Btrfs: node balance optimizations
[linux-2.6-block.git] / fs / btrfs / ctree.c
1 #include <linux/module.h>
2 #include "ctree.h"
3 #include "disk-io.h"
4 #include "transaction.h"
5
6 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
7                       *root, struct btrfs_path *path, int level);
8 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
9                       *root, struct btrfs_key *ins_key,
10                       struct btrfs_path *path, int data_size);
11 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
12                           *root, struct buffer_head *dst, struct buffer_head
13                           *src);
14 static int balance_node_right(struct btrfs_trans_handle *trans, struct
15                               btrfs_root *root, struct buffer_head *dst_buf,
16                               struct buffer_head *src_buf);
17 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
18                    struct btrfs_path *path, int level, int slot);
19
20 inline void btrfs_init_path(struct btrfs_path *p)
21 {
22         memset(p, 0, sizeof(*p));
23 }
24
25 struct btrfs_path *btrfs_alloc_path(void)
26 {
27         struct btrfs_path *path;
28         path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
29         if (path)
30                 btrfs_init_path(path);
31         return path;
32 }
33
34 void btrfs_free_path(struct btrfs_path *p)
35 {
36         btrfs_release_path(NULL, p);
37         kmem_cache_free(btrfs_path_cachep, p);
38 }
39
40 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
41 {
42         int i;
43         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
44                 if (!p->nodes[i])
45                         break;
46                 btrfs_block_release(root, p->nodes[i]);
47         }
48         memset(p, 0, sizeof(*p));
49 }
50
51 static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
52                            *root, struct buffer_head *buf, struct buffer_head
53                            *parent, int parent_slot, struct buffer_head
54                            **cow_ret)
55 {
56         struct buffer_head *cow;
57         struct btrfs_node *cow_node;
58
59         if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
60                                     trans->transid) {
61                 *cow_ret = buf;
62                 return 0;
63         }
64         cow = btrfs_alloc_free_block(trans, root);
65         cow_node = btrfs_buffer_node(cow);
66         if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
67                 WARN_ON(1);
68         memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
69         btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
70         btrfs_set_header_generation(&cow_node->header, trans->transid);
71         btrfs_inc_ref(trans, root, buf);
72         if (buf == root->node) {
73                 root->node = cow;
74                 get_bh(cow);
75                 if (buf != root->commit_root) {
76                         btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
77                 }
78                 btrfs_block_release(root, buf);
79         } else {
80                 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
81                                         bh_blocknr(cow));
82                 btrfs_mark_buffer_dirty(parent);
83                 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
84         }
85         btrfs_block_release(root, buf);
86         mark_buffer_dirty(cow);
87         *cow_ret = cow;
88         return 0;
89 }
90
91 /*
92  * The leaf data grows from end-to-front in the node.
93  * this returns the address of the start of the last item,
94  * which is the stop of the leaf data stack
95  */
96 static inline unsigned int leaf_data_end(struct btrfs_root *root,
97                                          struct btrfs_leaf *leaf)
98 {
99         u32 nr = btrfs_header_nritems(&leaf->header);
100         if (nr == 0)
101                 return BTRFS_LEAF_DATA_SIZE(root);
102         return btrfs_item_offset(leaf->items + nr - 1);
103 }
104
105 /*
106  * compare two keys in a memcmp fashion
107  */
108 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
109 {
110         struct btrfs_key k1;
111
112         btrfs_disk_key_to_cpu(&k1, disk);
113
114         if (k1.objectid > k2->objectid)
115                 return 1;
116         if (k1.objectid < k2->objectid)
117                 return -1;
118         if (k1.flags > k2->flags)
119                 return 1;
120         if (k1.flags < k2->flags)
121                 return -1;
122         if (k1.offset > k2->offset)
123                 return 1;
124         if (k1.offset < k2->offset)
125                 return -1;
126         return 0;
127 }
128
129 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
130                       int level)
131 {
132         int i;
133         struct btrfs_node *parent = NULL;
134         struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
135         int parent_slot;
136         u32 nritems = btrfs_header_nritems(&node->header);
137
138         if (path->nodes[level + 1])
139                 parent = btrfs_buffer_node(path->nodes[level + 1]);
140         parent_slot = path->slots[level + 1];
141         BUG_ON(nritems == 0);
142         if (parent) {
143                 struct btrfs_disk_key *parent_key;
144                 parent_key = &parent->ptrs[parent_slot].key;
145                 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
146                               sizeof(struct btrfs_disk_key)));
147                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
148                        btrfs_header_blocknr(&node->header));
149         }
150         BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
151         for (i = 0; nritems > 1 && i < nritems - 2; i++) {
152                 struct btrfs_key cpukey;
153                 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[i + 1].key);
154                 BUG_ON(comp_keys(&node->ptrs[i].key, &cpukey) >= 0);
155         }
156         return 0;
157 }
158
159 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
160                       int level)
161 {
162         int i;
163         struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
164         struct btrfs_node *parent = NULL;
165         int parent_slot;
166         u32 nritems = btrfs_header_nritems(&leaf->header);
167
168         if (path->nodes[level + 1])
169                 parent = btrfs_buffer_node(path->nodes[level + 1]);
170         parent_slot = path->slots[level + 1];
171         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
172
173         if (nritems == 0)
174                 return 0;
175
176         if (parent) {
177                 struct btrfs_disk_key *parent_key;
178                 parent_key = &parent->ptrs[parent_slot].key;
179                 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
180                        sizeof(struct btrfs_disk_key)));
181                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
182                        btrfs_header_blocknr(&leaf->header));
183         }
184         for (i = 0; nritems > 1 && i < nritems - 2; i++) {
185                 struct btrfs_key cpukey;
186                 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[i + 1].key);
187                 BUG_ON(comp_keys(&leaf->items[i].key,
188                                  &cpukey) >= 0);
189                 BUG_ON(btrfs_item_offset(leaf->items + i) !=
190                         btrfs_item_end(leaf->items + i + 1));
191                 if (i == 0) {
192                         BUG_ON(btrfs_item_offset(leaf->items + i) +
193                                btrfs_item_size(leaf->items + i) !=
194                                BTRFS_LEAF_DATA_SIZE(root));
195                 }
196         }
197         return 0;
198 }
199
200 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
201                         int level)
202 {
203         struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
204         if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
205                    sizeof(node->header.fsid)))
206                 BUG();
207         if (level == 0)
208                 return check_leaf(root, path, level);
209         return check_node(root, path, level);
210 }
211
212 /*
213  * search for key in the array p.  items p are item_size apart
214  * and there are 'max' items in p
215  * the slot in the array is returned via slot, and it points to
216  * the place where you would insert key if it is not found in
217  * the array.
