block: remove wrappers for request type/flags
[linux-2.6-block.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33
34
35 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE         2
37
38 struct scsi_host_sg_pool {
39         size_t          size;
40         char            *name;
41         struct kmem_cache       *slab;
42         mempool_t       *pool;
43 };
44
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50         SP(8),
51         SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53         SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55         SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57         SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64         SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67
68 struct kmem_cache *scsi_sdb_cache;
69
70 static void scsi_run_queue(struct request_queue *q);
71
72 /*
73  * Function:    scsi_unprep_request()
74  *
75  * Purpose:     Remove all preparation done for a request, including its
76  *              associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:   req     - request to unprepare
79  *
80  * Lock status: Assumed that no locks are held upon entry.
81  *
82  * Returns:     Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86         struct scsi_cmnd *cmd = req->special;
87
88         req->cmd_flags &= ~REQ_DONTPREP;
89         req->special = NULL;
90
91         scsi_put_command(cmd);
92 }
93
94 /**
95  * __scsi_queue_insert - private queue insertion
96  * @cmd: The SCSI command being requeued
97  * @reason:  The reason for the requeue
98  * @unbusy: Whether the queue should be unbusied
99  *
100  * This is a private queue insertion.  The public interface
101  * scsi_queue_insert() always assumes the queue should be unbusied
102  * because it's always called before the completion.  This function is
103  * for a requeue after completion, which should only occur in this
104  * file.
105  */
106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107 {
108         struct Scsi_Host *host = cmd->device->host;
109         struct scsi_device *device = cmd->device;
110         struct scsi_target *starget = scsi_target(device);
111         struct request_queue *q = device->request_queue;
112         unsigned long flags;
113
114         SCSI_LOG_MLQUEUE(1,
115                  printk("Inserting command %p into mlqueue\n", cmd));
116
117         /*
118          * Set the appropriate busy bit for the device/host.
119          *
120          * If the host/device isn't busy, assume that something actually
121          * completed, and that we should be able to queue a command now.
122          *
123          * Note that the prior mid-layer assumption that any host could
124          * always queue at least one command is now broken.  The mid-layer
125          * will implement a user specifiable stall (see
126          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127          * if a command is requeued with no other commands outstanding
128          * either for the device or for the host.
129          */
130         switch (reason) {
131         case SCSI_MLQUEUE_HOST_BUSY:
132                 host->host_blocked = host->max_host_blocked;
133                 break;
134         case SCSI_MLQUEUE_DEVICE_BUSY:
135                 device->device_blocked = device->max_device_blocked;
136                 break;
137         case SCSI_MLQUEUE_TARGET_BUSY:
138                 starget->target_blocked = starget->max_target_blocked;
139                 break;
140         }
141
142         /*
143          * Decrement the counters, since these commands are no longer
144          * active on the host/device.
145          */
146         if (unbusy)
147                 scsi_device_unbusy(device);
148
149         /*
150          * Requeue this command.  It will go before all other commands
151          * that are already in the queue.
152          *
153          * NOTE: there is magic here about the way the queue is plugged if
154          * we have no outstanding commands.
155          * 
156          * Although we *don't* plug the queue, we call the request
157          * function.  The SCSI request function detects the blocked condition
158          * and plugs the queue appropriately.
159          */
160         spin_lock_irqsave(q->queue_lock, flags);
161         blk_requeue_request(q, cmd->request);
162         spin_unlock_irqrestore(q->queue_lock, flags);
163
164         scsi_run_queue(q);
165
166         return 0;
167 }
168
169 /*
170  * Function:    scsi_queue_insert()
171  *
172  * Purpose:     Insert a command in the midlevel queue.
173  *
174  * Arguments:   cmd    - command that we are adding to queue.
175  *              reason - why we are inserting command to queue.
176  *
177  * Lock status: Assumed that lock is not held upon entry.
178  *
179  * Returns:     Nothing.
180  *
181  * Notes:       We do this for one of two cases.  Either the host is busy
182  *              and it cannot accept any more commands for the time being,
183  *              or the device returned QUEUE_FULL and can accept no more
184  *              commands.
185  * Notes:       This could be called either from an interrupt context or a
186  *              normal process context.
187  */
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 {
190         return __scsi_queue_insert(cmd, reason, 1);
191 }
192 /**
193  * scsi_execute - insert request and wait for the result
194  * @sdev:       scsi device
195  * @cmd:        scsi command
196  * @data_direction: data direction
197  * @buffer:     data buffer
198  * @bufflen:    len of buffer
199  * @sense:      optional sense buffer
200  * @timeout:    request timeout in seconds
201  * @retries:    number of times to retry request
202  * @flags:      or into request flags;
203  * @resid:      optional residual length
204  *
205  * returns the req->errors value which is the scsi_cmnd result
206  * field.
207  */
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209                  int data_direction, void *buffer, unsigned bufflen,
210                  unsigned char *sense, int timeout, int retries, int flags,
211                  int *resid)
212 {
213         struct request *req;
214         int write = (data_direction == DMA_TO_DEVICE);
215         int ret = DRIVER_ERROR << 24;
216
217         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218
219         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
220                                         buffer, bufflen, __GFP_WAIT))
221                 goto out;
222
223         req->cmd_len = COMMAND_SIZE(cmd[0]);
224         memcpy(req->cmd, cmd, req->cmd_len);
225         req->sense = sense;
226         req->sense_len = 0;
227         req->retries = retries;
228         req->timeout = timeout;
229         req->cmd_type = REQ_TYPE_BLOCK_PC;
230         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231
232         /*
233          * head injection *required* here otherwise quiesce won't work
234          */
235         blk_execute_rq(req->q, NULL, req, 1);
236
237         /*
238          * Some devices (USB mass-storage in particular) may transfer
239          * garbage data together with a residue indicating that the data
240          * is invalid.  Prevent the garbage from being misinterpreted
241          * and prevent security leaks by zeroing out the excess data.
242          */
243         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245
246         if (resid)
247                 *resid = req->resid_len;
248         ret = req->errors;
249  out:
250         blk_put_request(req);
251
252         return ret;
253 }
254 EXPORT_SYMBOL(scsi_execute);
255
256
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258                      int data_direction, void *buffer, unsigned bufflen,
259                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
260                      int *resid)
261 {
262         char *sense = NULL;
263         int result;
264         
265         if (sshdr) {
266                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267                 if (!sense)
268                         return DRIVER_ERROR << 24;
269         }
270         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271                               sense, timeout, retries, 0, resid);
272         if (sshdr)
273                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274
275         kfree(sense);
276         return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req);
279
280 /*
281  * Function:    scsi_init_cmd_errh()
282  *
283  * Purpose:     Initialize cmd fields related to error handling.
284  *
285  * Arguments:   cmd     - command that is ready to be queued.
286  *
287  * Notes:       This function has the job of initializing a number of
288  *              fields related to error handling.   Typically this will
289  *              be called once for each command, as required.
290  */
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292 {
293         cmd->serial_number = 0;
294         scsi_set_resid(cmd, 0);
295         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296         if (cmd->cmd_len == 0)
297                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
298 }
299
300 void scsi_device_unbusy(struct scsi_device *sdev)
301 {
302         struct Scsi_Host *shost = sdev->host;
303         struct scsi_target *starget = scsi_target(sdev);
304         unsigned long flags;
305
306         spin_lock_irqsave(shost->host_lock, flags);
307         shost->host_busy--;
308         starget->target_busy--;
309         if (unlikely(scsi_host_in_recovery(shost) &&
310                      (shost->host_failed || shost->host_eh_scheduled)))
311                 scsi_eh_wakeup(shost);
312         spin_unlock(shost->host_lock);
313         spin_lock(sdev->request_queue->queue_lock);
314         sdev->device_busy--;
315         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316 }
317
318 /*
319  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320  * and call blk_run_queue for all the scsi_devices on the target -
321  * including current_sdev first.
322  *
323  * Called with *no* scsi locks held.
324  */
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
326 {
327         struct Scsi_Host *shost = current_sdev->host;
328         struct scsi_device *sdev, *tmp;
329         struct scsi_target *starget = scsi_target(current_sdev);
330         unsigned long flags;
331
332         spin_lock_irqsave(shost->host_lock, flags);
333         starget->starget_sdev_user = NULL;
334         spin_unlock_irqrestore(shost->host_lock, flags);
335
336         /*
337          * Call blk_run_queue for all LUNs on the target, starting with
338          * current_sdev. We race with others (to set starget_sdev_user),
339          * but in most cases, we will be first. Ideally, each LU on the
340          * target would get some limited time or requests on the target.
341          */
342         blk_run_queue(current_sdev->request_queue);
343
344         spin_lock_irqsave(shost->host_lock, flags);
345         if (starget->starget_sdev_user)
346                 goto out;
347         list_for_each_entry_safe(sdev, tmp, &starget->devices,
348                         same_target_siblings) {
349                 if (sdev == current_sdev)
350                         continue;
351                 if (scsi_device_get(sdev))
352                         continue;
353
354                 spin_unlock_irqrestore(shost->host_lock, flags);
355                 blk_run_queue(sdev->request_queue);
356                 spin_lock_irqsave(shost->host_lock, flags);
357         
358                 scsi_device_put(sdev);
359         }
360  out:
361         spin_unlock_irqrestore(shost->host_lock, flags);
362 }
363
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
365 {
366         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367                 return 1;
368
369         return 0;
370 }
371
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
373 {
374         return ((starget->can_queue > 0 &&
375                  starget->target_busy >= starget->can_queue) ||
376                  starget->target_blocked);
377 }
378
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382             shost->host_blocked || shost->host_self_blocked)
383                 return 1;
384
385         return 0;
386 }
387
388 /*
389  * Function:    scsi_run_queue()
390  *
391  * Purpose:     Select a proper request queue to serve next
392  *
393  * Arguments:   q       - last request's queue
394  *
395  * Returns:     Nothing
396  *
397  * Notes:       The previous command was completely finished, start
398  *              a new one if possible.
