Merge tag 'tpmdd-next-6.10-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "dev-replace.h"
33 #include "raid56.h"
34 #include "sysfs.h"
35 #include "qgroup.h"
36 #include "compression.h"
37 #include "tree-checker.h"
38 #include "ref-verify.h"
39 #include "block-group.h"
40 #include "discard.h"
41 #include "space-info.h"
42 #include "zoned.h"
43 #include "subpage.h"
44 #include "fs.h"
45 #include "accessors.h"
46 #include "extent-tree.h"
47 #include "root-tree.h"
48 #include "defrag.h"
49 #include "uuid-tree.h"
50 #include "relocation.h"
51 #include "scrub.h"
52 #include "super.h"
53
54 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
55                                  BTRFS_HEADER_FLAG_RELOC |\
56                                  BTRFS_SUPER_FLAG_ERROR |\
57                                  BTRFS_SUPER_FLAG_SEEDING |\
58                                  BTRFS_SUPER_FLAG_METADUMP |\
59                                  BTRFS_SUPER_FLAG_METADUMP_V2)
60
61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
63
64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65 {
66         if (fs_info->csum_shash)
67                 crypto_free_shash(fs_info->csum_shash);
68 }
69
70 /*
71  * Compute the csum of a btree block and store the result to provided buffer.
72  */
73 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
74 {
75         struct btrfs_fs_info *fs_info = buf->fs_info;
76         int num_pages;
77         u32 first_page_part;
78         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79         char *kaddr;
80         int i;
81
82         shash->tfm = fs_info->csum_shash;
83         crypto_shash_init(shash);
84
85         if (buf->addr) {
86                 /* Pages are contiguous, handle them as a big one. */
87                 kaddr = buf->addr;
88                 first_page_part = fs_info->nodesize;
89                 num_pages = 1;
90         } else {
91                 kaddr = folio_address(buf->folios[0]);
92                 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93                 num_pages = num_extent_pages(buf);
94         }
95
96         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97                             first_page_part - BTRFS_CSUM_SIZE);
98
99         /*
100          * Multiple single-page folios case would reach here.
101          *
102          * nodesize <= PAGE_SIZE and large folio all handled by above
103          * crypto_shash_update() already.
104          */
105         for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
106                 kaddr = folio_address(buf->folios[i]);
107                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
108         }
109         memset(result, 0, BTRFS_CSUM_SIZE);
110         crypto_shash_final(shash, result);
111 }
112
113 /*
114  * we can't consider a given block up to date unless the transid of the
115  * block matches the transid in the parent node's pointer.  This is how we
116  * detect blocks that either didn't get written at all or got written
117  * in the wrong place.
118  */
119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
120 {
121         if (!extent_buffer_uptodate(eb))
122                 return 0;
123
124         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125                 return 1;
126
127         if (atomic)
128                 return -EAGAIN;
129
130         if (!extent_buffer_uptodate(eb) ||
131             btrfs_header_generation(eb) != parent_transid) {
132                 btrfs_err_rl(eb->fs_info,
133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134                         eb->start, eb->read_mirror,
135                         parent_transid, btrfs_header_generation(eb));
136                 clear_extent_buffer_uptodate(eb);
137                 return 0;
138         }
139         return 1;
140 }
141
142 static bool btrfs_supported_super_csum(u16 csum_type)
143 {
144         switch (csum_type) {
145         case BTRFS_CSUM_TYPE_CRC32:
146         case BTRFS_CSUM_TYPE_XXHASH:
147         case BTRFS_CSUM_TYPE_SHA256:
148         case BTRFS_CSUM_TYPE_BLAKE2:
149                 return true;
150         default:
151                 return false;
152         }
153 }
154
155 /*
156  * Return 0 if the superblock checksum type matches the checksum value of that
157  * algorithm. Pass the raw disk superblock data.
158  */
159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160                            const struct btrfs_super_block *disk_sb)
161 {
162         char result[BTRFS_CSUM_SIZE];
163         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164
165         shash->tfm = fs_info->csum_shash;
166
167         /*
168          * The super_block structure does not span the whole
169          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170          * filled with zeros and is included in the checksum.
171          */
172         crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
173                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
174
175         if (memcmp(disk_sb->csum, result, fs_info->csum_size))
176                 return 1;
177
178         return 0;
179 }
180
181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182                                       int mirror_num)
183 {
184         struct btrfs_fs_info *fs_info = eb->fs_info;
185         int num_folios = num_extent_folios(eb);
186         int ret = 0;
187
188         if (sb_rdonly(fs_info->sb))
189                 return -EROFS;
190
191         for (int i = 0; i < num_folios; i++) {
192                 struct folio *folio = eb->folios[i];
193                 u64 start = max_t(u64, eb->start, folio_pos(folio));
194                 u64 end = min_t(u64, eb->start + eb->len,
195                                 folio_pos(folio) + eb->folio_size);
196                 u32 len = end - start;
197
198                 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
199                                               start, folio, offset_in_folio(folio, start),
200                                               mirror_num);
201                 if (ret)
202                         break;
203         }
204
205         return ret;
206 }
207
208 /*
209  * helper to read a given tree block, doing retries as required when
210  * the checksums don't match and we have alternate mirrors to try.
211  *
212  * @check:              expected tree parentness check, see the comments of the
213  *                      structure for details.
214  */
215 int btrfs_read_extent_buffer(struct extent_buffer *eb,
216                              struct btrfs_tree_parent_check *check)
217 {
218         struct btrfs_fs_info *fs_info = eb->fs_info;
219         int failed = 0;
220         int ret;
221         int num_copies = 0;
222         int mirror_num = 0;
223         int failed_mirror = 0;
224
225         ASSERT(check);
226
227         while (1) {
228                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
229                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
230                 if (!ret)
231                         break;
232
233                 num_copies = btrfs_num_copies(fs_info,
234                                               eb->start, eb->len);
235                 if (num_copies == 1)
236                         break;
237
238                 if (!failed_mirror) {
239                         failed = 1;
240                         failed_mirror = eb->read_mirror;
241                 }
242
243                 mirror_num++;
244                 if (mirror_num == failed_mirror)
245                         mirror_num++;
246
247                 if (mirror_num > num_copies)
248                         break;
249         }
250
251         if (failed && !ret && failed_mirror)
252                 btrfs_repair_eb_io_failure(eb, failed_mirror);
253
254         return ret;
255 }
256
257 /*
258  * Checksum a dirty tree block before IO.
259  */
260 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
261 {
262         struct extent_buffer *eb = bbio->private;
263         struct btrfs_fs_info *fs_info = eb->fs_info;
264         u64 found_start = btrfs_header_bytenr(eb);
265         u64 last_trans;
266         u8 result[BTRFS_CSUM_SIZE];
267         int ret;
268
269         /* Btree blocks are always contiguous on disk. */
270         if (WARN_ON_ONCE(bbio->file_offset != eb->start))
271                 return BLK_STS_IOERR;
272         if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
273                 return BLK_STS_IOERR;
274
275         /*
276          * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
277          * checksum it but zero-out its content. This is done to preserve
278          * ordering of I/O without unnecessarily writing out data.
279          */
280         if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
281                 memzero_extent_buffer(eb, 0, eb->len);
282                 return BLK_STS_OK;
283         }
284
285         if (WARN_ON_ONCE(found_start != eb->start))
286                 return BLK_STS_IOERR;
287         if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
288                                                eb->start, eb->len)))
289                 return BLK_STS_IOERR;
290
291         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
292                                     offsetof(struct btrfs_header, fsid),
293                                     BTRFS_FSID_SIZE) == 0);
294         csum_tree_block(eb, result);
295
296         if (btrfs_header_level(eb))
297                 ret = btrfs_check_node(eb);
298         else
299                 ret = btrfs_check_leaf(eb);
300
301         if (ret < 0)
302                 goto error;
303
304         /*
305          * Also check the generation, the eb reached here must be newer than
306          * last committed. Or something seriously wrong happened.
307          */
308         last_trans = btrfs_get_last_trans_committed(fs_info);
309         if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
310                 ret = -EUCLEAN;
311                 btrfs_err(fs_info,
312                         "block=%llu bad generation, have %llu expect > %llu",
313                           eb->start, btrfs_header_generation(eb), last_trans);
314                 goto error;
315         }
316         write_extent_buffer(eb, result, 0, fs_info->csum_size);
317         return BLK_STS_OK;
318
319 error:
320         btrfs_print_tree(eb, 0);
321         btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
322                   eb->start);
323         /*
324          * Be noisy if this is an extent buffer from a log tree. We don't abort
325          * a transaction in case there's a bad log tree extent buffer, we just
326          * fallback to a transaction commit. Still we want to know when there is
327          * a bad log tree extent buffer, as that may signal a bug somewhere.
328          */
329         WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
330                 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
331         return errno_to_blk_status(ret);
332 }
333
334 static bool check_tree_block_fsid(struct extent_buffer *eb)
335 {
336         struct btrfs_fs_info *fs_info = eb->fs_info;
337         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
338         u8 fsid[BTRFS_FSID_SIZE];
339
340         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
341                            BTRFS_FSID_SIZE);
342
343         /*
344          * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
345          * This is then overwritten by metadata_uuid if it is present in the
346          * device_list_add(). The same true for a seed device as well. So use of
347          * fs_devices::metadata_uuid is appropriate here.
348          */
349         if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
350                 return false;
351
352         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
353                 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
354                         return false;
355
356         return true;
357 }
358
359 /* Do basic extent buffer checks at read time */
360 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
361                                  struct btrfs_tree_parent_check *check)
362 {
363         struct btrfs_fs_info *fs_info = eb->fs_info;
364         u64 found_start;
365         const u32 csum_size = fs_info->csum_size;
366         u8 found_level;
367         u8 result[BTRFS_CSUM_SIZE];
368         const u8 *header_csum;
369         int ret = 0;
370
371         ASSERT(check);
372
373         found_start = btrfs_header_bytenr(eb);
374         if (found_start != eb->start) {
375                 btrfs_err_rl(fs_info,
376                         "bad tree block start, mirror %u want %llu have %llu",
377                              eb->read_mirror, eb->start, found_start);
378                 ret = -EIO;
379                 goto out;
380         }
381         if (check_tree_block_fsid(eb)) {
382                 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
383                              eb->start, eb->read_mirror);
384                 ret = -EIO;
385                 goto out;
386         }
387         found_level = btrfs_header_level(eb);
388         if (found_level >= BTRFS_MAX_LEVEL) {
389                 btrfs_err(fs_info,
390                         "bad tree block level, mirror %u level %d on logical %llu",
391                         eb->read_mirror, btrfs_header_level(eb), eb->start);
392                 ret = -EIO;
393                 goto out;
394         }
395
396         csum_tree_block(eb, result);
397         header_csum = folio_address(eb->folios[0]) +
398                 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
399
400         if (memcmp(result, header_csum, csum_size) != 0) {
401                 btrfs_warn_rl(fs_info,
402 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
403                               eb->start, eb->read_mirror,
404                               CSUM_FMT_VALUE(csum_size, header_csum),
405                               CSUM_FMT_VALUE(csum_size, result),
406                               btrfs_header_level(eb));
407                 ret = -EUCLEAN;
408                 goto out;
409         }
410
411         if (found_level != check->level) {
412                 btrfs_err(fs_info,
413                 "level verify failed on logical %llu mirror %u wanted %u found %u",
414                           eb->start, eb->read_mirror, check->level, found_level);
415                 ret = -EIO;
416                 goto out;
417         }
418         if (unlikely(check->transid &&
419                      btrfs_header_generation(eb) != check->transid)) {
420                 btrfs_err_rl(eb->fs_info,
421 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
422                                 eb->start, eb->read_mirror, check->transid,
423                                 btrfs_header_generation(eb));
424                 ret = -EIO;
425                 goto out;
426         }
427         if (check->has_first_key) {
428                 struct btrfs_key *expect_key = &check->first_key;
429                 struct btrfs_key found_key;
430
431                 if (found_level)
432                         btrfs_node_key_to_cpu(eb, &found_key, 0);
433                 else
434                         btrfs_item_key_to_cpu(eb, &found_key, 0);
435                 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
436                         btrfs_err(fs_info,
437 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
438                                   eb->start, check->transid,
439                                   expect_key->objectid,
440                                   expect_key->type, expect_key->offset,
441                                   found_key.objectid, found_key.type,
442                                   found_key.offset);
443                         ret = -EUCLEAN;
444                         goto out;
445                 }
446         }
447         if (check->owner_root) {
448                 ret = btrfs_check_eb_owner(eb, check->owner_root);
449                 if (ret < 0)
450                         goto out;
451         }
452
453         /*
454          * If this is a leaf block and it is corrupt, set the corrupt bit so
455          * that we don't try and read the other copies of this block, just
456          * return -EIO.
457          */
458         if (found_level == 0 && btrfs_check_leaf(eb)) {
459                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
460                 ret = -EIO;
461         }
462
463         if (found_level > 0 && btrfs_check_node(eb))
464                 ret = -EIO;
465
466         if (ret)
467                 btrfs_err(fs_info,
468                 "read time tree block corruption detected on logical %llu mirror %u",
469                           eb->start, eb->read_mirror);
470 out:
471         return ret;
472 }
473
474 #ifdef CONFIG_MIGRATION
475 static int btree_migrate_folio(struct address_space *mapping,
476                 struct folio *dst, struct folio *src, enum migrate_mode mode)
477 {
478         /*
479          * we can't safely write a btree page from here,
480          * we haven't done the locking hook
481          */
482         if (folio_test_dirty(src))
483                 return -EAGAIN;
484         /*
485          * Buffers may be managed in a filesystem specific way.
486          * We must have no buffers or drop them.
487          */
488         if (folio_get_private(src) &&
489             !filemap_release_folio(src, GFP_KERNEL))
490                 return -EAGAIN;
491         return migrate_folio(mapping, dst, src, mode);
492 }
493 #else
494 #define btree_migrate_folio NULL
495 #endif
496
497 static int btree_writepages(struct address_space *mapping,
498                             struct writeback_control *wbc)
499 {
500         int ret;
501
502         if (wbc->sync_mode == WB_SYNC_NONE) {
503                 struct btrfs_fs_info *fs_info;
504
505                 if (wbc->for_kupdate)
506                         return 0;
507
508                 fs_info = inode_to_fs_info(mapping->host);
509                 /* this is a bit racy, but that's ok */
510                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
511                                              BTRFS_DIRTY_METADATA_THRESH,
512                                              fs_info->dirty_metadata_batch);
513                 if (ret < 0)
514                         return 0;
515         }
516         return btree_write_cache_pages(mapping, wbc);
517 }
518
519 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
520 {
521         if (folio_test_writeback(folio) || folio_test_dirty(folio))
522                 return false;
523
524         return try_release_extent_buffer(&folio->page);
525 }
526
527 static void btree_invalidate_folio(struct folio *folio, size_t offset,
528                                  size_t length)
529 {
530         struct extent_io_tree *tree;
531
532         tree = &folio_to_inode(folio)->io_tree;
533         extent_invalidate_folio(tree, folio, offset);
534         btree_release_folio(folio, GFP_NOFS);
535         if (folio_get_private(folio)) {
536                 btrfs_warn(folio_to_fs_info(folio),
537                            "folio private not zero on folio %llu",
538                            (unsigned long long)folio_pos(folio));
539                 folio_detach_private(folio);
540         }
541 }
542
543 #ifdef DEBUG
544 static bool btree_dirty_folio(struct address_space *mapping,
545                 struct folio *folio)
546 {
547         struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
548         struct btrfs_subpage_info *spi = fs_info->subpage_info;
549         struct btrfs_subpage *subpage;
550         struct extent_buffer *eb;
551         int cur_bit = 0;
552         u64 page_start = folio_pos(folio);
553
554         if (fs_info->sectorsize == PAGE_SIZE) {
555                 eb = folio_get_private(folio);
556                 BUG_ON(!eb);
557                 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
558                 BUG_ON(!atomic_read(&eb->refs));
559                 btrfs_assert_tree_write_locked(eb);
560                 return filemap_dirty_folio(mapping, folio);
561         }
562
563         ASSERT(spi);
564         subpage = folio_get_private(folio);
565
566         for (cur_bit = spi->dirty_offset;
567              cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
568              cur_bit++) {
569                 unsigned long flags;
570                 u64 cur;
571
572                 spin_lock_irqsave(&subpage->lock, flags);
573                 if (!test_bit(cur_bit, subpage->bitmaps)) {
574                         spin_unlock_irqrestore(&subpage->lock, flags);
575                         continue;
576                 }
577                 spin_unlock_irqrestore(&subpage->lock, flags);
578                 cur = page_start + cur_bit * fs_info->sectorsize;
579
580                 eb = find_extent_buffer(fs_info, cur);
581                 ASSERT(eb);
582                 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
583                 ASSERT(atomic_read(&eb->refs));
584                 btrfs_assert_tree_write_locked(eb);
585                 free_extent_buffer(eb);
586
587                 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
588         }
589         return filemap_dirty_folio(mapping, folio);
590 }
591 #else
592 #define btree_dirty_folio filemap_dirty_folio
593 #endif
594
595 static const struct address_space_operations btree_aops = {
596         .writepages     = btree_writepages,
597         .release_folio  = btree_release_folio,
598         .invalidate_folio = btree_invalidate_folio,
599         .migrate_folio  = btree_migrate_folio,
600         .dirty_folio    = btree_dirty_folio,
601 };
602
603 struct extent_buffer *btrfs_find_create_tree_block(
604                                                 struct btrfs_fs_info *fs_info,
605                                                 u64 bytenr, u64 owner_root,
606                                                 int level)
607 {
608         if (btrfs_is_testing(fs_info))
609                 return alloc_test_extent_buffer(fs_info, bytenr);
610         return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
611 }
612
613 /*
614  * Read tree block at logical address @bytenr and do variant basic but critical
615  * verification.
616  *
617  * @check:              expected tree parentness check, see comments of the
618  *                      structure for details.