218  *
219  * slot may point to max if the key is bigger than all of the keys
220  */
221 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
222                        int max, int *slot)
223 {
224         int low = 0;
225         int high = max;
226         int mid;
227         int ret;
228         struct btrfs_disk_key *tmp;
229
230         while(low < high) {
231                 mid = (low + high) / 2;
232                 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
233                 ret = comp_keys(tmp, key);
234
235                 if (ret < 0)
236                         low = mid + 1;
237                 else if (ret > 0)
238                         high = mid;
239                 else {
240                         *slot = mid;
241                         return 0;
242                 }
243         }
244         *slot = low;
245         return 1;
246 }
247
248 /*
249  * simple bin_search frontend that does the right thing for
250  * leaves vs nodes
251  */
252 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
253 {
254         if (btrfs_is_leaf(c)) {
255                 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
256                 return generic_bin_search((void *)l->items,
257                                           sizeof(struct btrfs_item),
258                                           key, btrfs_header_nritems(&c->header),
259                                           slot);
260         } else {
261                 return generic_bin_search((void *)c->ptrs,
262                                           sizeof(struct btrfs_key_ptr),
263                                           key, btrfs_header_nritems(&c->header),
264                                           slot);
265         }
266         return -1;
267 }
268
269 static struct buffer_head *read_node_slot(struct btrfs_root *root,
270                                    struct buffer_head *parent_buf,
271                                    int slot)
272 {
273         struct btrfs_node *node = btrfs_buffer_node(parent_buf);
274         if (slot < 0)
275                 return NULL;
276         if (slot >= btrfs_header_nritems(&node->header))
277                 return NULL;
278         return read_tree_block(root, btrfs_node_blockptr(node, slot));
279 }
280
281 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
282                          *root, struct btrfs_path *path, int level)
283 {
284         struct buffer_head *right_buf;
285         struct buffer_head *mid_buf;
286         struct buffer_head *left_buf;
287         struct buffer_head *parent_buf = NULL;
288         struct btrfs_node *right = NULL;
289         struct btrfs_node *mid;
290         struct btrfs_node *left = NULL;
291         struct btrfs_node *parent = NULL;
292         int ret = 0;
293         int wret;
294         int pslot;
295         int orig_slot = path->slots[level];
296         u64 orig_ptr;
297
298         if (level == 0)
299                 return 0;
300
301         mid_buf = path->nodes[level];
302         mid = btrfs_buffer_node(mid_buf);
303         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
304
305         if (level < BTRFS_MAX_LEVEL - 1)
306                 parent_buf = path->nodes[level + 1];
307         pslot = path->slots[level + 1];
308
309         /*
310          * deal with the case where there is only one pointer in the root
311          * by promoting the node below to a root
312          */
313         if (!parent_buf) {
314                 struct buffer_head *child;
315                 u64 blocknr = bh_blocknr(mid_buf);
316
317                 if (btrfs_header_nritems(&mid->header) != 1)
318                         return 0;
319
320                 /* promote the child to a root */
321                 child = read_node_slot(root, mid_buf, 0);
322                 BUG_ON(!child);
323                 root->node = child;
324                 path->nodes[level] = NULL;
325                 clean_tree_block(trans, root, mid_buf);
326                 wait_on_buffer(mid_buf);
327                 /* once for the path */
328                 btrfs_block_release(root, mid_buf);
329                 /* once for the root ptr */
330                 btrfs_block_release(root, mid_buf);
331                 return btrfs_free_extent(trans, root, blocknr, 1, 1);
332         }
333         parent = btrfs_buffer_node(parent_buf);
334
335         if (btrfs_header_nritems(&mid->header) >
336             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
337                 return 0;
338
339         left_buf = read_node_slot(root, parent_buf, pslot - 1);
340         right_buf = read_node_slot(root, parent_buf, pslot + 1);
341
342         /* first, try to make some room in the middle buffer */
343         if (left_buf) {
344                 btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1,
345                                 &left_buf);
346                 left = btrfs_buffer_node(left_buf);
347                 orig_slot += btrfs_header_nritems(&left->header);
348                 wret = push_node_left(trans, root, left_buf, mid_buf);
349                 if (wret < 0)
350                         ret = wret;
351         }
352
353         /*
354          * then try to empty the right most buffer into the middle
355          */
356         if (right_buf) {
357                 btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1,
358                                 &right_buf);
359                 right = btrfs_buffer_node(right_buf);
360                 wret = push_node_left(trans, root, mid_buf, right_buf);
361                 if (wret < 0)
362                         ret = wret;
363                 if (btrfs_header_nritems(&right->header) == 0) {
364                         u64 blocknr = bh_blocknr(right_buf);
365                         clean_tree_block(trans, root, right_buf);
366                         wait_on_buffer(right_buf);
367                         btrfs_block_release(root, right_buf);
368                         right_buf = NULL;
369                         right = NULL;
370                         wret = del_ptr(trans, root, path, level + 1, pslot +
371                                        1);
372                         if (wret)
373                                 ret = wret;
374                         wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
375                         if (wret)
376                                 ret = wret;
377                 } else {
378                         btrfs_memcpy(root, parent,
379                                      &parent->ptrs[pslot + 1].key,
380                                      &right->ptrs[0].key,
381                                      sizeof(struct btrfs_disk_key));
382                         btrfs_mark_buffer_dirty(parent_buf);
383                 }
384         }
385         if (btrfs_header_nritems(&mid->header) == 1) {
386                 /*
387                  * we're not allowed to leave a node with one item in the
388                  * tree during a delete.  A deletion from lower in the tree
389                  * could try to delete the only pointer in this node.
390                  * So, pull some keys from the left.
391                  * There has to be a left pointer at this point because
392                  * otherwise we would have pulled some pointers from the
393                  * right
394                  */
395                 BUG_ON(!left_buf);
396                 wret = balance_node_right(trans, root, mid_buf, left_buf);
397                 if (wret < 0)
398                         ret = wret;
399                 BUG_ON(wret == 1);
400         }
401         if (btrfs_header_nritems(&mid->header) == 0) {
402                 /* we've managed to empty the middle node, drop it */
403                 u64 blocknr = bh_blocknr(mid_buf);
404                 clean_tree_block(trans, root, mid_buf);
405                 wait_on_buffer(mid_buf);
406                 btrfs_block_release(root, mid_buf);
407                 mid_buf = NULL;
408                 mid = NULL;
409                 wret = del_ptr(trans, root, path, level + 1, pslot);
410                 if (wret)
411                         ret = wret;
412                 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
413                 if (wret)
414                         ret = wret;
415         } else {
416                 /* update the parent key to reflect our changes */
417                 btrfs_memcpy(root, parent,
418                              &parent->ptrs[pslot].key, &mid->ptrs[0].key,
419                              sizeof(struct btrfs_disk_key));
420                 btrfs_mark_buffer_dirty(parent_buf);
421         }
422
423         /* update the path */
424         if (left_buf) {
425                 if (btrfs_header_nritems(&left->header) > orig_slot) {
426                         get_bh(left_buf);
427                         path->nodes[level] = left_buf;
428                         path->slots[level + 1] -= 1;
429                         path->slots[level] = orig_slot;
430                         if (mid_buf)
431                                 btrfs_block_release(root, mid_buf);
432                 } else {
433                         orig_slot -= btrfs_header_nritems(&left->header);
434                         path->slots[level] = orig_slot;
435                 }
436         }
437         /* double check we haven't messed things up */
438         check_block(root, path, level);
439         if (orig_ptr !=
440             btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
441                                 path->slots[level]))
442                 BUG();
443
444         if (right_buf)
445                 btrfs_block_release(root, right_buf);
446         if (left_buf)
447                 btrfs_block_release(root, left_buf);
448         return ret;
449 }
450
451 /* returns zero if the push worked, non-zero otherwise */
452 static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
453                                 struct btrfs_root *root,
454                                 struct btrfs_path *path, int level)
455 {
456         struct buffer_head *right_buf;
457         struct buffer_head *mid_buf;
458         struct buffer_head *left_buf;
459         struct buffer_head *parent_buf = NULL;
460         struct btrfs_node *right = NULL;
461         struct btrfs_node *mid;
462         struct btrfs_node *left = NULL;
463         struct btrfs_node *parent = NULL;
464         int ret = 0;
465         int wret;
466         int pslot;
467         int orig_slot = path->slots[level];
468         u64 orig_ptr;
469
470         if (level == 0)
471                 return 1;
472
473         mid_buf = path->nodes[level];
474         mid = btrfs_buffer_node(mid_buf);
475         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
476
477         if (level < BTRFS_MAX_LEVEL - 1)
478                 parent_buf = path->nodes[level + 1];
479         pslot = path->slots[level + 1];
480
481         if (!parent_buf)
482                 return 1;
483         parent = btrfs_buffer_node(parent_buf);
484
485         left_buf = read_node_slot(root, parent_buf, pslot - 1);
486
487         /* first, try to make some room in the middle buffer */
488         if (left_buf) {
489                 u32 left_nr;
490                 left = btrfs_buffer_node(left_buf);
491                 left_nr = btrfs_header_nritems(&left->header);
