Btrfs: prevent loops in the directory tree when creating snapshots
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/version.h>
20 #include <linux/fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/scatterlist.h>
23 #include <linux/swap.h>
24 #include <linux/radix-tree.h>
25 #include <linux/writeback.h>
26 #include <linux/buffer_head.h> // for block_sync_page
27 #include <linux/workqueue.h>
28 #include <linux/kthread.h>
29 # include <linux/freezer.h>
30 #include "crc32c.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "ref-cache.h"
40 #include "tree-log.h"
41
42 #if 0
43 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
44 {
45         if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
46                 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
47                        (unsigned long long)extent_buffer_blocknr(buf),
48                        (unsigned long long)btrfs_header_blocknr(buf));
49                 return 1;
50         }
51         return 0;
52 }
53 #endif
54
55 static struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57
58 /*
59  * end_io_wq structs are used to do processing in task context when an IO is
60  * complete.  This is used during reads to verify checksums, and it is used
61  * by writes to insert metadata for new file extents after IO is complete.
62  */
63 struct end_io_wq {
64         struct bio *bio;
65         bio_end_io_t *end_io;
66         void *private;
67         struct btrfs_fs_info *info;
68         int error;
69         int metadata;
70         struct list_head list;
71         struct btrfs_work work;
72 };
73
74 /*
75  * async submit bios are used to offload expensive checksumming
76  * onto the worker threads.  They checksum file and metadata bios
77  * just before they are sent down the IO stack.
78  */
79 struct async_submit_bio {
80         struct inode *inode;
81         struct bio *bio;
82         struct list_head list;
83         extent_submit_bio_hook_t *submit_bio_start;
84         extent_submit_bio_hook_t *submit_bio_done;
85         int rw;
86         int mirror_num;
87         unsigned long bio_flags;
88         struct btrfs_work work;
89 };
90
91 /*
92  * extents on the btree inode are pretty simple, there's one extent
93  * that covers the entire device
94  */
95 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
96                                     size_t page_offset, u64 start, u64 len,
97                                     int create)
98 {
99         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
100         struct extent_map *em;
101         int ret;
102
103         spin_lock(&em_tree->lock);
104         em = lookup_extent_mapping(em_tree, start, len);
105         if (em) {
106                 em->bdev =
107                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
108                 spin_unlock(&em_tree->lock);
109                 goto out;
110         }
111         spin_unlock(&em_tree->lock);
112
113         em = alloc_extent_map(GFP_NOFS);
114         if (!em) {
115                 em = ERR_PTR(-ENOMEM);
116                 goto out;
117         }
118         em->start = 0;
119         em->len = (u64)-1;
120         em->block_len = (u64)-1;
121         em->block_start = 0;
122         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
123
124         spin_lock(&em_tree->lock);
125         ret = add_extent_mapping(em_tree, em);
126         if (ret == -EEXIST) {
127                 u64 failed_start = em->start;
128                 u64 failed_len = em->len;
129
130                 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
131                        em->start, em->len, em->block_start);
132                 free_extent_map(em);
133                 em = lookup_extent_mapping(em_tree, start, len);
134                 if (em) {
135                         printk("after failing, found %Lu %Lu %Lu\n",
136                                em->start, em->len, em->block_start);
137                         ret = 0;
138                 } else {
139                         em = lookup_extent_mapping(em_tree, failed_start,
140                                                    failed_len);
141                         if (em) {
142                                 printk("double failure lookup gives us "
143                                        "%Lu %Lu -> %Lu\n", em->start,
144                                        em->len, em->block_start);
145                                 free_extent_map(em);
146                         }
147                         ret = -EIO;
148                 }
149         } else if (ret) {
150                 free_extent_map(em);
151                 em = NULL;
152         }
153         spin_unlock(&em_tree->lock);
154
155         if (ret)
156                 em = ERR_PTR(ret);
157 out:
158         return em;
159 }
160
161 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
162 {
163         return btrfs_crc32c(seed, data, len);
164 }
165
166 void btrfs_csum_final(u32 crc, char *result)
167 {
168         *(__le32 *)result = ~cpu_to_le32(crc);
169 }
170
171 /*
172  * compute the csum for a btree block, and either verify it or write it
173  * into the csum field of the block.
174  */
175 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
176                            int verify)
177 {
178         char result[BTRFS_CRC32_SIZE];
179         unsigned long len;
180         unsigned long cur_len;
181         unsigned long offset = BTRFS_CSUM_SIZE;
182         char *map_token = NULL;
183         char *kaddr;
184         unsigned long map_start;
185         unsigned long map_len;
186         int err;
187         u32 crc = ~(u32)0;
188
189         len = buf->len - offset;
190         while(len > 0) {
191                 err = map_private_extent_buffer(buf, offset, 32,
192                                         &map_token, &kaddr,
193                                         &map_start, &map_len, KM_USER0);
194                 if (err) {
195                         printk("failed to map extent buffer! %lu\n",
196                                offset);
197                         return 1;
198                 }
199                 cur_len = min(len, map_len - (offset - map_start));
200                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
201                                       crc, cur_len);
202                 len -= cur_len;
203                 offset += cur_len;
204                 unmap_extent_buffer(buf, map_token, KM_USER0);
205         }
206         btrfs_csum_final(crc, result);
207
208         if (verify) {
209                 /* FIXME, this is not good */
210                 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
211                         u32 val;
212                         u32 found = 0;
213                         memcpy(&found, result, BTRFS_CRC32_SIZE);
214
215                         read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
216                         printk("btrfs: %s checksum verify failed on %llu "
217                                "wanted %X found %X level %d\n",
218                                root->fs_info->sb->s_id,
219                                buf->start, val, found, btrfs_header_level(buf));
220                         return 1;
221                 }
222         } else {
223                 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
224         }
225         return 0;
226 }
227
228 /*
229  * we can't consider a given block up to date unless the transid of the
230  * block matches the transid in the parent node's pointer.  This is how we
231  * detect blocks that either didn't get written at all or got written
232  * in the wrong place.
233  */
234 static int verify_parent_transid(struct extent_io_tree *io_tree,
235                                  struct extent_buffer *eb, u64 parent_transid)
236 {
237         int ret;
238
239         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
240                 return 0;
241
242         lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
243         if (extent_buffer_uptodate(io_tree, eb) &&
244             btrfs_header_generation(eb) == parent_transid) {
245                 ret = 0;
246                 goto out;
247         }
248         printk("parent transid verify failed on %llu wanted %llu found %llu\n",
249                (unsigned long long)eb->start,
250                (unsigned long long)parent_transid,
251                (unsigned long long)btrfs_header_generation(eb));
252         ret = 1;
253         clear_extent_buffer_uptodate(io_tree, eb);
254 out:
255         unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
256                       GFP_NOFS);
257         return ret;
258 }
259
260 /*
261  * helper to read a given tree block, doing retries as required when
262  * the checksums don't match and we have alternate mirrors to try.
