Merge tag 'dma-mapping-6.10-2024-05-31' of git://git.infradead.org/users/hch/dma...
[linux-2.6-block.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *       - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
24  *         <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/rw_hint.h>
51 #include <linux/major.h>
52 #include <linux/mutex.h>
53 #include <linux/string_helpers.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71 #include <scsi/scsi_common.h>
72
73 #include "sd.h"
74 #include "scsi_priv.h"
75 #include "scsi_logging.h"
76
77 MODULE_AUTHOR("Eric Youngdale");
78 MODULE_DESCRIPTION("SCSI disk (sd) driver");
79 MODULE_LICENSE("GPL");
80
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
100 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
101
102 #define SD_MINORS       16
103
104 static void sd_config_discard(struct scsi_disk *, unsigned int);
105 static void sd_config_write_same(struct scsi_disk *);
106 static int  sd_revalidate_disk(struct gendisk *);
107 static void sd_unlock_native_capacity(struct gendisk *disk);
108 static void sd_shutdown(struct device *);
109 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
110 static void scsi_disk_release(struct device *cdev);
111
112 static DEFINE_IDA(sd_index_ida);
113
114 static mempool_t *sd_page_pool;
115 static struct lock_class_key sd_bio_compl_lkclass;
116
117 static const char *sd_cache_types[] = {
118         "write through", "none", "write back",
119         "write back, no read (daft)"
120 };
121
122 static void sd_set_flush_flag(struct scsi_disk *sdkp)
123 {
124         bool wc = false, fua = false;
125
126         if (sdkp->WCE) {
127                 wc = true;
128                 if (sdkp->DPOFUA)
129                         fua = true;
130         }
131
132         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
133 }
134
135 static ssize_t
136 cache_type_store(struct device *dev, struct device_attribute *attr,
137                  const char *buf, size_t count)
138 {
139         int ct, rcd, wce, sp;
140         struct scsi_disk *sdkp = to_scsi_disk(dev);
141         struct scsi_device *sdp = sdkp->device;
142         char buffer[64];
143         char *buffer_data;
144         struct scsi_mode_data data;
145         struct scsi_sense_hdr sshdr;
146         static const char temp[] = "temporary ";
147         int len, ret;
148
149         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
150                 /* no cache control on RBC devices; theoretically they
151                  * can do it, but there's probably so many exceptions
152                  * it's not worth the risk */
153                 return -EINVAL;
154
155         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
156                 buf += sizeof(temp) - 1;
157                 sdkp->cache_override = 1;
158         } else {
159                 sdkp->cache_override = 0;
160         }
161
162         ct = sysfs_match_string(sd_cache_types, buf);
163         if (ct < 0)
164                 return -EINVAL;
165
166         rcd = ct & 0x01 ? 1 : 0;
167         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
168
169         if (sdkp->cache_override) {
170                 sdkp->WCE = wce;
171                 sdkp->RCD = rcd;
172                 sd_set_flush_flag(sdkp);
173                 return count;
174         }
175
176         if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
177                             sdkp->max_retries, &data, NULL))
178                 return -EINVAL;
179         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
180                   data.block_descriptor_length);
181         buffer_data = buffer + data.header_length +
182                 data.block_descriptor_length;
183         buffer_data[2] &= ~0x05;
184         buffer_data[2] |= wce << 2 | rcd;
185         sp = buffer_data[0] & 0x80 ? 1 : 0;
186         buffer_data[0] &= ~0x80;
187
188         /*
189          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
190          * received mode parameter buffer before doing MODE SELECT.
191          */
192         data.device_specific = 0;
193
194         ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
195                                sdkp->max_retries, &data, &sshdr);
196         if (ret) {
197                 if (ret > 0 && scsi_sense_valid(&sshdr))
198                         sd_print_sense_hdr(sdkp, &sshdr);
199                 return -EINVAL;
200         }
201         sd_revalidate_disk(sdkp->disk);
202         return count;
203 }
204
205 static ssize_t
206 manage_start_stop_show(struct device *dev,
207                        struct device_attribute *attr, char *buf)
208 {
209         struct scsi_disk *sdkp = to_scsi_disk(dev);
210         struct scsi_device *sdp = sdkp->device;
211
212         return sysfs_emit(buf, "%u\n",
213                           sdp->manage_system_start_stop &&
214                           sdp->manage_runtime_start_stop &&
215                           sdp->manage_shutdown);
216 }
217 static DEVICE_ATTR_RO(manage_start_stop);
218
219 static ssize_t
220 manage_system_start_stop_show(struct device *dev,
221                               struct device_attribute *attr, char *buf)
222 {
223         struct scsi_disk *sdkp = to_scsi_disk(dev);
224         struct scsi_device *sdp = sdkp->device;
225
226         return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
227 }
228
229 static ssize_t
230 manage_system_start_stop_store(struct device *dev,
231                                struct device_attribute *attr,
232                                const char *buf, size_t count)
233 {
234         struct scsi_disk *sdkp = to_scsi_disk(dev);
235         struct scsi_device *sdp = sdkp->device;
236         bool v;
237
238         if (!capable(CAP_SYS_ADMIN))
239                 return -EACCES;
240
241         if (kstrtobool(buf, &v))
242                 return -EINVAL;
243
244         sdp->manage_system_start_stop = v;
245
246         return count;
247 }
248 static DEVICE_ATTR_RW(manage_system_start_stop);
249
250 static ssize_t
251 manage_runtime_start_stop_show(struct device *dev,
252                                struct device_attribute *attr, char *buf)
253 {
254         struct scsi_disk *sdkp = to_scsi_disk(dev);
255         struct scsi_device *sdp = sdkp->device;
256
257         return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
258 }
259
260 static ssize_t
261 manage_runtime_start_stop_store(struct device *dev,
262                                 struct device_attribute *attr,
263                                 const char *buf, size_t count)
264 {
265         struct scsi_disk *sdkp = to_scsi_disk(dev);
266         struct scsi_device *sdp = sdkp->device;
267         bool v;
268
269         if (!capable(CAP_SYS_ADMIN))
270                 return -EACCES;
271
272         if (kstrtobool(buf, &v))
273                 return -EINVAL;
274
275         sdp->manage_runtime_start_stop = v;
276
277         return count;
278 }
279 static DEVICE_ATTR_RW(manage_runtime_start_stop);
280
281 static ssize_t manage_shutdown_show(struct device *dev,
282                                     struct device_attribute *attr, char *buf)
283 {
284         struct scsi_disk *sdkp = to_scsi_disk(dev);
285         struct scsi_device *sdp = sdkp->device;
286
287         return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
288 }
289
290 static ssize_t manage_shutdown_store(struct device *dev,
291                                      struct device_attribute *attr,
292                                      const char *buf, size_t count)
293 {
294         struct scsi_disk *sdkp = to_scsi_disk(dev);
295         struct scsi_device *sdp = sdkp->device;
296         bool v;
297
298         if (!capable(CAP_SYS_ADMIN))
299                 return -EACCES;
300
301         if (kstrtobool(buf, &v))
302                 return -EINVAL;
303
304         sdp->manage_shutdown = v;
305
306         return count;
307 }
308 static DEVICE_ATTR_RW(manage_shutdown);
309
310 static ssize_t
311 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
312 {
313         struct scsi_disk *sdkp = to_scsi_disk(dev);
314
315         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
316 }
317
318 static ssize_t
319 allow_restart_store(struct device *dev, struct device_attribute *attr,
320                     const char *buf, size_t count)
321 {
322         bool v;
323         struct scsi_disk *sdkp = to_scsi_disk(dev);
324         struct scsi_device *sdp = sdkp->device;
325
326         if (!capable(CAP_SYS_ADMIN))
327                 return -EACCES;
328
329         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
330                 return -EINVAL;
331
332         if (kstrtobool(buf, &v))
333                 return -EINVAL;
334
335         sdp->allow_restart = v;
336
337         return count;
338 }
339 static DEVICE_ATTR_RW(allow_restart);
340
341 static ssize_t
342 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
343 {
344         struct scsi_disk *sdkp = to_scsi_disk(dev);
345         int ct = sdkp->RCD + 2*sdkp->WCE;
346
347         return sprintf(buf, "%s\n", sd_cache_types[ct]);
348 }
349 static DEVICE_ATTR_RW(cache_type);
350
351 static ssize_t
352 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
353 {
354         struct scsi_disk *sdkp = to_scsi_disk(dev);
355
356         return sprintf(buf, "%u\n", sdkp->DPOFUA);
357 }
358 static DEVICE_ATTR_RO(FUA);
359
360 static ssize_t
361 protection_type_show(struct device *dev, struct device_attribute *attr,
362                      char *buf)
363 {
364         struct scsi_disk *sdkp = to_scsi_disk(dev);
365
366         return sprintf(buf, "%u\n", sdkp->protection_type);
367 }
368
369 static ssize_t
370 protection_type_store(struct device *dev, struct device_attribute *attr,
371                       const char *buf, size_t count)
372 {
373         struct scsi_disk *sdkp = to_scsi_disk(dev);
374         unsigned int val;
375         int err;
376
377         if (!capable(CAP_SYS_ADMIN))
378                 return -EACCES;
379
380         err = kstrtouint(buf, 10, &val);
381
382         if (err)
383                 return err;
384
385         if (val <= T10_PI_TYPE3_PROTECTION)
386                 sdkp->protection_type = val;
387
388         return count;
389 }
390 static DEVICE_ATTR_RW(protection_type);
391
392 static ssize_t
393 protection_mode_show(struct device *dev, struct device_attribute *attr,
394                      char *buf)
395 {
396         struct scsi_disk *sdkp = to_scsi_disk(dev);
397         struct scsi_device *sdp = sdkp->device;
398         unsigned int dif, dix;
399
400         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
401         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
402
403         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
404                 dif = 0;
405                 dix = 1;
406         }
407
408         if (!dif && !dix)
409                 return sprintf(buf, "none\n");
410
411         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
412 }
413 static DEVICE_ATTR_RO(protection_mode);
414
415 static ssize_t
416 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
417 {
418         struct scsi_disk *sdkp = to_scsi_disk(dev);
419
420         return sprintf(buf, "%u\n", sdkp->ATO);
421 }
422 static DEVICE_ATTR_RO(app_tag_own);
423
424 static ssize_t
425 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
426                        char *buf)
427 {
428         struct scsi_disk *sdkp = to_scsi_disk(dev);
429
430         return sprintf(buf, "%u\n", sdkp->lbpme);
431 }
432 static DEVICE_ATTR_RO(thin_provisioning);
433
434 /* sysfs_match_string() requires dense arrays */
435 static const char *lbp_mode[] = {
436         [SD_LBP_FULL]           = "full",
437         [SD_LBP_UNMAP]          = "unmap",
438         [SD_LBP_WS16]           = "writesame_16",
439         [SD_LBP_WS10]           = "writesame_10",
440         [SD_LBP_ZERO]           = "writesame_zero",
441         [SD_LBP_DISABLE]        = "disabled",
442 };
443
444 static ssize_t
445 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
446                        char *buf)
447 {
448         struct scsi_disk *sdkp = to_scsi_disk(dev);
449
450         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
451 }
452
453 static ssize_t
454 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
455                         const char *buf, size_t count)
456 {
457         struct scsi_disk *sdkp = to_scsi_disk(dev);
458         struct scsi_device *sdp = sdkp->device;
459         int mode;
460
461         if (!capable(CAP_SYS_ADMIN))
462                 return -EACCES;
463
464         if (sd_is_zoned(sdkp)) {
465                 sd_config_discard(sdkp, SD_LBP_DISABLE);
466                 return count;
467         }
468
469         if (sdp->type != TYPE_DISK)
470                 return -EINVAL;
471
472         mode = sysfs_match_string(lbp_mode, buf);
473         if (mode < 0)
474                 return -EINVAL;
475
476         sd_config_discard(sdkp, mode);
477
478         return count;
479 }
480 static DEVICE_ATTR_RW(provisioning_mode);
481
482 /* sysfs_match_string() requires dense arrays */
483 static const char *zeroing_mode[] = {
484         [SD_ZERO_WRITE]         = "write",
485         [SD_ZERO_WS]            = "writesame",
486         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
487         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
488 };
489
490 static ssize_t
491 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
492                   char *buf)
493 {
494         struct scsi_disk *sdkp = to_scsi_disk(dev);
495
496         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
497 }
498
499 static ssize_t
500 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
501                    const char *buf, size_t count)
502 {
503         struct scsi_disk *sdkp = to_scsi_disk(dev);
504         int mode;
505
506         if (!capable(CAP_SYS_ADMIN))
507                 return -EACCES;
508
509         mode = sysfs_match_string(zeroing_mode, buf);
510         if (mode < 0)
511                 return -EINVAL;
512
513         sdkp->zeroing_mode = mode;
514
515         return count;
516 }
517 static DEVICE_ATTR_RW(zeroing_mode);
518
519 static ssize_t
520 max_medium_access_timeouts_show(struct device *dev,
521                                 struct device_attribute *attr, char *buf)
522 {
523         struct scsi_disk *sdkp = to_scsi_disk(dev);
524
525         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
526 }
527
528 static ssize_t
529 max_medium_access_timeouts_store(struct device *dev,
530                                  struct device_attribute *attr, const char *buf,
531                                  size_t count)
532 {
533         struct scsi_disk *sdkp = to_scsi_disk(dev);
534         int err;
535
536         if (!capable(CAP_SYS_ADMIN))
537                 return -EACCES;
538
539         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
540
541         return err ? err : count;
542 }
543 static DEVICE_ATTR_RW(max_medium_access_timeouts);
544
545 static ssize_t
546 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
547                            char *buf)
548 {
549         struct scsi_disk *sdkp = to_scsi_disk(dev);
550
551         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
552 }
553
554 static ssize_t
555 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
556                             const char *buf, size_t count)
557 {
558         struct scsi_disk *sdkp = to_scsi_disk(dev);
559         struct scsi_device *sdp = sdkp->device;
560         unsigned long max;
561         int err;
562
563         if (!capable(CAP_SYS_ADMIN))
564                 return -EACCES;
565
566         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
567                 return -EINVAL;
568
569         err = kstrtoul(buf, 10, &max);
570
571         if (err)
572                 return err;
573
574         if (max == 0)
575                 sdp->no_write_same = 1;
576         else if (max <= SD_MAX_WS16_BLOCKS) {
577                 sdp->no_write_same = 0;
578                 sdkp->max_ws_blocks = max;
579         }
580
581         sd_config_write_same(sdkp);
582
583         return count;
584 }
585 static DEVICE_ATTR_RW(max_write_same_blocks);
586
587 static ssize_t
588 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
589 {
590         struct scsi_disk *sdkp = to_scsi_disk(dev);
591
592         if (sdkp->device->type == TYPE_ZBC)
593                 return sprintf(buf, "host-managed\n");
594         if (sdkp->zoned == 1)
595                 return sprintf(buf, "host-aware\n");
596         if (sdkp->zoned == 2)
597                 return sprintf(buf, "drive-managed\n");
598         return sprintf(buf, "none\n");
599 }
600 static DEVICE_ATTR_RO(zoned_cap);
601
602 static ssize_t
603 max_retries_store(struct device *dev, struct device_attribute *attr,
604                   const char *buf, size_t count)
605 {
606         struct scsi_disk *sdkp = to_scsi_disk(dev);
607         struct scsi_device *sdev = sdkp->device;
608         int retries, err;
609
610         err = kstrtoint(buf, 10, &retries);
611         if (err)
612                 return err;
613
614         if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
615                 sdkp->max_retries = retries;
616                 return count;
617         }
618
619         sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
620                     SD_MAX_RETRIES);
621         return -EINVAL;
622 }
623
624 static ssize_t
625 max_retries_show(struct device *dev, struct device_attribute *attr,
626                  char *buf)
627 {
628         struct scsi_disk *sdkp = to_scsi_disk(dev);
629
630         return sprintf(buf, "%d\n", sdkp->max_retries);
631 }
632
633 static DEVICE_ATTR_RW(max_retries);
634
635 static struct attribute *sd_disk_attrs[] = {
636         &dev_attr_cache_type.attr,
637         &dev_attr_FUA.attr,
638         &dev_attr_allow_restart.attr,
639         &dev_attr_manage_start_stop.attr,
640         &dev_attr_manage_system_start_stop.attr,
641         &dev_attr_manage_runtime_start_stop.attr,
642         &dev_attr_manage_shutdown.attr,
643         &dev_attr_protection_type.attr,
644         &dev_attr_protection_mode.attr,
645         &dev_attr_app_tag_own.attr,
646         &dev_attr_thin_provisioning.attr,
647         &dev_attr_provisioning_mode.attr,
648         &dev_attr_zeroing_mode.attr,
649         &dev_attr_max_write_same_blocks.attr,
650         &dev_attr_max_medium_access_timeouts.attr,
651         &dev_attr_zoned_cap.attr,
652         &dev_attr_max_retries.attr,
653         NULL,
654 };
655 ATTRIBUTE_GROUPS(sd_disk);
656
657 static struct class sd_disk_class = {
658         .name           = "scsi_disk",
659         .dev_release    = scsi_disk_release,
660         .dev_groups     = sd_disk_groups,
661 };
662
663 /*
664  * Don't request a new module, as that could deadlock in multipath
665  * environment.