492                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
493                         wret = 1;
494                 } else {
495                         btrfs_cow_block(trans, root, left_buf, parent_buf,
496                                         pslot - 1, &left_buf);
497                         left = btrfs_buffer_node(left_buf);
498                         wret = push_node_left(trans, root, left_buf, mid_buf);
499                 }
500                 if (wret < 0)
501                         ret = wret;
502                 if (wret == 0) {
503                         orig_slot += left_nr;
504                         btrfs_memcpy(root, parent,
505                                      &parent->ptrs[pslot].key,
506                                      &mid->ptrs[0].key,
507                                      sizeof(struct btrfs_disk_key));
508                         btrfs_mark_buffer_dirty(parent_buf);
509                         if (btrfs_header_nritems(&left->header) > orig_slot) {
510                                 path->nodes[level] = left_buf;
511                                 path->slots[level + 1] -= 1;
512                                 path->slots[level] = orig_slot;
513                                 btrfs_block_release(root, mid_buf);
514                         } else {
515                                 orig_slot -=
516                                         btrfs_header_nritems(&left->header);
517                                 path->slots[level] = orig_slot;
518                                 btrfs_block_release(root, left_buf);
519                         }
520                         check_node(root, path, level);
521                         return 0;
522                 }
523                 btrfs_block_release(root, left_buf);
524         }
525         right_buf = read_node_slot(root, parent_buf, pslot + 1);
526
527         /*
528          * then try to empty the right most buffer into the middle
529          */
530         if (right_buf) {
531                 u32 right_nr;
532                 right = btrfs_buffer_node(right_buf);
533                 right_nr = btrfs_header_nritems(&right->header);
534                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
535                         wret = 1;
536                 } else {
537                         btrfs_cow_block(trans, root, right_buf,
538                                         parent_buf, pslot + 1, &right_buf);
539                         right = btrfs_buffer_node(right_buf);
540                         wret = balance_node_right(trans, root,
541                                                   right_buf, mid_buf);
542                 }
543                 if (wret < 0)
544                         ret = wret;
545                 if (wret == 0) {
546                         btrfs_memcpy(root, parent,
547                                      &parent->ptrs[pslot + 1].key,
548                                      &right->ptrs[0].key,
549                                      sizeof(struct btrfs_disk_key));
550                         btrfs_mark_buffer_dirty(parent_buf);
551                         if (btrfs_header_nritems(&mid->header) <= orig_slot) {
552                                 path->nodes[level] = right_buf;
553                                 path->slots[level + 1] += 1;
554                                 path->slots[level] = orig_slot -
555                                         btrfs_header_nritems(&mid->header);
556                                 btrfs_block_release(root, mid_buf);
557                         } else {
558                                 btrfs_block_release(root, right_buf);
559                         }
560                         check_node(root, path, level);
561                         return 0;
562                 }
563                 btrfs_block_release(root, right_buf);
564         }
565         check_node(root, path, level);
566         return 1;
567 }
568
569 /*
570  * look for key in the tree.  path is filled in with nodes along the way
571  * if key is found, we return zero and you can find the item in the leaf
572  * level of the path (level 0)
573  *
574  * If the key isn't found, the path points to the slot where it should
575  * be inserted, and 1 is returned.  If there are other errors during the
576  * search a negative error number is returned.
577  *
578  * if ins_len > 0, nodes and leaves will be split as we walk down the
579  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
580  * possible)
581  */
582 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
583                       *root, struct btrfs_key *key, struct btrfs_path *p, int
584                       ins_len, int cow)
585 {
586         struct buffer_head *b;
587         struct buffer_head *cow_buf;
588         struct btrfs_node *c;
589         int slot;
590         int ret;
591         int level;
592
593         WARN_ON(p->nodes[0] != NULL);
594         WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
595 again:
596         b = root->node;
597         get_bh(b);
598         while (b) {
599                 c = btrfs_buffer_node(b);
600                 level = btrfs_header_level(&c->header);
601                 if (cow) {
602                         int wret;
603                         wret = btrfs_cow_block(trans, root, b,
604                                                p->nodes[level + 1],
605                                                p->slots[level + 1],
606                                                &cow_buf);
607                         b = cow_buf;
608                         c = btrfs_buffer_node(b);
609                 }
610                 BUG_ON(!cow && ins_len);
611                 if (level != btrfs_header_level(&c->header))
612                         WARN_ON(1);
613                 level = btrfs_header_level(&c->header);
614                 p->nodes[level] = b;
615                 ret = check_block(root, p, level);
616                 if (ret)
617                         return -1;
618                 ret = bin_search(c, key, &slot);
619                 if (!btrfs_is_leaf(c)) {
620                         if (ret && slot > 0)
621                                 slot -= 1;
622                         p->slots[level] = slot;
623                         if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
624                             BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
625                                 int sret = split_node(trans, root, p, level);
626                                 BUG_ON(sret > 0);
627                                 if (sret)
628                                         return sret;
629                                 b = p->nodes[level];
630                                 c = btrfs_buffer_node(b);
631                                 slot = p->slots[level];
632                         } else if (ins_len < 0) {
633                                 int sret = balance_level(trans, root, p,
634                                                          level);
635                                 if (sret)
636                                         return sret;
637                                 b = p->nodes[level];
638                                 if (!b)
639                                         goto again;
640                                 c = btrfs_buffer_node(b);
641                                 slot = p->slots[level];
642                                 BUG_ON(btrfs_header_nritems(&c->header) == 1);
643                         }
644                         b = read_tree_block(root, btrfs_node_blockptr(c, slot));
645                 } else {
646                         struct btrfs_leaf *l = (struct btrfs_leaf *)c;
647                         p->slots[level] = slot;
648                         if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
649                             sizeof(struct btrfs_item) + ins_len) {
650                                 int sret = split_leaf(trans, root, key,
651                                                       p, ins_len);
652                                 BUG_ON(sret > 0);
653                                 if (sret)
654                                         return sret;
655                         }
656                         return ret;
657                 }
658         }
659         return 1;
660 }
661
662 /*
663  * adjust the pointers going up the tree, starting at level
664  * making sure the right key of each node is points to 'key'.
665  * This is used after shifting pointers to the left, so it stops
666  * fixing up pointers when a given leaf/node is not in slot 0 of the
667  * higher levels
668  *
669  * If this fails to write a tree block, it returns -1, but continues
670  * fixing up the blocks in ram so the tree is consistent.
671  */
672 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
673                           *root, struct btrfs_path *path, struct btrfs_disk_key
674                           *key, int level)
675 {
676         int i;
677         int ret = 0;
678         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
679                 struct btrfs_node *t;
680                 int tslot = path->slots[i];
681                 if (!path->nodes[i])
682                         break;
683                 t = btrfs_buffer_node(path->nodes[i]);
684                 btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
685                 btrfs_mark_buffer_dirty(path->nodes[i]);
686                 if (tslot != 0)
687                         break;
688         }
689         return ret;
690 }
691
692 /*
693  * try to push data from one node into the next node left in the
694  * tree.
695  *
696  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
697  * error, and > 0 if there was no room in the left hand block.
698  */
699 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
700                           *root, struct buffer_head *dst_buf, struct
701                           buffer_head *src_buf)
702 {
703         struct btrfs_node *src = btrfs_buffer_node(src_buf);
704         struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
705         int push_items = 0;
706         int src_nritems;
707         int dst_nritems;
708         int ret = 0;
709
710         src_nritems = btrfs_header_nritems(&src->header);
711         dst_nritems = btrfs_header_nritems(&dst->header);
712         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
713         if (push_items <= 0) {
714                 return 1;
715         }
716
717         if (src_nritems < push_items)
718                 push_items = src_nritems;
719
720         btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
721                      push_items * sizeof(struct btrfs_key_ptr));
722         if (push_items < src_nritems) {
723                 btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
724                         (src_nritems - push_items) *
725                         sizeof(struct btrfs_key_ptr));
726         }
727         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
728         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
729         btrfs_mark_buffer_dirty(src_buf);
730         btrfs_mark_buffer_dirty(dst_buf);
731         return ret;
732 }
733
734 /*
735  * try to push data from one node into the next node right in the
736  * tree.
