drm/amdgpu: add feature version for RLC and MEC v2
[linux-2.6-block.git] / drivers / spi / spi-pxa2xx.c
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/device.h>
19 #include <linux/ioport.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/interrupt.h>
23 #include <linux/kernel.h>
24 #include <linux/platform_device.h>
25 #include <linux/spi/pxa2xx_spi.h>
26 #include <linux/spi/spi.h>
27 #include <linux/delay.h>
28 #include <linux/gpio.h>
29 #include <linux/slab.h>
30 #include <linux/clk.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/acpi.h>
33
34 #include "spi-pxa2xx.h"
35
36 MODULE_AUTHOR("Stephen Street");
37 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
38 MODULE_LICENSE("GPL");
39 MODULE_ALIAS("platform:pxa2xx-spi");
40
41 #define TIMOUT_DFLT             1000
42
43 /*
44  * for testing SSCR1 changes that require SSP restart, basically
45  * everything except the service and interrupt enables, the pxa270 developer
46  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
47  * list, but the PXA255 dev man says all bits without really meaning the
48  * service and interrupt enables
49  */
50 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
51                                 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
52                                 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
53                                 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
54                                 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
55                                 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
56
57 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF   \
58                                 | QUARK_X1000_SSCR1_EFWR        \
59                                 | QUARK_X1000_SSCR1_RFT         \
60                                 | QUARK_X1000_SSCR1_TFT         \
61                                 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
62
63 #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
64 #define SPI_CS_CONTROL_SW_MODE  BIT(0)
65 #define SPI_CS_CONTROL_CS_HIGH  BIT(1)
66
67 struct lpss_config {
68         /* LPSS offset from drv_data->ioaddr */
69         unsigned offset;
70         /* Register offsets from drv_data->lpss_base or -1 */
71         int reg_general;
72         int reg_ssp;
73         int reg_cs_ctrl;
74         /* FIFO thresholds */
75         u32 rx_threshold;
76         u32 tx_threshold_lo;
77         u32 tx_threshold_hi;
78 };
79
80 /* Keep these sorted with enum pxa_ssp_type */
81 static const struct lpss_config lpss_platforms[] = {
82         {       /* LPSS_LPT_SSP */
83                 .offset = 0x800,
84                 .reg_general = 0x08,
85                 .reg_ssp = 0x0c,
86                 .reg_cs_ctrl = 0x18,
87                 .rx_threshold = 64,
88                 .tx_threshold_lo = 160,
89                 .tx_threshold_hi = 224,
90         },
91         {       /* LPSS_BYT_SSP */
92                 .offset = 0x400,
93                 .reg_general = 0x08,
94                 .reg_ssp = 0x0c,
95                 .reg_cs_ctrl = 0x18,
96                 .rx_threshold = 64,
97                 .tx_threshold_lo = 160,
98                 .tx_threshold_hi = 224,
99         },
100 };
101
102 static inline const struct lpss_config
103 *lpss_get_config(const struct driver_data *drv_data)
104 {
105         return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
106 }
107
108 static bool is_lpss_ssp(const struct driver_data *drv_data)
109 {
110         switch (drv_data->ssp_type) {
111         case LPSS_LPT_SSP:
112         case LPSS_BYT_SSP:
113                 return true;
114         default:
115                 return false;
116         }
117 }
118
119 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
120 {
121         return drv_data->ssp_type == QUARK_X1000_SSP;
122 }
123
124 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
125 {
126         switch (drv_data->ssp_type) {
127         case QUARK_X1000_SSP:
128                 return QUARK_X1000_SSCR1_CHANGE_MASK;
129         default:
130                 return SSCR1_CHANGE_MASK;
131         }
132 }
133
134 static u32
135 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
136 {
137         switch (drv_data->ssp_type) {
138         case QUARK_X1000_SSP:
139                 return RX_THRESH_QUARK_X1000_DFLT;
140         default:
141                 return RX_THRESH_DFLT;
142         }
143 }
144
145 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
146 {
147         u32 mask;
148
149         switch (drv_data->ssp_type) {
150         case QUARK_X1000_SSP:
151                 mask = QUARK_X1000_SSSR_TFL_MASK;
152                 break;
153         default:
154                 mask = SSSR_TFL_MASK;
155                 break;
156         }
157
158         return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
159 }
160
161 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
162                                      u32 *sccr1_reg)
163 {
164         u32 mask;
165
166         switch (drv_data->ssp_type) {
167         case QUARK_X1000_SSP:
168                 mask = QUARK_X1000_SSCR1_RFT;
169                 break;
170         default:
171                 mask = SSCR1_RFT;
172                 break;
173         }
174         *sccr1_reg &= ~mask;
175 }
176
177 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
178                                    u32 *sccr1_reg, u32 threshold)
179 {
180         switch (drv_data->ssp_type) {
181         case QUARK_X1000_SSP:
182                 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
183                 break;
184         default:
185                 *sccr1_reg |= SSCR1_RxTresh(threshold);
186                 break;
187         }
188 }
189
190 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
191                                   u32 clk_div, u8 bits)
192 {
193         switch (drv_data->ssp_type) {
194         case QUARK_X1000_SSP:
195                 return clk_div
196                         | QUARK_X1000_SSCR0_Motorola
197                         | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
198                         | SSCR0_SSE;
199         default:
200                 return clk_div
201                         | SSCR0_Motorola
202                         | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
203                         | SSCR0_SSE
204                         | (bits > 16 ? SSCR0_EDSS : 0);
205         }
206 }
207
208 /*
209  * Read and write LPSS SSP private registers. Caller must first check that
210  * is_lpss_ssp() returns true before these can be called.
211  */
212 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
213 {
214         WARN_ON(!drv_data->lpss_base);
215         return readl(drv_data->lpss_base + offset);
216 }
217
218 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
219                                   unsigned offset, u32 value)
220 {
221         WARN_ON(!drv_data->lpss_base);
222         writel(value, drv_data->lpss_base + offset);
223 }
224
225 /*
226  * lpss_ssp_setup - perform LPSS SSP specific setup
227  * @drv_data: pointer to the driver private data
228  *
229  * Perform LPSS SSP specific setup. This function must be called first if
230  * one is going to use LPSS SSP private registers.