263  */
264 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
265                                           struct extent_buffer *eb,
266                                           u64 start, u64 parent_transid)
267 {
268         struct extent_io_tree *io_tree;
269         int ret;
270         int num_copies = 0;
271         int mirror_num = 0;
272
273         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
274         while (1) {
275                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
276                                                btree_get_extent, mirror_num);
277                 if (!ret &&
278                     !verify_parent_transid(io_tree, eb, parent_transid))
279                         return ret;
280 printk("read extent buffer pages failed with ret %d mirror no %d\n", ret, mirror_num);
281                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
282                                               eb->start, eb->len);
283                 if (num_copies == 1)
284                         return ret;
285
286                 mirror_num++;
287                 if (mirror_num > num_copies)
288                         return ret;
289         }
290         return -EIO;
291 }
292
293 /*
294  * checksum a dirty tree block before IO.  This has extra checks to make
295  * sure we only fill in the checksum field in the first page of a multi-page block
296  */
297 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
298 {
299         struct extent_io_tree *tree;
300         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
301         u64 found_start;
302         int found_level;
303         unsigned long len;
304         struct extent_buffer *eb;
305         int ret;
306
307         tree = &BTRFS_I(page->mapping->host)->io_tree;
308
309         if (page->private == EXTENT_PAGE_PRIVATE)
310                 goto out;
311         if (!page->private)
312                 goto out;
313         len = page->private >> 2;
314         if (len == 0) {
315                 WARN_ON(1);
316         }
317         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
318         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
319                                              btrfs_header_generation(eb));
320         BUG_ON(ret);
321         found_start = btrfs_header_bytenr(eb);
322         if (found_start != start) {
323                 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
324                        start, found_start, len);
325                 WARN_ON(1);
326                 goto err;
327         }
328         if (eb->first_page != page) {
329                 printk("bad first page %lu %lu\n", eb->first_page->index,
330                        page->index);
331                 WARN_ON(1);
332                 goto err;
333         }
334         if (!PageUptodate(page)) {
335                 printk("csum not up to date page %lu\n", page->index);
336                 WARN_ON(1);
337                 goto err;
338         }
339         found_level = btrfs_header_level(eb);
340
341         csum_tree_block(root, eb, 0);
342 err:
343         free_extent_buffer(eb);
344 out:
345         return 0;
346 }
347
348 static int check_tree_block_fsid(struct btrfs_root *root,
349                                  struct extent_buffer *eb)
350 {
351         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
352         u8 fsid[BTRFS_UUID_SIZE];
353         int ret = 1;
354
355         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
356                            BTRFS_FSID_SIZE);
357         while (fs_devices) {
358                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
359                         ret = 0;
360                         break;
361                 }
362                 fs_devices = fs_devices->seed;
363         }
364         return ret;
365 }
366
367 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
368                                struct extent_state *state)
369 {
370         struct extent_io_tree *tree;
371         u64 found_start;
372         int found_level;
373         unsigned long len;
374         struct extent_buffer *eb;
375         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
376         int ret = 0;
377
378         tree = &BTRFS_I(page->mapping->host)->io_tree;
379         if (page->private == EXTENT_PAGE_PRIVATE)
380                 goto out;
381         if (!page->private)
382                 goto out;
383         len = page->private >> 2;
384         if (len == 0) {
385                 WARN_ON(1);
386         }
387         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
388
389         found_start = btrfs_header_bytenr(eb);
390         if (found_start != start) {
391                 printk("bad tree block start %llu %llu\n",
392                        (unsigned long long)found_start,
393                        (unsigned long long)eb->start);
394                 ret = -EIO;
395                 goto err;
396         }
397         if (eb->first_page != page) {
398                 printk("bad first page %lu %lu\n", eb->first_page->index,
399                        page->index);
400                 WARN_ON(1);
401                 ret = -EIO;
402                 goto err;
403         }
404         if (check_tree_block_fsid(root, eb)) {
405                 printk("bad fsid on block %Lu\n", eb->start);
406                 ret = -EIO;
407                 goto err;
408         }
409         found_level = btrfs_header_level(eb);
410
411         ret = csum_tree_block(root, eb, 1);
412         if (ret)
413                 ret = -EIO;
414
415         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
416         end = eb->start + end - 1;
417 err:
418         free_extent_buffer(eb);
419 out:
420         return ret;
421 }
422
423 static void end_workqueue_bio(struct bio *bio, int err)
424 {
425         struct end_io_wq *end_io_wq = bio->bi_private;
426         struct btrfs_fs_info *fs_info;
427
428         fs_info = end_io_wq->info;
429         end_io_wq->error = err;
430         end_io_wq->work.func = end_workqueue_fn;
431         end_io_wq->work.flags = 0;
432         if (bio->bi_rw & (1 << BIO_RW))
433                 btrfs_queue_worker(&fs_info->endio_write_workers,
434                                    &end_io_wq->work);
435         else
436                 btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
437 }
438
439 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
440                         int metadata)
441 {
442         struct end_io_wq *end_io_wq;
443         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
444         if (!end_io_wq)
445                 return -ENOMEM;
446
447         end_io_wq->private = bio->bi_private;
448         end_io_wq->end_io = bio->bi_end_io;
449         end_io_wq->info = info;
450         end_io_wq->error = 0;
451         end_io_wq->bio = bio;
452         end_io_wq->metadata = metadata;
453
454         bio->bi_private = end_io_wq;
455         bio->bi_end_io = end_workqueue_bio;
456         return 0;
457 }
458
459 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
460 {
461         unsigned long limit = min_t(unsigned long,
462                                     info->workers.max_workers,
463                                     info->fs_devices->open_devices);
464         return 256 * limit;
465 }
466
467 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
468 {
469         return atomic_read(&info->nr_async_bios) >
470                 btrfs_async_submit_limit(info);
471 }
472
473 static void run_one_async_start(struct btrfs_work *work)
474 {
475         struct btrfs_fs_info *fs_info;
476         struct async_submit_bio *async;
477
478         async = container_of(work, struct  async_submit_bio, work);
479         fs_info = BTRFS_I(async->inode)->root->fs_info;
480         async->submit_bio_start(async->inode, async->rw, async->bio,
481                                async->mirror_num, async->bio_flags);
482 }
483
484 static void run_one_async_done(struct btrfs_work *work)
485 {
486         struct btrfs_fs_info *fs_info;
487         struct async_submit_bio *async;
488         int limit;
489
490         async = container_of(work, struct  async_submit_bio, work);
491         fs_info = BTRFS_I(async->inode)->root->fs_info;
492
493         limit = btrfs_async_submit_limit(fs_info);
494         limit = limit * 2 / 3;
495
496         atomic_dec(&fs_info->nr_async_submits);
497
498         if (atomic_read(&fs_info->nr_async_submits) < limit &&
499             waitqueue_active(&fs_info->async_submit_wait))
500                 wake_up(&fs_info->async_submit_wait);
501
502         async->submit_bio_done(async->inode, async->rw, async->bio,
503                                async->mirror_num, async->bio_flags);
504 }
505
506 static void run_one_async_free(struct btrfs_work *work)
507 {
508         struct async_submit_bio *async;
509
510         async = container_of(work, struct  async_submit_bio, work);
511         kfree(async);
512 }
513
514 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
515                         int rw, struct bio *bio, int mirror_num,
516                         unsigned long bio_flags,
517                         extent_submit_bio_hook_t *submit_bio_start,
518                         extent_submit_bio_hook_t *submit_bio_done)
519 {
520         struct async_submit_bio *async;
521         int limit = btrfs_async_submit_limit(fs_info);
522
523         async = kmalloc(sizeof(*async), GFP_NOFS);
524         if (!async)
525                 return -ENOMEM;
526
527         async->inode = inode;
528         async->rw = rw;
529         async->bio = bio;
530         async->mirror_num = mirror_num;
531         async->submit_bio_start = submit_bio_start;
532         async->submit_bio_done = submit_bio_done;
533
534         async->work.func = run_one_async_start;
535         async->work.ordered_func = run_one_async_done;
536         async->work.ordered_free = run_one_async_free;
537
538         async->work.flags = 0;
539         async->bio_flags = bio_flags;
540
541         while(atomic_read(&fs_info->async_submit_draining) &&
542               atomic_read(&fs_info->nr_async_submits)) {
543                 wait_event(fs_info->async_submit_wait,
544                            (atomic_read(&fs_info->nr_async_submits) == 0));
545         }
546
547         atomic_inc(&fs_info->nr_async_submits);
548         btrfs_queue_worker(&fs_info->workers, &async->work);
549
550         if (atomic_read(&fs_info->nr_async_submits) > limit) {
551                 wait_event_timeout(fs_info->async_submit_wait,
552                            (atomic_read(&fs_info->nr_async_submits) < limit),
553                            HZ/10);
554
555                 wait_event_timeout(fs_info->async_submit_wait,
556                            (atomic_read(&fs_info->nr_async_bios) < limit),
557                            HZ/10);
558         }
559
560         while(atomic_read(&fs_info->async_submit_draining) &&
561               atomic_read(&fs_info->nr_async_submits)) {
562                 wait_event(fs_info->async_submit_wait,
563                            (atomic_read(&fs_info->nr_async_submits) == 0));
564         }
565
566         return 0;
567 }
568
569 static int btree_csum_one_bio(struct bio *bio)
570 {
571         struct bio_vec *bvec = bio->bi_io_vec;
572         int bio_index = 0;
573         struct btrfs_root *root;
574
575         WARN_ON(bio->bi_vcnt <= 0);
576         while(bio_index < bio->bi_vcnt) {
577                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
578                 csum_dirty_buffer(root, bvec->bv_page);
579                 bio_index++;
580                 bvec++;
581         }
582         return 0;
583 }
584
585 static int __btree_submit_bio_start(struct inode *inode, int rw,