737  *
738  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
739  * error, and > 0 if there was no room in the right hand block.
740  *
741  * this will  only push up to 1/2 the contents of the left node over
742  */
743 static int balance_node_right(struct btrfs_trans_handle *trans, struct
744                               btrfs_root *root, struct buffer_head *dst_buf,
745                               struct buffer_head *src_buf)
746 {
747         struct btrfs_node *src = btrfs_buffer_node(src_buf);
748         struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
749         int push_items = 0;
750         int max_push;
751         int src_nritems;
752         int dst_nritems;
753         int ret = 0;
754
755         src_nritems = btrfs_header_nritems(&src->header);
756         dst_nritems = btrfs_header_nritems(&dst->header);
757         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
758         if (push_items <= 0) {
759                 return 1;
760         }
761
762         max_push = src_nritems / 2 + 1;
763         /* don't try to empty the node */
764         if (max_push > src_nritems)
765                 return 1;
766         if (max_push < push_items)
767                 push_items = max_push;
768
769         btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
770                       dst_nritems * sizeof(struct btrfs_key_ptr));
771
772         btrfs_memcpy(root, dst, dst->ptrs,
773                      src->ptrs + src_nritems - push_items,
774                      push_items * sizeof(struct btrfs_key_ptr));
775
776         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
777         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
778
779         btrfs_mark_buffer_dirty(src_buf);
780         btrfs_mark_buffer_dirty(dst_buf);
781         return ret;
782 }
783
784 /*
785  * helper function to insert a new root level in the tree.
786  * A new node is allocated, and a single item is inserted to
787  * point to the existing root
788  *
789  * returns zero on success or < 0 on failure.
790  */
791 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
792                            *root, struct btrfs_path *path, int level)
793 {
794         struct buffer_head *t;
795         struct btrfs_node *lower;
796         struct btrfs_node *c;
797         struct btrfs_disk_key *lower_key;
798
799         BUG_ON(path->nodes[level]);
800         BUG_ON(path->nodes[level-1] != root->node);
801
802         t = btrfs_alloc_free_block(trans, root);
803         c = btrfs_buffer_node(t);
804         memset(c, 0, root->blocksize);
805         btrfs_set_header_nritems(&c->header, 1);
806         btrfs_set_header_level(&c->header, level);
807         btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
808         btrfs_set_header_generation(&c->header, trans->transid);
809         lower = btrfs_buffer_node(path->nodes[level-1]);
810         memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
811                sizeof(c->header.fsid));
812         if (btrfs_is_leaf(lower))
813                 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
814         else
815                 lower_key = &lower->ptrs[0].key;
816         btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
817                      sizeof(struct btrfs_disk_key));
818         btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
819
820         btrfs_mark_buffer_dirty(t);
821
822         /* the super has an extra ref to root->node */
823         btrfs_block_release(root, root->node);
824         root->node = t;
825         get_bh(t);
826         path->nodes[level] = t;
827         path->slots[level] = 0;
828         return 0;
829 }
830
831 /*
832  * worker function to insert a single pointer in a node.
833  * the node should have enough room for the pointer already
834  *
835  * slot and level indicate where you want the key to go, and
836  * blocknr is the block the key points to.
837  *
838  * returns zero on success and < 0 on any error
839  */
840 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
841                       *root, struct btrfs_path *path, struct btrfs_disk_key
842                       *key, u64 blocknr, int slot, int level)
843 {
844         struct btrfs_node *lower;
845         int nritems;
846
847         BUG_ON(!path->nodes[level]);
848         lower = btrfs_buffer_node(path->nodes[level]);
849         nritems = btrfs_header_nritems(&lower->header);
850         if (slot > nritems)
851                 BUG();
852         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
853                 BUG();
854         if (slot != nritems) {
855                 btrfs_memmove(root, lower, lower->ptrs + slot + 1,
856                               lower->ptrs + slot,
857                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
858         }
859         btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
860                      key, sizeof(struct btrfs_disk_key));
861         btrfs_set_node_blockptr(lower, slot, blocknr);
862         btrfs_set_header_nritems(&lower->header, nritems + 1);
863         btrfs_mark_buffer_dirty(path->nodes[level]);
864         return 0;
865 }
866
867 /*
868  * split the node at the specified level in path in two.
869  * The path is corrected to point to the appropriate node after the split
870  *
871  * Before splitting this tries to make some room in the node by pushing
872  * left and right, if either one works, it returns right away.
873  *
874  * returns 0 on success and < 0 on failure
875  */
876 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
877                       *root, struct btrfs_path *path, int level)
878 {
879         struct buffer_head *t;
880         struct btrfs_node *c;
881         struct buffer_head *split_buffer;
882         struct btrfs_node *split;
883         int mid;
884         int ret;
885         int wret;
886         u32 c_nritems;
887
888         t = path->nodes[level];
889         c = btrfs_buffer_node(t);
890         if (t == root->node) {
891                 /* trying to split the root, lets make a new one */
892                 ret = insert_new_root(trans, root, path, level + 1);
893                 if (ret)
894                         return ret;
895         } else {
896                 ret = push_nodes_for_insert(trans, root, path, level);
897                 t = path->nodes[level];
898                 c = btrfs_buffer_node(t);
899                 if (!ret &&
900                     btrfs_header_nritems(&c->header) <
901                     BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
902                         return 0;
903         }
904
905         c_nritems = btrfs_header_nritems(&c->header);
906         split_buffer = btrfs_alloc_free_block(trans, root);
907         split = btrfs_buffer_node(split_buffer);
908         btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
909         btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
910         btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
911         btrfs_set_header_generation(&split->header, trans->transid);
912         memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
913                sizeof(split->header.fsid));
914         mid = (c_nritems + 1) / 2;
915         btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
916                      (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
917         btrfs_set_header_nritems(&split->header, c_nritems - mid);
918         btrfs_set_header_nritems(&c->header, mid);
919         ret = 0;
920
921         btrfs_mark_buffer_dirty(t);
922         btrfs_mark_buffer_dirty(split_buffer);
923         wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
924                           bh_blocknr(split_buffer), path->slots[level + 1] + 1,
925                           level + 1);
926         if (wret)
927                 ret = wret;
928
929         if (path->slots[level] >= mid) {
930                 path->slots[level] -= mid;
931                 btrfs_block_release(root, t);
932                 path->nodes[level] = split_buffer;
933                 path->slots[level + 1] += 1;
934         } else {
935                 btrfs_block_release(root, split_buffer);
936         }
937         return ret;
938 }
939
940 /*
941  * how many bytes are required to store the items in a leaf.  start
942  * and nr indicate which items in the leaf to check.  This totals up the
943  * space used both by the item structs and the item data
944  */
945 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
946 {
947         int data_len;
948         int nritems = btrfs_header_nritems(&l->header);
949         int end = min(nritems, start + nr) - 1;
950
951         if (!nr)
952                 return 0;
953         data_len = btrfs_item_end(l->items + start);
954         data_len = data_len - btrfs_item_offset(l->items + end);
955         data_len += sizeof(struct btrfs_item) * nr;
956         WARN_ON(data_len < 0);
957         return data_len;
958 }
959
960 /*
961  * The space between the end of the leaf items and
962  * the start of the leaf data.  IOW, how much room
963  * the leaf has left for both items and data
964  */
965 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
966 {
967         int nritems = btrfs_header_nritems(&leaf->header);
968         return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
969 }
970
971 /*
972  * push some data in the path leaf to the right, trying to free up at
973  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
974  *
975  * returns 1 if the push failed because the other node didn't have enough
976  * room, 0 if everything worked out and < 0 if there were major errors.
