Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[linux-2.6-block.git] / drivers / staging / rdma / hfi1 / sdma.c
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "qp.h"
60 #include "sdma.h"
61 #include "iowait.h"
62 #include "trace.h"
63
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
68
69 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70 module_param(sdma_descq_cnt, uint, S_IRUGO);
71 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
72
73 static uint sdma_idle_cnt = 250;
74 module_param(sdma_idle_cnt, uint, S_IRUGO);
75 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
76
77 uint mod_num_sdma;
78 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
80
81 static uint sdma_desct_intr = SDMA_DESC_INTR;
82 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
84
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
89
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92         (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93         | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94         | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95         | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96         | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97         | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98         | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99         | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100         | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101         | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102         | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103         | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104         | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105         | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106         | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107         | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108         | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109         | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
110
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT      BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
116
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
122
123 static const char * const sdma_state_names[] = {
124         [sdma_state_s00_hw_down]                = "s00_HwDown",
125         [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
126         [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127         [sdma_state_s20_idle]                   = "s20_Idle",
128         [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
129         [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
130         [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
131         [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
132         [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
133         [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
134         [sdma_state_s99_running]                = "s99_Running",
135 };
136
137 static const char * const sdma_event_names[] = {
138         [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
139         [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
140         [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
141         [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
142         [sdma_event_e30_go_running]   = "e30_GoRunning",
143         [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
144         [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
145         [sdma_event_e60_hw_halted]    = "e60_HwHalted",
146         [sdma_event_e70_go_idle]      = "e70_GoIdle",
147         [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
148         [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
149         [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
150         [sdma_event_e85_link_down]    = "e85_LinkDown",
151         [sdma_event_e90_sw_halted]    = "e90_SwHalted",
152 };
153
154 static const struct sdma_set_state_action sdma_action_table[] = {
155         [sdma_state_s00_hw_down] = {
156                 .go_s99_running_tofalse = 1,
157                 .op_enable = 0,
158                 .op_intenable = 0,
159                 .op_halt = 0,
160                 .op_cleanup = 0,
161         },
162         [sdma_state_s10_hw_start_up_halt_wait] = {
163                 .op_enable = 0,
164                 .op_intenable = 0,
165                 .op_halt = 1,
166                 .op_cleanup = 0,
167         },
168         [sdma_state_s15_hw_start_up_clean_wait] = {
169                 .op_enable = 0,
170                 .op_intenable = 1,
171                 .op_halt = 0,
172                 .op_cleanup = 1,
173         },
174         [sdma_state_s20_idle] = {
175                 .op_enable = 0,
176                 .op_intenable = 1,
177                 .op_halt = 0,
178                 .op_cleanup = 0,
179         },
180         [sdma_state_s30_sw_clean_up_wait] = {
181                 .op_enable = 0,
182                 .op_intenable = 0,
183                 .op_halt = 0,
184                 .op_cleanup = 0,
185         },
186         [sdma_state_s40_hw_clean_up_wait] = {
187                 .op_enable = 0,
188                 .op_intenable = 0,
189                 .op_halt = 0,
190                 .op_cleanup = 1,
191         },
192         [sdma_state_s50_hw_halt_wait] = {
193                 .op_enable = 0,
194                 .op_intenable = 0,
195                 .op_halt = 0,
196                 .op_cleanup = 0,
197         },
198         [sdma_state_s60_idle_halt_wait] = {
199                 .go_s99_running_tofalse = 1,
200                 .op_enable = 0,
201                 .op_intenable = 0,
202                 .op_halt = 1,
203                 .op_cleanup = 0,
204         },
205         [sdma_state_s80_hw_freeze] = {
206                 .op_enable = 0,
207                 .op_intenable = 0,
208                 .op_halt = 0,
209                 .op_cleanup = 0,
210         },
211         [sdma_state_s82_freeze_sw_clean] = {
212                 .op_enable = 0,
213                 .op_intenable = 0,
214                 .op_halt = 0,
215                 .op_cleanup = 0,
216         },
217         [sdma_state_s99_running] = {
218                 .op_enable = 1,
219                 .op_intenable = 1,
220                 .op_halt = 0,
221                 .op_cleanup = 0,
222                 .go_s99_running_totrue = 1,
223         },
224 };
225
226 #define SDMA_TAIL_UPDATE_THRESH 0x1F
227
228 /* declare all statics here rather than keep sorting */
229 static void sdma_complete(struct kref *);
230 static void sdma_finalput(struct sdma_state *);
231 static void sdma_get(struct sdma_state *);
232 static void sdma_hw_clean_up_task(unsigned long);
233 static void sdma_put(struct sdma_state *);
234 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
235 static void sdma_start_hw_clean_up(struct sdma_engine *);
236 static void sdma_sw_clean_up_task(unsigned long);
237 static void sdma_sendctrl(struct sdma_engine *, unsigned);
238 static void init_sdma_regs(struct sdma_engine *, u32, uint);
239 static void sdma_process_event(
240         struct sdma_engine *sde,
241         enum sdma_events event);
242 static void __sdma_process_event(
243         struct sdma_engine *sde,
244         enum sdma_events event);
245 static void dump_sdma_state(struct sdma_engine *sde);
246 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
247 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail);
248 static void sdma_flush_descq(struct sdma_engine *sde);
249
250 /**
251  * sdma_state_name() - return state string from enum
252  * @state: state
253  */
254 static const char *sdma_state_name(enum sdma_states state)
255 {
256         return sdma_state_names[state];
257 }
258
259 static void sdma_get(struct sdma_state *ss)
260 {
261         kref_get(&ss->kref);
262 }
263
264 static void sdma_complete(struct kref *kref)
265 {
266         struct sdma_state *ss =
267                 container_of(kref, struct sdma_state, kref);
268
269         complete(&ss->comp);
270 }
271
272 static void sdma_put(struct sdma_state *ss)
273 {
274         kref_put(&ss->kref, sdma_complete);
275 }
276
277 static void sdma_finalput(struct sdma_state *ss)
278 {
279         sdma_put(ss);
280         wait_for_completion(&ss->comp);
281 }
282
283 static inline void write_sde_csr(
284         struct sdma_engine *sde,
285         u32 offset0,
286         u64 value)
287 {
288         write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
289 }
290
291 static inline u64 read_sde_csr(
292         struct sdma_engine *sde,
293         u32 offset0)
294 {
295         return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
296 }
297
298 /*
299  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
300  * sdma engine 'sde' to drop to 0.
301  */
302 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
303                                         int pause)
304 {
305         u64 off = 8 * sde->this_idx;
306         struct hfi1_devdata *dd = sde->dd;
307         int lcnt = 0;
308         u64 reg_prev;
309         u64 reg = 0;
310
311         while (1) {
312                 reg_prev = reg;
313                 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
314
315                 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
316                 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
317                 if (reg == 0)
318                         break;
319                 /* counter is reest if accupancy count changes */
320                 if (reg != reg_prev)
321                         lcnt = 0;
322                 if (lcnt++ > 500) {
323                         /* timed out - bounce the link */
324                         dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
325                                    __func__, sde->this_idx, (u32)reg);
326                         queue_work(dd->pport->hfi1_wq,
327                                    &dd->pport->link_bounce_work);
328                         break;
329                 }
330                 udelay(1);
331         }
332 }
333
334 /*
335  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
336  * and pause for credit return.
337  */
338 void sdma_wait(struct hfi1_devdata *dd)
339 {
340         int i;
341
342         for (i = 0; i < dd->num_sdma; i++) {
343                 struct sdma_engine *sde = &dd->per_sdma[i];
344
345                 sdma_wait_for_packet_egress(sde, 0);
346         }
347 }
348
349 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
350 {
351         u64 reg;
352
353         if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
354                 return;
355         reg = cnt;
356         reg &= SD(DESC_CNT_CNT_MASK);
357         reg <<= SD(DESC_CNT_CNT_SHIFT);
358         write_sde_csr(sde, SD(DESC_CNT), reg);
359 }
360
361 static inline void complete_tx(struct sdma_engine *sde,
362                                struct sdma_txreq *tx,
363                                int res)
364 {
365         /* protect against complete modifying */
366         struct iowait *wait = tx->wait;
367         callback_t complete = tx->complete;
368
369 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
370         trace_hfi1_sdma_out_sn(sde, tx->sn);
371         if (WARN_ON_ONCE(sde->head_sn != tx->sn))
372                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
373                            sde->head_sn, tx->sn);
374         sde->head_sn++;
375 #endif
376         sdma_txclean(sde->dd, tx);
377         if (complete)
378                 (*complete)(tx, res);
379         if (iowait_sdma_dec(wait) && wait)
380                 iowait_drain_wakeup(wait);
381 }
382
383 /*
384  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
385  *
386  * Depending on timing there can be txreqs in two places:
387  * - in the descq ring
388  * - in the flush list
389  *
390  * To avoid ordering issues the descq ring needs to be flushed
391  * first followed by the flush list.
392  *
393  * This routine is called from two places
394  * - From a work queue item
395  * - Directly from the state machine just before setting the
396  *   state to running
397  *
398  * Must be called with head_lock held
399  *
400  */
401 static void sdma_flush(struct sdma_engine *sde)
402 {
403         struct sdma_txreq *txp, *txp_next;
404         LIST_HEAD(flushlist);
405         unsigned long flags;
406
407         /* flush from head to tail */
408         sdma_flush_descq(sde);
409         spin_lock_irqsave(&sde->flushlist_lock, flags);
410         /* copy flush list */
411         list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
412                 list_del_init(&txp->list);
413                 list_add_tail(&txp->list, &flushlist);
414         }
415         spin_unlock_irqrestore(&sde->flushlist_lock, flags);
416         /* flush from flush list */
417         list_for_each_entry_safe(txp, txp_next, &flushlist, list)
418                 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
419 }
420
421 /*
422  * Fields a work request for flushing the descq ring
423  * and the flush list
424  *
425  * If the engine has been brought to running during
426  * the scheduling delay, the flush is ignored, assuming
427  * that the process of bringing the engine to running
428  * would have done this flush prior to going to running.
429  *
430  */
431 static void sdma_field_flush(struct work_struct *work)
432 {
433         unsigned long flags;
434         struct sdma_engine *sde =
435                 container_of(work, struct sdma_engine, flush_worker);
436
437         write_seqlock_irqsave(&sde->head_lock, flags);
438         if (!__sdma_running(sde))
439                 sdma_flush(sde);
440         write_sequnlock_irqrestore(&sde->head_lock, flags);
441 }
442
443 static void sdma_err_halt_wait(struct work_struct *work)
444 {
445         struct sdma_engine *sde = container_of(work, struct sdma_engine,
446                                                 err_halt_worker);
447         u64 statuscsr;
448         unsigned long timeout;
449
450         timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
451         while (1) {
452                 statuscsr = read_sde_csr(sde, SD(STATUS));
453                 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
454                 if (statuscsr)
455                         break;
456                 if (time_after(jiffies, timeout)) {
457                         dd_dev_err(sde->dd,
458                                    "SDMA engine %d - timeout waiting for engine to halt\n",
459                                    sde->this_idx);
460                         /*
461                          * Continue anyway.  This could happen if there was
462                          * an uncorrectable error in the wrong spot.