619  */
620 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
621                                       struct btrfs_tree_parent_check *check)
622 {
623         struct extent_buffer *buf = NULL;
624         int ret;
625
626         ASSERT(check);
627
628         buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
629                                            check->level);
630         if (IS_ERR(buf))
631                 return buf;
632
633         ret = btrfs_read_extent_buffer(buf, check);
634         if (ret) {
635                 free_extent_buffer_stale(buf);
636                 return ERR_PTR(ret);
637         }
638         if (btrfs_check_eb_owner(buf, check->owner_root)) {
639                 free_extent_buffer_stale(buf);
640                 return ERR_PTR(-EUCLEAN);
641         }
642         return buf;
643
644 }
645
646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
647                          u64 objectid)
648 {
649         bool dummy = btrfs_is_testing(fs_info);
650
651         memset(&root->root_key, 0, sizeof(root->root_key));
652         memset(&root->root_item, 0, sizeof(root->root_item));
653         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
654         root->fs_info = fs_info;
655         root->root_key.objectid = objectid;
656         root->node = NULL;
657         root->commit_root = NULL;
658         root->state = 0;
659         RB_CLEAR_NODE(&root->rb_node);
660
661         root->last_trans = 0;
662         root->free_objectid = 0;
663         root->nr_delalloc_inodes = 0;
664         root->nr_ordered_extents = 0;
665         root->inode_tree = RB_ROOT;
666         xa_init(&root->delayed_nodes);
667
668         btrfs_init_root_block_rsv(root);
669
670         INIT_LIST_HEAD(&root->dirty_list);
671         INIT_LIST_HEAD(&root->root_list);
672         INIT_LIST_HEAD(&root->delalloc_inodes);
673         INIT_LIST_HEAD(&root->delalloc_root);
674         INIT_LIST_HEAD(&root->ordered_extents);
675         INIT_LIST_HEAD(&root->ordered_root);
676         INIT_LIST_HEAD(&root->reloc_dirty_list);
677         spin_lock_init(&root->inode_lock);
678         spin_lock_init(&root->delalloc_lock);
679         spin_lock_init(&root->ordered_extent_lock);
680         spin_lock_init(&root->accounting_lock);
681         spin_lock_init(&root->qgroup_meta_rsv_lock);
682         mutex_init(&root->objectid_mutex);
683         mutex_init(&root->log_mutex);
684         mutex_init(&root->ordered_extent_mutex);
685         mutex_init(&root->delalloc_mutex);
686         init_waitqueue_head(&root->qgroup_flush_wait);
687         init_waitqueue_head(&root->log_writer_wait);
688         init_waitqueue_head(&root->log_commit_wait[0]);
689         init_waitqueue_head(&root->log_commit_wait[1]);
690         INIT_LIST_HEAD(&root->log_ctxs[0]);
691         INIT_LIST_HEAD(&root->log_ctxs[1]);
692         atomic_set(&root->log_commit[0], 0);
693         atomic_set(&root->log_commit[1], 0);
694         atomic_set(&root->log_writers, 0);
695         atomic_set(&root->log_batch, 0);
696         refcount_set(&root->refs, 1);
697         atomic_set(&root->snapshot_force_cow, 0);
698         atomic_set(&root->nr_swapfiles, 0);
699         btrfs_set_root_log_transid(root, 0);
700         root->log_transid_committed = -1;
701         btrfs_set_root_last_log_commit(root, 0);
702         root->anon_dev = 0;
703         if (!dummy) {
704                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
705                                     IO_TREE_ROOT_DIRTY_LOG_PAGES);
706                 extent_io_tree_init(fs_info, &root->log_csum_range,
707                                     IO_TREE_LOG_CSUM_RANGE);
708         }
709
710         spin_lock_init(&root->root_item_lock);
711         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
712 #ifdef CONFIG_BTRFS_DEBUG
713         INIT_LIST_HEAD(&root->leak_list);
714         spin_lock(&fs_info->fs_roots_radix_lock);
715         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
716         spin_unlock(&fs_info->fs_roots_radix_lock);
717 #endif
718 }
719
720 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
721                                            u64 objectid, gfp_t flags)
722 {
723         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
724         if (root)
725                 __setup_root(root, fs_info, objectid);
726         return root;
727 }
728
729 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
730 /* Should only be used by the testing infrastructure */
731 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
732 {
733         struct btrfs_root *root;
734
735         if (!fs_info)
736                 return ERR_PTR(-EINVAL);
737
738         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
739         if (!root)
740                 return ERR_PTR(-ENOMEM);
741
742         /* We don't use the stripesize in selftest, set it as sectorsize */
743         root->alloc_bytenr = 0;
744
745         return root;
746 }
747 #endif
748
749 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
750 {
751         const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
752         const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
753
754         return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
755 }
756
757 static int global_root_key_cmp(const void *k, const struct rb_node *node)
758 {
759         const struct btrfs_key *key = k;
760         const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
761
762         return btrfs_comp_cpu_keys(key, &root->root_key);
763 }
764
765 int btrfs_global_root_insert(struct btrfs_root *root)
766 {
767         struct btrfs_fs_info *fs_info = root->fs_info;
768         struct rb_node *tmp;
769         int ret = 0;
770
771         write_lock(&fs_info->global_root_lock);
772         tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
773         write_unlock(&fs_info->global_root_lock);
774
775         if (tmp) {
776                 ret = -EEXIST;
777                 btrfs_warn(fs_info, "global root %llu %llu already exists",
778                            btrfs_root_id(root), root->root_key.offset);
779         }
780         return ret;
781 }
782
783 void btrfs_global_root_delete(struct btrfs_root *root)
784 {
785         struct btrfs_fs_info *fs_info = root->fs_info;
786
787         write_lock(&fs_info->global_root_lock);
788         rb_erase(&root->rb_node, &fs_info->global_root_tree);
789         write_unlock(&fs_info->global_root_lock);
790 }
791
792 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
793                                      struct btrfs_key *key)
794 {
795         struct rb_node *node;
796         struct btrfs_root *root = NULL;
797
798         read_lock(&fs_info->global_root_lock);
799         node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
800         if (node)
801                 root = container_of(node, struct btrfs_root, rb_node);
802         read_unlock(&fs_info->global_root_lock);
803
804         return root;
805 }
806
807 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
808 {
809         struct btrfs_block_group *block_group;
810         u64 ret;
811
812         if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
813                 return 0;
814
815         if (bytenr)
816                 block_group = btrfs_lookup_block_group(fs_info, bytenr);
817         else
818                 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
819         ASSERT(block_group);
820         if (!block_group)
821                 return 0;
822         ret = block_group->global_root_id;
823         btrfs_put_block_group(block_group);
824
825         return ret;
826 }
827
828 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
829 {
830         struct btrfs_key key = {
831                 .objectid = BTRFS_CSUM_TREE_OBJECTID,
832                 .type = BTRFS_ROOT_ITEM_KEY,
833                 .offset = btrfs_global_root_id(fs_info, bytenr),
834         };
835
836         return btrfs_global_root(fs_info, &key);
837 }
838
839 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
840 {
841         struct btrfs_key key = {
842                 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
843                 .type = BTRFS_ROOT_ITEM_KEY,
844                 .offset = btrfs_global_root_id(fs_info, bytenr),
845         };
846
847         return btrfs_global_root(fs_info, &key);
848 }
849
850 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
851 {
852         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
853                 return fs_info->block_group_root;
854         return btrfs_extent_root(fs_info, 0);
855 }
856
857 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
858                                      u64 objectid)
859 {
860         struct btrfs_fs_info *fs_info = trans->fs_info;
861         struct extent_buffer *leaf;
862         struct btrfs_root *tree_root = fs_info->tree_root;
863         struct btrfs_root *root;
864         struct btrfs_key key;
865         unsigned int nofs_flag;
866         int ret = 0;
867
868         /*
869          * We're holding a transaction handle, so use a NOFS memory allocation
870          * context to avoid deadlock if reclaim happens.
871          */
872         nofs_flag = memalloc_nofs_save();
873         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
874         memalloc_nofs_restore(nofs_flag);
875         if (!root)
876                 return ERR_PTR(-ENOMEM);
877
878         root->root_key.objectid = objectid;
879         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
880         root->root_key.offset = 0;
881
882         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
883                                       0, BTRFS_NESTING_NORMAL);
884         if (IS_ERR(leaf)) {
885                 ret = PTR_ERR(leaf);
886                 leaf = NULL;
887                 goto fail;
888         }
889
890         root->node = leaf;
891         btrfs_mark_buffer_dirty(trans, leaf);
892
893         root->commit_root = btrfs_root_node(root);
894         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
895
896         btrfs_set_root_flags(&root->root_item, 0);
897         btrfs_set_root_limit(&root->root_item, 0);
898         btrfs_set_root_bytenr(&root->root_item, leaf->start);
899         btrfs_set_root_generation(&root->root_item, trans->transid);
900         btrfs_set_root_level(&root->root_item, 0);
901         btrfs_set_root_refs(&root->root_item, 1);
902         btrfs_set_root_used(&root->root_item, leaf->len);
903         btrfs_set_root_last_snapshot(&root->root_item, 0);
904         btrfs_set_root_dirid(&root->root_item, 0);
905         if (is_fstree(objectid))
906                 generate_random_guid(root->root_item.uuid);
907         else
908                 export_guid(root->root_item.uuid, &guid_null);
909         btrfs_set_root_drop_level(&root->root_item, 0);
910
911         btrfs_tree_unlock(leaf);
912
913         key.objectid = objectid;
914         key.type = BTRFS_ROOT_ITEM_KEY;
915         key.offset = 0;
916         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
917         if (ret)
918                 goto fail;
919
920         return root;
921
922 fail:
923         btrfs_put_root(root);
924
925         return ERR_PTR(ret);
926 }
927
928 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
929                                          struct btrfs_fs_info *fs_info)
930 {
931         struct btrfs_root *root;
932
933         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
934         if (!root)
935                 return ERR_PTR(-ENOMEM);
936
937         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
938         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
939         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
940
941         return root;
942 }
943
944 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
945                               struct btrfs_root *root)
946 {
947         struct extent_buffer *leaf;
948
949         /*
950          * DON'T set SHAREABLE bit for log trees.
951          *
952          * Log trees are not exposed to user space thus can't be snapshotted,
953          * and they go away before a real commit is actually done.
954          *
955          * They do store pointers to file data extents, and those reference
956          * counts still get updated (along with back refs to the log tree).
957          */
958
959         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
960                         NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
961         if (IS_ERR(leaf))
962                 return PTR_ERR(leaf);
963
964         root->node = leaf;
965
966         btrfs_mark_buffer_dirty(trans, root->node);
967         btrfs_tree_unlock(root->node);
968
969         return 0;
970 }
971
972 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
973                              struct btrfs_fs_info *fs_info)
974 {
975         struct btrfs_root *log_root;
976
977         log_root = alloc_log_tree(trans, fs_info);
978         if (IS_ERR(log_root))
979                 return PTR_ERR(log_root);
980
981         if (!btrfs_is_zoned(fs_info)) {
982                 int ret = btrfs_alloc_log_tree_node(trans, log_root);
983
984                 if (ret) {
985                         btrfs_put_root(log_root);
986                         return ret;
987                 }
988         }
989
990         WARN_ON(fs_info->log_root_tree);
991         fs_info->log_root_tree = log_root;
992         return 0;
993 }
994
995 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
996                        struct btrfs_root *root)
997 {
998         struct btrfs_fs_info *fs_info = root->fs_info;
999         struct btrfs_root *log_root;
1000         struct btrfs_inode_item *inode_item;
1001         int ret;
1002
1003         log_root = alloc_log_tree(trans, fs_info);
1004         if (IS_ERR(log_root))
1005                 return PTR_ERR(log_root);
1006
1007         ret = btrfs_alloc_log_tree_node(trans, log_root);
1008         if (ret) {
1009                 btrfs_put_root(log_root);
1010                 return ret;
1011         }
1012
1013         log_root->last_trans = trans->transid;
1014         log_root->root_key.offset = btrfs_root_id(root);
1015
1016         inode_item = &log_root->root_item.inode;
1017         btrfs_set_stack_inode_generation(inode_item, 1);
1018         btrfs_set_stack_inode_size(inode_item, 3);
1019         btrfs_set_stack_inode_nlink(inode_item, 1);
1020         btrfs_set_stack_inode_nbytes(inode_item,
1021                                      fs_info->nodesize);
1022         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1023
1024         btrfs_set_root_node(&log_root->root_item, log_root->node);
1025
1026         WARN_ON(root->log_root);
1027         root->log_root = log_root;
1028         btrfs_set_root_log_transid(root, 0);
1029         root->log_transid_committed = -1;
1030         btrfs_set_root_last_log_commit(root, 0);
1031         return 0;
1032 }
1033
1034 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1035                                               struct btrfs_path *path,
1036                                               struct btrfs_key *key)
1037 {
1038         struct btrfs_root *root;
1039         struct btrfs_tree_parent_check check = { 0 };
1040         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1041         u64 generation;
1042         int ret;
1043         int level;
1044
1045         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1046         if (!root)
1047                 return ERR_PTR(-ENOMEM);
1048
1049         ret = btrfs_find_root(tree_root, key, path,
1050                               &root->root_item, &root->root_key);
1051         if (ret) {
1052                 if (ret > 0)
1053                         ret = -ENOENT;
1054                 goto fail;
1055         }
1056
1057         generation = btrfs_root_generation(&root->root_item);
1058         level = btrfs_root_level(&root->root_item);
1059         check.level = level;
1060         check.transid = generation;
1061         check.owner_root = key->objectid;
1062         root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1063                                      &check);
1064         if (IS_ERR(root->node)) {
1065                 ret = PTR_ERR(root->node);
1066                 root->node = NULL;
1067                 goto fail;
1068         }
1069         if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1070                 ret = -EIO;
1071                 goto fail;
1072         }
1073
1074         /*
1075          * For real fs, and not log/reloc trees, root owner must
1076          * match its root node owner
1077          */
1078         if (!btrfs_is_testing(fs_info) &&
1079             btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1080             btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1081             btrfs_root_id(root) != btrfs_header_owner(root->node)) {
1082                 btrfs_crit(fs_info,
1083 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1084                            btrfs_root_id(root), root->node->start,
1085                            btrfs_header_owner(root->node),
1086                            btrfs_root_id(root));
1087                 ret = -EUCLEAN;
1088                 goto fail;
1089         }
1090         root->commit_root = btrfs_root_node(root);
1091         return root;
1092 fail:
1093         btrfs_put_root(root);
1094         return ERR_PTR(ret);
1095 }
1096
1097 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1098                                         struct btrfs_key *key)
1099 {
1100         struct btrfs_root *root;
1101         struct btrfs_path *path;
1102
1103         path = btrfs_alloc_path();
1104         if (!path)
1105                 return ERR_PTR(-ENOMEM);
1106         root = read_tree_root_path(tree_root, path, key);
1107         btrfs_free_path(path);
1108
1109         return root;
1110 }
1111
1112 /*
1113  * Initialize subvolume root in-memory structure
1114  *
1115  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1116  */
1117 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1118 {
1119         int ret;
1120
1121         btrfs_drew_lock_init(&root->snapshot_lock);
1122
1123         if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1124             !btrfs_is_data_reloc_root(root) &&
1125             is_fstree(btrfs_root_id(root))) {
1126                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1127                 btrfs_check_and_init_root_item(&root->root_item);
1128         }
1129
1130         /*
1131          * Don't assign anonymous block device to roots that are not exposed to
1132          * userspace, the id pool is limited to 1M
1133          */
1134         if (is_fstree(btrfs_root_id(root)) &&
1135             btrfs_root_refs(&root->root_item) > 0) {
1136                 if (!anon_dev) {
1137                         ret = get_anon_bdev(&root->anon_dev);
1138                         if (ret)
1139                                 goto fail;
1140                 } else {
1141                         root->anon_dev = anon_dev;
1142                 }
1143         }
1144
1145         mutex_lock(&root->objectid_mutex);
1146         ret = btrfs_init_root_free_objectid(root);
1147         if (ret) {
1148                 mutex_unlock(&root->objectid_mutex);
1149                 goto fail;
1150         }
1151
1152         ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1153
1154         mutex_unlock(&root->objectid_mutex);
1155
1156         return 0;
1157 fail:
1158         /* The caller is responsible to call btrfs_free_fs_root */
1159         return ret;
1160 }
1161
1162 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1163                                                u64 root_id)
1164 {
1165         struct btrfs_root *root;
1166
1167         spin_lock(&fs_info->fs_roots_radix_lock);
1168         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1169                                  (unsigned long)root_id);
1170         root = btrfs_grab_root(root);
1171         spin_unlock(&fs_info->fs_roots_radix_lock);
1172         return root;
1173 }
1174
1175 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1176                                                 u64 objectid)
1177 {
1178         struct btrfs_key key = {
1179                 .objectid = objectid,
1180                 .type = BTRFS_ROOT_ITEM_KEY,
1181                 .offset = 0,
1182         };
1183
1184         switch (objectid) {
1185         case BTRFS_ROOT_TREE_OBJECTID:
1186                 return btrfs_grab_root(fs_info->tree_root);
1187         case BTRFS_EXTENT_TREE_OBJECTID:
1188                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1189         case BTRFS_CHUNK_TREE_OBJECTID:
1190                 return btrfs_grab_root(fs_info->chunk_root);
1191         case BTRFS_DEV_TREE_OBJECTID:
1192                 return btrfs_grab_root(fs_info->dev_root);
1193         case BTRFS_CSUM_TREE_OBJECTID:
1194                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1195         case BTRFS_QUOTA_TREE_OBJECTID:
1196                 return btrfs_grab_root(fs_info->quota_root);
1197         case BTRFS_UUID_TREE_OBJECTID:
1198                 return btrfs_grab_root(fs_info->uuid_root);
1199         case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1200                 return btrfs_grab_root(fs_info->block_group_root);
1201         case BTRFS_FREE_SPACE_TREE_OBJECTID:
1202                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1203         case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1204                 return btrfs_grab_root(fs_info->stripe_root);
1205         default:
1206                 return NULL;
1207         }
1208 }
1209
1210 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1211                          struct btrfs_root *root)
1212 {
1213         int ret;
1214
1215         ret = radix_tree_preload(GFP_NOFS);
1216         if (ret)
1217                 return ret;
1218
1219         spin_lock(&fs_info->fs_roots_radix_lock);
1220         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1221                                 (unsigned long)btrfs_root_id(root),
1222                                 root);
1223         if (ret == 0) {
1224                 btrfs_grab_root(root);
1225                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1226         }
1227         spin_unlock(&fs_info->fs_roots_radix_lock);
1228         radix_tree_preload_end();
1229
1230         return ret;
1231 }
1232
1233 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1234 {
1235 #ifdef CONFIG_BTRFS_DEBUG
1236         struct btrfs_root *root;
1237
1238         while (!list_empty(&fs_info->allocated_roots)) {
1239                 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1240
1241                 root = list_first_entry(&fs_info->allocated_roots,
1242                                         struct btrfs_root, leak_list);
1243                 btrfs_err(fs_info, "leaked root %s refcount %d",
1244                           btrfs_root_name(&root->root_key, buf),
1245                           refcount_read(&root->refs));
1246                 WARN_ON_ONCE(1);
1247                 while (refcount_read(&root->refs) > 1)
1248                         btrfs_put_root(root);
1249                 btrfs_put_root(root);
1250         }
1251 #endif
1252 }
1253
1254 static void free_global_roots(struct btrfs_fs_info *fs_info)
1255 {
1256         struct btrfs_root *root;
1257         struct rb_node *node;
1258
1259         while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1260                 root = rb_entry(node, struct btrfs_root, rb_node);
1261                 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1262                 btrfs_put_root(root);
1263         }
1264 }
1265
1266 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1267 {
1268         struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1269
1270         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1271         percpu_counter_destroy(&fs_info->delalloc_bytes);
1272         percpu_counter_destroy(&fs_info->ordered_bytes);
1273         if (percpu_counter_initialized(em_counter))
1274                 ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1275         percpu_counter_destroy(em_counter);
1276         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1277         btrfs_free_csum_hash(fs_info);
1278         btrfs_free_stripe_hash_table(fs_info);
1279         btrfs_free_ref_cache(fs_info);
1280         kfree(fs_info->balance_ctl);
1281         kfree(fs_info->delayed_root);
1282         free_global_roots(fs_info);
1283         btrfs_put_root(fs_info->tree_root);
1284         btrfs_put_root(fs_info->chunk_root);
1285         btrfs_put_root(fs_info->dev_root);
1286         btrfs_put_root(fs_info->quota_root);
1287         btrfs_put_root(fs_info->uuid_root);
1288         btrfs_put_root(fs_info->fs_root);
1289         btrfs_put_root(fs_info->data_reloc_root);
1290         btrfs_put_root(fs_info->block_group_root);
1291         btrfs_put_root(fs_info->stripe_root);
1292         btrfs_check_leaked_roots(fs_info);
1293         btrfs_extent_buffer_leak_debug_check(fs_info);
1294         kfree(fs_info->super_copy);
1295         kfree(fs_info->super_for_commit);
1296         kfree(fs_info->subpage_info);
1297         kvfree(fs_info);
1298 }
1299
1300
1301 /*
1302  * Get an in-memory reference of a root structure.