977  */
978 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
979                            *root, struct btrfs_path *path, int data_size)
980 {
981         struct buffer_head *left_buf = path->nodes[0];
982         struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
983         struct btrfs_leaf *right;
984         struct buffer_head *right_buf;
985         struct buffer_head *upper;
986         struct btrfs_node *upper_node;
987         int slot;
988         int i;
989         int free_space;
990         int push_space = 0;
991         int push_items = 0;
992         struct btrfs_item *item;
993         u32 left_nritems;
994         u32 right_nritems;
995
996         slot = path->slots[1];
997         if (!path->nodes[1]) {
998                 return 1;
999         }
1000         upper = path->nodes[1];
1001         upper_node = btrfs_buffer_node(upper);
1002         if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
1003                 return 1;
1004         }
1005         right_buf = read_tree_block(root,
1006                     btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
1007         right = btrfs_buffer_leaf(right_buf);
1008         free_space = btrfs_leaf_free_space(root, right);
1009         if (free_space < data_size + sizeof(struct btrfs_item)) {
1010                 btrfs_block_release(root, right_buf);
1011                 return 1;
1012         }
1013         /* cow and double check */
1014         btrfs_cow_block(trans, root, right_buf, upper, slot + 1, &right_buf);
1015         right = btrfs_buffer_leaf(right_buf);
1016         free_space = btrfs_leaf_free_space(root, right);
1017         if (free_space < data_size + sizeof(struct btrfs_item)) {
1018                 btrfs_block_release(root, right_buf);
1019                 return 1;
1020         }
1021
1022         left_nritems = btrfs_header_nritems(&left->header);
1023         if (left_nritems == 0) {
1024                 btrfs_block_release(root, right_buf);
1025                 return 1;
1026         }
1027         for (i = left_nritems - 1; i >= 1; i--) {
1028                 item = left->items + i;
1029                 if (path->slots[0] == i)
1030                         push_space += data_size + sizeof(*item);
1031                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1032                     free_space)
1033                         break;
1034                 push_items++;
1035                 push_space += btrfs_item_size(item) + sizeof(*item);
1036         }
1037         if (push_items == 0) {
1038                 btrfs_block_release(root, right_buf);
1039                 return 1;
1040         }
1041         if (push_items == left_nritems)
1042                 WARN_ON(1);
1043         right_nritems = btrfs_header_nritems(&right->header);
1044         /* push left to right */
1045         push_space = btrfs_item_end(left->items + left_nritems - push_items);
1046         push_space -= leaf_data_end(root, left);
1047         /* make room in the right data area */
1048         btrfs_memmove(root, right, btrfs_leaf_data(right) +
1049                       leaf_data_end(root, right) - push_space,
1050                       btrfs_leaf_data(right) +
1051                       leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
1052                       leaf_data_end(root, right));
1053         /* copy from the left data area */
1054         btrfs_memcpy(root, right, btrfs_leaf_data(right) +
1055                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
1056                      btrfs_leaf_data(left) + leaf_data_end(root, left),
1057                      push_space);
1058         btrfs_memmove(root, right, right->items + push_items, right->items,
1059                 right_nritems * sizeof(struct btrfs_item));
1060         /* copy the items from left to right */
1061         btrfs_memcpy(root, right, right->items, left->items +
1062                      left_nritems - push_items,
1063                      push_items * sizeof(struct btrfs_item));
1064
1065         /* update the item pointers */
1066         right_nritems += push_items;
1067         btrfs_set_header_nritems(&right->header, right_nritems);
1068         push_space = BTRFS_LEAF_DATA_SIZE(root);
1069         for (i = 0; i < right_nritems; i++) {
1070                 btrfs_set_item_offset(right->items + i, push_space -
1071                                       btrfs_item_size(right->items + i));
1072                 push_space = btrfs_item_offset(right->items + i);
1073         }
1074         left_nritems -= push_items;
1075         btrfs_set_header_nritems(&left->header, left_nritems);
1076
1077         btrfs_mark_buffer_dirty(left_buf);
1078         btrfs_mark_buffer_dirty(right_buf);
1079
1080         btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
1081                 &right->items[0].key, sizeof(struct btrfs_disk_key));
1082         btrfs_mark_buffer_dirty(upper);
1083
1084         /* then fixup the leaf pointer in the path */
1085         if (path->slots[0] >= left_nritems) {
1086                 path->slots[0] -= left_nritems;
1087                 btrfs_block_release(root, path->nodes[0]);
1088                 path->nodes[0] = right_buf;
1089                 path->slots[1] += 1;
1090         } else {
1091                 btrfs_block_release(root, right_buf);
1092         }
1093         return 0;
1094 }
1095 /*
1096  * push some data in the path leaf to the left, trying to free up at
1097  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
1098  */
1099 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1100                           *root, struct btrfs_path *path, int data_size)
1101 {
1102         struct buffer_head *right_buf = path->nodes[0];
1103         struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
1104         struct buffer_head *t;
1105         struct btrfs_leaf *left;
1106         int slot;
1107         int i;
1108         int free_space;
1109         int push_space = 0;
1110         int push_items = 0;
1111         struct btrfs_item *item;
1112         u32 old_left_nritems;
1113         int ret = 0;
1114         int wret;
1115
1116         slot = path->slots[1];
1117         if (slot == 0) {
1118                 return 1;
1119         }
1120         if (!path->nodes[1]) {
1121                 return 1;
1122         }
1123         t = read_tree_block(root,
1124             btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
1125         left = btrfs_buffer_leaf(t);
1126         free_space = btrfs_leaf_free_space(root, left);
1127         if (free_space < data_size + sizeof(struct btrfs_item)) {
1128                 btrfs_block_release(root, t);
1129                 return 1;
1130         }
1131
1132         /* cow and double check */
1133         btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
1134         left = btrfs_buffer_leaf(t);
1135         free_space = btrfs_leaf_free_space(root, left);
1136         if (free_space < data_size + sizeof(struct btrfs_item)) {
1137                 btrfs_block_release(root, t);
1138                 return 1;
1139         }
1140
1141         if (btrfs_header_nritems(&right->header) == 0) {
1142                 btrfs_block_release(root, t);
1143                 return 1;
1144         }
1145
1146         for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
1147                 item = right->items + i;
1148                 if (path->slots[0] == i)
1149                         push_space += data_size + sizeof(*item);
1150                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1151                     free_space)
1152                         break;
1153                 push_items++;
1154                 push_space += btrfs_item_size(item) + sizeof(*item);
1155         }
1156         if (push_items == 0) {
1157                 btrfs_block_release(root, t);
1158                 return 1;
1159         }
1160         if (push_items == btrfs_header_nritems(&right->header))
1161                 WARN_ON(1);
1162         /* push data from right to left */
1163         btrfs_memcpy(root, left, left->items +
1164                      btrfs_header_nritems(&left->header),
1165                      right->items, push_items * sizeof(struct btrfs_item));
1166         push_space = BTRFS_LEAF_DATA_SIZE(root) -
1167                      btrfs_item_offset(right->items + push_items -1);
1168         btrfs_memcpy(root, left, btrfs_leaf_data(left) +
1169                      leaf_data_end(root, left) - push_space,
1170                      btrfs_leaf_data(right) +
1171                      btrfs_item_offset(right->items + push_items - 1),
1172                      push_space);
1173         old_left_nritems = btrfs_header_nritems(&left->header);
1174         BUG_ON(old_left_nritems < 0);
1175
1176         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1177                 u32 ioff = btrfs_item_offset(left->items + i);
1178                 btrfs_set_item_offset(left->items + i, ioff -
1179                                      (BTRFS_LEAF_DATA_SIZE(root) -
1180                                       btrfs_item_offset(left->items +
1181                                                         old_left_nritems - 1)));
1182         }
1183         btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
1184
1185         /* fixup right node */
1186         push_space = btrfs_item_offset(right->items + push_items - 1) -
1187                      leaf_data_end(root, right);
1188         btrfs_memmove(root, right, btrfs_leaf_data(right) +
1189                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
1190                       btrfs_leaf_data(right) +
1191                       leaf_data_end(root, right), push_space);
1192         btrfs_memmove(root, right, right->items, right->items + push_items,
1193                 (btrfs_header_nritems(&right->header) - push_items) *
1194                 sizeof(struct btrfs_item));
1195         btrfs_set_header_nritems(&right->header,
1196                                  btrfs_header_nritems(&right->header) -
1197                                  push_items);
1198         push_space = BTRFS_LEAF_DATA_SIZE(root);
1199
1200         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1201                 btrfs_set_item_offset(right->items + i, push_space -
1202                                       btrfs_item_size(right->items + i));
1203                 push_space = btrfs_item_offset(right->items + i);
1204         }
1205
1206         btrfs_mark_buffer_dirty(t);
1207         btrfs_mark_buffer_dirty(right_buf);
1208         wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1209         if (wret)
1210                 ret = wret;
1211
1212         /* then fixup the leaf pointer in the path */
1213         if (path->slots[0] < push_items) {
1214                 path->slots[0] += old_left_nritems;
1215                 btrfs_block_release(root, path->nodes[0]);
1216                 path->nodes[0] = t;
1217                 path->slots[1] -= 1;
1218         } else {
1219                 btrfs_block_release(root, t);
1220                 path->slots[0] -= push_items;
1221         }
1222         BUG_ON(path->slots[0] < 0);
1223         return ret;
1224 }
1225
1226 /*
1227  * split the path's leaf in two, making sure there is at least data_size
1228  * available for the resulting leaf level of the path.