666  */
667 static void sd_default_probe(dev_t devt)
668 {
669 }
670
671 /*
672  * Device no to disk mapping:
673  * 
674  *       major         disc2     disc  p1
675  *   |............|.............|....|....| <- dev_t
676  *    31        20 19          8 7  4 3  0
677  * 
678  * Inside a major, we have 16k disks, however mapped non-
679  * contiguously. The first 16 disks are for major0, the next
680  * ones with major1, ... Disk 256 is for major0 again, disk 272 
681  * for major1, ... 
682  * As we stay compatible with our numbering scheme, we can reuse 
683  * the well-know SCSI majors 8, 65--71, 136--143.
684  */
685 static int sd_major(int major_idx)
686 {
687         switch (major_idx) {
688         case 0:
689                 return SCSI_DISK0_MAJOR;
690         case 1 ... 7:
691                 return SCSI_DISK1_MAJOR + major_idx - 1;
692         case 8 ... 15:
693                 return SCSI_DISK8_MAJOR + major_idx - 8;
694         default:
695                 BUG();
696                 return 0;       /* shut up gcc */
697         }
698 }
699
700 #ifdef CONFIG_BLK_SED_OPAL
701 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
702                 size_t len, bool send)
703 {
704         struct scsi_disk *sdkp = data;
705         struct scsi_device *sdev = sdkp->device;
706         u8 cdb[12] = { 0, };
707         const struct scsi_exec_args exec_args = {
708                 .req_flags = BLK_MQ_REQ_PM,
709         };
710         int ret;
711
712         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
713         cdb[1] = secp;
714         put_unaligned_be16(spsp, &cdb[2]);
715         put_unaligned_be32(len, &cdb[6]);
716
717         ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
718                                buffer, len, SD_TIMEOUT, sdkp->max_retries,
719                                &exec_args);
720         return ret <= 0 ? ret : -EIO;
721 }
722 #endif /* CONFIG_BLK_SED_OPAL */
723
724 /*
725  * Look up the DIX operation based on whether the command is read or
726  * write and whether dix and dif are enabled.
727  */
728 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
729 {
730         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
731         static const unsigned int ops[] = {     /* wrt dix dif */
732                 SCSI_PROT_NORMAL,               /*  0   0   0  */
733                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
734                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
735                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
736                 SCSI_PROT_NORMAL,               /*  1   0   0  */
737                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
738                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
739                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
740         };
741
742         return ops[write << 2 | dix << 1 | dif];
743 }
744
745 /*
746  * Returns a mask of the protection flags that are valid for a given DIX
747  * operation.
748  */
749 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
750 {
751         static const unsigned int flag_mask[] = {
752                 [SCSI_PROT_NORMAL]              = 0,
753
754                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
755                                                   SCSI_PROT_GUARD_CHECK |
756                                                   SCSI_PROT_REF_CHECK |
757                                                   SCSI_PROT_REF_INCREMENT,
758
759                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
760                                                   SCSI_PROT_IP_CHECKSUM,
761
762                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
763                                                   SCSI_PROT_GUARD_CHECK |
764                                                   SCSI_PROT_REF_CHECK |
765                                                   SCSI_PROT_REF_INCREMENT |
766                                                   SCSI_PROT_IP_CHECKSUM,
767
768                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
769                                                   SCSI_PROT_REF_INCREMENT,
770
771                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
772                                                   SCSI_PROT_REF_CHECK |
773                                                   SCSI_PROT_REF_INCREMENT |
774                                                   SCSI_PROT_IP_CHECKSUM,
775
776                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
777                                                   SCSI_PROT_GUARD_CHECK |
778                                                   SCSI_PROT_REF_CHECK |
779                                                   SCSI_PROT_REF_INCREMENT |
780                                                   SCSI_PROT_IP_CHECKSUM,
781         };
782
783         return flag_mask[prot_op];
784 }
785
786 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
787                                            unsigned int dix, unsigned int dif)
788 {
789         struct request *rq = scsi_cmd_to_rq(scmd);
790         struct bio *bio = rq->bio;
791         unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
792         unsigned int protect = 0;
793
794         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
795                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
796                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
797
798                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
799                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
800         }
801
802         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
803                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
804
805                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
806                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
807         }
808
809         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
810                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
811
812                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
813                         protect = 3 << 5;       /* Disable target PI checking */
814                 else
815                         protect = 1 << 5;       /* Enable target PI checking */
816         }
817
818         scsi_set_prot_op(scmd, prot_op);
819         scsi_set_prot_type(scmd, dif);
820         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
821
822         return protect;
823 }
824
825 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
826 {
827         struct request_queue *q = sdkp->disk->queue;
828         unsigned int logical_block_size = sdkp->device->sector_size;
829         unsigned int max_blocks = 0;
830
831         q->limits.discard_alignment =
832                 sdkp->unmap_alignment * logical_block_size;
833         q->limits.discard_granularity =
834                 max(sdkp->physical_block_size,
835                     sdkp->unmap_granularity * logical_block_size);
836         sdkp->provisioning_mode = mode;
837
838         switch (mode) {
839
840         case SD_LBP_FULL:
841         case SD_LBP_DISABLE:
842                 blk_queue_max_discard_sectors(q, 0);
843                 return;
844
845         case SD_LBP_UNMAP:
846                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
847                                           (u32)SD_MAX_WS16_BLOCKS);
848                 break;
849
850         case SD_LBP_WS16:
851                 if (sdkp->device->unmap_limit_for_ws)
852                         max_blocks = sdkp->max_unmap_blocks;
853                 else
854                         max_blocks = sdkp->max_ws_blocks;
855
856                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
857                 break;
858
859         case SD_LBP_WS10:
860                 if (sdkp->device->unmap_limit_for_ws)
861                         max_blocks = sdkp->max_unmap_blocks;
862                 else
863                         max_blocks = sdkp->max_ws_blocks;
864
865                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
866                 break;
867
868         case SD_LBP_ZERO:
869                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
870                                           (u32)SD_MAX_WS10_BLOCKS);
871                 break;
872         }
873
874         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
875 }
876
877 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
878 {
879         struct page *page;
880
881         page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
882         if (!page)
883                 return NULL;
884         clear_highpage(page);
885         bvec_set_page(&rq->special_vec, page, data_len, 0);
886         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
887         return bvec_virt(&rq->special_vec);
888 }
889
890 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
891 {
892         struct scsi_device *sdp = cmd->device;
893         struct request *rq = scsi_cmd_to_rq(cmd);
894         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
895         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
896         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
897         unsigned int data_len = 24;
898         char *buf;
899
900         buf = sd_set_special_bvec(rq, data_len);
901         if (!buf)
902                 return BLK_STS_RESOURCE;
903
904         cmd->cmd_len = 10;
905         cmd->cmnd[0] = UNMAP;
906         cmd->cmnd[8] = 24;
907
908         put_unaligned_be16(6 + 16, &buf[0]);
909         put_unaligned_be16(16, &buf[2]);
910         put_unaligned_be64(lba, &buf[8]);
911         put_unaligned_be32(nr_blocks, &buf[16]);
912
913         cmd->allowed = sdkp->max_retries;
914         cmd->transfersize = data_len;
915         rq->timeout = SD_TIMEOUT;
916
917         return scsi_alloc_sgtables(cmd);
918 }
919
920 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
921                 bool unmap)
922 {
923         struct scsi_device *sdp = cmd->device;
924         struct request *rq = scsi_cmd_to_rq(cmd);
925         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
926         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
927         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
928         u32 data_len = sdp->sector_size;
929
930         if (!sd_set_special_bvec(rq, data_len))
931                 return BLK_STS_RESOURCE;
932
933         cmd->cmd_len = 16;
934         cmd->cmnd[0] = WRITE_SAME_16;
935         if (unmap)
936                 cmd->cmnd[1] = 0x8; /* UNMAP */
937         put_unaligned_be64(lba, &cmd->cmnd[2]);
938         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
939
940         cmd->allowed = sdkp->max_retries;
941         cmd->transfersize = data_len;
942         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
943
944         return scsi_alloc_sgtables(cmd);
945 }
946
947 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
948                 bool unmap)
949 {
950         struct scsi_device *sdp = cmd->device;
951         struct request *rq = scsi_cmd_to_rq(cmd);
952         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
953         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
954         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
955         u32 data_len = sdp->sector_size;
956
957         if (!sd_set_special_bvec(rq, data_len))
958                 return BLK_STS_RESOURCE;
959
960         cmd->cmd_len = 10;
961         cmd->cmnd[0] = WRITE_SAME;
962         if (unmap)
963                 cmd->cmnd[1] = 0x8; /* UNMAP */
964         put_unaligned_be32(lba, &cmd->cmnd[2]);
965         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
966
967         cmd->allowed = sdkp->max_retries;
968         cmd->transfersize = data_len;
969         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
970
971         return scsi_alloc_sgtables(cmd);
972 }
973
974 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
975 {
976         struct request *rq = scsi_cmd_to_rq(cmd);
977         struct scsi_device *sdp = cmd->device;
978         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
979         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
980         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
981
982         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
983                 switch (sdkp->zeroing_mode) {
984                 case SD_ZERO_WS16_UNMAP:
985                         return sd_setup_write_same16_cmnd(cmd, true);
986                 case SD_ZERO_WS10_UNMAP:
987                         return sd_setup_write_same10_cmnd(cmd, true);
988                 }
989         }
990
991         if (sdp->no_write_same) {
992                 rq->rq_flags |= RQF_QUIET;
993                 return BLK_STS_TARGET;
994         }
995
996         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
997                 return sd_setup_write_same16_cmnd(cmd, false);
998
999         return sd_setup_write_same10_cmnd(cmd, false);
1000 }
1001
1002 static void sd_config_write_same(struct scsi_disk *sdkp)
1003 {
1004         struct request_queue *q = sdkp->disk->queue;
1005         unsigned int logical_block_size = sdkp->device->sector_size;
1006
1007         if (sdkp->device->no_write_same) {
1008                 sdkp->max_ws_blocks = 0;
1009                 goto out;
1010         }
1011
1012         /* Some devices can not handle block counts above 0xffff despite
1013          * supporting WRITE SAME(16). Consequently we default to 64k
1014          * blocks per I/O unless the device explicitly advertises a
1015          * bigger limit.
1016          */
1017         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1018                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1019                                                    (u32)SD_MAX_WS16_BLOCKS);
1020         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1021                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1022                                                    (u32)SD_MAX_WS10_BLOCKS);
1023         else {
1024                 sdkp->device->no_write_same = 1;
1025                 sdkp->max_ws_blocks = 0;
1026         }
1027
1028         if (sdkp->lbprz && sdkp->lbpws)
1029                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1030         else if (sdkp->lbprz && sdkp->lbpws10)
1031                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1032         else if (sdkp->max_ws_blocks)
1033                 sdkp->zeroing_mode = SD_ZERO_WS;
1034         else
1035                 sdkp->zeroing_mode = SD_ZERO_WRITE;
1036
1037         if (sdkp->max_ws_blocks &&
1038             sdkp->physical_block_size > logical_block_size) {
1039                 /*
1040                  * Reporting a maximum number of blocks that is not aligned
1041                  * on the device physical size would cause a large write same
1042                  * request to be split into physically unaligned chunks by
1043                  * __blkdev_issue_write_zeroes() even if the caller of this
1044                  * functions took care to align the large request. So make sure
1045                  * the maximum reported is aligned to the device physical block
1046                  * size. This is only an optional optimization for regular
1047                  * disks, but this is mandatory to avoid failure of large write
1048                  * same requests directed at sequential write required zones of
1049                  * host-managed ZBC disks.
1050                  */
1051                 sdkp->max_ws_blocks =
1052                         round_down(sdkp->max_ws_blocks,
1053                                    bytes_to_logical(sdkp->device,
1054                                                     sdkp->physical_block_size));
1055         }
1056
1057 out:
1058         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1059                                          (logical_block_size >> 9));
1060 }
1061
1062 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1063 {
1064         struct request *rq = scsi_cmd_to_rq(cmd);
1065         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1066
1067         /* flush requests don't perform I/O, zero the S/G table */
1068         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1069
1070         if (cmd->device->use_16_for_sync) {
1071                 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1072                 cmd->cmd_len = 16;
1073         } else {
1074                 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1075                 cmd->cmd_len = 10;
1076         }
1077         cmd->transfersize = 0;
1078         cmd->allowed = sdkp->max_retries;
1079
1080         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1081         return BLK_STS_OK;
1082 }
1083
1084 /**
1085  * sd_group_number() - Compute the GROUP NUMBER field
1086  * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
1087  *      field.
1088  *
1089  * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
1090  * 0: no relative lifetime.
1091  * 1: shortest relative lifetime.
1092  * 2: second shortest relative lifetime.
1093  * 3 - 0x3d: intermediate relative lifetimes.
1094  * 0x3e: second longest relative lifetime.
1095  * 0x3f: longest relative lifetime.
1096  */
1097 static u8 sd_group_number(struct scsi_cmnd *cmd)
1098 {
1099         const struct request *rq = scsi_cmd_to_rq(cmd);
1100         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1101
1102         if (!sdkp->rscs)
1103                 return 0;
1104
1105         return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count,
1106                     0x3fu);
1107 }
1108
1109 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1110                                        sector_t lba, unsigned int nr_blocks,
1111                                        unsigned char flags, unsigned int dld)
1112 {
1113         cmd->cmd_len = SD_EXT_CDB_SIZE;
1114         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1115         cmd->cmnd[6]  = sd_group_number(cmd);
1116         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1117         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1118         cmd->cmnd[10] = flags;
1119         cmd->cmnd[11] = dld & 0x07;
1120         put_unaligned_be64(lba, &cmd->cmnd[12]);
1121         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1122         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1123
1124         return BLK_STS_OK;
1125 }
1126
1127 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1128                                        sector_t lba, unsigned int nr_blocks,
1129                                        unsigned char flags, unsigned int dld)
1130 {
1131         cmd->cmd_len  = 16;
1132         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1133         cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1134         cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
1135         cmd->cmnd[15] = 0;
1136         put_unaligned_be64(lba, &cmd->cmnd[2]);
1137         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1138
1139         return BLK_STS_OK;
1140 }
1141
1142 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1143                                        sector_t lba, unsigned int nr_blocks,
1144                                        unsigned char flags)
1145 {
1146         cmd->cmd_len = 10;
1147         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1148         cmd->cmnd[1] = flags;
1149         cmd->cmnd[6] = sd_group_number(cmd);
1150         cmd->cmnd[9] = 0;
1151         put_unaligned_be32(lba, &cmd->cmnd[2]);
1152         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1153
1154         return BLK_STS_OK;
1155 }
1156
1157 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1158                                       sector_t lba, unsigned int nr_blocks,
1159                                       unsigned char flags)
1160 {
1161         /* Avoid that 0 blocks gets translated into 256 blocks. */
1162         if (WARN_ON_ONCE(nr_blocks == 0))
1163                 return BLK_STS_IOERR;
1164
1165         if (unlikely(flags & 0x8)) {
1166                 /*
1167                  * This happens only if this drive failed 10byte rw
1168                  * command with ILLEGAL_REQUEST during operation and
1169                  * thus turned off use_10_for_rw.
