
2557                 trans = NULL;
2558                 goto out_free;
2559         }
2560
2561         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2562                                       min_size, false);
2563         BUG_ON(ret);
2564         trans->block_rsv = rsv;
2565
2566         cur_offset = start;
2567         while (cur_offset < end) {
2568                 ret = __btrfs_drop_extents(trans, root, inode, path,
2569                                            cur_offset, end + 1, &drop_end,
2570                                            1, 0, 0, NULL);
2571                 if (ret != -ENOSPC) {
2572                         /*
2573                          * When cloning we want to avoid transaction aborts when
2574                          * nothing was done and we are attempting to clone parts
2575                          * of inline extents, in such cases -EOPNOTSUPP is
2576                          * returned by __btrfs_drop_extents() without having
2577                          * changed anything in the file.
2578                          */
2579                         if (clone_info && ret && ret != -EOPNOTSUPP)
2580                                 btrfs_abort_transaction(trans, ret);
2581                         break;
2582                 }
2583
2584                 trans->block_rsv = &fs_info->trans_block_rsv;
2585
2586                 if (!clone_info && cur_offset < drop_end &&
2587                     cur_offset < ino_size) {
2588                         ret = fill_holes(trans, BTRFS_I(inode), path,
2589                                         cur_offset, drop_end);
2590                         if (ret) {
2591                                 /*
2592                                  * If we failed then we didn't insert our hole
2593                                  * entries for the area we dropped, so now the
2594                                  * fs is corrupted, so we must abort the
2595                                  * transaction.
2596                                  */
2597                                 btrfs_abort_transaction(trans, ret);
2598                                 break;
2599                         }
2600                 }
2601
2602                 if (clone_info) {
2603                         u64 clone_len = drop_end - cur_offset;
2604
2605                         ret = btrfs_insert_clone_extent(trans, inode, path,
2606                                                         clone_info, clone_len);
2607                         if (ret) {
2608                                 btrfs_abort_transaction(trans, ret);
2609                                 break;
2610                         }
2611                         clone_info->data_len -= clone_len;
2612                         clone_info->data_offset += clone_len;
2613                         clone_info->file_offset += clone_len;
2614                 }
2615
2616                 cur_offset = drop_end;
2617
2618                 ret = btrfs_update_inode(trans, root, inode);
2619                 if (ret)
2620                         break;
2621
2622                 btrfs_end_transaction(trans);
2623                 btrfs_btree_balance_dirty(fs_info);
2624
2625                 trans = btrfs_start_transaction(root, rsv_count);
2626                 if (IS_ERR(trans)) {
2627                         ret = PTR_ERR(trans);
2628                         trans = NULL;
2629                         break;
2630                 }
2631
2632                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2633                                               rsv, min_size, false);
2634                 BUG_ON(ret);    /* shouldn't happen */
2635                 trans->block_rsv = rsv;
2636
2637                 if (!clone_info) {
2638                         ret = find_first_non_hole(inode, &cur_offset, &len);
2639                         if (unlikely(ret < 0))
2640                                 break;
2641                         if (ret && !len) {
2642                                 ret = 0;
2643                                 break;
2644                         }
2645                 }
2646         }
2647
2648         /*
2649          * If we were cloning, force the next fsync to be a full one since we
2650          * we replaced (or just dropped in the case of cloning holes when
2651          * NO_HOLES is enabled) extents and extent maps.
2652          * This is for the sake of simplicity, and cloning into files larger
2653          * than 16Mb would force the full fsync any way (when
2654          * try_release_extent_mapping() is invoked during page cache truncation.
