sparc: Convert naked unsigned uses to unsigned int
[linux-2.6-block.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/timer.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45
46 #include "nvme.h"
47
48 #define NVME_Q_DEPTH            1024
49 #define NVME_AQ_DEPTH           256
50 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
52                 
53 /*
54  * We handle AEN commands ourselves and don't even let the
55  * block layer know about them.
56  */
57 #define NVME_NR_AEN_COMMANDS    1
58 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
78  */
79 struct nvme_dev {
80         struct nvme_queue **queues;
81         struct blk_mq_tag_set tagset;
82         struct blk_mq_tag_set admin_tagset;
83         u32 __iomem *dbs;
84         struct device *dev;
85         struct dma_pool *prp_page_pool;
86         struct dma_pool *prp_small_pool;
87         unsigned queue_count;
88         unsigned online_queues;
89         unsigned max_qid;
90         int q_depth;
91         u32 db_stride;
92         struct msix_entry *entry;
93         void __iomem *bar;
94         struct work_struct reset_work;
95         struct work_struct scan_work;
96         struct work_struct remove_work;
97         struct work_struct async_work;
98         struct timer_list watchdog_timer;
99         struct mutex shutdown_lock;
100         bool subsystem;
101         void __iomem *cmb;
102         dma_addr_t cmb_dma_addr;
103         u64 cmb_size;
104         u32 cmbsz;
105         unsigned long flags;
106
107 #define NVME_CTRL_RESETTING    0
108 #define NVME_CTRL_REMOVING     1
109
110         struct nvme_ctrl ctrl;
111         struct completion ioq_wait;
112 };
113
114 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
115 {
116         return container_of(ctrl, struct nvme_dev, ctrl);
117 }
118
119 /*
120  * An NVM Express queue.  Each device has at least two (one for admin
121  * commands and one for I/O commands).
122  */
123 struct nvme_queue {
124         struct device *q_dmadev;
125         struct nvme_dev *dev;
126         char irqname[24];       /* nvme4294967295-65535\0 */
127         spinlock_t q_lock;
128         struct nvme_command *sq_cmds;
129         struct nvme_command __iomem *sq_cmds_io;
130         volatile struct nvme_completion *cqes;
131         struct blk_mq_tags **tags;
132         dma_addr_t sq_dma_addr;
133         dma_addr_t cq_dma_addr;
134         u32 __iomem *q_db;
135         u16 q_depth;
136         s16 cq_vector;
137         u16 sq_tail;
138         u16 cq_head;
139         u16 qid;
140         u8 cq_phase;
141         u8 cqe_seen;
142 };
143
144 /*
145  * The nvme_iod describes the data in an I/O, including the list of PRP
146  * entries.  You can't see it in this data structure because C doesn't let
147  * me express that.  Use nvme_init_iod to ensure there's enough space
148  * allocated to store the PRP list.
149  */
150 struct nvme_iod {
151         struct nvme_queue *nvmeq;
152         int aborted;
153         int npages;             /* In the PRP list. 0 means small pool in use */
154         int nents;              /* Used in scatterlist */
155         int length;             /* Of data, in bytes */
156         dma_addr_t first_dma;
157         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
158         struct scatterlist *sg;
159         struct scatterlist inline_sg[0];
160 };
161
162 /*
163  * Check we didin't inadvertently grow the command struct
164  */
165 static inline void _nvme_check_size(void)
166 {
167         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
168         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
169         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
170         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
171         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
172         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
173         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
174         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
175         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
176         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
177         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
178         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
179 }
180
181 /*
182  * Max size of iod being embedded in the request payload
183  */
184 #define NVME_INT_PAGES          2
185 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
186
187 /*
188  * Will slightly overestimate the number of pages needed.  This is OK
189  * as it only leads to a small amount of wasted memory for the lifetime of
190  * the I/O.
191  */
192 static int nvme_npages(unsigned size, struct nvme_dev *dev)
193 {
194         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
195                                       dev->ctrl.page_size);
196         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
197 }
198
199 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
200                 unsigned int size, unsigned int nseg)
201 {
202         return sizeof(__le64 *) * nvme_npages(size, dev) +
203                         sizeof(struct scatterlist) * nseg;
204 }
205
206 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
207 {
208         return sizeof(struct nvme_iod) +
209                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
210 }
211
212 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213                                 unsigned int hctx_idx)
214 {
215         struct nvme_dev *dev = data;
216         struct nvme_queue *nvmeq = dev->queues[0];
217
218         WARN_ON(hctx_idx != 0);
219         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220         WARN_ON(nvmeq->tags);
221
222         hctx->driver_data = nvmeq;
223         nvmeq->tags = &dev->admin_tagset.tags[0];
224         return 0;
225 }
226
227 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228 {
229         struct nvme_queue *nvmeq = hctx->driver_data;
230
231         nvmeq->tags = NULL;
232 }
233
234 static int nvme_admin_init_request(void *data, struct request *req,
235                                 unsigned int hctx_idx, unsigned int rq_idx,
236                                 unsigned int numa_node)
237 {
238         struct nvme_dev *dev = data;
239         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
240         struct nvme_queue *nvmeq = dev->queues[0];
241
242         BUG_ON(!nvmeq);
243         iod->nvmeq = nvmeq;
244         return 0;
245 }
246
247 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248                           unsigned int hctx_idx)
249 {
250         struct nvme_dev *dev = data;
251         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
252
253         if (!nvmeq->tags)
254                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
255
256         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
257         hctx->driver_data = nvmeq;
258         return 0;
259 }
260
261 static int nvme_init_request(void *data, struct request *req,
262                                 unsigned int hctx_idx, unsigned int rq_idx,
263                                 unsigned int numa_node)
264 {
265         struct nvme_dev *dev = data;
266         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
267         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268
269         BUG_ON(!nvmeq);
270         iod->nvmeq = nvmeq;
271         return 0;
272 }
273
274 static void nvme_queue_scan(struct nvme_dev *dev)
275 {
276         /*
277          * Do not queue new scan work when a controller is reset during
278          * removal.
279          */
280         if (test_bit(NVME_CTRL_REMOVING, &dev->flags))
281                 return;
282         queue_work(nvme_workq, &dev->scan_work);
283 }
284
285 static void nvme_complete_async_event(struct nvme_dev *dev,
286                 struct nvme_completion *cqe)
287 {
288         u16 status = le16_to_cpu(cqe->status) >> 1;
289         u32 result = le32_to_cpu(cqe->result);
290
291         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
292                 ++dev->ctrl.event_limit;
293                 queue_work(nvme_workq, &dev->async_work);
294         }
295
296         if (status != NVME_SC_SUCCESS)
297                 return;
298
299         switch (result & 0xff07) {
300         case NVME_AER_NOTICE_NS_CHANGED:
301                 dev_info(dev->ctrl.device, "rescanning\n");
302                 nvme_queue_scan(dev);
303         default:
304                 dev_warn(dev->ctrl.device, "async event result %08x\n", result);
305         }
306 }
307
308 /**
309  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
310  * @nvmeq: The queue to use
311  * @cmd: The command to send
312  *
313  * Safe to use from interrupt context
314  */
315 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
316                                                 struct nvme_command *cmd)
317 {
318         u16 tail = nvmeq->sq_tail;
319
320         if (nvmeq->sq_cmds_io)
321                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
322         else
323                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
324
325         if (++tail == nvmeq->q_depth)
326                 tail = 0;
327         writel(tail, nvmeq->q_db);
328         nvmeq->sq_tail = tail;
329 }
330
331 static __le64 **iod_list(struct request *req)
332 {
333         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
334         return (__le64 **)(iod->sg + req->nr_phys_segments);
335 }
336
337 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
338 {
339         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
340         int nseg = rq->nr_phys_segments;
341         unsigned size;
342
343         if (rq->cmd_flags & REQ_DISCARD)
344                 size = sizeof(struct nvme_dsm_range);
345         else
346                 size = blk_rq_bytes(rq);
347
348         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
349                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
350                 if (!iod->sg)
351                         return BLK_MQ_RQ_QUEUE_BUSY;
352         } else {
353                 iod->sg = iod->inline_sg;
354         }
355
356         iod->aborted = 0;
357         iod->npages = -1;
358         iod->nents = 0;
359         iod->length = size;
360         return 0;
361 }
362
363 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
364 {
365         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
366         const int last_prp = dev->ctrl.page_size / 8 - 1;
367         int i;
368         __le64 **list = iod_list(req);
369         dma_addr_t prp_dma = iod->first_dma;
370
371         if (iod->npages == 0)
372                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
373         for (i = 0; i < iod->npages; i++) {
374                 __le64 *prp_list = list[i];
375                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
376                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
377                 prp_dma = next_prp_dma;
378         }
379
380         if (iod->sg != iod->inline_sg)
381                 kfree(iod->sg);
382 }
383
384 #ifdef CONFIG_BLK_DEV_INTEGRITY
385 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
386 {
387         if (be32_to_cpu(pi->ref_tag) == v)
388                 pi->ref_tag = cpu_to_be32(p);
389 }
390
391 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
392 {
393         if (be32_to_cpu(pi->ref_tag) == p)
394                 pi->ref_tag = cpu_to_be32(v);
395 }
396
397 /**
398  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
399  *
400  * The virtual start sector is the one that was originally submitted by the
401  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
402  * start sector may be different. Remap protection information to match the
403  * physical LBA on writes, and back to the original seed on reads.