1170                  */
1171                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1172                 return BLK_STS_IOERR;
1173         }
1174
1175         cmd->cmd_len = 6;
1176         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1177         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1178         cmd->cmnd[2] = (lba >> 8) & 0xff;
1179         cmd->cmnd[3] = lba & 0xff;
1180         cmd->cmnd[4] = nr_blocks;
1181         cmd->cmnd[5] = 0;
1182
1183         return BLK_STS_OK;
1184 }
1185
1186 /*
1187  * Check if a command has a duration limit set. If it does, and the target
1188  * device supports CDL and the feature is enabled, return the limit
1189  * descriptor index to use. Return 0 (no limit) otherwise.
1190  */
1191 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1192 {
1193         struct scsi_device *sdp = sdkp->device;
1194         int hint;
1195
1196         if (!sdp->cdl_supported || !sdp->cdl_enable)
1197                 return 0;
1198
1199         /*
1200          * Use "no limit" if the request ioprio does not specify a duration
1201          * limit hint.
1202          */
1203         hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1204         if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1205             hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1206                 return 0;
1207
1208         return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1209 }
1210
1211 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1212 {
1213         struct request *rq = scsi_cmd_to_rq(cmd);
1214         struct scsi_device *sdp = cmd->device;
1215         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1216         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1217         sector_t threshold;
1218         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1219         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1220         bool write = rq_data_dir(rq) == WRITE;
1221         unsigned char protect, fua;
1222         unsigned int dld;
1223         blk_status_t ret;
1224         unsigned int dif;
1225         bool dix;
1226
1227         ret = scsi_alloc_sgtables(cmd);
1228         if (ret != BLK_STS_OK)
1229                 return ret;
1230
1231         ret = BLK_STS_IOERR;
1232         if (!scsi_device_online(sdp) || sdp->changed) {
1233                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1234                 goto fail;
1235         }
1236
1237         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1238                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1239                 goto fail;
1240         }
1241
1242         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1243                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1244                 goto fail;
1245         }
1246
1247         /*
1248          * Some SD card readers can't handle accesses which touch the
1249          * last one or two logical blocks. Split accesses as needed.
1250          */
1251         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1252
1253         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1254                 if (lba < threshold) {
1255                         /* Access up to the threshold but not beyond */
1256                         nr_blocks = threshold - lba;
1257                 } else {
1258                         /* Access only a single logical block */
1259                         nr_blocks = 1;
1260                 }
1261         }
1262
1263         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1264         dix = scsi_prot_sg_count(cmd);
1265         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1266         dld = sd_cdl_dld(sdkp, cmd);
1267
1268         if (dif || dix)
1269                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1270         else
1271                 protect = 0;
1272
1273         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1274                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1275                                          protect | fua, dld);
1276         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1277                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1278                                          protect | fua, dld);
1279         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1280                    sdp->use_10_for_rw || protect || rq->write_hint) {
1281                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1282                                          protect | fua);
1283         } else {
1284                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1285                                         protect | fua);
1286         }
1287
1288         if (unlikely(ret != BLK_STS_OK))
1289                 goto fail;
1290
1291         /*
1292          * We shouldn't disconnect in the middle of a sector, so with a dumb
1293          * host adapter, it's safe to assume that we can at least transfer
1294          * this many bytes between each connect / disconnect.
1295          */
1296         cmd->transfersize = sdp->sector_size;
1297         cmd->underflow = nr_blocks << 9;
1298         cmd->allowed = sdkp->max_retries;
1299         cmd->sdb.length = nr_blocks * sdp->sector_size;
1300
1301         SCSI_LOG_HLQUEUE(1,
1302                          scmd_printk(KERN_INFO, cmd,
1303                                      "%s: block=%llu, count=%d\n", __func__,
1304                                      (unsigned long long)blk_rq_pos(rq),
1305                                      blk_rq_sectors(rq)));
1306         SCSI_LOG_HLQUEUE(2,
1307                          scmd_printk(KERN_INFO, cmd,
1308                                      "%s %d/%u 512 byte blocks.\n",
1309                                      write ? "writing" : "reading", nr_blocks,
1310                                      blk_rq_sectors(rq)));
1311
1312         /*
1313          * This indicates that the command is ready from our end to be queued.
1314          */
1315         return BLK_STS_OK;
1316 fail:
1317         scsi_free_sgtables(cmd);
1318         return ret;
1319 }
1320
1321 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1322 {
1323         struct request *rq = scsi_cmd_to_rq(cmd);
1324
1325         switch (req_op(rq)) {
1326         case REQ_OP_DISCARD:
1327                 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1328                 case SD_LBP_UNMAP:
1329                         return sd_setup_unmap_cmnd(cmd);
1330                 case SD_LBP_WS16:
1331                         return sd_setup_write_same16_cmnd(cmd, true);
1332                 case SD_LBP_WS10:
1333                         return sd_setup_write_same10_cmnd(cmd, true);
1334                 case SD_LBP_ZERO:
1335                         return sd_setup_write_same10_cmnd(cmd, false);
1336                 default:
1337                         return BLK_STS_TARGET;
1338                 }
1339         case REQ_OP_WRITE_ZEROES:
1340                 return sd_setup_write_zeroes_cmnd(cmd);
1341         case REQ_OP_FLUSH:
1342                 return sd_setup_flush_cmnd(cmd);
1343         case REQ_OP_READ:
1344         case REQ_OP_WRITE:
1345                 return sd_setup_read_write_cmnd(cmd);
1346         case REQ_OP_ZONE_RESET:
1347                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1348                                                    false);
1349         case REQ_OP_ZONE_RESET_ALL:
1350                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1351                                                    true);
1352         case REQ_OP_ZONE_OPEN:
1353                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1354         case REQ_OP_ZONE_CLOSE:
1355                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1356         case REQ_OP_ZONE_FINISH:
1357                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1358         default:
1359                 WARN_ON_ONCE(1);
1360                 return BLK_STS_NOTSUPP;
1361         }
1362 }
1363
1364 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1365 {
1366         struct request *rq = scsi_cmd_to_rq(SCpnt);
1367
1368         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1369                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1370 }
1371
1372 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1373 {
1374         if (sdkp->device->removable || sdkp->write_prot) {
1375                 if (disk_check_media_change(disk))
1376                         return true;
1377         }
1378
1379         /*
1380          * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1381          * nothing to do with partitions, BLKRRPART is used to force a full
1382          * revalidate after things like a format for historical reasons.
1383          */
1384         return test_bit(GD_NEED_PART_SCAN, &disk->state);
1385 }
1386
1387 /**
1388  *      sd_open - open a scsi disk device
1389  *      @disk: disk to open
1390  *      @mode: open mode
1391  *
1392  *      Returns 0 if successful. Returns a negated errno value in case 
1393  *      of error.
1394  *
1395  *      Note: This can be called from a user context (e.g. fsck(1) )
1396  *      or from within the kernel (e.g. as a result of a mount(1) ).
1397  *      In the latter case @inode and @filp carry an abridged amount
1398  *      of information as noted above.
1399  *
1400  *      Locking: called with disk->open_mutex held.
1401  **/
1402 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1403 {
1404         struct scsi_disk *sdkp = scsi_disk(disk);
1405         struct scsi_device *sdev = sdkp->device;
1406         int retval;
1407
1408         if (scsi_device_get(sdev))
1409                 return -ENXIO;
1410
1411         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1412
1413         /*
1414          * If the device is in error recovery, wait until it is done.
1415          * If the device is offline, then disallow any access to it.
1416          */
1417         retval = -ENXIO;
1418         if (!scsi_block_when_processing_errors(sdev))
1419                 goto error_out;
1420
1421         if (sd_need_revalidate(disk, sdkp))
1422                 sd_revalidate_disk(disk);
1423
1424         /*
1425          * If the drive is empty, just let the open fail.
1426          */
1427         retval = -ENOMEDIUM;
1428         if (sdev->removable && !sdkp->media_present &&
1429             !(mode & BLK_OPEN_NDELAY))
1430                 goto error_out;
1431
1432         /*
1433          * If the device has the write protect tab set, have the open fail
1434          * if the user expects to be able to write to the thing.
1435          */
1436         retval = -EROFS;
1437         if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1438                 goto error_out;
1439
1440         /*
1441          * It is possible that the disk changing stuff resulted in
1442          * the device being taken offline.  If this is the case,
1443          * report this to the user, and don't pretend that the
1444          * open actually succeeded.
1445          */
1446         retval = -ENXIO;
1447         if (!scsi_device_online(sdev))
1448                 goto error_out;
1449
1450         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1451                 if (scsi_block_when_processing_errors(sdev))
1452                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1453         }
1454
1455         return 0;
1456
1457 error_out:
1458         scsi_device_put(sdev);
1459         return retval;  
1460 }
1461
1462 /**
1463  *      sd_release - invoked when the (last) close(2) is called on this
1464  *      scsi disk.
1465  *      @disk: disk to release
1466  *
1467  *      Returns 0. 
1468  *
1469  *      Note: may block (uninterruptible) if error recovery is underway
1470  *      on this disk.
1471  *
1472  *      Locking: called with disk->open_mutex held.
1473  **/
1474 static void sd_release(struct gendisk *disk)
1475 {
1476         struct scsi_disk *sdkp = scsi_disk(disk);
1477         struct scsi_device *sdev = sdkp->device;
1478
1479         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1480
1481         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1482                 if (scsi_block_when_processing_errors(sdev))
1483                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1484         }
1485
1486         scsi_device_put(sdev);
1487 }
1488
1489 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1490 {
1491         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1492         struct scsi_device *sdp = sdkp->device;
1493         struct Scsi_Host *host = sdp->host;
1494         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1495         int diskinfo[4];
1496
1497         /* default to most commonly used values */
1498         diskinfo[0] = 0x40;     /* 1 << 6 */
1499         diskinfo[1] = 0x20;     /* 1 << 5 */
1500         diskinfo[2] = capacity >> 11;
1501
1502         /* override with calculated, extended default, or driver values */
1503         if (host->hostt->bios_param)
1504                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1505         else
1506                 scsicam_bios_param(bdev, capacity, diskinfo);
1507
1508         geo->heads = diskinfo[0];
1509         geo->sectors = diskinfo[1];
1510         geo->cylinders = diskinfo[2];
1511         return 0;
1512 }
1513
1514 /**
1515  *      sd_ioctl - process an ioctl
1516  *      @bdev: target block device
1517  *      @mode: open mode
1518  *      @cmd: ioctl command number
1519  *      @arg: this is third argument given to ioctl(2) system call.
1520  *      Often contains a pointer.
1521  *
1522  *      Returns 0 if successful (some ioctls return positive numbers on
1523  *      success as well). Returns a negated errno value in case of error.
1524  *
1525  *      Note: most ioctls are forward onto the block subsystem or further
1526  *      down in the scsi subsystem.
1527  **/
1528 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1529                     unsigned int cmd, unsigned long arg)
1530 {
1531         struct gendisk *disk = bdev->bd_disk;
1532         struct scsi_disk *sdkp = scsi_disk(disk);
1533         struct scsi_device *sdp = sdkp->device;
1534         void __user *p = (void __user *)arg;
1535         int error;
1536     
1537         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1538                                     "cmd=0x%x\n", disk->disk_name, cmd));
1539
1540         if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1541                 return -ENOIOCTLCMD;
1542
1543         /*
1544          * If we are in the middle of error recovery, don't let anyone
1545          * else try and use this device.  Also, if error recovery fails, it
1546          * may try and take the device offline, in which case all further
1547          * access to the device is prohibited.
1548          */
1549         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1550                         (mode & BLK_OPEN_NDELAY));
1551         if (error)
1552                 return error;
1553
1554         if (is_sed_ioctl(cmd))
1555                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1556         return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1557 }
1558
1559 static void set_media_not_present(struct scsi_disk *sdkp)
1560 {
1561         if (sdkp->media_present)
1562                 sdkp->device->changed = 1;
1563
1564         if (sdkp->device->removable) {
1565                 sdkp->media_present = 0;
1566                 sdkp->capacity = 0;
1567         }
1568 }
1569
1570 static int media_not_present(struct scsi_disk *sdkp,
1571                              struct scsi_sense_hdr *sshdr)
1572 {
1573         if (!scsi_sense_valid(sshdr))
1574                 return 0;
1575
1576         /* not invoked for commands that could return deferred errors */
1577         switch (sshdr->sense_key) {
1578         case UNIT_ATTENTION:
1579         case NOT_READY:
1580                 /* medium not present */
1581                 if (sshdr->asc == 0x3A) {
1582                         set_media_not_present(sdkp);
1583                         return 1;
1584                 }
1585         }
1586         return 0;
1587 }
1588
1589 /**
1590  *      sd_check_events - check media events
1591  *      @disk: kernel device descriptor
1592  *      @clearing: disk events currently being cleared
1593  *
1594  *      Returns mask of DISK_EVENT_*.
1595  *
1596  *      Note: this function is invoked from the block subsystem.
1597  **/
1598 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1599 {
1600         struct scsi_disk *sdkp = disk->private_data;
1601         struct scsi_device *sdp;
1602         int retval;
1603         bool disk_changed;
1604
1605         if (!sdkp)
1606                 return 0;
1607
1608         sdp = sdkp->device;
1609         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1610
1611         /*
1612          * If the device is offline, don't send any commands - just pretend as
1613          * if the command failed.  If the device ever comes back online, we
1614          * can deal with it then.  It is only because of unrecoverable errors
1615          * that we would ever take a device offline in the first place.
1616          */
1617         if (!scsi_device_online(sdp)) {
1618                 set_media_not_present(sdkp);
1619                 goto out;
1620         }
1621
1622         /*
1623          * Using TEST_UNIT_READY enables differentiation between drive with
1624          * no cartridge loaded - NOT READY, drive with changed cartridge -
1625          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1626          *
1627          * Drives that auto spin down. eg iomega jaz 1G, will be started
1628          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1629          * sd_revalidate() is called.
1630          */
1631         if (scsi_block_when_processing_errors(sdp)) {
1632                 struct scsi_sense_hdr sshdr = { 0, };
1633
1634                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1635                                               &sshdr);
1636
1637                 /* failed to execute TUR, assume media not present */
1638                 if (retval < 0 || host_byte(retval)) {
1639                         set_media_not_present(sdkp);
1640                         goto out;
1641                 }
1642
1643                 if (media_not_present(sdkp, &sshdr))
1644                         goto out;
1645         }
1646
1647         /*
1648          * For removable scsi disk we have to recognise the presence
1649          * of a disk in the drive.
1650          */
1651         if (!sdkp->media_present)
1652                 sdp->changed = 1;
1653         sdkp->media_present = 1;
1654 out:
1655         /*
1656          * sdp->changed is set under the following conditions:
1657          *
1658          *      Medium present state has changed in either direction.
1659          *      Device has indicated UNIT_ATTENTION.
1660          */
1661         disk_changed = sdp->changed;
1662         sdp->changed = 0;
1663         return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1664 }
1665
1666 static int sd_sync_cache(struct scsi_disk *sdkp)
1667 {
1668         int res;
1669         struct scsi_device *sdp = sdkp->device;
1670         const int timeout = sdp->request_queue->rq_timeout
1671                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1672         /* Leave the rest of the command zero to indicate flush everything. */
1673         const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1674                                 SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1675         struct scsi_sense_hdr sshdr;
1676         struct scsi_failure failure_defs[] = {
1677                 {
1678                         .allowed = 3,
1679                         .result = SCMD_FAILURE_RESULT_ANY,
1680                 },
1681                 {}
1682         };
1683         struct scsi_failures failures = {
1684                 .failure_definitions = failure_defs,
1685         };
1686         const struct scsi_exec_args exec_args = {
1687                 .req_flags = BLK_MQ_REQ_PM,
1688                 .sshdr = &sshdr,
1689                 .failures = &failures,
1690         };
1691
1692         if (!scsi_device_online(sdp))
1693                 return -ENODEV;
1694
1695         res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
1696                                sdkp->max_retries, &exec_args);
1697         if (res) {
1698                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1699
1700                 if (res < 0)
1701                         return res;
1702
1703                 if (scsi_status_is_check_condition(res) &&
1704                     scsi_sense_valid(&sshdr)) {
1705                         sd_print_sense_hdr(sdkp, &sshdr);
1706
1707                         /* we need to evaluate the error return  */
1708                         if (sshdr.asc == 0x3a ||        /* medium not present */
1709                             sshdr.asc == 0x20 ||        /* invalid command */
1710                             (sshdr.asc == 0x74 && sshdr.ascq == 0x71))  /* drive is password locked */
1711                                 /* this is no error here */
1712                                 return 0;
1713                         /*
1714                          * This drive doesn't support sync and there's not much
1715                          * we can do because this is called during shutdown
1716                          * or suspend so just return success so those operations
1717                          * can proceed.