399  */
400 static void scsi_run_queue(struct request_queue *q)
401 {
402         struct scsi_device *sdev = q->queuedata;
403         struct Scsi_Host *shost = sdev->host;
404         LIST_HEAD(starved_list);
405         unsigned long flags;
406
407         if (scsi_target(sdev)->single_lun)
408                 scsi_single_lun_run(sdev);
409
410         spin_lock_irqsave(shost->host_lock, flags);
411         list_splice_init(&shost->starved_list, &starved_list);
412
413         while (!list_empty(&starved_list)) {
414                 int flagset;
415
416                 /*
417                  * As long as shost is accepting commands and we have
418                  * starved queues, call blk_run_queue. scsi_request_fn
419                  * drops the queue_lock and can add us back to the
420                  * starved_list.
421                  *
422                  * host_lock protects the starved_list and starved_entry.
423                  * scsi_request_fn must get the host_lock before checking
424                  * or modifying starved_list or starved_entry.
425                  */
426                 if (scsi_host_is_busy(shost))
427                         break;
428
429                 sdev = list_entry(starved_list.next,
430                                   struct scsi_device, starved_entry);
431                 list_del_init(&sdev->starved_entry);
432                 if (scsi_target_is_busy(scsi_target(sdev))) {
433                         list_move_tail(&sdev->starved_entry,
434                                        &shost->starved_list);
435                         continue;
436                 }
437
438                 spin_unlock(shost->host_lock);
439
440                 spin_lock(sdev->request_queue->queue_lock);
441                 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442                                 !test_bit(QUEUE_FLAG_REENTER,
443                                         &sdev->request_queue->queue_flags);
444                 if (flagset)
445                         queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446                 __blk_run_queue(sdev->request_queue);
447                 if (flagset)
448                         queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449                 spin_unlock(sdev->request_queue->queue_lock);
450
451                 spin_lock(shost->host_lock);
452         }
453         /* put any unprocessed entries back */
454         list_splice(&starved_list, &shost->starved_list);
455         spin_unlock_irqrestore(shost->host_lock, flags);
456
457         blk_run_queue(q);
458 }
459
460 /*
461  * Function:    scsi_requeue_command()
462  *
463  * Purpose:     Handle post-processing of completed commands.
464  *
465  * Arguments:   q       - queue to operate on
466  *              cmd     - command that may need to be requeued.
467  *
468  * Returns:     Nothing
469  *
470  * Notes:       After command completion, there may be blocks left
471  *              over which weren't finished by the previous command
472  *              this can be for a number of reasons - the main one is
473  *              I/O errors in the middle of the request, in which case
474  *              we need to request the blocks that come after the bad
475  *              sector.
476  * Notes:       Upon return, cmd is a stale pointer.
477  */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480         struct request *req = cmd->request;
481         unsigned long flags;
482
483         spin_lock_irqsave(q->queue_lock, flags);
484         scsi_unprep_request(req);
485         blk_requeue_request(q, req);
486         spin_unlock_irqrestore(q->queue_lock, flags);
487
488         scsi_run_queue(q);
489 }
490
491 void scsi_next_command(struct scsi_cmnd *cmd)
492 {
493         struct scsi_device *sdev = cmd->device;
494         struct request_queue *q = sdev->request_queue;
495
496         /* need to hold a reference on the device before we let go of the cmd */
497         get_device(&sdev->sdev_gendev);
498
499         scsi_put_command(cmd);
500         scsi_run_queue(q);
501
502         /* ok to remove device now */
503         put_device(&sdev->sdev_gendev);
504 }
505
506 void scsi_run_host_queues(struct Scsi_Host *shost)
507 {
508         struct scsi_device *sdev;
509
510         shost_for_each_device(sdev, shost)
511                 scsi_run_queue(sdev->request_queue);
512 }
513
514 static void __scsi_release_buffers(struct scsi_cmnd *, int);
515
516 /*
517  * Function:    scsi_end_request()
518  *
519  * Purpose:     Post-processing of completed commands (usually invoked at end
520  *              of upper level post-processing and scsi_io_completion).
521  *
522  * Arguments:   cmd      - command that is complete.
523  *              error    - 0 if I/O indicates success, < 0 for I/O error.
524  *              bytes    - number of bytes of completed I/O
525  *              requeue  - indicates whether we should requeue leftovers.
526  *
527  * Lock status: Assumed that lock is not held upon entry.
528  *
529  * Returns:     cmd if requeue required, NULL otherwise.
530  *
531  * Notes:       This is called for block device requests in order to
532  *              mark some number of sectors as complete.
533  * 
534  *              We are guaranteeing that the request queue will be goosed
535  *              at some point during this call.
536  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
537  */
538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539                                           int bytes, int requeue)
540 {
541         struct request_queue *q = cmd->device->request_queue;
542         struct request *req = cmd->request;
543
544         /*
545          * If there are blocks left over at the end, set up the command
546          * to queue the remainder of them.
547          */
548         if (blk_end_request(req, error, bytes)) {
549                 /* kill remainder if no retrys */
550                 if (error && scsi_noretry_cmd(cmd))
551                         blk_end_request_all(req, error);
552                 else {
553                         if (requeue) {
554                                 /*
555                                  * Bleah.  Leftovers again.  Stick the
556                                  * leftovers in the front of the
557                                  * queue, and goose the queue again.
558                                  */
559                                 scsi_release_buffers(cmd);
560                                 scsi_requeue_command(q, cmd);
561                                 cmd = NULL;
562                         }
563                         return cmd;
564                 }
565         }
566
567         /*
568          * This will goose the queue request function at the end, so we don't
569          * need to worry about launching another command.
570          */
571         __scsi_release_buffers(cmd, 0);
572         scsi_next_command(cmd);
573         return NULL;
574 }
575
576 static inline unsigned int scsi_sgtable_index(unsigned short nents)
577 {
578         unsigned int index;
579
580         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
581
582         if (nents <= 8)
583                 index = 0;
584         else
585                 index = get_count_order(nents) - 3;
586
587         return index;
588 }
589
590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
591 {
592         struct scsi_host_sg_pool *sgp;
593
594         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
595         mempool_free(sgl, sgp->pool);
596 }
597
598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
599 {
600         struct scsi_host_sg_pool *sgp;
601
602         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
603         return mempool_alloc(sgp->pool, gfp_mask);
604 }
605
606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
607                               gfp_t gfp_mask)
608 {
609         int ret;
610
611         BUG_ON(!nents);
612
613         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
614                                gfp_mask, scsi_sg_alloc);
615         if (unlikely(ret))
616                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
617                                 scsi_sg_free);
618
619         return ret;
620 }
621
622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
623 {
624         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
625 }
626
627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
628 {
629
630         if (cmd->sdb.table.nents)
631                 scsi_free_sgtable(&cmd->sdb);
632
633         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
634
635         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
636                 struct scsi_data_buffer *bidi_sdb =
637                         cmd->request->next_rq->special;
638                 scsi_free_sgtable(bidi_sdb);
639                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
640                 cmd->request->next_rq->special = NULL;
641         }
642
643         if (scsi_prot_sg_count(cmd))
644                 scsi_free_sgtable(cmd->prot_sdb);
645 }
646
647 /*
648  * Function:    scsi_release_buffers()
649  *
650  * Purpose:     Completion processing for block device I/O requests.
651  *
652  * Arguments:   cmd     - command that we are bailing.
653  *
654  * Lock status: Assumed that no lock is held upon entry.
655  *
656  * Returns:     Nothing
657  *
658  * Notes:       In the event that an upper level driver rejects a
659  *              command, we must release resources allocated during
660  *              the __init_io() function.  Primarily this would involve
661  *              the scatter-gather table, and potentially any bounce
662  *              buffers.
663  */
664 void scsi_release_buffers(struct scsi_cmnd *cmd)
665 {
666         __scsi_release_buffers(cmd, 1);
667 }
668 EXPORT_SYMBOL(scsi_release_buffers);
669
670 /*
671  * Function:    scsi_io_completion()
672  *
673  * Purpose:     Completion processing for block device I/O requests.
674  *
675  * Arguments:   cmd   - command that is finished.
676  *
677  * Lock status: Assumed that no lock is held upon entry.
678  *
679  * Returns:     Nothing
680  *
681  * Notes:       This function is matched in terms of capabilities to
682  *              the function that created the scatter-gather list.
683  *              In other words, if there are no bounce buffers
684  *              (the normal case for most drivers), we don't need
685  *              the logic to deal with cleaning up afterwards.
686  *
687  *              We must call scsi_end_request().  This will finish off
688  *              the specified number of sectors.  If we are done, the
689  *              command block will be released and the queue function
690  *              will be goosed.  If we are not done then we have to
691  *              figure out what to do next:
692  *
693  *              a) We can call scsi_requeue_command().  The request
694  *                 will be unprepared and put back on the queue.  Then
695  *                 a new command will be created for it.  This should
696  *                 be used if we made forward progress, or if we want
697  *                 to switch from READ(10) to READ(6) for example.
698  *
699  *              b) We can call scsi_queue_insert().  The request will
700  *                 be put back on the queue and retried using the same
701  *                 command as before, possibly after a delay.
702  *
703  *              c) We can call blk_end_request() with -EIO to fail
704  *                 the remainder of the request.