2655          */
2656         if (clone_info)
2657                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2658                         &BTRFS_I(inode)->runtime_flags);
2659
2660         if (ret)
2661                 goto out_trans;
2662
2663         trans->block_rsv = &fs_info->trans_block_rsv;
2664         /*
2665          * If we are using the NO_HOLES feature we might have had already an
2666          * hole that overlaps a part of the region [lockstart, lockend] and
2667          * ends at (or beyond) lockend. Since we have no file extent items to
2668          * represent holes, drop_end can be less than lockend and so we must
2669          * make sure we have an extent map representing the existing hole (the
2670          * call to __btrfs_drop_extents() might have dropped the existing extent
2671          * map representing the existing hole), otherwise the fast fsync path
2672          * will not record the existence of the hole region
2673          * [existing_hole_start, lockend].
2674          */
2675         if (drop_end <= end)
2676                 drop_end = end + 1;
2677         /*
2678          * Don't insert file hole extent item if it's for a range beyond eof
2679          * (because it's useless) or if it represents a 0 bytes range (when
2680          * cur_offset == drop_end).
2681          */
2682         if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
2683                 ret = fill_holes(trans, BTRFS_I(inode), path,
2684                                 cur_offset, drop_end);
2685                 if (ret) {
2686                         /* Same comment as above. */
2687                         btrfs_abort_transaction(trans, ret);
2688                         goto out_trans;
2689                 }
2690         }
2691         if (clone_info) {
2692                 ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
2693                                                 clone_info->data_len);
2694                 if (ret) {
2695                         btrfs_abort_transaction(trans, ret);
2696                         goto out_trans;
2697                 }
2698         }
2699
2700 out_trans:
2701         if (!trans)
2702                 goto out_free;
2703
2704         trans->block_rsv = &fs_info->trans_block_rsv;
2705         if (ret)
2706                 btrfs_end_transaction(trans);
2707         else
2708                 *trans_out = trans;
2709 out_free:
2710         btrfs_free_block_rsv(fs_info, rsv);
2711 out:
2712         return ret;
2713 }
2714
2715 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2716 {
2717         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2718         struct btrfs_root *root = BTRFS_I(inode)->root;
2719         struct extent_state *cached_state = NULL;
2720         struct btrfs_path *path;
2721         struct btrfs_trans_handle *trans = NULL;
2722         u64 lockstart;
2723         u64 lockend;
2724         u64 tail_start;
2725         u64 tail_len;
2726         u64 orig_start = offset;
2727         int ret = 0;
2728         bool same_block;
2729         u64 ino_size;
2730         bool truncated_block = false;
2731         bool updated_inode = false;
2732
2733         ret = btrfs_wait_ordered_range(inode, offset, len);
2734         if (ret)
2735                 return ret;
2736
2737         inode_lock(inode);
2738         ino_size = round_up(inode->i_size, fs_info->sectorsize);
2739         ret = find_first_non_hole(inode, &offset, &len);
2740         if (ret < 0)
2741                 goto out_only_mutex;
2742         if (ret && !len) {
2743                 /* Already in a large hole */
2744                 ret = 0;
2745                 goto out_only_mutex;
2746         }
2747
2748         lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2749         lockend = round_down(offset + len,
2750                              btrfs_inode_sectorsize(inode)) - 1;
2751         same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2752                 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2753         /*
2754          * We needn't truncate any block which is beyond the end of the file
2755          * because we are sure there is no data there.
2756          */
2757         /*
2758          * Only do this if we are in the same block and we aren't doing the
2759          * entire block.