1229  *
1230  * returns 0 if all went well and < 0 on failure.
1231  */
1232 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1233                       *root, struct btrfs_key *ins_key,
1234                       struct btrfs_path *path, int data_size)
1235 {
1236         struct buffer_head *l_buf;
1237         struct btrfs_leaf *l;
1238         u32 nritems;
1239         int mid;
1240         int slot;
1241         struct btrfs_leaf *right;
1242         struct buffer_head *right_buffer;
1243         int space_needed = data_size + sizeof(struct btrfs_item);
1244         int data_copy_size;
1245         int rt_data_off;
1246         int i;
1247         int ret = 0;
1248         int wret;
1249         int double_split = 0;
1250         struct btrfs_disk_key disk_key;
1251
1252         /* first try to make some room by pushing left and right */
1253         wret = push_leaf_left(trans, root, path, data_size);
1254         if (wret < 0)
1255                 return wret;
1256         if (wret) {
1257                 wret = push_leaf_right(trans, root, path, data_size);
1258                 if (wret < 0)
1259                         return wret;
1260         }
1261         l_buf = path->nodes[0];
1262         l = btrfs_buffer_leaf(l_buf);
1263
1264         /* did the pushes work? */
1265         if (btrfs_leaf_free_space(root, l) >=
1266             sizeof(struct btrfs_item) + data_size)
1267                 return 0;
1268
1269         if (!path->nodes[1]) {
1270                 ret = insert_new_root(trans, root, path, 1);
1271                 if (ret)
1272                         return ret;
1273         }
1274         slot = path->slots[0];
1275         nritems = btrfs_header_nritems(&l->header);
1276         mid = (nritems + 1)/ 2;
1277         right_buffer = btrfs_alloc_free_block(trans, root);
1278         BUG_ON(!right_buffer);
1279         right = btrfs_buffer_leaf(right_buffer);
1280         memset(&right->header, 0, sizeof(right->header));
1281         btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1282         btrfs_set_header_generation(&right->header, trans->transid);
1283         btrfs_set_header_level(&right->header, 0);
1284         memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1285                sizeof(right->header.fsid));
1286         if (mid <= slot) {
1287                 if (nritems == 1 ||
1288                     leaf_space_used(l, mid, nritems - mid) + space_needed >
1289                         BTRFS_LEAF_DATA_SIZE(root)) {
1290                         if (slot >= nritems) {
1291                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1292                                 btrfs_set_header_nritems(&right->header, 0);
1293                                 wret = insert_ptr(trans, root, path,
1294                                                   &disk_key,
1295                                                   bh_blocknr(right_buffer),
1296                                                   path->slots[1] + 1, 1);
1297                                 if (wret)
1298                                         ret = wret;
1299                                 btrfs_block_release(root, path->nodes[0]);
1300                                 path->nodes[0] = right_buffer;
1301                                 path->slots[0] = 0;
1302                                 path->slots[1] += 1;
1303                                 return ret;
1304                         }
1305                         mid = slot;
1306                         double_split = 1;
1307                 }
1308         } else {
1309                 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1310                         BTRFS_LEAF_DATA_SIZE(root)) {
1311                         if (slot == 0) {
1312                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1313                                 btrfs_set_header_nritems(&right->header, 0);
1314                                 wret = insert_ptr(trans, root, path,
1315                                                   &disk_key,
1316                                                   bh_blocknr(right_buffer),
1317                                                   path->slots[1] - 1, 1);
1318                                 if (wret)
1319                                         ret = wret;
1320                                 btrfs_block_release(root, path->nodes[0]);
1321                                 path->nodes[0] = right_buffer;
1322                                 path->slots[0] = 0;
1323                                 path->slots[1] -= 1;
1324                                 if (path->slots[1] == 0) {
1325                                         wret = fixup_low_keys(trans, root,
1326                                                    path, &disk_key, 1);
1327                                         if (wret)
1328                                                 ret = wret;
1329                                 }
1330                                 return ret;
1331                         }
1332                         mid = slot;
1333                         double_split = 1;
1334                 }
1335         }
1336         btrfs_set_header_nritems(&right->header, nritems - mid);
1337         data_copy_size = btrfs_item_end(l->items + mid) -
1338                          leaf_data_end(root, l);
1339         btrfs_memcpy(root, right, right->items, l->items + mid,
1340                      (nritems - mid) * sizeof(struct btrfs_item));
1341         btrfs_memcpy(root, right,
1342                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1343                      data_copy_size, btrfs_leaf_data(l) +
1344                      leaf_data_end(root, l), data_copy_size);
1345         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1346                       btrfs_item_end(l->items + mid);
1347
1348         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1349                 u32 ioff = btrfs_item_offset(right->items + i);
1350                 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1351         }
1352
1353         btrfs_set_header_nritems(&l->header, mid);
1354         ret = 0;
1355         wret = insert_ptr(trans, root, path, &right->items[0].key,
1356                           bh_blocknr(right_buffer), path->slots[1] + 1, 1);
1357         if (wret)
1358                 ret = wret;
1359         btrfs_mark_buffer_dirty(right_buffer);
1360         btrfs_mark_buffer_dirty(l_buf);
1361         BUG_ON(path->slots[0] != slot);
1362         if (mid <= slot) {
1363                 btrfs_block_release(root, path->nodes[0]);
1364                 path->nodes[0] = right_buffer;
1365                 path->slots[0] -= mid;
1366                 path->slots[1] += 1;
1367         } else
1368                 btrfs_block_release(root, right_buffer);
1369         BUG_ON(path->slots[0] < 0);
1370
1371         if (!double_split)
1372                 return ret;
1373         right_buffer = btrfs_alloc_free_block(trans, root);
1374         BUG_ON(!right_buffer);
1375         right = btrfs_buffer_leaf(right_buffer);
1376         memset(&right->header, 0, sizeof(right->header));
1377         btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1378         btrfs_set_header_generation(&right->header, trans->transid);
1379         btrfs_set_header_level(&right->header, 0);
1380         memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1381                sizeof(right->header.fsid));
1382         btrfs_cpu_key_to_disk(&disk_key, ins_key);
1383         btrfs_set_header_nritems(&right->header, 0);
1384         wret = insert_ptr(trans, root, path,
1385                           &disk_key,
1386                           bh_blocknr(right_buffer),
1387                           path->slots[1], 1);
1388         if (wret)
1389                 ret = wret;
1390         if (path->slots[1] == 0) {
1391                 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
1392                 if (wret)