705  */
706 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
707 {
708         int result = cmd->result;
709         struct request_queue *q = cmd->device->request_queue;
710         struct request *req = cmd->request;
711         int error = 0;
712         struct scsi_sense_hdr sshdr;
713         int sense_valid = 0;
714         int sense_deferred = 0;
715         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
716               ACTION_DELAYED_RETRY} action;
717         char *description = NULL;
718
719         if (result) {
720                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
721                 if (sense_valid)
722                         sense_deferred = scsi_sense_is_deferred(&sshdr);
723         }
724
725         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
726                 req->errors = result;
727                 if (result) {
728                         if (sense_valid && req->sense) {
729                                 /*
730                                  * SG_IO wants current and deferred errors
731                                  */
732                                 int len = 8 + cmd->sense_buffer[7];
733
734                                 if (len > SCSI_SENSE_BUFFERSIZE)
735                                         len = SCSI_SENSE_BUFFERSIZE;
736                                 memcpy(req->sense, cmd->sense_buffer,  len);
737                                 req->sense_len = len;
738                         }
739                         if (!sense_deferred)
740                                 error = -EIO;
741                 }
742
743                 req->resid_len = scsi_get_resid(cmd);
744
745                 if (scsi_bidi_cmnd(cmd)) {
746                         /*
747                          * Bidi commands Must be complete as a whole,
748                          * both sides at once.
749                          */
750                         req->next_rq->resid_len = scsi_in(cmd)->resid;
751
752                         scsi_release_buffers(cmd);
753                         blk_end_request_all(req, 0);
754
755                         scsi_next_command(cmd);
756                         return;
757                 }
758         }
759
760         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
761         BUG_ON(blk_bidi_rq(req));
762
763         /*
764          * Next deal with any sectors which we were able to correctly
765          * handle.
766          */
767         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
768                                       "%d bytes done.\n",
769                                       blk_rq_sectors(req), good_bytes));
770
771         /*
772          * Recovered errors need reporting, but they're always treated
773          * as success, so fiddle the result code here.  For BLOCK_PC
774          * we already took a copy of the original into rq->errors which
775          * is what gets returned to the user
776          */
777         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
778                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
779                  * print since caller wants ATA registers. Only occurs on
780                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
781                  */
782                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
783                         ;
784                 else if (!(req->cmd_flags & REQ_QUIET))
785                         scsi_print_sense("", cmd);
786                 result = 0;
787                 /* BLOCK_PC may have set error */
788                 error = 0;
789         }
790
791         /*
792          * A number of bytes were successfully read.  If there
793          * are leftovers and there is some kind of error
794          * (result != 0), retry the rest.
795          */
796         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
797                 return;
798
799         error = -EIO;
800
801         if (host_byte(result) == DID_RESET) {
802                 /* Third party bus reset or reset for error recovery
803                  * reasons.  Just retry the command and see what
804                  * happens.
805                  */
806                 action = ACTION_RETRY;
807         } else if (sense_valid && !sense_deferred) {
808                 switch (sshdr.sense_key) {
809                 case UNIT_ATTENTION:
810                         if (cmd->device->removable) {
811                                 /* Detected disc change.  Set a bit
812                                  * and quietly refuse further access.
813                                  */
814                                 cmd->device->changed = 1;
815                                 description = "Media Changed";
816                                 action = ACTION_FAIL;
817                         } else {
818                                 /* Must have been a power glitch, or a
819                                  * bus reset.  Could not have been a
820                                  * media change, so we just retry the
821                                  * command and see what happens.
822                                  */
823                                 action = ACTION_RETRY;
824                         }
825                         break;
826                 case ILLEGAL_REQUEST:
827                         /* If we had an ILLEGAL REQUEST returned, then
828                          * we may have performed an unsupported
829                          * command.  The only thing this should be
830                          * would be a ten byte read where only a six
831                          * byte read was supported.  Also, on a system
832                          * where READ CAPACITY failed, we may have
833                          * read past the end of the disk.
834                          */
835                         if ((cmd->device->use_10_for_rw &&
836                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
837                             (cmd->cmnd[0] == READ_10 ||
838                              cmd->cmnd[0] == WRITE_10)) {
839                                 /* This will issue a new 6-byte command. */
840                                 cmd->device->use_10_for_rw = 0;
841                                 action = ACTION_REPREP;
842                         } else if (sshdr.asc == 0x10) /* DIX */ {
843                                 description = "Host Data Integrity Failure";
844                                 action = ACTION_FAIL;
845                                 error = -EILSEQ;
846                         } else
847                                 action = ACTION_FAIL;
848                         break;
849                 case ABORTED_COMMAND:
850                         action = ACTION_FAIL;
851                         if (sshdr.asc == 0x10) { /* DIF */
852                                 description = "Target Data Integrity Failure";
853                                 error = -EILSEQ;
854                         }
855                         break;
856                 case NOT_READY:
857                         /* If the device is in the process of becoming
858                          * ready, or has a temporary blockage, retry.
859                          */
860                         if (sshdr.asc == 0x04) {
861                                 switch (sshdr.ascq) {
862                                 case 0x01: /* becoming ready */
863                                 case 0x04: /* format in progress */
864                                 case 0x05: /* rebuild in progress */
865                                 case 0x06: /* recalculation in progress */
866                                 case 0x07: /* operation in progress */
867                                 case 0x08: /* Long write in progress */
868                                 case 0x09: /* self test in progress */
869                                 case 0x14: /* space allocation in progress */
870                                         action = ACTION_DELAYED_RETRY;
871                                         break;
872                                 default:
873                                         description = "Device not ready";
874                                         action = ACTION_FAIL;
875                                         break;
876                                 }
877                         } else {
878                                 description = "Device not ready";
879                                 action = ACTION_FAIL;
880                         }
881                         break;
882                 case VOLUME_OVERFLOW:
883                         /* See SSC3rXX or current. */
884                         action = ACTION_FAIL;
885                         break;
886                 default:
887                         description = "Unhandled sense code";
888                         action = ACTION_FAIL;
889                         break;
890                 }
891         } else {
892                 description = "Unhandled error code";
893                 action = ACTION_FAIL;
894         }
895
896         switch (action) {
897         case ACTION_FAIL:
898                 /* Give up and fail the remainder of the request */
899                 scsi_release_buffers(cmd);
900                 if (!(req->cmd_flags & REQ_QUIET)) {
901                         if (description)
902                                 scmd_printk(KERN_INFO, cmd, "%s\n",
903                                             description);
904                         scsi_print_result(cmd);
905                         if (driver_byte(result) & DRIVER_SENSE)
906                                 scsi_print_sense("", cmd);
907                         scsi_print_command(cmd);
908                 }
909                 if (blk_end_request_err(req, error))
910                         scsi_requeue_command(q, cmd);
911                 else
912                         scsi_next_command(cmd);
913                 break;
914         case ACTION_REPREP:
915                 /* Unprep the request and put it back at the head of the queue.
916                  * A new command will be prepared and issued.
917                  */
918                 scsi_release_buffers(cmd);
919                 scsi_requeue_command(q, cmd);
920                 break;
921         case ACTION_RETRY:
922                 /* Retry the same command immediately */
923                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
924                 break;
925         case ACTION_DELAYED_RETRY:
926                 /* Retry the same command after a delay */
927                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
928                 break;
929         }
930 }
931
932 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
933                              gfp_t gfp_mask)
934 {
935         int count;
936
937         /*
938          * If sg table allocation fails, requeue request later.
939          */
940         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
941                                         gfp_mask))) {
942                 return BLKPREP_DEFER;
943         }
944
945         req->buffer = NULL;
946
947         /* 
948          * Next, walk the list, and fill in the addresses and sizes of
949          * each segment.
950          */
951         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
952         BUG_ON(count > sdb->table.nents);
953         sdb->table.nents = count;
954         sdb->length = blk_rq_bytes(req);
955         return BLKPREP_OK;
956 }
957
958 /*
959  * Function:    scsi_init_io()
960  *
961  * Purpose:     SCSI I/O initialize function.
962  *
963  * Arguments:   cmd   - Command descriptor we wish to initialize
964  *
965  * Returns:     0 on success
966  *              BLKPREP_DEFER if the failure is retryable
967  *              BLKPREP_KILL if the failure is fatal
968  */
969 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
970 {
971         int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
972         if (error)
973                 goto err_exit;
974
975         if (blk_bidi_rq(cmd->request)) {
976                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
977                         scsi_sdb_cache, GFP_ATOMIC);
978                 if (!bidi_sdb) {
979                         error = BLKPREP_DEFER;
980                         goto err_exit;
981                 }
982
983                 cmd->request->next_rq->special = bidi_sdb;
984                 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
985                                                                     GFP_ATOMIC);
986                 if (error)
987                         goto err_exit;
988         }
989
990         if (blk_integrity_rq(cmd->request)) {
991                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
992                 int ivecs, count;
993
994                 BUG_ON(prot_sdb == NULL);
995                 ivecs = blk_rq_count_integrity_sg(cmd->request);
996
997                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
998                         error = BLKPREP_DEFER;
999                         goto err_exit;
1000                 }
1001
1002                 count = blk_rq_map_integrity_sg(cmd->request,
1003                                                 prot_sdb->table.sgl);
1004                 BUG_ON(unlikely(count > ivecs));
1005
1006                 cmd->prot_sdb = prot_sdb;
1007                 cmd->prot_sdb->table.nents = count;
1008         }
1009
1010         return BLKPREP_OK ;
1011
1012 err_exit:
1013         scsi_release_buffers(cmd);
1014         if (error == BLKPREP_KILL)
1015                 scsi_put_command(cmd);
1016         else /* BLKPREP_DEFER */
1017                 scsi_unprep_request(cmd->request);
1018
1019         return error;
1020 }
1021 EXPORT_SYMBOL(scsi_init_io);
1022
1023 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1024                 struct request *req)
1025 {
1026         struct scsi_cmnd *cmd;
1027
1028         if (!req->special) {
1029                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1030                 if (unlikely(!cmd))
1031                         return NULL;
1032                 req->special = cmd;
1033         } else {
1034                 cmd = req->special;
1035         }
1036
1037         /* pull a tag out of the request if we have one */
1038         cmd->tag = req->tag;
1039         cmd->request = req;
1040
1041         cmd->cmnd = req->cmd;
1042
1043         return cmd;
1044 }
1045
1046 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1047 {
1048         struct scsi_cmnd *cmd;
1049         int ret = scsi_prep_state_check(sdev, req);
1050
1051         if (ret != BLKPREP_OK)
1052                 return ret;
1053
1054         cmd = scsi_get_cmd_from_req(sdev, req);
1055         if (unlikely(!cmd))
1056                 return BLKPREP_DEFER;
1057
1058         /*
1059          * BLOCK_PC requests may transfer data, in which case they must
1060          * a bio attached to them.  Or they might contain a SCSI command
1061          * that does not transfer data, in which case they may optionally
1062          * submit a request without an attached bio.