2760          */
2761         if (same_block && len < fs_info->sectorsize) {
2762                 if (offset < ino_size) {
2763                         truncated_block = true;
2764                         ret = btrfs_truncate_block(inode, offset, len, 0);
2765                 } else {
2766                         ret = 0;
2767                 }
2768                 goto out_only_mutex;
2769         }
2770
2771         /* zero back part of the first block */
2772         if (offset < ino_size) {
2773                 truncated_block = true;
2774                 ret = btrfs_truncate_block(inode, offset, 0, 0);
2775                 if (ret) {
2776                         inode_unlock(inode);
2777                         return ret;
2778                 }
2779         }
2780
2781         /* Check the aligned pages after the first unaligned page,
2782          * if offset != orig_start, which means the first unaligned page
2783          * including several following pages are already in holes,
2784          * the extra check can be skipped */
2785         if (offset == orig_start) {
2786                 /* after truncate page, check hole again */
2787                 len = offset + len - lockstart;
2788                 offset = lockstart;
2789                 ret = find_first_non_hole(inode, &offset, &len);
2790                 if (ret < 0)
2791                         goto out_only_mutex;
2792                 if (ret && !len) {
2793                         ret = 0;
2794                         goto out_only_mutex;
2795                 }
2796                 lockstart = offset;
2797         }
2798
2799         /* Check the tail unaligned part is in a hole */
2800         tail_start = lockend + 1;
2801         tail_len = offset + len - tail_start;
2802         if (tail_len) {
2803                 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2804                 if (unlikely(ret < 0))
2805                         goto out_only_mutex;
2806                 if (!ret) {
2807                         /* zero the front end of the last page */
2808                         if (tail_start + tail_len < ino_size) {
2809                                 truncated_block = true;
2810                                 ret = btrfs_truncate_block(inode,
2811                                                         tail_start + tail_len,
2812                                                         0, 1);
2813                                 if (ret)
2814                                         goto out_only_mutex;
2815                         }
2816                 }
2817         }
2818
2819         if (lockend < lockstart) {
2820                 ret = 0;
2821                 goto out_only_mutex;
2822         }
2823
2824         ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2825                                           &cached_state);
2826         if (ret)
2827                 goto out_only_mutex;
2828
2829         path = btrfs_alloc_path();
2830         if (!path) {
2831                 ret = -ENOMEM;
2832                 goto out;
2833         }
2834
2835         ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
2836                                      &trans);
2837         btrfs_free_path(path);
2838         if (ret)
2839                 goto out;
2840
2841         ASSERT(trans != NULL);
2842         inode_inc_iversion(inode);
2843         inode->i_mtime = inode->i_ctime = current_time(inode);
2844         ret = btrfs_update_inode(trans, root, inode);
2845         updated_inode = true;
2846         btrfs_end_transaction(trans);
2847         btrfs_btree_balance_dirty(fs_info);
2848 out:
2849         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2850                              &cached_state);
2851 out_only_mutex:
2852         if (!updated_inode && truncated_block && !ret) {
2853                 /*
2854                  * If we only end up zeroing part of a page, we still need to
2855                  * update the inode item, so that all the time fields are
2856                  * updated as well as the necessary btrfs inode in memory fields
2857                  * for detecting, at fsync time, if the inode isn't yet in the
2858                  * log tree or it's there but not up to date.
2859                  */
2860                 struct timespec64 now = current_time(inode);
2861
2862                 inode_inc_iversion(inode);
2863                 inode->i_mtime = now;
2864                 inode->i_ctime = now;
2865                 trans = btrfs_start_transaction(root, 1);
2866                 if (IS_ERR(trans)) {
2867                         ret = PTR_ERR(trans);
2868                 } else {
2869                         int ret2;
2870
2871                         ret = btrfs_update_inode(trans, root, inode);
2872                         ret2 = btrfs_end_transaction(trans);
2873                         if (!ret)
2874                                 ret = ret2;
2875                 }
2876         }
2877         inode_unlock(inode);
2878         return ret;
2879 }
2880
2881 /* Helper structure to record which range is already reserved */
2882 struct falloc_range {
2883         struct list_head list;
2884         u64 start;
2885         u64 len;
2886 };
2887
2888 /*
2889  * Helper function to add falloc range
2890  *
2891  * Caller should have locked the larger range of extent containing
2892  * [start, len)
2893  */
2894 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2895 {
2896         struct falloc_range *prev = NULL;
2897         struct falloc_range *range = NULL;
2898
2899         if (list_empty(head))
2900                 goto insert;
2901
2902         /*
2903          * As fallocate iterate by bytenr order, we only need to check
2904          * the last range.