1718                          */
1719                         if (sshdr.sense_key == ILLEGAL_REQUEST)
1720                                 return 0;
1721                 }
1722
1723                 switch (host_byte(res)) {
1724                 /* ignore errors due to racing a disconnection */
1725                 case DID_BAD_TARGET:
1726                 case DID_NO_CONNECT:
1727                         return 0;
1728                 /* signal the upper layer it might try again */
1729                 case DID_BUS_BUSY:
1730                 case DID_IMM_RETRY:
1731                 case DID_REQUEUE:
1732                 case DID_SOFT_ERROR:
1733                         return -EBUSY;
1734                 default:
1735                         return -EIO;
1736                 }
1737         }
1738         return 0;
1739 }
1740
1741 static void sd_rescan(struct device *dev)
1742 {
1743         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1744
1745         sd_revalidate_disk(sdkp->disk);
1746 }
1747
1748 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1749                 enum blk_unique_id type)
1750 {
1751         struct scsi_device *sdev = scsi_disk(disk)->device;
1752         const struct scsi_vpd *vpd;
1753         const unsigned char *d;
1754         int ret = -ENXIO, len;
1755
1756         rcu_read_lock();
1757         vpd = rcu_dereference(sdev->vpd_pg83);
1758         if (!vpd)
1759                 goto out_unlock;
1760
1761         ret = -EINVAL;
1762         for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1763                 /* we only care about designators with LU association */
1764                 if (((d[1] >> 4) & 0x3) != 0x00)
1765                         continue;
1766                 if ((d[1] & 0xf) != type)
1767                         continue;
1768
1769                 /*
1770                  * Only exit early if a 16-byte descriptor was found.  Otherwise
1771                  * keep looking as one with more entropy might still show up.
1772                  */
1773                 len = d[3];
1774                 if (len != 8 && len != 12 && len != 16)
1775                         continue;
1776                 ret = len;
1777                 memcpy(id, d + 4, len);
1778                 if (len == 16)
1779                         break;
1780         }
1781 out_unlock:
1782         rcu_read_unlock();
1783         return ret;
1784 }
1785
1786 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1787 {
1788         switch (host_byte(result)) {
1789         case DID_TRANSPORT_MARGINAL:
1790         case DID_TRANSPORT_DISRUPTED:
1791         case DID_BUS_BUSY:
1792                 return PR_STS_RETRY_PATH_FAILURE;
1793         case DID_NO_CONNECT:
1794                 return PR_STS_PATH_FAILED;
1795         case DID_TRANSPORT_FAILFAST:
1796                 return PR_STS_PATH_FAST_FAILED;
1797         }
1798
1799         switch (status_byte(result)) {
1800         case SAM_STAT_RESERVATION_CONFLICT:
1801                 return PR_STS_RESERVATION_CONFLICT;
1802         case SAM_STAT_CHECK_CONDITION:
1803                 if (!scsi_sense_valid(sshdr))
1804                         return PR_STS_IOERR;
1805
1806                 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1807                     (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1808                         return -EINVAL;
1809
1810                 fallthrough;
1811         default:
1812                 return PR_STS_IOERR;
1813         }
1814 }
1815
1816 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1817                             unsigned char *data, int data_len)
1818 {
1819         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1820         struct scsi_device *sdev = sdkp->device;
1821         struct scsi_sense_hdr sshdr;
1822         u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1823         struct scsi_failure failure_defs[] = {
1824                 {
1825                         .sense = UNIT_ATTENTION,
1826                         .asc = SCMD_FAILURE_ASC_ANY,
1827                         .ascq = SCMD_FAILURE_ASCQ_ANY,
1828                         .allowed = 5,
1829                         .result = SAM_STAT_CHECK_CONDITION,
1830                 },
1831                 {}
1832         };
1833         struct scsi_failures failures = {
1834                 .failure_definitions = failure_defs,
1835         };
1836         const struct scsi_exec_args exec_args = {
1837                 .sshdr = &sshdr,
1838                 .failures = &failures,
1839         };
1840         int result;
1841
1842         put_unaligned_be16(data_len, &cmd[7]);
1843
1844         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1845                                   SD_TIMEOUT, sdkp->max_retries, &exec_args);
1846         if (scsi_status_is_check_condition(result) &&
1847             scsi_sense_valid(&sshdr)) {
1848                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1849                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1850         }
1851
1852         if (result <= 0)
1853                 return result;
1854
1855         return sd_scsi_to_pr_err(&sshdr, result);
1856 }
1857
1858 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1859 {
1860         int result, i, data_offset, num_copy_keys;
1861         u32 num_keys = keys_info->num_keys;
1862         int data_len = num_keys * 8 + 8;
1863         u8 *data;
1864
1865         data = kzalloc(data_len, GFP_KERNEL);
1866         if (!data)
1867                 return -ENOMEM;
1868
1869         result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1870         if (result)
1871                 goto free_data;
1872
1873         keys_info->generation = get_unaligned_be32(&data[0]);
1874         keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1875
1876         data_offset = 8;
1877         num_copy_keys = min(num_keys, keys_info->num_keys);
1878
1879         for (i = 0; i < num_copy_keys; i++) {
1880                 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1881                 data_offset += 8;
1882         }
1883
1884 free_data:
1885         kfree(data);
1886         return result;
1887 }
1888
1889 static int sd_pr_read_reservation(struct block_device *bdev,
1890                                   struct pr_held_reservation *rsv)
1891 {
1892         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1893         struct scsi_device *sdev = sdkp->device;
1894         u8 data[24] = { };
1895         int result, len;
1896
1897         result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1898         if (result)
1899                 return result;
1900
1901         len = get_unaligned_be32(&data[4]);
1902         if (!len)
1903                 return 0;
1904
1905         /* Make sure we have at least the key and type */
1906         if (len < 14) {
1907                 sdev_printk(KERN_INFO, sdev,
1908                             "READ RESERVATION failed due to short return buffer of %d bytes\n",
1909                             len);
1910                 return -EINVAL;
1911         }
1912
1913         rsv->generation = get_unaligned_be32(&data[0]);
1914         rsv->key = get_unaligned_be64(&data[8]);
1915         rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1916         return 0;
1917 }
1918
1919 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1920                              u64 sa_key, enum scsi_pr_type type, u8 flags)
1921 {
1922         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1923         struct scsi_device *sdev = sdkp->device;
1924         struct scsi_sense_hdr sshdr;
1925         struct scsi_failure failure_defs[] = {
1926                 {
1927                         .sense = UNIT_ATTENTION,
1928                         .asc = SCMD_FAILURE_ASC_ANY,
1929                         .ascq = SCMD_FAILURE_ASCQ_ANY,
1930                         .allowed = 5,
1931                         .result = SAM_STAT_CHECK_CONDITION,
1932                 },
1933                 {}
1934         };
1935         struct scsi_failures failures = {
1936                 .failure_definitions = failure_defs,
1937         };
1938         const struct scsi_exec_args exec_args = {
1939                 .sshdr = &sshdr,
1940                 .failures = &failures,
1941         };
1942         int result;
1943         u8 cmd[16] = { 0, };
1944         u8 data[24] = { 0, };
1945
1946         cmd[0] = PERSISTENT_RESERVE_OUT;
1947         cmd[1] = sa;
1948         cmd[2] = type;
1949         put_unaligned_be32(sizeof(data), &cmd[5]);
1950
1951         put_unaligned_be64(key, &data[0]);
1952         put_unaligned_be64(sa_key, &data[8]);
1953         data[20] = flags;
1954
1955         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1956                                   sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1957                                   &exec_args);
1958
1959         if (scsi_status_is_check_condition(result) &&
1960             scsi_sense_valid(&sshdr)) {
1961                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1962                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1963         }
1964
1965         if (result <= 0)
1966                 return result;
1967
1968         return sd_scsi_to_pr_err(&sshdr, result);
1969 }
1970
1971 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1972                 u32 flags)
1973 {
1974         if (flags & ~PR_FL_IGNORE_KEY)
1975                 return -EOPNOTSUPP;
1976         return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1977                         old_key, new_key, 0,
1978                         (1 << 0) /* APTPL */);
1979 }
1980
1981 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1982                 u32 flags)
1983 {
1984         if (flags)
1985                 return -EOPNOTSUPP;
1986         return sd_pr_out_command(bdev, 0x01, key, 0,
1987                                  block_pr_type_to_scsi(type), 0);
1988 }
1989
1990 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1991 {
1992         return sd_pr_out_command(bdev, 0x02, key, 0,
1993                                  block_pr_type_to_scsi(type), 0);
1994 }
1995
1996 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1997                 enum pr_type type, bool abort)
1998 {
1999         return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
2000                                  block_pr_type_to_scsi(type), 0);
2001 }
2002
2003 static int sd_pr_clear(struct block_device *bdev, u64 key)
2004 {
2005         return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
2006 }
2007
2008 static const struct pr_ops sd_pr_ops = {
2009         .pr_register    = sd_pr_register,
2010         .pr_reserve     = sd_pr_reserve,
2011         .pr_release     = sd_pr_release,
2012         .pr_preempt     = sd_pr_preempt,
2013         .pr_clear       = sd_pr_clear,
2014         .pr_read_keys   = sd_pr_read_keys,
2015         .pr_read_reservation = sd_pr_read_reservation,
2016 };
2017
2018 static void scsi_disk_free_disk(struct gendisk *disk)
2019 {
2020         struct scsi_disk *sdkp = scsi_disk(disk);
2021
2022         put_device(&sdkp->disk_dev);
2023 }
2024
2025 static const struct block_device_operations sd_fops = {
2026         .owner                  = THIS_MODULE,
2027         .open                   = sd_open,
2028         .release                = sd_release,
2029         .ioctl                  = sd_ioctl,
2030         .getgeo                 = sd_getgeo,
2031         .compat_ioctl           = blkdev_compat_ptr_ioctl,
2032         .check_events           = sd_check_events,
2033         .unlock_native_capacity = sd_unlock_native_capacity,
2034         .report_zones           = sd_zbc_report_zones,
2035         .get_unique_id          = sd_get_unique_id,
2036         .free_disk              = scsi_disk_free_disk,
2037         .pr_ops                 = &sd_pr_ops,
2038 };
2039
2040 /**
2041  *      sd_eh_reset - reset error handling callback
2042  *      @scmd:          sd-issued command that has failed
2043  *
2044  *      This function is called by the SCSI midlayer before starting
2045  *      SCSI EH. When counting medium access failures we have to be
2046  *      careful to register it only only once per device and SCSI EH run;
2047  *      there might be several timed out commands which will cause the
2048  *      'max_medium_access_timeouts' counter to trigger after the first
2049  *      SCSI EH run already and set the device to offline.
2050  *      So this function resets the internal counter before starting SCSI EH.
2051  **/
2052 static void sd_eh_reset(struct scsi_cmnd *scmd)
2053 {
2054         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2055
2056         /* New SCSI EH run, reset gate variable */
2057         sdkp->ignore_medium_access_errors = false;
2058 }
2059
2060 /**
2061  *      sd_eh_action - error handling callback
2062  *      @scmd:          sd-issued command that has failed
2063  *      @eh_disp:       The recovery disposition suggested by the midlayer
2064  *
2065  *      This function is called by the SCSI midlayer upon completion of an
2066  *      error test command (currently TEST UNIT READY). The result of sending
2067  *      the eh command is passed in eh_disp.  We're looking for devices that
2068  *      fail medium access commands but are OK with non access commands like
2069  *      test unit ready (so wrongly see the device as having a successful
2070  *      recovery)
2071  **/
2072 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2073 {
2074         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2075         struct scsi_device *sdev = scmd->device;
2076
2077         if (!scsi_device_online(sdev) ||
2078             !scsi_medium_access_command(scmd) ||
2079             host_byte(scmd->result) != DID_TIME_OUT ||
2080             eh_disp != SUCCESS)
2081                 return eh_disp;
2082
2083         /*
2084          * The device has timed out executing a medium access command.
2085          * However, the TEST UNIT READY command sent during error
2086          * handling completed successfully. Either the device is in the
2087          * process of recovering or has it suffered an internal failure
2088          * that prevents access to the storage medium.
2089          */
2090         if (!sdkp->ignore_medium_access_errors) {
2091                 sdkp->medium_access_timed_out++;
2092                 sdkp->ignore_medium_access_errors = true;
2093         }
2094
2095         /*
2096          * If the device keeps failing read/write commands but TEST UNIT
2097          * READY always completes successfully we assume that medium
2098          * access is no longer possible and take the device offline.
2099          */
2100         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2101                 scmd_printk(KERN_ERR, scmd,
2102                             "Medium access timeout failure. Offlining disk!\n");
2103                 mutex_lock(&sdev->state_mutex);
2104                 scsi_device_set_state(sdev, SDEV_OFFLINE);
2105                 mutex_unlock(&sdev->state_mutex);
2106
2107                 return SUCCESS;
2108         }
2109
2110         return eh_disp;
2111 }
2112
2113 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2114 {
2115         struct request *req = scsi_cmd_to_rq(scmd);
2116         struct scsi_device *sdev = scmd->device;
2117         unsigned int transferred, good_bytes;
2118         u64 start_lba, end_lba, bad_lba;
2119
2120         /*
2121          * Some commands have a payload smaller than the device logical
2122          * block size (e.g. INQUIRY on a 4K disk).
2123          */
2124         if (scsi_bufflen(scmd) <= sdev->sector_size)
2125                 return 0;
2126
2127         /* Check if we have a 'bad_lba' information */
2128         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2129                                      SCSI_SENSE_BUFFERSIZE,
2130                                      &bad_lba))
2131                 return 0;
2132
2133         /*
2134          * If the bad lba was reported incorrectly, we have no idea where
2135          * the error is.
2136          */
2137         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2138         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2139         if (bad_lba < start_lba || bad_lba >= end_lba)
2140                 return 0;
2141
2142         /*
2143          * resid is optional but mostly filled in.  When it's unused,
2144          * its value is zero, so we assume the whole buffer transferred
2145          */
2146         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2147
2148         /* This computation should always be done in terms of the
2149          * resolution of the device's medium.
2150          */
2151         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2152
2153         return min(good_bytes, transferred);
2154 }
2155
2156 /**
2157  *      sd_done - bottom half handler: called when the lower level
2158  *      driver has completed (successfully or otherwise) a scsi command.
2159  *      @SCpnt: mid-level's per command structure.
2160  *
2161  *      Note: potentially run from within an ISR. Must not block.
2162  **/
2163 static int sd_done(struct scsi_cmnd *SCpnt)
2164 {
2165         int result = SCpnt->result;
2166         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2167         unsigned int sector_size = SCpnt->device->sector_size;
2168         unsigned int resid;
2169         struct scsi_sense_hdr sshdr;
2170         struct request *req = scsi_cmd_to_rq(SCpnt);
2171         struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2172         int sense_valid = 0;
2173         int sense_deferred = 0;
2174
2175         switch (req_op(req)) {
2176         case REQ_OP_DISCARD:
2177         case REQ_OP_WRITE_ZEROES:
2178         case REQ_OP_ZONE_RESET:
2179         case REQ_OP_ZONE_RESET_ALL:
2180         case REQ_OP_ZONE_OPEN:
2181         case REQ_OP_ZONE_CLOSE:
2182         case REQ_OP_ZONE_FINISH:
2183                 if (!result) {
2184                         good_bytes = blk_rq_bytes(req);
2185                         scsi_set_resid(SCpnt, 0);
2186                 } else {
2187                         good_bytes = 0;
2188                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
2189                 }
2190                 break;
2191         default:
2192                 /*
2193                  * In case of bogus fw or device, we could end up having
2194                  * an unaligned partial completion. Check this here and force
2195                  * alignment.