586                                     struct bio *bio, int mirror_num,
587                                     unsigned long bio_flags)
588 {
589         /*
590          * when we're called for a write, we're already in the async
591          * submission context.  Just jump into btrfs_map_bio
592          */
593         btree_csum_one_bio(bio);
594         return 0;
595 }
596
597 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
598                                  int mirror_num, unsigned long bio_flags)
599 {
600         /*
601          * when we're called for a write, we're already in the async
602          * submission context.  Just jump into btrfs_map_bio
603          */
604         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
605 }
606
607 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
608                                  int mirror_num, unsigned long bio_flags)
609 {
610         /*
611          * kthread helpers are used to submit writes so that checksumming
612          * can happen in parallel across all CPUs
613          */
614         if (!(rw & (1 << BIO_RW))) {
615                 int ret;
616                 /*
617                  * called for a read, do the setup so that checksum validation
618                  * can happen in the async kernel threads
619                  */
620                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
621                                           bio, 1);
622                 BUG_ON(ret);
623
624                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
625                                      mirror_num, 0);
626         }
627         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
628                                    inode, rw, bio, mirror_num, 0,
629                                    __btree_submit_bio_start,
630                                    __btree_submit_bio_done);
631 }
632
633 static int btree_writepage(struct page *page, struct writeback_control *wbc)
634 {
635         struct extent_io_tree *tree;
636         tree = &BTRFS_I(page->mapping->host)->io_tree;
637
638         if (current->flags & PF_MEMALLOC) {
639                 redirty_page_for_writepage(wbc, page);
640                 unlock_page(page);
641                 return 0;
642         }
643         return extent_write_full_page(tree, page, btree_get_extent, wbc);
644 }
645
646 static int btree_writepages(struct address_space *mapping,
647                             struct writeback_control *wbc)
648 {
649         struct extent_io_tree *tree;
650         tree = &BTRFS_I(mapping->host)->io_tree;
651         if (wbc->sync_mode == WB_SYNC_NONE) {
652                 u64 num_dirty;
653                 u64 start = 0;
654                 unsigned long thresh = 32 * 1024 * 1024;
655
656                 if (wbc->for_kupdate)
657                         return 0;
658
659                 num_dirty = count_range_bits(tree, &start, (u64)-1,
660                                              thresh, EXTENT_DIRTY);
661                 if (num_dirty < thresh) {
662                         return 0;
663                 }
664         }
665         return extent_writepages(tree, mapping, btree_get_extent, wbc);
666 }
667
668 int btree_readpage(struct file *file, struct page *page)
669 {
670         struct extent_io_tree *tree;
671         tree = &BTRFS_I(page->mapping->host)->io_tree;
672         return extent_read_full_page(tree, page, btree_get_extent);
673 }
674
675 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
676 {
677         struct extent_io_tree *tree;
678         struct extent_map_tree *map;
679         int ret;
680
681         if (PageWriteback(page) || PageDirty(page))
682             return 0;
683
684         tree = &BTRFS_I(page->mapping->host)->io_tree;
685         map = &BTRFS_I(page->mapping->host)->extent_tree;
686
687         ret = try_release_extent_state(map, tree, page, gfp_flags);
688         if (!ret) {
689                 return 0;
690         }
691
692         ret = try_release_extent_buffer(tree, page);
693         if (ret == 1) {
694                 ClearPagePrivate(page);
695                 set_page_private(page, 0);
696                 page_cache_release(page);
697         }
698
699         return ret;
700 }
701
702 static void btree_invalidatepage(struct page *page, unsigned long offset)
703 {
704         struct extent_io_tree *tree;
705         tree = &BTRFS_I(page->mapping->host)->io_tree;
706         extent_invalidatepage(tree, page, offset);
707         btree_releasepage(page, GFP_NOFS);
708         if (PagePrivate(page)) {
709                 printk("warning page private not zero on page %Lu\n",
710                        page_offset(page));
711                 ClearPagePrivate(page);
712                 set_page_private(page, 0);
713                 page_cache_release(page);
714         }
715 }
716
717 #if 0
718 static int btree_writepage(struct page *page, struct writeback_control *wbc)
719 {
720         struct buffer_head *bh;
721         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
722         struct buffer_head *head;
723         if (!page_has_buffers(page)) {
724                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
725                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
726         }
727         head = page_buffers(page);
728         bh = head;
729         do {
730                 if (buffer_dirty(bh))
731                         csum_tree_block(root, bh, 0);
732                 bh = bh->b_this_page;
733         } while (bh != head);
734         return block_write_full_page(page, btree_get_block, wbc);
735 }
736 #endif
737
738 static struct address_space_operations btree_aops = {
739         .readpage       = btree_readpage,
740         .writepage      = btree_writepage,
741         .writepages     = btree_writepages,
742         .releasepage    = btree_releasepage,
743         .invalidatepage = btree_invalidatepage,
744         .sync_page      = block_sync_page,
745 };
746
747 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
748                          u64 parent_transid)
749 {
750         struct extent_buffer *buf = NULL;
751         struct inode *btree_inode = root->fs_info->btree_inode;
752         int ret = 0;
753
754         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
755         if (!buf)
756                 return 0;
757         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
758                                  buf, 0, 0, btree_get_extent, 0);
759         free_extent_buffer(buf);
760         return ret;
761 }
762
763 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
764                                             u64 bytenr, u32 blocksize)
765 {
766         struct inode *btree_inode = root->fs_info->btree_inode;
767         struct extent_buffer *eb;
768         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
769                                 bytenr, blocksize, GFP_NOFS);
770         return eb;
771 }
772
773 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
774                                                  u64 bytenr, u32 blocksize)
775 {
776         struct inode *btree_inode = root->fs_info->btree_inode;
777         struct extent_buffer *eb;
778
779         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
780                                  bytenr, blocksize, NULL, GFP_NOFS);
781         return eb;
782 }
783
784
785 int btrfs_write_tree_block(struct extent_buffer *buf)
786 {
787         return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
788                                       buf->start + buf->len - 1, WB_SYNC_ALL);
789 }
790
791 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
792 {
793         return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
794                                   buf->start, buf->start + buf->len -1);
795 }
796
797 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
798                                       u32 blocksize, u64 parent_transid)
799 {
800         struct extent_buffer *buf = NULL;
801         struct inode *btree_inode = root->fs_info->btree_inode;
802         struct extent_io_tree *io_tree;
803         int ret;
804
805         io_tree = &BTRFS_I(btree_inode)->io_tree;
806
807         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
808         if (!buf)
809                 return NULL;
810
811         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
812
813         if (ret == 0) {
814                 buf->flags |= EXTENT_UPTODATE;
815         } else {
816                 WARN_ON(1);
817         }
818         return buf;
819
820 }
821
822 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
823                      struct extent_buffer *buf)
824 {
825         struct inode *btree_inode = root->fs_info->btree_inode;
826         if (btrfs_header_generation(buf) ==
827             root->fs_info->running_transaction->transid) {
828                 WARN_ON(!btrfs_tree_locked(buf));
829                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
830                                           buf);
831         }
832         return 0;
833 }
834
835 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
836                         u32 stripesize, struct btrfs_root *root,
837                         struct btrfs_fs_info *fs_info,
838                         u64 objectid)
839 {
840         root->node = NULL;
841         root->commit_root = NULL;
842         root->ref_tree = NULL;
843         root->sectorsize = sectorsize;
844         root->nodesize = nodesize;
845         root->leafsize = leafsize;
846         root->stripesize = stripesize;
847         root->ref_cows = 0;
848         root->track_dirty = 0;
849
850         root->fs_info = fs_info;
851         root->objectid = objectid;
852         root->last_trans = 0;
853         root->highest_inode = 0;
854         root->last_inode_alloc = 0;
855         root->name = NULL;
856         root->in_sysfs = 0;
857
858         INIT_LIST_HEAD(&root->dirty_list);
859         INIT_LIST_HEAD(&root->orphan_list);
860         INIT_LIST_HEAD(&root->dead_list);
861         spin_lock_init(&root->node_lock);
862         spin_lock_init(&root->list_lock);
863         mutex_init(&root->objectid_mutex);
864         mutex_init(&root->log_mutex);
865         extent_io_tree_init(&root->dirty_log_pages,
866                              fs_info->btree_inode->i_mapping, GFP_NOFS);
867
868         btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
869         root->ref_tree = &root->ref_tree_struct;
870
871         memset(&root->root_key, 0, sizeof(root->root_key));
872         memset(&root->root_item, 0, sizeof(root->root_item));
873         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
874         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
875         root->defrag_trans_start = fs_info->generation;
876         init_completion(&root->kobj_unregister);
877         root->defrag_running = 0;
878         root->defrag_level = 0;
879         root->root_key.objectid = objectid;
880         root->anon_super.s_root = NULL;
881         root->anon_super.s_dev = 0;
882         INIT_LIST_HEAD(&root->anon_super.s_list);
883         INIT_LIST_HEAD(&root->anon_super.s_instances);
884         init_rwsem(&root->anon_super.s_umount);
885
886         return 0;
887 }
888
889 static int find_and_setup_root(struct btrfs_root *tree_root,
890                                struct btrfs_fs_info *fs_info,
891                                u64 objectid,
892                                struct btrfs_root *root)
893 {
894         int ret;
895         u32 blocksize;
896         u64 generation;
897
898         __setup_root(tree_root->nodesize, tree_root->leafsize,
899                      tree_root->sectorsize, tree_root->stripesize,
900                      root, fs_info, objectid);