2905          */
2906         prev = list_entry(head->prev, struct falloc_range, list);
2907         if (prev->start + prev->len == start) {
2908                 prev->len += len;
2909                 return 0;
2910         }
2911 insert:
2912         range = kmalloc(sizeof(*range), GFP_KERNEL);
2913         if (!range)
2914                 return -ENOMEM;
2915         range->start = start;
2916         range->len = len;
2917         list_add_tail(&range->list, head);
2918         return 0;
2919 }
2920
2921 static int btrfs_fallocate_update_isize(struct inode *inode,
2922                                         const u64 end,
2923                                         const int mode)
2924 {
2925         struct btrfs_trans_handle *trans;
2926         struct btrfs_root *root = BTRFS_I(inode)->root;
2927         int ret;
2928         int ret2;
2929
2930         if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2931                 return 0;
2932
2933         trans = btrfs_start_transaction(root, 1);
2934         if (IS_ERR(trans))
2935                 return PTR_ERR(trans);
2936
2937         inode->i_ctime = current_time(inode);
2938         i_size_write(inode, end);
2939         btrfs_ordered_update_i_size(inode, end, NULL);
2940         ret = btrfs_update_inode(trans, root, inode);
2941         ret2 = btrfs_end_transaction(trans);
2942
2943         return ret ? ret : ret2;
2944 }
2945
2946 enum {
2947         RANGE_BOUNDARY_WRITTEN_EXTENT,
2948         RANGE_BOUNDARY_PREALLOC_EXTENT,
2949         RANGE_BOUNDARY_HOLE,
2950 };
2951
2952 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2953                                                  u64 offset)
2954 {
2955         const u64 sectorsize = btrfs_inode_sectorsize(inode);
2956         struct extent_map *em;
2957         int ret;
2958
2959         offset = round_down(offset, sectorsize);
2960         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2961         if (IS_ERR(em))
2962                 return PTR_ERR(em);
2963
2964         if (em->block_start == EXTENT_MAP_HOLE)
2965                 ret = RANGE_BOUNDARY_HOLE;
2966         else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2967                 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2968         else
2969                 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2970
2971         free_extent_map(em);
2972         return ret;
2973 }
2974
2975 static int btrfs_zero_range(struct inode *inode,
2976                             loff_t offset,
2977                             loff_t len,
2978                             const int mode)
2979 {
2980         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2981         struct extent_map *em;
2982         struct extent_changeset *data_reserved = NULL;
2983         int ret;
2984         u64 alloc_hint = 0;
2985         const u64 sectorsize = btrfs_inode_sectorsize(inode);
2986         u64 alloc_start = round_down(offset, sectorsize);
2987         u64 alloc_end = round_up(offset + len, sectorsize);
2988         u64 bytes_to_reserve = 0;
2989         bool space_reserved = false;
2990
2991         inode_dio_wait(inode);
2992
2993         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2994                               alloc_start, alloc_end - alloc_start, 0);
2995         if (IS_ERR(em)) {
2996                 ret = PTR_ERR(em);
2997                 goto out;
2998         }
2999
3000         /*
3001          * Avoid hole punching and extent allocation for some cases. More cases
3002          * could be considered, but these are unlikely common and we keep things
3003          * as simple as possible for now. Also, intentionally, if the target
3004          * range contains one or more prealloc extents together with regular
3005          * extents and holes, we drop all the existing extents and allocate a
3006          * new prealloc extent, so that we get a larger contiguous disk extent.
3007          */
3008         if (em->start <= alloc_start &&
3009             test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3010                 const u64 em_end = em->start + em->len;
3011
3012                 if (em_end >= offset + len) {
3013                         /*
3014                          * The whole range is already a prealloc extent,
3015                          * do nothing except updating the inode's i_size if
3016                          * needed.
3017                          */
3018                         free_extent_map(em);
3019                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3020                                                            mode);
3021                         goto out;
3022                 }
3023                 /*
3024                  * Part of the range is already a prealloc extent, so operate
3025                  * only on the remaining part of the range.