2196                  */
2197                 resid = scsi_get_resid(SCpnt);
2198                 if (resid & (sector_size - 1)) {
2199                         sd_printk(KERN_INFO, sdkp,
2200                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2201                                 resid, sector_size);
2202                         scsi_print_command(SCpnt);
2203                         resid = min(scsi_bufflen(SCpnt),
2204                                     round_up(resid, sector_size));
2205                         scsi_set_resid(SCpnt, resid);
2206                 }
2207         }
2208
2209         if (result) {
2210                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2211                 if (sense_valid)
2212                         sense_deferred = scsi_sense_is_deferred(&sshdr);
2213         }
2214         sdkp->medium_access_timed_out = 0;
2215
2216         if (!scsi_status_is_check_condition(result) &&
2217             (!sense_valid || sense_deferred))
2218                 goto out;
2219
2220         switch (sshdr.sense_key) {
2221         case HARDWARE_ERROR:
2222         case MEDIUM_ERROR:
2223                 good_bytes = sd_completed_bytes(SCpnt);
2224                 break;
2225         case RECOVERED_ERROR:
2226                 good_bytes = scsi_bufflen(SCpnt);
2227                 break;
2228         case NO_SENSE:
2229                 /* This indicates a false check condition, so ignore it.  An
2230                  * unknown amount of data was transferred so treat it as an
2231                  * error.
2232                  */
2233                 SCpnt->result = 0;
2234                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2235                 break;
2236         case ABORTED_COMMAND:
2237                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2238                         good_bytes = sd_completed_bytes(SCpnt);
2239                 break;
2240         case ILLEGAL_REQUEST:
2241                 switch (sshdr.asc) {
2242                 case 0x10:      /* DIX: Host detected corruption */
2243                         good_bytes = sd_completed_bytes(SCpnt);
2244                         break;
2245                 case 0x20:      /* INVALID COMMAND OPCODE */
2246                 case 0x24:      /* INVALID FIELD IN CDB */
2247                         switch (SCpnt->cmnd[0]) {
2248                         case UNMAP:
2249                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2250                                 break;
2251                         case WRITE_SAME_16:
2252                         case WRITE_SAME:
2253                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2254                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2255                                 } else {
2256                                         sdkp->device->no_write_same = 1;
2257                                         sd_config_write_same(sdkp);
2258                                         req->rq_flags |= RQF_QUIET;
2259                                 }
2260                                 break;
2261                         }
2262                 }
2263                 break;
2264         default:
2265                 break;
2266         }
2267
2268  out:
2269         if (sd_is_zoned(sdkp))
2270                 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2271
2272         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2273                                            "sd_done: completed %d of %d bytes\n",
2274                                            good_bytes, scsi_bufflen(SCpnt)));
2275
2276         return good_bytes;
2277 }
2278
2279 /*
2280  * spinup disk - called only in sd_revalidate_disk()
2281  */
2282 static void
2283 sd_spinup_disk(struct scsi_disk *sdkp)
2284 {
2285         static const u8 cmd[10] = { TEST_UNIT_READY };
2286         unsigned long spintime_expire = 0;
2287         int spintime, sense_valid = 0;
2288         unsigned int the_result;
2289         struct scsi_sense_hdr sshdr;
2290         struct scsi_failure failure_defs[] = {
2291                 /* Do not retry Medium Not Present */
2292                 {
2293                         .sense = UNIT_ATTENTION,
2294                         .asc = 0x3A,
2295                         .ascq = SCMD_FAILURE_ASCQ_ANY,
2296                         .result = SAM_STAT_CHECK_CONDITION,
2297                 },
2298                 {
2299                         .sense = NOT_READY,
2300                         .asc = 0x3A,
2301                         .ascq = SCMD_FAILURE_ASCQ_ANY,
2302                         .result = SAM_STAT_CHECK_CONDITION,
2303                 },
2304                 /* Retry when scsi_status_is_good would return false 3 times */
2305                 {
2306                         .result = SCMD_FAILURE_STAT_ANY,
2307                         .allowed = 3,
2308                 },
2309                 {}
2310         };
2311         struct scsi_failures failures = {
2312                 .failure_definitions = failure_defs,
2313         };
2314         const struct scsi_exec_args exec_args = {
2315                 .sshdr = &sshdr,
2316                 .failures = &failures,
2317         };
2318
2319         spintime = 0;
2320
2321         /* Spin up drives, as required.  Only do this at boot time */
2322         /* Spinup needs to be done for module loads too. */
2323         do {
2324                 bool media_was_present = sdkp->media_present;
2325
2326                 scsi_failures_reset_retries(&failures);
2327
2328                 the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
2329                                               NULL, 0, SD_TIMEOUT,
2330                                               sdkp->max_retries, &exec_args);
2331
2332
2333                 if (the_result > 0) {
2334                         /*
2335                          * If the drive has indicated to us that it doesn't
2336                          * have any media in it, don't bother with any more
2337                          * polling.
2338                          */
2339                         if (media_not_present(sdkp, &sshdr)) {
2340                                 if (media_was_present)
2341                                         sd_printk(KERN_NOTICE, sdkp,
2342                                                   "Media removed, stopped polling\n");
2343                                 return;
2344                         }
2345                         sense_valid = scsi_sense_valid(&sshdr);
2346                 }
2347
2348                 if (!scsi_status_is_check_condition(the_result)) {
2349                         /* no sense, TUR either succeeded or failed
2350                          * with a status error */
2351                         if(!spintime && !scsi_status_is_good(the_result)) {
2352                                 sd_print_result(sdkp, "Test Unit Ready failed",
2353                                                 the_result);
2354                         }
2355                         break;
2356                 }
2357
2358                 /*
2359                  * The device does not want the automatic start to be issued.
2360                  */
2361                 if (sdkp->device->no_start_on_add)
2362                         break;
2363
2364                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2365                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2366                                 break;  /* manual intervention required */
2367                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2368                                 break;  /* standby */
2369                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2370                                 break;  /* unavailable */
2371                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2372                                 break;  /* sanitize in progress */
2373                         if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2374                                 break;  /* depopulation in progress */
2375                         if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2376                                 break;  /* depopulation restoration in progress */
2377                         /*
2378                          * Issue command to spin up drive when not ready
2379                          */
2380                         if (!spintime) {
2381                                 /* Return immediately and start spin cycle */
2382                                 const u8 start_cmd[10] = {
2383                                         [0] = START_STOP,
2384                                         [1] = 1,
2385                                         [4] = sdkp->device->start_stop_pwr_cond ?
2386                                                 0x11 : 1,
2387                                 };
2388
2389                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2390                                 scsi_execute_cmd(sdkp->device, start_cmd,
2391                                                  REQ_OP_DRV_IN, NULL, 0,
2392                                                  SD_TIMEOUT, sdkp->max_retries,
2393                                                  &exec_args);
2394                                 spintime_expire = jiffies + 100 * HZ;
2395                                 spintime = 1;
2396                         }
2397                         /* Wait 1 second for next try */
2398                         msleep(1000);
2399                         printk(KERN_CONT ".");
2400
2401                 /*
2402                  * Wait for USB flash devices with slow firmware.
2403                  * Yes, this sense key/ASC combination shouldn't
2404                  * occur here.  It's characteristic of these devices.
2405                  */
2406                 } else if (sense_valid &&
2407                                 sshdr.sense_key == UNIT_ATTENTION &&
2408                                 sshdr.asc == 0x28) {
2409                         if (!spintime) {
2410                                 spintime_expire = jiffies + 5 * HZ;
2411                                 spintime = 1;
2412                         }
2413                         /* Wait 1 second for next try */
2414                         msleep(1000);
2415                 } else {
2416                         /* we don't understand the sense code, so it's
2417                          * probably pointless to loop */
2418                         if(!spintime) {
2419                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2420                                 sd_print_sense_hdr(sdkp, &sshdr);
2421                         }
2422                         break;
2423                 }
2424                                 
2425         } while (spintime && time_before_eq(jiffies, spintime_expire));
2426
2427         if (spintime) {
2428                 if (scsi_status_is_good(the_result))
2429                         printk(KERN_CONT "ready\n");
2430                 else
2431                         printk(KERN_CONT "not responding...\n");
2432         }
2433 }
2434
2435 /*
2436  * Determine whether disk supports Data Integrity Field.
2437  */
2438 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2439 {
2440         struct scsi_device *sdp = sdkp->device;
2441         u8 type;
2442
2443         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2444                 sdkp->protection_type = 0;
2445                 return 0;
2446         }
2447
2448         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2449
2450         if (type > T10_PI_TYPE3_PROTECTION) {
2451                 sd_printk(KERN_ERR, sdkp, "formatted with unsupported"  \
2452                           " protection type %u. Disabling disk!\n",
2453                           type);
2454                 sdkp->protection_type = 0;
2455                 return -ENODEV;
2456         }
2457
2458         sdkp->protection_type = type;
2459
2460         return 0;
2461 }
2462
2463 static void sd_config_protection(struct scsi_disk *sdkp)
2464 {
2465         struct scsi_device *sdp = sdkp->device;
2466
2467         sd_dif_config_host(sdkp);
2468
2469         if (!sdkp->protection_type)
2470                 return;
2471
2472         if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2473                 sd_first_printk(KERN_NOTICE, sdkp,
2474                                 "Disabling DIF Type %u protection\n",
2475                                 sdkp->protection_type);
2476                 sdkp->protection_type = 0;
2477         }
2478
2479         sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2480                         sdkp->protection_type);
2481 }
2482
2483 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2484                         struct scsi_sense_hdr *sshdr, int sense_valid,
2485                         int the_result)
2486 {
2487         if (sense_valid)
2488                 sd_print_sense_hdr(sdkp, sshdr);
2489         else
2490                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2491
2492         /*
2493          * Set dirty bit for removable devices if not ready -
2494          * sometimes drives will not report this properly.
2495          */
2496         if (sdp->removable &&
2497             sense_valid && sshdr->sense_key == NOT_READY)
2498                 set_media_not_present(sdkp);
2499
2500         /*
2501          * We used to set media_present to 0 here to indicate no media
2502          * in the drive, but some drives fail read capacity even with
2503          * media present, so we can't do that.
2504          */
2505         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2506 }
2507
2508 #define RC16_LEN 32
2509 #if RC16_LEN > SD_BUF_SIZE
2510 #error RC16_LEN must not be more than SD_BUF_SIZE
2511 #endif
2512
2513 #define READ_CAPACITY_RETRIES_ON_RESET  10
2514
2515 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2516                                                 unsigned char *buffer)
2517 {
2518         unsigned char cmd[16];
2519         struct scsi_sense_hdr sshdr;
2520         const struct scsi_exec_args exec_args = {
2521                 .sshdr = &sshdr,
2522         };
2523         int sense_valid = 0;
2524         int the_result;
2525         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2526         unsigned int alignment;
2527         unsigned long long lba;
2528         unsigned sector_size;
2529
2530         if (sdp->no_read_capacity_16)
2531                 return -EINVAL;
2532
2533         do {
2534                 memset(cmd, 0, 16);
2535                 cmd[0] = SERVICE_ACTION_IN_16;
2536                 cmd[1] = SAI_READ_CAPACITY_16;
2537                 cmd[13] = RC16_LEN;
2538                 memset(buffer, 0, RC16_LEN);
2539
2540                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2541                                               buffer, RC16_LEN, SD_TIMEOUT,
2542                                               sdkp->max_retries, &exec_args);
2543                 if (the_result > 0) {
2544                         if (media_not_present(sdkp, &sshdr))
2545                                 return -ENODEV;
2546
2547                         sense_valid = scsi_sense_valid(&sshdr);
2548                         if (sense_valid &&
2549                             sshdr.sense_key == ILLEGAL_REQUEST &&
2550                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2551                             sshdr.ascq == 0x00)
2552                                 /* Invalid Command Operation Code or
2553                                  * Invalid Field in CDB, just retry
2554                                  * silently with RC10 */
2555                                 return -EINVAL;
2556                         if (sense_valid &&
2557                             sshdr.sense_key == UNIT_ATTENTION &&
2558                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2559                                 /* Device reset might occur several times,
2560                                  * give it one more chance */
2561                                 if (--reset_retries > 0)
2562                                         continue;
2563                 }
2564                 retries--;
2565
2566         } while (the_result && retries);
2567
2568         if (the_result) {
2569                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2570                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2571                 return -EINVAL;
2572         }
2573
2574         sector_size = get_unaligned_be32(&buffer[8]);
2575         lba = get_unaligned_be64(&buffer[0]);
2576
2577         if (sd_read_protection_type(sdkp, buffer) < 0) {
2578                 sdkp->capacity = 0;
2579                 return -ENODEV;
2580         }
2581
2582         /* Logical blocks per physical block exponent */
2583         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2584
2585         /* RC basis */
2586         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2587
2588         /* Lowest aligned logical block */
2589         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2590         blk_queue_alignment_offset(sdp->request_queue, alignment);
2591         if (alignment && sdkp->first_scan)
2592                 sd_printk(KERN_NOTICE, sdkp,
2593                           "physical block alignment offset: %u\n", alignment);
2594
2595         if (buffer[14] & 0x80) { /* LBPME */
2596                 sdkp->lbpme = 1;
2597
2598                 if (buffer[14] & 0x40) /* LBPRZ */
2599                         sdkp->lbprz = 1;
2600
2601                 sd_config_discard(sdkp, SD_LBP_WS16);
2602         }
2603
2604         sdkp->capacity = lba + 1;
2605         return sector_size;
2606 }
2607
2608 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2609                                                 unsigned char *buffer)
2610 {
2611         static const u8 cmd[10] = { READ_CAPACITY };
2612         struct scsi_sense_hdr sshdr;
2613         struct scsi_failure failure_defs[] = {
2614                 /* Do not retry Medium Not Present */
2615                 {
2616                         .sense = UNIT_ATTENTION,
2617                         .asc = 0x3A,
2618                         .result = SAM_STAT_CHECK_CONDITION,
2619                 },
2620                 {
2621                         .sense = NOT_READY,
2622                         .asc = 0x3A,
2623                         .result = SAM_STAT_CHECK_CONDITION,
2624                 },
2625                  /* Device reset might occur several times so retry a lot */
2626                 {
2627                         .sense = UNIT_ATTENTION,
2628                         .asc = 0x29,
2629                         .allowed = READ_CAPACITY_RETRIES_ON_RESET,
2630                         .result = SAM_STAT_CHECK_CONDITION,
2631                 },
2632                 /* Any other error not listed above retry 3 times */
2633                 {
2634                         .result = SCMD_FAILURE_RESULT_ANY,
2635                         .allowed = 3,
2636                 },
2637                 {}
2638         };
2639         struct scsi_failures failures = {
2640                 .failure_definitions = failure_defs,
2641         };
2642         const struct scsi_exec_args exec_args = {
2643                 .sshdr = &sshdr,
2644                 .failures = &failures,
2645         };
2646         int sense_valid = 0;
2647         int the_result;
2648         sector_t lba;
2649         unsigned sector_size;
2650
2651         memset(buffer, 0, 8);
2652
2653         the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2654                                       8, SD_TIMEOUT, sdkp->max_retries,
2655                                       &exec_args);
2656
2657         if (the_result > 0) {
2658                 sense_valid = scsi_sense_valid(&sshdr);
2659
2660                 if (media_not_present(sdkp, &sshdr))
2661                         return -ENODEV;
2662         }
2663
2664         if (the_result) {
2665                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2666                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2667                 return -EINVAL;
2668         }
2669
2670         sector_size = get_unaligned_be32(&buffer[4]);
2671         lba = get_unaligned_be32(&buffer[0]);
2672
2673         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2674                 /* Some buggy (usb cardreader) devices return an lba of
2675                    0xffffffff when the want to report a size of 0 (with
2676                    which they really mean no media is present) */
2677                 sdkp->capacity = 0;
2678                 sdkp->physical_block_size = sector_size;
2679                 return sector_size;
2680         }
2681
2682         sdkp->capacity = lba + 1;
2683         sdkp->physical_block_size = sector_size;
2684         return sector_size;
2685 }
2686
2687 static int sd_try_rc16_first(struct scsi_device *sdp)
2688 {
2689         if (sdp->host->max_cmd_len < 16)
2690                 return 0;
2691         if (sdp->try_rc_10_first)
2692                 return 0;
2693         if (sdp->scsi_level > SCSI_SPC_2)
2694                 return 1;
2695         if (scsi_device_protection(sdp))
2696                 return 1;
2697         return 0;
2698 }
2699
2700 /*
2701  * read disk capacity
2702  */
2703 static void
2704 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2705 {
2706         int sector_size;
2707         struct scsi_device *sdp = sdkp->device;
2708
2709         if (sd_try_rc16_first(sdp)) {
2710                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2711                 if (sector_size == -EOVERFLOW)
2712                         goto got_data;
2713                 if (sector_size == -ENODEV)
2714                         return;
2715                 if (sector_size < 0)
2716                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2717                 if (sector_size < 0)
2718                         return;
2719         } else {
2720                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2721                 if (sector_size == -EOVERFLOW)
2722                         goto got_data;
2723                 if (sector_size < 0)
2724                         return;
2725                 if ((sizeof(sdkp->capacity) > 4) &&
2726                     (sdkp->capacity > 0xffffffffULL)) {
2727                         int old_sector_size = sector_size;
2728                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2729                                         "Trying to use READ CAPACITY(16).\n");
2730                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2731                         if (sector_size < 0) {
2732                                 sd_printk(KERN_NOTICE, sdkp,
2733                                         "Using 0xffffffff as device size\n");
2734                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2735                                 sector_size = old_sector_size;
2736                                 goto got_data;
2737                         }
2738                         /* Remember that READ CAPACITY(16) succeeded */
2739                         sdp->try_rc_10_first = 0;
2740                 }
2741         }
2742
2743         /* Some devices are known to return the total number of blocks,
2744          * not the highest block number.  Some devices have versions
2745          * which do this and others which do not.  Some devices we might
2746          * suspect of doing this but we don't know for certain.