404  *
405  * Type 0 and 3 do not have a ref tag, so no remapping required.
406  */
407 static void nvme_dif_remap(struct request *req,
408                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
409 {
410         struct nvme_ns *ns = req->rq_disk->private_data;
411         struct bio_integrity_payload *bip;
412         struct t10_pi_tuple *pi;
413         void *p, *pmap;
414         u32 i, nlb, ts, phys, virt;
415
416         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
417                 return;
418
419         bip = bio_integrity(req->bio);
420         if (!bip)
421                 return;
422
423         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
424
425         p = pmap;
426         virt = bip_get_seed(bip);
427         phys = nvme_block_nr(ns, blk_rq_pos(req));
428         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
429         ts = ns->disk->queue->integrity.tuple_size;
430
431         for (i = 0; i < nlb; i++, virt++, phys++) {
432                 pi = (struct t10_pi_tuple *)p;
433                 dif_swap(phys, virt, pi);
434                 p += ts;
435         }
436         kunmap_atomic(pmap);
437 }
438 #else /* CONFIG_BLK_DEV_INTEGRITY */
439 static void nvme_dif_remap(struct request *req,
440                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
441 {
442 }
443 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
444 {
445 }
446 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
447 {
448 }
449 #endif
450
451 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
452                 int total_len)
453 {
454         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
455         struct dma_pool *pool;
456         int length = total_len;
457         struct scatterlist *sg = iod->sg;
458         int dma_len = sg_dma_len(sg);
459         u64 dma_addr = sg_dma_address(sg);
460         u32 page_size = dev->ctrl.page_size;
461         int offset = dma_addr & (page_size - 1);
462         __le64 *prp_list;
463         __le64 **list = iod_list(req);
464         dma_addr_t prp_dma;
465         int nprps, i;
466
467         length -= (page_size - offset);
468         if (length <= 0)
469                 return true;
470
471         dma_len -= (page_size - offset);
472         if (dma_len) {
473                 dma_addr += (page_size - offset);
474         } else {
475                 sg = sg_next(sg);
476                 dma_addr = sg_dma_address(sg);
477                 dma_len = sg_dma_len(sg);
478         }
479
480         if (length <= page_size) {
481                 iod->first_dma = dma_addr;
482                 return true;
483         }
484
485         nprps = DIV_ROUND_UP(length, page_size);
486         if (nprps <= (256 / 8)) {
487                 pool = dev->prp_small_pool;
488                 iod->npages = 0;
489         } else {
490                 pool = dev->prp_page_pool;
491                 iod->npages = 1;
492         }
493
494         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
495         if (!prp_list) {
496                 iod->first_dma = dma_addr;
497                 iod->npages = -1;
498                 return false;
499         }
500         list[0] = prp_list;
501         iod->first_dma = prp_dma;
502         i = 0;
503         for (;;) {
504                 if (i == page_size >> 3) {
505                         __le64 *old_prp_list = prp_list;
506                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
507                         if (!prp_list)
508                                 return false;
509                         list[iod->npages++] = prp_list;
510                         prp_list[0] = old_prp_list[i - 1];
511                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
512                         i = 1;
513                 }
514                 prp_list[i++] = cpu_to_le64(dma_addr);
515                 dma_len -= page_size;
516                 dma_addr += page_size;
517                 length -= page_size;
518                 if (length <= 0)
519                         break;
520                 if (dma_len > 0)
521                         continue;
522                 BUG_ON(dma_len < 0);
523                 sg = sg_next(sg);
524                 dma_addr = sg_dma_address(sg);
525                 dma_len = sg_dma_len(sg);
526         }
527
528         return true;
529 }
530
531 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
532                 struct nvme_command *cmnd)
533 {
534         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
535         struct request_queue *q = req->q;
536         enum dma_data_direction dma_dir = rq_data_dir(req) ?
537                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
538         int ret = BLK_MQ_RQ_QUEUE_ERROR;
539
540         sg_init_table(iod->sg, req->nr_phys_segments);
541         iod->nents = blk_rq_map_sg(q, req, iod->sg);
542         if (!iod->nents)
543                 goto out;
544
545         ret = BLK_MQ_RQ_QUEUE_BUSY;
546         if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
547                 goto out;
548
549         if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
550                 goto out_unmap;
551
552         ret = BLK_MQ_RQ_QUEUE_ERROR;
553         if (blk_integrity_rq(req)) {
554                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
555                         goto out_unmap;
556
557                 sg_init_table(&iod->meta_sg, 1);
558                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
559                         goto out_unmap;
560
561                 if (rq_data_dir(req))
562                         nvme_dif_remap(req, nvme_dif_prep);
563
564                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
565                         goto out_unmap;
566         }
567
568         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
569         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
570         if (blk_integrity_rq(req))
571                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
572         return BLK_MQ_RQ_QUEUE_OK;
573
574 out_unmap:
575         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
576 out:
577         return ret;
578 }
579
580 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
581 {
582         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583         enum dma_data_direction dma_dir = rq_data_dir(req) ?
584                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
585
586         if (iod->nents) {
587                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
588                 if (blk_integrity_rq(req)) {
589                         if (!rq_data_dir(req))
590                                 nvme_dif_remap(req, nvme_dif_complete);
591                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
592                 }
593         }
594
595         nvme_free_iod(dev, req);
596 }
597
598 /*
599  * We reuse the small pool to allocate the 16-byte range here as it is not
600  * worth having a special pool for these or additional cases to handle freeing
601  * the iod.
602  */
603 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
604                 struct request *req, struct nvme_command *cmnd)
605 {
606         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
607         struct nvme_dsm_range *range;
608
609         range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
610                                                 &iod->first_dma);
611         if (!range)
612                 return BLK_MQ_RQ_QUEUE_BUSY;
613         iod_list(req)[0] = (__le64 *)range;
614         iod->npages = 0;
615
616         range->cattr = cpu_to_le32(0);
617         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
618         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
619
620         memset(cmnd, 0, sizeof(*cmnd));
621         cmnd->dsm.opcode = nvme_cmd_dsm;
622         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
623         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
624         cmnd->dsm.nr = 0;
625         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
626         return BLK_MQ_RQ_QUEUE_OK;
627 }
628
629 /*
630  * NOTE: ns is NULL when called on the admin queue.