3026                  */
3027                 alloc_start = em_end;
3028                 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3029                 len = offset + len - alloc_start;
3030                 offset = alloc_start;
3031                 alloc_hint = em->block_start + em->len;
3032         }
3033         free_extent_map(em);
3034
3035         if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3036             BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3037                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
3038                                       alloc_start, sectorsize, 0);
3039                 if (IS_ERR(em)) {
3040                         ret = PTR_ERR(em);
3041                         goto out;
3042                 }
3043
3044                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3045                         free_extent_map(em);
3046                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3047                                                            mode);
3048                         goto out;
3049                 }
3050                 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3051                         free_extent_map(em);
3052                         ret = btrfs_truncate_block(inode, offset, len, 0);
3053                         if (!ret)
3054                                 ret = btrfs_fallocate_update_isize(inode,
3055                                                                    offset + len,
3056                                                                    mode);
3057                         return ret;
3058                 }
3059                 free_extent_map(em);
3060                 alloc_start = round_down(offset, sectorsize);
3061                 alloc_end = alloc_start + sectorsize;
3062                 goto reserve_space;
3063         }
3064
3065         alloc_start = round_up(offset, sectorsize);
3066         alloc_end = round_down(offset + len, sectorsize);
3067
3068         /*
3069          * For unaligned ranges, check the pages at the boundaries, they might
3070          * map to an extent, in which case we need to partially zero them, or
3071          * they might map to a hole, in which case we need our allocation range
3072          * to cover them.
3073          */
3074         if (!IS_ALIGNED(offset, sectorsize)) {
3075                 ret = btrfs_zero_range_check_range_boundary(inode, offset);
3076                 if (ret < 0)
3077                         goto out;
3078                 if (ret == RANGE_BOUNDARY_HOLE) {
3079                         alloc_start = round_down(offset, sectorsize);
3080                         ret = 0;
3081                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3082                         ret = btrfs_truncate_block(inode, offset, 0, 0);
3083                         if (ret)
3084                                 goto out;
3085                 } else {
3086                         ret = 0;
3087                 }
3088         }
3089
3090         if (!IS_ALIGNED(offset + len, sectorsize)) {
3091                 ret = btrfs_zero_range_check_range_boundary(inode,
3092                                                             offset + len);
3093                 if (ret < 0)
3094                         goto out;
3095                 if (ret == RANGE_BOUNDARY_HOLE) {
3096                         alloc_end = round_up(offset + len, sectorsize);
3097                         ret = 0;
3098                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3099                         ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3100                         if (ret)
3101                                 goto out;
3102                 } else {
3103                         ret = 0;
3104                 }
3105         }
3106
3107 reserve_space:
3108         if (alloc_start < alloc_end) {
3109                 struct extent_state *cached_state = NULL;
3110                 const u64 lockstart = alloc_start;
3111                 const u64 lockend = alloc_end - 1;
3112
3113                 bytes_to_reserve = alloc_end - alloc_start;
3114                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3115                                                       bytes_to_reserve);
3116                 if (ret < 0)
3117                         goto out;
3118                 space_reserved = true;
3119                 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3120                                                 alloc_start, bytes_to_reserve);
3121                 if (ret)
3122                         goto out;
3123                 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3124                                                   &cached_state);
3125                 if (ret)
3126                         goto out;
3127                 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3128                                                 alloc_end - alloc_start,
3129                                                 i_blocksize(inode),
3130                                                 offset + len, &alloc_hint);
3131                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3132                                      lockend, &cached_state);