231  */
232 static void lpss_ssp_setup(struct driver_data *drv_data)
233 {
234         const struct lpss_config *config;
235         u32 value;
236
237         config = lpss_get_config(drv_data);
238         drv_data->lpss_base = drv_data->ioaddr + config->offset;
239
240         /* Enable software chip select control */
241         value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
242         __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
243
244         /* Enable multiblock DMA transfers */
245         if (drv_data->master_info->enable_dma) {
246                 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
247
248                 if (config->reg_general >= 0) {
249                         value = __lpss_ssp_read_priv(drv_data,
250                                                      config->reg_general);
251                         value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
252                         __lpss_ssp_write_priv(drv_data,
253                                               config->reg_general, value);
254                 }
255         }
256 }
257
258 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
259 {
260         const struct lpss_config *config;
261         u32 value;
262
263         config = lpss_get_config(drv_data);
264
265         value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
266         if (enable)
267                 value &= ~SPI_CS_CONTROL_CS_HIGH;
268         else
269                 value |= SPI_CS_CONTROL_CS_HIGH;
270         __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
271 }
272
273 static void cs_assert(struct driver_data *drv_data)
274 {
275         struct chip_data *chip = drv_data->cur_chip;
276
277         if (drv_data->ssp_type == CE4100_SSP) {
278                 pxa2xx_spi_write(drv_data, SSSR, drv_data->cur_chip->frm);
279                 return;
280         }
281
282         if (chip->cs_control) {
283                 chip->cs_control(PXA2XX_CS_ASSERT);
284                 return;
285         }
286
287         if (gpio_is_valid(chip->gpio_cs)) {
288                 gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
289                 return;
290         }
291
292         if (is_lpss_ssp(drv_data))
293                 lpss_ssp_cs_control(drv_data, true);
294 }
295
296 static void cs_deassert(struct driver_data *drv_data)
297 {
298         struct chip_data *chip = drv_data->cur_chip;
299
300         if (drv_data->ssp_type == CE4100_SSP)
301                 return;
302
303         if (chip->cs_control) {
304                 chip->cs_control(PXA2XX_CS_DEASSERT);
305                 return;
306         }
307
308         if (gpio_is_valid(chip->gpio_cs)) {
309                 gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
310                 return;
311         }
312
313         if (is_lpss_ssp(drv_data))
314                 lpss_ssp_cs_control(drv_data, false);
315 }
316
317 int pxa2xx_spi_flush(struct driver_data *drv_data)
318 {
319         unsigned long limit = loops_per_jiffy << 1;
320
321         do {
322                 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
323                         pxa2xx_spi_read(drv_data, SSDR);
324         } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
325         write_SSSR_CS(drv_data, SSSR_ROR);
326
327         return limit;
328 }
329
330 static int null_writer(struct driver_data *drv_data)
331 {
332         u8 n_bytes = drv_data->n_bytes;
333
334         if (pxa2xx_spi_txfifo_full(drv_data)
335                 || (drv_data->tx == drv_data->tx_end))
336                 return 0;
337
338         pxa2xx_spi_write(drv_data, SSDR, 0);
339         drv_data->tx += n_bytes;
340
341         return 1;
342 }
343
344 static int null_reader(struct driver_data *drv_data)
345 {
346         u8 n_bytes = drv_data->n_bytes;
347
348         while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
349                && (drv_data->rx < drv_data->rx_end)) {
350                 pxa2xx_spi_read(drv_data, SSDR);
351                 drv_data->rx += n_bytes;
352         }
353
354         return drv_data->rx == drv_data->rx_end;
355 }
356
357 static int u8_writer(struct driver_data *drv_data)
358 {
359         if (pxa2xx_spi_txfifo_full(drv_data)
360                 || (drv_data->tx == drv_data->tx_end))
361                 return 0;
362
363         pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
364         ++drv_data->tx;
365
366         return 1;
367 }
368
369 static int u8_reader(struct driver_data *drv_data)
370 {
371         while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
372                && (drv_data->rx < drv_data->rx_end)) {
373                 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
374                 ++drv_data->rx;
375         }
376
377         return drv_data->rx == drv_data->rx_end;
378 }
379
380 static int u16_writer(struct driver_data *drv_data)
381 {
382         if (pxa2xx_spi_txfifo_full(drv_data)
383                 || (drv_data->tx == drv_data->tx_end))
384                 return 0;
385
386         pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
387         drv_data->tx += 2;
388
389         return 1;
390 }
391
392 static int u16_reader(struct driver_data *drv_data)
393 {
394         while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
395                && (drv_data->rx < drv_data->rx_end)) {
396                 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
397                 drv_data->rx += 2;
398         }
399
400         return drv_data->rx == drv_data->rx_end;
401 }
402
403 static int u32_writer(struct driver_data *drv_data)
404 {
405         if (pxa2xx_spi_txfifo_full(drv_data)
406                 || (drv_data->tx == drv_data->tx_end))
407                 return 0;
408
409         pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
410         drv_data->tx += 4;
411
412         return 1;
413 }
414
415 static int u32_reader(struct driver_data *drv_data)
416 {
417         while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
418                && (drv_data->rx < drv_data->rx_end)) {
419                 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
420                 drv_data->rx += 4;
421         }
422
423         return drv_data->rx == drv_data->rx_end;
424 }
425
426 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
427 {
428         struct spi_message *msg = drv_data->cur_msg;
429         struct spi_transfer *trans = drv_data->cur_transfer;
430
431         /* Move to next transfer */
432         if (trans->transfer_list.next != &msg->transfers) {
433                 drv_data->cur_transfer =
434                         list_entry(trans->transfer_list.next,
435                                         struct spi_transfer,
436                                         transfer_list);
437                 return RUNNING_STATE;
438         } else
439                 return DONE_STATE;
440 }
441
442 /* caller already set message->status; dma and pio irqs are blocked */
443 static void giveback(struct driver_data *drv_data)
444 {
445         struct spi_transfer* last_transfer;
446         struct spi_message *msg;
447
448         msg = drv_data->cur_msg;
449         drv_data->cur_msg = NULL;
450         drv_data->cur_transfer = NULL;
451
452         last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
453                                         transfer_list);
454
455         /* Delay if requested before any change in chip select */
456         if (last_transfer->delay_usecs)
457                 udelay(last_transfer->delay_usecs);
458
459         /* Drop chip select UNLESS cs_change is true or we are returning
460          * a message with an error, or next message is for another chip
461          */
462         if (!last_transfer->cs_change)
463                 cs_deassert(drv_data);
464         else {
465                 struct spi_message *next_msg;
466
467                 /* Holding of cs was hinted, but we need to make sure
468                  * the next message is for the same chip.  Don't waste
469                  * time with the following tests unless this was hinted.