631  */
632 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
633                          const struct blk_mq_queue_data *bd)
634 {
635         struct nvme_ns *ns = hctx->queue->queuedata;
636         struct nvme_queue *nvmeq = hctx->driver_data;
637         struct nvme_dev *dev = nvmeq->dev;
638         struct request *req = bd->rq;
639         struct nvme_command cmnd;
640         int ret = BLK_MQ_RQ_QUEUE_OK;
641
642         /*
643          * If formated with metadata, require the block layer provide a buffer
644          * unless this namespace is formated such that the metadata can be
645          * stripped/generated by the controller with PRACT=1.
646          */
647         if (ns && ns->ms && !blk_integrity_rq(req)) {
648                 if (!(ns->pi_type && ns->ms == 8) &&
649                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
650                         blk_mq_end_request(req, -EFAULT);
651                         return BLK_MQ_RQ_QUEUE_OK;
652                 }
653         }
654
655         ret = nvme_init_iod(req, dev);
656         if (ret)
657                 return ret;
658
659         if (req->cmd_flags & REQ_DISCARD) {
660                 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
661         } else {
662                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
663                         memcpy(&cmnd, req->cmd, sizeof(cmnd));
664                 else if (req->cmd_flags & REQ_FLUSH)
665                         nvme_setup_flush(ns, &cmnd);
666                 else
667                         nvme_setup_rw(ns, req, &cmnd);
668
669                 if (req->nr_phys_segments)
670                         ret = nvme_map_data(dev, req, &cmnd);
671         }
672
673         if (ret)
674                 goto out;
675
676         cmnd.common.command_id = req->tag;
677         blk_mq_start_request(req);
678
679         spin_lock_irq(&nvmeq->q_lock);
680         if (unlikely(nvmeq->cq_vector < 0)) {
681                 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
682                         ret = BLK_MQ_RQ_QUEUE_BUSY;
683                 else
684                         ret = BLK_MQ_RQ_QUEUE_ERROR;
685                 spin_unlock_irq(&nvmeq->q_lock);
686                 goto out;
687         }
688         __nvme_submit_cmd(nvmeq, &cmnd);
689         nvme_process_cq(nvmeq);
690         spin_unlock_irq(&nvmeq->q_lock);
691         return BLK_MQ_RQ_QUEUE_OK;
692 out:
693         nvme_free_iod(dev, req);
694         return ret;
695 }
696
697 static void nvme_complete_rq(struct request *req)
698 {
699         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
700         struct nvme_dev *dev = iod->nvmeq->dev;
701         int error = 0;
702
703         nvme_unmap_data(dev, req);
704
705         if (unlikely(req->errors)) {
706                 if (nvme_req_needs_retry(req, req->errors)) {
707                         nvme_requeue_req(req);
708                         return;
709                 }
710
711                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
712                         error = req->errors;
713                 else
714                         error = nvme_error_status(req->errors);
715         }
716
717         if (unlikely(iod->aborted)) {
718                 dev_warn(dev->ctrl.device,
719                         "completing aborted command with status: %04x\n",
720                         req->errors);
721         }
722
723         blk_mq_end_request(req, error);
724 }
725
726 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
727 {
728         u16 head, phase;
729
730         head = nvmeq->cq_head;
731         phase = nvmeq->cq_phase;
732
733         for (;;) {
734                 struct nvme_completion cqe = nvmeq->cqes[head];
735                 u16 status = le16_to_cpu(cqe.status);
736                 struct request *req;
737
738                 if ((status & 1) != phase)
739                         break;
740                 if (++head == nvmeq->q_depth) {
741                         head = 0;
742                         phase = !phase;
743                 }
744
745                 if (tag && *tag == cqe.command_id)
746                         *tag = -1;
747
748                 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
749                         dev_warn(nvmeq->dev->ctrl.device,
750                                 "invalid id %d completed on queue %d\n",
751                                 cqe.command_id, le16_to_cpu(cqe.sq_id));
752                         continue;
753                 }
754
755                 /*
756                  * AEN requests are special as they don't time out and can
757                  * survive any kind of queue freeze and often don't respond to
758                  * aborts.  We don't even bother to allocate a struct request
759                  * for them but rather special case them here.
760                  */
761                 if (unlikely(nvmeq->qid == 0 &&
762                                 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
763                         nvme_complete_async_event(nvmeq->dev, &cqe);
764                         continue;
765                 }
766
767                 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
768                 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
769                         memcpy(req->special, &cqe, sizeof(cqe));
770                 blk_mq_complete_request(req, status >> 1);
771
772         }
773
774         /* If the controller ignores the cq head doorbell and continuously
775          * writes to the queue, it is theoretically possible to wrap around
776          * the queue twice and mistakenly return IRQ_NONE.  Linux only
777          * requires that 0.1% of your interrupts are handled, so this isn't
778          * a big problem.
779          */
780         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
781                 return;
782
783         if (likely(nvmeq->cq_vector >= 0))
784                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
785         nvmeq->cq_head = head;
786         nvmeq->cq_phase = phase;
787
788         nvmeq->cqe_seen = 1;
789 }
790
791 static void nvme_process_cq(struct nvme_queue *nvmeq)
792 {
793         __nvme_process_cq(nvmeq, NULL);
794 }
795
796 static irqreturn_t nvme_irq(int irq, void *data)
797 {
798         irqreturn_t result;
799         struct nvme_queue *nvmeq = data;
800         spin_lock(&nvmeq->q_lock);
801         nvme_process_cq(nvmeq);
802         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
803         nvmeq->cqe_seen = 0;
804         spin_unlock(&nvmeq->q_lock);
805         return result;
806 }
807
808 static irqreturn_t nvme_irq_check(int irq, void *data)
809 {
810         struct nvme_queue *nvmeq = data;
811         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
812         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
813                 return IRQ_NONE;
814         return IRQ_WAKE_THREAD;
815 }
816
817 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
818 {
819         struct nvme_queue *nvmeq = hctx->driver_data;
820
821         if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
822             nvmeq->cq_phase) {
823                 spin_lock_irq(&nvmeq->q_lock);
824                 __nvme_process_cq(nvmeq, &tag);
825                 spin_unlock_irq(&nvmeq->q_lock);
826
827                 if (tag == -1)
828                         return 1;
829         }
830
831         return 0;
832 }
833
834 static void nvme_async_event_work(struct work_struct *work)
835 {
836         struct nvme_dev *dev = container_of(work, struct nvme_dev, async_work);
837         struct nvme_queue *nvmeq = dev->queues[0];
838         struct nvme_command c;
839
840         memset(&c, 0, sizeof(c));
841         c.common.opcode = nvme_admin_async_event;
842
843         spin_lock_irq(&nvmeq->q_lock);
844         while (dev->ctrl.event_limit > 0) {
845                 c.common.command_id = NVME_AQ_BLKMQ_DEPTH +
846                         --dev->ctrl.event_limit;
847                 __nvme_submit_cmd(nvmeq, &c);
848         }
849         spin_unlock_irq(&nvmeq->q_lock);
850 }
851
852 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
853 {
854         struct nvme_command c;
855
856         memset(&c, 0, sizeof(c));
857         c.delete_queue.opcode = opcode;
858         c.delete_queue.qid = cpu_to_le16(id);
859
860         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
861 }
862
863 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
864                                                 struct nvme_queue *nvmeq)
865 {
866         struct nvme_command c;
867         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
868
869         /*
870          * Note: we (ab)use the fact the the prp fields survive if no data
871          * is attached to the request.
872          */
873         memset(&c, 0, sizeof(c));
874         c.create_cq.opcode = nvme_admin_create_cq;
875         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
876         c.create_cq.cqid = cpu_to_le16(qid);
877         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
878         c.create_cq.cq_flags = cpu_to_le16(flags);
879         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
880
881         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
882 }
883
884 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
885                                                 struct nvme_queue *nvmeq)
886 {
887         struct nvme_command c;
888         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
889
890         /*
891          * Note: we (ab)use the fact the the prp fields survive if no data
892          * is attached to the request.