3133                 /* btrfs_prealloc_file_range releases reserved space on error */
3134                 if (ret) {
3135                         space_reserved = false;
3136                         goto out;
3137                 }
3138         }
3139         ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3140  out:
3141         if (ret && space_reserved)
3142                 btrfs_free_reserved_data_space(inode, data_reserved,
3143                                                alloc_start, bytes_to_reserve);
3144         extent_changeset_free(data_reserved);
3145
3146         return ret;
3147 }
3148
3149 static long btrfs_fallocate(struct file *file, int mode,
3150                             loff_t offset, loff_t len)
3151 {
3152         struct inode *inode = file_inode(file);
3153         struct extent_state *cached_state = NULL;
3154         struct extent_changeset *data_reserved = NULL;
3155         struct falloc_range *range;
3156         struct falloc_range *tmp;
3157         struct list_head reserve_list;
3158         u64 cur_offset;
3159         u64 last_byte;
3160         u64 alloc_start;
3161         u64 alloc_end;
3162         u64 alloc_hint = 0;
3163         u64 locked_end;
3164         u64 actual_end = 0;
3165         struct extent_map *em;
3166         int blocksize = btrfs_inode_sectorsize(inode);
3167         int ret;
3168
3169         alloc_start = round_down(offset, blocksize);
3170         alloc_end = round_up(offset + len, blocksize);
3171         cur_offset = alloc_start;
3172
3173         /* Make sure we aren't being give some crap mode */
3174         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3175                      FALLOC_FL_ZERO_RANGE))
3176                 return -EOPNOTSUPP;
3177
3178         if (mode & FALLOC_FL_PUNCH_HOLE)
3179                 return btrfs_punch_hole(inode, offset, len);
3180
3181         /*
3182          * Only trigger disk allocation, don't trigger qgroup reserve
3183          *
3184          * For qgroup space, it will be checked later.
3185          */
3186         if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3187                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3188                                                       alloc_end - alloc_start);
3189                 if (ret < 0)
3190                         return ret;
3191         }
3192
3193         inode_lock(inode);
3194
3195         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3196                 ret = inode_newsize_ok(inode, offset + len);
3197                 if (ret)
3198                         goto out;
3199         }
3200
3201         /*
3202          * TODO: Move these two operations after we have checked
3203          * accurate reserved space, or fallocate can still fail but
3204          * with page truncated or size expanded.
3205          *
3206          * But that's a minor problem and won't do much harm BTW.
3207          */
3208         if (alloc_start > inode->i_size) {
3209                 ret = btrfs_cont_expand(inode, i_size_read(inode),
3210                                         alloc_start);
3211                 if (ret)
3212                         goto out;
3213         } else if (offset + len > inode->i_size) {
3214                 /*
3215                  * If we are fallocating from the end of the file onward we
3216                  * need to zero out the end of the block if i_size lands in the
3217                  * middle of a block.
3218                  */
3219                 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3220                 if (ret)
3221                         goto out;
3222         }
3223
3224         /*
3225          * wait for ordered IO before we have any locks.  We'll loop again
3226          * below with the locks held.
3227          */
3228         ret = btrfs_wait_ordered_range(inode, alloc_start,
3229                                        alloc_end - alloc_start);
3230         if (ret)
3231                 goto out;
3232
3233         if (mode & FALLOC_FL_ZERO_RANGE) {
3234                 ret = btrfs_zero_range(inode, offset, len, mode);
3235                 inode_unlock(inode);
3236                 return ret;
3237         }
3238
3239         locked_end = alloc_end - 1;
3240         while (1) {
3241                 struct btrfs_ordered_extent *ordered;
3242
3243                 /* the extent lock is ordered inside the running
3244                  * transaction
3245                  */
3246                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3247                                  locked_end, &cached_state);
3248                 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3249
3250                 if (ordered &&
3251                     ordered->file_offset + ordered->len > alloc_start &&
3252                     ordered->file_offset < alloc_end) {
3253                         btrfs_put_ordered_extent(ordered);
3254                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3255                                              alloc_start, locked_end,
3256                                              &cached_state);
3257                         /*