463                          */
464                         break;
465                 }
466                 usleep_range(80, 120);
467         }
468
469         sdma_process_event(sde, sdma_event_e15_hw_halt_done);
470 }
471
472 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
473 {
474         if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
475                 unsigned index;
476                 struct hfi1_devdata *dd = sde->dd;
477
478                 for (index = 0; index < dd->num_sdma; index++) {
479                         struct sdma_engine *curr_sdma = &dd->per_sdma[index];
480
481                         if (curr_sdma != sde)
482                                 curr_sdma->progress_check_head =
483                                                         curr_sdma->descq_head;
484                 }
485                 dd_dev_err(sde->dd,
486                            "SDMA engine %d - check scheduled\n",
487                                 sde->this_idx);
488                 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
489         }
490 }
491
492 static void sdma_err_progress_check(unsigned long data)
493 {
494         unsigned index;
495         struct sdma_engine *sde = (struct sdma_engine *)data;
496
497         dd_dev_err(sde->dd, "SDE progress check event\n");
498         for (index = 0; index < sde->dd->num_sdma; index++) {
499                 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
500                 unsigned long flags;
501
502                 /* check progress on each engine except the current one */
503                 if (curr_sde == sde)
504                         continue;
505                 /*
506                  * We must lock interrupts when acquiring sde->lock,
507                  * to avoid a deadlock if interrupt triggers and spins on
508                  * the same lock on same CPU
509                  */
510                 spin_lock_irqsave(&curr_sde->tail_lock, flags);
511                 write_seqlock(&curr_sde->head_lock);
512
513                 /* skip non-running queues */
514                 if (curr_sde->state.current_state != sdma_state_s99_running) {
515                         write_sequnlock(&curr_sde->head_lock);
516                         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
517                         continue;
518                 }
519
520                 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
521                     (curr_sde->descq_head ==
522                                 curr_sde->progress_check_head))
523                         __sdma_process_event(curr_sde,
524                                              sdma_event_e90_sw_halted);
525                 write_sequnlock(&curr_sde->head_lock);
526                 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
527         }
528         schedule_work(&sde->err_halt_worker);
529 }
530
531 static void sdma_hw_clean_up_task(unsigned long opaque)
532 {
533         struct sdma_engine *sde = (struct sdma_engine *)opaque;
534         u64 statuscsr;
535
536         while (1) {
537 #ifdef CONFIG_SDMA_VERBOSITY
538                 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
539                            sde->this_idx, slashstrip(__FILE__), __LINE__,
540                         __func__);
541 #endif
542                 statuscsr = read_sde_csr(sde, SD(STATUS));
543                 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
544                 if (statuscsr)
545                         break;
546                 udelay(10);
547         }
548
549         sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
550 }
551
552 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
553 {
554         smp_read_barrier_depends(); /* see sdma_update_tail() */
555         return sde->tx_ring[sde->tx_head & sde->sdma_mask];
556 }
557
558 /*
559  * flush ring for recovery
560  */
561 static void sdma_flush_descq(struct sdma_engine *sde)
562 {
563         u16 head, tail;
564         int progress = 0;
565         struct sdma_txreq *txp = get_txhead(sde);
566
567         /* The reason for some of the complexity of this code is that
568          * not all descriptors have corresponding txps.  So, we have to
569          * be able to skip over descs until we wander into the range of
570          * the next txp on the list.
571          */
572         head = sde->descq_head & sde->sdma_mask;
573         tail = sde->descq_tail & sde->sdma_mask;
574         while (head != tail) {
575                 /* advance head, wrap if needed */
576                 head = ++sde->descq_head & sde->sdma_mask;
577                 /* if now past this txp's descs, do the callback */
578                 if (txp && txp->next_descq_idx == head) {
579                         /* remove from list */
580                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
581                         complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
582                         trace_hfi1_sdma_progress(sde, head, tail, txp);
583                         txp = get_txhead(sde);
584                 }
585                 progress++;
586         }
587         if (progress)
588                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
589 }
590
591 static void sdma_sw_clean_up_task(unsigned long opaque)
592 {
593         struct sdma_engine *sde = (struct sdma_engine *)opaque;
594         unsigned long flags;
595
596         spin_lock_irqsave(&sde->tail_lock, flags);
597         write_seqlock(&sde->head_lock);
598
599         /*
600          * At this point, the following should always be true:
601          * - We are halted, so no more descriptors are getting retired.
602          * - We are not running, so no one is submitting new work.
603          * - Only we can send the e40_sw_cleaned, so we can't start
604          *   running again until we say so.  So, the active list and
605          *   descq are ours to play with.
606          */
607
608         /*
609          * In the error clean up sequence, software clean must be called
610          * before the hardware clean so we can use the hardware head in
611          * the progress routine.  A hardware clean or SPC unfreeze will
612          * reset the hardware head.
613          *
614          * Process all retired requests. The progress routine will use the
615          * latest physical hardware head - we are not running so speed does
616          * not matter.
617          */
618         sdma_make_progress(sde, 0);
619
620         sdma_flush(sde);
621
622         /*
623          * Reset our notion of head and tail.
624          * Note that the HW registers have been reset via an earlier
625          * clean up.
626          */
627         sde->descq_tail = 0;
628         sde->descq_head = 0;
629         sde->desc_avail = sdma_descq_freecnt(sde);
630         *sde->head_dma = 0;
631
632         __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
633
634         write_sequnlock(&sde->head_lock);
635         spin_unlock_irqrestore(&sde->tail_lock, flags);
636 }
637
638 static void sdma_sw_tear_down(struct sdma_engine *sde)
639 {
640         struct sdma_state *ss = &sde->state;
641
642         /* Releasing this reference means the state machine has stopped. */
643         sdma_put(ss);
644
645         /* stop waiting for all unfreeze events to complete */
646         atomic_set(&sde->dd->sdma_unfreeze_count, -1);
647         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
648 }
649
650 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
651 {
652         tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
653 }
654
655 static void sdma_set_state(struct sdma_engine *sde,
656                            enum sdma_states next_state)
657 {
658         struct sdma_state *ss = &sde->state;
659         const struct sdma_set_state_action *action = sdma_action_table;
660         unsigned op = 0;
661
662         trace_hfi1_sdma_state(
663                 sde,
664                 sdma_state_names[ss->current_state],
665                 sdma_state_names[next_state]);
666
667         /* debugging bookkeeping */
668         ss->previous_state = ss->current_state;
669         ss->previous_op = ss->current_op;
670         ss->current_state = next_state;
671
672         if (ss->previous_state != sdma_state_s99_running &&
673             next_state == sdma_state_s99_running)
674                 sdma_flush(sde);
675
676         if (action[next_state].op_enable)
677                 op |= SDMA_SENDCTRL_OP_ENABLE;
678
679         if (action[next_state].op_intenable)
680                 op |= SDMA_SENDCTRL_OP_INTENABLE;
681
682         if (action[next_state].op_halt)
683                 op |= SDMA_SENDCTRL_OP_HALT;
684
685         if (action[next_state].op_cleanup)
686                 op |= SDMA_SENDCTRL_OP_CLEANUP;
687
688         if (action[next_state].go_s99_running_tofalse)
689                 ss->go_s99_running = 0;
690
691         if (action[next_state].go_s99_running_totrue)
692                 ss->go_s99_running = 1;
693
694         ss->current_op = op;
695         sdma_sendctrl(sde, ss->current_op);
696 }
697
698 /**
699  * sdma_get_descq_cnt() - called when device probed
700  *
701  * Return a validated descq count.
702  *
703  * This is currently only used in the verbs initialization to build the tx
704  * list.
705  *
706  * This will probably be deleted in favor of a more scalable approach to
707  * alloc tx's.
708  *
709  */
710 u16 sdma_get_descq_cnt(void)
711 {
712         u16 count = sdma_descq_cnt;
713
714         if (!count)
715                 return SDMA_DESCQ_CNT;
716         /* count must be a power of 2 greater than 64 and less than
717          * 32768.   Otherwise return default.
718          */
719         if (!is_power_of_2(count))
720                 return SDMA_DESCQ_CNT;
721         if (count < 64 || count > 32768)
722                 return SDMA_DESCQ_CNT;
723         return count;
724 }
725
726 /**
727  * sdma_select_engine_vl() - select sdma engine
728  * @dd: devdata
729  * @selector: a spreading factor
730  * @vl: this vl
731  *
732  *
733  * This function returns an engine based on the selector and a vl.  The
734  * mapping fields are protected by RCU.
735  */
736 struct sdma_engine *sdma_select_engine_vl(
737         struct hfi1_devdata *dd,
738         u32 selector,
739         u8 vl)
740 {
741         struct sdma_vl_map *m;
742         struct sdma_map_elem *e;
743         struct sdma_engine *rval;
744
745         /* NOTE This should only happen if SC->VL changed after the initial
746          *      checks on the QP/AH
747          *      Default will return engine 0 below
748          */
749         if (vl >= num_vls) {
750                 rval = NULL;
751                 goto done;
752         }
753
754         rcu_read_lock();
755         m = rcu_dereference(dd->sdma_map);
756         if (unlikely(!m)) {
757                 rcu_read_unlock();
758                 return &dd->per_sdma[0];
759         }
760         e = m->map[vl & m->mask];
761         rval = e->sde[selector & e->mask];
762         rcu_read_unlock();
763
764 done:
765         rval =  !rval ? &dd->per_sdma[0] : rval;
766         trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
767         return rval;
768 }
769
770 /**
771  * sdma_select_engine_sc() - select sdma engine
772  * @dd: devdata
773  * @selector: a spreading factor
774  * @sc5: the 5 bit sc
775  *
776  *
777  * This function returns an engine based on the selector and an sc.
778  */
779 struct sdma_engine *sdma_select_engine_sc(
780         struct hfi1_devdata *dd,
781         u32 selector,
782         u8 sc5)
783 {
784         u8 vl = sc_to_vlt(dd, sc5);
785
786         return sdma_select_engine_vl(dd, selector, vl);
787 }
788
789 /*
790  * Free the indicated map struct
791  */
792 static void sdma_map_free(struct sdma_vl_map *m)
793 {
794         int i;
795
796         for (i = 0; m && i < m->actual_vls; i++)
797                 kfree(m->map[i]);
798         kfree(m);
799 }
800
801 /*
802  * Handle RCU callback
803  */
804 static void sdma_map_rcu_callback(struct rcu_head *list)
805 {
806         struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
807
808         sdma_map_free(m);
809 }
810
811 /**
812  * sdma_map_init - called when # vls change
813  * @dd: hfi1_devdata
814  * @port: port number
815  * @num_vls: number of vls
816  * @vl_engines: per vl engine mapping (optional)
817  *
818  * This routine changes the mapping based on the number of vls.
819  *
820  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
821  * implies auto computing the loading and giving each VLs a uniform
822  * distribution of engines per VL.
823  *
824  * The auto algorithm computes the sde_per_vl and the number of extra
825  * engines.  Any extra engines are added from the last VL on down.
826  *
827  * rcu locking is used here to control access to the mapping fields.
828  *
829  * If either the num_vls or num_sdma are non-power of 2, the array sizes
830  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
831  * up to the next highest power of 2 and the first entry is reused
832  * in a round robin fashion.
833  *
834  * If an error occurs the map change is not done and the mapping is
835  * not changed.
836  *
837  */
838 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
839 {
840         int i, j;
841         int extra, sde_per_vl;
842         int engine = 0;
843         u8 lvl_engines[OPA_MAX_VLS];
844         struct sdma_vl_map *oldmap, *newmap;
845
846         if (!(dd->flags & HFI1_HAS_SEND_DMA))
847                 return 0;
848
849         if (!vl_engines) {
850                 /* truncate divide */
851                 sde_per_vl = dd->num_sdma / num_vls;
852                 /* extras */
853                 extra = dd->num_sdma % num_vls;
854                 vl_engines = lvl_engines;
855                 /* add extras from last vl down */
856                 for (i = num_vls - 1; i >= 0; i--, extra--)
857                         vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
858         }
859         /* build new map */
860         newmap = kzalloc(
861                 sizeof(struct sdma_vl_map) +
862                         roundup_pow_of_two(num_vls) *
863                         sizeof(struct sdma_map_elem *),
864                 GFP_KERNEL);
865         if (!newmap)
866                 goto bail;
867         newmap->actual_vls = num_vls;
868         newmap->vls = roundup_pow_of_two(num_vls);
869         newmap->mask = (1 << ilog2(newmap->vls)) - 1;
870         /* initialize back-map */
871         for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
872                 newmap->engine_to_vl[i] = -1;
873         for (i = 0; i < newmap->vls; i++) {
874                 /* save for wrap around */
875                 int first_engine = engine;
876
877                 if (i < newmap->actual_vls) {
878                         int sz = roundup_pow_of_two(vl_engines[i]);
879
880                         /* only allocate once */
881                         newmap->map[i] = kzalloc(
882                                 sizeof(struct sdma_map_elem) +
883                                         sz * sizeof(struct sdma_engine *),
884                                 GFP_KERNEL);
885                         if (!newmap->map[i])
886                                 goto bail;
887                         newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
888                         /* assign engines */
889                         for (j = 0; j < sz; j++) {
890                                 newmap->map[i]->sde[j] =
891                                         &dd->per_sdma[engine];
892                                 if (++engine >= first_engine + vl_engines[i])
893                                         /* wrap back to first engine */
894                                         engine = first_engine;
895                         }
896                         /* assign back-map */
897                         for (j = 0; j < vl_engines[i]; j++)
898                                 newmap->engine_to_vl[first_engine + j] = i;
899                 } else {
900                         /* just re-use entry without allocating */
901                         newmap->map[i] = newmap->map[i % num_vls];
902                 }
903                 engine = first_engine + vl_engines[i];
904         }
905         /* newmap in hand, save old map */
906         spin_lock_irq(&dd->sde_map_lock);
907         oldmap = rcu_dereference_protected(dd->sdma_map,
908                                            lockdep_is_held(&dd->sde_map_lock));
909
910         /* publish newmap */
911         rcu_assign_pointer(dd->sdma_map, newmap);
912
913         spin_unlock_irq(&dd->sde_map_lock);
914         /* success, free any old map after grace period */
915         if (oldmap)
916                 call_rcu(&oldmap->list, sdma_map_rcu_callback);
917         return 0;
918 bail:
919         /* free any partial allocation */
920         sdma_map_free(newmap);
921         return -ENOMEM;
922 }
923
924 /*
925  * Clean up allocated memory.