893          */
894         memset(&c, 0, sizeof(c));
895         c.create_sq.opcode = nvme_admin_create_sq;
896         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
897         c.create_sq.sqid = cpu_to_le16(qid);
898         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
899         c.create_sq.sq_flags = cpu_to_le16(flags);
900         c.create_sq.cqid = cpu_to_le16(qid);
901
902         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
903 }
904
905 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
906 {
907         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
908 }
909
910 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
911 {
912         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
913 }
914
915 static void abort_endio(struct request *req, int error)
916 {
917         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
918         struct nvme_queue *nvmeq = iod->nvmeq;
919         u16 status = req->errors;
920
921         dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
922         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
923         blk_mq_free_request(req);
924 }
925
926 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
927 {
928         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
929         struct nvme_queue *nvmeq = iod->nvmeq;
930         struct nvme_dev *dev = nvmeq->dev;
931         struct request *abort_req;
932         struct nvme_command cmd;
933
934         /*
935          * Shutdown immediately if controller times out while starting. The
936          * reset work will see the pci device disabled when it gets the forced
937          * cancellation error. All outstanding requests are completed on
938          * shutdown, so we return BLK_EH_HANDLED.
939          */
940         if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
941                 dev_warn(dev->ctrl.device,
942                          "I/O %d QID %d timeout, disable controller\n",
943                          req->tag, nvmeq->qid);
944                 nvme_dev_disable(dev, false);
945                 req->errors = NVME_SC_CANCELLED;
946                 return BLK_EH_HANDLED;
947         }
948
949         /*
950          * Shutdown the controller immediately and schedule a reset if the
951          * command was already aborted once before and still hasn't been
952          * returned to the driver, or if this is the admin queue.
953          */
954         if (!nvmeq->qid || iod->aborted) {
955                 dev_warn(dev->ctrl.device,
956                          "I/O %d QID %d timeout, reset controller\n",
957                          req->tag, nvmeq->qid);
958                 nvme_dev_disable(dev, false);
959                 queue_work(nvme_workq, &dev->reset_work);
960
961                 /*
962                  * Mark the request as handled, since the inline shutdown
963                  * forces all outstanding requests to complete.
964                  */
965                 req->errors = NVME_SC_CANCELLED;
966                 return BLK_EH_HANDLED;
967         }
968
969         iod->aborted = 1;
970
971         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
972                 atomic_inc(&dev->ctrl.abort_limit);
973                 return BLK_EH_RESET_TIMER;
974         }
975
976         memset(&cmd, 0, sizeof(cmd));
977         cmd.abort.opcode = nvme_admin_abort_cmd;
978         cmd.abort.cid = req->tag;
979         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
980
981         dev_warn(nvmeq->dev->ctrl.device,
982                 "I/O %d QID %d timeout, aborting\n",
983                  req->tag, nvmeq->qid);
984
985         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
986                         BLK_MQ_REQ_NOWAIT);
987         if (IS_ERR(abort_req)) {
988                 atomic_inc(&dev->ctrl.abort_limit);
989                 return BLK_EH_RESET_TIMER;
990         }
991
992         abort_req->timeout = ADMIN_TIMEOUT;
993         abort_req->end_io_data = NULL;
994         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
995
996         /*
997          * The aborted req will be completed on receiving the abort req.
998          * We enable the timer again. If hit twice, it'll cause a device reset,
999          * as the device then is in a faulty state.
1000          */
1001         return BLK_EH_RESET_TIMER;
1002 }
1003
1004 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1005 {
1006         struct nvme_queue *nvmeq = data;
1007         int status;
1008
1009         if (!blk_mq_request_started(req))
1010                 return;
1011
1012         dev_dbg_ratelimited(nvmeq->dev->ctrl.device,
1013                  "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
1014
1015         status = NVME_SC_ABORT_REQ;
1016         if (blk_queue_dying(req->q))
1017                 status |= NVME_SC_DNR;
1018         blk_mq_complete_request(req, status);
1019 }
1020
1021 static void nvme_free_queue(struct nvme_queue *nvmeq)
1022 {
1023         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1024                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1025         if (nvmeq->sq_cmds)
1026                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1027                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1028         kfree(nvmeq);
1029 }
1030
1031 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1032 {
1033         int i;
1034
1035         for (i = dev->queue_count - 1; i >= lowest; i--) {
1036                 struct nvme_queue *nvmeq = dev->queues[i];
1037                 dev->queue_count--;
1038                 dev->queues[i] = NULL;
1039                 nvme_free_queue(nvmeq);
1040         }
1041 }
1042
1043 /**
1044  * nvme_suspend_queue - put queue into suspended state
1045  * @nvmeq - queue to suspend
1046  */
1047 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1048 {
1049         int vector;
1050
1051         spin_lock_irq(&nvmeq->q_lock);
1052         if (nvmeq->cq_vector == -1) {
1053                 spin_unlock_irq(&nvmeq->q_lock);
1054                 return 1;
1055         }
1056         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1057         nvmeq->dev->online_queues--;
1058         nvmeq->cq_vector = -1;
1059         spin_unlock_irq(&nvmeq->q_lock);
1060
1061         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1062                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1063
1064         irq_set_affinity_hint(vector, NULL);
1065         free_irq(vector, nvmeq);
1066
1067         return 0;
1068 }
1069
1070 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1071 {
1072         spin_lock_irq(&nvmeq->q_lock);
1073         if (nvmeq->tags && *nvmeq->tags)
1074                 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1075         spin_unlock_irq(&nvmeq->q_lock);
1076 }
1077
1078 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1079 {
1080         struct nvme_queue *nvmeq = dev->queues[0];
1081
1082         if (!nvmeq)
1083                 return;
1084         if (nvme_suspend_queue(nvmeq))
1085                 return;
1086
1087         if (shutdown)
1088                 nvme_shutdown_ctrl(&dev->ctrl);
1089         else
1090                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1091                                                 dev->bar + NVME_REG_CAP));
1092
1093         spin_lock_irq(&nvmeq->q_lock);
1094         nvme_process_cq(nvmeq);
1095         spin_unlock_irq(&nvmeq->q_lock);
1096 }
1097
1098 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1099                                 int entry_size)
1100 {
1101         int q_depth = dev->q_depth;
1102         unsigned q_size_aligned = roundup(q_depth * entry_size,
1103                                           dev->ctrl.page_size);
1104
1105         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1106                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1107                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1108                 q_depth = div_u64(mem_per_q, entry_size);
1109
1110                 /*
1111                  * Ensure the reduced q_depth is above some threshold where it
1112                  * would be better to map queues in system memory with the
1113                  * original depth
1114                  */
1115                 if (q_depth < 64)
1116                         return -ENOMEM;
1117         }
1118
1119         return q_depth;
1120 }
1121
1122 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1123                                 int qid, int depth)
1124 {
1125         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1126                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1127                                                       dev->ctrl.page_size);
1128                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1129                 nvmeq->sq_cmds_io = dev->cmb + offset;
1130         } else {
1131                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1132                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1133                 if (!nvmeq->sq_cmds)
1134                         return -ENOMEM;
1135         }
1136
1137         return 0;
1138 }
1139
1140 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1141                                                         int depth)
1142 {
1143         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1144         if (!nvmeq)
1145                 return NULL;
1146
