regulator: Check for constraints before using them for name
[linux-2.6-block.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 static int has_full_constraints;
32
33 /*
34  * struct regulator_map
35  *
36  * Used to provide symbolic supply names to devices.
37  */
38 struct regulator_map {
39         struct list_head list;
40         const char *dev_name;   /* The dev_name() for the consumer */
41         const char *supply;
42         struct regulator_dev *regulator;
43 };
44
45 /*
46  * struct regulator
47  *
48  * One for each consumer device.
49  */
50 struct regulator {
51         struct device *dev;
52         struct list_head list;
53         int uA_load;
54         int min_uV;
55         int max_uV;
56         char *supply_name;
57         struct device_attribute dev_attr;
58         struct regulator_dev *rdev;
59 };
60
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67                                   unsigned long event, void *data);
68
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
71 {
72         struct regulator *regulator = NULL;
73         struct regulator_dev *rdev;
74
75         mutex_lock(&regulator_list_mutex);
76         list_for_each_entry(rdev, &regulator_list, list) {
77                 mutex_lock(&rdev->mutex);
78                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
79                         if (regulator->dev == dev) {
80                                 mutex_unlock(&rdev->mutex);
81                                 mutex_unlock(&regulator_list_mutex);
82                                 return regulator;
83                         }
84                 }
85                 mutex_unlock(&rdev->mutex);
86         }
87         mutex_unlock(&regulator_list_mutex);
88         return NULL;
89 }
90
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93                                    int *min_uV, int *max_uV)
94 {
95         BUG_ON(*min_uV > *max_uV);
96
97         if (!rdev->constraints) {
98                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99                        rdev->desc->name);
100                 return -ENODEV;
101         }
102         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103                 printk(KERN_ERR "%s: operation not allowed for %s\n",
104                        __func__, rdev->desc->name);
105                 return -EPERM;
106         }
107
108         if (*max_uV > rdev->constraints->max_uV)
109                 *max_uV = rdev->constraints->max_uV;
110         if (*min_uV < rdev->constraints->min_uV)
111                 *min_uV = rdev->constraints->min_uV;
112
113         if (*min_uV > *max_uV)
114                 return -EINVAL;
115
116         return 0;
117 }
118
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121                                         int *min_uA, int *max_uA)
122 {
123         BUG_ON(*min_uA > *max_uA);
124
125         if (!rdev->constraints) {
126                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127                        rdev->desc->name);
128                 return -ENODEV;
129         }
130         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131                 printk(KERN_ERR "%s: operation not allowed for %s\n",
132                        __func__, rdev->desc->name);
133                 return -EPERM;
134         }
135
136         if (*max_uA > rdev->constraints->max_uA)
137                 *max_uA = rdev->constraints->max_uA;
138         if (*min_uA < rdev->constraints->min_uA)
139                 *min_uA = rdev->constraints->min_uA;
140
141         if (*min_uA > *max_uA)
142                 return -EINVAL;
143
144         return 0;
145 }
146
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 {
150         switch (mode) {
151         case REGULATOR_MODE_FAST:
152         case REGULATOR_MODE_NORMAL:
153         case REGULATOR_MODE_IDLE:
154         case REGULATOR_MODE_STANDBY:
155                 break;
156         default:
157                 return -EINVAL;
158         }
159
160         if (!rdev->constraints) {
161                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162                        rdev->desc->name);
163                 return -ENODEV;
164         }
165         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166                 printk(KERN_ERR "%s: operation not allowed for %s\n",
167                        __func__, rdev->desc->name);
168                 return -EPERM;
169         }
170         if (!(rdev->constraints->valid_modes_mask & mode)) {
171                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
172                        __func__, mode, rdev->desc->name);
173                 return -EINVAL;
174         }
175         return 0;
176 }
177
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
180 {
181         if (!rdev->constraints) {
182                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183                        rdev->desc->name);
184                 return -ENODEV;
185         }
186         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187                 printk(KERN_ERR "%s: operation not allowed for %s\n",
188                        __func__, rdev->desc->name);
189                 return -EPERM;
190         }
191         return 0;
192 }
193
194 static ssize_t device_requested_uA_show(struct device *dev,
195                              struct device_attribute *attr, char *buf)
196 {
197         struct regulator *regulator;
198
199         regulator = get_device_regulator(dev);
200         if (regulator == NULL)
201                 return 0;
202
203         return sprintf(buf, "%d\n", regulator->uA_load);
204 }
205
206 static ssize_t regulator_uV_show(struct device *dev,
207                                 struct device_attribute *attr, char *buf)
208 {
209         struct regulator_dev *rdev = dev_get_drvdata(dev);
210         ssize_t ret;
211
212         mutex_lock(&rdev->mutex);
213         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214         mutex_unlock(&rdev->mutex);
215
216         return ret;
217 }
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220 static ssize_t regulator_uA_show(struct device *dev,
221                                 struct device_attribute *attr, char *buf)
222 {
223         struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 }
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229 static ssize_t regulator_name_show(struct device *dev,
230                              struct device_attribute *attr, char *buf)
231 {
232         struct regulator_dev *rdev = dev_get_drvdata(dev);
233         const char *name;
234
235         if (rdev->constraints && rdev->constraints->name)
236                 name = rdev->constraints->name;
237         else if (rdev->desc->name)
238                 name = rdev->desc->name;
239         else
240                 name = "";
241
242         return sprintf(buf, "%s\n", name);
243 }
244
245 static ssize_t regulator_print_opmode(char *buf, int mode)
246 {
247         switch (mode) {
248         case REGULATOR_MODE_FAST:
249                 return sprintf(buf, "fast\n");
250         case REGULATOR_MODE_NORMAL:
251                 return sprintf(buf, "normal\n");
252         case REGULATOR_MODE_IDLE:
253                 return sprintf(buf, "idle\n");
254         case REGULATOR_MODE_STANDBY:
255                 return sprintf(buf, "standby\n");
256         }
257         return sprintf(buf, "unknown\n");
258 }
259
260 static ssize_t regulator_opmode_show(struct device *dev,
261                                     struct device_attribute *attr, char *buf)
262 {
263         struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 }
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269 static ssize_t regulator_print_state(char *buf, int state)
270 {
271         if (state > 0)
272                 return sprintf(buf, "enabled\n");
273         else if (state == 0)
274                 return sprintf(buf, "disabled\n");
275         else
276                 return sprintf(buf, "unknown\n");
277 }
278
279 static ssize_t regulator_state_show(struct device *dev,
280                                    struct device_attribute *attr, char *buf)
281 {
282         struct regulator_dev *rdev = dev_get_drvdata(dev);
283
284         return regulator_print_state(buf, _regulator_is_enabled(rdev));
285 }
286 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
287
288 static ssize_t regulator_status_show(struct device *dev,
289                                    struct device_attribute *attr, char *buf)
290 {
291         struct regulator_dev *rdev = dev_get_drvdata(dev);
292         int status;
293         char *label;
294
295         status = rdev->desc->ops->get_status(rdev);
296         if (status < 0)
297                 return status;
298
299         switch (status) {
300         case REGULATOR_STATUS_OFF:
301                 label = "off";
302                 break;
303         case REGULATOR_STATUS_ON:
304                 label = "on";
305                 break;
306         case REGULATOR_STATUS_ERROR:
307                 label = "error";
308                 break;
309         case REGULATOR_STATUS_FAST:
310                 label = "fast";
311                 break;
312         case REGULATOR_STATUS_NORMAL:
313                 label = "normal";
314                 break;
315         case REGULATOR_STATUS_IDLE:
316                 label = "idle";
317                 break;
318         case REGULATOR_STATUS_STANDBY:
319                 label = "standby";
320                 break;
321         default:
322                 return -ERANGE;
323         }
324
325         return sprintf(buf, "%s\n", label);
326 }
327 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
328
329 static ssize_t regulator_min_uA_show(struct device *dev,
330                                     struct device_attribute *attr, char *buf)
331 {
332         struct regulator_dev *rdev = dev_get_drvdata(dev);
333
334         if (!rdev->constraints)
335                 return sprintf(buf, "constraint not defined\n");
336
337         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
338 }
339 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
340
341 static ssize_t regulator_max_uA_show(struct device *dev,
342                                     struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         if (!rdev->constraints)
347                 return sprintf(buf, "constraint not defined\n");
348
349         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
350 }
351 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
352
353 static ssize_t regulator_min_uV_show(struct device *dev,
354                                     struct device_attribute *attr, char *buf)
355 {
356         struct regulator_dev *rdev = dev_get_drvdata(dev);
357
358         if (!rdev->constraints)
359                 return sprintf(buf, "constraint not defined\n");
360
361         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
362 }
363 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
364
365 static ssize_t regulator_max_uV_show(struct device *dev,
366                                     struct device_attribute *attr, char *buf)
367 {
368         struct regulator_dev *rdev = dev_get_drvdata(dev);
369
370         if (!rdev->constraints)
371                 return sprintf(buf, "constraint not defined\n");
372
373         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
374 }
375 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
376
377 static ssize_t regulator_total_uA_show(struct device *dev,
378                                       struct device_attribute *attr, char *buf)
379 {
380         struct regulator_dev *rdev = dev_get_drvdata(dev);
381         struct regulator *regulator;