3258                          * we can't wait on the range with the transaction
3259                          * running or with the extent lock held
3260                          */
3261                         ret = btrfs_wait_ordered_range(inode, alloc_start,
3262                                                        alloc_end - alloc_start);
3263                         if (ret)
3264                                 goto out;
3265                 } else {
3266                         if (ordered)
3267                                 btrfs_put_ordered_extent(ordered);
3268                         break;
3269                 }
3270         }
3271
3272         /* First, check if we exceed the qgroup limit */
3273         INIT_LIST_HEAD(&reserve_list);
3274         while (cur_offset < alloc_end) {
3275                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3276                                       alloc_end - cur_offset, 0);
3277                 if (IS_ERR(em)) {
3278                         ret = PTR_ERR(em);
3279                         break;
3280                 }
3281                 last_byte = min(extent_map_end(em), alloc_end);
3282                 actual_end = min_t(u64, extent_map_end(em), offset + len);
3283                 last_byte = ALIGN(last_byte, blocksize);
3284                 if (em->block_start == EXTENT_MAP_HOLE ||
3285                     (cur_offset >= inode->i_size &&
3286                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3287                         ret = add_falloc_range(&reserve_list, cur_offset,
3288                                                last_byte - cur_offset);
3289                         if (ret < 0) {
3290                                 free_extent_map(em);
3291                                 break;
3292                         }
3293                         ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3294                                         cur_offset, last_byte - cur_offset);
3295                         if (ret < 0) {
3296                                 cur_offset = last_byte;
3297                                 free_extent_map(em);
3298                                 break;
3299                         }
3300                 } else {
3301                         /*
3302                          * Do not need to reserve unwritten extent for this
3303                          * range, free reserved data space first, otherwise
3304                          * it'll result in false ENOSPC error.
3305                          */
3306                         btrfs_free_reserved_data_space(inode, data_reserved,
3307                                         cur_offset, last_byte - cur_offset);
3308                 }
3309                 free_extent_map(em);
3310                 cur_offset = last_byte;
3311         }
3312
3313         /*
3314          * If ret is still 0, means we're OK to fallocate.
3315          * Or just cleanup the list and exit.
3316          */
3317         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3318                 if (!ret)
3319                         ret = btrfs_prealloc_file_range(inode, mode,
3320                                         range->start,
3321                                         range->len, i_blocksize(inode),
3322                                         offset + len, &alloc_hint);
3323                 else
3324                         btrfs_free_reserved_data_space(inode,
3325                                         data_reserved, range->start,
3326                                         range->len);
3327                 list_del(&range->list);
3328                 kfree(range);
3329         }
3330         if (ret < 0)
3331                 goto out_unlock;
3332
3333         /*
3334          * We didn't need to allocate any more space, but we still extended the
3335          * size of the file so we need to update i_size and the inode item.
3336          */
3337         ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3338 out_unlock:
3339         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3340                              &cached_state);
3341 out:
3342         inode_unlock(inode);
3343         /* Let go of our reservation. */
3344         if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3345                 btrfs_free_reserved_data_space(inode, data_reserved,
3346                                 cur_offset, alloc_end - cur_offset);
3347         extent_changeset_free(data_reserved);
3348         return ret;
3349 }
3350
3351 static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3352                                   int whence)
3353 {
3354         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3355         struct extent_map *em = NULL;
3356         struct extent_state *cached_state = NULL;
3357         loff_t i_size = inode->i_size;
3358         u64 lockstart;
3359         u64 lockend;
3360         u64 start;
3361         u64 len;
3362         int ret = 0;
3363
3364         if (i_size == 0 || offset >= i_size)
3365                 return -ENXIO;
3366
3367         /*
3368          * offset can be negative, in this case we start finding DATA/HOLE from
3369          * the very start of the file.