1063          */
1064         if (req->bio) {
1065                 int ret;
1066
1067                 BUG_ON(!req->nr_phys_segments);
1068
1069                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1070                 if (unlikely(ret))
1071                         return ret;
1072         } else {
1073                 BUG_ON(blk_rq_bytes(req));
1074
1075                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1076                 req->buffer = NULL;
1077         }
1078
1079         cmd->cmd_len = req->cmd_len;
1080         if (!blk_rq_bytes(req))
1081                 cmd->sc_data_direction = DMA_NONE;
1082         else if (rq_data_dir(req) == WRITE)
1083                 cmd->sc_data_direction = DMA_TO_DEVICE;
1084         else
1085                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1086         
1087         cmd->transfersize = blk_rq_bytes(req);
1088         cmd->allowed = req->retries;
1089         return BLKPREP_OK;
1090 }
1091 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1092
1093 /*
1094  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1095  * from filesystems that still need to be translated to SCSI CDBs from
1096  * the ULD.
1097  */
1098 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1099 {
1100         struct scsi_cmnd *cmd;
1101         int ret = scsi_prep_state_check(sdev, req);
1102
1103         if (ret != BLKPREP_OK)
1104                 return ret;
1105
1106         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1107                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1108                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1109                 if (ret != BLKPREP_OK)
1110                         return ret;
1111         }
1112
1113         /*
1114          * Filesystem requests must transfer data.
1115          */
1116         BUG_ON(!req->nr_phys_segments);
1117
1118         cmd = scsi_get_cmd_from_req(sdev, req);
1119         if (unlikely(!cmd))
1120                 return BLKPREP_DEFER;
1121
1122         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1123         return scsi_init_io(cmd, GFP_ATOMIC);
1124 }
1125 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1126
1127 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1128 {
1129         int ret = BLKPREP_OK;
1130
1131         /*
1132          * If the device is not in running state we will reject some
1133          * or all commands.
1134          */
1135         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1136                 switch (sdev->sdev_state) {
1137                 case SDEV_OFFLINE:
1138                         /*
1139                          * If the device is offline we refuse to process any
1140                          * commands.  The device must be brought online
1141                          * before trying any recovery commands.
1142                          */
1143                         sdev_printk(KERN_ERR, sdev,
1144                                     "rejecting I/O to offline device\n");
1145                         ret = BLKPREP_KILL;
1146                         break;
1147                 case SDEV_DEL:
1148                         /*
1149                          * If the device is fully deleted, we refuse to
1150                          * process any commands as well.
1151                          */
1152                         sdev_printk(KERN_ERR, sdev,
1153                                     "rejecting I/O to dead device\n");
1154                         ret = BLKPREP_KILL;
1155                         break;
1156                 case SDEV_QUIESCE:
1157                 case SDEV_BLOCK:
1158                 case SDEV_CREATED_BLOCK:
1159                         /*
1160                          * If the devices is blocked we defer normal commands.
1161                          */
1162                         if (!(req->cmd_flags & REQ_PREEMPT))
1163                                 ret = BLKPREP_DEFER;
1164                         break;
1165                 default:
1166                         /*
1167                          * For any other not fully online state we only allow
1168                          * special commands.  In particular any user initiated
1169                          * command is not allowed.
1170                          */
1171                         if (!(req->cmd_flags & REQ_PREEMPT))
1172                                 ret = BLKPREP_KILL;
1173                         break;
1174                 }
1175         }
1176         return ret;
1177 }
1178 EXPORT_SYMBOL(scsi_prep_state_check);
1179
1180 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1181 {
1182         struct scsi_device *sdev = q->queuedata;
1183
1184         switch (ret) {
1185         case BLKPREP_KILL:
1186                 req->errors = DID_NO_CONNECT << 16;
1187                 /* release the command and kill it */
1188                 if (req->special) {
1189                         struct scsi_cmnd *cmd = req->special;
1190                         scsi_release_buffers(cmd);
1191                         scsi_put_command(cmd);
1192                         req->special = NULL;
1193                 }
1194                 break;
1195         case BLKPREP_DEFER:
1196                 /*
1197                  * If we defer, the blk_peek_request() returns NULL, but the
1198                  * queue must be restarted, so we plug here if no returning
1199                  * command will automatically do that.
1200                  */
1201                 if (sdev->device_busy == 0)
1202                         blk_plug_device(q);
1203                 break;
1204         default:
1205                 req->cmd_flags |= REQ_DONTPREP;
1206         }
1207
1208         return ret;
1209 }
1210 EXPORT_SYMBOL(scsi_prep_return);
1211
1212 int scsi_prep_fn(struct request_queue *q, struct request *req)
1213 {
1214         struct scsi_device *sdev = q->queuedata;
1215         int ret = BLKPREP_KILL;
1216
1217         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1218                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1219         return scsi_prep_return(q, req, ret);
1220 }
1221 EXPORT_SYMBOL(scsi_prep_fn);
1222
1223 /*
1224  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1225  * return 0.
1226  *
1227  * Called with the queue_lock held.
1228  */
1229 static inline int scsi_dev_queue_ready(struct request_queue *q,
1230                                   struct scsi_device *sdev)
1231 {
1232         if (sdev->device_busy == 0 && sdev->device_blocked) {
1233                 /*
1234                  * unblock after device_blocked iterates to zero
1235                  */
1236                 if (--sdev->device_blocked == 0) {
1237                         SCSI_LOG_MLQUEUE(3,
1238                                    sdev_printk(KERN_INFO, sdev,
1239                                    "unblocking device at zero depth\n"));
1240                 } else {
1241                         blk_plug_device(q);
1242                         return 0;
1243                 }
1244         }
1245         if (scsi_device_is_busy(sdev))
1246                 return 0;
1247
1248         return 1;
1249 }
1250
1251
1252 /*
1253  * scsi_target_queue_ready: checks if there we can send commands to target
1254  * @sdev: scsi device on starget to check.
1255  *
1256  * Called with the host lock held.
1257  */
1258 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1259                                            struct scsi_device *sdev)
1260 {
1261         struct scsi_target *starget = scsi_target(sdev);
1262
1263         if (starget->single_lun) {
1264                 if (starget->starget_sdev_user &&
1265                     starget->starget_sdev_user != sdev)
1266                         return 0;
1267                 starget->starget_sdev_user = sdev;
1268         }
1269
1270         if (starget->target_busy == 0 && starget->target_blocked) {
1271                 /*
1272                  * unblock after target_blocked iterates to zero
1273                  */
1274                 if (--starget->target_blocked == 0) {
1275                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1276                                          "unblocking target at zero depth\n"));
1277                 } else
1278                         return 0;
1279         }
1280
1281         if (scsi_target_is_busy(starget)) {
1282                 if (list_empty(&sdev->starved_entry)) {
1283                         list_add_tail(&sdev->starved_entry,
1284                                       &shost->starved_list);
1285                         return 0;
1286                 }
1287         }
1288
1289         /* We're OK to process the command, so we can't be starved */
1290         if (!list_empty(&sdev->starved_entry))
1291                 list_del_init(&sdev->starved_entry);
1292         return 1;
1293 }
1294
1295 /*
1296  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1297  * return 0. We must end up running the queue again whenever 0 is
1298  * returned, else IO can hang.
1299  *
1300  * Called with host_lock held.
1301  */
1302 static inline int scsi_host_queue_ready(struct request_queue *q,
1303                                    struct Scsi_Host *shost,
1304                                    struct scsi_device *sdev)
1305 {
1306         if (scsi_host_in_recovery(shost))
1307                 return 0;
1308         if (shost->host_busy == 0 && shost->host_blocked) {
1309                 /*
1310                  * unblock after host_blocked iterates to zero
1311                  */
1312                 if (--shost->host_blocked == 0) {
1313                         SCSI_LOG_MLQUEUE(3,
1314                                 printk("scsi%d unblocking host at zero depth\n",
1315                                         shost->host_no));
1316                 } else {
1317                         return 0;
1318                 }
1319         }
1320         if (scsi_host_is_busy(shost)) {
1321                 if (list_empty(&sdev->starved_entry))
1322                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1323                 return 0;
1324         }
1325
1326         /* We're OK to process the command, so we can't be starved */
1327         if (!list_empty(&sdev->starved_entry))
1328                 list_del_init(&sdev->starved_entry);
1329
1330         return 1;
1331 }
1332
1333 /*
1334  * Busy state exporting function for request stacking drivers.