382         int uA = 0;
383
384         mutex_lock(&rdev->mutex);
385         list_for_each_entry(regulator, &rdev->consumer_list, list)
386             uA += regulator->uA_load;
387         mutex_unlock(&rdev->mutex);
388         return sprintf(buf, "%d\n", uA);
389 }
390 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
391
392 static ssize_t regulator_num_users_show(struct device *dev,
393                                       struct device_attribute *attr, char *buf)
394 {
395         struct regulator_dev *rdev = dev_get_drvdata(dev);
396         return sprintf(buf, "%d\n", rdev->use_count);
397 }
398
399 static ssize_t regulator_type_show(struct device *dev,
400                                   struct device_attribute *attr, char *buf)
401 {
402         struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404         switch (rdev->desc->type) {
405         case REGULATOR_VOLTAGE:
406                 return sprintf(buf, "voltage\n");
407         case REGULATOR_CURRENT:
408                 return sprintf(buf, "current\n");
409         }
410         return sprintf(buf, "unknown\n");
411 }
412
413 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414                                 struct device_attribute *attr, char *buf)
415 {
416         struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
419 }
420 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421                 regulator_suspend_mem_uV_show, NULL);
422
423 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424                                 struct device_attribute *attr, char *buf)
425 {
426         struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
429 }
430 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431                 regulator_suspend_disk_uV_show, NULL);
432
433 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434                                 struct device_attribute *attr, char *buf)
435 {
436         struct regulator_dev *rdev = dev_get_drvdata(dev);
437
438         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
439 }
440 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441                 regulator_suspend_standby_uV_show, NULL);
442
443 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444                                 struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         return regulator_print_opmode(buf,
449                 rdev->constraints->state_mem.mode);
450 }
451 static DEVICE_ATTR(suspend_mem_mode, 0444,
452                 regulator_suspend_mem_mode_show, NULL);
453
454 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455                                 struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         return regulator_print_opmode(buf,
460                 rdev->constraints->state_disk.mode);
461 }
462 static DEVICE_ATTR(suspend_disk_mode, 0444,
463                 regulator_suspend_disk_mode_show, NULL);
464
465 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466                                 struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         return regulator_print_opmode(buf,
471                 rdev->constraints->state_standby.mode);
472 }
473 static DEVICE_ATTR(suspend_standby_mode, 0444,
474                 regulator_suspend_standby_mode_show, NULL);
475
476 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477                                    struct device_attribute *attr, char *buf)
478 {
479         struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481         return regulator_print_state(buf,
482                         rdev->constraints->state_mem.enabled);
483 }
484 static DEVICE_ATTR(suspend_mem_state, 0444,
485                 regulator_suspend_mem_state_show, NULL);
486
487 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488                                    struct device_attribute *attr, char *buf)
489 {
490         struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492         return regulator_print_state(buf,
493                         rdev->constraints->state_disk.enabled);
494 }
495 static DEVICE_ATTR(suspend_disk_state, 0444,
496                 regulator_suspend_disk_state_show, NULL);
497
498 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499                                    struct device_attribute *attr, char *buf)
500 {
501         struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503         return regulator_print_state(buf,
504                         rdev->constraints->state_standby.enabled);
505 }
506 static DEVICE_ATTR(suspend_standby_state, 0444,
507                 regulator_suspend_standby_state_show, NULL);
508
509
510 /*
511  * These are the only attributes are present for all regulators.
512  * Other attributes are a function of regulator functionality.
513  */
514 static struct device_attribute regulator_dev_attrs[] = {
515         __ATTR(name, 0444, regulator_name_show, NULL),
516         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
517         __ATTR(type, 0444, regulator_type_show, NULL),
518         __ATTR_NULL,
519 };
520
521 static void regulator_dev_release(struct device *dev)
522 {
523         struct regulator_dev *rdev = dev_get_drvdata(dev);
524         kfree(rdev);
525 }
526
527 static struct class regulator_class = {
528         .name = "regulator",
529         .dev_release = regulator_dev_release,
530         .dev_attrs = regulator_dev_attrs,
531 };
532
533 /* Calculate the new optimum regulator operating mode based on the new total
534  * consumer load. All locks held by caller */
535 static void drms_uA_update(struct regulator_dev *rdev)
536 {
537         struct regulator *sibling;
538         int current_uA = 0, output_uV, input_uV, err;
539         unsigned int mode;
540
541         err = regulator_check_drms(rdev);
542         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
544                 return;
545
546         /* get output voltage */
547         output_uV = rdev->desc->ops->get_voltage(rdev);
548         if (output_uV <= 0)
549                 return;
550
551         /* get input voltage */
552         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554         else
555                 input_uV = rdev->constraints->input_uV;
556         if (input_uV <= 0)
557                 return;
558
559         /* calc total requested load */
560         list_for_each_entry(sibling, &rdev->consumer_list, list)
561             current_uA += sibling->uA_load;
562
563         /* now get the optimum mode for our new total regulator load */
564         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565                                                   output_uV, current_uA);
566
567         /* check the new mode is allowed */
568         err = regulator_check_mode(rdev, mode);
569         if (err == 0)
570                 rdev->desc->ops->set_mode(rdev, mode);
571 }
572
573 static int suspend_set_state(struct regulator_dev *rdev,
574         struct regulator_state *rstate)
575 {
576         int ret = 0;
577
578         /* enable & disable are mandatory for suspend control */
579         if (!rdev->desc->ops->set_suspend_enable ||
580                 !rdev->desc->ops->set_suspend_disable) {
581                 printk(KERN_ERR "%s: no way to set suspend state\n",
582                         __func__);
583                 return -EINVAL;
584         }
585
586         if (rstate->enabled)
587                 ret = rdev->desc->ops->set_suspend_enable(rdev);
588         else
589                 ret = rdev->desc->ops->set_suspend_disable(rdev);
590         if (ret < 0) {
591                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592                 return ret;
593         }
594
595         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597                 if (ret < 0) {
598                         printk(KERN_ERR "%s: failed to set voltage\n",
599                                 __func__);
600                         return ret;
601                 }
602         }
603
604         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606                 if (ret < 0) {
607                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
608                         return ret;
609                 }
610         }
611         return ret;
612 }
613
614 /* locks held by caller */
615 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
616 {
617         if (!rdev->constraints)
618                 return -EINVAL;
619
620         switch (state) {
621         case PM_SUSPEND_STANDBY:
622                 return suspend_set_state(rdev,
623                         &rdev->constraints->state_standby);
624         case PM_SUSPEND_MEM:
625                 return suspend_set_state(rdev,
626                         &rdev->constraints->state_mem);
627         case PM_SUSPEND_MAX:
628                 return suspend_set_state(rdev,
629                         &rdev->constraints->state_disk);
630         default:
631                 return -EINVAL;
632         }
633 }
634
635 static void print_constraints(struct regulator_dev *rdev)
636 {
637         struct regulation_constraints *constraints = rdev->constraints;
638         char buf[80];
639         int count;
640
641         if (rdev->desc->type == REGULATOR_VOLTAGE) {
642                 if (constraints->min_uV == constraints->max_uV)
643                         count = sprintf(buf, "%d mV ",
644                                         constraints->min_uV / 1000);
645                 else
646                         count = sprintf(buf, "%d <--> %d mV ",
647                                         constraints->min_uV / 1000,
648                                         constraints->max_uV / 1000);
649         } else {
650                 if (constraints->min_uA == constraints->max_uA)
651                         count = sprintf(buf, "%d mA ",
652                                         constraints->min_uA / 1000);
653                 else
654                         count = sprintf(buf, "%d <--> %d mA ",
655                                         constraints->min_uA / 1000,
656                                         constraints->max_uA / 1000);
657         }
658         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659                 count += sprintf(buf + count, "fast ");
660         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661                 count += sprintf(buf + count, "normal ");
662         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663                 count += sprintf(buf + count, "idle ");
664         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665                 count += sprintf(buf + count, "standby");
666
667         printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
668 }
669
670 /**
671  * set_machine_constraints - sets regulator constraints
672  * @rdev: regulator source
673  * @constraints: constraints to apply
674  *
675  * Allows platform initialisation code to define and constrain
676  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
677  * Constraints *must* be set by platform code in order for some
678  * regulator operations to proceed i.e. set_voltage, set_current_limit,
679  * set_mode.
680  */
681 static int set_machine_constraints(struct regulator_dev *rdev,
682         struct regulation_constraints *constraints)
683 {
684         int ret = 0;
685         const char *name;
686         struct regulator_ops *ops = rdev->desc->ops;
687
688         if (constraints->name)
689                 name = constraints->name;
690         else if (rdev->desc->name)
691                 name = rdev->desc->name;
692         else
693                 name = "regulator";
694
695         /* constrain machine-level voltage specs to fit
696          * the actual range supported by this regulator.