901         ret = btrfs_find_last_root(tree_root, objectid,
902                                    &root->root_item, &root->root_key);
903         BUG_ON(ret);
904
905         generation = btrfs_root_generation(&root->root_item);
906         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
907         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
908                                      blocksize, generation);
909         BUG_ON(!root->node);
910         return 0;
911 }
912
913 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
914                              struct btrfs_fs_info *fs_info)
915 {
916         struct extent_buffer *eb;
917         struct btrfs_root *log_root_tree = fs_info->log_root_tree;
918         u64 start = 0;
919         u64 end = 0;
920         int ret;
921
922         if (!log_root_tree)
923                 return 0;
924
925         while(1) {
926                 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
927                                     0, &start, &end, EXTENT_DIRTY);
928                 if (ret)
929                         break;
930
931                 clear_extent_dirty(&log_root_tree->dirty_log_pages,
932                                    start, end, GFP_NOFS);
933         }
934         eb = fs_info->log_root_tree->node;
935
936         WARN_ON(btrfs_header_level(eb) != 0);
937         WARN_ON(btrfs_header_nritems(eb) != 0);
938
939         ret = btrfs_free_reserved_extent(fs_info->tree_root,
940                                 eb->start, eb->len);
941         BUG_ON(ret);
942
943         free_extent_buffer(eb);
944         kfree(fs_info->log_root_tree);
945         fs_info->log_root_tree = NULL;
946         return 0;
947 }
948
949 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
950                              struct btrfs_fs_info *fs_info)
951 {
952         struct btrfs_root *root;
953         struct btrfs_root *tree_root = fs_info->tree_root;
954
955         root = kzalloc(sizeof(*root), GFP_NOFS);
956         if (!root)
957                 return -ENOMEM;
958
959         __setup_root(tree_root->nodesize, tree_root->leafsize,
960                      tree_root->sectorsize, tree_root->stripesize,
961                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
962
963         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
964         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
965         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
966         root->ref_cows = 0;
967
968         root->node = btrfs_alloc_free_block(trans, root, root->leafsize,
969                                             0, BTRFS_TREE_LOG_OBJECTID,
970                                             trans->transid, 0, 0, 0);
971
972         btrfs_set_header_nritems(root->node, 0);
973         btrfs_set_header_level(root->node, 0);
974         btrfs_set_header_bytenr(root->node, root->node->start);
975         btrfs_set_header_generation(root->node, trans->transid);
976         btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
977
978         write_extent_buffer(root->node, root->fs_info->fsid,
979                             (unsigned long)btrfs_header_fsid(root->node),
980                             BTRFS_FSID_SIZE);
981         btrfs_mark_buffer_dirty(root->node);
982         btrfs_tree_unlock(root->node);
983         fs_info->log_root_tree = root;
984         return 0;
985 }
986
987 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
988                                                struct btrfs_key *location)
989 {
990         struct btrfs_root *root;
991         struct btrfs_fs_info *fs_info = tree_root->fs_info;
992         struct btrfs_path *path;
993         struct extent_buffer *l;
994         u64 highest_inode;
995         u64 generation;
996         u32 blocksize;
997         int ret = 0;
998
999         root = kzalloc(sizeof(*root), GFP_NOFS);
1000         if (!root)
1001                 return ERR_PTR(-ENOMEM);
1002         if (location->offset == (u64)-1) {
1003                 ret = find_and_setup_root(tree_root, fs_info,
1004                                           location->objectid, root);
1005                 if (ret) {
1006                         kfree(root);
1007                         return ERR_PTR(ret);
1008                 }
1009                 goto insert;
1010         }
1011
1012         __setup_root(tree_root->nodesize, tree_root->leafsize,
1013                      tree_root->sectorsize, tree_root->stripesize,
1014                      root, fs_info, location->objectid);
1015
1016         path = btrfs_alloc_path();
1017         BUG_ON(!path);
1018         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1019         if (ret != 0) {
1020                 if (ret > 0)
1021                         ret = -ENOENT;
1022                 goto out;
1023         }
1024         l = path->nodes[0];
1025         read_extent_buffer(l, &root->root_item,
1026                btrfs_item_ptr_offset(l, path->slots[0]),
1027                sizeof(root->root_item));
1028         memcpy(&root->root_key, location, sizeof(*location));
1029         ret = 0;
1030 out:
1031         btrfs_release_path(root, path);
1032         btrfs_free_path(path);
1033         if (ret) {
1034                 kfree(root);
1035                 return ERR_PTR(ret);
1036         }
1037         generation = btrfs_root_generation(&root->root_item);
1038         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1039         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1040                                      blocksize, generation);
1041         BUG_ON(!root->node);
1042 insert:
1043         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1044                 root->ref_cows = 1;
1045                 ret = btrfs_find_highest_inode(root, &highest_inode);
1046                 if (ret == 0) {
1047                         root->highest_inode = highest_inode;
1048                         root->last_inode_alloc = highest_inode;
1049                 }
1050         }
1051         return root;
1052 }
1053
1054 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1055                                         u64 root_objectid)
1056 {
1057         struct btrfs_root *root;
1058
1059         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1060                 return fs_info->tree_root;
1061         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1062                 return fs_info->extent_root;
1063
1064         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1065                                  (unsigned long)root_objectid);
1066         return root;
1067 }
1068
1069 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1070                                               struct btrfs_key *location)
1071 {
1072         struct btrfs_root *root;
1073         int ret;
1074
1075         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1076                 return fs_info->tree_root;
1077         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1078                 return fs_info->extent_root;
1079         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1080                 return fs_info->chunk_root;
1081         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1082                 return fs_info->dev_root;
1083
1084         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1085                                  (unsigned long)location->objectid);
1086         if (root)
1087                 return root;
1088
1089         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1090         if (IS_ERR(root))
1091                 return root;
1092
1093         set_anon_super(&root->anon_super, NULL);
1094
1095         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1096                                 (unsigned long)root->root_key.objectid,
1097                                 root);
1098         if (ret) {
1099                 free_extent_buffer(root->node);
1100                 kfree(root);
1101                 return ERR_PTR(ret);
1102         }
1103         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1104                 ret = btrfs_find_dead_roots(fs_info->tree_root,
1105                                             root->root_key.objectid, root);
1106                 BUG_ON(ret);
1107                 btrfs_orphan_cleanup(root);
1108         }
1109         return root;
1110 }
1111
1112 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1113                                       struct btrfs_key *location,
1114                                       const char *name, int namelen)
1115 {
1116         struct btrfs_root *root;
1117         int ret;
1118
1119         root = btrfs_read_fs_root_no_name(fs_info, location);
1120         if (!root)
1121                 return NULL;
1122
1123         if (root->in_sysfs)
1124                 return root;
1125
1126         ret = btrfs_set_root_name(root, name, namelen);
1127         if (ret) {
1128                 free_extent_buffer(root->node);
1129                 kfree(root);
1130                 return ERR_PTR(ret);
1131         }
1132 #if 0
1133         ret = btrfs_sysfs_add_root(root);
1134         if (ret) {
1135                 free_extent_buffer(root->node);
1136                 kfree(root->name);
1137                 kfree(root);
1138                 return ERR_PTR(ret);
1139         }
1140 #endif
1141         root->in_sysfs = 1;
1142         return root;
1143 }
1144 #if 0
1145 static int add_hasher(struct btrfs_fs_info *info, char *type) {
1146         struct btrfs_hasher *hasher;
1147
1148         hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
1149         if (!hasher)
1150                 return -ENOMEM;
1151         hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
1152         if (!hasher->hash_tfm) {
1153                 kfree(hasher);
1154                 return -EINVAL;
1155         }
1156         spin_lock(&info->hash_lock);
1157         list_add(&hasher->list, &info->hashers);
1158         spin_unlock(&info->hash_lock);
1159         return 0;
1160 }
1161 #endif
1162
1163 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1164 {
1165         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1166         int ret = 0;
1167         struct list_head *cur;
1168         struct btrfs_device *device;
1169         struct backing_dev_info *bdi;
1170 #if 0
1171         if ((bdi_bits & (1 << BDI_write_congested)) &&
1172             btrfs_congested_async(info, 0))
1173                 return 1;
1174 #endif
1175         list_for_each(cur, &info->fs_devices->devices) {
1176                 device = list_entry(cur, struct btrfs_device, dev_list);
1177                 if (!device->bdev)
1178                         continue;
1179                 bdi = blk_get_backing_dev_info(device->bdev);
1180                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1181                         ret = 1;
1182                         break;
1183                 }
1184         }
1185         return ret;
1186 }
1187
1188 /*
1189  * this unplugs every device on the box, and it is only used when page
1190  * is null
1191  */
1192 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1193 {
1194         struct list_head *cur;
1195         struct btrfs_device *device;
1196         struct btrfs_fs_info *info;
1197
1198         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1199         list_for_each(cur, &info->fs_devices->devices) {
1200                 device = list_entry(cur, struct btrfs_device, dev_list);
1201                 bdi = blk_get_backing_dev_info(device->bdev);
1202                 if (bdi->unplug_io_fn) {
1203                         bdi->unplug_io_fn(bdi, page);
1204                 }
1205         }
1206 }
1207
1208 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1209 {