1393                         ret = wret;
1394         }
1395         btrfs_block_release(root, path->nodes[0]);
1396         path->nodes[0] = right_buffer;
1397         path->slots[0] = 0;
1398         check_node(root, path, 1);
1399         check_leaf(root, path, 0);
1400         return ret;
1401 }
1402
1403 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1404                         struct btrfs_root *root,
1405                         struct btrfs_path *path,
1406                         u32 new_size)
1407 {
1408         int ret = 0;
1409         int slot;
1410         int slot_orig;
1411         struct btrfs_leaf *leaf;
1412         struct buffer_head *leaf_buf;
1413         u32 nritems;
1414         unsigned int data_end;
1415         unsigned int old_data_start;
1416         unsigned int old_size;
1417         unsigned int size_diff;
1418         int i;
1419
1420         slot_orig = path->slots[0];
1421         leaf_buf = path->nodes[0];
1422         leaf = btrfs_buffer_leaf(leaf_buf);
1423
1424         nritems = btrfs_header_nritems(&leaf->header);
1425         data_end = leaf_data_end(root, leaf);
1426
1427         slot = path->slots[0];
1428         old_data_start = btrfs_item_offset(leaf->items + slot);
1429         old_size = btrfs_item_size(leaf->items + slot);
1430         BUG_ON(old_size <= new_size);
1431         size_diff = old_size - new_size;
1432
1433         BUG_ON(slot < 0);
1434         BUG_ON(slot >= nritems);
1435
1436         /*
1437          * item0..itemN ... dataN.offset..dataN.size .. data0.size
1438          */
1439         /* first correct the data pointers */
1440         for (i = slot; i < nritems; i++) {
1441                 u32 ioff = btrfs_item_offset(leaf->items + i);
1442                 btrfs_set_item_offset(leaf->items + i,
1443                                       ioff + size_diff);
1444         }
1445         /* shift the data */
1446         btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1447                       data_end + size_diff, btrfs_leaf_data(leaf) +
1448                       data_end, old_data_start + new_size - data_end);
1449         btrfs_set_item_size(leaf->items + slot, new_size);
1450         btrfs_mark_buffer_dirty(leaf_buf);
1451
1452         ret = 0;
1453         if (btrfs_leaf_free_space(root, leaf) < 0)
1454                 BUG();
1455         check_leaf(root, path, 0);
1456         return ret;
1457 }
1458
1459 int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1460                       *root, struct btrfs_path *path, u32 data_size)
1461 {
1462         int ret = 0;
1463         int slot;
1464         int slot_orig;
1465         struct btrfs_leaf *leaf;
1466         struct buffer_head *leaf_buf;
1467         u32 nritems;
1468         unsigned int data_end;
1469         unsigned int old_data;
1470         unsigned int old_size;
1471         int i;
1472
1473         slot_orig = path->slots[0];
1474         leaf_buf = path->nodes[0];
1475         leaf = btrfs_buffer_leaf(leaf_buf);
1476
1477         nritems = btrfs_header_nritems(&leaf->header);
1478         data_end = leaf_data_end(root, leaf);
1479
1480         if (btrfs_leaf_free_space(root, leaf) < data_size)
1481                 BUG();
1482         slot = path->slots[0];
1483         old_data = btrfs_item_end(leaf->items + slot);
1484
1485         BUG_ON(slot < 0);
1486         BUG_ON(slot >= nritems);
1487
1488         /*
1489          * item0..itemN ... dataN.offset..dataN.size .. data0.size
1490          */
1491         /* first correct the data pointers */
1492         for (i = slot; i < nritems; i++) {
1493                 u32 ioff = btrfs_item_offset(leaf->items + i);
1494                 btrfs_set_item_offset(leaf->items + i,
1495                                       ioff - data_size);
1496         }
1497         /* shift the data */
1498         btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1499                       data_end - data_size, btrfs_leaf_data(leaf) +
1500                       data_end, old_data - data_end);
1501         data_end = old_data;
1502         old_size = btrfs_item_size(leaf->items + slot);
1503         btrfs_set_item_size(leaf->items + slot, old_size + data_size);
1504         btrfs_mark_buffer_dirty(leaf_buf);
1505
1506         ret = 0;
1507         if (btrfs_leaf_free_space(root, leaf) < 0)
1508                 BUG();
1509         check_leaf(root, path, 0);
1510         return ret;
1511 }
1512
1513 /*
1514  * Given a key and some data, insert an item into the tree.
1515  * This does all the path init required, making room in the tree if needed.
1516  */
1517 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1518                             *root, struct btrfs_path *path, struct btrfs_key
1519                             *cpu_key, u32 data_size)
1520 {
1521         int ret = 0;
1522         int slot;
1523         int slot_orig;
1524         struct btrfs_leaf *leaf;
1525         struct buffer_head *leaf_buf;
1526         u32 nritems;
1527         unsigned int data_end;
1528         struct btrfs_disk_key disk_key;
1529
1530         btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1531
1532         /* create a root if there isn't one */
1533         if (!root->node)
1534                 BUG();
1535         ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1536         if (ret == 0) {
1537                 return -EEXIST;
1538         }
1539         if (ret < 0)
1540                 goto out;
1541
1542         slot_orig = path->slots[0];
1543         leaf_buf = path->nodes[0];
1544         leaf = btrfs_buffer_leaf(leaf_buf);
1545
1546         nritems = btrfs_header_nritems(&leaf->header);
1547         data_end = leaf_data_end(root, leaf);
1548
1549         if (btrfs_leaf_free_space(root, leaf) <
1550             sizeof(struct btrfs_item) + data_size) {
1551                 BUG();
1552         }
1553         slot = path->slots[0];
1554         BUG_ON(slot < 0);
1555         if (slot != nritems) {
1556                 int i;
1557                 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1558
1559                 /*
1560                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
1561                  */
1562                 /* first correct the data pointers */
1563                 for (i = slot; i < nritems; i++) {
1564                         u32 ioff = btrfs_item_offset(leaf->items + i);
1565                         btrfs_set_item_offset(leaf->items + i,
1566                                               ioff - data_size);
1567                 }
1568
1569                 /* shift the items */
1570                 btrfs_memmove(root, leaf, leaf->items + slot + 1,
1571                               leaf->items + slot,
1572                               (nritems - slot) * sizeof(struct btrfs_item));
1573
1574                 /* shift the data */
1575                 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1576                               data_end - data_size, btrfs_leaf_data(leaf) +
1577                               data_end, old_data - data_end);
1578                 data_end = old_data;
1579         }
1580         /* setup the item for the new data */
1581         btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
1582                      sizeof(struct btrfs_disk_key));
1583         btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1584         btrfs_set_item_size(leaf->items + slot, data_size);
1585         btrfs_set_header_nritems(&leaf->header, nritems + 1);
1586         btrfs_mark_buffer_dirty(leaf_buf);
1587
1588         ret = 0;
1589         if (slot == 0)
1590                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1591
1592         if (btrfs_leaf_free_space(root, leaf) < 0)
1593                 BUG();
1594         check_leaf(root, path, 0);
1595 out:
1596         return ret;
1597 }
1598
1599 /*
1600  * Given a key and some data, insert an item into the tree.
1601  * This does all the path init required, making room in the tree if needed.