697          */
698         if (ops->list_voltage && rdev->desc->n_voltages) {
699                 int     count = rdev->desc->n_voltages;
700                 int     i;
701                 int     min_uV = INT_MAX;
702                 int     max_uV = INT_MIN;
703                 int     cmin = constraints->min_uV;
704                 int     cmax = constraints->max_uV;
705
706                 /* it's safe to autoconfigure fixed-voltage supplies
707                    and the constraints are used by list_voltage. */
708                 if (count == 1 && !cmin) {
709                         cmin = 1;
710                         cmax = INT_MAX;
711                         constraints->min_uV = cmin;
712                         constraints->max_uV = cmax;
713                 }
714
715                 /* voltage constraints are optional */
716                 if ((cmin == 0) && (cmax == 0))
717                         goto out;
718
719                 /* else require explicit machine-level constraints */
720                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
721                         pr_err("%s: %s '%s' voltage constraints\n",
722                                        __func__, "invalid", name);
723                         ret = -EINVAL;
724                         goto out;
725                 }
726
727                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
728                 for (i = 0; i < count; i++) {
729                         int     value;
730
731                         value = ops->list_voltage(rdev, i);
732                         if (value <= 0)
733                                 continue;
734
735                         /* maybe adjust [min_uV..max_uV] */
736                         if (value >= cmin && value < min_uV)
737                                 min_uV = value;
738                         if (value <= cmax && value > max_uV)
739                                 max_uV = value;
740                 }
741
742                 /* final: [min_uV..max_uV] valid iff constraints valid */
743                 if (max_uV < min_uV) {
744                         pr_err("%s: %s '%s' voltage constraints\n",
745                                        __func__, "unsupportable", name);
746                         ret = -EINVAL;
747                         goto out;
748                 }
749
750                 /* use regulator's subset of machine constraints */
751                 if (constraints->min_uV < min_uV) {
752                         pr_debug("%s: override '%s' %s, %d -> %d\n",
753                                        __func__, name, "min_uV",
754                                         constraints->min_uV, min_uV);
755                         constraints->min_uV = min_uV;
756                 }
757                 if (constraints->max_uV > max_uV) {
758                         pr_debug("%s: override '%s' %s, %d -> %d\n",
759                                        __func__, name, "max_uV",
760                                         constraints->max_uV, max_uV);
761                         constraints->max_uV = max_uV;
762                 }
763         }
764
765         rdev->constraints = constraints;
766
767         /* do we need to apply the constraint voltage */
768         if (rdev->constraints->apply_uV &&
769                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
770                 ops->set_voltage) {
771                 ret = ops->set_voltage(rdev,
772                         rdev->constraints->min_uV, rdev->constraints->max_uV);
773                         if (ret < 0) {
774                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
775                                        __func__,
776                                        rdev->constraints->min_uV, name);
777                                 rdev->constraints = NULL;
778                                 goto out;
779                         }
780         }
781
782         /* do we need to setup our suspend state */
783         if (constraints->initial_state) {
784                 ret = suspend_prepare(rdev, constraints->initial_state);
785                 if (ret < 0) {
786                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
787                                __func__, name);
788                         rdev->constraints = NULL;
789                         goto out;
790                 }
791         }
792
793         if (constraints->initial_mode) {
794                 if (!ops->set_mode) {
795                         printk(KERN_ERR "%s: no set_mode operation for %s\n",
796                                __func__, name);
797                         ret = -EINVAL;
798                         goto out;
799                 }
800
801                 ret = ops->set_mode(rdev, constraints->initial_mode);
802                 if (ret < 0) {
803                         printk(KERN_ERR
804                                "%s: failed to set initial mode for %s: %d\n",
805                                __func__, name, ret);
806                         goto out;
807                 }
808         }
809
810         /* If the constraints say the regulator should be on at this point
811          * and we have control then make sure it is enabled.
812          */
813         if ((constraints->always_on || constraints->boot_on) && ops->enable) {
814                 ret = ops->enable(rdev);
815                 if (ret < 0) {
816                         printk(KERN_ERR "%s: failed to enable %s\n",
817                                __func__, name);
818                         rdev->constraints = NULL;
819                         goto out;
820                 }
821         }
822
823         print_constraints(rdev);
824 out:
825         return ret;
826 }
827
828 /**
829  * set_supply - set regulator supply regulator
830  * @rdev: regulator name
831  * @supply_rdev: supply regulator name
832  *
833  * Called by platform initialisation code to set the supply regulator for this
834  * regulator. This ensures that a regulators supply will also be enabled by the
835  * core if it's child is enabled.
836  */
837 static int set_supply(struct regulator_dev *rdev,
838         struct regulator_dev *supply_rdev)
839 {
840         int err;
841
842         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
843                                 "supply");
844         if (err) {
845                 printk(KERN_ERR
846                        "%s: could not add device link %s err %d\n",
847                        __func__, supply_rdev->dev.kobj.name, err);
848                        goto out;
849         }
850         rdev->supply = supply_rdev;
851         list_add(&rdev->slist, &supply_rdev->supply_list);
852 out:
853         return err;
854 }
855
856 /**
857  * set_consumer_device_supply: Bind a regulator to a symbolic supply
858  * @rdev:         regulator source
859  * @consumer_dev: device the supply applies to
860  * @consumer_dev_name: dev_name() string for device supply applies to
861  * @supply:       symbolic name for supply
862  *
863  * Allows platform initialisation code to map physical regulator
864  * sources to symbolic names for supplies for use by devices.  Devices
865  * should use these symbolic names to request regulators, avoiding the
866  * need to provide board-specific regulator names as platform data.
867  *
868  * Only one of consumer_dev and consumer_dev_name may be specified.
869  */
870 static int set_consumer_device_supply(struct regulator_dev *rdev,
871         struct device *consumer_dev, const char *consumer_dev_name,
872         const char *supply)
873 {
874         struct regulator_map *node;
875         int has_dev;
876
877         if (consumer_dev && consumer_dev_name)
878                 return -EINVAL;
879
880         if (!consumer_dev_name && consumer_dev)
881                 consumer_dev_name = dev_name(consumer_dev);
882
883         if (supply == NULL)
884                 return -EINVAL;
885
886         if (consumer_dev_name != NULL)
887                 has_dev = 1;
888         else
889                 has_dev = 0;
890
891         list_for_each_entry(node, &regulator_map_list, list) {
892                 if (consumer_dev_name != node->dev_name)
893                         continue;
894                 if (strcmp(node->supply, supply) != 0)
895                         continue;
896
897                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
898                                 dev_name(&node->regulator->dev),
899                                 node->regulator->desc->name,
900                                 supply,
901                                 dev_name(&rdev->dev), rdev->desc->name);
902                 return -EBUSY;
903         }
904
905         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
906         if (node == NULL)
907                 return -ENOMEM;
908
909         node->regulator = rdev;
910         node->supply = supply;
911
912         if (has_dev) {
913                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
914                 if (node->dev_name == NULL) {
915                         kfree(node);
916                         return -ENOMEM;
917                 }
918         }
919
920         list_add(&node->list, &regulator_map_list);
921         return 0;
922 }
923
924 static void unset_consumer_device_supply(struct regulator_dev *rdev,
925         const char *consumer_dev_name, struct device *consumer_dev)
926 {
927         struct regulator_map *node, *n;
928
929         if (consumer_dev && !consumer_dev_name)
930                 consumer_dev_name = dev_name(consumer_dev);
931
932         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
933                 if (rdev != node->regulator)
934                         continue;
935
936                 if (consumer_dev_name && node->dev_name &&
937                     strcmp(consumer_dev_name, node->dev_name))
938                         continue;
939
940                 list_del(&node->list);
941                 kfree(node->dev_name);
942                 kfree(node);
943                 return;
944         }
945 }
946
947 static void unset_regulator_supplies(struct regulator_dev *rdev)
948 {
949         struct regulator_map *node, *n;
950
951         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
952                 if (rdev == node->regulator) {
953                         list_del(&node->list);
954                         kfree(node->dev_name);
955                         kfree(node);
956                         return;
957                 }
958         }
959 }
960
961 #define REG_STR_SIZE    32
962
963 static struct regulator *create_regulator(struct regulator_dev *rdev,
964                                           struct device *dev,
965                                           const char *supply_name)
966 {
967         struct regulator *regulator;
968         char buf[REG_STR_SIZE];
969         int err, size;
970
971         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
972         if (regulator == NULL)
973                 return NULL;
974
975         mutex_lock(&rdev->mutex);
976         regulator->rdev = rdev;
977         list_add(&regulator->list, &rdev->consumer_list);
978
979         if (dev) {
980                 /* create a 'requested_microamps_name' sysfs entry */
981                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
982                         supply_name);
983                 if (size >= REG_STR_SIZE)
984                         goto overflow_err;
985
986                 regulator->dev = dev;
987                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
988                 if (regulator->dev_attr.attr.name == NULL)