1335  *
1336  * For efficiency, no lock is taken to check the busy state of
1337  * shost/starget/sdev, since the returned value is not guaranteed and
1338  * may be changed after request stacking drivers call the function,
1339  * regardless of taking lock or not.
1340  *
1341  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1342  * (e.g. !sdev), scsi needs to return 'not busy'.
1343  * Otherwise, request stacking drivers may hold requests forever.
1344  */
1345 static int scsi_lld_busy(struct request_queue *q)
1346 {
1347         struct scsi_device *sdev = q->queuedata;
1348         struct Scsi_Host *shost;
1349         struct scsi_target *starget;
1350
1351         if (!sdev)
1352                 return 0;
1353
1354         shost = sdev->host;
1355         starget = scsi_target(sdev);
1356
1357         if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1358             scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1359                 return 1;
1360
1361         return 0;
1362 }
1363
1364 /*
1365  * Kill a request for a dead device
1366  */
1367 static void scsi_kill_request(struct request *req, struct request_queue *q)
1368 {
1369         struct scsi_cmnd *cmd = req->special;
1370         struct scsi_device *sdev;
1371         struct scsi_target *starget;
1372         struct Scsi_Host *shost;
1373
1374         blk_start_request(req);
1375
1376         if (unlikely(cmd == NULL)) {
1377                 printk(KERN_CRIT "impossible request in %s.\n",
1378                                  __func__);
1379                 BUG();
1380         }
1381
1382         sdev = cmd->device;
1383         starget = scsi_target(sdev);
1384         shost = sdev->host;
1385         scsi_init_cmd_errh(cmd);
1386         cmd->result = DID_NO_CONNECT << 16;
1387         atomic_inc(&cmd->device->iorequest_cnt);
1388
1389         /*
1390          * SCSI request completion path will do scsi_device_unbusy(),
1391          * bump busy counts.  To bump the counters, we need to dance
1392          * with the locks as normal issue path does.
1393          */
1394         sdev->device_busy++;
1395         spin_unlock(sdev->request_queue->queue_lock);
1396         spin_lock(shost->host_lock);
1397         shost->host_busy++;
1398         starget->target_busy++;
1399         spin_unlock(shost->host_lock);
1400         spin_lock(sdev->request_queue->queue_lock);
1401
1402         blk_complete_request(req);
1403 }
1404
1405 static void scsi_softirq_done(struct request *rq)
1406 {
1407         struct scsi_cmnd *cmd = rq->special;
1408         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1409         int disposition;
1410
1411         INIT_LIST_HEAD(&cmd->eh_entry);
1412
1413         /*
1414          * Set the serial numbers back to zero
1415          */
1416         cmd->serial_number = 0;
1417
1418         atomic_inc(&cmd->device->iodone_cnt);
1419         if (cmd->result)
1420                 atomic_inc(&cmd->device->ioerr_cnt);
1421
1422         disposition = scsi_decide_disposition(cmd);
1423         if (disposition != SUCCESS &&
1424             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1425                 sdev_printk(KERN_ERR, cmd->device,
1426                             "timing out command, waited %lus\n",
1427                             wait_for/HZ);
1428                 disposition = SUCCESS;
1429         }
1430                         
1431         scsi_log_completion(cmd, disposition);
1432
1433         switch (disposition) {
1434                 case SUCCESS:
1435                         scsi_finish_command(cmd);
1436                         break;
1437                 case NEEDS_RETRY:
1438                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1439                         break;
1440                 case ADD_TO_MLQUEUE:
1441                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1442                         break;
1443                 default:
1444                         if (!scsi_eh_scmd_add(cmd, 0))
1445                                 scsi_finish_command(cmd);
1446         }
1447 }
1448
1449 /*
1450  * Function:    scsi_request_fn()
1451  *
1452  * Purpose:     Main strategy routine for SCSI.
1453  *
1454  * Arguments:   q       - Pointer to actual queue.
1455  *
1456  * Returns:     Nothing
1457  *
1458  * Lock status: IO request lock assumed to be held when called.
1459  */
1460 static void scsi_request_fn(struct request_queue *q)
1461 {
1462         struct scsi_device *sdev = q->queuedata;
1463         struct Scsi_Host *shost;
1464         struct scsi_cmnd *cmd;
1465         struct request *req;
1466
1467         if (!sdev) {
1468                 printk("scsi: killing requests for dead queue\n");
1469                 while ((req = blk_peek_request(q)) != NULL)
1470                         scsi_kill_request(req, q);
1471                 return;
1472         }
1473
1474         if(!get_device(&sdev->sdev_gendev))
1475                 /* We must be tearing the block queue down already */
1476                 return;
1477
1478         /*
1479          * To start with, we keep looping until the queue is empty, or until
1480          * the host is no longer able to accept any more requests.
1481          */
1482         shost = sdev->host;
1483         while (!blk_queue_plugged(q)) {
1484                 int rtn;
1485                 /*
1486                  * get next queueable request.  We do this early to make sure
1487                  * that the request is fully prepared even if we cannot 
1488                  * accept it.
1489                  */
1490                 req = blk_peek_request(q);
1491                 if (!req || !scsi_dev_queue_ready(q, sdev))
1492                         break;
1493
1494                 if (unlikely(!scsi_device_online(sdev))) {
1495                         sdev_printk(KERN_ERR, sdev,
1496                                     "rejecting I/O to offline device\n");
1497                         scsi_kill_request(req, q);
1498                         continue;
1499                 }
1500
1501
1502                 /*
1503                  * Remove the request from the request list.
1504                  */
1505                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1506                         blk_start_request(req);
1507                 sdev->device_busy++;
1508
1509                 spin_unlock(q->queue_lock);
1510                 cmd = req->special;
1511                 if (unlikely(cmd == NULL)) {
1512                         printk(KERN_CRIT "impossible request in %s.\n"
1513                                          "please mail a stack trace to "
1514                                          "linux-scsi@vger.kernel.org\n",
1515                                          __func__);
1516                         blk_dump_rq_flags(req, "foo");
1517                         BUG();
1518                 }
1519                 spin_lock(shost->host_lock);
1520
1521                 /*
1522                  * We hit this when the driver is using a host wide
1523                  * tag map. For device level tag maps the queue_depth check
1524                  * in the device ready fn would prevent us from trying
1525                  * to allocate a tag. Since the map is a shared host resource
1526                  * we add the dev to the starved list so it eventually gets
1527                  * a run when a tag is freed.
1528                  */
1529                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1530                         if (list_empty(&sdev->starved_entry))
1531                                 list_add_tail(&sdev->starved_entry,
1532                                               &shost->starved_list);
1533                         goto not_ready;
1534                 }
1535
1536                 if (!scsi_target_queue_ready(shost, sdev))
1537                         goto not_ready;
1538
1539                 if (!scsi_host_queue_ready(q, shost, sdev))
1540                         goto not_ready;
1541
1542                 scsi_target(sdev)->target_busy++;
1543                 shost->host_busy++;
1544
1545                 /*
1546                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1547                  *              take the lock again.
1548                  */
1549                 spin_unlock_irq(shost->host_lock);
1550
1551                 /*
1552                  * Finally, initialize any error handling parameters, and set up
1553                  * the timers for timeouts.
1554                  */
1555                 scsi_init_cmd_errh(cmd);
1556
1557                 /*
1558                  * Dispatch the command to the low-level driver.
1559                  */
1560                 rtn = scsi_dispatch_cmd(cmd);
1561                 spin_lock_irq(q->queue_lock);
1562                 if(rtn) {
1563                         /* we're refusing the command; because of
1564                          * the way locks get dropped, we need to 
1565                          * check here if plugging is required */
1566                         if(sdev->device_busy == 0)
1567                                 blk_plug_device(q);
1568
1569                         break;
1570                 }
1571         }
1572
1573         goto out;
1574
1575  not_ready:
1576         spin_unlock_irq(shost->host_lock);
1577
1578         /*
1579          * lock q, handle tag, requeue req, and decrement device_busy. We
1580          * must return with queue_lock held.
1581          *
1582          * Decrementing device_busy without checking it is OK, as all such
1583          * cases (host limits or settings) should run the queue at some
1584          * later time.
1585          */
1586         spin_lock_irq(q->queue_lock);
1587         blk_requeue_request(q, req);
1588         sdev->device_busy--;
1589         if(sdev->device_busy == 0)
1590                 blk_plug_device(q);
1591  out:
1592         /* must be careful here...if we trigger the ->remove() function
1593          * we cannot be holding the q lock */
1594         spin_unlock_irq(q->queue_lock);
1595         put_device(&sdev->sdev_gendev);
1596         spin_lock_irq(q->queue_lock);
1597 }
1598
1599 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1600 {
1601         struct device *host_dev;
1602         u64 bounce_limit = 0xffffffff;
1603
1604         if (shost->unchecked_isa_dma)
1605                 return BLK_BOUNCE_ISA;
1606         /*
1607          * Platforms with virtual-DMA translation
1608          * hardware have no practical limit.