2747          *
2748          * If we know the reported capacity is wrong, decrement it.  If
2749          * we can only guess, then assume the number of blocks is even
2750          * (usually true but not always) and err on the side of lowering
2751          * the capacity.
2752          */
2753         if (sdp->fix_capacity ||
2754             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2755                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2756                                 "from its reported value: %llu\n",
2757                                 (unsigned long long) sdkp->capacity);
2758                 --sdkp->capacity;
2759         }
2760
2761 got_data:
2762         if (sector_size == 0) {
2763                 sector_size = 512;
2764                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2765                           "assuming 512.\n");
2766         }
2767
2768         if (sector_size != 512 &&
2769             sector_size != 1024 &&
2770             sector_size != 2048 &&
2771             sector_size != 4096) {
2772                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2773                           sector_size);
2774                 /*
2775                  * The user might want to re-format the drive with
2776                  * a supported sectorsize.  Once this happens, it
2777                  * would be relatively trivial to set the thing up.
2778                  * For this reason, we leave the thing in the table.
2779                  */
2780                 sdkp->capacity = 0;
2781                 /*
2782                  * set a bogus sector size so the normal read/write
2783                  * logic in the block layer will eventually refuse any
2784                  * request on this device without tripping over power
2785                  * of two sector size assumptions
2786                  */
2787                 sector_size = 512;
2788         }
2789         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2790         blk_queue_physical_block_size(sdp->request_queue,
2791                                       sdkp->physical_block_size);
2792         sdkp->device->sector_size = sector_size;
2793
2794         if (sdkp->capacity > 0xffffffff)
2795                 sdp->use_16_for_rw = 1;
2796
2797 }
2798
2799 /*
2800  * Print disk capacity
2801  */
2802 static void
2803 sd_print_capacity(struct scsi_disk *sdkp,
2804                   sector_t old_capacity)
2805 {
2806         int sector_size = sdkp->device->sector_size;
2807         char cap_str_2[10], cap_str_10[10];
2808
2809         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2810                 return;
2811
2812         string_get_size(sdkp->capacity, sector_size,
2813                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2814         string_get_size(sdkp->capacity, sector_size,
2815                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2816
2817         sd_printk(KERN_NOTICE, sdkp,
2818                   "%llu %d-byte logical blocks: (%s/%s)\n",
2819                   (unsigned long long)sdkp->capacity,
2820                   sector_size, cap_str_10, cap_str_2);
2821
2822         if (sdkp->physical_block_size != sector_size)
2823                 sd_printk(KERN_NOTICE, sdkp,
2824                           "%u-byte physical blocks\n",
2825                           sdkp->physical_block_size);
2826 }
2827
2828 /* called with buffer of length 512 */
2829 static inline int
2830 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2831                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2832                  struct scsi_sense_hdr *sshdr)
2833 {
2834         /*
2835          * If we must use MODE SENSE(10), make sure that the buffer length
2836          * is at least 8 bytes so that the mode sense header fits.
2837          */
2838         if (sdkp->device->use_10_for_ms && len < 8)
2839                 len = 8;
2840
2841         return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2842                                SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2843 }
2844
2845 /*
2846  * read write protect setting, if possible - called only in sd_revalidate_disk()
2847  * called with buffer of length SD_BUF_SIZE
2848  */
2849 static void
2850 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2851 {
2852         int res;
2853         struct scsi_device *sdp = sdkp->device;
2854         struct scsi_mode_data data;
2855         int old_wp = sdkp->write_prot;
2856
2857         set_disk_ro(sdkp->disk, 0);
2858         if (sdp->skip_ms_page_3f) {
2859                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2860                 return;
2861         }
2862
2863         if (sdp->use_192_bytes_for_3f) {
2864                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2865         } else {
2866                 /*
2867                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2868                  * We have to start carefully: some devices hang if we ask
2869                  * for more than is available.
2870                  */
2871                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2872
2873                 /*
2874                  * Second attempt: ask for page 0 When only page 0 is
2875                  * implemented, a request for page 3F may return Sense Key
2876                  * 5: Illegal Request, Sense Code 24: Invalid field in
2877                  * CDB.
2878                  */
2879                 if (res < 0)
2880                         res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2881
2882                 /*
2883                  * Third attempt: ask 255 bytes, as we did earlier.
2884                  */
2885                 if (res < 0)
2886                         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2887                                                &data, NULL);
2888         }
2889
2890         if (res < 0) {
2891                 sd_first_printk(KERN_WARNING, sdkp,
2892                           "Test WP failed, assume Write Enabled\n");
2893         } else {
2894                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2895                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2896                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2897                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2898                                   sdkp->write_prot ? "on" : "off");
2899                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2900                 }
2901         }
2902 }
2903
2904 /*
2905  * sd_read_cache_type - called only from sd_revalidate_disk()
2906  * called with buffer of length SD_BUF_SIZE
2907  */
2908 static void
2909 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2910 {
2911         int len = 0, res;
2912         struct scsi_device *sdp = sdkp->device;
2913
2914         int dbd;
2915         int modepage;
2916         int first_len;
2917         struct scsi_mode_data data;
2918         struct scsi_sense_hdr sshdr;
2919         int old_wce = sdkp->WCE;
2920         int old_rcd = sdkp->RCD;
2921         int old_dpofua = sdkp->DPOFUA;
2922
2923
2924         if (sdkp->cache_override)
2925                 return;
2926
2927         first_len = 4;
2928         if (sdp->skip_ms_page_8) {
2929                 if (sdp->type == TYPE_RBC)
2930                         goto defaults;
2931                 else {
2932                         if (sdp->skip_ms_page_3f)
2933                                 goto defaults;
2934                         modepage = 0x3F;
2935                         if (sdp->use_192_bytes_for_3f)
2936                                 first_len = 192;
2937                         dbd = 0;
2938                 }
2939         } else if (sdp->type == TYPE_RBC) {
2940                 modepage = 6;
2941                 dbd = 8;
2942         } else {
2943                 modepage = 8;
2944                 dbd = 0;
2945         }
2946
2947         /* cautiously ask */
2948         res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2949                         &data, &sshdr);
2950
2951         if (res < 0)
2952                 goto bad_sense;
2953
2954         if (!data.header_length) {
2955                 modepage = 6;
2956                 first_len = 0;
2957                 sd_first_printk(KERN_ERR, sdkp,
2958                                 "Missing header in MODE_SENSE response\n");
2959         }
2960
2961         /* that went OK, now ask for the proper length */
2962         len = data.length;
2963
2964         /*
2965          * We're only interested in the first three bytes, actually.
2966          * But the data cache page is defined for the first 20.
2967          */
2968         if (len < 3)
2969                 goto bad_sense;
2970         else if (len > SD_BUF_SIZE) {
2971                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2972                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2973                 len = SD_BUF_SIZE;
2974         }
2975         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2976                 len = 192;
2977
2978         /* Get the data */
2979         if (len > first_len)
2980                 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2981                                 &data, &sshdr);
2982
2983         if (!res) {
2984                 int offset = data.header_length + data.block_descriptor_length;
2985
2986                 while (offset < len) {
2987                         u8 page_code = buffer[offset] & 0x3F;
2988                         u8 spf       = buffer[offset] & 0x40;
2989
2990                         if (page_code == 8 || page_code == 6) {
2991                                 /* We're interested only in the first 3 bytes.
2992                                  */
2993                                 if (len - offset <= 2) {
2994                                         sd_first_printk(KERN_ERR, sdkp,
2995                                                 "Incomplete mode parameter "
2996                                                         "data\n");
2997                                         goto defaults;
2998                                 } else {
2999                                         modepage = page_code;
3000                                         goto Page_found;
3001                                 }
3002                         } else {
3003                                 /* Go to the next page */
3004                                 if (spf && len - offset > 3)
3005                                         offset += 4 + (buffer[offset+2] << 8) +
3006                                                 buffer[offset+3];
3007                                 else if (!spf && len - offset > 1)
3008                                         offset += 2 + buffer[offset+1];
3009                                 else {
3010                                         sd_first_printk(KERN_ERR, sdkp,
3011                                                         "Incomplete mode "
3012                                                         "parameter data\n");
3013                                         goto defaults;
3014                                 }
3015                         }
3016                 }
3017
3018                 sd_first_printk(KERN_WARNING, sdkp,
3019                                 "No Caching mode page found\n");
3020                 goto defaults;
3021
3022         Page_found:
3023                 if (modepage == 8) {
3024                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3025                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3026                 } else {
3027                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3028                         sdkp->RCD = 0;
3029                 }
3030
3031                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3032                 if (sdp->broken_fua) {
3033                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3034                         sdkp->DPOFUA = 0;
3035                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3036                            !sdkp->device->use_16_for_rw) {
3037                         sd_first_printk(KERN_NOTICE, sdkp,
3038                                   "Uses READ/WRITE(6), disabling FUA\n");
3039                         sdkp->DPOFUA = 0;
3040                 }
3041
3042                 /* No cache flush allowed for write protected devices */
3043                 if (sdkp->WCE && sdkp->write_prot)
3044                         sdkp->WCE = 0;
3045
3046                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
3047                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3048                         sd_printk(KERN_NOTICE, sdkp,
3049                                   "Write cache: %s, read cache: %s, %s\n",
3050                                   sdkp->WCE ? "enabled" : "disabled",
3051                                   sdkp->RCD ? "disabled" : "enabled",
3052                                   sdkp->DPOFUA ? "supports DPO and FUA"
3053                                   : "doesn't support DPO or FUA");
3054
3055                 return;
3056         }
3057
3058 bad_sense:
3059         if (res == -EIO && scsi_sense_valid(&sshdr) &&
3060             sshdr.sense_key == ILLEGAL_REQUEST &&
3061             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3062                 /* Invalid field in CDB */
3063                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3064         else
3065                 sd_first_printk(KERN_ERR, sdkp,
3066                                 "Asking for cache data failed\n");
3067
3068 defaults:
3069         if (sdp->wce_default_on) {
3070                 sd_first_printk(KERN_NOTICE, sdkp,
3071                                 "Assuming drive cache: write back\n");
3072                 sdkp->WCE = 1;
3073         } else {
3074                 sd_first_printk(KERN_WARNING, sdkp,
3075                                 "Assuming drive cache: write through\n");
3076                 sdkp->WCE = 0;
3077         }
3078         sdkp->RCD = 0;
3079         sdkp->DPOFUA = 0;
3080 }
3081
3082 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
3083 {
3084         u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
3085         struct {
3086                 struct scsi_stream_status_header h;
3087                 struct scsi_stream_status s;
3088         } buf;
3089         struct scsi_device *sdev = sdkp->device;
3090         struct scsi_sense_hdr sshdr;
3091         const struct scsi_exec_args exec_args = {
3092                 .sshdr = &sshdr,
3093         };
3094         int res;
3095
3096         put_unaligned_be16(stream_id, &cdb[4]);
3097         put_unaligned_be32(sizeof(buf), &cdb[10]);
3098
3099         res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf),
3100                                SD_TIMEOUT, sdkp->max_retries, &exec_args);
3101         if (res < 0)
3102                 return false;
3103         if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr))
3104                 sd_print_sense_hdr(sdkp, &sshdr);
3105         if (res)
3106                 return false;
3107         if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status))
3108                 return false;
3109         return buf.h.stream_status[0].perm;
3110 }
3111
3112 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
3113 {
3114         struct scsi_device *sdp = sdkp->device;
3115         const struct scsi_io_group_descriptor *desc, *start, *end;
3116         u16 permanent_stream_count_old;
3117         struct scsi_sense_hdr sshdr;
3118         struct scsi_mode_data data;
3119         int res;
3120
3121         res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
3122                               /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
3123                               sdkp->max_retries, &data, &sshdr);
3124         if (res < 0)
3125                 return;
3126         start = (void *)buffer + data.header_length + 16;
3127         end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
3128                                           sizeof(*end));
3129         /*
3130          * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
3131          * should assign the lowest numbered stream identifiers to permanent
3132          * streams.
3133          */
3134         for (desc = start; desc < end; desc++)
3135                 if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start))
3136                         break;
3137         permanent_stream_count_old = sdkp->permanent_stream_count;
3138         sdkp->permanent_stream_count = desc - start;
3139         if (sdkp->rscs && sdkp->permanent_stream_count < 2)
3140                 sd_printk(KERN_INFO, sdkp,
3141                           "Unexpected: RSCS has been set and the permanent stream count is %u\n",
3142                           sdkp->permanent_stream_count);
3143         else if (sdkp->permanent_stream_count != permanent_stream_count_old)
3144                 sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
3145                           sdkp->permanent_stream_count);
3146 }
3147
3148 /*
3149  * The ATO bit indicates whether the DIF application tag is available
3150  * for use by the operating system.
3151  */
3152 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3153 {
3154         int res, offset;
3155         struct scsi_device *sdp = sdkp->device;
3156         struct scsi_mode_data data;
3157         struct scsi_sense_hdr sshdr;
3158
3159         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3160                 return;
3161
3162         if (sdkp->protection_type == 0)
3163                 return;
3164
3165         res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3166                               sdkp->max_retries, &data, &sshdr);
3167
3168         if (res < 0 || !data.header_length ||
3169             data.length < 6) {
3170                 sd_first_printk(KERN_WARNING, sdkp,
3171                           "getting Control mode page failed, assume no ATO\n");
3172
3173                 if (res == -EIO && scsi_sense_valid(&sshdr))
3174                         sd_print_sense_hdr(sdkp, &sshdr);
3175
3176                 return;
3177         }
3178
3179         offset = data.header_length + data.block_descriptor_length;
3180
3181         if ((buffer[offset] & 0x3f) != 0x0a) {
3182                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3183                 return;
3184         }
3185
3186         if ((buffer[offset + 5] & 0x80) == 0)
3187                 return;
3188
3189         sdkp->ATO = 1;
3190
3191         return;
3192 }
3193
3194 /**
3195  * sd_read_block_limits - Query disk device for preferred I/O sizes.