989                         goto attr_name_err;
990
991                 regulator->dev_attr.attr.owner = THIS_MODULE;
992                 regulator->dev_attr.attr.mode = 0444;
993                 regulator->dev_attr.show = device_requested_uA_show;
994                 err = device_create_file(dev, &regulator->dev_attr);
995                 if (err < 0) {
996                         printk(KERN_WARNING "%s: could not add regulator_dev"
997                                 " load sysfs\n", __func__);
998                         goto attr_name_err;
999                 }
1000
1001                 /* also add a link to the device sysfs entry */
1002                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1003                                  dev->kobj.name, supply_name);
1004                 if (size >= REG_STR_SIZE)
1005                         goto attr_err;
1006
1007                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1008                 if (regulator->supply_name == NULL)
1009                         goto attr_err;
1010
1011                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1012                                         buf);
1013                 if (err) {
1014                         printk(KERN_WARNING
1015                                "%s: could not add device link %s err %d\n",
1016                                __func__, dev->kobj.name, err);
1017                         device_remove_file(dev, &regulator->dev_attr);
1018                         goto link_name_err;
1019                 }
1020         }
1021         mutex_unlock(&rdev->mutex);
1022         return regulator;
1023 link_name_err:
1024         kfree(regulator->supply_name);
1025 attr_err:
1026         device_remove_file(regulator->dev, &regulator->dev_attr);
1027 attr_name_err:
1028         kfree(regulator->dev_attr.attr.name);
1029 overflow_err:
1030         list_del(&regulator->list);
1031         kfree(regulator);
1032         mutex_unlock(&rdev->mutex);
1033         return NULL;
1034 }
1035
1036 /* Internal regulator request function */
1037 static struct regulator *_regulator_get(struct device *dev, const char *id,
1038                                         int exclusive)
1039 {
1040         struct regulator_dev *rdev;
1041         struct regulator_map *map;
1042         struct regulator *regulator = ERR_PTR(-ENODEV);
1043         const char *devname = NULL;
1044         int ret;
1045
1046         if (id == NULL) {
1047                 printk(KERN_ERR "regulator: get() with no identifier\n");
1048                 return regulator;
1049         }
1050
1051         if (dev)
1052                 devname = dev_name(dev);
1053
1054         mutex_lock(&regulator_list_mutex);
1055
1056         list_for_each_entry(map, &regulator_map_list, list) {
1057                 /* If the mapping has a device set up it must match */
1058                 if (map->dev_name &&
1059                     (!devname || strcmp(map->dev_name, devname)))
1060                         continue;
1061
1062                 if (strcmp(map->supply, id) == 0) {
1063                         rdev = map->regulator;
1064                         goto found;
1065                 }
1066         }
1067         mutex_unlock(&regulator_list_mutex);
1068         return regulator;
1069
1070 found:
1071         if (rdev->exclusive) {
1072                 regulator = ERR_PTR(-EPERM);
1073                 goto out;
1074         }
1075
1076         if (exclusive && rdev->open_count) {
1077                 regulator = ERR_PTR(-EBUSY);
1078                 goto out;
1079         }
1080
1081         if (!try_module_get(rdev->owner))
1082                 goto out;
1083
1084         regulator = create_regulator(rdev, dev, id);
1085         if (regulator == NULL) {
1086                 regulator = ERR_PTR(-ENOMEM);
1087                 module_put(rdev->owner);
1088         }
1089
1090         rdev->open_count++;
1091         if (exclusive) {
1092                 rdev->exclusive = 1;
1093
1094                 ret = _regulator_is_enabled(rdev);
1095                 if (ret > 0)
1096                         rdev->use_count = 1;
1097                 else
1098                         rdev->use_count = 0;
1099         }
1100
1101 out:
1102         mutex_unlock(&regulator_list_mutex);
1103
1104         return regulator;
1105 }
1106
1107 /**
1108  * regulator_get - lookup and obtain a reference to a regulator.
1109  * @dev: device for regulator "consumer"
1110  * @id: Supply name or regulator ID.
1111  *
1112  * Returns a struct regulator corresponding to the regulator producer,
1113  * or IS_ERR() condition containing errno.
1114  *
1115  * Use of supply names configured via regulator_set_device_supply() is
1116  * strongly encouraged.  It is recommended that the supply name used
1117  * should match the name used for the supply and/or the relevant
1118  * device pins in the datasheet.
1119  */
1120 struct regulator *regulator_get(struct device *dev, const char *id)
1121 {
1122         return _regulator_get(dev, id, 0);
1123 }
1124 EXPORT_SYMBOL_GPL(regulator_get);
1125
1126 /**
1127  * regulator_get_exclusive - obtain exclusive access to a regulator.
1128  * @dev: device for regulator "consumer"
1129  * @id: Supply name or regulator ID.
1130  *
1131  * Returns a struct regulator corresponding to the regulator producer,
1132  * or IS_ERR() condition containing errno.  Other consumers will be
1133  * unable to obtain this reference is held and the use count for the
1134  * regulator will be initialised to reflect the current state of the
1135  * regulator.
1136  *
1137  * This is intended for use by consumers which cannot tolerate shared
1138  * use of the regulator such as those which need to force the
1139  * regulator off for correct operation of the hardware they are
1140  * controlling.
1141  *
1142  * Use of supply names configured via regulator_set_device_supply() is
1143  * strongly encouraged.  It is recommended that the supply name used
1144  * should match the name used for the supply and/or the relevant
1145  * device pins in the datasheet.
1146  */
1147 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1148 {
1149         return _regulator_get(dev, id, 1);
1150 }
1151 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1152
1153 /**
1154  * regulator_put - "free" the regulator source
1155  * @regulator: regulator source
1156  *
1157  * Note: drivers must ensure that all regulator_enable calls made on this
1158  * regulator source are balanced by regulator_disable calls prior to calling
1159  * this function.
1160  */
1161 void regulator_put(struct regulator *regulator)
1162 {
1163         struct regulator_dev *rdev;
1164
1165         if (regulator == NULL || IS_ERR(regulator))
1166                 return;
1167
1168         mutex_lock(&regulator_list_mutex);
1169         rdev = regulator->rdev;
1170
1171         /* remove any sysfs entries */
1172         if (regulator->dev) {
1173                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1174                 kfree(regulator->supply_name);
1175                 device_remove_file(regulator->dev, &regulator->dev_attr);
1176                 kfree(regulator->dev_attr.attr.name);
1177         }
1178         list_del(&regulator->list);
1179         kfree(regulator);
1180
1181         rdev->open_count--;
1182         rdev->exclusive = 0;
1183
1184         module_put(rdev->owner);
1185         mutex_unlock(&regulator_list_mutex);
1186 }
1187 EXPORT_SYMBOL_GPL(regulator_put);
1188
1189 /* locks held by regulator_enable() */
1190 static int _regulator_enable(struct regulator_dev *rdev)
1191 {
1192         int ret = -EINVAL;
1193
1194         if (!rdev->constraints) {
1195                 printk(KERN_ERR "%s: %s has no constraints\n",
1196                        __func__, rdev->desc->name);
1197                 return ret;
1198         }
1199
1200         /* do we need to enable the supply regulator first */
1201         if (rdev->supply) {
1202                 ret = _regulator_enable(rdev->supply);
1203                 if (ret < 0) {
1204                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1205                                __func__, rdev->desc->name, ret);
1206                         return ret;
1207                 }
1208         }
1209
1210         /* check voltage and requested load before enabling */
1211         if (rdev->desc->ops->enable) {
1212
1213                 if (rdev->constraints &&
1214                         (rdev->constraints->valid_ops_mask &
1215                         REGULATOR_CHANGE_DRMS))
1216                         drms_uA_update(rdev);
1217
1218                 ret = rdev->desc->ops->enable(rdev);
1219                 if (ret < 0) {
1220                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1221                                __func__, rdev->desc->name, ret);
1222                         return ret;
1223                 }
1224                 rdev->use_count++;
1225                 return ret;
1226         }
1227
1228         return ret;
1229 }
1230
1231 /**
1232  * regulator_enable - enable regulator output
1233  * @regulator: regulator source
1234  *
1235  * Request that the regulator be enabled with the regulator output at
1236  * the predefined voltage or current value.  Calls to regulator_enable()
1237  * must be balanced with calls to regulator_disable().
1238  *
1239  * NOTE: the output value can be set by other drivers, boot loader or may be
1240  * hardwired in the regulator.
1241  */
1242 int regulator_enable(struct regulator *regulator)
1243 {
1244         struct regulator_dev *rdev = regulator->rdev;
1245         int ret = 0;
1246
1247         mutex_lock(&rdev->mutex);
1248         ret = _regulator_enable(rdev);
1249         mutex_unlock(&rdev->mutex);
1250         return ret;
1251 }
1252 EXPORT_SYMBOL_GPL(regulator_enable);
1253
1254 /* locks held by regulator_disable() */
1255 static int _regulator_disable(struct regulator_dev *rdev)
1256 {
1257         int ret = 0;
1258
1259         if (WARN(rdev->use_count <= 0,
1260                         "unbalanced disables for %s\n",
1261                         rdev->desc->name))
1262                 return -EIO;
1263
1264         /* are we the last user and permitted to disable ? */
1265         if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1266
1267                 /* we are last user */
1268                 if (rdev->desc->ops->disable) {
1269                         ret = rdev->desc->ops->disable(rdev);
1270                         if (ret < 0) {
1271                                 printk(KERN_ERR "%s: failed to disable %s\n",
1272                                        __func__, rdev->desc->name);
1273                                 return ret;
1274                         }
1275                 }
1276
1277                 /* decrease our supplies ref count and disable if required */
1278                 if (rdev->supply)
1279                         _regulator_disable(rdev->supply);
1280
1281                 rdev->use_count = 0;
1282         } else if (rdev->use_count > 1) {
1283
1284                 if (rdev->constraints &&
1285                         (rdev->constraints->valid_ops_mask &
1286                         REGULATOR_CHANGE_DRMS))
1287                         drms_uA_update(rdev);
1288
1289                 rdev->use_count--;
1290         }
1291         return ret;
1292 }
1293
1294 /**
1295  * regulator_disable - disable regulator output
1296  * @regulator: regulator source
1297  *
1298  * Disable the regulator output voltage or current.  Calls to
1299  * regulator_enable() must be balanced with calls to
1300  * regulator_disable().