1303  *
1304  * For essential trees like root/extent tree, we grab it from fs_info directly.
1305  * For subvolume trees, we check the cached filesystem roots first. If not
1306  * found, then read it from disk and add it to cached fs roots.
1307  *
1308  * Caller should release the root by calling btrfs_put_root() after the usage.
1309  *
1310  * NOTE: Reloc and log trees can't be read by this function as they share the
1311  *       same root objectid.
1312  *
1313  * @objectid:   root id
1314  * @anon_dev:   preallocated anonymous block device number for new roots,
1315  *              pass NULL for a new allocation.
1316  * @check_ref:  whether to check root item references, If true, return -ENOENT
1317  *              for orphan roots
1318  */
1319 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1320                                              u64 objectid, dev_t *anon_dev,
1321                                              bool check_ref)
1322 {
1323         struct btrfs_root *root;
1324         struct btrfs_path *path;
1325         struct btrfs_key key;
1326         int ret;
1327
1328         root = btrfs_get_global_root(fs_info, objectid);
1329         if (root)
1330                 return root;
1331
1332         /*
1333          * If we're called for non-subvolume trees, and above function didn't
1334          * find one, do not try to read it from disk.
1335          *
1336          * This is namely for free-space-tree and quota tree, which can change
1337          * at runtime and should only be grabbed from fs_info.
1338          */
1339         if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1340                 return ERR_PTR(-ENOENT);
1341 again:
1342         root = btrfs_lookup_fs_root(fs_info, objectid);
1343         if (root) {
1344                 /*
1345                  * Some other caller may have read out the newly inserted
1346                  * subvolume already (for things like backref walk etc).  Not
1347                  * that common but still possible.  In that case, we just need
1348                  * to free the anon_dev.
1349                  */
1350                 if (unlikely(anon_dev && *anon_dev)) {
1351                         free_anon_bdev(*anon_dev);
1352                         *anon_dev = 0;
1353                 }
1354
1355                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1356                         btrfs_put_root(root);
1357                         return ERR_PTR(-ENOENT);
1358                 }
1359                 return root;
1360         }
1361
1362         key.objectid = objectid;
1363         key.type = BTRFS_ROOT_ITEM_KEY;
1364         key.offset = (u64)-1;
1365         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1366         if (IS_ERR(root))
1367                 return root;
1368
1369         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1370                 ret = -ENOENT;
1371                 goto fail;
1372         }
1373
1374         ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1375         if (ret)
1376                 goto fail;
1377
1378         path = btrfs_alloc_path();
1379         if (!path) {
1380                 ret = -ENOMEM;
1381                 goto fail;
1382         }
1383         key.objectid = BTRFS_ORPHAN_OBJECTID;
1384         key.type = BTRFS_ORPHAN_ITEM_KEY;
1385         key.offset = objectid;
1386
1387         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1388         btrfs_free_path(path);
1389         if (ret < 0)
1390                 goto fail;
1391         if (ret == 0)
1392                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1393
1394         ret = btrfs_insert_fs_root(fs_info, root);
1395         if (ret) {
1396                 if (ret == -EEXIST) {
1397                         btrfs_put_root(root);
1398                         goto again;
1399                 }
1400                 goto fail;
1401         }
1402         return root;
1403 fail:
1404         /*
1405          * If our caller provided us an anonymous device, then it's his
1406          * responsibility to free it in case we fail. So we have to set our
1407          * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1408          * and once again by our caller.
1409          */
1410         if (anon_dev && *anon_dev)
1411                 root->anon_dev = 0;
1412         btrfs_put_root(root);
1413         return ERR_PTR(ret);
1414 }
1415
1416 /*
1417  * Get in-memory reference of a root structure
1418  *
1419  * @objectid:   tree objectid
1420  * @check_ref:  if set, verify that the tree exists and the item has at least
1421  *              one reference
1422  */
1423 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1424                                      u64 objectid, bool check_ref)
1425 {
1426         return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1427 }
1428
1429 /*
1430  * Get in-memory reference of a root structure, created as new, optionally pass
1431  * the anonymous block device id
1432  *
1433  * @objectid:   tree objectid
1434  * @anon_dev:   if NULL, allocate a new anonymous block device or use the
1435  *              parameter value if not NULL
1436  */
1437 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1438                                          u64 objectid, dev_t *anon_dev)
1439 {
1440         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1441 }
1442
1443 /*
1444  * Return a root for the given objectid.
1445  *
1446  * @fs_info:    the fs_info
1447  * @objectid:   the objectid we need to lookup
1448  *
1449  * This is exclusively used for backref walking, and exists specifically because
1450  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1451  * creation time, which means we may have to read the tree_root in order to look
1452  * up a fs root that is not in memory.  If the root is not in memory we will
1453  * read the tree root commit root and look up the fs root from there.  This is a
1454  * temporary root, it will not be inserted into the radix tree as it doesn't
1455  * have the most uptodate information, it'll simply be discarded once the
1456  * backref code is finished using the root.
1457  */
1458 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1459                                                  struct btrfs_path *path,
1460                                                  u64 objectid)
1461 {
1462         struct btrfs_root *root;
1463         struct btrfs_key key;
1464
1465         ASSERT(path->search_commit_root && path->skip_locking);
1466
1467         /*
1468          * This can return -ENOENT if we ask for a root that doesn't exist, but
1469          * since this is called via the backref walking code we won't be looking
1470          * up a root that doesn't exist, unless there's corruption.  So if root
1471          * != NULL just return it.
1472          */
1473         root = btrfs_get_global_root(fs_info, objectid);
1474         if (root)
1475                 return root;
1476
1477         root = btrfs_lookup_fs_root(fs_info, objectid);
1478         if (root)
1479                 return root;
1480
1481         key.objectid = objectid;
1482         key.type = BTRFS_ROOT_ITEM_KEY;
1483         key.offset = (u64)-1;
1484         root = read_tree_root_path(fs_info->tree_root, path, &key);
1485         btrfs_release_path(path);
1486
1487         return root;
1488 }
1489
1490 static int cleaner_kthread(void *arg)
1491 {
1492         struct btrfs_fs_info *fs_info = arg;
1493         int again;
1494
1495         while (1) {
1496                 again = 0;
1497
1498                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1499
1500                 /* Make the cleaner go to sleep early. */
1501                 if (btrfs_need_cleaner_sleep(fs_info))
1502                         goto sleep;
1503
1504                 /*
1505                  * Do not do anything if we might cause open_ctree() to block
1506                  * before we have finished mounting the filesystem.
1507                  */
1508                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1509                         goto sleep;
1510
1511                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1512                         goto sleep;
1513
1514                 /*
1515                  * Avoid the problem that we change the status of the fs
1516                  * during the above check and trylock.
1517                  */
1518                 if (btrfs_need_cleaner_sleep(fs_info)) {
1519                         mutex_unlock(&fs_info->cleaner_mutex);
1520                         goto sleep;
1521                 }
1522
1523                 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1524                         btrfs_sysfs_feature_update(fs_info);
1525
1526                 btrfs_run_delayed_iputs(fs_info);
1527
1528                 again = btrfs_clean_one_deleted_snapshot(fs_info);
1529                 mutex_unlock(&fs_info->cleaner_mutex);
1530
1531                 /*
1532                  * The defragger has dealt with the R/O remount and umount,
1533                  * needn't do anything special here.
1534                  */
1535                 btrfs_run_defrag_inodes(fs_info);
1536
1537                 /*
1538                  * Acquires fs_info->reclaim_bgs_lock to avoid racing
1539                  * with relocation (btrfs_relocate_chunk) and relocation
1540                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1541                  * after acquiring fs_info->reclaim_bgs_lock. So we
1542                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1543                  * unused block groups.
1544                  */
1545                 btrfs_delete_unused_bgs(fs_info);
1546
1547                 /*
1548                  * Reclaim block groups in the reclaim_bgs list after we deleted
1549                  * all unused block_groups. This possibly gives us some more free
1550                  * space.
1551                  */
1552                 btrfs_reclaim_bgs(fs_info);
1553 sleep:
1554                 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1555                 if (kthread_should_park())
1556                         kthread_parkme();
1557                 if (kthread_should_stop())
1558                         return 0;
1559                 if (!again) {
1560                         set_current_state(TASK_INTERRUPTIBLE);
1561                         schedule();
1562                         __set_current_state(TASK_RUNNING);
1563                 }
1564         }
1565 }
1566
1567 static int transaction_kthread(void *arg)
1568 {
1569         struct btrfs_root *root = arg;
1570         struct btrfs_fs_info *fs_info = root->fs_info;
1571         struct btrfs_trans_handle *trans;
1572         struct btrfs_transaction *cur;
1573         u64 transid;
1574         time64_t delta;
1575         unsigned long delay;
1576         bool cannot_commit;
1577
1578         do {
1579                 cannot_commit = false;
1580                 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1581                 mutex_lock(&fs_info->transaction_kthread_mutex);
1582
1583                 spin_lock(&fs_info->trans_lock);
1584                 cur = fs_info->running_transaction;
1585                 if (!cur) {
1586                         spin_unlock(&fs_info->trans_lock);
1587                         goto sleep;
1588                 }
1589
1590                 delta = ktime_get_seconds() - cur->start_time;
1591                 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1592                     cur->state < TRANS_STATE_COMMIT_PREP &&
1593                     delta < fs_info->commit_interval) {
1594                         spin_unlock(&fs_info->trans_lock);
1595                         delay -= msecs_to_jiffies((delta - 1) * 1000);
1596                         delay = min(delay,
1597                                     msecs_to_jiffies(fs_info->commit_interval * 1000));
1598                         goto sleep;
1599                 }
1600                 transid = cur->transid;
1601                 spin_unlock(&fs_info->trans_lock);
1602
1603                 /* If the file system is aborted, this will always fail. */
1604                 trans = btrfs_attach_transaction(root);
1605                 if (IS_ERR(trans)) {
1606                         if (PTR_ERR(trans) != -ENOENT)
1607                                 cannot_commit = true;
1608                         goto sleep;
1609                 }
1610                 if (transid == trans->transid) {
1611                         btrfs_commit_transaction(trans);
1612                 } else {
1613                         btrfs_end_transaction(trans);
1614                 }
1615 sleep:
1616                 wake_up_process(fs_info->cleaner_kthread);
1617                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1618
1619                 if (BTRFS_FS_ERROR(fs_info))
1620                         btrfs_cleanup_transaction(fs_info);
1621                 if (!kthread_should_stop() &&
1622                                 (!btrfs_transaction_blocked(fs_info) ||
1623                                  cannot_commit))
1624                         schedule_timeout_interruptible(delay);
1625         } while (!kthread_should_stop());
1626         return 0;
1627 }
1628
1629 /*
1630  * This will find the highest generation in the array of root backups.  The
1631  * index of the highest array is returned, or -EINVAL if we can't find
1632  * anything.
1633  *
1634  * We check to make sure the array is valid by comparing the
1635  * generation of the latest  root in the array with the generation
1636  * in the super block.  If they don't match we pitch it.
1637  */
1638 static int find_newest_super_backup(struct btrfs_fs_info *info)
1639 {
1640         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1641         u64 cur;
1642         struct btrfs_root_backup *root_backup;
1643         int i;
1644
1645         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1646                 root_backup = info->super_copy->super_roots + i;
1647                 cur = btrfs_backup_tree_root_gen(root_backup);
1648                 if (cur == newest_gen)
1649                         return i;
1650         }
1651
1652         return -EINVAL;
1653 }
1654
1655 /*
1656  * copy all the root pointers into the super backup array.
1657  * this will bump the backup pointer by one when it is
1658  * done
1659  */
1660 static void backup_super_roots(struct btrfs_fs_info *info)
1661 {
1662         const int next_backup = info->backup_root_index;
1663         struct btrfs_root_backup *root_backup;
1664
1665         root_backup = info->super_for_commit->super_roots + next_backup;
1666
1667         /*
1668          * make sure all of our padding and empty slots get zero filled
1669          * regardless of which ones we use today
1670          */
1671         memset(root_backup, 0, sizeof(*root_backup));
1672
1673         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1674
1675         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1676         btrfs_set_backup_tree_root_gen(root_backup,
1677                                btrfs_header_generation(info->tree_root->node));
1678
1679         btrfs_set_backup_tree_root_level(root_backup,
1680                                btrfs_header_level(info->tree_root->node));
1681
1682         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1683         btrfs_set_backup_chunk_root_gen(root_backup,
1684                                btrfs_header_generation(info->chunk_root->node));
1685         btrfs_set_backup_chunk_root_level(root_backup,
1686                                btrfs_header_level(info->chunk_root->node));
1687
1688         if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1689                 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1690                 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1691
1692                 btrfs_set_backup_extent_root(root_backup,
1693                                              extent_root->node->start);
1694                 btrfs_set_backup_extent_root_gen(root_backup,
1695                                 btrfs_header_generation(extent_root->node));
1696                 btrfs_set_backup_extent_root_level(root_backup,
1697                                         btrfs_header_level(extent_root->node));
1698
1699                 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1700                 btrfs_set_backup_csum_root_gen(root_backup,
1701                                                btrfs_header_generation(csum_root->node));
1702                 btrfs_set_backup_csum_root_level(root_backup,
1703                                                  btrfs_header_level(csum_root->node));
1704         }
1705
1706         /*
1707          * we might commit during log recovery, which happens before we set
1708          * the fs_root.  Make sure it is valid before we fill it in.
1709          */
1710         if (info->fs_root && info->fs_root->node) {
1711                 btrfs_set_backup_fs_root(root_backup,
1712                                          info->fs_root->node->start);
1713                 btrfs_set_backup_fs_root_gen(root_backup,
1714                                btrfs_header_generation(info->fs_root->node));
1715                 btrfs_set_backup_fs_root_level(root_backup,
1716                                btrfs_header_level(info->fs_root->node));
1717         }
1718
1719         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1720         btrfs_set_backup_dev_root_gen(root_backup,
1721                                btrfs_header_generation(info->dev_root->node));
1722         btrfs_set_backup_dev_root_level(root_backup,
1723                                        btrfs_header_level(info->dev_root->node));
1724
1725         btrfs_set_backup_total_bytes(root_backup,
1726                              btrfs_super_total_bytes(info->super_copy));
1727         btrfs_set_backup_bytes_used(root_backup,
1728                              btrfs_super_bytes_used(info->super_copy));
1729         btrfs_set_backup_num_devices(root_backup,
1730                              btrfs_super_num_devices(info->super_copy));
1731
1732         /*
1733          * if we don't copy this out to the super_copy, it won't get remembered
1734          * for the next commit
1735          */
1736         memcpy(&info->super_copy->super_roots,
1737                &info->super_for_commit->super_roots,
1738                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1739 }
1740
1741 /*
1742  * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1743  * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1744  *
1745  * @fs_info:  filesystem whose backup roots need to be read
1746  * @priority: priority of backup root required
1747  *
1748  * Returns backup root index on success and -EINVAL otherwise.
1749  */
1750 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1751 {
1752         int backup_index = find_newest_super_backup(fs_info);
1753         struct btrfs_super_block *super = fs_info->super_copy;
1754         struct btrfs_root_backup *root_backup;
1755
1756         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1757                 if (priority == 0)
1758                         return backup_index;
1759
1760                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1761                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1762         } else {
1763                 return -EINVAL;
1764         }
1765
1766         root_backup = super->super_roots + backup_index;
1767
1768         btrfs_set_super_generation(super,
1769                                    btrfs_backup_tree_root_gen(root_backup));
1770         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1771         btrfs_set_super_root_level(super,
1772                                    btrfs_backup_tree_root_level(root_backup));
1773         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1774
1775         /*
1776          * Fixme: the total bytes and num_devices need to match or we should
1777          * need a fsck
1778          */
1779         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1780         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1781
1782         return backup_index;
1783 }
1784
1785 /* helper to cleanup workers */
1786 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1787 {
1788         btrfs_destroy_workqueue(fs_info->fixup_workers);
1789         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1790         btrfs_destroy_workqueue(fs_info->workers);
1791         if (fs_info->endio_workers)
1792                 destroy_workqueue(fs_info->endio_workers);
1793         if (fs_info->rmw_workers)
1794                 destroy_workqueue(fs_info->rmw_workers);
1795         if (fs_info->compressed_write_workers)
1796                 destroy_workqueue(fs_info->compressed_write_workers);
1797         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1798         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1799         btrfs_destroy_workqueue(fs_info->delayed_workers);
1800         btrfs_destroy_workqueue(fs_info->caching_workers);
1801         btrfs_destroy_workqueue(fs_info->flush_workers);
1802         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1803         if (fs_info->discard_ctl.discard_workers)
1804                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1805         /*
1806          * Now that all other work queues are destroyed, we can safely destroy
1807          * the queues used for metadata I/O, since tasks from those other work
1808          * queues can do metadata I/O operations.