1210         struct inode *inode;
1211         struct extent_map_tree *em_tree;
1212         struct extent_map *em;
1213         struct address_space *mapping;
1214         u64 offset;
1215
1216         /* the generic O_DIRECT read code does this */
1217         if (!page) {
1218                 __unplug_io_fn(bdi, page);
1219                 return;
1220         }
1221
1222         /*
1223          * page->mapping may change at any time.  Get a consistent copy
1224          * and use that for everything below
1225          */
1226         smp_mb();
1227         mapping = page->mapping;
1228         if (!mapping)
1229                 return;
1230
1231         inode = mapping->host;
1232
1233         /*
1234          * don't do the expensive searching for a small number of
1235          * devices
1236          */
1237         if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1238                 __unplug_io_fn(bdi, page);
1239                 return;
1240         }
1241
1242         offset = page_offset(page);
1243
1244         em_tree = &BTRFS_I(inode)->extent_tree;
1245         spin_lock(&em_tree->lock);
1246         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1247         spin_unlock(&em_tree->lock);
1248         if (!em) {
1249                 __unplug_io_fn(bdi, page);
1250                 return;
1251         }
1252
1253         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1254                 free_extent_map(em);
1255                 __unplug_io_fn(bdi, page);
1256                 return;
1257         }
1258         offset = offset - em->start;
1259         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1260                           em->block_start + offset, page);
1261         free_extent_map(em);
1262 }
1263
1264 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1265 {
1266         bdi_init(bdi);
1267         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1268         bdi->state              = 0;
1269         bdi->capabilities       = default_backing_dev_info.capabilities;
1270         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
1271         bdi->unplug_io_data     = info;
1272         bdi->congested_fn       = btrfs_congested_fn;
1273         bdi->congested_data     = info;
1274         return 0;
1275 }
1276
1277 static int bio_ready_for_csum(struct bio *bio)
1278 {
1279         u64 length = 0;
1280         u64 buf_len = 0;
1281         u64 start = 0;
1282         struct page *page;
1283         struct extent_io_tree *io_tree = NULL;
1284         struct btrfs_fs_info *info = NULL;
1285         struct bio_vec *bvec;
1286         int i;
1287         int ret;
1288
1289         bio_for_each_segment(bvec, bio, i) {
1290                 page = bvec->bv_page;
1291                 if (page->private == EXTENT_PAGE_PRIVATE) {
1292                         length += bvec->bv_len;
1293                         continue;
1294                 }
1295                 if (!page->private) {
1296                         length += bvec->bv_len;
1297                         continue;
1298                 }
1299                 length = bvec->bv_len;
1300                 buf_len = page->private >> 2;
1301                 start = page_offset(page) + bvec->bv_offset;
1302                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1303                 info = BTRFS_I(page->mapping->host)->root->fs_info;
1304         }
1305         /* are we fully contained in this bio? */
1306         if (buf_len <= length)
1307                 return 1;
1308
1309         ret = extent_range_uptodate(io_tree, start + length,
1310                                     start + buf_len - 1);
1311         if (ret == 1)
1312                 return ret;
1313         return ret;
1314 }
1315
1316 /*
1317  * called by the kthread helper functions to finally call the bio end_io
1318  * functions.  This is where read checksum verification actually happens
1319  */
1320 static void end_workqueue_fn(struct btrfs_work *work)
1321 {
1322         struct bio *bio;
1323         struct end_io_wq *end_io_wq;
1324         struct btrfs_fs_info *fs_info;
1325         int error;
1326
1327         end_io_wq = container_of(work, struct end_io_wq, work);
1328         bio = end_io_wq->bio;
1329         fs_info = end_io_wq->info;
1330
1331         /* metadata bios are special because the whole tree block must
1332          * be checksummed at once.  This makes sure the entire block is in
1333          * ram and up to date before trying to verify things.  For
1334          * blocksize <= pagesize, it is basically a noop
1335          */
1336         if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1337                 btrfs_queue_worker(&fs_info->endio_workers,
1338                                    &end_io_wq->work);
1339                 return;
1340         }
1341         error = end_io_wq->error;
1342         bio->bi_private = end_io_wq->private;
1343         bio->bi_end_io = end_io_wq->end_io;
1344         kfree(end_io_wq);
1345         bio_endio(bio, error);
1346 }
1347
1348 static int cleaner_kthread(void *arg)
1349 {
1350         struct btrfs_root *root = arg;
1351
1352         do {
1353                 smp_mb();
1354                 if (root->fs_info->closing)
1355                         break;
1356
1357                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1358                 mutex_lock(&root->fs_info->cleaner_mutex);
1359                 btrfs_clean_old_snapshots(root);
1360                 mutex_unlock(&root->fs_info->cleaner_mutex);
1361
1362                 if (freezing(current)) {
1363                         refrigerator();
1364                 } else {
1365                         smp_mb();
1366                         if (root->fs_info->closing)
1367                                 break;
1368                         set_current_state(TASK_INTERRUPTIBLE);
1369                         schedule();
1370                         __set_current_state(TASK_RUNNING);
1371                 }
1372         } while (!kthread_should_stop());
1373         return 0;
1374 }
1375
1376 static int transaction_kthread(void *arg)
1377 {
1378         struct btrfs_root *root = arg;
1379         struct btrfs_trans_handle *trans;
1380         struct btrfs_transaction *cur;
1381         unsigned long now;
1382         unsigned long delay;
1383         int ret;
1384
1385         do {
1386                 smp_mb();
1387                 if (root->fs_info->closing)
1388                         break;
1389
1390                 delay = HZ * 30;
1391                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1392                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1393
1394                 if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
1395                         printk("btrfs: total reference cache size %Lu\n",
1396                                 root->fs_info->total_ref_cache_size);
1397                 }
1398
1399                 mutex_lock(&root->fs_info->trans_mutex);
1400                 cur = root->fs_info->running_transaction;
1401                 if (!cur) {
1402                         mutex_unlock(&root->fs_info->trans_mutex);
1403                         goto sleep;
1404                 }
1405
1406                 now = get_seconds();
1407                 if (now < cur->start_time || now - cur->start_time < 30) {
1408                         mutex_unlock(&root->fs_info->trans_mutex);
1409                         delay = HZ * 5;
1410                         goto sleep;
1411                 }
1412                 mutex_unlock(&root->fs_info->trans_mutex);
1413                 trans = btrfs_start_transaction(root, 1);
1414                 ret = btrfs_commit_transaction(trans, root);
1415 sleep:
1416                 wake_up_process(root->fs_info->cleaner_kthread);
1417                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1418
1419                 if (freezing(current)) {
1420                         refrigerator();
1421                 } else {
1422                         if (root->fs_info->closing)
1423                                 break;
1424                         set_current_state(TASK_INTERRUPTIBLE);
1425                         schedule_timeout(delay);
1426                         __set_current_state(TASK_RUNNING);
1427                 }
1428         } while (!kthread_should_stop());
1429         return 0;
1430 }
1431
1432 struct btrfs_root *open_ctree(struct super_block *sb,
1433                               struct btrfs_fs_devices *fs_devices,
1434                               char *options)
1435 {
1436         u32 sectorsize;
1437         u32 nodesize;
1438         u32 leafsize;
1439         u32 blocksize;
1440         u32 stripesize;
1441         u64 generation;
1442         struct btrfs_key location;
1443         struct buffer_head *bh;
1444         struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1445                                                  GFP_NOFS);
1446         struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1447                                                GFP_NOFS);
1448         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1449                                                 GFP_NOFS);
1450         struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1451                                                 GFP_NOFS);
1452         struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1453                                               GFP_NOFS);
1454         struct btrfs_root *log_tree_root;
1455
1456         int ret;
1457         int err = -EINVAL;
1458
1459         struct btrfs_super_block *disk_super;
1460
1461         if (!extent_root || !tree_root || !fs_info ||
1462             !chunk_root || !dev_root) {
1463                 err = -ENOMEM;
1464                 goto fail;
1465         }
1466         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1467         INIT_LIST_HEAD(&fs_info->trans_list);
1468         INIT_LIST_HEAD(&fs_info->dead_roots);
1469         INIT_LIST_HEAD(&fs_info->hashers);
1470         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1471         spin_lock_init(&fs_info->hash_lock);
1472         spin_lock_init(&fs_info->delalloc_lock);
1473         spin_lock_init(&fs_info->new_trans_lock);
1474         spin_lock_init(&fs_info->ref_cache_lock);
1475
1476         init_completion(&fs_info->kobj_unregister);
1477         fs_info->tree_root = tree_root;
1478         fs_info->extent_root = extent_root;
1479         fs_info->chunk_root = chunk_root;
1480         fs_info->dev_root = dev_root;
1481         fs_info->fs_devices = fs_devices;
1482         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1483         INIT_LIST_HEAD(&fs_info->space_info);
1484         btrfs_mapping_init(&fs_info->mapping_tree);
1485         atomic_set(&fs_info->nr_async_submits, 0);
1486         atomic_set(&fs_info->async_delalloc_pages, 0);
1487         atomic_set(&fs_info->async_submit_draining, 0);
1488         atomic_set(&fs_info->nr_async_bios, 0);
1489         atomic_set(&fs_info->throttles, 0);
1490         atomic_set(&fs_info->throttle_gen, 0);
1491         fs_info->sb = sb;
1492         fs_info->max_extent = (u64)-1;
1493         fs_info->max_inline = 8192 * 1024;
1494         setup_bdi(fs_info, &fs_info->bdi);
1495         fs_info->btree_inode = new_inode(sb);
1496         fs_info->btree_inode->i_ino = 1;
1497         fs_info->btree_inode->i_nlink = 1;
1498
1499         fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
1500
1501         INIT_LIST_HEAD(&fs_info->ordered_extents);
1502         spin_lock_init(&fs_info->ordered_extent_lock);
1503
1504         sb->s_blocksize = 4096;
1505         sb->s_blocksize_bits = blksize_bits(4096);
1506
1507         /*
1508          * we set the i_size on the btree inode to the max possible int.