1301  *
1302  * NOTE: this will only disable the regulator output if no other consumer
1303  * devices have it enabled, the regulator device supports disabling and
1304  * machine constraints permit this operation.
1305  */
1306 int regulator_disable(struct regulator *regulator)
1307 {
1308         struct regulator_dev *rdev = regulator->rdev;
1309         int ret = 0;
1310
1311         mutex_lock(&rdev->mutex);
1312         ret = _regulator_disable(rdev);
1313         mutex_unlock(&rdev->mutex);
1314         return ret;
1315 }
1316 EXPORT_SYMBOL_GPL(regulator_disable);
1317
1318 /* locks held by regulator_force_disable() */
1319 static int _regulator_force_disable(struct regulator_dev *rdev)
1320 {
1321         int ret = 0;
1322
1323         /* force disable */
1324         if (rdev->desc->ops->disable) {
1325                 /* ah well, who wants to live forever... */
1326                 ret = rdev->desc->ops->disable(rdev);
1327                 if (ret < 0) {
1328                         printk(KERN_ERR "%s: failed to force disable %s\n",
1329                                __func__, rdev->desc->name);
1330                         return ret;
1331                 }
1332                 /* notify other consumers that power has been forced off */
1333                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1334                         NULL);
1335         }
1336
1337         /* decrease our supplies ref count and disable if required */
1338         if (rdev->supply)
1339                 _regulator_disable(rdev->supply);
1340
1341         rdev->use_count = 0;
1342         return ret;
1343 }
1344
1345 /**
1346  * regulator_force_disable - force disable regulator output
1347  * @regulator: regulator source
1348  *
1349  * Forcibly disable the regulator output voltage or current.
1350  * NOTE: this *will* disable the regulator output even if other consumer
1351  * devices have it enabled. This should be used for situations when device
1352  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1353  */
1354 int regulator_force_disable(struct regulator *regulator)
1355 {
1356         int ret;
1357
1358         mutex_lock(&regulator->rdev->mutex);
1359         regulator->uA_load = 0;
1360         ret = _regulator_force_disable(regulator->rdev);
1361         mutex_unlock(&regulator->rdev->mutex);
1362         return ret;
1363 }
1364 EXPORT_SYMBOL_GPL(regulator_force_disable);
1365
1366 static int _regulator_is_enabled(struct regulator_dev *rdev)
1367 {
1368         int ret;
1369
1370         mutex_lock(&rdev->mutex);
1371
1372         /* sanity check */
1373         if (!rdev->desc->ops->is_enabled) {
1374                 ret = -EINVAL;
1375                 goto out;
1376         }
1377
1378         ret = rdev->desc->ops->is_enabled(rdev);
1379 out:
1380         mutex_unlock(&rdev->mutex);
1381         return ret;
1382 }
1383
1384 /**
1385  * regulator_is_enabled - is the regulator output enabled
1386  * @regulator: regulator source
1387  *
1388  * Returns positive if the regulator driver backing the source/client
1389  * has requested that the device be enabled, zero if it hasn't, else a
1390  * negative errno code.
1391  *
1392  * Note that the device backing this regulator handle can have multiple
1393  * users, so it might be enabled even if regulator_enable() was never
1394  * called for this particular source.
1395  */
1396 int regulator_is_enabled(struct regulator *regulator)
1397 {
1398         return _regulator_is_enabled(regulator->rdev);
1399 }
1400 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1401
1402 /**
1403  * regulator_count_voltages - count regulator_list_voltage() selectors
1404  * @regulator: regulator source
1405  *
1406  * Returns number of selectors, or negative errno.  Selectors are
1407  * numbered starting at zero, and typically correspond to bitfields
1408  * in hardware registers.
1409  */
1410 int regulator_count_voltages(struct regulator *regulator)
1411 {
1412         struct regulator_dev    *rdev = regulator->rdev;
1413
1414         return rdev->desc->n_voltages ? : -EINVAL;
1415 }
1416 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1417
1418 /**
1419  * regulator_list_voltage - enumerate supported voltages
1420  * @regulator: regulator source
1421  * @selector: identify voltage to list
1422  * Context: can sleep
1423  *
1424  * Returns a voltage that can be passed to @regulator_set_voltage(),
1425  * zero if this selector code can't be used on this sytem, or a
1426  * negative errno.
1427  */
1428 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1429 {
1430         struct regulator_dev    *rdev = regulator->rdev;
1431         struct regulator_ops    *ops = rdev->desc->ops;
1432         int                     ret;
1433
1434         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1435                 return -EINVAL;
1436
1437         mutex_lock(&rdev->mutex);
1438         ret = ops->list_voltage(rdev, selector);
1439         mutex_unlock(&rdev->mutex);
1440
1441         if (ret > 0) {
1442                 if (ret < rdev->constraints->min_uV)
1443                         ret = 0;
1444                 else if (ret > rdev->constraints->max_uV)
1445                         ret = 0;
1446         }
1447
1448         return ret;
1449 }
1450 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1451
1452 /**
1453  * regulator_is_supported_voltage - check if a voltage range can be supported
1454  *
1455  * @regulator: Regulator to check.
1456  * @min_uV: Minimum required voltage in uV.
1457  * @max_uV: Maximum required voltage in uV.
1458  *
1459  * Returns a boolean or a negative error code.
1460  */
1461 int regulator_is_supported_voltage(struct regulator *regulator,
1462                                    int min_uV, int max_uV)
1463 {
1464         int i, voltages, ret;
1465
1466         ret = regulator_count_voltages(regulator);
1467         if (ret < 0)
1468                 return ret;
1469         voltages = ret;
1470
1471         for (i = 0; i < voltages; i++) {
1472                 ret = regulator_list_voltage(regulator, i);
1473
1474                 if (ret >= min_uV && ret <= max_uV)
1475                         return 1;
1476         }
1477
1478         return 0;
1479 }
1480
1481 /**
1482  * regulator_set_voltage - set regulator output voltage
1483  * @regulator: regulator source
1484  * @min_uV: Minimum required voltage in uV
1485  * @max_uV: Maximum acceptable voltage in uV
1486  *
1487  * Sets a voltage regulator to the desired output voltage. This can be set
1488  * during any regulator state. IOW, regulator can be disabled or enabled.
1489  *
1490  * If the regulator is enabled then the voltage will change to the new value
1491  * immediately otherwise if the regulator is disabled the regulator will
1492  * output at the new voltage when enabled.
1493  *
1494  * NOTE: If the regulator is shared between several devices then the lowest
1495  * request voltage that meets the system constraints will be used.
1496  * Regulator system constraints must be set for this regulator before
1497  * calling this function otherwise this call will fail.
1498  */
1499 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1500 {
1501         struct regulator_dev *rdev = regulator->rdev;
1502         int ret;
1503
1504         mutex_lock(&rdev->mutex);
1505
1506         /* sanity check */
1507         if (!rdev->desc->ops->set_voltage) {
1508                 ret = -EINVAL;
1509                 goto out;
1510         }
1511
1512         /* constraints check */
1513         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1514         if (ret < 0)
1515                 goto out;
1516         regulator->min_uV = min_uV;
1517         regulator->max_uV = max_uV;
1518         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1519
1520 out:
1521         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1522         mutex_unlock(&rdev->mutex);
1523         return ret;
1524 }
1525 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1526
1527 static int _regulator_get_voltage(struct regulator_dev *rdev)
1528 {
1529         /* sanity check */
1530         if (rdev->desc->ops->get_voltage)
1531                 return rdev->desc->ops->get_voltage(rdev);
1532         else
1533                 return -EINVAL;
1534 }
1535
1536 /**
1537  * regulator_get_voltage - get regulator output voltage
1538  * @regulator: regulator source
1539  *
1540  * This returns the current regulator voltage in uV.
1541  *
1542  * NOTE: If the regulator is disabled it will return the voltage value. This
1543  * function should not be used to determine regulator state.
1544  */
1545 int regulator_get_voltage(struct regulator *regulator)
1546 {
1547         int ret;
1548
1549         mutex_lock(&regulator->rdev->mutex);
1550
1551         ret = _regulator_get_voltage(regulator->rdev);
1552
1553         mutex_unlock(&regulator->rdev->mutex);
1554
1555         return ret;
1556 }
1557 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1558
1559 /**
1560  * regulator_set_current_limit - set regulator output current limit
1561  * @regulator: regulator source
1562  * @min_uA: Minimuum supported current in uA
1563  * @max_uA: Maximum supported current in uA
1564  *
1565  * Sets current sink to the desired output current. This can be set during
1566  * any regulator state. IOW, regulator can be disabled or enabled.
1567  *
1568  * If the regulator is enabled then the current will change to the new value
1569  * immediately otherwise if the regulator is disabled the regulator will
1570  * output at the new current when enabled.
1571  *
1572  * NOTE: Regulator system constraints must be set for this regulator before
1573  * calling this function otherwise this call will fail.