1809          */
1810         if (fs_info->endio_meta_workers)
1811                 destroy_workqueue(fs_info->endio_meta_workers);
1812 }
1813
1814 static void free_root_extent_buffers(struct btrfs_root *root)
1815 {
1816         if (root) {
1817                 free_extent_buffer(root->node);
1818                 free_extent_buffer(root->commit_root);
1819                 root->node = NULL;
1820                 root->commit_root = NULL;
1821         }
1822 }
1823
1824 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1825 {
1826         struct btrfs_root *root, *tmp;
1827
1828         rbtree_postorder_for_each_entry_safe(root, tmp,
1829                                              &fs_info->global_root_tree,
1830                                              rb_node)
1831                 free_root_extent_buffers(root);
1832 }
1833
1834 /* helper to cleanup tree roots */
1835 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1836 {
1837         free_root_extent_buffers(info->tree_root);
1838
1839         free_global_root_pointers(info);
1840         free_root_extent_buffers(info->dev_root);
1841         free_root_extent_buffers(info->quota_root);
1842         free_root_extent_buffers(info->uuid_root);
1843         free_root_extent_buffers(info->fs_root);
1844         free_root_extent_buffers(info->data_reloc_root);
1845         free_root_extent_buffers(info->block_group_root);
1846         free_root_extent_buffers(info->stripe_root);
1847         if (free_chunk_root)
1848                 free_root_extent_buffers(info->chunk_root);
1849 }
1850
1851 void btrfs_put_root(struct btrfs_root *root)
1852 {
1853         if (!root)
1854                 return;
1855
1856         if (refcount_dec_and_test(&root->refs)) {
1857                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1858                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1859                 if (root->anon_dev)
1860                         free_anon_bdev(root->anon_dev);
1861                 free_root_extent_buffers(root);
1862 #ifdef CONFIG_BTRFS_DEBUG
1863                 spin_lock(&root->fs_info->fs_roots_radix_lock);
1864                 list_del_init(&root->leak_list);
1865                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1866 #endif
1867                 kfree(root);
1868         }
1869 }
1870
1871 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1872 {
1873         int ret;
1874         struct btrfs_root *gang[8];
1875         int i;
1876
1877         while (!list_empty(&fs_info->dead_roots)) {
1878                 gang[0] = list_entry(fs_info->dead_roots.next,
1879                                      struct btrfs_root, root_list);
1880                 list_del(&gang[0]->root_list);
1881
1882                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1883                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1884                 btrfs_put_root(gang[0]);
1885         }
1886
1887         while (1) {
1888                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1889                                              (void **)gang, 0,
1890                                              ARRAY_SIZE(gang));
1891                 if (!ret)
1892                         break;
1893                 for (i = 0; i < ret; i++)
1894                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1895         }
1896 }
1897
1898 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1899 {
1900         mutex_init(&fs_info->scrub_lock);
1901         atomic_set(&fs_info->scrubs_running, 0);
1902         atomic_set(&fs_info->scrub_pause_req, 0);
1903         atomic_set(&fs_info->scrubs_paused, 0);
1904         atomic_set(&fs_info->scrub_cancel_req, 0);
1905         init_waitqueue_head(&fs_info->scrub_pause_wait);
1906         refcount_set(&fs_info->scrub_workers_refcnt, 0);
1907 }
1908
1909 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1910 {
1911         spin_lock_init(&fs_info->balance_lock);
1912         mutex_init(&fs_info->balance_mutex);
1913         atomic_set(&fs_info->balance_pause_req, 0);
1914         atomic_set(&fs_info->balance_cancel_req, 0);
1915         fs_info->balance_ctl = NULL;
1916         init_waitqueue_head(&fs_info->balance_wait_q);
1917         atomic_set(&fs_info->reloc_cancel_req, 0);
1918 }
1919
1920 static int btrfs_init_btree_inode(struct super_block *sb)
1921 {
1922         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1923         unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1924                                               fs_info->tree_root);
1925         struct inode *inode;
1926
1927         inode = new_inode(sb);
1928         if (!inode)
1929                 return -ENOMEM;
1930
1931         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1932         set_nlink(inode, 1);
1933         /*
1934          * we set the i_size on the btree inode to the max possible int.
1935          * the real end of the address space is determined by all of
1936          * the devices in the system
1937          */
1938         inode->i_size = OFFSET_MAX;
1939         inode->i_mapping->a_ops = &btree_aops;
1940         mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1941
1942         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1943         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1944                             IO_TREE_BTREE_INODE_IO);
1945         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1946
1947         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1948         BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1949         BTRFS_I(inode)->location.type = 0;
1950         BTRFS_I(inode)->location.offset = 0;
1951         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1952         __insert_inode_hash(inode, hash);
1953         fs_info->btree_inode = inode;
1954
1955         return 0;
1956 }
1957
1958 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1959 {
1960         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1961         init_rwsem(&fs_info->dev_replace.rwsem);
1962         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1963 }
1964
1965 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1966 {
1967         spin_lock_init(&fs_info->qgroup_lock);
1968         mutex_init(&fs_info->qgroup_ioctl_lock);
1969         fs_info->qgroup_tree = RB_ROOT;
1970         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1971         fs_info->qgroup_seq = 1;
1972         fs_info->qgroup_ulist = NULL;
1973         fs_info->qgroup_rescan_running = false;
1974         fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1975         mutex_init(&fs_info->qgroup_rescan_lock);
1976 }
1977
1978 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1979 {
1980         u32 max_active = fs_info->thread_pool_size;
1981         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1982         unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1983
1984         fs_info->workers =
1985                 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1986
1987         fs_info->delalloc_workers =
1988                 btrfs_alloc_workqueue(fs_info, "delalloc",
1989                                       flags, max_active, 2);
1990
1991         fs_info->flush_workers =
1992                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1993                                       flags, max_active, 0);
1994
1995         fs_info->caching_workers =
1996                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1997
1998         fs_info->fixup_workers =
1999                 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
2000
2001         fs_info->endio_workers =
2002                 alloc_workqueue("btrfs-endio", flags, max_active);
2003         fs_info->endio_meta_workers =
2004                 alloc_workqueue("btrfs-endio-meta", flags, max_active);
2005         fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2006         fs_info->endio_write_workers =
2007                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2008                                       max_active, 2);
2009         fs_info->compressed_write_workers =
2010                 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2011         fs_info->endio_freespace_worker =
2012                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2013                                       max_active, 0);
2014         fs_info->delayed_workers =
2015                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2016                                       max_active, 0);
2017         fs_info->qgroup_rescan_workers =
2018                 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2019                                               ordered_flags);
2020         fs_info->discard_ctl.discard_workers =
2021                 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2022
2023         if (!(fs_info->workers &&
2024               fs_info->delalloc_workers && fs_info->flush_workers &&
2025               fs_info->endio_workers && fs_info->endio_meta_workers &&
2026               fs_info->compressed_write_workers &&
2027               fs_info->endio_write_workers &&
2028               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2029               fs_info->caching_workers && fs_info->fixup_workers &&
2030               fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2031               fs_info->discard_ctl.discard_workers)) {
2032                 return -ENOMEM;
2033         }
2034
2035         return 0;
2036 }
2037
2038 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2039 {
2040         struct crypto_shash *csum_shash;
2041         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2042
2043         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2044
2045         if (IS_ERR(csum_shash)) {
2046                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2047                           csum_driver);
2048                 return PTR_ERR(csum_shash);
2049         }
2050
2051         fs_info->csum_shash = csum_shash;
2052
2053         /*
2054          * Check if the checksum implementation is a fast accelerated one.
2055          * As-is this is a bit of a hack and should be replaced once the csum
2056          * implementations provide that information themselves.
2057          */
2058         switch (csum_type) {
2059         case BTRFS_CSUM_TYPE_CRC32:
2060                 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2061                         set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2062                 break;
2063         case BTRFS_CSUM_TYPE_XXHASH:
2064                 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2065                 break;
2066         default:
2067                 break;
2068         }
2069
2070         btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2071                         btrfs_super_csum_name(csum_type),
2072                         crypto_shash_driver_name(csum_shash));
2073         return 0;
2074 }
2075
2076 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2077                             struct btrfs_fs_devices *fs_devices)
2078 {
2079         int ret;
2080         struct btrfs_tree_parent_check check = { 0 };
2081         struct btrfs_root *log_tree_root;
2082         struct btrfs_super_block *disk_super = fs_info->super_copy;
2083         u64 bytenr = btrfs_super_log_root(disk_super);
2084         int level = btrfs_super_log_root_level(disk_super);
2085
2086         if (fs_devices->rw_devices == 0) {
2087                 btrfs_warn(fs_info, "log replay required on RO media");
2088                 return -EIO;
2089         }
2090
2091         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2092                                          GFP_KERNEL);
2093         if (!log_tree_root)
2094                 return -ENOMEM;
2095
2096         check.level = level;
2097         check.transid = fs_info->generation + 1;
2098         check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2099         log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2100         if (IS_ERR(log_tree_root->node)) {
2101                 btrfs_warn(fs_info, "failed to read log tree");
2102                 ret = PTR_ERR(log_tree_root->node);
2103                 log_tree_root->node = NULL;
2104                 btrfs_put_root(log_tree_root);
2105                 return ret;
2106         }
2107         if (!extent_buffer_uptodate(log_tree_root->node)) {
2108                 btrfs_err(fs_info, "failed to read log tree");
2109                 btrfs_put_root(log_tree_root);
2110                 return -EIO;
2111         }
2112
2113         /* returns with log_tree_root freed on success */
2114         ret = btrfs_recover_log_trees(log_tree_root);
2115         if (ret) {
2116                 btrfs_handle_fs_error(fs_info, ret,
2117                                       "Failed to recover log tree");
2118                 btrfs_put_root(log_tree_root);
2119                 return ret;
2120         }
2121
2122         if (sb_rdonly(fs_info->sb)) {
2123                 ret = btrfs_commit_super(fs_info);
2124                 if (ret)
2125                         return ret;
2126         }
2127
2128         return 0;
2129 }
2130
2131 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2132                                       struct btrfs_path *path, u64 objectid,
2133                                       const char *name)
2134 {
2135         struct btrfs_fs_info *fs_info = tree_root->fs_info;
2136         struct btrfs_root *root;
2137         u64 max_global_id = 0;
2138         int ret;
2139         struct btrfs_key key = {
2140                 .objectid = objectid,
2141                 .type = BTRFS_ROOT_ITEM_KEY,
2142                 .offset = 0,
2143         };
2144         bool found = false;
2145
2146         /* If we have IGNOREDATACSUMS skip loading these roots. */
2147         if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2148             btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2149                 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2150                 return 0;
2151         }
2152
2153         while (1) {
2154                 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2155                 if (ret < 0)
2156                         break;
2157
2158                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2159                         ret = btrfs_next_leaf(tree_root, path);
2160                         if (ret) {
2161                                 if (ret > 0)
2162                                         ret = 0;
2163                                 break;
2164                         }
2165                 }
2166                 ret = 0;
2167
2168                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2169                 if (key.objectid != objectid)
2170                         break;
2171                 btrfs_release_path(path);
2172
2173                 /*
2174                  * Just worry about this for extent tree, it'll be the same for
2175                  * everybody.
2176                  */
2177                 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2178                         max_global_id = max(max_global_id, key.offset);
2179
2180                 found = true;
2181                 root = read_tree_root_path(tree_root, path, &key);
2182                 if (IS_ERR(root)) {
2183                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2184                                 ret = PTR_ERR(root);
2185                         break;
2186                 }
2187                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2188                 ret = btrfs_global_root_insert(root);
2189                 if (ret) {
2190                         btrfs_put_root(root);
2191                         break;
2192                 }
2193                 key.offset++;
2194         }
2195         btrfs_release_path(path);
2196
2197         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2198                 fs_info->nr_global_roots = max_global_id + 1;
2199
2200         if (!found || ret) {
2201                 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2202                         set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2203
2204                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2205                         ret = ret ? ret : -ENOENT;
2206                 else
2207                         ret = 0;
2208                 btrfs_err(fs_info, "failed to load root %s", name);
2209         }
2210         return ret;
2211 }
2212
2213 static int load_global_roots(struct btrfs_root *tree_root)
2214 {
2215         struct btrfs_path *path;
2216         int ret = 0;
2217
2218         path = btrfs_alloc_path();
2219         if (!path)
2220                 return -ENOMEM;
2221
2222         ret = load_global_roots_objectid(tree_root, path,
2223                                          BTRFS_EXTENT_TREE_OBJECTID, "extent");
2224         if (ret)
2225                 goto out;
2226         ret = load_global_roots_objectid(tree_root, path,
2227                                          BTRFS_CSUM_TREE_OBJECTID, "csum");
2228         if (ret)
2229                 goto out;
2230         if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2231                 goto out;
2232         ret = load_global_roots_objectid(tree_root, path,
2233                                          BTRFS_FREE_SPACE_TREE_OBJECTID,
2234                                          "free space");
2235 out:
2236         btrfs_free_path(path);
2237         return ret;
2238 }
2239
2240 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2241 {
2242         struct btrfs_root *tree_root = fs_info->tree_root;
2243         struct btrfs_root *root;
2244         struct btrfs_key location;
2245         int ret;
2246
2247         ASSERT(fs_info->tree_root);
2248
2249         ret = load_global_roots(tree_root);
2250         if (ret)
2251                 return ret;
2252
2253         location.type = BTRFS_ROOT_ITEM_KEY;
2254         location.offset = 0;
2255
2256         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2257                 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2258                 root = btrfs_read_tree_root(tree_root, &location);
2259                 if (IS_ERR(root)) {
2260                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2261                                 ret = PTR_ERR(root);
2262                                 goto out;
2263                         }
2264                 } else {
2265                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2266                         fs_info->block_group_root = root;
2267                 }
2268         }
2269
2270         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2271         root = btrfs_read_tree_root(tree_root, &location);
2272         if (IS_ERR(root)) {
2273                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2274                         ret = PTR_ERR(root);
2275                         goto out;
2276                 }
2277         } else {
2278                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2279                 fs_info->dev_root = root;
2280         }
2281         /* Initialize fs_info for all devices in any case */
2282         ret = btrfs_init_devices_late(fs_info);
2283         if (ret)
2284                 goto out;
2285
2286         /*
2287          * This tree can share blocks with some other fs tree during relocation
2288          * and we need a proper setup by btrfs_get_fs_root
2289          */
2290         root = btrfs_get_fs_root(tree_root->fs_info,
2291                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2292         if (IS_ERR(root)) {
2293                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2294                         ret = PTR_ERR(root);
2295                         goto out;
2296                 }
2297         } else {
2298                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2299                 fs_info->data_reloc_root = root;
2300         }
2301
2302         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2303         root = btrfs_read_tree_root(tree_root, &location);
2304         if (!IS_ERR(root)) {
2305                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2306                 fs_info->quota_root = root;
2307         }
2308
2309         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2310         root = btrfs_read_tree_root(tree_root, &location);
2311         if (IS_ERR(root)) {
2312                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2313                         ret = PTR_ERR(root);
2314                         if (ret != -ENOENT)
2315                                 goto out;
2316                 }
2317         } else {
2318                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2319                 fs_info->uuid_root = root;
2320         }
2321
2322         if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2323                 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2324                 root = btrfs_read_tree_root(tree_root, &location);
2325                 if (IS_ERR(root)) {
2326                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2327                                 ret = PTR_ERR(root);
2328                                 goto out;
2329                         }
2330                 } else {
2331                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2332                         fs_info->stripe_root = root;
2333                 }
2334         }
2335
2336         return 0;
2337 out:
2338         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2339                    location.objectid, ret);
2340         return ret;
2341 }
2342
2343 /*
2344  * Real super block validation
2345  * NOTE: super csum type and incompat features will not be checked here.
2346  *
2347  * @sb:         super block to check
2348  * @mirror_num: the super block number to check its bytenr:
2349  *              0       the primary (1st) sb
2350  *              1, 2    2nd and 3rd backup copy
2351  *             -1       skip bytenr check
2352  */
2353 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2354                          struct btrfs_super_block *sb, int mirror_num)
2355 {
2356         u64 nodesize = btrfs_super_nodesize(sb);
2357         u64 sectorsize = btrfs_super_sectorsize(sb);
2358         int ret = 0;
2359
2360         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2361                 btrfs_err(fs_info, "no valid FS found");
2362                 ret = -EINVAL;
2363         }
2364         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2365                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2366                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2367                 ret = -EINVAL;
2368         }
2369         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2370                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2371                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2372                 ret = -EINVAL;
2373         }
2374         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2375                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2376                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2377                 ret = -EINVAL;
2378         }
2379         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2380                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2381                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2382                 ret = -EINVAL;
2383         }
2384
2385         /*
2386          * Check sectorsize and nodesize first, other check will need it.
2387          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2388          */
2389         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2390             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2391                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2392                 ret = -EINVAL;
2393         }
2394
2395         /*
2396          * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2397          *
2398          * We can support 16K sectorsize with 64K page size without problem,
2399          * but such sectorsize/pagesize combination doesn't make much sense.
2400          * 4K will be our future standard, PAGE_SIZE is supported from the very
2401          * beginning.
2402          */
2403         if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2404                 btrfs_err(fs_info,
2405                         "sectorsize %llu not yet supported for page size %lu",
2406                         sectorsize, PAGE_SIZE);
2407                 ret = -EINVAL;
2408         }
2409
2410         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2411             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2412                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2413                 ret = -EINVAL;
2414         }
2415         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2416                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2417                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2418                 ret = -EINVAL;
2419         }
2420
2421         /* Root alignment check */
2422         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2423                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2424                            btrfs_super_root(sb));
2425                 ret = -EINVAL;
2426         }
2427         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2428                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2429                            btrfs_super_chunk_root(sb));
2430                 ret = -EINVAL;
2431         }
2432         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2433                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2434                            btrfs_super_log_root(sb));
2435                 ret = -EINVAL;
2436         }
2437
2438         if (!fs_info->fs_devices->temp_fsid &&
2439             memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2440                 btrfs_err(fs_info,
2441                 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2442                           sb->fsid, fs_info->fs_devices->fsid);
2443                 ret = -EINVAL;
2444         }
2445
2446         if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2447                    BTRFS_FSID_SIZE) != 0) {
2448                 btrfs_err(fs_info,
2449 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2450                           btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2451                 ret = -EINVAL;
2452         }
2453
2454         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2455                    BTRFS_FSID_SIZE) != 0) {
2456                 btrfs_err(fs_info,
2457                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2458                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2459                 ret = -EINVAL;
2460         }
2461
2462         /*
2463          * Artificial requirement for block-group-tree to force newer features
2464          * (free-space-tree, no-holes) so the test matrix is smaller.
2465          */
2466         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2467             (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2468              !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2469                 btrfs_err(fs_info,
2470                 "block-group-tree feature requires fres-space-tree and no-holes");
2471                 ret = -EINVAL;
2472         }
2473
2474         /*
2475          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2476          * done later
2477          */
2478         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2479                 btrfs_err(fs_info, "bytes_used is too small %llu",
2480                           btrfs_super_bytes_used(sb));
2481                 ret = -EINVAL;
2482         }
2483         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2484                 btrfs_err(fs_info, "invalid stripesize %u",
2485                           btrfs_super_stripesize(sb));
2486                 ret = -EINVAL;
2487         }
2488         if (btrfs_super_num_devices(sb) > (1UL << 31))
2489                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2490                            btrfs_super_num_devices(sb));
2491         if (btrfs_super_num_devices(sb) == 0) {
2492                 btrfs_err(fs_info, "number of devices is 0");
2493                 ret = -EINVAL;
2494         }
2495
2496         if (mirror_num >= 0 &&
2497             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2498                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2499                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2500                 ret = -EINVAL;
2501         }
2502
2503         /*
2504          * Obvious sys_chunk_array corruptions, it must hold at least one key
2505          * and one chunk
2506          */
2507         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2508                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2509                           btrfs_super_sys_array_size(sb),
2510                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2511                 ret = -EINVAL;
2512         }
2513         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2514                         + sizeof(struct btrfs_chunk)) {
2515                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2516                           btrfs_super_sys_array_size(sb),
2517                           sizeof(struct btrfs_disk_key)
2518                           + sizeof(struct btrfs_chunk));
2519                 ret = -EINVAL;
2520         }
2521
2522         /*
2523          * The generation is a global counter, we'll trust it more than the others
2524          * but it's still possible that it's the one that's wrong.
2525          */
2526         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2527                 btrfs_warn(fs_info,
2528                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2529                         btrfs_super_generation(sb),
2530                         btrfs_super_chunk_root_generation(sb));
2531         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2532             && btrfs_super_cache_generation(sb) != (u64)-1)
2533                 btrfs_warn(fs_info,
2534                         "suspicious: generation < cache_generation: %llu < %llu",
2535                         btrfs_super_generation(sb),
2536                         btrfs_super_cache_generation(sb));
2537
2538         return ret;
2539 }
2540
2541 /*
2542  * Validation of super block at mount time.
2543  * Some checks already done early at mount time, like csum type and incompat
2544  * flags will be skipped.
2545  */
2546 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2547 {
2548         return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2549 }
2550
2551 /*
2552  * Validation of super block at write time.