1147         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1148                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1149         if (!nvmeq->cqes)
1150                 goto free_nvmeq;
1151
1152         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1153                 goto free_cqdma;
1154
1155         nvmeq->q_dmadev = dev->dev;
1156         nvmeq->dev = dev;
1157         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1158                         dev->ctrl.instance, qid);
1159         spin_lock_init(&nvmeq->q_lock);
1160         nvmeq->cq_head = 0;
1161         nvmeq->cq_phase = 1;
1162         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1163         nvmeq->q_depth = depth;
1164         nvmeq->qid = qid;
1165         nvmeq->cq_vector = -1;
1166         dev->queues[qid] = nvmeq;
1167         dev->queue_count++;
1168
1169         return nvmeq;
1170
1171  free_cqdma:
1172         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1173                                                         nvmeq->cq_dma_addr);
1174  free_nvmeq:
1175         kfree(nvmeq);
1176         return NULL;
1177 }
1178
1179 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1180                                                         const char *name)
1181 {
1182         if (use_threaded_interrupts)
1183                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1184                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1185                                         name, nvmeq);
1186         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1187                                 IRQF_SHARED, name, nvmeq);
1188 }
1189
1190 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1191 {
1192         struct nvme_dev *dev = nvmeq->dev;
1193
1194         spin_lock_irq(&nvmeq->q_lock);
1195         nvmeq->sq_tail = 0;
1196         nvmeq->cq_head = 0;
1197         nvmeq->cq_phase = 1;
1198         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1199         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1200         dev->online_queues++;
1201         spin_unlock_irq(&nvmeq->q_lock);
1202 }
1203
1204 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1205 {
1206         struct nvme_dev *dev = nvmeq->dev;
1207         int result;
1208
1209         nvmeq->cq_vector = qid - 1;
1210         result = adapter_alloc_cq(dev, qid, nvmeq);
1211         if (result < 0)
1212                 return result;
1213
1214         result = adapter_alloc_sq(dev, qid, nvmeq);
1215         if (result < 0)
1216                 goto release_cq;
1217
1218         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1219         if (result < 0)
1220                 goto release_sq;
1221
1222         nvme_init_queue(nvmeq, qid);
1223         return result;
1224
1225  release_sq:
1226         adapter_delete_sq(dev, qid);
1227  release_cq:
1228         adapter_delete_cq(dev, qid);
1229         return result;
1230 }
1231
1232 static struct blk_mq_ops nvme_mq_admin_ops = {
1233         .queue_rq       = nvme_queue_rq,
1234         .complete       = nvme_complete_rq,
1235         .map_queue      = blk_mq_map_queue,
1236         .init_hctx      = nvme_admin_init_hctx,
1237         .exit_hctx      = nvme_admin_exit_hctx,
1238         .init_request   = nvme_admin_init_request,
1239         .timeout        = nvme_timeout,
1240 };
1241
1242 static struct blk_mq_ops nvme_mq_ops = {
1243         .queue_rq       = nvme_queue_rq,
1244         .complete       = nvme_complete_rq,
1245         .map_queue      = blk_mq_map_queue,
1246         .init_hctx      = nvme_init_hctx,
1247         .init_request   = nvme_init_request,
1248         .timeout        = nvme_timeout,
1249         .poll           = nvme_poll,
1250 };
1251
1252 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1253 {
1254         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1255                 /*
1256                  * If the controller was reset during removal, it's possible
1257                  * user requests may be waiting on a stopped queue. Start the
1258                  * queue to flush these to completion.
1259                  */
1260                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1261                 blk_cleanup_queue(dev->ctrl.admin_q);
1262                 blk_mq_free_tag_set(&dev->admin_tagset);
1263         }
1264 }
1265
1266 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1267 {
1268         if (!dev->ctrl.admin_q) {
1269                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1270                 dev->admin_tagset.nr_hw_queues = 1;
1271
1272                 /*
1273                  * Subtract one to leave an empty queue entry for 'Full Queue'
1274                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1275                  */
1276                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1277                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1278                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1279                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1280                 dev->admin_tagset.driver_data = dev;
1281
1282                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1283                         return -ENOMEM;
1284
1285                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1286                 if (IS_ERR(dev->ctrl.admin_q)) {
1287                         blk_mq_free_tag_set(&dev->admin_tagset);
1288                         return -ENOMEM;
1289                 }
1290                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1291                         nvme_dev_remove_admin(dev);
1292                         dev->ctrl.admin_q = NULL;
1293                         return -ENODEV;
1294                 }
1295         } else
1296                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1297
1298         return 0;
1299 }
1300
1301 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1302 {
1303         int result;
1304         u32 aqa;
1305         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1306         struct nvme_queue *nvmeq;
1307
1308         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1309                                                 NVME_CAP_NSSRC(cap) : 0;
1310
1311         if (dev->subsystem &&
1312             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1313                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1314
1315         result = nvme_disable_ctrl(&dev->ctrl, cap);
1316         if (result < 0)
1317                 return result;
1318
1319         nvmeq = dev->queues[0];
1320         if (!nvmeq) {
1321                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1322                 if (!nvmeq)
1323                         return -ENOMEM;
1324         }
1325
1326         aqa = nvmeq->q_depth - 1;
1327         aqa |= aqa << 16;
1328
1329         writel(aqa, dev->bar + NVME_REG_AQA);
1330         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1331         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1332
1333         result = nvme_enable_ctrl(&dev->ctrl, cap);
1334         if (result)
1335                 goto free_nvmeq;
1336
1337         nvmeq->cq_vector = 0;
1338         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1339         if (result) {
1340                 nvmeq->cq_vector = -1;
1341                 goto free_nvmeq;
1342         }
1343
1344         return result;
1345
1346  free_nvmeq:
1347         nvme_free_queues(dev, 0);
1348         return result;
1349 }
1350
1351 static void nvme_watchdog_timer(unsigned long data)
1352 {
1353         struct nvme_dev *dev = (struct nvme_dev *)data;
1354         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1355
1356         /*
1357          * Skip controllers currently under reset.
1358          */
1359         if (!work_pending(&dev->reset_work) && !work_busy(&dev->reset_work) &&
1360             ((csts & NVME_CSTS_CFS) ||
1361              (dev->subsystem && (csts & NVME_CSTS_NSSRO)))) {
1362                 if (queue_work(nvme_workq, &dev->reset_work)) {
1363                         dev_warn(dev->dev,
1364                                 "Failed status: 0x%x, reset controller.\n",
1365                                 csts);
1366                 }
1367                 return;
1368         }
1369
1370         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1371 }
1372
1373 static int nvme_create_io_queues(struct nvme_dev *dev)
1374 {
1375         unsigned i, max;
1376         int ret = 0;
1377
1378         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1379                 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1380                         ret = -ENOMEM;
1381                         break;
1382                 }
1383         }
1384
1385         max = min(dev->max_qid, dev->queue_count - 1);
1386         for (i = dev->online_queues; i <= max; i++) {
1387                 ret = nvme_create_queue(dev->queues[i], i);
1388                 if (ret) {
1389                         nvme_free_queues(dev, i);
1390                         break;
1391                 }
1392         }
1393
1394         /*
1395          * Ignore failing Create SQ/CQ commands, we can continue with less
1396          * than the desired aount of queues, and even a controller without
1397          * I/O queues an still be used to issue admin commands.  This might
1398          * be useful to upgrade a buggy firmware for example.