926  *
927  * This routine is can be called regardless of the success of sdma_init()
928  *
929  */
930 static void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
931 {
932         size_t i;
933         struct sdma_engine *sde;
934
935         if (dd->sdma_pad_dma) {
936                 dma_free_coherent(&dd->pcidev->dev, 4,
937                                   (void *)dd->sdma_pad_dma,
938                                   dd->sdma_pad_phys);
939                 dd->sdma_pad_dma = NULL;
940                 dd->sdma_pad_phys = 0;
941         }
942         if (dd->sdma_heads_dma) {
943                 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
944                                   (void *)dd->sdma_heads_dma,
945                                   dd->sdma_heads_phys);
946                 dd->sdma_heads_dma = NULL;
947                 dd->sdma_heads_phys = 0;
948         }
949         for (i = 0; dd->per_sdma && i < num_engines; ++i) {
950                 sde = &dd->per_sdma[i];
951
952                 sde->head_dma = NULL;
953                 sde->head_phys = 0;
954
955                 if (sde->descq) {
956                         dma_free_coherent(
957                                 &dd->pcidev->dev,
958                                 sde->descq_cnt * sizeof(u64[2]),
959                                 sde->descq,
960                                 sde->descq_phys
961                         );
962                         sde->descq = NULL;
963                         sde->descq_phys = 0;
964                 }
965                 kvfree(sde->tx_ring);
966                 sde->tx_ring = NULL;
967         }
968         spin_lock_irq(&dd->sde_map_lock);
969         sdma_map_free(rcu_access_pointer(dd->sdma_map));
970         RCU_INIT_POINTER(dd->sdma_map, NULL);
971         spin_unlock_irq(&dd->sde_map_lock);
972         synchronize_rcu();
973         kfree(dd->per_sdma);
974         dd->per_sdma = NULL;
975 }
976
977 /**
978  * sdma_init() - called when device probed
979  * @dd: hfi1_devdata
980  * @port: port number (currently only zero)
981  *
982  * sdma_init initializes the specified number of engines.
983  *
984  * The code initializes each sde, its csrs.  Interrupts
985  * are not required to be enabled.
986  *
987  * Returns:
988  * 0 - success, -errno on failure
989  */
990 int sdma_init(struct hfi1_devdata *dd, u8 port)
991 {
992         unsigned this_idx;
993         struct sdma_engine *sde;
994         u16 descq_cnt;
995         void *curr_head;
996         struct hfi1_pportdata *ppd = dd->pport + port;
997         u32 per_sdma_credits;
998         uint idle_cnt = sdma_idle_cnt;
999         size_t num_engines = dd->chip_sdma_engines;
1000
1001         if (!HFI1_CAP_IS_KSET(SDMA)) {
1002                 HFI1_CAP_CLEAR(SDMA_AHG);
1003                 return 0;
1004         }
1005         if (mod_num_sdma &&
1006             /* can't exceed chip support */
1007             mod_num_sdma <= dd->chip_sdma_engines &&
1008             /* count must be >= vls */
1009             mod_num_sdma >= num_vls)
1010                 num_engines = mod_num_sdma;
1011
1012         dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1013         dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
1014         dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1015                     dd->chip_sdma_mem_size);
1016
1017         per_sdma_credits =
1018                 dd->chip_sdma_mem_size / (num_engines * SDMA_BLOCK_SIZE);
1019
1020         /* set up freeze waitqueue */
1021         init_waitqueue_head(&dd->sdma_unfreeze_wq);
1022         atomic_set(&dd->sdma_unfreeze_count, 0);
1023
1024         descq_cnt = sdma_get_descq_cnt();
1025         dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1026                     num_engines, descq_cnt);
1027
1028         /* alloc memory for array of send engines */
1029         dd->per_sdma = kcalloc(num_engines, sizeof(*dd->per_sdma), GFP_KERNEL);
1030         if (!dd->per_sdma)
1031                 return -ENOMEM;
1032
1033         idle_cnt = ns_to_cclock(dd, idle_cnt);
1034         if (!sdma_desct_intr)
1035                 sdma_desct_intr = SDMA_DESC_INTR;
1036
1037         /* Allocate memory for SendDMA descriptor FIFOs */
1038         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1039                 sde = &dd->per_sdma[this_idx];
1040                 sde->dd = dd;
1041                 sde->ppd = ppd;
1042                 sde->this_idx = this_idx;
1043                 sde->descq_cnt = descq_cnt;
1044                 sde->desc_avail = sdma_descq_freecnt(sde);
1045                 sde->sdma_shift = ilog2(descq_cnt);
1046                 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1047
1048                 /* Create a mask specifically for each interrupt source */
1049                 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1050                                            this_idx);
1051                 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1052                                                 this_idx);
1053                 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1054                                             this_idx);
1055                 /* Create a combined mask to cover all 3 interrupt sources */
1056                 sde->imask = sde->int_mask | sde->progress_mask |
1057                              sde->idle_mask;
1058
1059                 spin_lock_init(&sde->tail_lock);
1060                 seqlock_init(&sde->head_lock);
1061                 spin_lock_init(&sde->senddmactrl_lock);
1062                 spin_lock_init(&sde->flushlist_lock);
1063                 /* insure there is always a zero bit */
1064                 sde->ahg_bits = 0xfffffffe00000000ULL;
1065
1066                 sdma_set_state(sde, sdma_state_s00_hw_down);
1067
1068                 /* set up reference counting */
1069                 kref_init(&sde->state.kref);
1070                 init_completion(&sde->state.comp);
1071
1072                 INIT_LIST_HEAD(&sde->flushlist);
1073                 INIT_LIST_HEAD(&sde->dmawait);
1074
1075                 sde->tail_csr =
1076                         get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1077
1078                 if (idle_cnt)
1079                         dd->default_desc1 =
1080                                 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1081                 else
1082                         dd->default_desc1 =
1083                                 SDMA_DESC1_INT_REQ_FLAG;
1084
1085                 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1086                              (unsigned long)sde);
1087
1088                 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1089                              (unsigned long)sde);
1090                 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1091                 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1092
1093                 sde->progress_check_head = 0;
1094
1095                 setup_timer(&sde->err_progress_check_timer,
1096                             sdma_err_progress_check, (unsigned long)sde);
1097
1098                 sde->descq = dma_zalloc_coherent(
1099                         &dd->pcidev->dev,
1100                         descq_cnt * sizeof(u64[2]),
1101                         &sde->descq_phys,
1102                         GFP_KERNEL
1103                 );
1104                 if (!sde->descq)
1105                         goto bail;
1106                 sde->tx_ring =
1107                         kcalloc(descq_cnt, sizeof(struct sdma_txreq *),
1108                                 GFP_KERNEL);
1109                 if (!sde->tx_ring)
1110                         sde->tx_ring =
1111                                 vzalloc(
1112                                         sizeof(struct sdma_txreq *) *
1113                                         descq_cnt);
1114                 if (!sde->tx_ring)
1115                         goto bail;
1116         }
1117
1118         dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1119         /* Allocate memory for DMA of head registers to memory */
1120         dd->sdma_heads_dma = dma_zalloc_coherent(
1121                 &dd->pcidev->dev,
1122                 dd->sdma_heads_size,
1123                 &dd->sdma_heads_phys,
1124                 GFP_KERNEL
1125         );
1126         if (!dd->sdma_heads_dma) {
1127                 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1128                 goto bail;
1129         }
1130
1131         /* Allocate memory for pad */
1132         dd->sdma_pad_dma = dma_zalloc_coherent(
1133                 &dd->pcidev->dev,
1134                 sizeof(u32),
1135                 &dd->sdma_pad_phys,
1136                 GFP_KERNEL
1137         );
1138         if (!dd->sdma_pad_dma) {
1139                 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1140                 goto bail;
1141         }
1142
1143         /* assign each engine to different cacheline and init registers */
1144         curr_head = (void *)dd->sdma_heads_dma;
1145         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1146                 unsigned long phys_offset;
1147
1148                 sde = &dd->per_sdma[this_idx];
1149
1150                 sde->head_dma = curr_head;
1151                 curr_head += L1_CACHE_BYTES;
1152                 phys_offset = (unsigned long)sde->head_dma -
1153                               (unsigned long)dd->sdma_heads_dma;
1154                 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1155                 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1156         }
1157         dd->flags |= HFI1_HAS_SEND_DMA;
1158         dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1159         dd->num_sdma = num_engines;
1160         if (sdma_map_init(dd, port, ppd->vls_operational, NULL))
1161                 goto bail;
1162         dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1163         return 0;
1164
1165 bail:
1166         sdma_clean(dd, num_engines);
1167         return -ENOMEM;
1168 }
1169
1170 /**
1171  * sdma_all_running() - called when the link goes up
1172  * @dd: hfi1_devdata
1173  *
1174  * This routine moves all engines to the running state.
1175  */
1176 void sdma_all_running(struct hfi1_devdata *dd)
1177 {
1178         struct sdma_engine *sde;
1179         unsigned int i;
1180
1181         /* move all engines to running */
1182         for (i = 0; i < dd->num_sdma; ++i) {
1183                 sde = &dd->per_sdma[i];
1184                 sdma_process_event(sde, sdma_event_e30_go_running);
1185         }
1186 }
1187
1188 /**
1189  * sdma_all_idle() - called when the link goes down
1190  * @dd: hfi1_devdata
1191  *
1192  * This routine moves all engines to the idle state.
1193  */
1194 void sdma_all_idle(struct hfi1_devdata *dd)
1195 {
1196         struct sdma_engine *sde;
1197         unsigned int i;
1198
1199         /* idle all engines */
1200         for (i = 0; i < dd->num_sdma; ++i) {
1201                 sde = &dd->per_sdma[i];
1202                 sdma_process_event(sde, sdma_event_e70_go_idle);
1203         }
1204 }
1205
1206 /**
1207  * sdma_start() - called to kick off state processing for all engines
1208  * @dd: hfi1_devdata
1209  *
1210  * This routine is for kicking off the state processing for all required
1211  * sdma engines.  Interrupts need to be working at this point.
1212  *
1213  */
1214 void sdma_start(struct hfi1_devdata *dd)
1215 {
1216         unsigned i;
1217         struct sdma_engine *sde;
1218
1219         /* kick off the engines state processing */
1220         for (i = 0; i < dd->num_sdma; ++i) {
1221                 sde = &dd->per_sdma[i];
1222                 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1223         }
1224 }
1225
1226 /**
1227  * sdma_exit() - used when module is removed
1228  * @dd: hfi1_devdata
1229  */
1230 void sdma_exit(struct hfi1_devdata *dd)
1231 {
1232         unsigned this_idx;
1233         struct sdma_engine *sde;
1234
1235         for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1236                         ++this_idx) {
1237                 sde = &dd->per_sdma[this_idx];
1238                 if (!list_empty(&sde->dmawait))
1239                         dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1240                                    sde->this_idx);
1241                 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1242
1243                 del_timer_sync(&sde->err_progress_check_timer);
1244
1245                 /*
1246                  * This waits for the state machine to exit so it is not
1247                  * necessary to kill the sdma_sw_clean_up_task to make sure
1248                  * it is not running.