2553  * Some checks like bytenr check will be skipped as their values will be
2554  * overwritten soon.
2555  * Extra checks like csum type and incompat flags will be done here.
2556  */
2557 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2558                                       struct btrfs_super_block *sb)
2559 {
2560         int ret;
2561
2562         ret = btrfs_validate_super(fs_info, sb, -1);
2563         if (ret < 0)
2564                 goto out;
2565         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2566                 ret = -EUCLEAN;
2567                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2568                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2569                 goto out;
2570         }
2571         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2572                 ret = -EUCLEAN;
2573                 btrfs_err(fs_info,
2574                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2575                           btrfs_super_incompat_flags(sb),
2576                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2577                 goto out;
2578         }
2579 out:
2580         if (ret < 0)
2581                 btrfs_err(fs_info,
2582                 "super block corruption detected before writing it to disk");
2583         return ret;
2584 }
2585
2586 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2587 {
2588         struct btrfs_tree_parent_check check = {
2589                 .level = level,
2590                 .transid = gen,
2591                 .owner_root = btrfs_root_id(root)
2592         };
2593         int ret = 0;
2594
2595         root->node = read_tree_block(root->fs_info, bytenr, &check);
2596         if (IS_ERR(root->node)) {
2597                 ret = PTR_ERR(root->node);
2598                 root->node = NULL;
2599                 return ret;
2600         }
2601         if (!extent_buffer_uptodate(root->node)) {
2602                 free_extent_buffer(root->node);
2603                 root->node = NULL;
2604                 return -EIO;
2605         }
2606
2607         btrfs_set_root_node(&root->root_item, root->node);
2608         root->commit_root = btrfs_root_node(root);
2609         btrfs_set_root_refs(&root->root_item, 1);
2610         return ret;
2611 }
2612
2613 static int load_important_roots(struct btrfs_fs_info *fs_info)
2614 {
2615         struct btrfs_super_block *sb = fs_info->super_copy;
2616         u64 gen, bytenr;
2617         int level, ret;
2618
2619         bytenr = btrfs_super_root(sb);
2620         gen = btrfs_super_generation(sb);
2621         level = btrfs_super_root_level(sb);
2622         ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2623         if (ret) {
2624                 btrfs_warn(fs_info, "couldn't read tree root");
2625                 return ret;
2626         }
2627         return 0;
2628 }
2629
2630 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2631 {
2632         int backup_index = find_newest_super_backup(fs_info);
2633         struct btrfs_super_block *sb = fs_info->super_copy;
2634         struct btrfs_root *tree_root = fs_info->tree_root;
2635         bool handle_error = false;
2636         int ret = 0;
2637         int i;
2638
2639         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2640                 if (handle_error) {
2641                         if (!IS_ERR(tree_root->node))
2642                                 free_extent_buffer(tree_root->node);
2643                         tree_root->node = NULL;
2644
2645                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2646                                 break;
2647
2648                         free_root_pointers(fs_info, 0);
2649
2650                         /*
2651                          * Don't use the log in recovery mode, it won't be
2652                          * valid
2653                          */
2654                         btrfs_set_super_log_root(sb, 0);
2655
2656                         btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2657                         ret = read_backup_root(fs_info, i);
2658                         backup_index = ret;
2659                         if (ret < 0)
2660                                 return ret;
2661                 }
2662
2663                 ret = load_important_roots(fs_info);
2664                 if (ret) {
2665                         handle_error = true;
2666                         continue;
2667                 }
2668
2669                 /*
2670                  * No need to hold btrfs_root::objectid_mutex since the fs
2671                  * hasn't been fully initialised and we are the only user
2672                  */
2673                 ret = btrfs_init_root_free_objectid(tree_root);
2674                 if (ret < 0) {
2675                         handle_error = true;
2676                         continue;
2677                 }
2678
2679                 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2680
2681                 ret = btrfs_read_roots(fs_info);
2682                 if (ret < 0) {
2683                         handle_error = true;
2684                         continue;
2685                 }
2686
2687                 /* All successful */
2688                 fs_info->generation = btrfs_header_generation(tree_root->node);
2689                 btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2690                 fs_info->last_reloc_trans = 0;
2691
2692                 /* Always begin writing backup roots after the one being used */
2693                 if (backup_index < 0) {
2694                         fs_info->backup_root_index = 0;
2695                 } else {
2696                         fs_info->backup_root_index = backup_index + 1;
2697                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2698                 }
2699                 break;
2700         }
2701
2702         return ret;
2703 }
2704
2705 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2706 {
2707         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2708         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2709         INIT_LIST_HEAD(&fs_info->trans_list);
2710         INIT_LIST_HEAD(&fs_info->dead_roots);
2711         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2712         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2713         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2714         spin_lock_init(&fs_info->delalloc_root_lock);
2715         spin_lock_init(&fs_info->trans_lock);
2716         spin_lock_init(&fs_info->fs_roots_radix_lock);
2717         spin_lock_init(&fs_info->delayed_iput_lock);
2718         spin_lock_init(&fs_info->defrag_inodes_lock);
2719         spin_lock_init(&fs_info->super_lock);
2720         spin_lock_init(&fs_info->buffer_lock);
2721         spin_lock_init(&fs_info->unused_bgs_lock);
2722         spin_lock_init(&fs_info->treelog_bg_lock);
2723         spin_lock_init(&fs_info->zone_active_bgs_lock);
2724         spin_lock_init(&fs_info->relocation_bg_lock);
2725         rwlock_init(&fs_info->tree_mod_log_lock);
2726         rwlock_init(&fs_info->global_root_lock);
2727         mutex_init(&fs_info->unused_bg_unpin_mutex);
2728         mutex_init(&fs_info->reclaim_bgs_lock);
2729         mutex_init(&fs_info->reloc_mutex);
2730         mutex_init(&fs_info->delalloc_root_mutex);
2731         mutex_init(&fs_info->zoned_meta_io_lock);
2732         mutex_init(&fs_info->zoned_data_reloc_io_lock);
2733         seqlock_init(&fs_info->profiles_lock);
2734
2735         btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2736         btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2737         btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2738         btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2739         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2740                                      BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2741         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2742                                      BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2743         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2744                                      BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2745         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2746                                      BTRFS_LOCKDEP_TRANS_COMPLETED);
2747
2748         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2749         INIT_LIST_HEAD(&fs_info->space_info);
2750         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2751         INIT_LIST_HEAD(&fs_info->unused_bgs);
2752         INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2753         INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2754 #ifdef CONFIG_BTRFS_DEBUG
2755         INIT_LIST_HEAD(&fs_info->allocated_roots);
2756         INIT_LIST_HEAD(&fs_info->allocated_ebs);
2757         spin_lock_init(&fs_info->eb_leak_lock);
2758 #endif
2759         fs_info->mapping_tree = RB_ROOT_CACHED;
2760         rwlock_init(&fs_info->mapping_tree_lock);
2761         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2762                              BTRFS_BLOCK_RSV_GLOBAL);
2763         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2764         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2765         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2766         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2767                              BTRFS_BLOCK_RSV_DELOPS);
2768         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2769                              BTRFS_BLOCK_RSV_DELREFS);
2770
2771         atomic_set(&fs_info->async_delalloc_pages, 0);
2772         atomic_set(&fs_info->defrag_running, 0);
2773         atomic_set(&fs_info->nr_delayed_iputs, 0);
2774         atomic64_set(&fs_info->tree_mod_seq, 0);
2775         fs_info->global_root_tree = RB_ROOT;
2776         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2777         fs_info->metadata_ratio = 0;
2778         fs_info->defrag_inodes = RB_ROOT;
2779         atomic64_set(&fs_info->free_chunk_space, 0);
2780         fs_info->tree_mod_log = RB_ROOT;
2781         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2782         btrfs_init_ref_verify(fs_info);
2783
2784         fs_info->thread_pool_size = min_t(unsigned long,
2785                                           num_online_cpus() + 2, 8);
2786
2787         INIT_LIST_HEAD(&fs_info->ordered_roots);
2788         spin_lock_init(&fs_info->ordered_root_lock);
2789
2790         btrfs_init_scrub(fs_info);
2791         btrfs_init_balance(fs_info);
2792         btrfs_init_async_reclaim_work(fs_info);
2793
2794         rwlock_init(&fs_info->block_group_cache_lock);
2795         fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2796
2797         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2798                             IO_TREE_FS_EXCLUDED_EXTENTS);
2799
2800         mutex_init(&fs_info->ordered_operations_mutex);
2801         mutex_init(&fs_info->tree_log_mutex);
2802         mutex_init(&fs_info->chunk_mutex);
2803         mutex_init(&fs_info->transaction_kthread_mutex);
2804         mutex_init(&fs_info->cleaner_mutex);
2805         mutex_init(&fs_info->ro_block_group_mutex);
2806         init_rwsem(&fs_info->commit_root_sem);
2807         init_rwsem(&fs_info->cleanup_work_sem);
2808         init_rwsem(&fs_info->subvol_sem);
2809         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2810
2811         btrfs_init_dev_replace_locks(fs_info);
2812         btrfs_init_qgroup(fs_info);
2813         btrfs_discard_init(fs_info);
2814
2815         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2816         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2817
2818         init_waitqueue_head(&fs_info->transaction_throttle);
2819         init_waitqueue_head(&fs_info->transaction_wait);
2820         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2821         init_waitqueue_head(&fs_info->async_submit_wait);
2822         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2823
2824         /* Usable values until the real ones are cached from the superblock */
2825         fs_info->nodesize = 4096;
2826         fs_info->sectorsize = 4096;
2827         fs_info->sectorsize_bits = ilog2(4096);
2828         fs_info->stripesize = 4096;
2829
2830         /* Default compress algorithm when user does -o compress */
2831         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2832
2833         fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2834
2835         spin_lock_init(&fs_info->swapfile_pins_lock);
2836         fs_info->swapfile_pins = RB_ROOT;
2837
2838         fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2839         INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2840 }
2841
2842 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2843 {
2844         int ret;
2845
2846         fs_info->sb = sb;
2847         /* Temporary fixed values for block size until we read the superblock. */
2848         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2849         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2850
2851         ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2852         if (ret)
2853                 return ret;
2854
2855         ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2856         if (ret)
2857                 return ret;
2858
2859         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2860         if (ret)
2861                 return ret;
2862
2863         fs_info->dirty_metadata_batch = PAGE_SIZE *
2864                                         (1 + ilog2(nr_cpu_ids));
2865
2866         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2867         if (ret)
2868                 return ret;
2869
2870         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2871                         GFP_KERNEL);
2872         if (ret)
2873                 return ret;
2874
2875         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2876                                         GFP_KERNEL);
2877         if (!fs_info->delayed_root)
2878                 return -ENOMEM;
2879         btrfs_init_delayed_root(fs_info->delayed_root);
2880
2881         if (sb_rdonly(sb))
2882                 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2883
2884         return btrfs_alloc_stripe_hash_table(fs_info);
2885 }
2886
2887 static int btrfs_uuid_rescan_kthread(void *data)
2888 {
2889         struct btrfs_fs_info *fs_info = data;
2890         int ret;
2891
2892         /*
2893          * 1st step is to iterate through the existing UUID tree and
2894          * to delete all entries that contain outdated data.
2895          * 2nd step is to add all missing entries to the UUID tree.
2896          */
2897         ret = btrfs_uuid_tree_iterate(fs_info);
2898         if (ret < 0) {
2899                 if (ret != -EINTR)
2900                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2901                                    ret);
2902                 up(&fs_info->uuid_tree_rescan_sem);
2903                 return ret;
2904         }
2905         return btrfs_uuid_scan_kthread(data);
2906 }
2907
2908 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2909 {
2910         struct task_struct *task;
2911
2912         down(&fs_info->uuid_tree_rescan_sem);
2913         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2914         if (IS_ERR(task)) {
2915                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2916                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2917                 up(&fs_info->uuid_tree_rescan_sem);
2918                 return PTR_ERR(task);
2919         }
2920
2921         return 0;
2922 }
2923
2924 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2925 {
2926         u64 root_objectid = 0;
2927         struct btrfs_root *gang[8];
2928         int i = 0;
2929         int err = 0;
2930         unsigned int ret = 0;
2931
2932         while (1) {
2933                 spin_lock(&fs_info->fs_roots_radix_lock);
2934                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2935                                              (void **)gang, root_objectid,
2936                                              ARRAY_SIZE(gang));
2937                 if (!ret) {
2938                         spin_unlock(&fs_info->fs_roots_radix_lock);
2939                         break;
2940                 }
2941                 root_objectid = btrfs_root_id(gang[ret - 1]) + 1;
2942
2943                 for (i = 0; i < ret; i++) {
2944                         /* Avoid to grab roots in dead_roots. */
2945                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2946                                 gang[i] = NULL;
2947                                 continue;
2948                         }
2949                         /* Grab all the search result for later use. */
2950                         gang[i] = btrfs_grab_root(gang[i]);
2951                 }
2952                 spin_unlock(&fs_info->fs_roots_radix_lock);
2953
2954                 for (i = 0; i < ret; i++) {
2955                         if (!gang[i])
2956                                 continue;
2957                         root_objectid = btrfs_root_id(gang[i]);
2958                         err = btrfs_orphan_cleanup(gang[i]);
2959                         if (err)
2960                                 goto out;
2961                         btrfs_put_root(gang[i]);
2962                 }
2963                 root_objectid++;
2964         }
2965 out:
2966         /* Release the uncleaned roots due to error. */
2967         for (; i < ret; i++) {
2968                 if (gang[i])
2969                         btrfs_put_root(gang[i]);
2970         }
2971         return err;
2972 }
2973
2974 /*
2975  * Mounting logic specific to read-write file systems. Shared by open_ctree
2976  * and btrfs_remount when remounting from read-only to read-write.
2977  */
2978 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2979 {
2980         int ret;
2981         const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2982         bool rebuild_free_space_tree = false;
2983
2984         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2985             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2986                 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2987                         btrfs_warn(fs_info,
2988                                    "'clear_cache' option is ignored with extent tree v2");
2989                 else
2990                         rebuild_free_space_tree = true;
2991         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2992                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2993                 btrfs_warn(fs_info, "free space tree is invalid");
2994                 rebuild_free_space_tree = true;
2995         }
2996
2997         if (rebuild_free_space_tree) {
2998                 btrfs_info(fs_info, "rebuilding free space tree");
2999                 ret = btrfs_rebuild_free_space_tree(fs_info);
3000                 if (ret) {
3001                         btrfs_warn(fs_info,
3002                                    "failed to rebuild free space tree: %d", ret);
3003                         goto out;
3004                 }
3005         }
3006
3007         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3008             !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3009                 btrfs_info(fs_info, "disabling free space tree");
3010                 ret = btrfs_delete_free_space_tree(fs_info);
3011                 if (ret) {
3012                         btrfs_warn(fs_info,
3013                                    "failed to disable free space tree: %d", ret);
3014                         goto out;
3015                 }
3016         }
3017
3018         /*
3019          * btrfs_find_orphan_roots() is responsible for finding all the dead
3020          * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3021          * them into the fs_info->fs_roots_radix tree. This must be done before
3022          * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3023          * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3024          * item before the root's tree is deleted - this means that if we unmount
3025          * or crash before the deletion completes, on the next mount we will not
3026          * delete what remains of the tree because the orphan item does not
3027          * exists anymore, which is what tells us we have a pending deletion.
3028          */
3029         ret = btrfs_find_orphan_roots(fs_info);
3030         if (ret)
3031                 goto out;
3032
3033         ret = btrfs_cleanup_fs_roots(fs_info);
3034         if (ret)
3035                 goto out;
3036
3037         down_read(&fs_info->cleanup_work_sem);
3038         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3039             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3040                 up_read(&fs_info->cleanup_work_sem);
3041                 goto out;
3042         }
3043         up_read(&fs_info->cleanup_work_sem);
3044
3045         mutex_lock(&fs_info->cleaner_mutex);
3046         ret = btrfs_recover_relocation(fs_info);
3047         mutex_unlock(&fs_info->cleaner_mutex);
3048         if (ret < 0) {
3049                 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3050                 goto out;
3051         }
3052
3053         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3054             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3055                 btrfs_info(fs_info, "creating free space tree");
3056                 ret = btrfs_create_free_space_tree(fs_info);
3057                 if (ret) {
3058                         btrfs_warn(fs_info,
3059                                 "failed to create free space tree: %d", ret);
3060                         goto out;
3061                 }
3062         }
3063
3064         if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3065                 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3066                 if (ret)
3067                         goto out;
3068         }
3069
3070         ret = btrfs_resume_balance_async(fs_info);
3071         if (ret)
3072                 goto out;
3073
3074         ret = btrfs_resume_dev_replace_async(fs_info);
3075         if (ret) {
3076                 btrfs_warn(fs_info, "failed to resume dev_replace");
3077                 goto out;
3078         }
3079
3080         btrfs_qgroup_rescan_resume(fs_info);
3081
3082         if (!fs_info->uuid_root) {
3083                 btrfs_info(fs_info, "creating UUID tree");
3084                 ret = btrfs_create_uuid_tree(fs_info);
3085                 if (ret) {
3086                         btrfs_warn(fs_info,
3087                                    "failed to create the UUID tree %d", ret);
3088                         goto out;
3089                 }
3090         }
3091
3092 out:
3093         return ret;
3094 }
3095
3096 /*
3097  * Do various sanity and dependency checks of different features.
3098  *
3099  * @is_rw_mount:        If the mount is read-write.
3100  *
3101  * This is the place for less strict checks (like for subpage or artificial
3102  * feature dependencies).
3103  *
3104  * For strict checks or possible corruption detection, see
3105  * btrfs_validate_super().
3106  *
3107  * This should be called after btrfs_parse_options(), as some mount options
3108  * (space cache related) can modify on-disk format like free space tree and
3109  * screw up certain feature dependencies.
3110  */
3111 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3112 {
3113         struct btrfs_super_block *disk_super = fs_info->super_copy;
3114         u64 incompat = btrfs_super_incompat_flags(disk_super);
3115         const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3116         const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3117
3118         if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3119                 btrfs_err(fs_info,
3120                 "cannot mount because of unknown incompat features (0x%llx)",
3121                     incompat);
3122                 return -EINVAL;
3123         }
3124
3125         /* Runtime limitation for mixed block groups. */
3126         if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3127             (fs_info->sectorsize != fs_info->nodesize)) {
3128                 btrfs_err(fs_info,
3129 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3130                         fs_info->nodesize, fs_info->sectorsize);
3131                 return -EINVAL;
3132         }
3133
3134         /* Mixed backref is an always-enabled feature. */
3135         incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3136
3137         /* Set compression related flags just in case. */
3138         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3139                 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3140         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3141                 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3142
3143         /*
3144          * An ancient flag, which should really be marked deprecated.
3145          * Such runtime limitation doesn't really need a incompat flag.
3146          */
3147         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3148                 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3149
3150         if (compat_ro_unsupp && is_rw_mount) {
3151                 btrfs_err(fs_info,
3152         "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3153                        compat_ro);
3154                 return -EINVAL;
3155         }
3156
3157         /*
3158          * We have unsupported RO compat features, although RO mounted, we
3159          * should not cause any metadata writes, including log replay.
3160          * Or we could screw up whatever the new feature requires.