3196  * @sdkp: disk to query
3197  */
3198 static void sd_read_block_limits(struct scsi_disk *sdkp)
3199 {
3200         struct scsi_vpd *vpd;
3201
3202         rcu_read_lock();
3203
3204         vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3205         if (!vpd || vpd->len < 16)
3206                 goto out;
3207
3208         sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3209         sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3210         sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3211
3212         if (vpd->len >= 64) {
3213                 unsigned int lba_count, desc_count;
3214
3215                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3216
3217                 if (!sdkp->lbpme)
3218                         goto out;
3219
3220                 lba_count = get_unaligned_be32(&vpd->data[20]);
3221                 desc_count = get_unaligned_be32(&vpd->data[24]);
3222
3223                 if (lba_count && desc_count)
3224                         sdkp->max_unmap_blocks = lba_count;
3225
3226                 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3227
3228                 if (vpd->data[32] & 0x80)
3229                         sdkp->unmap_alignment =
3230                                 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3231
3232                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3233
3234                         if (sdkp->max_unmap_blocks)
3235                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
3236                         else
3237                                 sd_config_discard(sdkp, SD_LBP_WS16);
3238
3239                 } else {        /* LBP VPD page tells us what to use */
3240                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
3241                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
3242                         else if (sdkp->lbpws)
3243                                 sd_config_discard(sdkp, SD_LBP_WS16);
3244                         else if (sdkp->lbpws10)
3245                                 sd_config_discard(sdkp, SD_LBP_WS10);
3246                         else
3247                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
3248                 }
3249         }
3250
3251  out:
3252         rcu_read_unlock();
3253 }
3254
3255 /* Parse the Block Limits Extension VPD page (0xb7) */
3256 static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
3257 {
3258         struct scsi_vpd *vpd;
3259
3260         rcu_read_lock();
3261         vpd = rcu_dereference(sdkp->device->vpd_pgb7);
3262         if (vpd && vpd->len >= 2)
3263                 sdkp->rscs = vpd->data[5] & 1;
3264         rcu_read_unlock();
3265 }
3266
3267 /**
3268  * sd_read_block_characteristics - Query block dev. characteristics
3269  * @sdkp: disk to query
3270  */
3271 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3272 {
3273         struct request_queue *q = sdkp->disk->queue;
3274         struct scsi_vpd *vpd;
3275         u16 rot;
3276
3277         rcu_read_lock();
3278         vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3279
3280         if (!vpd || vpd->len < 8) {
3281                 rcu_read_unlock();
3282                 return;
3283         }
3284
3285         rot = get_unaligned_be16(&vpd->data[4]);
3286         sdkp->zoned = (vpd->data[8] >> 4) & 3;
3287         rcu_read_unlock();
3288
3289         if (rot == 1) {
3290                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3291                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3292         }
3293
3294
3295 #ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */
3296         if (sdkp->device->type == TYPE_ZBC) {
3297                 /*
3298                  * Host-managed.
3299                  */
3300                 disk_set_zoned(sdkp->disk);
3301
3302                 /*
3303                  * Per ZBC and ZAC specifications, writes in sequential write
3304                  * required zones of host-managed devices must be aligned to
3305                  * the device physical block size.
3306                  */
3307                 blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3308         } else {
3309                 /*
3310                  * Host-aware devices are treated as conventional.
3311                  */
3312                 WARN_ON_ONCE(blk_queue_is_zoned(q));
3313         }
3314 #endif /* CONFIG_BLK_DEV_ZONED */
3315
3316         if (!sdkp->first_scan)
3317                 return;
3318
3319         if (blk_queue_is_zoned(q))
3320                 sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3321         else if (sdkp->zoned == 1)
3322                 sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3323         else if (sdkp->zoned == 2)
3324                 sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3325 }
3326
3327 /**
3328  * sd_read_block_provisioning - Query provisioning VPD page
3329  * @sdkp: disk to query
3330  */
3331 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3332 {
3333         struct scsi_vpd *vpd;
3334
3335         if (sdkp->lbpme == 0)
3336                 return;
3337
3338         rcu_read_lock();
3339         vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3340
3341         if (!vpd || vpd->len < 8) {
3342                 rcu_read_unlock();
3343                 return;
3344         }
3345
3346         sdkp->lbpvpd    = 1;
3347         sdkp->lbpu      = (vpd->data[5] >> 7) & 1; /* UNMAP */
3348         sdkp->lbpws     = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3349         sdkp->lbpws10   = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3350         rcu_read_unlock();
3351 }
3352
3353 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3354 {
3355         struct scsi_device *sdev = sdkp->device;
3356
3357         if (sdev->host->no_write_same) {
3358                 sdev->no_write_same = 1;
3359
3360                 return;
3361         }
3362
3363         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3364                 struct scsi_vpd *vpd;
3365
3366                 sdev->no_report_opcodes = 1;
3367
3368                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3369                  * CODES is unsupported and the device has an ATA
3370                  * Information VPD page (SAT).
3371                  */
3372                 rcu_read_lock();
3373                 vpd = rcu_dereference(sdev->vpd_pg89);
3374                 if (vpd)
3375                         sdev->no_write_same = 1;
3376                 rcu_read_unlock();
3377         }
3378
3379         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3380                 sdkp->ws16 = 1;
3381
3382         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3383                 sdkp->ws10 = 1;
3384 }
3385
3386 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3387 {
3388         struct scsi_device *sdev = sdkp->device;
3389
3390         if (!sdev->security_supported)
3391                 return;
3392
3393         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3394                         SECURITY_PROTOCOL_IN, 0) == 1 &&
3395             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3396                         SECURITY_PROTOCOL_OUT, 0) == 1)
3397                 sdkp->security = 1;
3398 }
3399
3400 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3401 {
3402         return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3403 }
3404
3405 /**
3406  * sd_read_cpr - Query concurrent positioning ranges
3407  * @sdkp:       disk to query
3408  */
3409 static void sd_read_cpr(struct scsi_disk *sdkp)
3410 {
3411         struct blk_independent_access_ranges *iars = NULL;
3412         unsigned char *buffer = NULL;
3413         unsigned int nr_cpr = 0;
3414         int i, vpd_len, buf_len = SD_BUF_SIZE;
3415         u8 *desc;
3416
3417         /*
3418          * We need to have the capacity set first for the block layer to be
3419          * able to check the ranges.
3420          */
3421         if (sdkp->first_scan)
3422                 return;
3423
3424         if (!sdkp->capacity)
3425                 goto out;
3426
3427         /*
3428          * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3429          * leading to a maximum page size of 64 + 256*32 bytes.
3430          */
3431         buf_len = 64 + 256*32;
3432         buffer = kmalloc(buf_len, GFP_KERNEL);
3433         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3434                 goto out;
3435
3436         /* We must have at least a 64B header and one 32B range descriptor */
3437         vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3438         if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3439                 sd_printk(KERN_ERR, sdkp,
3440                           "Invalid Concurrent Positioning Ranges VPD page\n");
3441                 goto out;
3442         }
3443
3444         nr_cpr = (vpd_len - 64) / 32;
3445         if (nr_cpr == 1) {
3446                 nr_cpr = 0;
3447                 goto out;
3448         }
3449
3450         iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3451         if (!iars) {
3452                 nr_cpr = 0;
3453                 goto out;
3454         }
3455
3456         desc = &buffer[64];
3457         for (i = 0; i < nr_cpr; i++, desc += 32) {
3458                 if (desc[0] != i) {
3459                         sd_printk(KERN_ERR, sdkp,
3460                                 "Invalid Concurrent Positioning Range number\n");
3461                         nr_cpr = 0;
3462                         break;
3463                 }
3464
3465                 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3466                 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3467         }
3468
3469 out:
3470         disk_set_independent_access_ranges(sdkp->disk, iars);
3471         if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3472                 sd_printk(KERN_NOTICE, sdkp,
3473                           "%u concurrent positioning ranges\n", nr_cpr);
3474                 sdkp->nr_actuators = nr_cpr;
3475         }
3476
3477         kfree(buffer);
3478 }
3479
3480 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3481 {
3482         struct scsi_device *sdp = sdkp->device;
3483         unsigned int min_xfer_bytes =
3484                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3485
3486         if (sdkp->min_xfer_blocks == 0)
3487                 return false;
3488
3489         if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3490                 sd_first_printk(KERN_WARNING, sdkp,
3491                                 "Preferred minimum I/O size %u bytes not a " \
3492                                 "multiple of physical block size (%u bytes)\n",
3493                                 min_xfer_bytes, sdkp->physical_block_size);
3494                 sdkp->min_xfer_blocks = 0;
3495                 return false;
3496         }
3497
3498         sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3499                         min_xfer_bytes);
3500         return true;
3501 }
3502
3503 /*
3504  * Determine the device's preferred I/O size for reads and writes
3505  * unless the reported value is unreasonably small, large, not a
3506  * multiple of the physical block size, or simply garbage.
3507  */
3508 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3509                                       unsigned int dev_max)
3510 {
3511         struct scsi_device *sdp = sdkp->device;
3512         unsigned int opt_xfer_bytes =
3513                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3514         unsigned int min_xfer_bytes =
3515                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3516
3517         if (sdkp->opt_xfer_blocks == 0)
3518                 return false;
3519
3520         if (sdkp->opt_xfer_blocks > dev_max) {
3521                 sd_first_printk(KERN_WARNING, sdkp,
3522                                 "Optimal transfer size %u logical blocks " \
3523                                 "> dev_max (%u logical blocks)\n",
3524                                 sdkp->opt_xfer_blocks, dev_max);
3525                 return false;
3526         }
3527
3528         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3529                 sd_first_printk(KERN_WARNING, sdkp,
3530                                 "Optimal transfer size %u logical blocks " \
3531                                 "> sd driver limit (%u logical blocks)\n",
3532                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3533                 return false;
3534         }
3535
3536         if (opt_xfer_bytes < PAGE_SIZE) {
3537                 sd_first_printk(KERN_WARNING, sdkp,
3538                                 "Optimal transfer size %u bytes < " \
3539                                 "PAGE_SIZE (%u bytes)\n",
3540                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3541                 return false;
3542         }
3543
3544         if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3545                 sd_first_printk(KERN_WARNING, sdkp,
3546                                 "Optimal transfer size %u bytes not a " \
3547                                 "multiple of preferred minimum block " \
3548                                 "size (%u bytes)\n",
3549                                 opt_xfer_bytes, min_xfer_bytes);
3550                 return false;
3551         }
3552
3553         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3554                 sd_first_printk(KERN_WARNING, sdkp,
3555                                 "Optimal transfer size %u bytes not a " \
3556                                 "multiple of physical block size (%u bytes)\n",
3557                                 opt_xfer_bytes, sdkp->physical_block_size);
3558                 return false;
3559         }
3560
3561         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3562                         opt_xfer_bytes);
3563         return true;
3564 }
3565
3566 static void sd_read_block_zero(struct scsi_disk *sdkp)
3567 {
3568         unsigned int buf_len = sdkp->device->sector_size;
3569         char *buffer, cmd[10] = { };
3570
3571         buffer = kmalloc(buf_len, GFP_KERNEL);
3572         if (!buffer)
3573                 return;
3574
3575         cmd[0] = READ_10;
3576         put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3577         put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */
3578
3579         scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3580                          SD_TIMEOUT, sdkp->max_retries, NULL);
3581         kfree(buffer);
3582 }
3583
3584 /**
3585  *      sd_revalidate_disk - called the first time a new disk is seen,
3586  *      performs disk spin up, read_capacity, etc.
3587  *      @disk: struct gendisk we care about
3588  **/
3589 static int sd_revalidate_disk(struct gendisk *disk)
3590 {
3591         struct scsi_disk *sdkp = scsi_disk(disk);
3592         struct scsi_device *sdp = sdkp->device;
3593         struct request_queue *q = sdkp->disk->queue;
3594         sector_t old_capacity = sdkp->capacity;
3595         unsigned char *buffer;
3596         unsigned int dev_max, rw_max;
3597
3598         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3599                                       "sd_revalidate_disk\n"));
3600
3601         /*
3602          * If the device is offline, don't try and read capacity or any
3603          * of the other niceties.
3604          */
3605         if (!scsi_device_online(sdp))
3606                 goto out;
3607
3608         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3609         if (!buffer) {
3610                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3611                           "allocation failure.\n");
3612                 goto out;
3613         }
3614
3615         sd_spinup_disk(sdkp);
3616
3617         /*
3618          * Without media there is no reason to ask; moreover, some devices
3619          * react badly if we do.
3620          */
3621         if (sdkp->media_present) {
3622                 sd_read_capacity(sdkp, buffer);
3623                 /*
3624                  * Some USB/UAS devices return generic values for mode pages
3625                  * until the media has been accessed. Trigger a READ operation
3626                  * to force the device to populate mode pages.
3627                  */
3628                 if (sdp->read_before_ms)
3629                         sd_read_block_zero(sdkp);
3630                 /*
3631                  * set the default to rotational.  All non-rotational devices
3632                  * support the block characteristics VPD page, which will
3633                  * cause this to be updated correctly and any device which
3634                  * doesn't support it should be treated as rotational.
3635                  */
3636                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3637                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3638
3639                 if (scsi_device_supports_vpd(sdp)) {
3640                         sd_read_block_provisioning(sdkp);
3641                         sd_read_block_limits(sdkp);
3642                         sd_read_block_limits_ext(sdkp);
3643                         sd_read_block_characteristics(sdkp);
3644                         sd_zbc_read_zones(sdkp, buffer);
3645                         sd_read_cpr(sdkp);
3646                 }
3647
3648                 sd_print_capacity(sdkp, old_capacity);
3649
3650                 sd_read_write_protect_flag(sdkp, buffer);
3651                 sd_read_cache_type(sdkp, buffer);
3652                 sd_read_io_hints(sdkp, buffer);
3653                 sd_read_app_tag_own(sdkp, buffer);
3654                 sd_read_write_same(sdkp, buffer);
3655                 sd_read_security(sdkp, buffer);
3656                 sd_config_protection(sdkp);
3657         }
3658
3659         /*
3660          * We now have all cache related info, determine how we deal
3661          * with flush requests.
3662          */
3663         sd_set_flush_flag(sdkp);
3664
3665         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3666         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3667
3668         /* Some devices report a maximum block count for READ/WRITE requests. */
3669         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3670         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3671
3672         if (sd_validate_min_xfer_size(sdkp))
3673                 blk_queue_io_min(sdkp->disk->queue,
3674                                  logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3675         else
3676                 blk_queue_io_min(sdkp->disk->queue, 0);
3677
3678         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3679                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3680                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3681         } else {
3682                 q->limits.io_opt = 0;
3683                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3684                                       (sector_t)BLK_DEF_MAX_SECTORS_CAP);
3685         }
3686
3687         /*
3688          * Limit default to SCSI host optimal sector limit if set. There may be
3689          * an impact on performance for when the size of a request exceeds this
3690          * host limit.
3691          */
3692         rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3693
3694         /* Do not exceed controller limit */
3695         rw_max = min(rw_max, queue_max_hw_sectors(q));
3696
3697         /*
3698          * Only update max_sectors if previously unset or if the current value
3699          * exceeds the capabilities of the hardware.
3700          */
3701         if (sdkp->first_scan ||
3702             q->limits.max_sectors > q->limits.max_dev_sectors ||
3703             q->limits.max_sectors > q->limits.max_hw_sectors)
3704                 q->limits.max_sectors = rw_max;
3705
3706         sdkp->first_scan = 0;
3707
3708         set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3709         sd_config_write_same(sdkp);
3710         kfree(buffer);
3711
3712         /*
3713          * For a zoned drive, revalidating the zones can be done only once
3714          * the gendisk capacity is set. So if this fails, set back the gendisk
3715          * capacity to 0.
3716          */
3717         if (sd_zbc_revalidate_zones(sdkp))
3718                 set_capacity_and_notify(disk, 0);
3719
3720  out:
3721         return 0;
3722 }
3723
3724 /**
3725  *      sd_unlock_native_capacity - unlock native capacity
3726  *      @disk: struct gendisk to set capacity for
3727  *
3728  *      Block layer calls this function if it detects that partitions
3729  *      on @disk reach beyond the end of the device.  If the SCSI host
3730  *      implements ->unlock_native_capacity() method, it's invoked to
3731  *      give it a chance to adjust the device capacity.
3732  *
3733  *      CONTEXT:
3734  *      Defined by block layer.  Might sleep.
3735  */
3736 static void sd_unlock_native_capacity(struct gendisk *disk)
3737 {
3738         struct scsi_device *sdev = scsi_disk(disk)->device;
3739
3740         if (sdev->host->hostt->unlock_native_capacity)
3741                 sdev->host->hostt->unlock_native_capacity(sdev);
3742 }
3743
3744 /**
3745  *      sd_format_disk_name - format disk name
3746  *      @prefix: name prefix - ie. "sd" for SCSI disks
3747  *      @index: index of the disk to format name for
3748  *      @buf: output buffer
3749  *      @buflen: length of the output buffer
3750  *
3751  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3752  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3753  *      which is followed by sdaaa.
3754  *
3755  *      This is basically 26 base counting with one extra 'nil' entry
3756  *      at the beginning from the second digit on and can be
3757  *      determined using similar method as 26 base conversion with the
3758  *      index shifted -1 after each digit is computed.