1399          */
1400         return ret >= 0 ? 0 : ret;
1401 }
1402
1403 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1404 {
1405         u64 szu, size, offset;
1406         u32 cmbloc;
1407         resource_size_t bar_size;
1408         struct pci_dev *pdev = to_pci_dev(dev->dev);
1409         void __iomem *cmb;
1410         dma_addr_t dma_addr;
1411
1412         if (!use_cmb_sqes)
1413                 return NULL;
1414
1415         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1416         if (!(NVME_CMB_SZ(dev->cmbsz)))
1417                 return NULL;
1418
1419         cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1420
1421         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1422         size = szu * NVME_CMB_SZ(dev->cmbsz);
1423         offset = szu * NVME_CMB_OFST(cmbloc);
1424         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1425
1426         if (offset > bar_size)
1427                 return NULL;
1428
1429         /*
1430          * Controllers may support a CMB size larger than their BAR,
1431          * for example, due to being behind a bridge. Reduce the CMB to
1432          * the reported size of the BAR
1433          */
1434         if (size > bar_size - offset)
1435                 size = bar_size - offset;
1436
1437         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1438         cmb = ioremap_wc(dma_addr, size);
1439         if (!cmb)
1440                 return NULL;
1441
1442         dev->cmb_dma_addr = dma_addr;
1443         dev->cmb_size = size;
1444         return cmb;
1445 }
1446
1447 static inline void nvme_release_cmb(struct nvme_dev *dev)
1448 {
1449         if (dev->cmb) {
1450                 iounmap(dev->cmb);
1451                 dev->cmb = NULL;
1452         }
1453 }
1454
1455 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1456 {
1457         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1458 }
1459
1460 static int nvme_setup_io_queues(struct nvme_dev *dev)
1461 {
1462         struct nvme_queue *adminq = dev->queues[0];
1463         struct pci_dev *pdev = to_pci_dev(dev->dev);
1464         int result, i, vecs, nr_io_queues, size;
1465
1466         nr_io_queues = num_possible_cpus();
1467         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1468         if (result < 0)
1469                 return result;
1470
1471         /*
1472          * Degraded controllers might return an error when setting the queue
1473          * count.  We still want to be able to bring them online and offer
1474          * access to the admin queue, as that might be only way to fix them up.
1475          */
1476         if (result > 0) {
1477                 dev_err(dev->ctrl.device,
1478                         "Could not set queue count (%d)\n", result);
1479                 nr_io_queues = 0;
1480                 result = 0;
1481         }
1482
1483         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1484                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1485                                 sizeof(struct nvme_command));
1486                 if (result > 0)
1487                         dev->q_depth = result;
1488                 else
1489                         nvme_release_cmb(dev);
1490         }
1491
1492         size = db_bar_size(dev, nr_io_queues);
1493         if (size > 8192) {
1494                 iounmap(dev->bar);
1495                 do {
1496                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1497                         if (dev->bar)
1498                                 break;
1499                         if (!--nr_io_queues)
1500                                 return -ENOMEM;
1501                         size = db_bar_size(dev, nr_io_queues);
1502                 } while (1);
1503                 dev->dbs = dev->bar + 4096;
1504                 adminq->q_db = dev->dbs;
1505         }
1506
1507         /* Deregister the admin queue's interrupt */
1508         free_irq(dev->entry[0].vector, adminq);
1509
1510         /*
1511          * If we enable msix early due to not intx, disable it again before
1512          * setting up the full range we need.
1513          */
1514         if (!pdev->irq)
1515                 pci_disable_msix(pdev);
1516
1517         for (i = 0; i < nr_io_queues; i++)
1518                 dev->entry[i].entry = i;
1519         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1520         if (vecs < 0) {
1521                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1522                 if (vecs < 0) {
1523                         vecs = 1;
1524                 } else {
1525                         for (i = 0; i < vecs; i++)
1526                                 dev->entry[i].vector = i + pdev->irq;
1527                 }
1528         }
1529
1530         /*
1531          * Should investigate if there's a performance win from allocating
1532          * more queues than interrupt vectors; it might allow the submission
1533          * path to scale better, even if the receive path is limited by the
1534          * number of interrupts.
1535          */
1536         nr_io_queues = vecs;
1537         dev->max_qid = nr_io_queues;
1538
1539         result = queue_request_irq(dev, adminq, adminq->irqname);
1540         if (result) {
1541                 adminq->cq_vector = -1;
1542                 goto free_queues;
1543         }
1544         return nvme_create_io_queues(dev);
1545
1546  free_queues:
1547         nvme_free_queues(dev, 1);
1548         return result;
1549 }
1550
1551 static void nvme_set_irq_hints(struct nvme_dev *dev)
1552 {
1553         struct nvme_queue *nvmeq;
1554         int i;
1555
1556         for (i = 0; i < dev->online_queues; i++) {
1557                 nvmeq = dev->queues[i];
1558
1559                 if (!nvmeq->tags || !(*nvmeq->tags))
1560                         continue;
1561
1562                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1563                                         blk_mq_tags_cpumask(*nvmeq->tags));
1564         }
1565 }
1566
1567 static void nvme_dev_scan(struct work_struct *work)
1568 {
1569         struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1570
1571         if (!dev->tagset.tags)
1572                 return;
1573         nvme_scan_namespaces(&dev->ctrl);
1574         nvme_set_irq_hints(dev);
1575 }
1576
1577 static void nvme_del_queue_end(struct request *req, int error)
1578 {
1579         struct nvme_queue *nvmeq = req->end_io_data;
1580
1581         blk_mq_free_request(req);
1582         complete(&nvmeq->dev->ioq_wait);
1583 }
1584
1585 static void nvme_del_cq_end(struct request *req, int error)
1586 {
1587         struct nvme_queue *nvmeq = req->end_io_data;
1588
1589         if (!error) {
1590                 unsigned long flags;
1591
1592                 spin_lock_irqsave(&nvmeq->q_lock, flags);
1593                 nvme_process_cq(nvmeq);
1594                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1595         }
1596
1597         nvme_del_queue_end(req, error);
1598 }
1599
1600 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1601 {
1602         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1603         struct request *req;
1604         struct nvme_command cmd;
1605
1606         memset(&cmd, 0, sizeof(cmd));
1607         cmd.delete_queue.opcode = opcode;
1608         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1609
1610         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1611         if (IS_ERR(req))
1612                 return PTR_ERR(req);
1613
1614         req->timeout = ADMIN_TIMEOUT;
1615         req->end_io_data = nvmeq;
1616
1617         blk_execute_rq_nowait(q, NULL, req, false,
1618                         opcode == nvme_admin_delete_cq ?
1619                                 nvme_del_cq_end : nvme_del_queue_end);
1620         return 0;
1621 }
1622
1623 static void nvme_disable_io_queues(struct nvme_dev *dev)
1624 {
1625         int pass;
1626         unsigned long timeout;
1627         u8 opcode = nvme_admin_delete_sq;
1628
1629         for (pass = 0; pass < 2; pass++) {
1630                 int sent = 0, i = dev->queue_count - 1;
1631
1632                 reinit_completion(&dev->ioq_wait);
1633  retry:
1634                 timeout = ADMIN_TIMEOUT;
1635                 for (; i > 0; i--) {
1636                         struct nvme_queue *nvmeq = dev->queues[i];
1637
1638                         if (!pass)
1639                                 nvme_suspend_queue(nvmeq);
1640                         if (nvme_delete_queue(nvmeq, opcode))
1641                                 break;
1642                         ++sent;
1643                 }
1644                 while (sent--) {
1645                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1646                         if (timeout == 0)
1647                                 return;
1648                         if (i)
1649                                 goto retry;
1650                 }
1651                 opcode = nvme_admin_delete_cq;
1652         }
1653 }
1654
1655 /*
1656  * Return: error value if an error occurred setting up the queues or calling
1657  * Identify Device.  0 if these succeeded, even if adding some of the
1658  * namespaces failed.  At the moment, these failures are silent.  TBD which
1659  * failures should be reported.