470                  *
471                  * We cannot postpone this until pump_messages, because
472                  * after calling msg->complete (below) the driver that
473                  * sent the current message could be unloaded, which
474                  * could invalidate the cs_control() callback...
475                  */
476
477                 /* get a pointer to the next message, if any */
478                 next_msg = spi_get_next_queued_message(drv_data->master);
479
480                 /* see if the next and current messages point
481                  * to the same chip
482                  */
483                 if (next_msg && next_msg->spi != msg->spi)
484                         next_msg = NULL;
485                 if (!next_msg || msg->state == ERROR_STATE)
486                         cs_deassert(drv_data);
487         }
488
489         drv_data->cur_chip = NULL;
490         spi_finalize_current_message(drv_data->master);
491 }
492
493 static void reset_sccr1(struct driver_data *drv_data)
494 {
495         struct chip_data *chip = drv_data->cur_chip;
496         u32 sccr1_reg;
497
498         sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
499         sccr1_reg &= ~SSCR1_RFT;
500         sccr1_reg |= chip->threshold;
501         pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
502 }
503
504 static void int_error_stop(struct driver_data *drv_data, const char* msg)
505 {
506         /* Stop and reset SSP */
507         write_SSSR_CS(drv_data, drv_data->clear_sr);
508         reset_sccr1(drv_data);
509         if (!pxa25x_ssp_comp(drv_data))
510                 pxa2xx_spi_write(drv_data, SSTO, 0);
511         pxa2xx_spi_flush(drv_data);
512         pxa2xx_spi_write(drv_data, SSCR0,
513                          pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
514
515         dev_err(&drv_data->pdev->dev, "%s\n", msg);
516
517         drv_data->cur_msg->state = ERROR_STATE;
518         tasklet_schedule(&drv_data->pump_transfers);
519 }
520
521 static void int_transfer_complete(struct driver_data *drv_data)
522 {
523         /* Stop SSP */
524         write_SSSR_CS(drv_data, drv_data->clear_sr);
525         reset_sccr1(drv_data);
526         if (!pxa25x_ssp_comp(drv_data))
527                 pxa2xx_spi_write(drv_data, SSTO, 0);
528
529         /* Update total byte transferred return count actual bytes read */
530         drv_data->cur_msg->actual_length += drv_data->len -
531                                 (drv_data->rx_end - drv_data->rx);
532
533         /* Transfer delays and chip select release are
534          * handled in pump_transfers or giveback
535          */
536
537         /* Move to next transfer */
538         drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
539
540         /* Schedule transfer tasklet */
541         tasklet_schedule(&drv_data->pump_transfers);
542 }
543
544 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
545 {
546         u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
547                        drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
548
549         u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
550
551         if (irq_status & SSSR_ROR) {
552                 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
553                 return IRQ_HANDLED;
554         }
555
556         if (irq_status & SSSR_TINT) {
557                 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
558                 if (drv_data->read(drv_data)) {
559                         int_transfer_complete(drv_data);
560                         return IRQ_HANDLED;
561                 }
562         }
563
564         /* Drain rx fifo, Fill tx fifo and prevent overruns */
565         do {
566                 if (drv_data->read(drv_data)) {
567                         int_transfer_complete(drv_data);
568                         return IRQ_HANDLED;
569                 }
570         } while (drv_data->write(drv_data));
571
572         if (drv_data->read(drv_data)) {
573                 int_transfer_complete(drv_data);
574                 return IRQ_HANDLED;
575         }
576
577         if (drv_data->tx == drv_data->tx_end) {
578                 u32 bytes_left;
579                 u32 sccr1_reg;
580
581                 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
582                 sccr1_reg &= ~SSCR1_TIE;
583
584                 /*
585                  * PXA25x_SSP has no timeout, set up rx threshould for the
586                  * remaining RX bytes.
587                  */
588                 if (pxa25x_ssp_comp(drv_data)) {
589                         u32 rx_thre;
590
591                         pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
592
593                         bytes_left = drv_data->rx_end - drv_data->rx;
594                         switch (drv_data->n_bytes) {
595                         case 4:
596                                 bytes_left >>= 1;
597                         case 2:
598                                 bytes_left >>= 1;
599                         }
600
601                         rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
602                         if (rx_thre > bytes_left)
603                                 rx_thre = bytes_left;
604
605                         pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
606                 }
607                 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
608         }
609
610         /* We did something */
611         return IRQ_HANDLED;
612 }
613
614 static irqreturn_t ssp_int(int irq, void *dev_id)
615 {
616         struct driver_data *drv_data = dev_id;
617         u32 sccr1_reg;
618         u32 mask = drv_data->mask_sr;
619         u32 status;
620
621         /*
622          * The IRQ might be shared with other peripherals so we must first
623          * check that are we RPM suspended or not. If we are we assume that
624          * the IRQ was not for us (we shouldn't be RPM suspended when the
625          * interrupt is enabled).
626          */
627         if (pm_runtime_suspended(&drv_data->pdev->dev))
628                 return IRQ_NONE;
629
630         /*
631          * If the device is not yet in RPM suspended state and we get an
632          * interrupt that is meant for another device, check if status bits
633          * are all set to one. That means that the device is already
634          * powered off.
635          */
636         status = pxa2xx_spi_read(drv_data, SSSR);
637         if (status == ~0)
638                 return IRQ_NONE;
639
640         sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
641
642         /* Ignore possible writes if we don't need to write */
643         if (!(sccr1_reg & SSCR1_TIE))
644                 mask &= ~SSSR_TFS;
645
646         if (!(status & mask))
647                 return IRQ_NONE;
648
649         if (!drv_data->cur_msg) {
650
651                 pxa2xx_spi_write(drv_data, SSCR0,
652                                  pxa2xx_spi_read(drv_data, SSCR0)
653                                  & ~SSCR0_SSE);
654                 pxa2xx_spi_write(drv_data, SSCR1,
655                                  pxa2xx_spi_read(drv_data, SSCR1)
656                                  & ~drv_data->int_cr1);
657                 if (!pxa25x_ssp_comp(drv_data))
658                         pxa2xx_spi_write(drv_data, SSTO, 0);
659                 write_SSSR_CS(drv_data, drv_data->clear_sr);
660
661                 dev_err(&drv_data->pdev->dev,
662                         "bad message state in interrupt handler\n");
663
664                 /* Never fail */
665                 return IRQ_HANDLED;
666         }
667
668         return drv_data->transfer_handler(drv_data);
669 }
670
671 /*
672  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
673  * input frequency by fractions of 2^24. It also has a divider by 5.