1609          */
1610         if (!PCI_DMA_BUS_IS_PHYS)
1611                 return BLK_BOUNCE_ANY;
1612
1613         host_dev = scsi_get_device(shost);
1614         if (host_dev && host_dev->dma_mask)
1615                 bounce_limit = *host_dev->dma_mask;
1616
1617         return bounce_limit;
1618 }
1619 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1620
1621 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1622                                          request_fn_proc *request_fn)
1623 {
1624         struct request_queue *q;
1625         struct device *dev = shost->shost_gendev.parent;
1626
1627         q = blk_init_queue(request_fn, NULL);
1628         if (!q)
1629                 return NULL;
1630
1631         /*
1632          * this limit is imposed by hardware restrictions
1633          */
1634         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1635                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1636
1637         blk_queue_max_hw_sectors(q, shost->max_sectors);
1638         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1639         blk_queue_segment_boundary(q, shost->dma_boundary);
1640         dma_set_seg_boundary(dev, shost->dma_boundary);
1641
1642         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1643
1644         /* New queue, no concurrency on queue_flags */
1645         if (!shost->use_clustering)
1646                 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1647
1648         /*
1649          * set a reasonable default alignment on word boundaries: the
1650          * host and device may alter it using
1651          * blk_queue_update_dma_alignment() later.
1652          */
1653         blk_queue_dma_alignment(q, 0x03);
1654
1655         return q;
1656 }
1657 EXPORT_SYMBOL(__scsi_alloc_queue);
1658
1659 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1660 {
1661         struct request_queue *q;
1662
1663         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1664         if (!q)
1665                 return NULL;
1666
1667         blk_queue_prep_rq(q, scsi_prep_fn);
1668         blk_queue_softirq_done(q, scsi_softirq_done);
1669         blk_queue_rq_timed_out(q, scsi_times_out);
1670         blk_queue_lld_busy(q, scsi_lld_busy);
1671         return q;
1672 }
1673
1674 void scsi_free_queue(struct request_queue *q)
1675 {
1676         blk_cleanup_queue(q);
1677 }
1678
1679 /*
1680  * Function:    scsi_block_requests()
1681  *
1682  * Purpose:     Utility function used by low-level drivers to prevent further
1683  *              commands from being queued to the device.
1684  *
1685  * Arguments:   shost       - Host in question
1686  *
1687  * Returns:     Nothing
1688  *
1689  * Lock status: No locks are assumed held.
1690  *
1691  * Notes:       There is no timer nor any other means by which the requests
1692  *              get unblocked other than the low-level driver calling
1693  *              scsi_unblock_requests().
1694  */
1695 void scsi_block_requests(struct Scsi_Host *shost)
1696 {
1697         shost->host_self_blocked = 1;
1698 }
1699 EXPORT_SYMBOL(scsi_block_requests);
1700
1701 /*
1702  * Function:    scsi_unblock_requests()
1703  *
1704  * Purpose:     Utility function used by low-level drivers to allow further
1705  *              commands from being queued to the device.
1706  *
1707  * Arguments:   shost       - Host in question
1708  *
1709  * Returns:     Nothing
1710  *
1711  * Lock status: No locks are assumed held.
1712  *
1713  * Notes:       There is no timer nor any other means by which the requests
1714  *              get unblocked other than the low-level driver calling
1715  *              scsi_unblock_requests().
1716  *
1717  *              This is done as an API function so that changes to the
1718  *              internals of the scsi mid-layer won't require wholesale
1719  *              changes to drivers that use this feature.
1720  */
1721 void scsi_unblock_requests(struct Scsi_Host *shost)
1722 {
1723         shost->host_self_blocked = 0;
1724         scsi_run_host_queues(shost);
1725 }
1726 EXPORT_SYMBOL(scsi_unblock_requests);
1727
1728 int __init scsi_init_queue(void)
1729 {
1730         int i;
1731
1732         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1733                                            sizeof(struct scsi_data_buffer),
1734                                            0, 0, NULL);
1735         if (!scsi_sdb_cache) {
1736                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1737                 return -ENOMEM;
1738         }
1739
1740         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1741                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1742                 int size = sgp->size * sizeof(struct scatterlist);
1743
1744                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1745                                 SLAB_HWCACHE_ALIGN, NULL);
1746                 if (!sgp->slab) {
1747                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1748                                         sgp->name);
1749                         goto cleanup_sdb;
1750                 }
1751
1752                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1753                                                      sgp->slab);
1754                 if (!sgp->pool) {
1755                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1756                                         sgp->name);
1757                         goto cleanup_sdb;
1758                 }
1759         }
1760
1761         return 0;
1762
1763 cleanup_sdb:
1764         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1765                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1766                 if (sgp->pool)
1767                         mempool_destroy(sgp->pool);
1768                 if (sgp->slab)
1769                         kmem_cache_destroy(sgp->slab);
1770         }
1771         kmem_cache_destroy(scsi_sdb_cache);
1772
1773         return -ENOMEM;
1774 }
1775
1776 void scsi_exit_queue(void)
1777 {
1778         int i;
1779
1780         kmem_cache_destroy(scsi_sdb_cache);
1781
1782         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1783                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1784                 mempool_destroy(sgp->pool);
1785                 kmem_cache_destroy(sgp->slab);
1786         }
1787 }
1788
1789 /**
1790  *      scsi_mode_select - issue a mode select
1791  *      @sdev:  SCSI device to be queried
1792  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1793  *      @sp:    Save page bit (0 == don't save, 1 == save)
1794  *      @modepage: mode page being requested
1795  *      @buffer: request buffer (may not be smaller than eight bytes)
1796  *      @len:   length of request buffer.
1797  *      @timeout: command timeout
1798  *      @retries: number of retries before failing
1799  *      @data: returns a structure abstracting the mode header data
1800  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1801  *              must be SCSI_SENSE_BUFFERSIZE big.
1802  *
1803  *      Returns zero if successful; negative error number or scsi
1804  *      status on error
1805  *
1806  */
1807 int
1808 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1809                  unsigned char *buffer, int len, int timeout, int retries,
1810                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1811 {
1812         unsigned char cmd[10];
1813         unsigned char *real_buffer;
1814         int ret;
1815
1816         memset(cmd, 0, sizeof(cmd));
1817         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1818
1819         if (sdev->use_10_for_ms) {
1820                 if (len > 65535)
1821                         return -EINVAL;
1822                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1823                 if (!real_buffer)
1824                         return -ENOMEM;
1825                 memcpy(real_buffer + 8, buffer, len);
1826                 len += 8;
1827                 real_buffer[0] = 0;
1828                 real_buffer[1] = 0;
1829                 real_buffer[2] = data->medium_type;
1830                 real_buffer[3] = data->device_specific;
1831                 real_buffer[4] = data->longlba ? 0x01 : 0;
1832                 real_buffer[5] = 0;
1833                 real_buffer[6] = data->block_descriptor_length >> 8;
1834                 real_buffer[7] = data->block_descriptor_length;
1835
1836                 cmd[0] = MODE_SELECT_10;
1837                 cmd[7] = len >> 8;
1838                 cmd[8] = len;
1839         } else {
1840                 if (len > 255 || data->block_descriptor_length > 255 ||
1841                     data->longlba)
1842                         return -EINVAL;
1843
1844                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1845                 if (!real_buffer)
1846                         return -ENOMEM;
1847                 memcpy(real_buffer + 4, buffer, len);
1848                 len += 4;
1849                 real_buffer[0] = 0;
1850                 real_buffer[1] = data->medium_type;
1851                 real_buffer[2] = data->device_specific;
1852                 real_buffer[3] = data->block_descriptor_length;
1853                 
1854
1855                 cmd[0] = MODE_SELECT;
1856                 cmd[4] = len;
1857         }
1858
1859         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1860                                sshdr, timeout, retries, NULL);
1861         kfree(real_buffer);
1862         return ret;
1863 }
1864 EXPORT_SYMBOL_GPL(scsi_mode_select);
1865
1866 /**
1867  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1868  *      @sdev:  SCSI device to be queried
1869  *      @dbd:   set if mode sense will allow block descriptors to be returned
1870  *      @modepage: mode page being requested
1871  *      @buffer: request buffer (may not be smaller than eight bytes)
1872  *      @len:   length of request buffer.
1873  *      @timeout: command timeout
1874  *      @retries: number of retries before failing
1875  *      @data: returns a structure abstracting the mode header data
1876  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1877  *              must be SCSI_SENSE_BUFFERSIZE big.
1878  *
1879  *      Returns zero if unsuccessful, or the header offset (either 4
1880  *      or 8 depending on whether a six or ten byte command was
1881  *      issued) if successful.