3161          */
3162         if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3163             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3164                 btrfs_err(fs_info,
3165 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3166                           compat_ro);
3167                 return -EINVAL;
3168         }
3169
3170         /*
3171          * Artificial limitations for block group tree, to force
3172          * block-group-tree to rely on no-holes and free-space-tree.
3173          */
3174         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3175             (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3176              !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3177                 btrfs_err(fs_info,
3178 "block-group-tree feature requires no-holes and free-space-tree features");
3179                 return -EINVAL;
3180         }
3181
3182         /*
3183          * Subpage runtime limitation on v1 cache.
3184          *
3185          * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3186          * we're already defaulting to v2 cache, no need to bother v1 as it's
3187          * going to be deprecated anyway.
3188          */
3189         if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3190                 btrfs_warn(fs_info,
3191         "v1 space cache is not supported for page size %lu with sectorsize %u",
3192                            PAGE_SIZE, fs_info->sectorsize);
3193                 return -EINVAL;
3194         }
3195
3196         /* This can be called by remount, we need to protect the super block. */
3197         spin_lock(&fs_info->super_lock);
3198         btrfs_set_super_incompat_flags(disk_super, incompat);
3199         spin_unlock(&fs_info->super_lock);
3200
3201         return 0;
3202 }
3203
3204 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3205                       char *options)
3206 {
3207         u32 sectorsize;
3208         u32 nodesize;
3209         u32 stripesize;
3210         u64 generation;
3211         u16 csum_type;
3212         struct btrfs_super_block *disk_super;
3213         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3214         struct btrfs_root *tree_root;
3215         struct btrfs_root *chunk_root;
3216         int ret;
3217         int level;
3218
3219         ret = init_mount_fs_info(fs_info, sb);
3220         if (ret)
3221                 goto fail;
3222
3223         /* These need to be init'ed before we start creating inodes and such. */
3224         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3225                                      GFP_KERNEL);
3226         fs_info->tree_root = tree_root;
3227         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3228                                       GFP_KERNEL);
3229         fs_info->chunk_root = chunk_root;
3230         if (!tree_root || !chunk_root) {
3231                 ret = -ENOMEM;
3232                 goto fail;
3233         }
3234
3235         ret = btrfs_init_btree_inode(sb);
3236         if (ret)
3237                 goto fail;
3238
3239         invalidate_bdev(fs_devices->latest_dev->bdev);
3240
3241         /*
3242          * Read super block and check the signature bytes only
3243          */
3244         disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3245         if (IS_ERR(disk_super)) {
3246                 ret = PTR_ERR(disk_super);
3247                 goto fail_alloc;
3248         }
3249
3250         btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3251         /*
3252          * Verify the type first, if that or the checksum value are
3253          * corrupted, we'll find out
3254          */
3255         csum_type = btrfs_super_csum_type(disk_super);
3256         if (!btrfs_supported_super_csum(csum_type)) {
3257                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3258                           csum_type);
3259                 ret = -EINVAL;
3260                 btrfs_release_disk_super(disk_super);
3261                 goto fail_alloc;
3262         }
3263
3264         fs_info->csum_size = btrfs_super_csum_size(disk_super);
3265
3266         ret = btrfs_init_csum_hash(fs_info, csum_type);
3267         if (ret) {
3268                 btrfs_release_disk_super(disk_super);
3269                 goto fail_alloc;
3270         }
3271
3272         /*
3273          * We want to check superblock checksum, the type is stored inside.
3274          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3275          */
3276         if (btrfs_check_super_csum(fs_info, disk_super)) {
3277                 btrfs_err(fs_info, "superblock checksum mismatch");
3278                 ret = -EINVAL;
3279                 btrfs_release_disk_super(disk_super);
3280                 goto fail_alloc;
3281         }
3282
3283         /*
3284          * super_copy is zeroed at allocation time and we never touch the
3285          * following bytes up to INFO_SIZE, the checksum is calculated from
3286          * the whole block of INFO_SIZE
3287          */
3288         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3289         btrfs_release_disk_super(disk_super);
3290
3291         disk_super = fs_info->super_copy;
3292
3293         memcpy(fs_info->super_for_commit, fs_info->super_copy,
3294                sizeof(*fs_info->super_for_commit));
3295
3296         ret = btrfs_validate_mount_super(fs_info);
3297         if (ret) {
3298                 btrfs_err(fs_info, "superblock contains fatal errors");
3299                 ret = -EINVAL;
3300                 goto fail_alloc;
3301         }
3302
3303         if (!btrfs_super_root(disk_super)) {
3304                 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3305                 ret = -EINVAL;
3306                 goto fail_alloc;
3307         }
3308
3309         /* check FS state, whether FS is broken. */
3310         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3311                 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3312
3313         /* Set up fs_info before parsing mount options */
3314         nodesize = btrfs_super_nodesize(disk_super);
3315         sectorsize = btrfs_super_sectorsize(disk_super);
3316         stripesize = sectorsize;
3317         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3318         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3319
3320         fs_info->nodesize = nodesize;
3321         fs_info->sectorsize = sectorsize;
3322         fs_info->sectorsize_bits = ilog2(sectorsize);
3323         fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3324         fs_info->stripesize = stripesize;
3325
3326         /*
3327          * Handle the space caching options appropriately now that we have the
3328          * super block loaded and validated.
3329          */
3330         btrfs_set_free_space_cache_settings(fs_info);
3331
3332         if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3333                 ret = -EINVAL;
3334                 goto fail_alloc;
3335         }
3336
3337         ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3338         if (ret < 0)
3339                 goto fail_alloc;
3340
3341         /*
3342          * At this point our mount options are validated, if we set ->max_inline
3343          * to something non-standard make sure we truncate it to sectorsize.
3344          */
3345         fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3346
3347         if (sectorsize < PAGE_SIZE) {
3348                 struct btrfs_subpage_info *subpage_info;
3349
3350                 btrfs_warn(fs_info,
3351                 "read-write for sector size %u with page size %lu is experimental",
3352                            sectorsize, PAGE_SIZE);
3353                 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3354                 if (!subpage_info) {
3355                         ret = -ENOMEM;
3356                         goto fail_alloc;
3357                 }
3358                 btrfs_init_subpage_info(subpage_info, sectorsize);
3359                 fs_info->subpage_info = subpage_info;
3360         }
3361
3362         ret = btrfs_init_workqueues(fs_info);
3363         if (ret)
3364                 goto fail_sb_buffer;
3365
3366         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3367         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3368
3369         /* Update the values for the current filesystem. */
3370         sb->s_blocksize = sectorsize;
3371         sb->s_blocksize_bits = blksize_bits(sectorsize);
3372         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3373
3374         mutex_lock(&fs_info->chunk_mutex);
3375         ret = btrfs_read_sys_array(fs_info);
3376         mutex_unlock(&fs_info->chunk_mutex);
3377         if (ret) {
3378                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3379                 goto fail_sb_buffer;
3380         }
3381
3382         generation = btrfs_super_chunk_root_generation(disk_super);
3383         level = btrfs_super_chunk_root_level(disk_super);
3384         ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3385                               generation, level);
3386         if (ret) {
3387                 btrfs_err(fs_info, "failed to read chunk root");
3388                 goto fail_tree_roots;
3389         }
3390
3391         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3392                            offsetof(struct btrfs_header, chunk_tree_uuid),
3393                            BTRFS_UUID_SIZE);
3394
3395         ret = btrfs_read_chunk_tree(fs_info);
3396         if (ret) {
3397                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3398                 goto fail_tree_roots;
3399         }
3400
3401         /*
3402          * At this point we know all the devices that make this filesystem,
3403          * including the seed devices but we don't know yet if the replace
3404          * target is required. So free devices that are not part of this
3405          * filesystem but skip the replace target device which is checked
3406          * below in btrfs_init_dev_replace().
3407          */
3408         btrfs_free_extra_devids(fs_devices);
3409         if (!fs_devices->latest_dev->bdev) {
3410                 btrfs_err(fs_info, "failed to read devices");
3411                 ret = -EIO;
3412                 goto fail_tree_roots;
3413         }
3414
3415         ret = init_tree_roots(fs_info);
3416         if (ret)
3417                 goto fail_tree_roots;
3418
3419         /*
3420          * Get zone type information of zoned block devices. This will also
3421          * handle emulation of a zoned filesystem if a regular device has the
3422          * zoned incompat feature flag set.
3423          */
3424         ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3425         if (ret) {
3426                 btrfs_err(fs_info,
3427                           "zoned: failed to read device zone info: %d", ret);
3428                 goto fail_block_groups;
3429         }
3430
3431         /*
3432          * If we have a uuid root and we're not being told to rescan we need to
3433          * check the generation here so we can set the
3434          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3435          * transaction during a balance or the log replay without updating the
3436          * uuid generation, and then if we crash we would rescan the uuid tree,
3437          * even though it was perfectly fine.
3438          */
3439         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3440             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3441                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3442
3443         ret = btrfs_verify_dev_extents(fs_info);
3444         if (ret) {
3445                 btrfs_err(fs_info,
3446                           "failed to verify dev extents against chunks: %d",
3447                           ret);
3448                 goto fail_block_groups;
3449         }
3450         ret = btrfs_recover_balance(fs_info);
3451         if (ret) {
3452                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3453                 goto fail_block_groups;
3454         }
3455
3456         ret = btrfs_init_dev_stats(fs_info);
3457         if (ret) {
3458                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3459                 goto fail_block_groups;
3460         }
3461
3462         ret = btrfs_init_dev_replace(fs_info);
3463         if (ret) {
3464                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3465                 goto fail_block_groups;
3466         }
3467
3468         ret = btrfs_check_zoned_mode(fs_info);
3469         if (ret) {
3470                 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3471                           ret);
3472                 goto fail_block_groups;
3473         }
3474
3475         ret = btrfs_sysfs_add_fsid(fs_devices);
3476         if (ret) {
3477                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3478                                 ret);
3479                 goto fail_block_groups;
3480         }
3481
3482         ret = btrfs_sysfs_add_mounted(fs_info);
3483         if (ret) {
3484                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3485                 goto fail_fsdev_sysfs;
3486         }
3487
3488         ret = btrfs_init_space_info(fs_info);
3489         if (ret) {
3490                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3491                 goto fail_sysfs;
3492         }
3493
3494         ret = btrfs_read_block_groups(fs_info);
3495         if (ret) {
3496                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3497                 goto fail_sysfs;
3498         }
3499
3500         btrfs_free_zone_cache(fs_info);
3501
3502         btrfs_check_active_zone_reservation(fs_info);
3503
3504         if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3505             !btrfs_check_rw_degradable(fs_info, NULL)) {
3506                 btrfs_warn(fs_info,
3507                 "writable mount is not allowed due to too many missing devices");
3508                 ret = -EINVAL;
3509                 goto fail_sysfs;
3510         }
3511
3512         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3513                                                "btrfs-cleaner");
3514         if (IS_ERR(fs_info->cleaner_kthread)) {
3515                 ret = PTR_ERR(fs_info->cleaner_kthread);
3516                 goto fail_sysfs;
3517         }
3518
3519         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3520                                                    tree_root,
3521                                                    "btrfs-transaction");
3522         if (IS_ERR(fs_info->transaction_kthread)) {
3523                 ret = PTR_ERR(fs_info->transaction_kthread);
3524                 goto fail_cleaner;
3525         }
3526
3527         ret = btrfs_read_qgroup_config(fs_info);
3528         if (ret)
3529                 goto fail_trans_kthread;
3530
3531         if (btrfs_build_ref_tree(fs_info))
3532                 btrfs_err(fs_info, "couldn't build ref tree");
3533
3534         /* do not make disk changes in broken FS or nologreplay is given */
3535         if (btrfs_super_log_root(disk_super) != 0 &&
3536             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3537                 btrfs_info(fs_info, "start tree-log replay");
3538                 ret = btrfs_replay_log(fs_info, fs_devices);
3539                 if (ret)
3540                         goto fail_qgroup;
3541         }
3542
3543         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3544         if (IS_ERR(fs_info->fs_root)) {
3545                 ret = PTR_ERR(fs_info->fs_root);
3546                 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3547                 fs_info->fs_root = NULL;
3548                 goto fail_qgroup;
3549         }
3550
3551         if (sb_rdonly(sb))
3552                 return 0;
3553
3554         ret = btrfs_start_pre_rw_mount(fs_info);
3555         if (ret) {
3556                 close_ctree(fs_info);
3557                 return ret;
3558         }
3559         btrfs_discard_resume(fs_info);
3560
3561         if (fs_info->uuid_root &&
3562             (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3563              fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3564                 btrfs_info(fs_info, "checking UUID tree");
3565                 ret = btrfs_check_uuid_tree(fs_info);
3566                 if (ret) {
3567                         btrfs_warn(fs_info,
3568                                 "failed to check the UUID tree: %d", ret);
3569                         close_ctree(fs_info);
3570                         return ret;
3571                 }
3572         }
3573
3574         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3575
3576         /* Kick the cleaner thread so it'll start deleting snapshots. */
3577         if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3578                 wake_up_process(fs_info->cleaner_kthread);
3579
3580         return 0;
3581
3582 fail_qgroup:
3583         btrfs_free_qgroup_config(fs_info);
3584 fail_trans_kthread:
3585         kthread_stop(fs_info->transaction_kthread);
3586         btrfs_cleanup_transaction(fs_info);
3587         btrfs_free_fs_roots(fs_info);
3588 fail_cleaner:
3589         kthread_stop(fs_info->cleaner_kthread);
3590
3591         /*
3592          * make sure we're done with the btree inode before we stop our
3593          * kthreads
3594          */
3595         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3596
3597 fail_sysfs:
3598         btrfs_sysfs_remove_mounted(fs_info);
3599
3600 fail_fsdev_sysfs:
3601         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3602
3603 fail_block_groups:
3604         btrfs_put_block_group_cache(fs_info);
3605
3606 fail_tree_roots:
3607         if (fs_info->data_reloc_root)
3608                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3609         free_root_pointers(fs_info, true);
3610         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3611
3612 fail_sb_buffer:
3613         btrfs_stop_all_workers(fs_info);
3614         btrfs_free_block_groups(fs_info);
3615 fail_alloc:
3616         btrfs_mapping_tree_free(fs_info);
3617
3618         iput(fs_info->btree_inode);
3619 fail:
3620         btrfs_close_devices(fs_info->fs_devices);
3621         ASSERT(ret < 0);
3622         return ret;
3623 }
3624 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3625
3626 static void btrfs_end_super_write(struct bio *bio)
3627 {
3628         struct btrfs_device *device = bio->bi_private;
3629         struct folio_iter fi;
3630
3631         bio_for_each_folio_all(fi, bio) {
3632                 if (bio->bi_status) {
3633                         btrfs_warn_rl_in_rcu(device->fs_info,
3634                                 "lost super block write due to IO error on %s (%d)",
3635                                 btrfs_dev_name(device),
3636                                 blk_status_to_errno(bio->bi_status));
3637                         btrfs_dev_stat_inc_and_print(device,
3638                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3639                         /* Ensure failure if the primary sb fails. */
3640                         if (bio->bi_opf & REQ_FUA)
3641                                 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3642                                            &device->sb_write_errors);
3643                         else
3644                                 atomic_inc(&device->sb_write_errors);
3645                 }
3646                 folio_unlock(fi.folio);
3647                 folio_put(fi.folio);
3648         }
3649
3650         bio_put(bio);
3651 }
3652
3653 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3654                                                    int copy_num, bool drop_cache)
3655 {
3656         struct btrfs_super_block *super;
3657         struct page *page;
3658         u64 bytenr, bytenr_orig;
3659         struct address_space *mapping = bdev->bd_mapping;
3660         int ret;
3661
3662         bytenr_orig = btrfs_sb_offset(copy_num);
3663         ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3664         if (ret == -ENOENT)
3665                 return ERR_PTR(-EINVAL);
3666         else if (ret)
3667                 return ERR_PTR(ret);
3668
3669         if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3670                 return ERR_PTR(-EINVAL);
3671
3672         if (drop_cache) {
3673                 /* This should only be called with the primary sb. */
3674                 ASSERT(copy_num == 0);
3675
3676                 /*
3677                  * Drop the page of the primary superblock, so later read will
3678                  * always read from the device.
3679                  */
3680                 invalidate_inode_pages2_range(mapping,
3681                                 bytenr >> PAGE_SHIFT,
3682                                 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3683         }
3684
3685         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3686         if (IS_ERR(page))
3687                 return ERR_CAST(page);
3688
3689         super = page_address(page);
3690         if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3691                 btrfs_release_disk_super(super);
3692                 return ERR_PTR(-ENODATA);
3693         }
3694
3695         if (btrfs_super_bytenr(super) != bytenr_orig) {
3696                 btrfs_release_disk_super(super);
3697                 return ERR_PTR(-EINVAL);
3698         }
3699
3700         return super;
3701 }
3702
3703
3704 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3705 {
3706         struct btrfs_super_block *super, *latest = NULL;
3707         int i;
3708         u64 transid = 0;
3709
3710         /* we would like to check all the supers, but that would make
3711          * a btrfs mount succeed after a mkfs from a different FS.
3712          * So, we need to add a special mount option to scan for
3713          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3714          */
3715         for (i = 0; i < 1; i++) {
3716                 super = btrfs_read_dev_one_super(bdev, i, false);
3717                 if (IS_ERR(super))
3718                         continue;
3719
3720                 if (!latest || btrfs_super_generation(super) > transid) {
3721                         if (latest)
3722                                 btrfs_release_disk_super(super);
3723
3724                         latest = super;
3725                         transid = btrfs_super_generation(super);
3726                 }
3727         }
3728
3729         return super;
3730 }
3731
3732 /*
3733  * Write superblock @sb to the @device. Do not wait for completion, all the
3734  * folios we use for writing are locked.
3735  *
3736  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3737  * the expected device size at commit time. Note that max_mirrors must be
3738  * same for write and wait phases.
3739  *
3740  * Return number of errors when folio is not found or submission fails.
3741  */
3742 static int write_dev_supers(struct btrfs_device *device,
3743                             struct btrfs_super_block *sb, int max_mirrors)
3744 {
3745         struct btrfs_fs_info *fs_info = device->fs_info;
3746         struct address_space *mapping = device->bdev->bd_mapping;
3747         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3748         int i;
3749         int ret;
3750         u64 bytenr, bytenr_orig;
3751
3752         atomic_set(&device->sb_write_errors, 0);
3753
3754         if (max_mirrors == 0)
3755                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3756
3757         shash->tfm = fs_info->csum_shash;
3758
3759         for (i = 0; i < max_mirrors; i++) {
3760                 struct folio *folio;
3761                 struct bio *bio;
3762                 struct btrfs_super_block *disk_super;
3763                 size_t offset;
3764
3765                 bytenr_orig = btrfs_sb_offset(i);
3766                 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3767                 if (ret == -ENOENT) {
3768                         continue;
3769                 } else if (ret < 0) {
3770                         btrfs_err(device->fs_info,
3771                                 "couldn't get super block location for mirror %d",
3772                                 i);
3773                         atomic_inc(&device->sb_write_errors);
3774                         continue;
3775                 }
3776                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3777                     device->commit_total_bytes)
3778                         break;
3779
3780                 btrfs_set_super_bytenr(sb, bytenr_orig);
3781
3782                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3783                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3784                                     sb->csum);
3785
3786                 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3787                                             FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3788                                             GFP_NOFS);
3789                 if (IS_ERR(folio)) {
3790                         btrfs_err(device->fs_info,
3791                             "couldn't get super block page for bytenr %llu",
3792                             bytenr);
3793                         atomic_inc(&device->sb_write_errors);
3794                         continue;
3795                 }
3796                 ASSERT(folio_order(folio) == 0);
3797
3798                 offset = offset_in_folio(folio, bytenr);
3799                 disk_super = folio_address(folio) + offset;
3800                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3801
3802                 /*
3803                  * Directly use bios here instead of relying on the page cache
3804                  * to do I/O, so we don't lose the ability to do integrity
3805                  * checking.