674  *
675  * There are formulas to get baud rate value for given input frequency and
676  * divider parameters, such as DDS_CLK_RATE and SCR:
677  *
678  * Fsys = 200MHz
679  *
680  * Fssp = Fsys * DDS_CLK_RATE / 2^24                    (1)
681  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))           (2)
682  *
683  * DDS_CLK_RATE either 2^n or 2^n / 5.
684  * SCR is in range 0 .. 255
685  *
686  * Divisor = 5^i * 2^j * 2 * k
687  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
688  *       j = [0, 23]     j = 0 iff i = 1
689  *       k = [1, 256]
690  * Special case: j = 0, i = 1: Divisor = 2 / 5
691  *
692  * Accordingly to the specification the recommended values for DDS_CLK_RATE
693  * are:
694  *      Case 1:         2^n, n = [0, 23]
695  *      Case 2:         2^24 * 2 / 5 (0x666666)
696  *      Case 3:         less than or equal to 2^24 / 5 / 16 (0x33333)
697  *
698  * In all cases the lowest possible value is better.
699  *
700  * The function calculates parameters for all cases and chooses the one closest
701  * to the asked baud rate.
702  */
703 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
704 {
705         unsigned long xtal = 200000000;
706         unsigned long fref = xtal / 2;          /* mandatory division by 2,
707                                                    see (2) */
708                                                 /* case 3 */
709         unsigned long fref1 = fref / 2;         /* case 1 */
710         unsigned long fref2 = fref * 2 / 5;     /* case 2 */
711         unsigned long scale;
712         unsigned long q, q1, q2;
713         long r, r1, r2;
714         u32 mul;
715
716         /* Case 1 */
717
718         /* Set initial value for DDS_CLK_RATE */
719         mul = (1 << 24) >> 1;
720
721         /* Calculate initial quot */
722         q1 = DIV_ROUND_CLOSEST(fref1, rate);
723
724         /* Scale q1 if it's too big */
725         if (q1 > 256) {
726                 /* Scale q1 to range [1, 512] */
727                 scale = fls_long(q1 - 1);
728                 if (scale > 9) {
729                         q1 >>= scale - 9;
730                         mul >>= scale - 9;
731                 }
732
733                 /* Round the result if we have a remainder */
734                 q1 += q1 & 1;
735         }
736
737         /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
738         scale = __ffs(q1);
739         q1 >>= scale;
740         mul >>= scale;
741
742         /* Get the remainder */
743         r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
744
745         /* Case 2 */
746
747         q2 = DIV_ROUND_CLOSEST(fref2, rate);
748         r2 = abs(fref2 / q2 - rate);
749
750         /*
751          * Choose the best between two: less remainder we have the better. We
752          * can't go case 2 if q2 is greater than 256 since SCR register can
753          * hold only values 0 .. 255.
754          */
755         if (r2 >= r1 || q2 > 256) {
756                 /* case 1 is better */
757                 r = r1;
758                 q = q1;
759         } else {
760                 /* case 2 is better */
761                 r = r2;
762                 q = q2;
763                 mul = (1 << 24) * 2 / 5;
764         }
765
766         /* Check case 3 only If the divisor is big enough */
767         if (fref / rate >= 80) {
768                 u64 fssp;
769                 u32 m;
770
771                 /* Calculate initial quot */
772                 q1 = DIV_ROUND_CLOSEST(fref, rate);
773                 m = (1 << 24) / q1;
774
775                 /* Get the remainder */
776                 fssp = (u64)fref * m;
777                 do_div(fssp, 1 << 24);
778                 r1 = abs(fssp - rate);
779
780                 /* Choose this one if it suits better */
781                 if (r1 < r) {
782                         /* case 3 is better */
783                         q = 1;
784                         mul = m;
785                 }
786         }
787
788         *dds = mul;
789         return q - 1;
790 }
791
792 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
793 {
794         unsigned long ssp_clk = drv_data->max_clk_rate;
795         const struct ssp_device *ssp = drv_data->ssp;
796
797         rate = min_t(int, ssp_clk, rate);
798
799         if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
800                 return (ssp_clk / (2 * rate) - 1) & 0xff;
801         else
802                 return (ssp_clk / rate - 1) & 0xfff;
803 }
804
805 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
806                                            struct chip_data *chip, int rate)
807 {
808         unsigned int clk_div;
809
810         switch (drv_data->ssp_type) {
811         case QUARK_X1000_SSP:
812                 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
813                 break;
814         default:
815                 clk_div = ssp_get_clk_div(drv_data, rate);
816                 break;
817         }
818         return clk_div << 8;
819 }
820
821 static void pump_transfers(unsigned long data)
822 {
823         struct driver_data *drv_data = (struct driver_data *)data;
824         struct spi_message *message = NULL;
825         struct spi_transfer *transfer = NULL;
826         struct spi_transfer *previous = NULL;
827         struct chip_data *chip = NULL;
828         u32 clk_div = 0;
829         u8 bits = 0;
830         u32 speed = 0;
831         u32 cr0;
832         u32 cr1;
833         u32 dma_thresh = drv_data->cur_chip->dma_threshold;
834         u32 dma_burst = drv_data->cur_chip->dma_burst_size;
835         u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
836
837         /* Get current state information */
838         message = drv_data->cur_msg;
839         transfer = drv_data->cur_transfer;
840         chip = drv_data->cur_chip;
841
842         /* Handle for abort */
843         if (message->state == ERROR_STATE) {
844                 message->status = -EIO;
845                 giveback(drv_data);
846                 return;
847         }
848
849         /* Handle end of message */
850         if (message->state == DONE_STATE) {
851                 message->status = 0;
852                 giveback(drv_data);
853                 return;
854         }
855
856         /* Delay if requested at end of transfer before CS change */
857         if (message->state == RUNNING_STATE) {
858                 previous = list_entry(transfer->transfer_list.prev,
859                                         struct spi_transfer,
860                                         transfer_list);
861                 if (previous->delay_usecs)
862                         udelay(previous->delay_usecs);
863
864                 /* Drop chip select only if cs_change is requested */
865                 if (previous->cs_change)
866                         cs_deassert(drv_data);
867         }
868
869         /* Check if we can DMA this transfer */
870         if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
871
872                 /* reject already-mapped transfers; PIO won't always work */
873                 if (message->is_dma_mapped
874                                 || transfer->rx_dma || transfer->tx_dma) {
875                         dev_err(&drv_data->pdev->dev,
876                                 "pump_transfers: mapped transfer length of "
877                                 "%u is greater than %d\n",
878                                 transfer->len, MAX_DMA_LEN);
879                         message->status = -EINVAL;
880                         giveback(drv_data);
881                         return;
882                 }