1574  */
1575 int regulator_set_current_limit(struct regulator *regulator,
1576                                int min_uA, int max_uA)
1577 {
1578         struct regulator_dev *rdev = regulator->rdev;
1579         int ret;
1580
1581         mutex_lock(&rdev->mutex);
1582
1583         /* sanity check */
1584         if (!rdev->desc->ops->set_current_limit) {
1585                 ret = -EINVAL;
1586                 goto out;
1587         }
1588
1589         /* constraints check */
1590         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1591         if (ret < 0)
1592                 goto out;
1593
1594         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1595 out:
1596         mutex_unlock(&rdev->mutex);
1597         return ret;
1598 }
1599 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1600
1601 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1602 {
1603         int ret;
1604
1605         mutex_lock(&rdev->mutex);
1606
1607         /* sanity check */
1608         if (!rdev->desc->ops->get_current_limit) {
1609                 ret = -EINVAL;
1610                 goto out;
1611         }
1612
1613         ret = rdev->desc->ops->get_current_limit(rdev);
1614 out:
1615         mutex_unlock(&rdev->mutex);
1616         return ret;
1617 }
1618
1619 /**
1620  * regulator_get_current_limit - get regulator output current
1621  * @regulator: regulator source
1622  *
1623  * This returns the current supplied by the specified current sink in uA.
1624  *
1625  * NOTE: If the regulator is disabled it will return the current value. This
1626  * function should not be used to determine regulator state.
1627  */
1628 int regulator_get_current_limit(struct regulator *regulator)
1629 {
1630         return _regulator_get_current_limit(regulator->rdev);
1631 }
1632 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1633
1634 /**
1635  * regulator_set_mode - set regulator operating mode
1636  * @regulator: regulator source
1637  * @mode: operating mode - one of the REGULATOR_MODE constants
1638  *
1639  * Set regulator operating mode to increase regulator efficiency or improve
1640  * regulation performance.
1641  *
1642  * NOTE: Regulator system constraints must be set for this regulator before
1643  * calling this function otherwise this call will fail.
1644  */
1645 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1646 {
1647         struct regulator_dev *rdev = regulator->rdev;
1648         int ret;
1649
1650         mutex_lock(&rdev->mutex);
1651
1652         /* sanity check */
1653         if (!rdev->desc->ops->set_mode) {
1654                 ret = -EINVAL;
1655                 goto out;
1656         }
1657
1658         /* constraints check */
1659         ret = regulator_check_mode(rdev, mode);
1660         if (ret < 0)
1661                 goto out;
1662
1663         ret = rdev->desc->ops->set_mode(rdev, mode);
1664 out:
1665         mutex_unlock(&rdev->mutex);
1666         return ret;
1667 }
1668 EXPORT_SYMBOL_GPL(regulator_set_mode);
1669
1670 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1671 {
1672         int ret;
1673
1674         mutex_lock(&rdev->mutex);
1675
1676         /* sanity check */
1677         if (!rdev->desc->ops->get_mode) {
1678                 ret = -EINVAL;
1679                 goto out;
1680         }
1681
1682         ret = rdev->desc->ops->get_mode(rdev);
1683 out:
1684         mutex_unlock(&rdev->mutex);
1685         return ret;
1686 }
1687
1688 /**
1689  * regulator_get_mode - get regulator operating mode
1690  * @regulator: regulator source
1691  *
1692  * Get the current regulator operating mode.
1693  */
1694 unsigned int regulator_get_mode(struct regulator *regulator)
1695 {
1696         return _regulator_get_mode(regulator->rdev);
1697 }
1698 EXPORT_SYMBOL_GPL(regulator_get_mode);
1699
1700 /**
1701  * regulator_set_optimum_mode - set regulator optimum operating mode
1702  * @regulator: regulator source
1703  * @uA_load: load current
1704  *
1705  * Notifies the regulator core of a new device load. This is then used by
1706  * DRMS (if enabled by constraints) to set the most efficient regulator
1707  * operating mode for the new regulator loading.
1708  *
1709  * Consumer devices notify their supply regulator of the maximum power
1710  * they will require (can be taken from device datasheet in the power
1711  * consumption tables) when they change operational status and hence power
1712  * state. Examples of operational state changes that can affect power
1713  * consumption are :-
1714  *
1715  *    o Device is opened / closed.
1716  *    o Device I/O is about to begin or has just finished.
1717  *    o Device is idling in between work.
1718  *
1719  * This information is also exported via sysfs to userspace.
1720  *
1721  * DRMS will sum the total requested load on the regulator and change
1722  * to the most efficient operating mode if platform constraints allow.
1723  *
1724  * Returns the new regulator mode or error.
1725  */
1726 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1727 {
1728         struct regulator_dev *rdev = regulator->rdev;
1729         struct regulator *consumer;
1730         int ret, output_uV, input_uV, total_uA_load = 0;
1731         unsigned int mode;
1732
1733         mutex_lock(&rdev->mutex);
1734
1735         regulator->uA_load = uA_load;
1736         ret = regulator_check_drms(rdev);
1737         if (ret < 0)
1738                 goto out;
1739         ret = -EINVAL;
1740
1741         /* sanity check */
1742         if (!rdev->desc->ops->get_optimum_mode)
1743                 goto out;
1744
1745         /* get output voltage */
1746         output_uV = rdev->desc->ops->get_voltage(rdev);
1747         if (output_uV <= 0) {
1748                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1749                         __func__, rdev->desc->name);
1750                 goto out;
1751         }
1752
1753         /* get input voltage */
1754         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1755                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1756         else
1757                 input_uV = rdev->constraints->input_uV;
1758         if (input_uV <= 0) {
1759                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1760                         __func__, rdev->desc->name);
1761                 goto out;
1762         }
1763
1764         /* calc total requested load for this regulator */
1765         list_for_each_entry(consumer, &rdev->consumer_list, list)
1766             total_uA_load += consumer->uA_load;
1767
1768         mode = rdev->desc->ops->get_optimum_mode(rdev,
1769                                                  input_uV, output_uV,
1770                                                  total_uA_load);
1771         ret = regulator_check_mode(rdev, mode);
1772         if (ret < 0) {
1773                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1774                         " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1775                         total_uA_load, input_uV, output_uV);
1776                 goto out;
1777         }
1778
1779         ret = rdev->desc->ops->set_mode(rdev, mode);
1780         if (ret < 0) {
1781                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1782                         __func__, mode, rdev->desc->name);
1783                 goto out;
1784         }
1785         ret = mode;
1786 out:
1787         mutex_unlock(&rdev->mutex);
1788         return ret;
1789 }
1790 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1791
1792 /**
1793  * regulator_register_notifier - register regulator event notifier
1794  * @regulator: regulator source
1795  * @nb: notifier block
1796  *
1797  * Register notifier block to receive regulator events.
1798  */
1799 int regulator_register_notifier(struct regulator *regulator,
1800                               struct notifier_block *nb)
1801 {
1802         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1803                                                 nb);
1804 }
1805 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1806
1807 /**
1808  * regulator_unregister_notifier - unregister regulator event notifier
1809  * @regulator: regulator source
1810  * @nb: notifier block
1811  *
1812  * Unregister regulator event notifier block.
1813  */
1814 int regulator_unregister_notifier(struct regulator *regulator,
1815                                 struct notifier_block *nb)
1816 {
1817         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1818                                                   nb);
1819 }
1820 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1821
1822 /* notify regulator consumers and downstream regulator consumers.
1823  * Note mutex must be held by caller.
1824  */
1825 static void _notifier_call_chain(struct regulator_dev *rdev,
1826                                   unsigned long event, void *data)
1827 {
1828         struct regulator_dev *_rdev;
1829
1830         /* call rdev chain first */
1831         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1832
1833         /* now notify regulator we supply */
1834         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1835           mutex_lock(&_rdev->mutex);
1836           _notifier_call_chain(_rdev, event, data);
1837           mutex_unlock(&_rdev->mutex);
1838         }
1839 }
1840
1841 /**
1842  * regulator_bulk_get - get multiple regulator consumers
1843  *
1844  * @dev:           Device to supply
1845  * @num_consumers: Number of consumers to register
1846  * @consumers:     Configuration of consumers; clients are stored here.
1847  *
1848  * @return 0 on success, an errno on failure.
1849  *
1850  * This helper function allows drivers to get several regulator
1851  * consumers in one operation.  If any of the regulators cannot be
1852  * acquired then any regulators that were allocated will be freed
1853  * before returning to the caller.
1854  */
1855 int regulator_bulk_get(struct device *dev, int num_consumers,
1856                        struct regulator_bulk_data *consumers)
1857 {
1858         int i;
1859         int ret;
1860
1861         for (i = 0; i < num_consumers; i++)
1862                 consumers[i].consumer = NULL;
1863
1864         for (i = 0; i < num_consumers; i++) {
1865                 consumers[i].consumer = regulator_get(dev,
1866                                                       consumers[i].supply);
1867                 if (IS_ERR(consumers[i].consumer)) {
1868                         dev_err(dev, "Failed to get supply '%s'\n",
1869                                 consumers[i].supply);
1870                         ret = PTR_ERR(consumers[i].consumer);
1871                         consumers[i].consumer = NULL;
1872                         goto err;
1873                 }
1874         }
1875
1876         return 0;
1877
1878 err:
1879         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1880                 regulator_put(consumers[i].consumer);
1881
1882         return ret;
1883 }
1884 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1885
1886 /**
1887  * regulator_bulk_enable - enable multiple regulator consumers
1888  *
1889  * @num_consumers: Number of consumers
1890  * @consumers:     Consumer data; clients are stored here.