1509          * the real end of the address space is determined by all of
1510          * the devices in the system
1511          */
1512         fs_info->btree_inode->i_size = OFFSET_MAX;
1513         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1514         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1515
1516         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1517                              fs_info->btree_inode->i_mapping,
1518                              GFP_NOFS);
1519         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1520                              GFP_NOFS);
1521
1522         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1523
1524         spin_lock_init(&fs_info->block_group_cache_lock);
1525         fs_info->block_group_cache_tree.rb_node = NULL;
1526
1527         extent_io_tree_init(&fs_info->pinned_extents,
1528                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1529         extent_io_tree_init(&fs_info->pending_del,
1530                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1531         extent_io_tree_init(&fs_info->extent_ins,
1532                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1533         fs_info->do_barriers = 1;
1534
1535         INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
1536         btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
1537         btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
1538
1539         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1540         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1541                sizeof(struct btrfs_key));
1542         insert_inode_hash(fs_info->btree_inode);
1543
1544         mutex_init(&fs_info->trans_mutex);
1545         mutex_init(&fs_info->tree_log_mutex);
1546         mutex_init(&fs_info->drop_mutex);
1547         mutex_init(&fs_info->extent_ins_mutex);
1548         mutex_init(&fs_info->pinned_mutex);
1549         mutex_init(&fs_info->chunk_mutex);
1550         mutex_init(&fs_info->transaction_kthread_mutex);
1551         mutex_init(&fs_info->cleaner_mutex);
1552         mutex_init(&fs_info->volume_mutex);
1553         mutex_init(&fs_info->tree_reloc_mutex);
1554         init_waitqueue_head(&fs_info->transaction_throttle);
1555         init_waitqueue_head(&fs_info->transaction_wait);
1556         init_waitqueue_head(&fs_info->async_submit_wait);
1557         init_waitqueue_head(&fs_info->tree_log_wait);
1558         atomic_set(&fs_info->tree_log_commit, 0);
1559         atomic_set(&fs_info->tree_log_writers, 0);
1560         fs_info->tree_log_transid = 0;
1561
1562 #if 0
1563         ret = add_hasher(fs_info, "crc32c");
1564         if (ret) {
1565                 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1566                 err = -ENOMEM;
1567                 goto fail_iput;
1568         }
1569 #endif
1570         __setup_root(4096, 4096, 4096, 4096, tree_root,
1571                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1572
1573
1574         bh = __bread(fs_devices->latest_bdev,
1575                      BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
1576         if (!bh)
1577                 goto fail_iput;
1578
1579         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1580         brelse(bh);
1581
1582         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1583
1584         disk_super = &fs_info->super_copy;
1585         if (!btrfs_super_root(disk_super))
1586                 goto fail_sb_buffer;
1587
1588         ret = btrfs_parse_options(tree_root, options);
1589         if (ret) {
1590                 err = ret;
1591                 goto fail_sb_buffer;
1592         }
1593
1594         /*
1595          * we need to start all the end_io workers up front because the
1596          * queue work function gets called at interrupt time, and so it
1597          * cannot dynamically grow.
1598          */
1599         btrfs_init_workers(&fs_info->workers, "worker",
1600                            fs_info->thread_pool_size);
1601
1602         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1603                            fs_info->thread_pool_size);
1604
1605         btrfs_init_workers(&fs_info->submit_workers, "submit",
1606                            min_t(u64, fs_devices->num_devices,
1607                            fs_info->thread_pool_size));
1608
1609         /* a higher idle thresh on the submit workers makes it much more
1610          * likely that bios will be send down in a sane order to the
1611          * devices
1612          */
1613         fs_info->submit_workers.idle_thresh = 64;
1614
1615         fs_info->workers.idle_thresh = 16;
1616         fs_info->workers.ordered = 1;
1617
1618         fs_info->delalloc_workers.idle_thresh = 2;
1619         fs_info->delalloc_workers.ordered = 1;
1620
1621         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1622         btrfs_init_workers(&fs_info->endio_workers, "endio",
1623                            fs_info->thread_pool_size);
1624         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1625                            fs_info->thread_pool_size);
1626
1627         /*
1628          * endios are largely parallel and should have a very
1629          * low idle thresh
1630          */
1631         fs_info->endio_workers.idle_thresh = 4;
1632         fs_info->endio_write_workers.idle_thresh = 64;
1633
1634         btrfs_start_workers(&fs_info->workers, 1);
1635         btrfs_start_workers(&fs_info->submit_workers, 1);
1636         btrfs_start_workers(&fs_info->delalloc_workers, 1);
1637         btrfs_start_workers(&fs_info->fixup_workers, 1);
1638         btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1639         btrfs_start_workers(&fs_info->endio_write_workers,
1640                             fs_info->thread_pool_size);
1641
1642         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1643         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1644                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1645
1646         nodesize = btrfs_super_nodesize(disk_super);
1647         leafsize = btrfs_super_leafsize(disk_super);
1648         sectorsize = btrfs_super_sectorsize(disk_super);
1649         stripesize = btrfs_super_stripesize(disk_super);
1650         tree_root->nodesize = nodesize;
1651         tree_root->leafsize = leafsize;
1652         tree_root->sectorsize = sectorsize;
1653         tree_root->stripesize = stripesize;
1654
1655         sb->s_blocksize = sectorsize;
1656         sb->s_blocksize_bits = blksize_bits(sectorsize);
1657
1658         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1659                     sizeof(disk_super->magic))) {
1660                 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1661                 goto fail_sb_buffer;
1662         }
1663
1664         mutex_lock(&fs_info->chunk_mutex);
1665         ret = btrfs_read_sys_array(tree_root);
1666         mutex_unlock(&fs_info->chunk_mutex);
1667         if (ret) {
1668                 printk("btrfs: failed to read the system array on %s\n",
1669                        sb->s_id);
1670                 goto fail_sys_array;
1671         }
1672
1673         blocksize = btrfs_level_size(tree_root,
1674                                      btrfs_super_chunk_root_level(disk_super));
1675         generation = btrfs_super_chunk_root_generation(disk_super);
1676
1677         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1678                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1679
1680         chunk_root->node = read_tree_block(chunk_root,
1681                                            btrfs_super_chunk_root(disk_super),
1682                                            blocksize, generation);
1683         BUG_ON(!chunk_root->node);
1684
1685         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1686                  (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1687                  BTRFS_UUID_SIZE);
1688
1689         mutex_lock(&fs_info->chunk_mutex);
1690         ret = btrfs_read_chunk_tree(chunk_root);
1691         mutex_unlock(&fs_info->chunk_mutex);
1692         if (ret) {
1693                 printk("btrfs: failed to read chunk tree on %s\n", sb->s_id);
1694                 goto fail_chunk_root;
1695         }
1696
1697         btrfs_close_extra_devices(fs_devices);
1698
1699         blocksize = btrfs_level_size(tree_root,
1700                                      btrfs_super_root_level(disk_super));
1701         generation = btrfs_super_generation(disk_super);
1702
1703         tree_root->node = read_tree_block(tree_root,
1704                                           btrfs_super_root(disk_super),
1705                                           blocksize, generation);
1706         if (!tree_root->node)
1707                 goto fail_chunk_root;
1708
1709
1710         ret = find_and_setup_root(tree_root, fs_info,
1711                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1712         if (ret)
1713                 goto fail_tree_root;
1714         extent_root->track_dirty = 1;
1715
1716         ret = find_and_setup_root(tree_root, fs_info,
1717                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1718         dev_root->track_dirty = 1;
1719
1720         if (ret)
1721                 goto fail_extent_root;
1722
1723         btrfs_read_block_groups(extent_root);
1724
1725         fs_info->generation = generation + 1;
1726         fs_info->last_trans_committed = generation;
1727         fs_info->data_alloc_profile = (u64)-1;
1728         fs_info->metadata_alloc_profile = (u64)-1;