883
884                 /* warn ... we force this to PIO mode */
885                 dev_warn_ratelimited(&message->spi->dev,
886                                      "pump_transfers: DMA disabled for transfer length %ld "
887                                      "greater than %d\n",
888                                      (long)drv_data->len, MAX_DMA_LEN);
889         }
890
891         /* Setup the transfer state based on the type of transfer */
892         if (pxa2xx_spi_flush(drv_data) == 0) {
893                 dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
894                 message->status = -EIO;
895                 giveback(drv_data);
896                 return;
897         }
898         drv_data->n_bytes = chip->n_bytes;
899         drv_data->tx = (void *)transfer->tx_buf;
900         drv_data->tx_end = drv_data->tx + transfer->len;
901         drv_data->rx = transfer->rx_buf;
902         drv_data->rx_end = drv_data->rx + transfer->len;
903         drv_data->rx_dma = transfer->rx_dma;
904         drv_data->tx_dma = transfer->tx_dma;
905         drv_data->len = transfer->len;
906         drv_data->write = drv_data->tx ? chip->write : null_writer;
907         drv_data->read = drv_data->rx ? chip->read : null_reader;
908
909         /* Change speed and bit per word on a per transfer */
910         cr0 = chip->cr0;
911         if (transfer->speed_hz || transfer->bits_per_word) {
912
913                 bits = chip->bits_per_word;
914                 speed = chip->speed_hz;
915
916                 if (transfer->speed_hz)
917                         speed = transfer->speed_hz;
918
919                 if (transfer->bits_per_word)
920                         bits = transfer->bits_per_word;
921
922                 clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, speed);
923
924                 if (bits <= 8) {
925                         drv_data->n_bytes = 1;
926                         drv_data->read = drv_data->read != null_reader ?
927                                                 u8_reader : null_reader;
928                         drv_data->write = drv_data->write != null_writer ?
929                                                 u8_writer : null_writer;
930                 } else if (bits <= 16) {
931                         drv_data->n_bytes = 2;
932                         drv_data->read = drv_data->read != null_reader ?
933                                                 u16_reader : null_reader;
934                         drv_data->write = drv_data->write != null_writer ?
935                                                 u16_writer : null_writer;
936                 } else if (bits <= 32) {
937                         drv_data->n_bytes = 4;
938                         drv_data->read = drv_data->read != null_reader ?
939                                                 u32_reader : null_reader;
940                         drv_data->write = drv_data->write != null_writer ?
941                                                 u32_writer : null_writer;
942                 }
943                 /* if bits/word is changed in dma mode, then must check the
944                  * thresholds and burst also */
945                 if (chip->enable_dma) {
946                         if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
947                                                         message->spi,
948                                                         bits, &dma_burst,
949                                                         &dma_thresh))
950                                 dev_warn_ratelimited(&message->spi->dev,
951                                                      "pump_transfers: DMA burst size reduced to match bits_per_word\n");
952                 }
953
954                 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
955         }
956
957         message->state = RUNNING_STATE;
958
959         drv_data->dma_mapped = 0;
960         if (pxa2xx_spi_dma_is_possible(drv_data->len))
961                 drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
962         if (drv_data->dma_mapped) {
963
964                 /* Ensure we have the correct interrupt handler */
965                 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
966
967                 pxa2xx_spi_dma_prepare(drv_data, dma_burst);
968
969                 /* Clear status and start DMA engine */
970                 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
971                 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
972
973                 pxa2xx_spi_dma_start(drv_data);
974         } else {
975                 /* Ensure we have the correct interrupt handler */
976                 drv_data->transfer_handler = interrupt_transfer;
977
978                 /* Clear status  */
979                 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
980                 write_SSSR_CS(drv_data, drv_data->clear_sr);
981         }
982
983         if (is_lpss_ssp(drv_data)) {
984                 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
985                     != chip->lpss_rx_threshold)
986                         pxa2xx_spi_write(drv_data, SSIRF,
987                                          chip->lpss_rx_threshold);
988                 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
989                     != chip->lpss_tx_threshold)
990                         pxa2xx_spi_write(drv_data, SSITF,
991                                          chip->lpss_tx_threshold);
992         }
993
994         if (is_quark_x1000_ssp(drv_data) &&
995             (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
996                 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
997
998         /* see if we need to reload the config registers */
999         if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1000             || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1001             != (cr1 & change_mask)) {
1002                 /* stop the SSP, and update the other bits */
1003                 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1004                 if (!pxa25x_ssp_comp(drv_data))
1005                         pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1006                 /* first set CR1 without interrupt and service enables */
1007                 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1008                 /* restart the SSP */
1009                 pxa2xx_spi_write(drv_data, SSCR0, cr0);
1010
1011         } else {
1012                 if (!pxa25x_ssp_comp(drv_data))
1013                         pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1014         }
1015
1016         cs_assert(drv_data);
1017
1018         /* after chip select, release the data by enabling service
1019          * requests and interrupts, without changing any mode bits */
1020         pxa2xx_spi_write(drv_data, SSCR1, cr1);
1021 }
1022
1023 static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
1024                                            struct spi_message *msg)
1025 {
1026         struct driver_data *drv_data = spi_master_get_devdata(master);
1027
1028         drv_data->cur_msg = msg;
1029         /* Initial message state*/
1030         drv_data->cur_msg->state = START_STATE;
1031         drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1032                                                 struct spi_transfer,
1033                                                 transfer_list);
1034
1035         /* prepare to setup the SSP, in pump_transfers, using the per
1036          * chip configuration */