1882  */
1883 int
1884 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1885                   unsigned char *buffer, int len, int timeout, int retries,
1886                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1887 {
1888         unsigned char cmd[12];
1889         int use_10_for_ms;
1890         int header_length;
1891         int result;
1892         struct scsi_sense_hdr my_sshdr;
1893
1894         memset(data, 0, sizeof(*data));
1895         memset(&cmd[0], 0, 12);
1896         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1897         cmd[2] = modepage;
1898
1899         /* caller might not be interested in sense, but we need it */
1900         if (!sshdr)
1901                 sshdr = &my_sshdr;
1902
1903  retry:
1904         use_10_for_ms = sdev->use_10_for_ms;
1905
1906         if (use_10_for_ms) {
1907                 if (len < 8)
1908                         len = 8;
1909
1910                 cmd[0] = MODE_SENSE_10;
1911                 cmd[8] = len;
1912                 header_length = 8;
1913         } else {
1914                 if (len < 4)
1915                         len = 4;
1916
1917                 cmd[0] = MODE_SENSE;
1918                 cmd[4] = len;
1919                 header_length = 4;
1920         }
1921
1922         memset(buffer, 0, len);
1923
1924         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1925                                   sshdr, timeout, retries, NULL);
1926
1927         /* This code looks awful: what it's doing is making sure an
1928          * ILLEGAL REQUEST sense return identifies the actual command
1929          * byte as the problem.  MODE_SENSE commands can return
1930          * ILLEGAL REQUEST if the code page isn't supported */
1931
1932         if (use_10_for_ms && !scsi_status_is_good(result) &&
1933             (driver_byte(result) & DRIVER_SENSE)) {
1934                 if (scsi_sense_valid(sshdr)) {
1935                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1936                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1937                                 /* 
1938                                  * Invalid command operation code
1939                                  */
1940                                 sdev->use_10_for_ms = 0;
1941                                 goto retry;
1942                         }
1943                 }
1944         }
1945
1946         if(scsi_status_is_good(result)) {
1947                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1948                              (modepage == 6 || modepage == 8))) {
1949                         /* Initio breakage? */
1950                         header_length = 0;
1951                         data->length = 13;
1952                         data->medium_type = 0;
1953                         data->device_specific = 0;
1954                         data->longlba = 0;
1955                         data->block_descriptor_length = 0;
1956                 } else if(use_10_for_ms) {
1957                         data->length = buffer[0]*256 + buffer[1] + 2;
1958                         data->medium_type = buffer[2];
1959                         data->device_specific = buffer[3];
1960                         data->longlba = buffer[4] & 0x01;
1961                         data->block_descriptor_length = buffer[6]*256
1962                                 + buffer[7];
1963                 } else {
1964                         data->length = buffer[0] + 1;
1965                         data->medium_type = buffer[1];
1966                         data->device_specific = buffer[2];
1967                         data->block_descriptor_length = buffer[3];
1968                 }
1969                 data->header_length = header_length;
1970         }
1971
1972         return result;
1973 }
1974 EXPORT_SYMBOL(scsi_mode_sense);
1975
1976 /**
1977  *      scsi_test_unit_ready - test if unit is ready
1978  *      @sdev:  scsi device to change the state of.
1979  *      @timeout: command timeout
1980  *      @retries: number of retries before failing
1981  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1982  *              returning sense. Make sure that this is cleared before passing
1983  *              in.
1984  *
1985  *      Returns zero if unsuccessful or an error if TUR failed.  For
1986  *      removable media, a return of NOT_READY or UNIT_ATTENTION is
1987  *      translated to success, with the ->changed flag updated.
1988  **/
1989 int
1990 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1991                      struct scsi_sense_hdr *sshdr_external)
1992 {
1993         char cmd[] = {
1994                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1995         };
1996         struct scsi_sense_hdr *sshdr;
1997         int result;
1998
1999         if (!sshdr_external)
2000                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2001         else
2002                 sshdr = sshdr_external;
2003
2004         /* try to eat the UNIT_ATTENTION if there are enough retries */
2005         do {
2006                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2007                                           timeout, retries, NULL);
2008                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2009                     sshdr->sense_key == UNIT_ATTENTION)
2010                         sdev->changed = 1;
2011         } while (scsi_sense_valid(sshdr) &&
2012                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2013
2014         if (!sshdr)
2015                 /* could not allocate sense buffer, so can't process it */
2016                 return result;
2017
2018         if (sdev->removable && scsi_sense_valid(sshdr) &&
2019             (sshdr->sense_key == UNIT_ATTENTION ||
2020              sshdr->sense_key == NOT_READY)) {
2021                 sdev->changed = 1;
2022                 result = 0;
2023         }
2024         if (!sshdr_external)
2025                 kfree(sshdr);
2026         return result;
2027 }
2028 EXPORT_SYMBOL(scsi_test_unit_ready);
2029
2030 /**
2031  *      scsi_device_set_state - Take the given device through the device state model.
2032  *      @sdev:  scsi device to change the state of.
2033  *      @state: state to change to.
2034  *
2035  *      Returns zero if unsuccessful or an error if the requested 
2036  *      transition is illegal.
2037  */
2038 int
2039 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2040 {
2041         enum scsi_device_state oldstate = sdev->sdev_state;
2042
2043         if (state == oldstate)
2044                 return 0;
2045
2046         switch (state) {
2047         case SDEV_CREATED:
2048                 switch (oldstate) {
2049                 case SDEV_CREATED_BLOCK:
2050                         break;
2051                 default:
2052                         goto illegal;
2053                 }
2054                 break;
2055                         
2056         case SDEV_RUNNING:
2057                 switch (oldstate) {
2058                 case SDEV_CREATED:
2059                 case SDEV_OFFLINE:
2060                 case SDEV_QUIESCE:
2061                 case SDEV_BLOCK:
2062                         break;
2063                 default:
2064                         goto illegal;
2065                 }
2066                 break;
2067
2068         case SDEV_QUIESCE:
2069                 switch (oldstate) {
2070                 case SDEV_RUNNING:
2071                 case SDEV_OFFLINE:
2072                         break;
2073                 default:
2074                         goto illegal;
2075                 }
2076                 break;
2077
2078         case SDEV_OFFLINE:
2079                 switch (oldstate) {
2080                 case SDEV_CREATED:
2081                 case SDEV_RUNNING:
2082                 case SDEV_QUIESCE:
2083                 case SDEV_BLOCK:
2084                         break;
2085                 default:
2086                         goto illegal;
2087                 }
2088                 break;
2089
2090         case SDEV_BLOCK:
2091                 switch (oldstate) {
2092                 case SDEV_RUNNING:
2093                 case SDEV_CREATED_BLOCK:
2094                         break;
2095                 default:
2096                         goto illegal;
2097                 }
2098                 break;
2099
2100         case SDEV_CREATED_BLOCK:
2101                 switch (oldstate) {
2102                 case SDEV_CREATED:
2103                         break;
2104                 default:
2105                         goto illegal;
2106                 }
2107                 break;
2108
2109         case SDEV_CANCEL:
2110                 switch (oldstate) {
2111                 case SDEV_CREATED:
2112                 case SDEV_RUNNING:
2113                 case SDEV_QUIESCE:
2114                 case SDEV_OFFLINE:
2115                 case SDEV_BLOCK:
2116                         break;
2117                 default:
2118                         goto illegal;
2119                 }
2120                 break;
2121
2122         case SDEV_DEL:
2123                 switch (oldstate) {
2124                 case SDEV_CREATED:
2125                 case SDEV_RUNNING:
2126                 case SDEV_OFFLINE:
2127                 case SDEV_CANCEL:
2128                         break;
2129                 default:
2130                         goto illegal;
2131                 }
2132                 break;
2133
2134         }
2135         sdev->sdev_state = state;
2136         return 0;
2137
2138  illegal:
2139         SCSI_LOG_ERROR_RECOVERY(1, 
2140                                 sdev_printk(KERN_ERR, sdev,
2141                                             "Illegal state transition %s->%s\n",
2142                                             scsi_device_state_name(oldstate),
2143                                             scsi_device_state_name(state))
2144                                 );
2145         return -EINVAL;
2146 }
2147 EXPORT_SYMBOL(scsi_device_set_state);
2148
2149 /**
2150  *      sdev_evt_emit - emit a single SCSI device uevent
2151  *      @sdev: associated SCSI device
2152  *      @evt: event to emit
2153  *
2154  *      Send a single uevent (scsi_event) to the associated scsi_device.
2155  */
2156 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2157 {
2158         int idx = 0;
2159         char *envp[3];
2160
2161         switch (evt->evt_type) {
2162         case SDEV_EVT_MEDIA_CHANGE:
2163                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2164                 break;
2165
2166         default:
2167                 /* do nothing */
2168                 break;
2169         }
2170
2171         envp[idx++] = NULL;
2172
2173         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2174 }
2175
2176 /**
2177  *      sdev_evt_thread - send a uevent for each scsi event
2178  *      @work: work struct for scsi_device
2179  *
2180  *      Dispatch queued events to their associated scsi_device kobjects
2181  *      as uevents.
2182  */
2183 void scsi_evt_thread(struct work_struct *work)
2184 {
2185         struct scsi_device *sdev;
2186         LIST_HEAD(event_list);
2187
2188         sdev = container_of(work, struct scsi_device, event_work);
2189
2190         while (1) {
2191                 struct scsi_event *evt;
2192                 struct list_head *this, *tmp;
2193                 unsigned long flags;
2194
2195                 spin_lock_irqsave(&sdev->list_lock, flags);
2196                 list_splice_init(&sdev->event_list, &event_list);
2197                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2198
2199                 if (list_empty(&event_list))
2200                         break;
2201
2202                 list_for_each_safe(this, tmp, &event_list) {
2203                         evt = list_entry(this, struct scsi_event, node);
2204                         list_del(&evt->node);
2205                         scsi_evt_emit(sdev, evt);
2206                         kfree(evt);
2207                 }
2208         }
2209 }
2210
2211 /**
2212  *      sdev_evt_send - send asserted event to uevent thread
2213  *      @sdev: scsi_device event occurred on
2214  *      @evt: event to send
2215  *
2216  *      Assert scsi device event asynchronously.
2217  */
2218 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2219 {
2220         unsigned long flags;
2221
2222 #if 0
2223         /* FIXME: currently this check eliminates all media change events
2224          * for polled devices.  Need to update to discriminate between AN
2225          * and polled events */
2226         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2227                 kfree(evt);
2228                 return;
2229         }
2230 #endif
2231
2232         spin_lock_irqsave(&sdev->list_lock, flags);
2233         list_add_tail(&evt->node, &sdev->event_list);
2234         schedule_work(&sdev->event_work);
2235         spin_unlock_irqrestore(&sdev->list_lock, flags);
2236 }
2237 EXPORT_SYMBOL_GPL(sdev_evt_send);
2238
2239 /**
2240  *      sdev_evt_alloc - allocate a new scsi event
2241  *      @evt_type: type of event to allocate
2242  *      @gfpflags: GFP flags for allocation
2243  *
2244  *      Allocates and returns a new scsi_event.