1249                  */
1250                 sdma_finalput(&sde->state);
1251         }
1252         sdma_clean(dd, dd->num_sdma);
1253 }
1254
1255 /*
1256  * unmap the indicated descriptor
1257  */
1258 static inline void sdma_unmap_desc(
1259         struct hfi1_devdata *dd,
1260         struct sdma_desc *descp)
1261 {
1262         switch (sdma_mapping_type(descp)) {
1263         case SDMA_MAP_SINGLE:
1264                 dma_unmap_single(
1265                         &dd->pcidev->dev,
1266                         sdma_mapping_addr(descp),
1267                         sdma_mapping_len(descp),
1268                         DMA_TO_DEVICE);
1269                 break;
1270         case SDMA_MAP_PAGE:
1271                 dma_unmap_page(
1272                         &dd->pcidev->dev,
1273                         sdma_mapping_addr(descp),
1274                         sdma_mapping_len(descp),
1275                         DMA_TO_DEVICE);
1276                 break;
1277         }
1278 }
1279
1280 /*
1281  * return the mode as indicated by the first
1282  * descriptor in the tx.
1283  */
1284 static inline u8 ahg_mode(struct sdma_txreq *tx)
1285 {
1286         return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1287                 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1288 }
1289
1290 /**
1291  * sdma_txclean() - clean tx of mappings, descp *kmalloc's
1292  * @dd: hfi1_devdata for unmapping
1293  * @tx: tx request to clean
1294  *
1295  * This is used in the progress routine to clean the tx or
1296  * by the ULP to toss an in-process tx build.
1297  *
1298  * The code can be called multiple times without issue.
1299  *
1300  */
1301 void sdma_txclean(
1302         struct hfi1_devdata *dd,
1303         struct sdma_txreq *tx)
1304 {
1305         u16 i;
1306
1307         if (tx->num_desc) {
1308                 u8 skip = 0, mode = ahg_mode(tx);
1309
1310                 /* unmap first */
1311                 sdma_unmap_desc(dd, &tx->descp[0]);
1312                 /* determine number of AHG descriptors to skip */
1313                 if (mode > SDMA_AHG_APPLY_UPDATE1)
1314                         skip = mode >> 1;
1315                 for (i = 1 + skip; i < tx->num_desc; i++)
1316                         sdma_unmap_desc(dd, &tx->descp[i]);
1317                 tx->num_desc = 0;
1318         }
1319         kfree(tx->coalesce_buf);
1320         tx->coalesce_buf = NULL;
1321         /* kmalloc'ed descp */
1322         if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1323                 tx->desc_limit = ARRAY_SIZE(tx->descs);
1324                 kfree(tx->descp);
1325         }
1326 }
1327
1328 static inline u16 sdma_gethead(struct sdma_engine *sde)
1329 {
1330         struct hfi1_devdata *dd = sde->dd;
1331         int use_dmahead;
1332         u16 hwhead;
1333
1334 #ifdef CONFIG_SDMA_VERBOSITY
1335         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1336                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1337 #endif
1338
1339 retry:
1340         use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1341                                         (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1342         hwhead = use_dmahead ?
1343                 (u16)le64_to_cpu(*sde->head_dma) :
1344                 (u16)read_sde_csr(sde, SD(HEAD));
1345
1346         if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1347                 u16 cnt;
1348                 u16 swtail;
1349                 u16 swhead;
1350                 int sane;
1351
1352                 swhead = sde->descq_head & sde->sdma_mask;
1353                 /* this code is really bad for cache line trading */
1354                 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1355                 cnt = sde->descq_cnt;
1356
1357                 if (swhead < swtail)
1358                         /* not wrapped */
1359                         sane = (hwhead >= swhead) & (hwhead <= swtail);
1360                 else if (swhead > swtail)
1361                         /* wrapped around */
1362                         sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1363                                 (hwhead <= swtail);
1364                 else
1365                         /* empty */
1366                         sane = (hwhead == swhead);
1367
1368                 if (unlikely(!sane)) {
1369                         dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1370                                    sde->this_idx,
1371                                    use_dmahead ? "dma" : "kreg",
1372                                    hwhead, swhead, swtail, cnt);
1373                         if (use_dmahead) {
1374                                 /* try one more time, using csr */
1375                                 use_dmahead = 0;
1376                                 goto retry;
1377                         }
1378                         /* proceed as if no progress */
1379                         hwhead = swhead;
1380                 }
1381         }
1382         return hwhead;
1383 }
1384
1385 /*
1386  * This is called when there are send DMA descriptors that might be
1387  * available.
1388  *
1389  * This is called with head_lock held.
1390  */
1391 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail)
1392 {
1393         struct iowait *wait, *nw;
1394         struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1395         unsigned i, n = 0, seq;
1396         struct sdma_txreq *stx;
1397         struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1398
1399 #ifdef CONFIG_SDMA_VERBOSITY
1400         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1401                    slashstrip(__FILE__), __LINE__, __func__);
1402         dd_dev_err(sde->dd, "avail: %u\n", avail);
1403 #endif
1404
1405         do {
1406                 seq = read_seqbegin(&dev->iowait_lock);
1407                 if (!list_empty(&sde->dmawait)) {
1408                         /* at least one item */
1409                         write_seqlock(&dev->iowait_lock);
1410                         /* Harvest waiters wanting DMA descriptors */
1411                         list_for_each_entry_safe(
1412                                         wait,
1413                                         nw,
1414                                         &sde->dmawait,
1415                                         list) {
1416                                 u16 num_desc = 0;
1417
1418                                 if (!wait->wakeup)
1419                                         continue;
1420                                 if (n == ARRAY_SIZE(waits))
1421                                         break;
1422                                 if (!list_empty(&wait->tx_head)) {
1423                                         stx = list_first_entry(
1424                                                 &wait->tx_head,
1425                                                 struct sdma_txreq,
1426                                                 list);
1427                                         num_desc = stx->num_desc;
1428                                 }
1429                                 if (num_desc > avail)
1430                                         break;
1431                                 avail -= num_desc;
1432                                 list_del_init(&wait->list);
1433                                 waits[n++] = wait;
1434                         }
1435                         write_sequnlock(&dev->iowait_lock);
1436                         break;
1437                 }
1438         } while (read_seqretry(&dev->iowait_lock, seq));
1439
1440         for (i = 0; i < n; i++)
1441                 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1442 }
1443
1444 /* head_lock must be held */
1445 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1446 {
1447         struct sdma_txreq *txp = NULL;
1448         int progress = 0;
1449         u16 hwhead, swhead;
1450         int idle_check_done = 0;
1451
1452         hwhead = sdma_gethead(sde);
1453
1454         /* The reason for some of the complexity of this code is that
1455          * not all descriptors have corresponding txps.  So, we have to
1456          * be able to skip over descs until we wander into the range of
1457          * the next txp on the list.
1458          */
1459
1460 retry:
1461         txp = get_txhead(sde);
1462         swhead = sde->descq_head & sde->sdma_mask;
1463         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1464         while (swhead != hwhead) {
1465                 /* advance head, wrap if needed */
1466                 swhead = ++sde->descq_head & sde->sdma_mask;
1467
1468                 /* if now past this txp's descs, do the callback */
1469                 if (txp && txp->next_descq_idx == swhead) {
1470                         /* remove from list */
1471                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1472                         complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1473                         /* see if there is another txp */
1474                         txp = get_txhead(sde);
1475                 }
1476                 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1477                 progress++;
1478         }
1479
1480         /*
1481          * The SDMA idle interrupt is not guaranteed to be ordered with respect
1482          * to updates to the the dma_head location in host memory. The head
1483          * value read might not be fully up to date. If there are pending
1484          * descriptors and the SDMA idle interrupt fired then read from the
1485          * CSR SDMA head instead to get the latest value from the hardware.
1486          * The hardware SDMA head should be read at most once in this invocation
1487          * of sdma_make_progress(..) which is ensured by idle_check_done flag
1488          */
1489         if ((status & sde->idle_mask) && !idle_check_done) {
1490                 u16 swtail;
1491
1492                 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1493                 if (swtail != hwhead) {
1494                         hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1495                         idle_check_done = 1;
1496                         goto retry;
1497                 }
1498         }
1499
1500         sde->last_status = status;
1501         if (progress)
1502                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1503 }
1504
1505 /*
1506  * sdma_engine_interrupt() - interrupt handler for engine
1507  * @sde: sdma engine
1508  * @status: sdma interrupt reason
1509  *
1510  * Status is a mask of the 3 possible interrupts for this engine.  It will
1511  * contain bits _only_ for this SDMA engine.  It will contain at least one
1512  * bit, it may contain more.
1513  */
1514 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1515 {
1516         trace_hfi1_sdma_engine_interrupt(sde, status);
1517         write_seqlock(&sde->head_lock);
1518         sdma_set_desc_cnt(sde, sdma_desct_intr);
1519         if (status & sde->idle_mask)
1520                 sde->idle_int_cnt++;
1521         else if (status & sde->progress_mask)
1522                 sde->progress_int_cnt++;
1523         else if (status & sde->int_mask)
1524                 sde->sdma_int_cnt++;
1525         sdma_make_progress(sde, status);
1526         write_sequnlock(&sde->head_lock);
1527 }
1528
1529 /**
1530  * sdma_engine_error() - error handler for engine
1531  * @sde: sdma engine
1532  * @status: sdma interrupt reason
1533  */
1534 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1535 {
1536         unsigned long flags;
1537
1538 #ifdef CONFIG_SDMA_VERBOSITY
1539         dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1540                    sde->this_idx,
1541                    (unsigned long long)status,
1542                    sdma_state_names[sde->state.current_state]);
1543 #endif
1544         spin_lock_irqsave(&sde->tail_lock, flags);
1545         write_seqlock(&sde->head_lock);
1546         if (status & ALL_SDMA_ENG_HALT_ERRS)
1547                 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1548         if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1549                 dd_dev_err(sde->dd,
1550                            "SDMA (%u) engine error: 0x%llx state %s\n",
1551                            sde->this_idx,
1552                            (unsigned long long)status,
1553                            sdma_state_names[sde->state.current_state]);
1554                 dump_sdma_state(sde);
1555         }
1556         write_sequnlock(&sde->head_lock);
1557         spin_unlock_irqrestore(&sde->tail_lock, flags);
1558 }
1559
1560 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1561 {
1562         u64 set_senddmactrl = 0;
1563         u64 clr_senddmactrl = 0;
1564         unsigned long flags;
1565
1566 #ifdef CONFIG_SDMA_VERBOSITY
1567         dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1568                    sde->this_idx,
1569                    (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1570                    (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1571                    (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1572                    (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1573 #endif
1574
1575         if (op & SDMA_SENDCTRL_OP_ENABLE)
1576                 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1577         else
1578                 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1579
1580         if (op & SDMA_SENDCTRL_OP_INTENABLE)
1581                 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1582         else
1583                 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1584
1585         if (op & SDMA_SENDCTRL_OP_HALT)
1586                 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1587         else
1588                 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1589
1590         spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1591
1592         sde->p_senddmactrl |= set_senddmactrl;
1593         sde->p_senddmactrl &= ~clr_senddmactrl;
1594
1595         if (op & SDMA_SENDCTRL_OP_CLEANUP)
1596                 write_sde_csr(sde, SD(CTRL),
1597                               sde->p_senddmactrl |
1598                               SD(CTRL_SDMA_CLEANUP_SMASK));
1599         else
1600                 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1601
1602         spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1603
1604 #ifdef CONFIG_SDMA_VERBOSITY
1605         sdma_dumpstate(sde);
1606 #endif
1607 }
1608
1609 static void sdma_setlengen(struct sdma_engine *sde)
1610 {
1611 #ifdef CONFIG_SDMA_VERBOSITY
1612         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1613                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1614 #endif
1615
1616         /*
1617          * Set SendDmaLenGen and clear-then-set the MSB of the generation
1618          * count to enable generation checking and load the internal
1619          * generation counter.