1037         drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1038
1039         /* Mark as busy and launch transfers */
1040         tasklet_schedule(&drv_data->pump_transfers);
1041         return 0;
1042 }
1043
1044 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1045 {
1046         struct driver_data *drv_data = spi_master_get_devdata(master);
1047
1048         /* Disable the SSP now */
1049         pxa2xx_spi_write(drv_data, SSCR0,
1050                          pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1051
1052         return 0;
1053 }
1054
1055 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1056                     struct pxa2xx_spi_chip *chip_info)
1057 {
1058         int err = 0;
1059
1060         if (chip == NULL || chip_info == NULL)
1061                 return 0;
1062
1063         /* NOTE: setup() can be called multiple times, possibly with
1064          * different chip_info, release previously requested GPIO
1065          */
1066         if (gpio_is_valid(chip->gpio_cs))
1067                 gpio_free(chip->gpio_cs);
1068
1069         /* If (*cs_control) is provided, ignore GPIO chip select */
1070         if (chip_info->cs_control) {
1071                 chip->cs_control = chip_info->cs_control;
1072                 return 0;
1073         }
1074
1075         if (gpio_is_valid(chip_info->gpio_cs)) {
1076                 err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1077                 if (err) {
1078                         dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1079                                 chip_info->gpio_cs);
1080                         return err;
1081                 }
1082
1083                 chip->gpio_cs = chip_info->gpio_cs;
1084                 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1085
1086                 err = gpio_direction_output(chip->gpio_cs,
1087                                         !chip->gpio_cs_inverted);
1088         }
1089
1090         return err;
1091 }
1092
1093 static int setup(struct spi_device *spi)
1094 {
1095         struct pxa2xx_spi_chip *chip_info = NULL;
1096         struct chip_data *chip;
1097         const struct lpss_config *config;
1098         struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1099         unsigned int clk_div;
1100         uint tx_thres, tx_hi_thres, rx_thres;
1101
1102         switch (drv_data->ssp_type) {
1103         case QUARK_X1000_SSP:
1104                 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1105                 tx_hi_thres = 0;
1106                 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1107                 break;
1108         case LPSS_LPT_SSP:
1109         case LPSS_BYT_SSP:
1110                 config = lpss_get_config(drv_data);
1111                 tx_thres = config->tx_threshold_lo;
1112                 tx_hi_thres = config->tx_threshold_hi;
1113                 rx_thres = config->rx_threshold;
1114                 break;
1115         default:
1116                 tx_thres = TX_THRESH_DFLT;
1117                 tx_hi_thres = 0;
1118                 rx_thres = RX_THRESH_DFLT;
1119                 break;
1120         }
1121
1122         /* Only alloc on first setup */
1123         chip = spi_get_ctldata(spi);
1124         if (!chip) {
1125                 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1126                 if (!chip)
1127                         return -ENOMEM;
1128
1129                 if (drv_data->ssp_type == CE4100_SSP) {
1130                         if (spi->chip_select > 4) {
1131                                 dev_err(&spi->dev,
1132                                         "failed setup: cs number must not be > 4.\n");
1133                                 kfree(chip);
1134                                 return -EINVAL;
1135                         }
1136
1137                         chip->frm = spi->chip_select;
1138                 } else
1139                         chip->gpio_cs = -1;
1140                 chip->enable_dma = 0;
1141                 chip->timeout = TIMOUT_DFLT;
1142         }
1143
1144         /* protocol drivers may change the chip settings, so...
1145          * if chip_info exists, use it */
1146         chip_info = spi->controller_data;
1147
1148         /* chip_info isn't always needed */
1149         chip->cr1 = 0;
1150         if (chip_info) {
1151                 if (chip_info->timeout)
1152                         chip->timeout = chip_info->timeout;
1153                 if (chip_info->tx_threshold)
1154                         tx_thres = chip_info->tx_threshold;
1155                 if (chip_info->tx_hi_threshold)
1156                         tx_hi_thres = chip_info->tx_hi_threshold;
1157                 if (chip_info->rx_threshold)
1158                         rx_thres = chip_info->rx_threshold;
1159                 chip->enable_dma = drv_data->master_info->enable_dma;
1160                 chip->dma_threshold = 0;
1161                 if (chip_info->enable_loopback)
1162                         chip->cr1 = SSCR1_LBM;
1163         } else if (ACPI_HANDLE(&spi->dev)) {
1164                 /*
1165                  * Slave devices enumerated from ACPI namespace don't
1166                  * usually have chip_info but we still might want to use
1167                  * DMA with them.
1168                  */
1169                 chip->enable_dma = drv_data->master_info->enable_dma;
1170         }
1171
1172         chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1173         chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1174                                 | SSITF_TxHiThresh(tx_hi_thres);
1175
1176         /* set dma burst and threshold outside of chip_info path so that if
1177          * chip_info goes away after setting chip->enable_dma, the
1178          * burst and threshold can still respond to changes in bits_per_word */
1179         if (chip->enable_dma) {
1180                 /* set up legal burst and threshold for dma */
1181                 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1182                                                 spi->bits_per_word,
1183                                                 &chip->dma_burst_size,
1184                                                 &chip->dma_threshold)) {
1185                         dev_warn(&spi->dev,
1186                                  "in setup: DMA burst size reduced to match bits_per_word\n");
1187                 }
1188         }
1189
1190         clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, spi->max_speed_hz);
1191         chip->speed_hz = spi->max_speed_hz;
1192
1193         chip->cr0 = pxa2xx_configure_sscr0(drv_data, clk_div,
1194                                            spi->bits_per_word);
1195         switch (drv_data->ssp_type) {
1196         case QUARK_X1000_SSP:
1197                 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1198                                    & QUARK_X1000_SSCR1_RFT)
1199                                    | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1200                                    & QUARK_X1000_SSCR1_TFT);
1201                 break;
1202         default:
1203                 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1204                         (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1205                 break;
1206         }
1207
1208         chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1209         chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1210                         | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1211
1212         if (spi->mode & SPI_LOOP)