2245  */
2246 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2247                                   gfp_t gfpflags)
2248 {
2249         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2250         if (!evt)
2251                 return NULL;
2252
2253         evt->evt_type = evt_type;
2254         INIT_LIST_HEAD(&evt->node);
2255
2256         /* evt_type-specific initialization, if any */
2257         switch (evt_type) {
2258         case SDEV_EVT_MEDIA_CHANGE:
2259         default:
2260                 /* do nothing */
2261                 break;
2262         }
2263
2264         return evt;
2265 }
2266 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2267
2268 /**
2269  *      sdev_evt_send_simple - send asserted event to uevent thread
2270  *      @sdev: scsi_device event occurred on
2271  *      @evt_type: type of event to send
2272  *      @gfpflags: GFP flags for allocation
2273  *
2274  *      Assert scsi device event asynchronously, given an event type.
2275  */
2276 void sdev_evt_send_simple(struct scsi_device *sdev,
2277                           enum scsi_device_event evt_type, gfp_t gfpflags)
2278 {
2279         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2280         if (!evt) {
2281                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2282                             evt_type);
2283                 return;
2284         }
2285
2286         sdev_evt_send(sdev, evt);
2287 }
2288 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2289
2290 /**
2291  *      scsi_device_quiesce - Block user issued commands.
2292  *      @sdev:  scsi device to quiesce.
2293  *
2294  *      This works by trying to transition to the SDEV_QUIESCE state
2295  *      (which must be a legal transition).  When the device is in this
2296  *      state, only special requests will be accepted, all others will
2297  *      be deferred.  Since special requests may also be requeued requests,
2298  *      a successful return doesn't guarantee the device will be 
2299  *      totally quiescent.
2300  *
2301  *      Must be called with user context, may sleep.
2302  *
2303  *      Returns zero if unsuccessful or an error if not.
2304  */
2305 int
2306 scsi_device_quiesce(struct scsi_device *sdev)
2307 {
2308         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2309         if (err)
2310                 return err;
2311
2312         scsi_run_queue(sdev->request_queue);
2313         while (sdev->device_busy) {
2314                 msleep_interruptible(200);
2315                 scsi_run_queue(sdev->request_queue);
2316         }
2317         return 0;
2318 }
2319 EXPORT_SYMBOL(scsi_device_quiesce);
2320
2321 /**
2322  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2323  *      @sdev:  scsi device to resume.
2324  *
2325  *      Moves the device from quiesced back to running and restarts the
2326  *      queues.
2327  *
2328  *      Must be called with user context, may sleep.
2329  */
2330 void
2331 scsi_device_resume(struct scsi_device *sdev)
2332 {
2333         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2334                 return;
2335         scsi_run_queue(sdev->request_queue);
2336 }
2337 EXPORT_SYMBOL(scsi_device_resume);
2338
2339 static void
2340 device_quiesce_fn(struct scsi_device *sdev, void *data)
2341 {
2342         scsi_device_quiesce(sdev);
2343 }
2344
2345 void
2346 scsi_target_quiesce(struct scsi_target *starget)
2347 {
2348         starget_for_each_device(starget, NULL, device_quiesce_fn);
2349 }
2350 EXPORT_SYMBOL(scsi_target_quiesce);
2351
2352 static void
2353 device_resume_fn(struct scsi_device *sdev, void *data)
2354 {
2355         scsi_device_resume(sdev);
2356 }
2357
2358 void
2359 scsi_target_resume(struct scsi_target *starget)
2360 {
2361         starget_for_each_device(starget, NULL, device_resume_fn);
2362 }
2363 EXPORT_SYMBOL(scsi_target_resume);
2364
2365 /**
2366  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2367  * @sdev:       device to block
2368  *
2369  * Block request made by scsi lld's to temporarily stop all
2370  * scsi commands on the specified device.  Called from interrupt
2371  * or normal process context.
2372  *
2373  * Returns zero if successful or error if not
2374  *
2375  * Notes:       
2376  *      This routine transitions the device to the SDEV_BLOCK state
2377  *      (which must be a legal transition).  When the device is in this
2378  *      state, all commands are deferred until the scsi lld reenables
2379  *      the device with scsi_device_unblock or device_block_tmo fires.
2380  *      This routine assumes the host_lock is held on entry.
2381  */
2382 int
2383 scsi_internal_device_block(struct scsi_device *sdev)
2384 {
2385         struct request_queue *q = sdev->request_queue;
2386         unsigned long flags;
2387         int err = 0;
2388
2389         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2390         if (err) {
2391                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2392
2393                 if (err)
2394                         return err;
2395         }
2396
2397         /* 
2398          * The device has transitioned to SDEV_BLOCK.  Stop the
2399          * block layer from calling the midlayer with this device's
2400          * request queue. 
2401          */
2402         spin_lock_irqsave(q->queue_lock, flags);
2403         blk_stop_queue(q);
2404         spin_unlock_irqrestore(q->queue_lock, flags);
2405
2406         return 0;
2407 }
2408 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2409  
2410 /**
2411  * scsi_internal_device_unblock - resume a device after a block request
2412  * @sdev:       device to resume
2413  *
2414  * Called by scsi lld's or the midlayer to restart the device queue
2415  * for the previously suspended scsi device.  Called from interrupt or
2416  * normal process context.
2417  *
2418  * Returns zero if successful or error if not.
2419  *
2420  * Notes:       
2421  *      This routine transitions the device to the SDEV_RUNNING state
2422  *      (which must be a legal transition) allowing the midlayer to
2423  *      goose the queue for this device.  This routine assumes the 
2424  *      host_lock is held upon entry.
2425  */
2426 int
2427 scsi_internal_device_unblock(struct scsi_device *sdev)
2428 {
2429         struct request_queue *q = sdev->request_queue; 
2430         unsigned long flags;
2431         
2432         /* 
2433          * Try to transition the scsi device to SDEV_RUNNING
2434          * and goose the device queue if successful.  
2435          */
2436         if (sdev->sdev_state == SDEV_BLOCK)
2437                 sdev->sdev_state = SDEV_RUNNING;
2438         else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2439                 sdev->sdev_state = SDEV_CREATED;
2440         else
2441                 return -EINVAL;
2442
2443         spin_lock_irqsave(q->queue_lock, flags);
2444         blk_start_queue(q);
2445         spin_unlock_irqrestore(q->queue_lock, flags);
2446
2447         return 0;
2448 }
2449 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2450
2451 static void
2452 device_block(struct scsi_device *sdev, void *data)
2453 {
2454         scsi_internal_device_block(sdev);
2455 }
2456
2457 static int
2458 target_block(struct device *dev, void *data)
2459 {
2460         if (scsi_is_target_device(dev))
2461                 starget_for_each_device(to_scsi_target(dev), NULL,
2462                                         device_block);
2463         return 0;
2464 }
2465
2466 void
2467 scsi_target_block(struct device *dev)
2468 {
2469         if (scsi_is_target_device(dev))
2470                 starget_for_each_device(to_scsi_target(dev), NULL,
2471                                         device_block);
2472         else
2473                 device_for_each_child(dev, NULL, target_block);
2474 }
2475 EXPORT_SYMBOL_GPL(scsi_target_block);
2476
2477 static void
2478 device_unblock(struct scsi_device *sdev, void *data)
2479 {
2480         scsi_internal_device_unblock(sdev);
2481 }
2482
2483 static int
2484 target_unblock(struct device *dev, void *data)
2485 {
2486         if (scsi_is_target_device(dev))
2487                 starget_for_each_device(to_scsi_target(dev), NULL,
2488                                         device_unblock);
2489         return 0;
2490 }
2491
2492 void
2493 scsi_target_unblock(struct device *dev)
2494 {
2495         if (scsi_is_target_device(dev))
2496                 starget_for_each_device(to_scsi_target(dev), NULL,
2497                                         device_unblock);
2498         else
2499                 device_for_each_child(dev, NULL, target_unblock);
2500 }
2501 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2502
2503 /**
2504  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2505  * @sgl:        scatter-gather list
2506  * @sg_count:   number of segments in sg
2507  * @offset:     offset in bytes into sg, on return offset into the mapped area
2508  * @len:        bytes to map, on return number of bytes mapped
2509  *
2510  * Returns virtual address of the start of the mapped page
2511  */
2512 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2513                           size_t *offset, size_t *len)
2514 {
2515         int i;
2516         size_t sg_len = 0, len_complete = 0;
2517         struct scatterlist *sg;
2518         struct page *page;
2519
2520         WARN_ON(!irqs_disabled());
2521
2522         for_each_sg(sgl, sg, sg_count, i) {
2523                 len_complete = sg_len; /* Complete sg-entries */
2524                 sg_len += sg->length;
2525                 if (sg_len > *offset)
2526                         break;
2527         }
2528
2529         if (unlikely(i == sg_count)) {
2530                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2531                         "elements %d\n",
2532                        __func__, sg_len, *offset, sg_count);
2533                 WARN_ON(1);
2534                 return NULL;
2535         }
2536
2537         /* Offset starting from the beginning of first page in this sg-entry */
2538         *offset = *offset - len_complete + sg->offset;
2539
2540         /* Assumption: contiguous pages can be accessed as "page + i" */
2541         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2542         *offset &= ~PAGE_MASK;
2543
2544         /* Bytes in this sg-entry from *offset to the end of the page */
2545         sg_len = PAGE_SIZE - *offset;
2546         if (*len > sg_len)
2547                 *len = sg_len;
2548
2549         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2550 }
2551 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2552
2553 /**
2554  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2555  * @virt:       virtual address to be unmapped
2556  */
2557 void scsi_kunmap_atomic_sg(void *virt)
2558 {
2559         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2560 }
2561 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);