1891  * @return         0 on success, an errno on failure
1892  *
1893  * This convenience API allows consumers to enable multiple regulator
1894  * clients in a single API call.  If any consumers cannot be enabled
1895  * then any others that were enabled will be disabled again prior to
1896  * return.
1897  */
1898 int regulator_bulk_enable(int num_consumers,
1899                           struct regulator_bulk_data *consumers)
1900 {
1901         int i;
1902         int ret;
1903
1904         for (i = 0; i < num_consumers; i++) {
1905                 ret = regulator_enable(consumers[i].consumer);
1906                 if (ret != 0)
1907                         goto err;
1908         }
1909
1910         return 0;
1911
1912 err:
1913         printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1914         for (i = 0; i < num_consumers; i++)
1915                 regulator_disable(consumers[i].consumer);
1916
1917         return ret;
1918 }
1919 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1920
1921 /**
1922  * regulator_bulk_disable - disable multiple regulator consumers
1923  *
1924  * @num_consumers: Number of consumers
1925  * @consumers:     Consumer data; clients are stored here.
1926  * @return         0 on success, an errno on failure
1927  *
1928  * This convenience API allows consumers to disable multiple regulator
1929  * clients in a single API call.  If any consumers cannot be enabled
1930  * then any others that were disabled will be disabled again prior to
1931  * return.
1932  */
1933 int regulator_bulk_disable(int num_consumers,
1934                            struct regulator_bulk_data *consumers)
1935 {
1936         int i;
1937         int ret;
1938
1939         for (i = 0; i < num_consumers; i++) {
1940                 ret = regulator_disable(consumers[i].consumer);
1941                 if (ret != 0)
1942                         goto err;
1943         }
1944
1945         return 0;
1946
1947 err:
1948         printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1949         for (i = 0; i < num_consumers; i++)
1950                 regulator_enable(consumers[i].consumer);
1951
1952         return ret;
1953 }
1954 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1955
1956 /**
1957  * regulator_bulk_free - free multiple regulator consumers
1958  *
1959  * @num_consumers: Number of consumers
1960  * @consumers:     Consumer data; clients are stored here.
1961  *
1962  * This convenience API allows consumers to free multiple regulator
1963  * clients in a single API call.
1964  */
1965 void regulator_bulk_free(int num_consumers,
1966                          struct regulator_bulk_data *consumers)
1967 {
1968         int i;
1969
1970         for (i = 0; i < num_consumers; i++) {
1971                 regulator_put(consumers[i].consumer);
1972                 consumers[i].consumer = NULL;
1973         }
1974 }
1975 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1976
1977 /**
1978  * regulator_notifier_call_chain - call regulator event notifier
1979  * @rdev: regulator source
1980  * @event: notifier block
1981  * @data: callback-specific data.
1982  *
1983  * Called by regulator drivers to notify clients a regulator event has
1984  * occurred. We also notify regulator clients downstream.
1985  * Note lock must be held by caller.
1986  */
1987 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1988                                   unsigned long event, void *data)
1989 {
1990         _notifier_call_chain(rdev, event, data);
1991         return NOTIFY_DONE;
1992
1993 }
1994 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1995
1996 /**
1997  * regulator_mode_to_status - convert a regulator mode into a status
1998  *
1999  * @mode: Mode to convert
2000  *
2001  * Convert a regulator mode into a status.
2002  */
2003 int regulator_mode_to_status(unsigned int mode)
2004 {
2005         switch (mode) {
2006         case REGULATOR_MODE_FAST:
2007                 return REGULATOR_STATUS_FAST;
2008         case REGULATOR_MODE_NORMAL:
2009                 return REGULATOR_STATUS_NORMAL;
2010         case REGULATOR_MODE_IDLE:
2011                 return REGULATOR_STATUS_IDLE;
2012         case REGULATOR_STATUS_STANDBY:
2013                 return REGULATOR_STATUS_STANDBY;
2014         default:
2015                 return 0;
2016         }
2017 }
2018 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2019
2020 /*
2021  * To avoid cluttering sysfs (and memory) with useless state, only
2022  * create attributes that can be meaningfully displayed.
2023  */
2024 static int add_regulator_attributes(struct regulator_dev *rdev)
2025 {
2026         struct device           *dev = &rdev->dev;
2027         struct regulator_ops    *ops = rdev->desc->ops;
2028         int                     status = 0;
2029
2030         /* some attributes need specific methods to be displayed */
2031         if (ops->get_voltage) {
2032                 status = device_create_file(dev, &dev_attr_microvolts);
2033                 if (status < 0)
2034                         return status;
2035         }
2036         if (ops->get_current_limit) {
2037                 status = device_create_file(dev, &dev_attr_microamps);
2038                 if (status < 0)
2039                         return status;
2040         }
2041         if (ops->get_mode) {
2042                 status = device_create_file(dev, &dev_attr_opmode);
2043                 if (status < 0)
2044                         return status;
2045         }
2046         if (ops->is_enabled) {
2047                 status = device_create_file(dev, &dev_attr_state);
2048                 if (status < 0)
2049                         return status;
2050         }
2051         if (ops->get_status) {
2052                 status = device_create_file(dev, &dev_attr_status);
2053                 if (status < 0)
2054                         return status;
2055         }
2056
2057         /* some attributes are type-specific */
2058         if (rdev->desc->type == REGULATOR_CURRENT) {
2059                 status = device_create_file(dev, &dev_attr_requested_microamps);
2060                 if (status < 0)
2061                         return status;
2062         }
2063
2064         /* all the other attributes exist to support constraints;
2065          * don't show them if there are no constraints, or if the
2066          * relevant supporting methods are missing.
2067          */
2068         if (!rdev->constraints)
2069                 return status;
2070
2071         /* constraints need specific supporting methods */
2072         if (ops->set_voltage) {
2073                 status = device_create_file(dev, &dev_attr_min_microvolts);
2074                 if (status < 0)
2075                         return status;
2076                 status = device_create_file(dev, &dev_attr_max_microvolts);
2077                 if (status < 0)
2078                         return status;
2079         }
2080         if (ops->set_current_limit) {
2081                 status = device_create_file(dev, &dev_attr_min_microamps);
2082                 if (status < 0)
2083                         return status;
2084                 status = device_create_file(dev, &dev_attr_max_microamps);
2085                 if (status < 0)
2086                         return status;
2087         }
2088
2089         /* suspend mode constraints need multiple supporting methods */
2090         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2091                 return status;
2092
2093         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2094         if (status < 0)
2095                 return status;
2096         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2097         if (status < 0)
2098                 return status;
2099         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2100         if (status < 0)
2101                 return status;
2102
2103         if (ops->set_suspend_voltage) {
2104                 status = device_create_file(dev,
2105                                 &dev_attr_suspend_standby_microvolts);
2106                 if (status < 0)
2107                         return status;
2108                 status = device_create_file(dev,
2109                                 &dev_attr_suspend_mem_microvolts);
2110                 if (status < 0)
2111                         return status;
2112                 status = device_create_file(dev,
2113                                 &dev_attr_suspend_disk_microvolts);
2114                 if (status < 0)
2115                         return status;
2116         }
2117
2118         if (ops->set_suspend_mode) {
2119                 status = device_create_file(dev,
2120                                 &dev_attr_suspend_standby_mode);
2121                 if (status < 0)
2122                         return status;
2123                 status = device_create_file(dev,
2124                                 &dev_attr_suspend_mem_mode);
2125                 if (status < 0)
2126                         return status;
2127                 status = device_create_file(dev,
2128                                 &dev_attr_suspend_disk_mode);
2129                 if (status < 0)
2130                         return status;
2131         }
2132
2133         return status;
2134 }
2135
2136 /**
2137  * regulator_register - register regulator
2138  * @regulator_desc: regulator to register
2139  * @dev: struct device for the regulator
2140  * @init_data: platform provided init data, passed through by driver
2141  * @driver_data: private regulator data
2142  *
2143  * Called by regulator drivers to register a regulator.
2144  * Returns 0 on success.