1213                 chip->cr1 |= SSCR1_LBM;
1214
1215         /* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1216         if (!pxa25x_ssp_comp(drv_data))
1217                 dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1218                         drv_data->max_clk_rate
1219                                 / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
1220                         chip->enable_dma ? "DMA" : "PIO");
1221         else
1222                 dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1223                         drv_data->max_clk_rate / 2
1224                                 / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1225                         chip->enable_dma ? "DMA" : "PIO");
1226
1227         if (spi->bits_per_word <= 8) {
1228                 chip->n_bytes = 1;
1229                 chip->read = u8_reader;
1230                 chip->write = u8_writer;
1231         } else if (spi->bits_per_word <= 16) {
1232                 chip->n_bytes = 2;
1233                 chip->read = u16_reader;
1234                 chip->write = u16_writer;
1235         } else if (spi->bits_per_word <= 32) {
1236                 if (!is_quark_x1000_ssp(drv_data))
1237                         chip->cr0 |= SSCR0_EDSS;
1238                 chip->n_bytes = 4;
1239                 chip->read = u32_reader;
1240                 chip->write = u32_writer;
1241         }
1242         chip->bits_per_word = spi->bits_per_word;
1243
1244         spi_set_ctldata(spi, chip);
1245
1246         if (drv_data->ssp_type == CE4100_SSP)
1247                 return 0;
1248
1249         return setup_cs(spi, chip, chip_info);
1250 }
1251
1252 static void cleanup(struct spi_device *spi)
1253 {
1254         struct chip_data *chip = spi_get_ctldata(spi);
1255         struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1256
1257         if (!chip)
1258                 return;
1259
1260         if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1261                 gpio_free(chip->gpio_cs);
1262
1263         kfree(chip);
1264 }
1265
1266 #ifdef CONFIG_ACPI
1267
1268 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1269         { "INT33C0", LPSS_LPT_SSP },
1270         { "INT33C1", LPSS_LPT_SSP },
1271         { "INT3430", LPSS_LPT_SSP },
1272         { "INT3431", LPSS_LPT_SSP },
1273         { "80860F0E", LPSS_BYT_SSP },
1274         { "8086228E", LPSS_BYT_SSP },
1275         { },
1276 };
1277 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1278
1279 static struct pxa2xx_spi_master *
1280 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1281 {
1282         struct pxa2xx_spi_master *pdata;
1283         struct acpi_device *adev;
1284         struct ssp_device *ssp;
1285         struct resource *res;
1286         const struct acpi_device_id *id;
1287         int devid, type;
1288
1289         if (!ACPI_HANDLE(&pdev->dev) ||
1290             acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1291                 return NULL;
1292
1293         id = acpi_match_device(pdev->dev.driver->acpi_match_table, &pdev->dev);
1294         if (id)
1295                 type = (int)id->driver_data;
1296         else
1297                 return NULL;
1298
1299         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1300         if (!pdata)
1301                 return NULL;
1302
1303         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1304         if (!res)
1305                 return NULL;
1306
1307         ssp = &pdata->ssp;
1308
1309         ssp->phys_base = res->start;
1310         ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1311         if (IS_ERR(ssp->mmio_base))
1312                 return NULL;
1313
1314         ssp->clk = devm_clk_get(&pdev->dev, NULL);
1315         ssp->irq = platform_get_irq(pdev, 0);
1316         ssp->type = type;
1317         ssp->pdev = pdev;
1318
1319         ssp->port_id = -1;
1320         if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
1321                 ssp->port_id = devid;
1322
1323         pdata->num_chipselect = 1;
1324         pdata->enable_dma = true;
1325
1326         return pdata;
1327 }
1328
1329 #else
1330 static inline struct pxa2xx_spi_master *
1331 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1332 {
1333         return NULL;
1334 }
1335 #endif
1336
1337 static int pxa2xx_spi_probe(struct platform_device *pdev)
1338 {
1339         struct device *dev = &pdev->dev;
1340         struct pxa2xx_spi_master *platform_info;
1341         struct spi_master *master;
1342         struct driver_data *drv_data;
1343         struct ssp_device *ssp;
1344         int status;
1345         u32 tmp;
1346
1347         platform_info = dev_get_platdata(dev);
1348         if (!platform_info) {
1349                 platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
1350                 if (!platform_info) {
1351                         dev_err(&pdev->dev, "missing platform data\n");
1352                         return -ENODEV;
1353                 }
1354         }
1355
1356         ssp = pxa_ssp_request(pdev->id, pdev->name);
1357         if (!ssp)
1358                 ssp = &platform_info->ssp;
1359
1360         if (!ssp->mmio_base) {
1361                 dev_err(&pdev->dev, "failed to get ssp\n");
1362                 return -ENODEV;
1363         }
1364
1365         /* Allocate master with space for drv_data and null dma buffer */
1366         master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1367         if (!master) {
1368                 dev_err(&pdev->dev, "cannot alloc spi_master\n");
1369                 pxa_ssp_free(ssp);
1370                 return -ENOMEM;
1371         }
1372         drv_data = spi_master_get_devdata(master);
1373         drv_data->master = master;
1374         drv_data->master_info = platform_info;
1375         drv_data->pdev = pdev;
1376         drv_data->ssp = ssp;
1377
1378         master->dev.parent = &pdev->dev;
1379         master->dev.of_node = pdev->dev.of_node;
1380         /* the spi->mode bits understood by this driver: */
1381         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1382
1383         master->bus_num = ssp->port_id;
1384         master->num_chipselect = platform_info->num_chipselect;
1385         master->dma_alignment = DMA_ALIGNMENT;
1386         master->cleanup = cleanup;
1387         master->setup = setup;
1388         master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1389         master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1390         master->auto_runtime_pm = true;
1391
1392         drv_data->ssp_type = ssp->type;
1393         drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
1394
1395         drv_data->ioaddr = ssp->mmio_base;
1396         drv_data->ssdr_physical = ssp->phys_base + SSDR;
1397         if (pxa25x_ssp_comp(drv_data)) {
1398                 switch (drv_data->ssp_type) {
1399                 case QUARK_X1000_SSP:
1400                         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1401                         break;
1402                 default:
1403                         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1404                         break;
1405                 }
1406
1407                 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1408                 drv_data->dma_cr1 = 0;
1409                 drv_data->clear_sr = SSSR_ROR;
1410                 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1411         } else {