1729         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1730         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1731                                                "btrfs-cleaner");
1732         if (!fs_info->cleaner_kthread)
1733                 goto fail_extent_root;
1734
1735         fs_info->transaction_kthread = kthread_run(transaction_kthread,
1736                                                    tree_root,
1737                                                    "btrfs-transaction");
1738         if (!fs_info->transaction_kthread)
1739                 goto fail_cleaner;
1740
1741         if (sb->s_flags & MS_RDONLY)
1742                 goto read_fs_root;
1743
1744         if (btrfs_super_log_root(disk_super) != 0) {
1745                 u32 blocksize;
1746                 u64 bytenr = btrfs_super_log_root(disk_super);
1747
1748                 blocksize =
1749                      btrfs_level_size(tree_root,
1750                                       btrfs_super_log_root_level(disk_super));
1751
1752                 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1753                                                       GFP_NOFS);
1754
1755                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1756                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1757
1758                 log_tree_root->node = read_tree_block(tree_root, bytenr,
1759                                                       blocksize,
1760                                                       generation + 1);
1761                 ret = btrfs_recover_log_trees(log_tree_root);
1762                 BUG_ON(ret);
1763         }
1764
1765         ret = btrfs_cleanup_reloc_trees(tree_root);
1766         BUG_ON(ret);
1767
1768         location.objectid = BTRFS_FS_TREE_OBJECTID;
1769         location.type = BTRFS_ROOT_ITEM_KEY;
1770         location.offset = (u64)-1;
1771
1772 read_fs_root:
1773         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1774         if (!fs_info->fs_root)
1775                 goto fail_cleaner;
1776         return tree_root;
1777
1778 fail_cleaner:
1779         kthread_stop(fs_info->cleaner_kthread);
1780 fail_extent_root:
1781         free_extent_buffer(extent_root->node);
1782 fail_tree_root:
1783         free_extent_buffer(tree_root->node);
1784 fail_chunk_root:
1785         free_extent_buffer(chunk_root->node);
1786 fail_sys_array:
1787 fail_sb_buffer:
1788         btrfs_stop_workers(&fs_info->fixup_workers);
1789         btrfs_stop_workers(&fs_info->delalloc_workers);
1790         btrfs_stop_workers(&fs_info->workers);
1791         btrfs_stop_workers(&fs_info->endio_workers);
1792         btrfs_stop_workers(&fs_info->endio_write_workers);
1793         btrfs_stop_workers(&fs_info->submit_workers);
1794 fail_iput:
1795         iput(fs_info->btree_inode);
1796 fail:
1797         btrfs_close_devices(fs_info->fs_devices);
1798         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1799
1800         kfree(extent_root);
1801         kfree(tree_root);
1802         bdi_destroy(&fs_info->bdi);
1803         kfree(fs_info);
1804         kfree(chunk_root);
1805         kfree(dev_root);
1806         return ERR_PTR(err);
1807 }
1808
1809 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1810 {
1811         char b[BDEVNAME_SIZE];
1812
1813         if (uptodate) {
1814                 set_buffer_uptodate(bh);
1815         } else {
1816                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1817                         printk(KERN_WARNING "lost page write due to "
1818                                         "I/O error on %s\n",
1819                                        bdevname(bh->b_bdev, b));
1820                 }
1821                 /* note, we dont' set_buffer_write_io_error because we have
1822                  * our own ways of dealing with the IO errors
1823                  */
1824                 clear_buffer_uptodate(bh);
1825         }
1826         unlock_buffer(bh);
1827         put_bh(bh);
1828 }
1829
1830 int write_all_supers(struct btrfs_root *root)
1831 {
1832         struct list_head *cur;
1833         struct list_head *head = &root->fs_info->fs_devices->devices;
1834         struct btrfs_device *dev;
1835         struct btrfs_super_block *sb;
1836         struct btrfs_dev_item *dev_item;
1837         struct buffer_head *bh;
1838         int ret;
1839         int do_barriers;
1840         int max_errors;
1841         int total_errors = 0;
1842         u32 crc;
1843         u64 flags;
1844
1845         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1846         do_barriers = !btrfs_test_opt(root, NOBARRIER);
1847
1848         sb = &root->fs_info->super_for_commit;
1849         dev_item = &sb->dev_item;
1850         list_for_each(cur, head) {
1851                 dev = list_entry(cur, struct btrfs_device, dev_list);
1852                 if (!dev->bdev) {
1853                         total_errors++;
1854                         continue;
1855                 }
1856                 if (!dev->in_fs_metadata || !dev->writeable)
1857                         continue;
1858
1859                 btrfs_set_stack_device_generation(dev_item, 0);
1860                 btrfs_set_stack_device_type(dev_item, dev->type);
1861                 btrfs_set_stack_device_id(dev_item, dev->devid);
1862                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1863                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1864                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1865                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1866                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1867                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1868                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
1869                 flags = btrfs_super_flags(sb);
1870                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1871
1872
1873                 crc = ~(u32)0;
1874                 crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
1875                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1876                 btrfs_csum_final(crc, sb->csum);
1877
1878                 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
1879                               BTRFS_SUPER_INFO_SIZE);
1880
1881                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
1882                 dev->pending_io = bh;
1883
1884                 get_bh(bh);
1885                 set_buffer_uptodate(bh);
1886                 lock_buffer(bh);
1887                 bh->b_end_io = btrfs_end_buffer_write_sync;
1888
1889                 if (do_barriers && dev->barriers) {
1890                         ret = submit_bh(WRITE_BARRIER, bh);
1891                         if (ret == -EOPNOTSUPP) {
1892                                 printk("btrfs: disabling barriers on dev %s\n",
1893                                        dev->name);
1894                                 set_buffer_uptodate(bh);
1895                                 dev->barriers = 0;
1896                                 get_bh(bh);
1897                                 lock_buffer(bh);
1898                                 ret = submit_bh(WRITE, bh);
1899                         }
1900                 } else {
1901                         ret = submit_bh(WRITE, bh);
1902                 }
1903                 if (ret)
1904                         total_errors++;
1905         }
1906         if (total_errors > max_errors) {
1907                 printk("btrfs: %d errors while writing supers\n", total_errors);
1908                 BUG();
1909         }
1910         total_errors = 0;
1911
1912         list_for_each(cur, head) {
1913                 dev = list_entry(cur, struct btrfs_device, dev_list);
1914                 if (!dev->bdev)
1915                         continue;
1916                 if (!dev->in_fs_metadata || !dev->writeable)
1917                         continue;
1918
1919                 BUG_ON(!dev->pending_io);
1920                 bh = dev->pending_io;
1921                 wait_on_buffer(bh);
1922                 if (!buffer_uptodate(dev->pending_io)) {
1923                         if (do_barriers && dev->barriers) {
1924                                 printk("btrfs: disabling barriers on dev %s\n",
1925                                        dev->name);
1926                                 set_buffer_uptodate(bh);
1927                                 get_bh(bh);
1928                                 lock_buffer(bh);
1929                                 dev->barriers = 0;
1930                                 ret = submit_bh(WRITE, bh);
1931                                 BUG_ON(ret);
1932                                 wait_on_buffer(bh);
1933                                 if (!buffer_uptodate(bh))
1934                                         total_errors++;
1935                         } else {
1936                                 total_errors++;
1937                         }
1938
1939                 }
1940                 dev->pending_io = NULL;
1941                 brelse(bh);
1942         }
1943         if (total_errors > max_errors) {
1944                 printk("btrfs: %d errors while writing supers\n", total_errors);
1945                 BUG();
1946         }
1947         return 0;
1948 }
1949
1950 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1951                       *root)
1952 {
1953         int ret;
1954
1955         ret = write_all_supers(root);
1956         return ret;
1957 }
1958
1959 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1960 {
1961         radix_tree_delete(&fs_info->fs_roots_radix,
1962                           (unsigned long)root->root_key.objectid);
1963         if (root->anon_super.s_dev) {