2145  */
2146 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2147         struct device *dev, struct regulator_init_data *init_data,
2148         void *driver_data)
2149 {
2150         static atomic_t regulator_no = ATOMIC_INIT(0);
2151         struct regulator_dev *rdev;
2152         int ret, i;
2153
2154         if (regulator_desc == NULL)
2155                 return ERR_PTR(-EINVAL);
2156
2157         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2158                 return ERR_PTR(-EINVAL);
2159
2160         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2161             regulator_desc->type != REGULATOR_CURRENT)
2162                 return ERR_PTR(-EINVAL);
2163
2164         if (!init_data)
2165                 return ERR_PTR(-EINVAL);
2166
2167         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2168         if (rdev == NULL)
2169                 return ERR_PTR(-ENOMEM);
2170
2171         mutex_lock(&regulator_list_mutex);
2172
2173         mutex_init(&rdev->mutex);
2174         rdev->reg_data = driver_data;
2175         rdev->owner = regulator_desc->owner;
2176         rdev->desc = regulator_desc;
2177         INIT_LIST_HEAD(&rdev->consumer_list);
2178         INIT_LIST_HEAD(&rdev->supply_list);
2179         INIT_LIST_HEAD(&rdev->list);
2180         INIT_LIST_HEAD(&rdev->slist);
2181         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2182
2183         /* preform any regulator specific init */
2184         if (init_data->regulator_init) {
2185                 ret = init_data->regulator_init(rdev->reg_data);
2186                 if (ret < 0)
2187                         goto clean;
2188         }
2189
2190         /* register with sysfs */
2191         rdev->dev.class = &regulator_class;
2192         rdev->dev.parent = dev;
2193         dev_set_name(&rdev->dev, "regulator.%d",
2194                      atomic_inc_return(&regulator_no) - 1);
2195         ret = device_register(&rdev->dev);
2196         if (ret != 0)
2197                 goto clean;
2198
2199         dev_set_drvdata(&rdev->dev, rdev);
2200
2201         /* set regulator constraints */
2202         ret = set_machine_constraints(rdev, &init_data->constraints);
2203         if (ret < 0)
2204                 goto scrub;
2205
2206         /* add attributes supported by this regulator */
2207         ret = add_regulator_attributes(rdev);
2208         if (ret < 0)
2209                 goto scrub;
2210
2211         /* set supply regulator if it exists */
2212         if (init_data->supply_regulator_dev) {
2213                 ret = set_supply(rdev,
2214                         dev_get_drvdata(init_data->supply_regulator_dev));
2215                 if (ret < 0)
2216                         goto scrub;
2217         }
2218
2219         /* add consumers devices */
2220         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2221                 ret = set_consumer_device_supply(rdev,
2222                         init_data->consumer_supplies[i].dev,
2223                         init_data->consumer_supplies[i].dev_name,
2224                         init_data->consumer_supplies[i].supply);
2225                 if (ret < 0) {
2226                         for (--i; i >= 0; i--)
2227                                 unset_consumer_device_supply(rdev,
2228                                     init_data->consumer_supplies[i].dev_name,
2229                                     init_data->consumer_supplies[i].dev);
2230                         goto scrub;
2231                 }
2232         }
2233
2234         list_add(&rdev->list, &regulator_list);
2235 out:
2236         mutex_unlock(&regulator_list_mutex);
2237         return rdev;
2238
2239 scrub:
2240         device_unregister(&rdev->dev);
2241         /* device core frees rdev */
2242         rdev = ERR_PTR(ret);
2243         goto out;
2244
2245 clean:
2246         kfree(rdev);
2247         rdev = ERR_PTR(ret);
2248         goto out;
2249 }
2250 EXPORT_SYMBOL_GPL(regulator_register);
2251
2252 /**
2253  * regulator_unregister - unregister regulator
2254  * @rdev: regulator to unregister
2255  *
2256  * Called by regulator drivers to unregister a regulator.
2257  */
2258 void regulator_unregister(struct regulator_dev *rdev)
2259 {
2260         if (rdev == NULL)
2261                 return;
2262
2263         mutex_lock(&regulator_list_mutex);
2264         WARN_ON(rdev->open_count);
2265         unset_regulator_supplies(rdev);
2266         list_del(&rdev->list);
2267         if (rdev->supply)
2268                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2269         device_unregister(&rdev->dev);
2270         mutex_unlock(&regulator_list_mutex);
2271 }
2272 EXPORT_SYMBOL_GPL(regulator_unregister);
2273
2274 /**
2275  * regulator_suspend_prepare - prepare regulators for system wide suspend
2276  * @state: system suspend state
2277  *
2278  * Configure each regulator with it's suspend operating parameters for state.
2279  * This will usually be called by machine suspend code prior to supending.
2280  */
2281 int regulator_suspend_prepare(suspend_state_t state)
2282 {
2283         struct regulator_dev *rdev;
2284         int ret = 0;
2285
2286         /* ON is handled by regulator active state */
2287         if (state == PM_SUSPEND_ON)
2288                 return -EINVAL;
2289
2290         mutex_lock(&regulator_list_mutex);
2291         list_for_each_entry(rdev, &regulator_list, list) {
2292
2293                 mutex_lock(&rdev->mutex);
2294                 ret = suspend_prepare(rdev, state);
2295                 mutex_unlock(&rdev->mutex);
2296
2297                 if (ret < 0) {
2298                         printk(KERN_ERR "%s: failed to prepare %s\n",
2299                                 __func__, rdev->desc->name);
2300                         goto out;
2301                 }
2302         }
2303 out:
2304         mutex_unlock(&regulator_list_mutex);
2305         return ret;
2306 }
2307 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2308
2309 /**
2310  * regulator_has_full_constraints - the system has fully specified constraints
2311  *
2312  * Calling this function will cause the regulator API to disable all
2313  * regulators which have a zero use count and don't have an always_on
2314  * constraint in a late_initcall.
2315  *
2316  * The intention is that this will become the default behaviour in a
2317  * future kernel release so users are encouraged to use this facility
2318  * now.
2319  */
2320 void regulator_has_full_constraints(void)
2321 {
2322         has_full_constraints = 1;
2323 }
2324 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2325
2326 /**
2327  * rdev_get_drvdata - get rdev regulator driver data
2328  * @rdev: regulator
2329  *
2330  * Get rdev regulator driver private data. This call can be used in the
2331  * regulator driver context.
2332  */
2333 void *rdev_get_drvdata(struct regulator_dev *rdev)
2334 {
2335         return rdev->reg_data;
2336 }
2337 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2338
2339 /**
2340  * regulator_get_drvdata - get regulator driver data
2341  * @regulator: regulator
2342  *
2343  * Get regulator driver private data. This call can be used in the consumer
2344  * driver context when non API regulator specific functions need to be called.
2345  */
2346 void *regulator_get_drvdata(struct regulator *regulator)
2347 {
2348         return regulator->rdev->reg_data;
2349 }
2350 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2351
2352 /**
2353  * regulator_set_drvdata - set regulator driver data
2354  * @regulator: regulator
2355  * @data: data
2356  */
2357 void regulator_set_drvdata(struct regulator *regulator, void *data)
2358 {
2359         regulator->rdev->reg_data = data;
2360 }
2361 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2362
2363 /**
2364  * regulator_get_id - get regulator ID
2365  * @rdev: regulator
2366  */
2367 int rdev_get_id(struct regulator_dev *rdev)
2368 {
2369         return rdev->desc->id;
2370 }
2371 EXPORT_SYMBOL_GPL(rdev_get_id);
2372
2373 struct device *rdev_get_dev(struct regulator_dev *rdev)
2374 {
2375         return &rdev->dev;
2376 }
2377 EXPORT_SYMBOL_GPL(rdev_get_dev);
2378
2379 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2380 {
2381         return reg_init_data->driver_data;
2382 }
2383 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2384
2385 static int __init regulator_init(void)
2386 {
2387         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2388         return class_register(&regulator_class);
2389 }
2390
2391 /* init early to allow our consumers to complete system booting */
2392 core_initcall(regulator_init);
2393
2394 static int __init regulator_init_complete(void)
2395 {
2396         struct regulator_dev *rdev;
2397         struct regulator_ops *ops;
2398         struct regulation_constraints *c;
2399         int enabled, ret;
2400         const char *name;
2401
2402         mutex_lock(&regulator_list_mutex);
2403
2404         /* If we have a full configuration then disable any regulators
2405          * which are not in use or always_on.  This will become the
2406          * default behaviour in the future.
2407          */
2408         list_for_each_entry(rdev, &regulator_list, list) {
2409                 ops = rdev->desc->ops;
2410                 c = rdev->constraints;
2411
2412                 if (c->name)
2413                         name = c->name;
2414                 else if (rdev->desc->name)
2415                         name = rdev->desc->name;
2416                 else
2417                         name = "regulator";
2418
2419                 if (!ops->disable || c->always_on)
2420                         continue;
2421
2422                 mutex_lock(&rdev->mutex);
2423
2424                 if (rdev->use_count)
2425                         goto unlock;
2426
2427                 /* If we can't read the status assume it's on. */
2428                 if (ops->is_enabled)
2429                         enabled = ops->is_enabled(rdev);
2430                 else
2431                         enabled = 1;
2432
2433                 if (!enabled)
2434                         goto unlock;
2435
2436                 if (has_full_constraints) {
2437                         /* We log since this may kill the system if it
2438                          * goes wrong. */
2439                         printk(KERN_INFO "%s: disabling %s\n",
2440                                __func__, name);
2441                         ret = ops->disable(rdev);
2442                         if (ret != 0) {
2443                                 printk(KERN_ERR
2444                                        "%s: couldn't disable %s: %d\n",
2445                                        __func__, name, ret);
2446                         }
2447                 } else {
2448                         /* The intention is that in future we will
2449                          * assume that full constraints are provided
2450                          * so warn even if we aren't going to do
2451                          * anything here.
2452                          */
2453                         printk(KERN_WARNING
2454                                "%s: incomplete constraints, leaving %s on\n",
2455                                __func__, name);
2456                 }
2457
2458 unlock:
2459                 mutex_unlock(&rdev->mutex);
2460         }
2461
2462         mutex_unlock(&regulator_list_mutex);
2463
2464         return 0;
2465 }
2466 late_initcall(regulator_init_complete);