1412                 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1413                 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1414                 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1415                 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1416                 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1417         }
1418
1419         status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1420                         drv_data);
1421         if (status < 0) {
1422                 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1423                 goto out_error_master_alloc;
1424         }
1425
1426         /* Setup DMA if requested */
1427         drv_data->tx_channel = -1;
1428         drv_data->rx_channel = -1;
1429         if (platform_info->enable_dma) {
1430                 status = pxa2xx_spi_dma_setup(drv_data);
1431                 if (status) {
1432                         dev_dbg(dev, "no DMA channels available, using PIO\n");
1433                         platform_info->enable_dma = false;
1434                 }
1435         }
1436
1437         /* Enable SOC clock */
1438         clk_prepare_enable(ssp->clk);
1439
1440         drv_data->max_clk_rate = clk_get_rate(ssp->clk);
1441
1442         /* Load default SSP configuration */
1443         pxa2xx_spi_write(drv_data, SSCR0, 0);
1444         switch (drv_data->ssp_type) {
1445         case QUARK_X1000_SSP:
1446                 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT)
1447                       | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1448                 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1449
1450                 /* using the Motorola SPI protocol and use 8 bit frame */
1451                 pxa2xx_spi_write(drv_data, SSCR0,
1452                                  QUARK_X1000_SSCR0_Motorola
1453                                  | QUARK_X1000_SSCR0_DataSize(8));
1454                 break;
1455         default:
1456                 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1457                       SSCR1_TxTresh(TX_THRESH_DFLT);
1458                 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1459                 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1460                 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1461                 break;
1462         }
1463
1464         if (!pxa25x_ssp_comp(drv_data))
1465                 pxa2xx_spi_write(drv_data, SSTO, 0);
1466
1467         if (!is_quark_x1000_ssp(drv_data))
1468                 pxa2xx_spi_write(drv_data, SSPSP, 0);
1469
1470         if (is_lpss_ssp(drv_data))
1471                 lpss_ssp_setup(drv_data);
1472
1473         tasklet_init(&drv_data->pump_transfers, pump_transfers,
1474                      (unsigned long)drv_data);
1475
1476         pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1477         pm_runtime_use_autosuspend(&pdev->dev);
1478         pm_runtime_set_active(&pdev->dev);
1479         pm_runtime_enable(&pdev->dev);
1480
1481         /* Register with the SPI framework */
1482         platform_set_drvdata(pdev, drv_data);
1483         status = devm_spi_register_master(&pdev->dev, master);
1484         if (status != 0) {
1485                 dev_err(&pdev->dev, "problem registering spi master\n");
1486                 goto out_error_clock_enabled;
1487         }
1488
1489         return status;
1490
1491 out_error_clock_enabled:
1492         clk_disable_unprepare(ssp->clk);
1493         pxa2xx_spi_dma_release(drv_data);
1494         free_irq(ssp->irq, drv_data);
1495
1496 out_error_master_alloc:
1497         spi_master_put(master);
1498         pxa_ssp_free(ssp);
1499         return status;
1500 }
1501
1502 static int pxa2xx_spi_remove(struct platform_device *pdev)
1503 {
1504         struct driver_data *drv_data = platform_get_drvdata(pdev);
1505         struct ssp_device *ssp;
1506
1507         if (!drv_data)
1508                 return 0;
1509         ssp = drv_data->ssp;
1510
1511         pm_runtime_get_sync(&pdev->dev);
1512
1513         /* Disable the SSP at the peripheral and SOC level */
1514         pxa2xx_spi_write(drv_data, SSCR0, 0);
1515         clk_disable_unprepare(ssp->clk);
1516
1517         /* Release DMA */
1518         if (drv_data->master_info->enable_dma)
1519                 pxa2xx_spi_dma_release(drv_data);
1520
1521         pm_runtime_put_noidle(&pdev->dev);
1522         pm_runtime_disable(&pdev->dev);
1523
1524         /* Release IRQ */
1525         free_irq(ssp->irq, drv_data);
1526
1527         /* Release SSP */
1528         pxa_ssp_free(ssp);
1529
1530         return 0;
1531 }
1532
1533 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1534 {
1535         int status = 0;
1536
1537         if ((status = pxa2xx_spi_remove(pdev)) != 0)
1538                 dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1539 }
1540
1541 #ifdef CONFIG_PM_SLEEP
1542 static int pxa2xx_spi_suspend(struct device *dev)
1543 {
1544         struct driver_data *drv_data = dev_get_drvdata(dev);
1545         struct ssp_device *ssp = drv_data->ssp;
1546         int status = 0;
1547
1548         status = spi_master_suspend(drv_data->master);
1549         if (status != 0)
1550                 return status;
1551         pxa2xx_spi_write(drv_data, SSCR0, 0);
1552
1553         if (!pm_runtime_suspended(dev))
1554                 clk_disable_unprepare(ssp->clk);
1555
1556         return 0;
1557 }
1558
1559 static int pxa2xx_spi_resume(struct device *dev)
1560 {
1561         struct driver_data *drv_data = dev_get_drvdata(dev);
1562         struct ssp_device *ssp = drv_data->ssp;
1563         int status = 0;
1564
1565         pxa2xx_spi_dma_resume(drv_data);
1566
1567         /* Enable the SSP clock */
1568         if (!pm_runtime_suspended(dev))
1569                 clk_prepare_enable(ssp->clk);
1570
1571         /* Restore LPSS private register bits */
1572         if (is_lpss_ssp(drv_data))
1573                 lpss_ssp_setup(drv_data);
1574
1575         /* Start the queue running */
1576         status = spi_master_resume(drv_data->master);
1577         if (status != 0) {
1578                 dev_err(dev, "problem starting queue (%d)\n", status);
1579                 return status;
1580         }
1581
1582         return 0;
1583 }
1584 #endif
1585
1586 #ifdef CONFIG_PM
1587 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1588 {
1589         struct driver_data *drv_data = dev_get_drvdata(dev);
1590
1591         clk_disable_unprepare(drv_data->ssp->clk);
1592         return 0;
1593 }
1594
1595 static int pxa2xx_spi_runtime_resume(struct device *dev)
1596 {
1597         struct driver_data *drv_data = dev_get_drvdata(dev);
1598
1599         clk_prepare_enable(drv_data->ssp->clk);
1600         return 0;
1601 }
1602 #endif
1603
1604 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1605         SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1606         SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1607                            pxa2xx_spi_runtime_resume, NULL)
1608 };
1609
1610 static struct platform_driver driver = {
1611         .driver = {
1612                 .name   = "pxa2xx-spi",
1613                 .pm     = &pxa2xx_spi_pm_ops,
1614                 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1615         },
1616         .probe = pxa2xx_spi_probe,
1617         .remove = pxa2xx_spi_remove,
1618         .shutdown = pxa2xx_spi_shutdown,
1619 };
1620
1621 static int __init pxa2xx_spi_init(void)
1622 {
1623         return platform_driver_register(&driver);
1624 }
1625 subsys_initcall(pxa2xx_spi_init);
1626
1627 static void __exit pxa2xx_spi_exit(void)
1628 {
1629         platform_driver_unregister(&driver);
1630 }
1631 module_exit(pxa2xx_spi_exit);