1660  */
1661 static int nvme_dev_add(struct nvme_dev *dev)
1662 {
1663         if (!dev->ctrl.tagset) {
1664                 dev->tagset.ops = &nvme_mq_ops;
1665                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1666                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1667                 dev->tagset.numa_node = dev_to_node(dev->dev);
1668                 dev->tagset.queue_depth =
1669                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1670                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1671                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1672                 dev->tagset.driver_data = dev;
1673
1674                 if (blk_mq_alloc_tag_set(&dev->tagset))
1675                         return 0;
1676                 dev->ctrl.tagset = &dev->tagset;
1677         } else {
1678                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1679
1680                 /* Free previously allocated queues that are no longer usable */
1681                 nvme_free_queues(dev, dev->online_queues);
1682         }
1683
1684         nvme_queue_scan(dev);
1685         return 0;
1686 }
1687
1688 static int nvme_pci_enable(struct nvme_dev *dev)
1689 {
1690         u64 cap;
1691         int result = -ENOMEM;
1692         struct pci_dev *pdev = to_pci_dev(dev->dev);
1693
1694         if (pci_enable_device_mem(pdev))
1695                 return result;
1696
1697         dev->entry[0].vector = pdev->irq;
1698         pci_set_master(pdev);
1699
1700         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1701             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1702                 goto disable;
1703
1704         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1705                 result = -ENODEV;
1706                 goto disable;
1707         }
1708
1709         /*
1710          * Some devices don't advertse INTx interrupts, pre-enable a single
1711          * MSIX vec for setup. We'll adjust this later.
1712          */
1713         if (!pdev->irq) {
1714                 result = pci_enable_msix(pdev, dev->entry, 1);
1715                 if (result < 0)
1716                         goto disable;
1717         }
1718
1719         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1720
1721         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1722         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1723         dev->dbs = dev->bar + 4096;
1724
1725         /*
1726          * Temporary fix for the Apple controller found in the MacBook8,1 and
1727          * some MacBook7,1 to avoid controller resets and data loss.
1728          */
1729         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1730                 dev->q_depth = 2;
1731                 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1732                         "queue depth=%u to work around controller resets\n",
1733                         dev->q_depth);
1734         }
1735
1736         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1737                 dev->cmb = nvme_map_cmb(dev);
1738
1739         pci_enable_pcie_error_reporting(pdev);
1740         pci_save_state(pdev);
1741         return 0;
1742
1743  disable:
1744         pci_disable_device(pdev);
1745         return result;
1746 }
1747
1748 static void nvme_dev_unmap(struct nvme_dev *dev)
1749 {
1750         if (dev->bar)
1751                 iounmap(dev->bar);
1752         pci_release_regions(to_pci_dev(dev->dev));
1753 }
1754
1755 static void nvme_pci_disable(struct nvme_dev *dev)
1756 {
1757         struct pci_dev *pdev = to_pci_dev(dev->dev);
1758
1759         if (pdev->msi_enabled)
1760                 pci_disable_msi(pdev);
1761         else if (pdev->msix_enabled)
1762                 pci_disable_msix(pdev);
1763
1764         if (pci_is_enabled(pdev)) {
1765                 pci_disable_pcie_error_reporting(pdev);
1766                 pci_disable_device(pdev);
1767         }
1768 }
1769
1770 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1771 {
1772         int i;
1773         u32 csts = -1;
1774
1775         del_timer_sync(&dev->watchdog_timer);
1776
1777         mutex_lock(&dev->shutdown_lock);
1778         if (pci_is_enabled(to_pci_dev(dev->dev))) {
1779                 nvme_stop_queues(&dev->ctrl);
1780                 csts = readl(dev->bar + NVME_REG_CSTS);
1781         }
1782         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1783                 for (i = dev->queue_count - 1; i >= 0; i--) {
1784                         struct nvme_queue *nvmeq = dev->queues[i];
1785                         nvme_suspend_queue(nvmeq);
1786                 }
1787         } else {
1788                 nvme_disable_io_queues(dev);
1789                 nvme_disable_admin_queue(dev, shutdown);
1790         }
1791         nvme_pci_disable(dev);
1792
1793         for (i = dev->queue_count - 1; i >= 0; i--)
1794                 nvme_clear_queue(dev->queues[i]);
1795         mutex_unlock(&dev->shutdown_lock);
1796 }
1797
1798 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1799 {
1800         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1801                                                 PAGE_SIZE, PAGE_SIZE, 0);
1802         if (!dev->prp_page_pool)
1803                 return -ENOMEM;
1804
1805         /* Optimisation for I/Os between 4k and 128k */
1806         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1807                                                 256, 256, 0);
1808         if (!dev->prp_small_pool) {
1809                 dma_pool_destroy(dev->prp_page_pool);
1810                 return -ENOMEM;
1811         }
1812         return 0;
1813 }
1814
1815 static void nvme_release_prp_pools(struct nvme_dev *dev)
1816 {
1817         dma_pool_destroy(dev->prp_page_pool);
1818         dma_pool_destroy(dev->prp_small_pool);
1819 }
1820
1821 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1822 {
1823         struct nvme_dev *dev = to_nvme_dev(ctrl);
1824
1825         put_device(dev->dev);
1826         if (dev->tagset.tags)
1827                 blk_mq_free_tag_set(&dev->tagset);
1828         if (dev->ctrl.admin_q)
1829                 blk_put_queue(dev->ctrl.admin_q);
1830         kfree(dev->queues);
1831         kfree(dev->entry);
1832         kfree(dev);
1833 }
1834
1835 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1836 {
1837         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1838
1839         kref_get(&dev->ctrl.kref);
1840         nvme_dev_disable(dev, false);
1841         if (!schedule_work(&dev->remove_work))
1842                 nvme_put_ctrl(&dev->ctrl);
1843 }
1844
1845 static void nvme_reset_work(struct work_struct *work)
1846 {
1847         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1848         int result = -ENODEV;
1849
1850         if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1851                 goto out;
1852
1853         /*
1854          * If we're called to reset a live controller first shut it down before
1855          * moving on.
1856          */
1857         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1858                 nvme_dev_disable(dev, false);
1859
1860         set_bit(NVME_CTRL_RESETTING, &dev->flags);
1861
1862         result = nvme_pci_enable(dev);
1863         if (result)
1864                 goto out;
1865
1866         result = nvme_configure_admin_queue(dev);
1867         if (result)
1868                 goto out;
1869
1870         nvme_init_queue(dev->queues[0], 0);
1871         result = nvme_alloc_admin_tags(dev);
1872         if (result)
1873                 goto out;
1874
1875         result = nvme_init_identify(&dev->ctrl);
1876         if (result)
1877                 goto out;
1878
1879         result = nvme_setup_io_queues(dev);
1880         if (result)
1881                 goto out;
1882
1883         dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
1884         queue_work(nvme_workq, &dev->async_work);
1885
1886         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1887
1888         /*
1889          * Keep the controller around but remove all namespaces if we don't have
1890          * any working I/O queue.