3806                  */
3807                 bio = bio_alloc(device->bdev, 1,
3808                                 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3809                                 GFP_NOFS);
3810                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3811                 bio->bi_private = device;
3812                 bio->bi_end_io = btrfs_end_super_write;
3813                 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3814
3815                 /*
3816                  * We FUA only the first super block.  The others we allow to
3817                  * go down lazy and there's a short window where the on-disk
3818                  * copies might still contain the older version.
3819                  */
3820                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3821                         bio->bi_opf |= REQ_FUA;
3822                 submit_bio(bio);
3823
3824                 if (btrfs_advance_sb_log(device, i))
3825                         atomic_inc(&device->sb_write_errors);
3826         }
3827         return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3828 }
3829
3830 /*
3831  * Wait for write completion of superblocks done by write_dev_supers,
3832  * @max_mirrors same for write and wait phases.
3833  *
3834  * Return -1 if primary super block write failed or when there were no super block
3835  * copies written. Otherwise 0.
3836  */
3837 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3838 {
3839         int i;
3840         int errors = 0;
3841         bool primary_failed = false;
3842         int ret;
3843         u64 bytenr;
3844
3845         if (max_mirrors == 0)
3846                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3847
3848         for (i = 0; i < max_mirrors; i++) {
3849                 struct folio *folio;
3850
3851                 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3852                 if (ret == -ENOENT) {
3853                         break;
3854                 } else if (ret < 0) {
3855                         errors++;
3856                         if (i == 0)
3857                                 primary_failed = true;
3858                         continue;
3859                 }
3860                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3861                     device->commit_total_bytes)
3862                         break;
3863
3864                 folio = filemap_get_folio(device->bdev->bd_mapping,
3865                                           bytenr >> PAGE_SHIFT);
3866                 /* If the folio has been removed, then we know it completed. */
3867                 if (IS_ERR(folio))
3868                         continue;
3869                 ASSERT(folio_order(folio) == 0);
3870
3871                 /* Folio will be unlocked once the write completes. */
3872                 folio_wait_locked(folio);
3873                 folio_put(folio);
3874         }
3875
3876         errors += atomic_read(&device->sb_write_errors);
3877         if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3878                 primary_failed = true;
3879         if (primary_failed) {
3880                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3881                           device->devid);
3882                 return -1;
3883         }
3884
3885         return errors < i ? 0 : -1;
3886 }
3887
3888 /*
3889  * endio for the write_dev_flush, this will wake anyone waiting
3890  * for the barrier when it is done
3891  */
3892 static void btrfs_end_empty_barrier(struct bio *bio)
3893 {
3894         bio_uninit(bio);
3895         complete(bio->bi_private);
3896 }
3897
3898 /*
3899  * Submit a flush request to the device if it supports it. Error handling is
3900  * done in the waiting counterpart.
3901  */
3902 static void write_dev_flush(struct btrfs_device *device)
3903 {
3904         struct bio *bio = &device->flush_bio;
3905
3906         device->last_flush_error = BLK_STS_OK;
3907
3908         bio_init(bio, device->bdev, NULL, 0,
3909                  REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3910         bio->bi_end_io = btrfs_end_empty_barrier;
3911         init_completion(&device->flush_wait);
3912         bio->bi_private = &device->flush_wait;
3913         submit_bio(bio);
3914         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3915 }
3916
3917 /*
3918  * If the flush bio has been submitted by write_dev_flush, wait for it.
3919  * Return true for any error, and false otherwise.
3920  */
3921 static bool wait_dev_flush(struct btrfs_device *device)
3922 {
3923         struct bio *bio = &device->flush_bio;
3924
3925         if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3926                 return false;
3927
3928         wait_for_completion_io(&device->flush_wait);
3929
3930         if (bio->bi_status) {
3931                 device->last_flush_error = bio->bi_status;
3932                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3933                 return true;
3934         }
3935
3936         return false;
3937 }
3938
3939 /*
3940  * send an empty flush down to each device in parallel,
3941  * then wait for them
3942  */
3943 static int barrier_all_devices(struct btrfs_fs_info *info)
3944 {
3945         struct list_head *head;
3946         struct btrfs_device *dev;
3947         int errors_wait = 0;
3948
3949         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3950         /* send down all the barriers */
3951         head = &info->fs_devices->devices;
3952         list_for_each_entry(dev, head, dev_list) {
3953                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3954                         continue;
3955                 if (!dev->bdev)
3956                         continue;
3957                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3958                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3959                         continue;
3960
3961                 write_dev_flush(dev);
3962         }
3963
3964         /* wait for all the barriers */
3965         list_for_each_entry(dev, head, dev_list) {
3966                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3967                         continue;
3968                 if (!dev->bdev) {
3969                         errors_wait++;
3970                         continue;
3971                 }
3972                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3973                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3974                         continue;
3975
3976                 if (wait_dev_flush(dev))
3977                         errors_wait++;
3978         }
3979
3980         /*
3981          * Checks last_flush_error of disks in order to determine the device
3982          * state.
3983          */
3984         if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3985                 return -EIO;
3986
3987         return 0;
3988 }
3989
3990 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3991 {
3992         int raid_type;
3993         int min_tolerated = INT_MAX;
3994
3995         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3996             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3997                 min_tolerated = min_t(int, min_tolerated,
3998                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3999                                     tolerated_failures);
4000
4001         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4002                 if (raid_type == BTRFS_RAID_SINGLE)
4003                         continue;
4004                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4005                         continue;
4006                 min_tolerated = min_t(int, min_tolerated,
4007                                     btrfs_raid_array[raid_type].
4008                                     tolerated_failures);
4009         }
4010
4011         if (min_tolerated == INT_MAX) {
4012                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4013                 min_tolerated = 0;
4014         }
4015
4016         return min_tolerated;
4017 }
4018
4019 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4020 {
4021         struct list_head *head;
4022         struct btrfs_device *dev;
4023         struct btrfs_super_block *sb;
4024         struct btrfs_dev_item *dev_item;
4025         int ret;
4026         int do_barriers;
4027         int max_errors;
4028         int total_errors = 0;
4029         u64 flags;
4030
4031         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4032
4033         /*
4034          * max_mirrors == 0 indicates we're from commit_transaction,
4035          * not from fsync where the tree roots in fs_info have not
4036          * been consistent on disk.
4037          */
4038         if (max_mirrors == 0)
4039                 backup_super_roots(fs_info);
4040
4041         sb = fs_info->super_for_commit;
4042         dev_item = &sb->dev_item;
4043
4044         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4045         head = &fs_info->fs_devices->devices;
4046         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4047
4048         if (do_barriers) {
4049                 ret = barrier_all_devices(fs_info);
4050                 if (ret) {
4051                         mutex_unlock(
4052                                 &fs_info->fs_devices->device_list_mutex);
4053                         btrfs_handle_fs_error(fs_info, ret,
4054                                               "errors while submitting device barriers.");
4055                         return ret;
4056                 }
4057         }
4058
4059         list_for_each_entry(dev, head, dev_list) {
4060                 if (!dev->bdev) {
4061                         total_errors++;
4062                         continue;
4063                 }
4064                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4065                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4066                         continue;
4067
4068                 btrfs_set_stack_device_generation(dev_item, 0);
4069                 btrfs_set_stack_device_type(dev_item, dev->type);
4070                 btrfs_set_stack_device_id(dev_item, dev->devid);
4071                 btrfs_set_stack_device_total_bytes(dev_item,
4072                                                    dev->commit_total_bytes);
4073                 btrfs_set_stack_device_bytes_used(dev_item,
4074                                                   dev->commit_bytes_used);
4075                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4076                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4077                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4078                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4079                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4080                        BTRFS_FSID_SIZE);
4081
4082                 flags = btrfs_super_flags(sb);
4083                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4084
4085                 ret = btrfs_validate_write_super(fs_info, sb);
4086                 if (ret < 0) {
4087                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4088                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
4089                                 "unexpected superblock corruption detected");
4090                         return -EUCLEAN;
4091                 }
4092
4093                 ret = write_dev_supers(dev, sb, max_mirrors);
4094                 if (ret)
4095                         total_errors++;
4096         }
4097         if (total_errors > max_errors) {
4098                 btrfs_err(fs_info, "%d errors while writing supers",
4099                           total_errors);
4100                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4101
4102                 /* FUA is masked off if unsupported and can't be the reason */
4103                 btrfs_handle_fs_error(fs_info, -EIO,
4104                                       "%d errors while writing supers",
4105                                       total_errors);
4106                 return -EIO;
4107         }
4108
4109         total_errors = 0;
4110         list_for_each_entry(dev, head, dev_list) {
4111                 if (!dev->bdev)
4112                         continue;
4113                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4114                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4115                         continue;
4116
4117                 ret = wait_dev_supers(dev, max_mirrors);
4118                 if (ret)
4119                         total_errors++;
4120         }
4121         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4122         if (total_errors > max_errors) {
4123                 btrfs_handle_fs_error(fs_info, -EIO,
4124                                       "%d errors while writing supers",
4125                                       total_errors);
4126                 return -EIO;
4127         }
4128         return 0;
4129 }
4130
4131 /* Drop a fs root from the radix tree and free it. */
4132 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4133                                   struct btrfs_root *root)
4134 {
4135         bool drop_ref = false;
4136
4137         spin_lock(&fs_info->fs_roots_radix_lock);
4138         radix_tree_delete(&fs_info->fs_roots_radix,
4139                           (unsigned long)btrfs_root_id(root));
4140         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4141                 drop_ref = true;
4142         spin_unlock(&fs_info->fs_roots_radix_lock);
4143
4144         if (BTRFS_FS_ERROR(fs_info)) {
4145                 ASSERT(root->log_root == NULL);
4146                 if (root->reloc_root) {
4147                         btrfs_put_root(root->reloc_root);
4148                         root->reloc_root = NULL;
4149                 }
4150         }
4151
4152         if (drop_ref)
4153                 btrfs_put_root(root);
4154 }
4155
4156 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4157 {
4158         struct btrfs_root *root = fs_info->tree_root;
4159         struct btrfs_trans_handle *trans;
4160
4161         mutex_lock(&fs_info->cleaner_mutex);
4162         btrfs_run_delayed_iputs(fs_info);
4163         mutex_unlock(&fs_info->cleaner_mutex);
4164         wake_up_process(fs_info->cleaner_kthread);
4165
4166         /* wait until ongoing cleanup work done */
4167         down_write(&fs_info->cleanup_work_sem);
4168         up_write(&fs_info->cleanup_work_sem);
4169
4170         trans = btrfs_join_transaction(root);
4171         if (IS_ERR(trans))
4172                 return PTR_ERR(trans);
4173         return btrfs_commit_transaction(trans);
4174 }
4175
4176 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4177 {
4178         struct btrfs_transaction *trans;
4179         struct btrfs_transaction *tmp;
4180         bool found = false;
4181
4182         /*
4183          * This function is only called at the very end of close_ctree(),
4184          * thus no other running transaction, no need to take trans_lock.
4185          */
4186         ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4187         list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4188                 struct extent_state *cached = NULL;
4189                 u64 dirty_bytes = 0;
4190                 u64 cur = 0;
4191                 u64 found_start;
4192                 u64 found_end;
4193
4194                 found = true;
4195                 while (find_first_extent_bit(&trans->dirty_pages, cur,
4196                         &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4197                         dirty_bytes += found_end + 1 - found_start;
4198                         cur = found_end + 1;
4199                 }
4200                 btrfs_warn(fs_info,
4201         "transaction %llu (with %llu dirty metadata bytes) is not committed",
4202                            trans->transid, dirty_bytes);
4203                 btrfs_cleanup_one_transaction(trans, fs_info);
4204
4205                 if (trans == fs_info->running_transaction)
4206                         fs_info->running_transaction = NULL;
4207                 list_del_init(&trans->list);
4208
4209                 btrfs_put_transaction(trans);
4210                 trace_btrfs_transaction_commit(fs_info);
4211         }
4212         ASSERT(!found);
4213 }
4214
4215 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4216 {
4217         int ret;
4218
4219         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4220
4221         /*
4222          * If we had UNFINISHED_DROPS we could still be processing them, so
4223          * clear that bit and wake up relocation so it can stop.
4224          * We must do this before stopping the block group reclaim task, because
4225          * at btrfs_relocate_block_group() we wait for this bit, and after the
4226          * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4227          * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4228          * return 1.
4229          */
4230         btrfs_wake_unfinished_drop(fs_info);
4231
4232         /*
4233          * We may have the reclaim task running and relocating a data block group,
4234          * in which case it may create delayed iputs. So stop it before we park
4235          * the cleaner kthread otherwise we can get new delayed iputs after
4236          * parking the cleaner, and that can make the async reclaim task to hang
4237          * if it's waiting for delayed iputs to complete, since the cleaner is
4238          * parked and can not run delayed iputs - this will make us hang when
4239          * trying to stop the async reclaim task.
4240          */
4241         cancel_work_sync(&fs_info->reclaim_bgs_work);
4242         /*
4243          * We don't want the cleaner to start new transactions, add more delayed
4244          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4245          * because that frees the task_struct, and the transaction kthread might
4246          * still try to wake up the cleaner.
4247          */
4248         kthread_park(fs_info->cleaner_kthread);
4249
4250         /* wait for the qgroup rescan worker to stop */
4251         btrfs_qgroup_wait_for_completion(fs_info, false);
4252
4253         /* wait for the uuid_scan task to finish */
4254         down(&fs_info->uuid_tree_rescan_sem);
4255         /* avoid complains from lockdep et al., set sem back to initial state */
4256         up(&fs_info->uuid_tree_rescan_sem);
4257
4258         /* pause restriper - we want to resume on mount */
4259         btrfs_pause_balance(fs_info);
4260
4261         btrfs_dev_replace_suspend_for_unmount(fs_info);
4262
4263         btrfs_scrub_cancel(fs_info);
4264
4265         /* wait for any defraggers to finish */
4266         wait_event(fs_info->transaction_wait,
4267                    (atomic_read(&fs_info->defrag_running) == 0));
4268
4269         /* clear out the rbtree of defraggable inodes */
4270         btrfs_cleanup_defrag_inodes(fs_info);
4271
4272         /*
4273          * After we parked the cleaner kthread, ordered extents may have
4274          * completed and created new delayed iputs. If one of the async reclaim
4275          * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4276          * can hang forever trying to stop it, because if a delayed iput is
4277          * added after it ran btrfs_run_delayed_iputs() and before it called
4278          * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4279          * no one else to run iputs.
4280          *
4281          * So wait for all ongoing ordered extents to complete and then run
4282          * delayed iputs. This works because once we reach this point no one
4283          * can either create new ordered extents nor create delayed iputs
4284          * through some other means.
4285          *
4286          * Also note that btrfs_wait_ordered_roots() is not safe here, because
4287          * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4288          * but the delayed iput for the respective inode is made only when doing
4289          * the final btrfs_put_ordered_extent() (which must happen at
4290          * btrfs_finish_ordered_io() when we are unmounting).
4291          */
4292         btrfs_flush_workqueue(fs_info->endio_write_workers);
4293         /* Ordered extents for free space inodes. */
4294         btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4295         btrfs_run_delayed_iputs(fs_info);
4296
4297         cancel_work_sync(&fs_info->async_reclaim_work);
4298         cancel_work_sync(&fs_info->async_data_reclaim_work);
4299         cancel_work_sync(&fs_info->preempt_reclaim_work);
4300
4301         /* Cancel or finish ongoing discard work */
4302         btrfs_discard_cleanup(fs_info);
4303
4304         if (!sb_rdonly(fs_info->sb)) {
4305                 /*
4306                  * The cleaner kthread is stopped, so do one final pass over
4307                  * unused block groups.
4308                  */
4309                 btrfs_delete_unused_bgs(fs_info);
4310
4311                 /*
4312                  * There might be existing delayed inode workers still running
4313                  * and holding an empty delayed inode item. We must wait for
4314                  * them to complete first because they can create a transaction.
4315                  * This happens when someone calls btrfs_balance_delayed_items()
4316                  * and then a transaction commit runs the same delayed nodes
4317                  * before any delayed worker has done something with the nodes.
4318                  * We must wait for any worker here and not at transaction
4319                  * commit time since that could cause a deadlock.
4320                  * This is a very rare case.
4321                  */
4322                 btrfs_flush_workqueue(fs_info->delayed_workers);
4323
4324                 ret = btrfs_commit_super(fs_info);
4325                 if (ret)
4326                         btrfs_err(fs_info, "commit super ret %d", ret);
4327         }
4328
4329         if (BTRFS_FS_ERROR(fs_info))
4330                 btrfs_error_commit_super(fs_info);
4331
4332         kthread_stop(fs_info->transaction_kthread);
4333         kthread_stop(fs_info->cleaner_kthread);
4334
4335         ASSERT(list_empty(&fs_info->delayed_iputs));
4336         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4337
4338         if (btrfs_check_quota_leak(fs_info)) {
4339                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4340                 btrfs_err(fs_info, "qgroup reserved space leaked");
4341         }
4342
4343         btrfs_free_qgroup_config(fs_info);
4344         ASSERT(list_empty(&fs_info->delalloc_roots));
4345
4346         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4347                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4348                        percpu_counter_sum(&fs_info->delalloc_bytes));
4349         }
4350
4351         if (percpu_counter_sum(&fs_info->ordered_bytes))
4352                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4353                            percpu_counter_sum(&fs_info->ordered_bytes));
4354
4355         btrfs_sysfs_remove_mounted(fs_info);
4356         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4357
4358         btrfs_put_block_group_cache(fs_info);
4359
4360         /*
4361          * we must make sure there is not any read request to
4362          * submit after we stopping all workers.
4363          */
4364         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4365         btrfs_stop_all_workers(fs_info);
4366
4367         /* We shouldn't have any transaction open at this point */
4368         warn_about_uncommitted_trans(fs_info);
4369
4370         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4371         free_root_pointers(fs_info, true);
4372         btrfs_free_fs_roots(fs_info);
4373
4374         /*
4375          * We must free the block groups after dropping the fs_roots as we could
4376          * have had an IO error and have left over tree log blocks that aren't
4377          * cleaned up until the fs roots are freed.  This makes the block group
4378          * accounting appear to be wrong because there's pending reserved bytes,
4379          * so make sure we do the block group cleanup afterwards.
4380          */
4381         btrfs_free_block_groups(fs_info);
4382
4383         iput(fs_info->btree_inode);
4384
4385         btrfs_mapping_tree_free(fs_info);
4386         btrfs_close_devices(fs_info->fs_devices);
4387 }
4388
4389 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4390                              struct extent_buffer *buf)
4391 {
4392         struct btrfs_fs_info *fs_info = buf->fs_info;
4393         u64 transid = btrfs_header_generation(buf);
4394
4395 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4396         /*
4397          * This is a fast path so only do this check if we have sanity tests
4398          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4399          * outside of the sanity tests.