3370          */
3371         start = max_t(loff_t, 0, offset);
3372
3373         lockstart = round_down(start, fs_info->sectorsize);
3374         lockend = round_up(i_size, fs_info->sectorsize);
3375         if (lockend <= lockstart)
3376                 lockend = lockstart + fs_info->sectorsize;
3377         lockend--;
3378         len = lockend - lockstart + 1;
3379
3380         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3381                          &cached_state);
3382
3383         while (start < i_size) {
3384                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3385                 if (IS_ERR(em)) {
3386                         ret = PTR_ERR(em);
3387                         em = NULL;
3388                         break;
3389                 }
3390
3391                 if (whence == SEEK_HOLE &&
3392                     (em->block_start == EXTENT_MAP_HOLE ||
3393                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3394                         break;
3395                 else if (whence == SEEK_DATA &&
3396                            (em->block_start != EXTENT_MAP_HOLE &&
3397                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3398                         break;
3399
3400                 start = em->start + em->len;
3401                 free_extent_map(em);
3402                 em = NULL;
3403                 cond_resched();
3404         }
3405         free_extent_map(em);
3406         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3407                              &cached_state);
3408         if (ret) {
3409                 offset = ret;
3410         } else {
3411                 if (whence == SEEK_DATA && start >= i_size)
3412                         offset = -ENXIO;
3413                 else
3414                         offset = min_t(loff_t, start, i_size);
3415         }
3416
3417         return offset;
3418 }
3419
3420 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3421 {
3422         struct inode *inode = file->f_mapping->host;
3423
3424         switch (whence) {
3425         default:
3426                 return generic_file_llseek(file, offset, whence);
3427         case SEEK_DATA:
3428         case SEEK_HOLE:
3429                 inode_lock_shared(inode);
3430                 offset = find_desired_extent(inode, offset, whence);
3431                 inode_unlock_shared(inode);
3432                 break;
3433         }
3434
3435         if (offset < 0)
3436                 return offset;
3437
3438         return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3439 }
3440
3441 static int btrfs_file_open(struct inode *inode, struct file *filp)
3442 {
3443         filp->f_mode |= FMODE_NOWAIT;
3444         return generic_file_open(inode, filp);
3445 }
3446
3447 const struct file_operations btrfs_file_operations = {
3448         .llseek         = btrfs_file_llseek,
3449         .read_iter      = generic_file_read_iter,
3450         .splice_read    = generic_file_splice_read,
3451         .write_iter     = btrfs_file_write_iter,
3452         .mmap           = btrfs_file_mmap,
3453         .open           = btrfs_file_open,
3454         .release        = btrfs_release_file,
3455         .fsync          = btrfs_sync_file,
3456         .fallocate      = btrfs_fallocate,
3457         .unlocked_ioctl = btrfs_ioctl,
3458 #ifdef CONFIG_COMPAT
3459         .compat_ioctl   = btrfs_compat_ioctl,
3460 #endif
3461         .remap_file_range = btrfs_remap_file_range,
3462 };
3463
3464 void __cold btrfs_auto_defrag_exit(void)
3465 {
3466         kmem_cache_destroy(btrfs_inode_defrag_cachep);
3467 }
3468
3469 int __init btrfs_auto_defrag_init(void)
3470 {
3471         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3472                                         sizeof(struct inode_defrag), 0,
3473                                         SLAB_MEM_SPREAD,
3474                                         NULL);
3475         if (!btrfs_inode_defrag_cachep)
3476                 return -ENOMEM;
3477
3478         return 0;
3479 }
3480
3481 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3482 {
3483         int ret;
3484
3485         /*
3486          * So with compression we will find and lock a dirty page and clear the
3487          * first one as dirty, setup an async extent, and immediately return
3488          * with the entire range locked but with nobody actually marked with
3489          * writeback.  So we can't just filemap_write_and_wait_range() and
3490          * expect it to work since it will just kick off a thread to do the
3491          * actual work.  So we need to call filemap_fdatawrite_range _again_
3492          * since it will wait on the page lock, which won't be unlocked until
3493          * after the pages have been marked as writeback and so we're good to go
3494          * from there.  We have to do this otherwise we'll miss the ordered
3495          * extents and that results in badness.  Please Josef, do not think you
3496          * know better and pull this out at some point in the future, it is
3497          * right and you are wrong.
3498          */
3499         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3500         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3501                              &BTRFS_I(inode)->runtime_flags))
3502                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3503
3504         return ret;
3505 }