1620          */
1621         write_sde_csr(sde, SD(LEN_GEN),
1622                       (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
1623         write_sde_csr(sde, SD(LEN_GEN),
1624                       ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1625                       (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
1626 }
1627
1628 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1629 {
1630         /* Commit writes to memory and advance the tail on the chip */
1631         smp_wmb(); /* see get_txhead() */
1632         writeq(tail, sde->tail_csr);
1633 }
1634
1635 /*
1636  * This is called when changing to state s10_hw_start_up_halt_wait as
1637  * a result of send buffer errors or send DMA descriptor errors.
1638  */
1639 static void sdma_hw_start_up(struct sdma_engine *sde)
1640 {
1641         u64 reg;
1642
1643 #ifdef CONFIG_SDMA_VERBOSITY
1644         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1645                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1646 #endif
1647
1648         sdma_setlengen(sde);
1649         sdma_update_tail(sde, 0); /* Set SendDmaTail */
1650         *sde->head_dma = 0;
1651
1652         reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
1653               SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
1654         write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
1655 }
1656
1657 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
1658 (r &= ~SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
1659
1660 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
1661 (r |= SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
1662 /*
1663  * set_sdma_integrity
1664  *
1665  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
1666  */
1667 static void set_sdma_integrity(struct sdma_engine *sde)
1668 {
1669         struct hfi1_devdata *dd = sde->dd;
1670         u64 reg;
1671
1672         if (unlikely(HFI1_CAP_IS_KSET(NO_INTEGRITY)))
1673                 return;
1674
1675         reg = hfi1_pkt_base_sdma_integrity(dd);
1676
1677         if (HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
1678                 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
1679         else
1680                 SET_STATIC_RATE_CONTROL_SMASK(reg);
1681
1682         write_sde_csr(sde, SD(CHECK_ENABLE), reg);
1683 }
1684
1685 static void init_sdma_regs(
1686         struct sdma_engine *sde,
1687         u32 credits,
1688         uint idle_cnt)
1689 {
1690         u8 opval, opmask;
1691 #ifdef CONFIG_SDMA_VERBOSITY
1692         struct hfi1_devdata *dd = sde->dd;
1693
1694         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1695                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1696 #endif
1697
1698         write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
1699         sdma_setlengen(sde);
1700         sdma_update_tail(sde, 0); /* Set SendDmaTail */
1701         write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
1702         write_sde_csr(sde, SD(DESC_CNT), 0);
1703         write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
1704         write_sde_csr(sde, SD(MEMORY),
1705                       ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
1706                       ((u64)(credits * sde->this_idx) <<
1707                        SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
1708         write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
1709         set_sdma_integrity(sde);
1710         opmask = OPCODE_CHECK_MASK_DISABLED;
1711         opval = OPCODE_CHECK_VAL_DISABLED;
1712         write_sde_csr(sde, SD(CHECK_OPCODE),
1713                       (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
1714                       (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
1715 }
1716
1717 #ifdef CONFIG_SDMA_VERBOSITY
1718
1719 #define sdma_dumpstate_helper0(reg) do { \
1720                 csr = read_csr(sde->dd, reg); \
1721                 dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
1722         } while (0)
1723
1724 #define sdma_dumpstate_helper(reg) do { \
1725                 csr = read_sde_csr(sde, reg); \
1726                 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
1727                         #reg, sde->this_idx, csr); \
1728         } while (0)
1729
1730 #define sdma_dumpstate_helper2(reg) do { \
1731                 csr = read_csr(sde->dd, reg + (8 * i)); \
1732                 dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
1733                                 #reg, i, csr); \
1734         } while (0)
1735
1736 void sdma_dumpstate(struct sdma_engine *sde)
1737 {
1738         u64 csr;
1739         unsigned i;
1740
1741         sdma_dumpstate_helper(SD(CTRL));
1742         sdma_dumpstate_helper(SD(STATUS));
1743         sdma_dumpstate_helper0(SD(ERR_STATUS));
1744         sdma_dumpstate_helper0(SD(ERR_MASK));
1745         sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
1746         sdma_dumpstate_helper(SD(ENG_ERR_MASK));
1747
1748         for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
1749                 sdma_dumpstate_helper2(CCE_INT_STATUS);
1750                 sdma_dumpstate_helper2(CCE_INT_MASK);
1751                 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
1752         }
1753
1754         sdma_dumpstate_helper(SD(TAIL));
1755         sdma_dumpstate_helper(SD(HEAD));
1756         sdma_dumpstate_helper(SD(PRIORITY_THLD));
1757         sdma_dumpstate_helper(SD(IDLE_CNT));
1758         sdma_dumpstate_helper(SD(RELOAD_CNT));
1759         sdma_dumpstate_helper(SD(DESC_CNT));
1760         sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
1761         sdma_dumpstate_helper(SD(MEMORY));
1762         sdma_dumpstate_helper0(SD(ENGINES));
1763         sdma_dumpstate_helper0(SD(MEM_SIZE));
1764         /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
1765         sdma_dumpstate_helper(SD(BASE_ADDR));
1766         sdma_dumpstate_helper(SD(LEN_GEN));
1767         sdma_dumpstate_helper(SD(HEAD_ADDR));
1768         sdma_dumpstate_helper(SD(CHECK_ENABLE));
1769         sdma_dumpstate_helper(SD(CHECK_VL));
1770         sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
1771         sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
1772         sdma_dumpstate_helper(SD(CHECK_SLID));
1773         sdma_dumpstate_helper(SD(CHECK_OPCODE));
1774 }
1775 #endif
1776
1777 static void dump_sdma_state(struct sdma_engine *sde)
1778 {
1779         struct hw_sdma_desc *descq;
1780         struct hw_sdma_desc *descqp;
1781         u64 desc[2];
1782         u64 addr;
1783         u8 gen;
1784         u16 len;
1785         u16 head, tail, cnt;
1786
1787         head = sde->descq_head & sde->sdma_mask;
1788         tail = sde->descq_tail & sde->sdma_mask;
1789         cnt = sdma_descq_freecnt(sde);
1790         descq = sde->descq;
1791
1792         dd_dev_err(sde->dd,
1793                    "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
1794                    sde->this_idx, head, tail, cnt,
1795                    !list_empty(&sde->flushlist));
1796
1797         /* print info for each entry in the descriptor queue */
1798         while (head != tail) {
1799                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
1800
1801                 descqp = &sde->descq[head];
1802                 desc[0] = le64_to_cpu(descqp->qw[0]);
1803                 desc[1] = le64_to_cpu(descqp->qw[1]);
1804                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
1805                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
1806                                 'H' : '-';
1807                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
1808                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
1809                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
1810                         & SDMA_DESC0_PHY_ADDR_MASK;
1811                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
1812                         & SDMA_DESC1_GENERATION_MASK;
1813                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
1814                         & SDMA_DESC0_BYTE_COUNT_MASK;
1815                 dd_dev_err(sde->dd,
1816                            "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
1817                            head, flags, addr, gen, len);
1818                 dd_dev_err(sde->dd,
1819                            "\tdesc0:0x%016llx desc1 0x%016llx\n",
1820                            desc[0], desc[1]);
1821                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
1822                         dd_dev_err(sde->dd,
1823                                    "\taidx: %u amode: %u alen: %u\n",
1824                                    (u8)((desc[1] &
1825                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
1826                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
1827                                    (u8)((desc[1] &
1828                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
1829                                         SDMA_DESC1_HEADER_MODE_SHIFT),
1830                                    (u8)((desc[1] &
1831                                          SDMA_DESC1_HEADER_DWS_SMASK) >>
1832                                         SDMA_DESC1_HEADER_DWS_SHIFT));
1833                 head++;
1834                 head &= sde->sdma_mask;
1835         }
1836 }
1837
1838 #define SDE_FMT \
1839         "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
1840 /**
1841  * sdma_seqfile_dump_sde() - debugfs dump of sde
1842  * @s: seq file
1843  * @sde: send dma engine to dump
1844  *
1845  * This routine dumps the sde to the indicated seq file.
1846  */
1847 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
1848 {
1849         u16 head, tail;
1850         struct hw_sdma_desc *descqp;
1851         u64 desc[2];
1852         u64 addr;
1853         u8 gen;
1854         u16 len;
1855
1856         head = sde->descq_head & sde->sdma_mask;
1857         tail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1858         seq_printf(s, SDE_FMT, sde->this_idx,
1859                    sde->cpu,
1860                    sdma_state_name(sde->state.current_state),
1861                    (unsigned long long)read_sde_csr(sde, SD(CTRL)),
1862                    (unsigned long long)read_sde_csr(sde, SD(STATUS)),
1863                    (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
1864                    (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
1865                    (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
1866                    (unsigned long long)le64_to_cpu(*sde->head_dma),
1867                    (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
1868                    (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
1869                    (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
1870                    (unsigned long long)sde->last_status,
1871                    (unsigned long long)sde->ahg_bits,
1872                    sde->tx_tail,
1873                    sde->tx_head,
1874                    sde->descq_tail,
1875                    sde->descq_head,
1876                    !list_empty(&sde->flushlist),
1877                    sde->descq_full_count,
1878                    (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
1879
1880         /* print info for each entry in the descriptor queue */
1881         while (head != tail) {
1882                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
1883
1884                 descqp = &sde->descq[head];
1885                 desc[0] = le64_to_cpu(descqp->qw[0]);
1886                 desc[1] = le64_to_cpu(descqp->qw[1]);
1887                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
1888                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
1889                                 'H' : '-';
1890                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
1891                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
1892                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
1893                         & SDMA_DESC0_PHY_ADDR_MASK;
1894                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
1895                         & SDMA_DESC1_GENERATION_MASK;
1896                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
1897                         & SDMA_DESC0_BYTE_COUNT_MASK;
1898                 seq_printf(s,
1899                            "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
1900                            head, flags, addr, gen, len);
1901                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
1902                         seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
1903                                    (u8)((desc[1] &
1904                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
1905                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
1906                                    (u8)((desc[1] &
1907                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
1908                                         SDMA_DESC1_HEADER_MODE_SHIFT));
1909                 head = (head + 1) & sde->sdma_mask;
1910         }
1911 }
1912
1913 /*
1914  * add the generation number into
1915  * the qw1 and return
1916  */
1917 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
1918 {
1919         u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
1920
1921         qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
1922         qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
1923                         << SDMA_DESC1_GENERATION_SHIFT;
1924         return qw1;
1925 }
1926
1927 /*
1928  * This routine submits the indicated tx
1929  *
1930  * Space has already been guaranteed and
1931  * tail side of ring is locked.
1932  *
1933  * The hardware tail update is done
1934  * in the caller and that is facilitated
1935  * by returning the new tail.
1936  *
1937  * There is special case logic for ahg
1938  * to not add the generation number for
1939  * up to 2 descriptors that follow the
1940  * first descriptor.