4400          */
4401         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4402                 return;
4403 #endif
4404         /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4405         ASSERT(trans->transid == fs_info->generation);
4406         btrfs_assert_tree_write_locked(buf);
4407         if (unlikely(transid != fs_info->generation)) {
4408                 btrfs_abort_transaction(trans, -EUCLEAN);
4409                 btrfs_crit(fs_info,
4410 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4411                            buf->start, transid, fs_info->generation);
4412         }
4413         set_extent_buffer_dirty(buf);
4414 }
4415
4416 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4417                                         int flush_delayed)
4418 {
4419         /*
4420          * looks as though older kernels can get into trouble with
4421          * this code, they end up stuck in balance_dirty_pages forever
4422          */
4423         int ret;
4424
4425         if (current->flags & PF_MEMALLOC)
4426                 return;
4427
4428         if (flush_delayed)
4429                 btrfs_balance_delayed_items(fs_info);
4430
4431         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4432                                      BTRFS_DIRTY_METADATA_THRESH,
4433                                      fs_info->dirty_metadata_batch);
4434         if (ret > 0) {
4435                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4436         }
4437 }
4438
4439 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4440 {
4441         __btrfs_btree_balance_dirty(fs_info, 1);
4442 }
4443
4444 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4445 {
4446         __btrfs_btree_balance_dirty(fs_info, 0);
4447 }
4448
4449 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4450 {
4451         /* cleanup FS via transaction */
4452         btrfs_cleanup_transaction(fs_info);
4453
4454         mutex_lock(&fs_info->cleaner_mutex);
4455         btrfs_run_delayed_iputs(fs_info);
4456         mutex_unlock(&fs_info->cleaner_mutex);
4457
4458         down_write(&fs_info->cleanup_work_sem);
4459         up_write(&fs_info->cleanup_work_sem);
4460 }
4461
4462 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4463 {
4464         struct btrfs_root *gang[8];
4465         u64 root_objectid = 0;
4466         int ret;
4467
4468         spin_lock(&fs_info->fs_roots_radix_lock);
4469         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4470                                              (void **)gang, root_objectid,
4471                                              ARRAY_SIZE(gang))) != 0) {
4472                 int i;
4473
4474                 for (i = 0; i < ret; i++)
4475                         gang[i] = btrfs_grab_root(gang[i]);
4476                 spin_unlock(&fs_info->fs_roots_radix_lock);
4477
4478                 for (i = 0; i < ret; i++) {
4479                         if (!gang[i])
4480                                 continue;
4481                         root_objectid = btrfs_root_id(gang[i]);
4482                         btrfs_free_log(NULL, gang[i]);
4483                         btrfs_put_root(gang[i]);
4484                 }
4485                 root_objectid++;
4486                 spin_lock(&fs_info->fs_roots_radix_lock);
4487         }
4488         spin_unlock(&fs_info->fs_roots_radix_lock);
4489         btrfs_free_log_root_tree(NULL, fs_info);
4490 }
4491
4492 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4493 {
4494         struct btrfs_ordered_extent *ordered;
4495
4496         spin_lock(&root->ordered_extent_lock);
4497         /*
4498          * This will just short circuit the ordered completion stuff which will
4499          * make sure the ordered extent gets properly cleaned up.
4500          */
4501         list_for_each_entry(ordered, &root->ordered_extents,
4502                             root_extent_list)
4503                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4504         spin_unlock(&root->ordered_extent_lock);
4505 }
4506
4507 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4508 {
4509         struct btrfs_root *root;
4510         LIST_HEAD(splice);
4511
4512         spin_lock(&fs_info->ordered_root_lock);
4513         list_splice_init(&fs_info->ordered_roots, &splice);
4514         while (!list_empty(&splice)) {
4515                 root = list_first_entry(&splice, struct btrfs_root,
4516                                         ordered_root);
4517                 list_move_tail(&root->ordered_root,
4518                                &fs_info->ordered_roots);
4519
4520                 spin_unlock(&fs_info->ordered_root_lock);
4521                 btrfs_destroy_ordered_extents(root);
4522
4523                 cond_resched();
4524                 spin_lock(&fs_info->ordered_root_lock);
4525         }
4526         spin_unlock(&fs_info->ordered_root_lock);
4527
4528         /*
4529          * We need this here because if we've been flipped read-only we won't
4530          * get sync() from the umount, so we need to make sure any ordered
4531          * extents that haven't had their dirty pages IO start writeout yet
4532          * actually get run and error out properly.
4533          */
4534         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4535 }
4536
4537 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4538                                        struct btrfs_fs_info *fs_info)
4539 {
4540         struct rb_node *node;
4541         struct btrfs_delayed_ref_root *delayed_refs;
4542         struct btrfs_delayed_ref_node *ref;
4543
4544         delayed_refs = &trans->delayed_refs;
4545
4546         spin_lock(&delayed_refs->lock);
4547         if (atomic_read(&delayed_refs->num_entries) == 0) {
4548                 spin_unlock(&delayed_refs->lock);
4549                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4550                 return;
4551         }
4552
4553         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4554                 struct btrfs_delayed_ref_head *head;
4555                 struct rb_node *n;
4556                 bool pin_bytes = false;
4557
4558                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4559                                 href_node);
4560                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4561                         continue;
4562
4563                 spin_lock(&head->lock);
4564                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4565                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4566                                        ref_node);
4567                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4568                         RB_CLEAR_NODE(&ref->ref_node);
4569                         if (!list_empty(&ref->add_list))
4570                                 list_del(&ref->add_list);
4571                         atomic_dec(&delayed_refs->num_entries);
4572                         btrfs_put_delayed_ref(ref);
4573                         btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4574                 }
4575                 if (head->must_insert_reserved)
4576                         pin_bytes = true;
4577                 btrfs_free_delayed_extent_op(head->extent_op);
4578                 btrfs_delete_ref_head(delayed_refs, head);
4579                 spin_unlock(&head->lock);
4580                 spin_unlock(&delayed_refs->lock);
4581                 mutex_unlock(&head->mutex);
4582
4583                 if (pin_bytes) {
4584                         struct btrfs_block_group *cache;
4585
4586                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4587                         BUG_ON(!cache);
4588
4589                         spin_lock(&cache->space_info->lock);
4590                         spin_lock(&cache->lock);
4591                         cache->pinned += head->num_bytes;
4592                         btrfs_space_info_update_bytes_pinned(fs_info,
4593                                 cache->space_info, head->num_bytes);
4594                         cache->reserved -= head->num_bytes;
4595                         cache->space_info->bytes_reserved -= head->num_bytes;
4596                         spin_unlock(&cache->lock);
4597                         spin_unlock(&cache->space_info->lock);
4598
4599                         btrfs_put_block_group(cache);
4600
4601                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4602                                 head->bytenr + head->num_bytes - 1);
4603                 }
4604                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4605                 btrfs_put_delayed_ref_head(head);
4606                 cond_resched();
4607                 spin_lock(&delayed_refs->lock);
4608         }
4609         btrfs_qgroup_destroy_extent_records(trans);
4610
4611         spin_unlock(&delayed_refs->lock);
4612 }
4613
4614 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4615 {
4616         struct btrfs_inode *btrfs_inode;
4617         LIST_HEAD(splice);
4618
4619         spin_lock(&root->delalloc_lock);
4620         list_splice_init(&root->delalloc_inodes, &splice);
4621
4622         while (!list_empty(&splice)) {
4623                 struct inode *inode = NULL;
4624                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4625                                                delalloc_inodes);
4626                 btrfs_del_delalloc_inode(btrfs_inode);
4627                 spin_unlock(&root->delalloc_lock);
4628
4629                 /*
4630                  * Make sure we get a live inode and that it'll not disappear
4631                  * meanwhile.
4632                  */
4633                 inode = igrab(&btrfs_inode->vfs_inode);
4634                 if (inode) {
4635                         unsigned int nofs_flag;
4636
4637                         nofs_flag = memalloc_nofs_save();
4638                         invalidate_inode_pages2(inode->i_mapping);
4639                         memalloc_nofs_restore(nofs_flag);
4640                         iput(inode);
4641                 }
4642                 spin_lock(&root->delalloc_lock);
4643         }
4644         spin_unlock(&root->delalloc_lock);
4645 }
4646
4647 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4648 {
4649         struct btrfs_root *root;
4650         LIST_HEAD(splice);
4651
4652         spin_lock(&fs_info->delalloc_root_lock);
4653         list_splice_init(&fs_info->delalloc_roots, &splice);
4654         while (!list_empty(&splice)) {
4655                 root = list_first_entry(&splice, struct btrfs_root,
4656                                          delalloc_root);
4657                 root = btrfs_grab_root(root);
4658                 BUG_ON(!root);
4659                 spin_unlock(&fs_info->delalloc_root_lock);
4660
4661                 btrfs_destroy_delalloc_inodes(root);
4662                 btrfs_put_root(root);
4663
4664                 spin_lock(&fs_info->delalloc_root_lock);
4665         }
4666         spin_unlock(&fs_info->delalloc_root_lock);
4667 }
4668
4669 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4670                                          struct extent_io_tree *dirty_pages,
4671                                          int mark)
4672 {
4673         struct extent_buffer *eb;
4674         u64 start = 0;
4675         u64 end;
4676
4677         while (find_first_extent_bit(dirty_pages, start, &start, &end,
4678                                      mark, NULL)) {
4679                 clear_extent_bits(dirty_pages, start, end, mark);
4680                 while (start <= end) {
4681                         eb = find_extent_buffer(fs_info, start);
4682                         start += fs_info->nodesize;
4683                         if (!eb)
4684                                 continue;
4685
4686                         btrfs_tree_lock(eb);
4687                         wait_on_extent_buffer_writeback(eb);
4688                         btrfs_clear_buffer_dirty(NULL, eb);
4689                         btrfs_tree_unlock(eb);
4690
4691                         free_extent_buffer_stale(eb);
4692                 }
4693         }
4694 }
4695
4696 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4697                                         struct extent_io_tree *unpin)
4698 {
4699         u64 start;
4700         u64 end;
4701
4702         while (1) {
4703                 struct extent_state *cached_state = NULL;
4704
4705                 /*
4706                  * The btrfs_finish_extent_commit() may get the same range as
4707                  * ours between find_first_extent_bit and clear_extent_dirty.
4708                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4709                  * the same extent range.
4710                  */
4711                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4712                 if (!find_first_extent_bit(unpin, 0, &start, &end,
4713                                            EXTENT_DIRTY, &cached_state)) {
4714                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4715                         break;
4716                 }
4717
4718                 clear_extent_dirty(unpin, start, end, &cached_state);
4719                 free_extent_state(cached_state);
4720                 btrfs_error_unpin_extent_range(fs_info, start, end);
4721                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4722                 cond_resched();
4723         }
4724 }
4725
4726 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4727 {
4728         struct inode *inode;
4729
4730         inode = cache->io_ctl.inode;
4731         if (inode) {
4732                 unsigned int nofs_flag;
4733
4734                 nofs_flag = memalloc_nofs_save();
4735                 invalidate_inode_pages2(inode->i_mapping);
4736                 memalloc_nofs_restore(nofs_flag);
4737
4738                 BTRFS_I(inode)->generation = 0;
4739                 cache->io_ctl.inode = NULL;
4740                 iput(inode);
4741         }
4742         ASSERT(cache->io_ctl.pages == NULL);
4743         btrfs_put_block_group(cache);
4744 }
4745
4746 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4747                              struct btrfs_fs_info *fs_info)
4748 {
4749         struct btrfs_block_group *cache;
4750
4751         spin_lock(&cur_trans->dirty_bgs_lock);
4752         while (!list_empty(&cur_trans->dirty_bgs)) {
4753                 cache = list_first_entry(&cur_trans->dirty_bgs,
4754                                          struct btrfs_block_group,
4755                                          dirty_list);
4756
4757                 if (!list_empty(&cache->io_list)) {
4758                         spin_unlock(&cur_trans->dirty_bgs_lock);
4759                         list_del_init(&cache->io_list);
4760                         btrfs_cleanup_bg_io(cache);
4761                         spin_lock(&cur_trans->dirty_bgs_lock);
4762                 }
4763
4764                 list_del_init(&cache->dirty_list);
4765                 spin_lock(&cache->lock);
4766                 cache->disk_cache_state = BTRFS_DC_ERROR;
4767                 spin_unlock(&cache->lock);
4768
4769                 spin_unlock(&cur_trans->dirty_bgs_lock);
4770                 btrfs_put_block_group(cache);
4771                 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4772                 spin_lock(&cur_trans->dirty_bgs_lock);
4773         }
4774         spin_unlock(&cur_trans->dirty_bgs_lock);
4775
4776         /*
4777          * Refer to the definition of io_bgs member for details why it's safe
4778          * to use it without any locking
4779          */
4780         while (!list_empty(&cur_trans->io_bgs)) {
4781                 cache = list_first_entry(&cur_trans->io_bgs,
4782                                          struct btrfs_block_group,
4783                                          io_list);
4784
4785                 list_del_init(&cache->io_list);
4786                 spin_lock(&cache->lock);
4787                 cache->disk_cache_state = BTRFS_DC_ERROR;
4788                 spin_unlock(&cache->lock);
4789                 btrfs_cleanup_bg_io(cache);
4790         }
4791 }
4792
4793 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4794 {
4795         struct btrfs_root *gang[8];
4796         int i;
4797         int ret;
4798
4799         spin_lock(&fs_info->fs_roots_radix_lock);
4800         while (1) {
4801                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4802                                                  (void **)gang, 0,
4803                                                  ARRAY_SIZE(gang),
4804                                                  BTRFS_ROOT_TRANS_TAG);
4805                 if (ret == 0)
4806                         break;
4807                 for (i = 0; i < ret; i++) {
4808                         struct btrfs_root *root = gang[i];
4809
4810                         btrfs_qgroup_free_meta_all_pertrans(root);
4811                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
4812                                         (unsigned long)btrfs_root_id(root),
4813                                         BTRFS_ROOT_TRANS_TAG);
4814                 }
4815         }
4816         spin_unlock(&fs_info->fs_roots_radix_lock);
4817 }
4818
4819 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4820                                    struct btrfs_fs_info *fs_info)
4821 {
4822         struct btrfs_device *dev, *tmp;
4823
4824         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4825         ASSERT(list_empty(&cur_trans->dirty_bgs));
4826         ASSERT(list_empty(&cur_trans->io_bgs));
4827
4828         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4829                                  post_commit_list) {
4830                 list_del_init(&dev->post_commit_list);
4831         }
4832
4833         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4834
4835         cur_trans->state = TRANS_STATE_COMMIT_START;
4836         wake_up(&fs_info->transaction_blocked_wait);
4837
4838         cur_trans->state = TRANS_STATE_UNBLOCKED;
4839         wake_up(&fs_info->transaction_wait);
4840
4841         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4842                                      EXTENT_DIRTY);
4843         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4844
4845         cur_trans->state =TRANS_STATE_COMPLETED;
4846         wake_up(&cur_trans->commit_wait);
4847 }
4848
4849 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4850 {
4851         struct btrfs_transaction *t;
4852
4853         mutex_lock(&fs_info->transaction_kthread_mutex);
4854
4855         spin_lock(&fs_info->trans_lock);
4856         while (!list_empty(&fs_info->trans_list)) {
4857                 t = list_first_entry(&fs_info->trans_list,
4858                                      struct btrfs_transaction, list);
4859                 if (t->state >= TRANS_STATE_COMMIT_PREP) {
4860                         refcount_inc(&t->use_count);
4861                         spin_unlock(&fs_info->trans_lock);
4862                         btrfs_wait_for_commit(fs_info, t->transid);
4863                         btrfs_put_transaction(t);
4864                         spin_lock(&fs_info->trans_lock);
4865                         continue;
4866                 }
4867                 if (t == fs_info->running_transaction) {
4868                         t->state = TRANS_STATE_COMMIT_DOING;
4869                         spin_unlock(&fs_info->trans_lock);
4870                         /*
4871                          * We wait for 0 num_writers since we don't hold a trans
4872                          * handle open currently for this transaction.
4873                          */
4874                         wait_event(t->writer_wait,
4875                                    atomic_read(&t->num_writers) == 0);
4876                 } else {
4877                         spin_unlock(&fs_info->trans_lock);
4878                 }
4879                 btrfs_cleanup_one_transaction(t, fs_info);
4880
4881                 spin_lock(&fs_info->trans_lock);
4882                 if (t == fs_info->running_transaction)
4883                         fs_info->running_transaction = NULL;
4884                 list_del_init(&t->list);
4885                 spin_unlock(&fs_info->trans_lock);
4886
4887                 btrfs_put_transaction(t);
4888                 trace_btrfs_transaction_commit(fs_info);
4889                 spin_lock(&fs_info->trans_lock);
4890         }
4891         spin_unlock(&fs_info->trans_lock);
4892         btrfs_destroy_all_ordered_extents(fs_info);
4893         btrfs_destroy_delayed_inodes(fs_info);
4894         btrfs_assert_delayed_root_empty(fs_info);
4895         btrfs_destroy_all_delalloc_inodes(fs_info);
4896         btrfs_drop_all_logs(fs_info);
4897         btrfs_free_all_qgroup_pertrans(fs_info);
4898         mutex_unlock(&fs_info->transaction_kthread_mutex);
4899
4900         return 0;
4901 }
4902
4903 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4904 {
4905         struct btrfs_path *path;
4906         int ret;
4907         struct extent_buffer *l;
4908         struct btrfs_key search_key;
4909         struct btrfs_key found_key;
4910         int slot;
4911
4912         path = btrfs_alloc_path();
4913         if (!path)
4914                 return -ENOMEM;
4915
4916         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4917         search_key.type = -1;
4918         search_key.offset = (u64)-1;
4919         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4920         if (ret < 0)
4921                 goto error;
4922         if (ret == 0) {
4923                 /*
4924                  * Key with offset -1 found, there would have to exist a root
4925                  * with such id, but this is out of valid range.
4926                  */
4927                 ret = -EUCLEAN;
4928                 goto error;
4929         }
4930         if (path->slots[0] > 0) {
4931                 slot = path->slots[0] - 1;
4932                 l = path->nodes[0];
4933                 btrfs_item_key_to_cpu(l, &found_key, slot);
4934                 root->free_objectid = max_t(u64, found_key.objectid + 1,
4935                                             BTRFS_FIRST_FREE_OBJECTID);
4936         } else {
4937                 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4938         }
4939         ret = 0;
4940 error:
4941         btrfs_free_path(path);
4942         return ret;
4943 }
4944
4945 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4946 {
4947         int ret;
4948         mutex_lock(&root->objectid_mutex);
4949
4950         if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4951                 btrfs_warn(root->fs_info,
4952                            "the objectid of root %llu reaches its highest value",
4953                            btrfs_root_id(root));
4954                 ret = -ENOSPC;
4955                 goto out;
4956         }
4957
4958         *objectid = root->free_objectid++;
4959         ret = 0;
4960 out:
4961         mutex_unlock(&root->objectid_mutex);
4962         return ret;
4963 }