1602  */
1603 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1604                       *root, struct btrfs_key *cpu_key, void *data, u32
1605                       data_size)
1606 {
1607         int ret = 0;
1608         struct btrfs_path *path;
1609         u8 *ptr;
1610
1611         path = btrfs_alloc_path();
1612         BUG_ON(!path);
1613         btrfs_init_path(path);
1614         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
1615         if (!ret) {
1616                 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
1617                                      path->slots[0], u8);
1618                 btrfs_memcpy(root, path->nodes[0]->b_data,
1619                              ptr, data, data_size);
1620                 btrfs_mark_buffer_dirty(path->nodes[0]);
1621         }
1622         btrfs_release_path(root, path);
1623         btrfs_free_path(path);
1624         return ret;
1625 }
1626
1627 /*
1628  * delete the pointer from a given node.
1629  *
1630  * If the delete empties a node, the node is removed from the tree,
1631  * continuing all the way the root if required.  The root is converted into
1632  * a leaf if all the nodes are emptied.
1633  */
1634 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1635                    struct btrfs_path *path, int level, int slot)
1636 {
1637         struct btrfs_node *node;
1638         struct buffer_head *parent = path->nodes[level];
1639         u32 nritems;
1640         int ret = 0;
1641         int wret;
1642
1643         node = btrfs_buffer_node(parent);
1644         nritems = btrfs_header_nritems(&node->header);
1645         if (slot != nritems -1) {
1646                 btrfs_memmove(root, node, node->ptrs + slot,
1647                               node->ptrs + slot + 1,
1648                               sizeof(struct btrfs_key_ptr) *
1649                               (nritems - slot - 1));
1650         }
1651         nritems--;
1652         btrfs_set_header_nritems(&node->header, nritems);
1653         if (nritems == 0 && parent == root->node) {
1654                 struct btrfs_header *header = btrfs_buffer_header(root->node);
1655                 BUG_ON(btrfs_header_level(header) != 1);
1656                 /* just turn the root into a leaf and break */
1657                 btrfs_set_header_level(header, 0);
1658         } else if (slot == 0) {
1659                 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
1660                                       level + 1);
1661                 if (wret)
1662                         ret = wret;
1663         }
1664         btrfs_mark_buffer_dirty(parent);
1665         return ret;
1666 }
1667
1668 /*
1669  * delete the item at the leaf level in path.  If that empties
1670  * the leaf, remove it from the tree
1671  */
1672 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1673                    struct btrfs_path *path)
1674 {
1675         int slot;
1676         struct btrfs_leaf *leaf;
1677         struct buffer_head *leaf_buf;
1678         int doff;
1679         int dsize;
1680         int ret = 0;
1681         int wret;
1682         u32 nritems;
1683
1684         leaf_buf = path->nodes[0];
1685         leaf = btrfs_buffer_leaf(leaf_buf);
1686         slot = path->slots[0];
1687         doff = btrfs_item_offset(leaf->items + slot);
1688         dsize = btrfs_item_size(leaf->items + slot);
1689         nritems = btrfs_header_nritems(&leaf->header);
1690
1691         if (slot != nritems - 1) {
1692                 int i;
1693                 int data_end = leaf_data_end(root, leaf);
1694                 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1695                               data_end + dsize,
1696                               btrfs_leaf_data(leaf) + data_end,
1697                               doff - data_end);
1698                 for (i = slot + 1; i < nritems; i++) {
1699                         u32 ioff = btrfs_item_offset(leaf->items + i);
1700                         btrfs_set_item_offset(leaf->items + i, ioff + dsize);
1701                 }
1702                 btrfs_memmove(root, leaf, leaf->items + slot,
1703                               leaf->items + slot + 1,
1704                               sizeof(struct btrfs_item) *
1705                               (nritems - slot - 1));
1706         }
1707         btrfs_set_header_nritems(&leaf->header, nritems - 1);
1708         nritems--;
1709         /* delete the leaf if we've emptied it */
1710         if (nritems == 0) {
1711                 if (leaf_buf == root->node) {
1712                         btrfs_set_header_level(&leaf->header, 0);
1713                 } else {
1714                         clean_tree_block(trans, root, leaf_buf);
1715                         wait_on_buffer(leaf_buf);
1716                         wret = del_ptr(trans, root, path, 1, path->slots[1]);
1717                         if (wret)
1718                                 ret = wret;
1719                         wret = btrfs_free_extent(trans, root,
1720                                                  bh_blocknr(leaf_buf), 1, 1);
1721                         if (wret)
1722                                 ret = wret;
1723                 }
1724         } else {
1725                 int used = leaf_space_used(leaf, 0, nritems);
1726                 if (slot == 0) {
1727                         wret = fixup_low_keys(trans, root, path,
1728                                               &leaf->items[0].key, 1);
1729                         if (wret)
1730                                 ret = wret;
1731                 }
1732
1733                 /* delete the leaf if it is mostly empty */
1734                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
1735                         /* push_leaf_left fixes the path.
1736                          * make sure the path still points to our leaf
1737                          * for possible call to del_ptr below
1738                          */
1739                         slot = path->slots[1];
1740                         get_bh(leaf_buf);
1741                         wret = push_leaf_left(trans, root, path, 1);
1742                         if (wret < 0)
1743                                 ret = wret;
1744                         if (path->nodes[0] == leaf_buf &&
1745                             btrfs_header_nritems(&leaf->header)) {
1746                                 wret = push_leaf_right(trans, root, path, 1);
1747                                 if (wret < 0)
1748                                         ret = wret;
1749                         }
1750                         if (btrfs_header_nritems(&leaf->header) == 0) {
1751                                 u64 blocknr = bh_blocknr(leaf_buf);
1752                                 clean_tree_block(trans, root, leaf_buf);
1753                                 wait_on_buffer(leaf_buf);
1754                                 wret = del_ptr(trans, root, path, 1, slot);
1755                                 if (wret)
1756                                         ret = wret;
1757                                 btrfs_block_release(root, leaf_buf);
1758                                 wret = btrfs_free_extent(trans, root, blocknr,
1759                                                          1, 1);
1760                                 if (wret)
1761                                         ret = wret;
1762                         } else {
1763                                 btrfs_mark_buffer_dirty(leaf_buf);
1764                                 btrfs_block_release(root, leaf_buf);
1765                         }
1766                 } else {
1767                         btrfs_mark_buffer_dirty(leaf_buf);
1768                 }
1769         }
1770         return ret;
1771 }
1772
1773 /*
1774  * walk up the tree as far as required to find the next leaf.
1775  * returns 0 if it found something or 1 if there are no greater leaves.
1776  * returns < 0 on io errors.
1777  */
1778 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
1779 {
1780         int slot;
1781         int level = 1;
1782         u64 blocknr;
1783         struct buffer_head *c;
1784         struct btrfs_node *c_node;
1785         struct buffer_head *next = NULL;
1786
1787         while(level < BTRFS_MAX_LEVEL) {
1788                 if (!path->nodes[level])
1789                         return 1;
1790                 slot = path->slots[level] + 1;
1791                 c = path->nodes[level];
1792                 c_node = btrfs_buffer_node(c);
1793                 if (slot >= btrfs_header_nritems(&c_node->header)) {
1794                         level++;
1795                         continue;
1796                 }
1797                 blocknr = btrfs_node_blockptr(c_node, slot);
1798                 if (next)
1799                         btrfs_block_release(root, next);
1800                 next = read_tree_block(root, blocknr);
1801                 break;
1802         }
1803         path->slots[level] = slot;
1804         while(1) {
1805                 level--;
1806                 c = path->nodes[level];
1807                 btrfs_block_release(root, c);
1808                 path->nodes[level] = next;
1809                 path->slots[level] = 0;
1810                 if (!level)
1811                         break;
1812                 next = read_tree_block(root,
1813                        btrfs_node_blockptr(btrfs_buffer_node(next), 0));
1814         }
1815         return 0;
1816 }