1941  *
1942  */
1943 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
1944 {
1945         int i;
1946         u16 tail;
1947         struct sdma_desc *descp = tx->descp;
1948         u8 skip = 0, mode = ahg_mode(tx);
1949
1950         tail = sde->descq_tail & sde->sdma_mask;
1951         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
1952         sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
1953         trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
1954                                    tail, &sde->descq[tail]);
1955         tail = ++sde->descq_tail & sde->sdma_mask;
1956         descp++;
1957         if (mode > SDMA_AHG_APPLY_UPDATE1)
1958                 skip = mode >> 1;
1959         for (i = 1; i < tx->num_desc; i++, descp++) {
1960                 u64 qw1;
1961
1962                 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
1963                 if (skip) {
1964                         /* edits don't have generation */
1965                         qw1 = descp->qw[1];
1966                         skip--;
1967                 } else {
1968                         /* replace generation with real one for non-edits */
1969                         qw1 = add_gen(sde, descp->qw[1]);
1970                 }
1971                 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
1972                 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
1973                                            tail, &sde->descq[tail]);
1974                 tail = ++sde->descq_tail & sde->sdma_mask;
1975         }
1976         tx->next_descq_idx = tail;
1977 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
1978         tx->sn = sde->tail_sn++;
1979         trace_hfi1_sdma_in_sn(sde, tx->sn);
1980         WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
1981 #endif
1982         sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
1983         sde->desc_avail -= tx->num_desc;
1984         return tail;
1985 }
1986
1987 /*
1988  * Check for progress
1989  */
1990 static int sdma_check_progress(
1991         struct sdma_engine *sde,
1992         struct iowait *wait,
1993         struct sdma_txreq *tx)
1994 {
1995         int ret;
1996
1997         sde->desc_avail = sdma_descq_freecnt(sde);
1998         if (tx->num_desc <= sde->desc_avail)
1999                 return -EAGAIN;
2000         /* pulse the head_lock */
2001         if (wait && wait->sleep) {
2002                 unsigned seq;
2003
2004                 seq = raw_seqcount_begin(
2005                         (const seqcount_t *)&sde->head_lock.seqcount);
2006                 ret = wait->sleep(sde, wait, tx, seq);
2007                 if (ret == -EAGAIN)
2008                         sde->desc_avail = sdma_descq_freecnt(sde);
2009         } else {
2010                 ret = -EBUSY;
2011         }
2012         return ret;
2013 }
2014
2015 /**
2016  * sdma_send_txreq() - submit a tx req to ring
2017  * @sde: sdma engine to use
2018  * @wait: wait structure to use when full (may be NULL)
2019  * @tx: sdma_txreq to submit
2020  *
2021  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2022  * the packet will be queued to the list in wait.
2023  *
2024  * Return:
2025  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2026  * ring (wait == NULL)
2027  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2028  */
2029 int sdma_send_txreq(struct sdma_engine *sde,
2030                     struct iowait *wait,
2031                     struct sdma_txreq *tx)
2032 {
2033         int ret = 0;
2034         u16 tail;
2035         unsigned long flags;
2036
2037         /* user should have supplied entire packet */
2038         if (unlikely(tx->tlen))
2039                 return -EINVAL;
2040         tx->wait = wait;
2041         spin_lock_irqsave(&sde->tail_lock, flags);
2042 retry:
2043         if (unlikely(!__sdma_running(sde)))
2044                 goto unlock_noconn;
2045         if (unlikely(tx->num_desc > sde->desc_avail))
2046                 goto nodesc;
2047         tail = submit_tx(sde, tx);
2048         if (wait)
2049                 iowait_sdma_inc(wait);
2050         sdma_update_tail(sde, tail);
2051 unlock:
2052         spin_unlock_irqrestore(&sde->tail_lock, flags);
2053         return ret;
2054 unlock_noconn:
2055         if (wait)
2056                 iowait_sdma_inc(wait);
2057         tx->next_descq_idx = 0;
2058 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2059         tx->sn = sde->tail_sn++;
2060         trace_hfi1_sdma_in_sn(sde, tx->sn);
2061 #endif
2062         spin_lock(&sde->flushlist_lock);
2063         list_add_tail(&tx->list, &sde->flushlist);
2064         spin_unlock(&sde->flushlist_lock);
2065         if (wait) {
2066                 wait->tx_count++;
2067                 wait->count += tx->num_desc;
2068         }
2069         schedule_work(&sde->flush_worker);
2070         ret = -ECOMM;
2071         goto unlock;
2072 nodesc:
2073         ret = sdma_check_progress(sde, wait, tx);
2074         if (ret == -EAGAIN) {
2075                 ret = 0;
2076                 goto retry;
2077         }
2078         sde->descq_full_count++;
2079         goto unlock;
2080 }
2081
2082 /**
2083  * sdma_send_txlist() - submit a list of tx req to ring
2084  * @sde: sdma engine to use
2085  * @wait: wait structure to use when full (may be NULL)
2086  * @tx_list: list of sdma_txreqs to submit
2087  *
2088  * The call submits the list into the ring.
2089  *
2090  * If the iowait structure is non-NULL and not equal to the iowait list
2091  * the unprocessed part of the list  will be appended to the list in wait.
2092  *
2093  * In all cases, the tx_list will be updated so the head of the tx_list is
2094  * the list of descriptors that have yet to be transmitted.
2095  *
2096  * The intent of this call is to provide a more efficient
2097  * way of submitting multiple packets to SDMA while holding the tail
2098  * side locking.
2099  *
2100  * Return:
2101  * > 0 - Success (value is number of sdma_txreq's submitted),
2102  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2103  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2104  */
2105 int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait,
2106                      struct list_head *tx_list)
2107 {
2108         struct sdma_txreq *tx, *tx_next;
2109         int ret = 0;
2110         unsigned long flags;
2111         u16 tail = INVALID_TAIL;
2112         int count = 0;
2113
2114         spin_lock_irqsave(&sde->tail_lock, flags);
2115 retry:
2116         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2117                 tx->wait = wait;
2118                 if (unlikely(!__sdma_running(sde)))
2119                         goto unlock_noconn;
2120                 if (unlikely(tx->num_desc > sde->desc_avail))
2121                         goto nodesc;
2122                 if (unlikely(tx->tlen)) {
2123                         ret = -EINVAL;
2124                         goto update_tail;
2125                 }
2126                 list_del_init(&tx->list);
2127                 tail = submit_tx(sde, tx);
2128                 count++;
2129                 if (tail != INVALID_TAIL &&
2130                     (count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2131                         sdma_update_tail(sde, tail);
2132                         tail = INVALID_TAIL;
2133                 }
2134         }
2135 update_tail:
2136         if (wait)
2137                 iowait_sdma_add(wait, count);
2138         if (tail != INVALID_TAIL)
2139                 sdma_update_tail(sde, tail);
2140         spin_unlock_irqrestore(&sde->tail_lock, flags);
2141         return ret == 0 ? count : ret;
2142 unlock_noconn:
2143         spin_lock(&sde->flushlist_lock);
2144         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2145                 tx->wait = wait;
2146                 list_del_init(&tx->list);
2147                 if (wait)
2148                         iowait_sdma_inc(wait);
2149                 tx->next_descq_idx = 0;
2150 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2151                 tx->sn = sde->tail_sn++;
2152                 trace_hfi1_sdma_in_sn(sde, tx->sn);
2153 #endif
2154                 list_add_tail(&tx->list, &sde->flushlist);
2155                 if (wait) {
2156                         wait->tx_count++;
2157                         wait->count += tx->num_desc;
2158                 }
2159         }
2160         spin_unlock(&sde->flushlist_lock);
2161         schedule_work(&sde->flush_worker);
2162         ret = -ECOMM;
2163         goto update_tail;
2164 nodesc:
2165         ret = sdma_check_progress(sde, wait, tx);
2166         if (ret == -EAGAIN) {
2167                 ret = 0;
2168                 goto retry;
2169         }
2170         sde->descq_full_count++;
2171         goto update_tail;
2172 }
2173
2174 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2175 {
2176         unsigned long flags;
2177
2178         spin_lock_irqsave(&sde->tail_lock, flags);
2179         write_seqlock(&sde->head_lock);
2180
2181         __sdma_process_event(sde, event);
2182
2183         if (sde->state.current_state == sdma_state_s99_running)
2184                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2185
2186         write_sequnlock(&sde->head_lock);
2187         spin_unlock_irqrestore(&sde->tail_lock, flags);
2188 }
2189
2190 static void __sdma_process_event(struct sdma_engine *sde,
2191                                  enum sdma_events event)
2192 {
2193         struct sdma_state *ss = &sde->state;
2194         int need_progress = 0;
2195
2196         /* CONFIG SDMA temporary */
2197 #ifdef CONFIG_SDMA_VERBOSITY
2198         dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2199                    sdma_state_names[ss->current_state],
2200                    sdma_event_names[event]);
2201 #endif
2202
2203         switch (ss->current_state) {
2204         case sdma_state_s00_hw_down:
2205                 switch (event) {
2206                 case sdma_event_e00_go_hw_down:
2207                         break;
2208                 case sdma_event_e30_go_running:
2209                         /*
2210                          * If down, but running requested (usually result
2211                          * of link up, then we need to start up.
2212                          * This can happen when hw down is requested while
2213                          * bringing the link up with traffic active on
2214                          * 7220, e.g.
2215                          */
2216                         ss->go_s99_running = 1;
2217                         /* fall through and start dma engine */
2218                 case sdma_event_e10_go_hw_start:
2219                         /* This reference means the state machine is started */
2220                         sdma_get(&sde->state);
2221                         sdma_set_state(sde,
2222                                        sdma_state_s10_hw_start_up_halt_wait);
2223                         break;
2224                 case sdma_event_e15_hw_halt_done:
2225                         break;
2226                 case sdma_event_e25_hw_clean_up_done:
2227                         break;
2228                 case sdma_event_e40_sw_cleaned:
2229                         sdma_sw_tear_down(sde);
2230                         break;
2231                 case sdma_event_e50_hw_cleaned:
2232                         break;
2233                 case sdma_event_e60_hw_halted:
2234                         break;
2235                 case sdma_event_e70_go_idle:
2236                         break;
2237                 case sdma_event_e80_hw_freeze:
2238                         break;
2239                 case sdma_event_e81_hw_frozen:
2240                         break;
2241                 case sdma_event_e82_hw_unfreeze:
2242                         break;
2243                 case sdma_event_e85_link_down:
2244                         break;
2245                 case sdma_event_e90_sw_halted:
2246                         break;
2247                 }
2248                 break;
2249
2250         case sdma_state_s10_hw_start_up_halt_wait:
2251                 switch (event) {
2252                 case sdma_event_e00_go_hw_down:
2253                         sdma_set_state(sde, sdma_state_s00_hw_down);
2254                         sdma_sw_tear_down(sde);
2255                         break;
2256                 case sdma_event_e10_go_hw_start:
2257                         break;
2258                 case sdma_event_e15_hw_halt_done:
2259                         sdma_set_state(sde,
2260                                        sdma_state_s15_hw_start_up_clean_wait);
2261                         sdma_start_hw_clean_up(sde);
2262                         break;
2263                 case sdma_event_e25_hw_clean_up_done:
2264                         break;
2265                 case sdma_event_e30_go_running:
2266                         ss->go_s99_running = 1;
2267                         break;
2268                 case sdma_event_e40_sw_cleaned:
2269                         break;
2270                 case sdma_event_e50_hw_cleaned:
2271                         break;
2272                 case sdma_event_e60_hw_halted:
2273                         schedule_work(&sde->err_halt_worker);
2274                         break;
2275                 case sdma_event_e70_go_idle:
2276                         ss->go_s99_running = 0;
2277                         break;
2278                 case sdma_event_e80_hw_freeze:
2279                         break;
2280                 case sdma_event_e81_hw_frozen:
2281                         break;
2282                 case sdma_event_e82_hw_unfreeze:
2283                         break;
2284                 case sdma_event_e85_link_down:
2285                         break;
2286                 case sdma_event_e90_sw_halted:
2287                         break;
2288                 }
2289                 break;
2290
2291         case sdma_state_s15_hw_start_up_clean_wait:
2292                 switch (event) {
2293                 case sdma_event_e00_go_hw_down:
2294                         sdma_set_state(sde, sdma_state_s00_hw_down);
2295                         sdma_sw_tear_down(sde);
2296                         break;
2297                 case sdma_event_e10_go_hw_start:
2298                         break;
2299                 case sdma_event_e15_hw_halt_done:
2300                         break;
2301                 case sdma_event_e25_hw_clean_up_done:
2302                         sdma_hw_start_up(sde);
2303                         sdma_set_state(sde, ss->go_s99_running ?