3759  *
3760  *      CONTEXT:
3761  *      Don't care.
3762  *
3763  *      RETURNS:
3764  *      0 on success, -errno on failure.
3765  */
3766 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3767 {
3768         const int base = 'z' - 'a' + 1;
3769         char *begin = buf + strlen(prefix);
3770         char *end = buf + buflen;
3771         char *p;
3772         int unit;
3773
3774         p = end - 1;
3775         *p = '\0';
3776         unit = base;
3777         do {
3778                 if (p == begin)
3779                         return -EINVAL;
3780                 *--p = 'a' + (index % unit);
3781                 index = (index / unit) - 1;
3782         } while (index >= 0);
3783
3784         memmove(begin, p, end - p);
3785         memcpy(buf, prefix, strlen(prefix));
3786
3787         return 0;
3788 }
3789
3790 /**
3791  *      sd_probe - called during driver initialization and whenever a
3792  *      new scsi device is attached to the system. It is called once
3793  *      for each scsi device (not just disks) present.
3794  *      @dev: pointer to device object
3795  *
3796  *      Returns 0 if successful (or not interested in this scsi device 
3797  *      (e.g. scanner)); 1 when there is an error.
3798  *
3799  *      Note: this function is invoked from the scsi mid-level.
3800  *      This function sets up the mapping between a given 
3801  *      <host,channel,id,lun> (found in sdp) and new device name 
3802  *      (e.g. /dev/sda). More precisely it is the block device major 
3803  *      and minor number that is chosen here.
3804  *
3805  *      Assume sd_probe is not re-entrant (for time being)
3806  *      Also think about sd_probe() and sd_remove() running coincidentally.
3807  **/
3808 static int sd_probe(struct device *dev)
3809 {
3810         struct scsi_device *sdp = to_scsi_device(dev);
3811         struct scsi_disk *sdkp;
3812         struct gendisk *gd;
3813         int index;
3814         int error;
3815
3816         scsi_autopm_get_device(sdp);
3817         error = -ENODEV;
3818         if (sdp->type != TYPE_DISK &&
3819             sdp->type != TYPE_ZBC &&
3820             sdp->type != TYPE_MOD &&
3821             sdp->type != TYPE_RBC)
3822                 goto out;
3823
3824         if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3825                 sdev_printk(KERN_WARNING, sdp,
3826                             "Unsupported ZBC host-managed device.\n");
3827                 goto out;
3828         }
3829
3830         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3831                                         "sd_probe\n"));
3832
3833         error = -ENOMEM;
3834         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3835         if (!sdkp)
3836                 goto out;
3837
3838         gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3839                                          &sd_bio_compl_lkclass);
3840         if (!gd)
3841                 goto out_free;
3842
3843         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3844         if (index < 0) {
3845                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3846                 goto out_put;
3847         }
3848
3849         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3850         if (error) {
3851                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3852                 goto out_free_index;
3853         }
3854
3855         sdkp->device = sdp;
3856         sdkp->disk = gd;
3857         sdkp->index = index;
3858         sdkp->max_retries = SD_MAX_RETRIES;
3859         atomic_set(&sdkp->openers, 0);
3860         atomic_set(&sdkp->device->ioerr_cnt, 0);
3861
3862         if (!sdp->request_queue->rq_timeout) {
3863                 if (sdp->type != TYPE_MOD)
3864                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3865                 else
3866                         blk_queue_rq_timeout(sdp->request_queue,
3867                                              SD_MOD_TIMEOUT);
3868         }
3869
3870         device_initialize(&sdkp->disk_dev);
3871         sdkp->disk_dev.parent = get_device(dev);
3872         sdkp->disk_dev.class = &sd_disk_class;
3873         dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3874
3875         error = device_add(&sdkp->disk_dev);
3876         if (error) {
3877                 put_device(&sdkp->disk_dev);
3878                 goto out;
3879         }
3880
3881         dev_set_drvdata(dev, sdkp);
3882
3883         gd->major = sd_major((index & 0xf0) >> 4);
3884         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3885         gd->minors = SD_MINORS;
3886
3887         gd->fops = &sd_fops;
3888         gd->private_data = sdkp;
3889
3890         /* defaults, until the device tells us otherwise */
3891         sdp->sector_size = 512;
3892         sdkp->capacity = 0;
3893         sdkp->media_present = 1;
3894         sdkp->write_prot = 0;
3895         sdkp->cache_override = 0;
3896         sdkp->WCE = 0;
3897         sdkp->RCD = 0;
3898         sdkp->ATO = 0;
3899         sdkp->first_scan = 1;
3900         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3901
3902         sd_revalidate_disk(gd);
3903
3904         if (sdp->removable) {
3905                 gd->flags |= GENHD_FL_REMOVABLE;
3906                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3907                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3908         }
3909
3910         blk_pm_runtime_init(sdp->request_queue, dev);
3911         if (sdp->rpm_autosuspend) {
3912                 pm_runtime_set_autosuspend_delay(dev,
3913                         sdp->host->rpm_autosuspend_delay);
3914         }
3915
3916         error = device_add_disk(dev, gd, NULL);
3917         if (error) {
3918                 device_unregister(&sdkp->disk_dev);
3919                 put_disk(gd);
3920                 goto out;
3921         }
3922
3923         if (sdkp->security) {
3924                 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3925                 if (sdkp->opal_dev)
3926                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3927         }
3928
3929         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3930                   sdp->removable ? "removable " : "");
3931         scsi_autopm_put_device(sdp);
3932
3933         return 0;
3934
3935  out_free_index:
3936         ida_free(&sd_index_ida, index);
3937  out_put:
3938         put_disk(gd);
3939  out_free:
3940         kfree(sdkp);
3941  out:
3942         scsi_autopm_put_device(sdp);
3943         return error;
3944 }
3945
3946 /**
3947  *      sd_remove - called whenever a scsi disk (previously recognized by
3948  *      sd_probe) is detached from the system. It is called (potentially
3949  *      multiple times) during sd module unload.
3950  *      @dev: pointer to device object
3951  *
3952  *      Note: this function is invoked from the scsi mid-level.
3953  *      This function potentially frees up a device name (e.g. /dev/sdc)
3954  *      that could be re-used by a subsequent sd_probe().
3955  *      This function is not called when the built-in sd driver is "exit-ed".
3956  **/
3957 static int sd_remove(struct device *dev)
3958 {
3959         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3960
3961         scsi_autopm_get_device(sdkp->device);
3962
3963         device_del(&sdkp->disk_dev);
3964         del_gendisk(sdkp->disk);
3965         if (!sdkp->suspended)
3966                 sd_shutdown(dev);
3967
3968         put_disk(sdkp->disk);
3969         return 0;
3970 }
3971
3972 static void scsi_disk_release(struct device *dev)
3973 {
3974         struct scsi_disk *sdkp = to_scsi_disk(dev);
3975
3976         ida_free(&sd_index_ida, sdkp->index);
3977         put_device(&sdkp->device->sdev_gendev);
3978         free_opal_dev(sdkp->opal_dev);
3979
3980         kfree(sdkp);
3981 }
3982
3983 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3984 {
3985         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3986         struct scsi_sense_hdr sshdr;
3987         const struct scsi_exec_args exec_args = {
3988                 .sshdr = &sshdr,
3989                 .req_flags = BLK_MQ_REQ_PM,
3990         };
3991         struct scsi_device *sdp = sdkp->device;
3992         int res;
3993
3994         if (start)
3995                 cmd[4] |= 1;    /* START */
3996
3997         if (sdp->start_stop_pwr_cond)
3998                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3999
4000         if (!scsi_device_online(sdp))
4001                 return -ENODEV;
4002
4003         res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
4004                                sdkp->max_retries, &exec_args);
4005         if (res) {
4006                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
4007                 if (res > 0 && scsi_sense_valid(&sshdr)) {
4008                         sd_print_sense_hdr(sdkp, &sshdr);
4009                         /* 0x3a is medium not present */
4010                         if (sshdr.asc == 0x3a)
4011                                 res = 0;
4012                 }
4013         }
4014
4015         /* SCSI error codes must not go to the generic layer */
4016         if (res)
4017                 return -EIO;
4018
4019         return 0;
4020 }
4021
4022 /*
4023  * Send a SYNCHRONIZE CACHE instruction down to the device through
4024  * the normal SCSI command structure.  Wait for the command to
4025  * complete.
4026  */
4027 static void sd_shutdown(struct device *dev)
4028 {
4029         struct scsi_disk *sdkp = dev_get_drvdata(dev);
4030
4031         if (!sdkp)
4032                 return;         /* this can happen */
4033
4034         if (pm_runtime_suspended(dev))
4035                 return;
4036
4037         if (sdkp->WCE && sdkp->media_present) {
4038                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4039                 sd_sync_cache(sdkp);
4040         }
4041
4042         if ((system_state != SYSTEM_RESTART &&
4043              sdkp->device->manage_system_start_stop) ||
4044             (system_state == SYSTEM_POWER_OFF &&
4045              sdkp->device->manage_shutdown)) {
4046                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4047                 sd_start_stop_device(sdkp, 0);
4048         }
4049 }
4050
4051 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
4052 {
4053         return (sdev->manage_system_start_stop && !runtime) ||
4054                 (sdev->manage_runtime_start_stop && runtime);
4055 }
4056
4057 static int sd_suspend_common(struct device *dev, bool runtime)
4058 {
4059         struct scsi_disk *sdkp = dev_get_drvdata(dev);
4060         int ret = 0;
4061
4062         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
4063                 return 0;
4064
4065         if (sdkp->WCE && sdkp->media_present) {
4066                 if (!sdkp->device->silence_suspend)
4067                         sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4068                 ret = sd_sync_cache(sdkp);
4069                 /* ignore OFFLINE device */
4070                 if (ret == -ENODEV)
4071                         return 0;
4072
4073                 if (ret)
4074                         return ret;
4075         }
4076
4077         if (sd_do_start_stop(sdkp->device, runtime)) {
4078                 if (!sdkp->device->silence_suspend)
4079                         sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4080                 /* an error is not worth aborting a system sleep */
4081                 ret = sd_start_stop_device(sdkp, 0);
4082                 if (!runtime)
4083                         ret = 0;
4084         }
4085
4086         if (!ret)
4087                 sdkp->suspended = true;
4088
4089         return ret;
4090 }
4091
4092 static int sd_suspend_system(struct device *dev)
4093 {
4094         if (pm_runtime_suspended(dev))
4095                 return 0;
4096
4097         return sd_suspend_common(dev, false);
4098 }
4099
4100 static int sd_suspend_runtime(struct device *dev)
4101 {
4102         return sd_suspend_common(dev, true);
4103 }
4104
4105 static int sd_resume(struct device *dev)
4106 {
4107         struct scsi_disk *sdkp = dev_get_drvdata(dev);
4108
4109         sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4110
4111         if (opal_unlock_from_suspend(sdkp->opal_dev)) {
4112                 sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
4113                 return -EIO;
4114         }
4115
4116         return 0;
4117 }
4118
4119 static int sd_resume_common(struct device *dev, bool runtime)
4120 {
4121         struct scsi_disk *sdkp = dev_get_drvdata(dev);
4122         int ret;
4123
4124         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
4125                 return 0;
4126
4127         if (!sd_do_start_stop(sdkp->device, runtime)) {
4128                 sdkp->suspended = false;
4129                 return 0;
4130         }
4131
4132         sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4133         ret = sd_start_stop_device(sdkp, 1);
4134         if (!ret) {
4135                 sd_resume(dev);
4136                 sdkp->suspended = false;
4137         }
4138
4139         return ret;
4140 }
4141
4142 static int sd_resume_system(struct device *dev)
4143 {
4144         if (pm_runtime_suspended(dev)) {
4145                 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4146                 struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4147
4148                 if (sdp && sdp->force_runtime_start_on_system_start)
4149                         pm_request_resume(dev);
4150
4151                 return 0;
4152         }
4153
4154         return sd_resume_common(dev, false);
4155 }
4156
4157 static int sd_resume_runtime(struct device *dev)
4158 {
4159         struct scsi_disk *sdkp = dev_get_drvdata(dev);
4160         struct scsi_device *sdp;
4161
4162         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
4163                 return 0;
4164
4165         sdp = sdkp->device;
4166
4167         if (sdp->ignore_media_change) {
4168                 /* clear the device's sense data */
4169                 static const u8 cmd[10] = { REQUEST_SENSE };
4170                 const struct scsi_exec_args exec_args = {
4171                         .req_flags = BLK_MQ_REQ_PM,
4172                 };
4173
4174                 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4175                                      sdp->request_queue->rq_timeout, 1,
4176                                      &exec_args))
4177                         sd_printk(KERN_NOTICE, sdkp,
4178                                   "Failed to clear sense data\n");
4179         }
4180
4181         return sd_resume_common(dev, true);
4182 }
4183
4184 static const struct dev_pm_ops sd_pm_ops = {
4185         .suspend                = sd_suspend_system,
4186         .resume                 = sd_resume_system,
4187         .poweroff               = sd_suspend_system,
4188         .restore                = sd_resume_system,
4189         .runtime_suspend        = sd_suspend_runtime,
4190         .runtime_resume         = sd_resume_runtime,
4191 };
4192
4193 static struct scsi_driver sd_template = {
4194         .gendrv = {
4195                 .name           = "sd",
4196                 .probe          = sd_probe,
4197                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
4198                 .remove         = sd_remove,
4199                 .shutdown       = sd_shutdown,
4200                 .pm             = &sd_pm_ops,
4201         },
4202         .rescan                 = sd_rescan,
4203         .resume                 = sd_resume,
4204         .init_command           = sd_init_command,
4205         .uninit_command         = sd_uninit_command,
4206         .done                   = sd_done,
4207         .eh_action              = sd_eh_action,
4208         .eh_reset               = sd_eh_reset,
4209 };
4210
4211 /**
4212  *      init_sd - entry point for this driver (both when built in or when
4213  *      a module).
4214  *
4215  *      Note: this function registers this driver with the scsi mid-level.
4216  **/
4217 static int __init init_sd(void)
4218 {
4219         int majors = 0, i, err;
4220
4221         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4222
4223         for (i = 0; i < SD_MAJORS; i++) {
4224                 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4225                         continue;
4226                 majors++;
4227         }
4228
4229         if (!majors)
4230                 return -ENODEV;
4231
4232         err = class_register(&sd_disk_class);
4233         if (err)
4234                 goto err_out;
4235
4236         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4237         if (!sd_page_pool) {
4238                 printk(KERN_ERR "sd: can't init discard page pool\n");
4239                 err = -ENOMEM;
4240                 goto err_out_class;
4241         }
4242
4243         err = scsi_register_driver(&sd_template.gendrv);
4244         if (err)
4245                 goto err_out_driver;
4246
4247         return 0;
4248
4249 err_out_driver:
4250         mempool_destroy(sd_page_pool);
4251 err_out_class:
4252         class_unregister(&sd_disk_class);
4253 err_out:
4254         for (i = 0; i < SD_MAJORS; i++)
4255                 unregister_blkdev(sd_major(i), "sd");
4256         return err;
4257 }
4258
4259 /**
4260  *      exit_sd - exit point for this driver (when it is a module).
4261  *
4262  *      Note: this function unregisters this driver from the scsi mid-level.
4263  **/
4264 static void __exit exit_sd(void)
4265 {
4266         int i;
4267
4268         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4269
4270         scsi_unregister_driver(&sd_template.gendrv);
4271         mempool_destroy(sd_page_pool);
4272
4273         class_unregister(&sd_disk_class);
4274
4275         for (i = 0; i < SD_MAJORS; i++)
4276                 unregister_blkdev(sd_major(i), "sd");
4277 }
4278
4279 module_init(init_sd);
4280 module_exit(exit_sd);
4281
4282 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4283 {
4284         scsi_print_sense_hdr(sdkp->device,
4285                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4286 }
4287
4288 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4289 {
4290         const char *hb_string = scsi_hostbyte_string(result);
4291
4292         if (hb_string)
4293                 sd_printk(KERN_INFO, sdkp,
4294                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4295                           hb_string ? hb_string : "invalid",
4296                           "DRIVER_OK");
4297         else
4298                 sd_printk(KERN_INFO, sdkp,
4299                           "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4300                           msg, host_byte(result), "DRIVER_OK");
4301 }