1964                 down_write(&root->anon_super.s_umount);
1965                 kill_anon_super(&root->anon_super);
1966         }
1967 #if 0
1968         if (root->in_sysfs)
1969                 btrfs_sysfs_del_root(root);
1970 #endif
1971         if (root->node)
1972                 free_extent_buffer(root->node);
1973         if (root->commit_root)
1974                 free_extent_buffer(root->commit_root);
1975         if (root->name)
1976                 kfree(root->name);
1977         kfree(root);
1978         return 0;
1979 }
1980
1981 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1982 {
1983         int ret;
1984         struct btrfs_root *gang[8];
1985         int i;
1986
1987         while(1) {
1988                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1989                                              (void **)gang, 0,
1990                                              ARRAY_SIZE(gang));
1991                 if (!ret)
1992                         break;
1993                 for (i = 0; i < ret; i++)
1994                         btrfs_free_fs_root(fs_info, gang[i]);
1995         }
1996         return 0;
1997 }
1998
1999 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2000 {
2001         u64 root_objectid = 0;
2002         struct btrfs_root *gang[8];
2003         int i;
2004         int ret;
2005
2006         while (1) {
2007                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2008                                              (void **)gang, root_objectid,
2009                                              ARRAY_SIZE(gang));
2010                 if (!ret)
2011                         break;
2012                 for (i = 0; i < ret; i++) {
2013                         root_objectid = gang[i]->root_key.objectid;
2014                         ret = btrfs_find_dead_roots(fs_info->tree_root,
2015                                                     root_objectid, gang[i]);
2016                         BUG_ON(ret);
2017                         btrfs_orphan_cleanup(gang[i]);
2018                 }
2019                 root_objectid++;
2020         }
2021         return 0;
2022 }
2023
2024 int btrfs_commit_super(struct btrfs_root *root)
2025 {
2026         struct btrfs_trans_handle *trans;
2027         int ret;
2028
2029         mutex_lock(&root->fs_info->cleaner_mutex);
2030         btrfs_clean_old_snapshots(root);
2031         mutex_unlock(&root->fs_info->cleaner_mutex);
2032         trans = btrfs_start_transaction(root, 1);
2033         ret = btrfs_commit_transaction(trans, root);
2034         BUG_ON(ret);
2035         /* run commit again to drop the original snapshot */
2036         trans = btrfs_start_transaction(root, 1);
2037         btrfs_commit_transaction(trans, root);
2038         ret = btrfs_write_and_wait_transaction(NULL, root);
2039         BUG_ON(ret);
2040
2041         ret = write_ctree_super(NULL, root);
2042         return ret;
2043 }
2044
2045 int close_ctree(struct btrfs_root *root)
2046 {
2047         struct btrfs_fs_info *fs_info = root->fs_info;
2048         int ret;
2049
2050         fs_info->closing = 1;
2051         smp_mb();
2052
2053         kthread_stop(root->fs_info->transaction_kthread);
2054         kthread_stop(root->fs_info->cleaner_kthread);
2055
2056         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2057                 ret =  btrfs_commit_super(root);
2058                 if (ret) {
2059                         printk("btrfs: commit super returns %d\n", ret);
2060                 }
2061         }
2062
2063         if (fs_info->delalloc_bytes) {
2064                 printk("btrfs: at unmount delalloc count %Lu\n",
2065                        fs_info->delalloc_bytes);
2066         }
2067         if (fs_info->total_ref_cache_size) {
2068                 printk("btrfs: at umount reference cache size %Lu\n",
2069                         fs_info->total_ref_cache_size);
2070         }
2071
2072         if (fs_info->extent_root->node)
2073                 free_extent_buffer(fs_info->extent_root->node);
2074
2075         if (fs_info->tree_root->node)
2076                 free_extent_buffer(fs_info->tree_root->node);
2077
2078         if (root->fs_info->chunk_root->node);
2079                 free_extent_buffer(root->fs_info->chunk_root->node);
2080
2081         if (root->fs_info->dev_root->node);
2082                 free_extent_buffer(root->fs_info->dev_root->node);
2083
2084         btrfs_free_block_groups(root->fs_info);
2085
2086         del_fs_roots(fs_info);
2087
2088         iput(fs_info->btree_inode);
2089
2090         btrfs_stop_workers(&fs_info->fixup_workers);
2091         btrfs_stop_workers(&fs_info->delalloc_workers);
2092         btrfs_stop_workers(&fs_info->workers);
2093         btrfs_stop_workers(&fs_info->endio_workers);
2094         btrfs_stop_workers(&fs_info->endio_write_workers);
2095         btrfs_stop_workers(&fs_info->submit_workers);
2096
2097 #if 0
2098         while(!list_empty(&fs_info->hashers)) {
2099                 struct btrfs_hasher *hasher;
2100                 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
2101                                     hashers);
2102                 list_del(&hasher->hashers);
2103                 crypto_free_hash(&fs_info->hash_tfm);
2104                 kfree(hasher);
2105         }
2106 #endif
2107         btrfs_close_devices(fs_info->fs_devices);
2108         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2109
2110         bdi_destroy(&fs_info->bdi);
2111
2112         kfree(fs_info->extent_root);
2113         kfree(fs_info->tree_root);
2114         kfree(fs_info->chunk_root);
2115         kfree(fs_info->dev_root);
2116         return 0;
2117 }
2118
2119 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2120 {
2121         int ret;
2122         struct inode *btree_inode = buf->first_page->mapping->host;
2123
2124         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2125         if (!ret)
2126                 return ret;
2127
2128         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2129                                     parent_transid);
2130         return !ret;
2131 }
2132
2133 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2134 {
2135         struct inode *btree_inode = buf->first_page->mapping->host;
2136         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2137                                           buf);
2138 }
2139
2140 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2141 {
2142         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2143         u64 transid = btrfs_header_generation(buf);
2144         struct inode *btree_inode = root->fs_info->btree_inode;
2145
2146         WARN_ON(!btrfs_tree_locked(buf));
2147         if (transid != root->fs_info->generation) {
2148                 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
2149                         (unsigned long long)buf->start,
2150                         transid, root->fs_info->generation);
2151                 WARN_ON(1);
2152         }
2153         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
2154 }
2155
2156 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2157 {
2158         /*
2159          * looks as though older kernels can get into trouble with
2160          * this code, they end up stuck in balance_dirty_pages forever
2161          */
2162         struct extent_io_tree *tree;
2163         u64 num_dirty;
2164         u64 start = 0;
2165         unsigned long thresh = 32 * 1024 * 1024;
2166         tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
2167
2168         if (current_is_pdflush() || current->flags & PF_MEMALLOC)
2169                 return;
2170
2171         num_dirty = count_range_bits(tree, &start, (u64)-1,
2172                                      thresh, EXTENT_DIRTY);
2173         if (num_dirty > thresh) {
2174                 balance_dirty_pages_ratelimited_nr(
2175                                    root->fs_info->btree_inode->i_mapping, 1);
2176         }
2177         return;
2178 }
2179
2180 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2181 {
2182         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2183         int ret;
2184         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2185         if (ret == 0) {
2186                 buf->flags |= EXTENT_UPTODATE;
2187         }
2188         return ret;
2189 }
2190
2191 int btree_lock_page_hook(struct page *page)
2192 {
2193         struct inode *inode = page->mapping->host;
2194         struct btrfs_root *root = BTRFS_I(inode)->root;
2195         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2196         struct extent_buffer *eb;
2197         unsigned long len;
2198         u64 bytenr = page_offset(page);
2199
2200         if (page->private == EXTENT_PAGE_PRIVATE)
2201                 goto out;
2202
2203         len = page->private >> 2;
2204         eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2205         if (!eb)
2206                 goto out;
2207
2208         btrfs_tree_lock(eb);
2209         spin_lock(&root->fs_info->hash_lock);
2210         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2211         spin_unlock(&root->fs_info->hash_lock);
2212         btrfs_tree_unlock(eb);
2213         free_extent_buffer(eb);
2214 out:
2215         lock_page(page);
2216         return 0;
2217 }
2218
2219 static struct extent_io_ops btree_extent_io_ops = {
2220         .write_cache_pages_lock_hook = btree_lock_page_hook,
2221         .readpage_end_io_hook = btree_readpage_end_io_hook,
2222         .submit_bio_hook = btree_submit_bio_hook,
2223         /* note we're sharing with inode.c for the merge bio hook */
2224         .merge_bio_hook = btrfs_merge_bio_hook,
2225 };