2304                                        sdma_state_s99_running :
2305                                        sdma_state_s20_idle);
2306                         break;
2307                 case sdma_event_e30_go_running:
2308                         ss->go_s99_running = 1;
2309                         break;
2310                 case sdma_event_e40_sw_cleaned:
2311                         break;
2312                 case sdma_event_e50_hw_cleaned:
2313                         break;
2314                 case sdma_event_e60_hw_halted:
2315                         break;
2316                 case sdma_event_e70_go_idle:
2317                         ss->go_s99_running = 0;
2318                         break;
2319                 case sdma_event_e80_hw_freeze:
2320                         break;
2321                 case sdma_event_e81_hw_frozen:
2322                         break;
2323                 case sdma_event_e82_hw_unfreeze:
2324                         break;
2325                 case sdma_event_e85_link_down:
2326                         break;
2327                 case sdma_event_e90_sw_halted:
2328                         break;
2329                 }
2330                 break;
2331
2332         case sdma_state_s20_idle:
2333                 switch (event) {
2334                 case sdma_event_e00_go_hw_down:
2335                         sdma_set_state(sde, sdma_state_s00_hw_down);
2336                         sdma_sw_tear_down(sde);
2337                         break;
2338                 case sdma_event_e10_go_hw_start:
2339                         break;
2340                 case sdma_event_e15_hw_halt_done:
2341                         break;
2342                 case sdma_event_e25_hw_clean_up_done:
2343                         break;
2344                 case sdma_event_e30_go_running:
2345                         sdma_set_state(sde, sdma_state_s99_running);
2346                         ss->go_s99_running = 1;
2347                         break;
2348                 case sdma_event_e40_sw_cleaned:
2349                         break;
2350                 case sdma_event_e50_hw_cleaned:
2351                         break;
2352                 case sdma_event_e60_hw_halted:
2353                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2354                         schedule_work(&sde->err_halt_worker);
2355                         break;
2356                 case sdma_event_e70_go_idle:
2357                         break;
2358                 case sdma_event_e85_link_down:
2359                         /* fall through */
2360                 case sdma_event_e80_hw_freeze:
2361                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2362                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2363                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2364                         break;
2365                 case sdma_event_e81_hw_frozen:
2366                         break;
2367                 case sdma_event_e82_hw_unfreeze:
2368                         break;
2369                 case sdma_event_e90_sw_halted:
2370                         break;
2371                 }
2372                 break;
2373
2374         case sdma_state_s30_sw_clean_up_wait:
2375                 switch (event) {
2376                 case sdma_event_e00_go_hw_down:
2377                         sdma_set_state(sde, sdma_state_s00_hw_down);
2378                         break;
2379                 case sdma_event_e10_go_hw_start:
2380                         break;
2381                 case sdma_event_e15_hw_halt_done:
2382                         break;
2383                 case sdma_event_e25_hw_clean_up_done:
2384                         break;
2385                 case sdma_event_e30_go_running:
2386                         ss->go_s99_running = 1;
2387                         break;
2388                 case sdma_event_e40_sw_cleaned:
2389                         sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2390                         sdma_start_hw_clean_up(sde);
2391                         break;
2392                 case sdma_event_e50_hw_cleaned:
2393                         break;
2394                 case sdma_event_e60_hw_halted:
2395                         break;
2396                 case sdma_event_e70_go_idle:
2397                         ss->go_s99_running = 0;
2398                         break;
2399                 case sdma_event_e80_hw_freeze:
2400                         break;
2401                 case sdma_event_e81_hw_frozen:
2402                         break;
2403                 case sdma_event_e82_hw_unfreeze:
2404                         break;
2405                 case sdma_event_e85_link_down:
2406                         ss->go_s99_running = 0;
2407                         break;
2408                 case sdma_event_e90_sw_halted:
2409                         break;
2410                 }
2411                 break;
2412
2413         case sdma_state_s40_hw_clean_up_wait:
2414                 switch (event) {
2415                 case sdma_event_e00_go_hw_down:
2416                         sdma_set_state(sde, sdma_state_s00_hw_down);
2417                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2418                         break;
2419                 case sdma_event_e10_go_hw_start:
2420                         break;
2421                 case sdma_event_e15_hw_halt_done:
2422                         break;
2423                 case sdma_event_e25_hw_clean_up_done:
2424                         sdma_hw_start_up(sde);
2425                         sdma_set_state(sde, ss->go_s99_running ?
2426                                        sdma_state_s99_running :
2427                                        sdma_state_s20_idle);
2428                         break;
2429                 case sdma_event_e30_go_running:
2430                         ss->go_s99_running = 1;
2431                         break;
2432                 case sdma_event_e40_sw_cleaned:
2433                         break;
2434                 case sdma_event_e50_hw_cleaned:
2435                         break;
2436                 case sdma_event_e60_hw_halted:
2437                         break;
2438                 case sdma_event_e70_go_idle:
2439                         ss->go_s99_running = 0;
2440                         break;
2441                 case sdma_event_e80_hw_freeze:
2442                         break;
2443                 case sdma_event_e81_hw_frozen:
2444                         break;
2445                 case sdma_event_e82_hw_unfreeze:
2446                         break;
2447                 case sdma_event_e85_link_down:
2448                         ss->go_s99_running = 0;
2449                         break;
2450                 case sdma_event_e90_sw_halted:
2451                         break;
2452                 }
2453                 break;
2454
2455         case sdma_state_s50_hw_halt_wait:
2456                 switch (event) {
2457                 case sdma_event_e00_go_hw_down:
2458                         sdma_set_state(sde, sdma_state_s00_hw_down);
2459                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2460                         break;
2461                 case sdma_event_e10_go_hw_start:
2462                         break;
2463                 case sdma_event_e15_hw_halt_done:
2464                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2465                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2466                         break;
2467                 case sdma_event_e25_hw_clean_up_done:
2468                         break;
2469                 case sdma_event_e30_go_running:
2470                         ss->go_s99_running = 1;
2471                         break;
2472                 case sdma_event_e40_sw_cleaned:
2473                         break;
2474                 case sdma_event_e50_hw_cleaned:
2475                         break;
2476                 case sdma_event_e60_hw_halted:
2477                         schedule_work(&sde->err_halt_worker);
2478                         break;
2479                 case sdma_event_e70_go_idle:
2480                         ss->go_s99_running = 0;
2481                         break;
2482                 case sdma_event_e80_hw_freeze:
2483                         break;
2484                 case sdma_event_e81_hw_frozen:
2485                         break;
2486                 case sdma_event_e82_hw_unfreeze:
2487                         break;
2488                 case sdma_event_e85_link_down:
2489                         ss->go_s99_running = 0;
2490                         break;
2491                 case sdma_event_e90_sw_halted:
2492                         break;
2493                 }
2494                 break;
2495
2496         case sdma_state_s60_idle_halt_wait:
2497                 switch (event) {
2498                 case sdma_event_e00_go_hw_down:
2499                         sdma_set_state(sde, sdma_state_s00_hw_down);
2500                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2501                         break;
2502                 case sdma_event_e10_go_hw_start:
2503                         break;
2504                 case sdma_event_e15_hw_halt_done:
2505                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2506                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2507                         break;
2508                 case sdma_event_e25_hw_clean_up_done:
2509                         break;
2510                 case sdma_event_e30_go_running:
2511                         ss->go_s99_running = 1;
2512                         break;
2513                 case sdma_event_e40_sw_cleaned:
2514                         break;
2515                 case sdma_event_e50_hw_cleaned:
2516                         break;
2517                 case sdma_event_e60_hw_halted:
2518                         schedule_work(&sde->err_halt_worker);
2519                         break;
2520                 case sdma_event_e70_go_idle:
2521                         ss->go_s99_running = 0;
2522                         break;
2523                 case sdma_event_e80_hw_freeze:
2524                         break;
2525                 case sdma_event_e81_hw_frozen:
2526                         break;
2527                 case sdma_event_e82_hw_unfreeze:
2528                         break;
2529                 case sdma_event_e85_link_down:
2530                         break;
2531                 case sdma_event_e90_sw_halted:
2532                         break;
2533                 }
2534                 break;
2535
2536         case sdma_state_s80_hw_freeze:
2537                 switch (event) {
2538                 case sdma_event_e00_go_hw_down:
2539                         sdma_set_state(sde, sdma_state_s00_hw_down);
2540                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2541                         break;
2542                 case sdma_event_e10_go_hw_start:
2543                         break;
2544                 case sdma_event_e15_hw_halt_done:
2545                         break;
2546                 case sdma_event_e25_hw_clean_up_done:
2547                         break;
2548                 case sdma_event_e30_go_running:
2549                         ss->go_s99_running = 1;
2550                         break;
2551                 case sdma_event_e40_sw_cleaned:
2552                         break;
2553                 case sdma_event_e50_hw_cleaned:
2554                         break;
2555                 case sdma_event_e60_hw_halted:
2556                         break;
2557                 case sdma_event_e70_go_idle:
2558                         ss->go_s99_running = 0;
2559                         break;
2560                 case sdma_event_e80_hw_freeze:
2561                         break;
2562                 case sdma_event_e81_hw_frozen:
2563                         sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2564                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2565                         break;
2566                 case sdma_event_e82_hw_unfreeze:
2567                         break;
2568                 case sdma_event_e85_link_down:
2569                         break;
2570                 case sdma_event_e90_sw_halted:
2571                         break;
2572                 }
2573                 break;
2574
2575         case sdma_state_s82_freeze_sw_clean:
2576                 switch (event) {
2577                 case sdma_event_e00_go_hw_down:
2578                         sdma_set_state(sde, sdma_state_s00_hw_down);
2579                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2580                         break;
2581                 case sdma_event_e10_go_hw_start:
2582                         break;
2583                 case sdma_event_e15_hw_halt_done:
2584                         break;
2585                 case sdma_event_e25_hw_clean_up_done:
2586                         break;
2587                 case sdma_event_e30_go_running:
2588                         ss->go_s99_running = 1;
2589                         break;
2590                 case sdma_event_e40_sw_cleaned:
2591                         /* notify caller this engine is done cleaning */
2592                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2593                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2594                         break;
2595                 case sdma_event_e50_hw_cleaned:
2596                         break;
2597                 case sdma_event_e60_hw_halted:
2598                         break;
2599                 case sdma_event_e70_go_idle:
2600                         ss->go_s99_running = 0;
2601                         break;
2602                 case sdma_event_e80_hw_freeze:
2603                         break;
2604                 case sdma_event_e81_hw_frozen:
2605                         break;
2606                 case sdma_event_e82_hw_unfreeze:
2607                         sdma_hw_start_up(sde);
2608                         sdma_set_state(sde, ss->go_s99_running ?
2609                                        sdma_state_s99_running :
2610                                        sdma_state_s20_idle);
2611                         break;
2612                 case sdma_event_e85_link_down:
2613                         break;
2614                 case sdma_event_e90_sw_halted:
2615                         break;
2616                 }
2617                 break;
2618
2619         case sdma_state_s99_running:
2620                 switch (event) {
2621                 case sdma_event_e00_go_hw_down:
2622                         sdma_set_state(sde, sdma_state_s00_hw_down);
2623                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2624                         break;
2625                 case sdma_event_e10_go_hw_start:
2626                         break;
2627                 case sdma_event_e15_hw_halt_done:
2628                         break;
2629                 case sdma_event_e25_hw_clean_up_done:
2630                         break;
2631                 case sdma_event_e30_go_running:
2632                         break;
2633                 case sdma_event_e40_sw_cleaned:
2634                         break;
2635                 case sdma_event_e50_hw_cleaned:
2636                         break;
2637                 case sdma_event_e60_hw_halted:
2638                         need_progress = 1;
2639                         sdma_err_progress_check_schedule(sde);
2640                 case sdma_event_e90_sw_halted:
2641                         /*
2642                         * SW initiated halt does not perform engines
2643                         * progress check
2644                         */
2645                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2646                         schedule_work(&sde->err_halt_worker);
2647                         break;
2648                 case sdma_event_e70_go_idle:
2649                         sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2650                         break;
2651                 case sdma_event_e85_link_down:
2652                         ss->go_s99_running = 0;
2653                         /* fall through */
2654                 case sdma_event_e80_hw_freeze:
2655                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2656                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2657                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2658                         break;
2659                 case sdma_event_e81_hw_frozen:
2660                         break;
2661                 case sdma_event_e82_hw_unfreeze:
2662                         break;
2663                 }
2664                 break;
2665         }
2666
2667         ss->last_event = event;
2668         if (need_progress)
2669                 sdma_make_progress(sde, 0);
2670 }
2671
2672 /*
2673  * _extend_sdma_tx_descs() - helper to extend txreq
2674  *
2675  * This is called once the initial nominal allocation
2676  * of descriptors in the sdma_txreq is exhausted.
2677  *
2678  * The code will bump the allocation up to the max
2679  * of MAX_DESC (64) descriptors. There doesn't seem
2680  * much point in an interim step. The last descriptor
2681  * is reserved for coalesce buffer in order to support
2682  * cases where input packet has >MAX_DESC iovecs.
2683  *
2684  */
2685 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
2686 {
2687         int i;
2688
2689         /* Handle last descriptor */
2690         if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
2691                 /* if tlen is 0, it is for padding, release last descriptor */
2692                 if (!tx->tlen) {
2693                         tx->desc_limit = MAX_DESC;
2694                 } else if (!tx->coalesce_buf) {
2695                         /* allocate coalesce buffer with space for padding */
2696                         tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
2697                                                    GFP_ATOMIC);
2698                         if (!tx->coalesce_buf)
2699                                 goto enomem;
2700                         tx->coalesce_idx = 0;
2701                 }
2702                 return 0;
2703         }
2704
2705         if (unlikely(tx->num_desc == MAX_DESC))
2706                 goto enomem;
2707
2708         tx->descp = kmalloc_array(
2709                         MAX_DESC,
2710                         sizeof(struct sdma_desc),
2711                         GFP_ATOMIC);
2712         if (!tx->descp)
2713                 goto enomem;
2714
2715         /* reserve last descriptor for coalescing */
2716         tx->desc_limit = MAX_DESC - 1;
2717         /* copy ones already built */
2718         for (i = 0; i < tx->num_desc; i++)
2719                 tx->descp[i] = tx->descs[i];
2720         return 0;
2721 enomem:
2722         sdma_txclean(dd, tx);
2723         return -ENOMEM;
2724 }
2725
2726 /*
2727  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
2728  *
2729  * This is called once the initial nominal allocation of descriptors
2730  * in the sdma_txreq is exhausted.
2731  *
2732  * This function calls _extend_sdma_tx_descs to extend or allocate
2733  * coalesce buffer. If there is a allocated coalesce buffer, it will
2734  * copy the input packet data into the coalesce buffer. It also adds
2735  * coalesce buffer descriptor once when whole packet is received.
2736  *
2737  * Return:
2738  * <0 - error
2739  * 0 - coalescing, don't populate descriptor
2740  * 1 - continue with populating descriptor
2741  */
2742 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
2743                            int type, void *kvaddr, struct page *page,
2744                            unsigned long offset, u16 len)
2745 {
2746         int pad_len, rval;
2747         dma_addr_t addr;
2748
2749         rval = _extend_sdma_tx_descs(dd, tx);
2750         if (rval) {
2751                 sdma_txclean(dd, tx);
2752                 return rval;
2753         }
2754
2755         /* If coalesce buffer is allocated, copy data into it */
2756         if (tx->coalesce_buf) {
2757                 if (type == SDMA_MAP_NONE) {
2758                         sdma_txclean(dd, tx);
2759                         return -EINVAL;
2760                 }
2761
2762                 if (type == SDMA_MAP_PAGE) {
2763                         kvaddr = kmap(page);
2764                         kvaddr += offset;
2765                 } else if (WARN_ON(!kvaddr)) {
2766                         sdma_txclean(dd, tx);
2767                         return -EINVAL;
2768                 }
2769
2770                 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
2771                 tx->coalesce_idx += len;
2772                 if (type == SDMA_MAP_PAGE)
2773                         kunmap(page);
2774
2775                 /* If there is more data, return */
2776                 if (tx->tlen - tx->coalesce_idx)
2777                         return 0;
2778
2779                 /* Whole packet is received; add any padding */
2780                 pad_len = tx->packet_len & (sizeof(u32) - 1);
2781                 if (pad_len) {
2782                         pad_len = sizeof(u32) - pad_len;
2783                         memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
2784                         /* padding is taken care of for coalescing case */
2785                         tx->packet_len += pad_len;
2786                         tx->tlen += pad_len;
2787                 }
2788
2789                 /* dma map the coalesce buffer */
2790                 addr = dma_map_single(&dd->pcidev->dev,
2791                                       tx->coalesce_buf,
2792                                       tx->tlen,
2793                                       DMA_TO_DEVICE);
2794
2795                 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
2796                         sdma_txclean(dd, tx);
2797                         return -ENOSPC;
2798                 }
2799
2800                 /* Add descriptor for coalesce buffer */
2801                 tx->desc_limit = MAX_DESC;
2802                 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
2803                                          addr, tx->tlen);
2804         }
2805
2806         return 1;
2807 }
2808
2809 /* Update sdes when the lmc changes */
2810 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
2811 {
2812         struct sdma_engine *sde;
2813         int i;
2814         u64 sreg;
2815
2816         sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
2817                 SD(CHECK_SLID_MASK_SHIFT)) |
2818                 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
2819                 SD(CHECK_SLID_VALUE_SHIFT));
2820
2821         for (i = 0; i < dd->num_sdma; i++) {
2822                 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
2823                           i, (u32)sreg);
2824                 sde = &dd->per_sdma[i];
2825                 write_sde_csr(sde, SD(CHECK_SLID), sreg);
2826         }
2827 }
2828
2829 /* tx not dword sized - pad */
2830 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
2831 {
2832         int rval = 0;
2833
2834         tx->num_desc++;
2835         if ((unlikely(tx->num_desc == tx->desc_limit))) {
2836                 rval = _extend_sdma_tx_descs(dd, tx);
2837                 if (rval) {
2838                         sdma_txclean(dd, tx);
2839                         return rval;
2840                 }
2841         }
2842         /* finish the one just added */
2843         make_tx_sdma_desc(
2844                 tx,
2845                 SDMA_MAP_NONE,
2846                 dd->sdma_pad_phys,
2847                 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
2848         _sdma_close_tx(dd, tx);
2849         return rval;
2850 }
2851
2852 /*
2853  * Add ahg to the sdma_txreq
2854  *
2855  * The logic will consume up to 3
2856  * descriptors at the beginning of
2857  * sdma_txreq.
2858  */
2859 void _sdma_txreq_ahgadd(
2860         struct sdma_txreq *tx,
2861         u8 num_ahg,
2862         u8 ahg_entry,
2863         u32 *ahg,
2864         u8 ahg_hlen)
2865 {
2866         u32 i, shift = 0, desc = 0;
2867         u8 mode;
2868
2869         WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
2870         /* compute mode */
2871         if (num_ahg == 1)
2872                 mode = SDMA_AHG_APPLY_UPDATE1;
2873         else if (num_ahg <= 5)
2874                 mode = SDMA_AHG_APPLY_UPDATE2;
2875         else
2876                 mode = SDMA_AHG_APPLY_UPDATE3;
2877         tx->num_desc++;
2878         /* initialize to consumed descriptors to zero */
2879         switch (mode) {
2880         case SDMA_AHG_APPLY_UPDATE3:
2881                 tx->num_desc++;
2882                 tx->descs[2].qw[0] = 0;
2883                 tx->descs[2].qw[1] = 0;
2884                 /* FALLTHROUGH */
2885         case SDMA_AHG_APPLY_UPDATE2:
2886                 tx->num_desc++;
2887                 tx->descs[1].qw[0] = 0;
2888                 tx->descs[1].qw[1] = 0;
2889                 break;
2890         }
2891         ahg_hlen >>= 2;
2892         tx->descs[0].qw[1] |=
2893                 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
2894                         << SDMA_DESC1_HEADER_INDEX_SHIFT) |
2895                 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
2896                         << SDMA_DESC1_HEADER_DWS_SHIFT) |
2897                 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
2898                         << SDMA_DESC1_HEADER_MODE_SHIFT) |
2899                 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
2900                         << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
2901         for (i = 0; i < (num_ahg - 1); i++) {
2902                 if (!shift && !(i & 2))
2903                         desc++;
2904                 tx->descs[desc].qw[!!(i & 2)] |=
2905                         (((u64)ahg[i + 1])
2906                                 << shift);
2907                 shift = (shift + 32) & 63;
2908         }
2909 }
2910
2911 /**
2912  * sdma_ahg_alloc - allocate an AHG entry
2913  * @sde: engine to allocate from
2914  *
2915  * Return:
2916  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
2917  * -ENOSPC if an entry is not available
2918  */
2919 int sdma_ahg_alloc(struct sdma_engine *sde)
2920 {
2921         int nr;
2922         int oldbit;
2923
2924         if (!sde) {
2925                 trace_hfi1_ahg_allocate(sde, -EINVAL);
2926                 return -EINVAL;
2927         }
2928         while (1) {
2929                 nr = ffz(ACCESS_ONCE(sde->ahg_bits));
2930                 if (nr > 31) {
2931                         trace_hfi1_ahg_allocate(sde, -ENOSPC);
2932                         return -ENOSPC;
2933                 }
2934                 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
2935                 if (!oldbit)
2936                         break;
2937                 cpu_relax();
2938         }
2939         trace_hfi1_ahg_allocate(sde, nr);
2940         return nr;
2941 }
2942
2943 /**
2944  * sdma_ahg_free - free an AHG entry
2945  * @sde: engine to return AHG entry
2946  * @ahg_index: index to free
2947  *
2948  * This routine frees the indicate AHG entry.
2949  */
2950 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
2951 {
2952         if (!sde)
2953                 return;
2954         trace_hfi1_ahg_deallocate(sde, ahg_index);
2955         if (ahg_index < 0 || ahg_index > 31)
2956                 return;
2957         clear_bit(ahg_index, &sde->ahg_bits);
2958 }
2959
2960 /*
2961  * SPC freeze handling for SDMA engines.  Called when the driver knows
2962  * the SPC is going into a freeze but before the freeze is fully
2963  * settled.  Generally an error interrupt.
2964  *
2965  * This event will pull the engine out of running so no more entries can be
2966  * added to the engine's queue.
2967  */
2968 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
2969 {
2970         int i;
2971         enum sdma_events event = link_down ? sdma_event_e85_link_down :
2972                                              sdma_event_e80_hw_freeze;
2973
2974         /* set up the wait but do not wait here */
2975         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
2976
2977         /* tell all engines to stop running and wait */
2978         for (i = 0; i < dd->num_sdma; i++)
2979                 sdma_process_event(&dd->per_sdma[i], event);
2980
2981         /* sdma_freeze() will wait for all engines to have stopped */
2982 }
2983
2984 /*
2985  * SPC freeze handling for SDMA engines.  Called when the driver knows
2986  * the SPC is fully frozen.
2987  */
2988 void sdma_freeze(struct hfi1_devdata *dd)
2989 {
2990         int i;
2991         int ret;
2992
2993         /*
2994          * Make sure all engines have moved out of the running state before
2995          * continuing.
2996          */
2997         ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
2998                                        atomic_read(&dd->sdma_unfreeze_count) <=
2999                                        0);
3000         /* interrupted or count is negative, then unloading - just exit */
3001         if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3002                 return;
3003
3004         /* set up the count for the next wait */
3005         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3006
3007         /* tell all engines that the SPC is frozen, they can start cleaning */
3008         for (i = 0; i < dd->num_sdma; i++)
3009                 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3010
3011         /*
3012          * Wait for everyone to finish software clean before exiting.  The
3013          * software clean will read engine CSRs, so must be completed before
3014          * the next step, which will clear the engine CSRs.
3015          */
3016         (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3017                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3018         /* no need to check results - done no matter what */
3019 }
3020
3021 /*
3022  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3023  *
3024  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3025  * that is left is a software clean.  We could do it after the SPC is fully
3026  * frozen, but then we'd have to add another state to wait for the unfreeze.
3027  * Instead, just defer the software clean until the unfreeze step.
3028  */
3029 void sdma_unfreeze(struct hfi1_devdata *dd)
3030 {
3031         int i;
3032
3033         /* tell all engines start freeze clean up */
3034         for (i = 0; i < dd->num_sdma; i++)
3035                 sdma_process_event(&dd->per_sdma[i],
3036                                    sdma_event_e82_hw_unfreeze);
3037 }
3038
3039 /**
3040  * _sdma_engine_progress_schedule() - schedule progress on engine
3041  * @sde: sdma_engine to schedule progress
3042  *
3043  */
3044 void _sdma_engine_progress_schedule(
3045         struct sdma_engine *sde)
3046 {
3047         trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3048         /* assume we have selected a good cpu */
3049         write_csr(sde->dd,
3050                   CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3051                   sde->progress_mask);
3052 }