1891          */
1892         if (dev->online_queues < 2) {
1893                 dev_warn(dev->ctrl.device, "IO queues not created\n");
1894                 nvme_remove_namespaces(&dev->ctrl);
1895         } else {
1896                 nvme_start_queues(&dev->ctrl);
1897                 nvme_dev_add(dev);
1898         }
1899
1900         clear_bit(NVME_CTRL_RESETTING, &dev->flags);
1901         return;
1902
1903  out:
1904         nvme_remove_dead_ctrl(dev, result);
1905 }
1906
1907 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1908 {
1909         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1910         struct pci_dev *pdev = to_pci_dev(dev->dev);
1911
1912         nvme_kill_queues(&dev->ctrl);
1913         if (pci_get_drvdata(pdev))
1914                 pci_stop_and_remove_bus_device_locked(pdev);
1915         nvme_put_ctrl(&dev->ctrl);
1916 }
1917
1918 static int nvme_reset(struct nvme_dev *dev)
1919 {
1920         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1921                 return -ENODEV;
1922
1923         if (!queue_work(nvme_workq, &dev->reset_work))
1924                 return -EBUSY;
1925
1926         flush_work(&dev->reset_work);
1927         return 0;
1928 }
1929
1930 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1931 {
1932         *val = readl(to_nvme_dev(ctrl)->bar + off);
1933         return 0;
1934 }
1935
1936 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1937 {
1938         writel(val, to_nvme_dev(ctrl)->bar + off);
1939         return 0;
1940 }
1941
1942 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1943 {
1944         *val = readq(to_nvme_dev(ctrl)->bar + off);
1945         return 0;
1946 }
1947
1948 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
1949 {
1950         struct nvme_dev *dev = to_nvme_dev(ctrl);
1951
1952         return !dev->bar || dev->online_queues < 2;
1953 }
1954
1955 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1956 {
1957         return nvme_reset(to_nvme_dev(ctrl));
1958 }
1959
1960 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1961         .module                 = THIS_MODULE,
1962         .reg_read32             = nvme_pci_reg_read32,
1963         .reg_write32            = nvme_pci_reg_write32,
1964         .reg_read64             = nvme_pci_reg_read64,
1965         .io_incapable           = nvme_pci_io_incapable,
1966         .reset_ctrl             = nvme_pci_reset_ctrl,
1967         .free_ctrl              = nvme_pci_free_ctrl,
1968 };
1969
1970 static int nvme_dev_map(struct nvme_dev *dev)
1971 {
1972         int bars;
1973         struct pci_dev *pdev = to_pci_dev(dev->dev);
1974
1975         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1976         if (!bars)
1977                 return -ENODEV;
1978         if (pci_request_selected_regions(pdev, bars, "nvme"))
1979                 return -ENODEV;
1980
1981         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1982         if (!dev->bar)
1983                 goto release;
1984
1985        return 0;
1986   release:
1987        pci_release_regions(pdev);
1988        return -ENODEV;
1989 }
1990
1991 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1992 {
1993         int node, result = -ENOMEM;
1994         struct nvme_dev *dev;
1995
1996         node = dev_to_node(&pdev->dev);
1997         if (node == NUMA_NO_NODE)
1998                 set_dev_node(&pdev->dev, 0);
1999
2000         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2001         if (!dev)
2002                 return -ENOMEM;
2003         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2004                                                         GFP_KERNEL, node);
2005         if (!dev->entry)
2006                 goto free;
2007         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2008                                                         GFP_KERNEL, node);
2009         if (!dev->queues)
2010                 goto free;
2011
2012         dev->dev = get_device(&pdev->dev);
2013         pci_set_drvdata(pdev, dev);
2014
2015         result = nvme_dev_map(dev);
2016         if (result)
2017                 goto free;
2018
2019         INIT_WORK(&dev->scan_work, nvme_dev_scan);
2020         INIT_WORK(&dev->reset_work, nvme_reset_work);
2021         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2022         INIT_WORK(&dev->async_work, nvme_async_event_work);
2023         setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2024                 (unsigned long)dev);
2025         mutex_init(&dev->shutdown_lock);
2026         init_completion(&dev->ioq_wait);
2027
2028         result = nvme_setup_prp_pools(dev);
2029         if (result)
2030                 goto put_pci;
2031
2032         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2033                         id->driver_data);
2034         if (result)
2035                 goto release_pools;
2036
2037         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2038
2039         queue_work(nvme_workq, &dev->reset_work);
2040         return 0;
2041
2042  release_pools:
2043         nvme_release_prp_pools(dev);
2044  put_pci:
2045         put_device(dev->dev);
2046         nvme_dev_unmap(dev);
2047  free:
2048         kfree(dev->queues);
2049         kfree(dev->entry);
2050         kfree(dev);
2051         return result;
2052 }
2053
2054 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2055 {
2056         struct nvme_dev *dev = pci_get_drvdata(pdev);
2057
2058         if (prepare)
2059                 nvme_dev_disable(dev, false);
2060         else
2061                 queue_work(nvme_workq, &dev->reset_work);
2062 }
2063
2064 static void nvme_shutdown(struct pci_dev *pdev)
2065 {
2066         struct nvme_dev *dev = pci_get_drvdata(pdev);
2067         nvme_dev_disable(dev, true);
2068 }
2069
2070 /*
2071  * The driver's remove may be called on a device in a partially initialized
2072  * state. This function must not have any dependencies on the device state in
2073  * order to proceed.
2074  */
2075 static void nvme_remove(struct pci_dev *pdev)
2076 {
2077         struct nvme_dev *dev = pci_get_drvdata(pdev);
2078
2079         del_timer_sync(&dev->watchdog_timer);
2080
2081         set_bit(NVME_CTRL_REMOVING, &dev->flags);
2082         pci_set_drvdata(pdev, NULL);
2083         flush_work(&dev->async_work);
2084         flush_work(&dev->scan_work);
2085         nvme_remove_namespaces(&dev->ctrl);
2086         nvme_uninit_ctrl(&dev->ctrl);
2087         nvme_dev_disable(dev, true);
2088         flush_work(&dev->reset_work);
2089         nvme_dev_remove_admin(dev);
2090         nvme_free_queues(dev, 0);
2091         nvme_release_cmb(dev);
2092         nvme_release_prp_pools(dev);
2093         nvme_dev_unmap(dev);
2094         nvme_put_ctrl(&dev->ctrl);
2095 }
2096
2097 #ifdef CONFIG_PM_SLEEP
2098 static int nvme_suspend(struct device *dev)
2099 {
2100         struct pci_dev *pdev = to_pci_dev(dev);
2101         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2102
2103         nvme_dev_disable(ndev, true);
2104         return 0;
2105 }
2106
2107 static int nvme_resume(struct device *dev)
2108 {
2109         struct pci_dev *pdev = to_pci_dev(dev);
2110         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2111
2112         queue_work(nvme_workq, &ndev->reset_work);
2113         return 0;
2114 }
2115 #endif
2116
2117 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2118
2119 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2120                                                 pci_channel_state_t state)
2121 {
2122         struct nvme_dev *dev = pci_get_drvdata(pdev);
2123
2124         /*
2125          * A frozen channel requires a reset. When detected, this method will
2126          * shutdown the controller to quiesce. The controller will be restarted
2127          * after the slot reset through driver's slot_reset callback.
2128          */
2129         dev_warn(dev->ctrl.device, "error detected: state:%d\n", state);
2130         switch (state) {
2131         case pci_channel_io_normal:
2132                 return PCI_ERS_RESULT_CAN_RECOVER;
2133         case pci_channel_io_frozen:
2134                 nvme_dev_disable(dev, false);
2135                 return PCI_ERS_RESULT_NEED_RESET;
2136         case pci_channel_io_perm_failure:
2137                 return PCI_ERS_RESULT_DISCONNECT;
2138         }
2139         return PCI_ERS_RESULT_NEED_RESET;
2140 }
2141
2142 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2143 {
2144         struct nvme_dev *dev = pci_get_drvdata(pdev);
2145
2146         dev_info(dev->ctrl.device, "restart after slot reset\n");
2147         pci_restore_state(pdev);
2148         queue_work(nvme_workq, &dev->reset_work);
2149         return PCI_ERS_RESULT_RECOVERED;
2150 }
2151
2152 static void nvme_error_resume(struct pci_dev *pdev)
2153 {
2154         pci_cleanup_aer_uncorrect_error_status(pdev);
2155 }
2156
2157 static const struct pci_error_handlers nvme_err_handler = {
2158         .error_detected = nvme_error_detected,
2159         .slot_reset     = nvme_slot_reset,
2160         .resume         = nvme_error_resume,
2161         .reset_notify   = nvme_reset_notify,
2162 };
2163
2164 /* Move to pci_ids.h later */
2165 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2166
2167 static const struct pci_device_id nvme_id_table[] = {
2168         { PCI_VDEVICE(INTEL, 0x0953),
2169                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2170                                 NVME_QUIRK_DISCARD_ZEROES, },
2171         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2172                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2173         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2174         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2175         { 0, }
2176 };
2177 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2178
2179 static struct pci_driver nvme_driver = {
2180         .name           = "nvme",
2181         .id_table       = nvme_id_table,
2182         .probe          = nvme_probe,
2183         .remove         = nvme_remove,
2184         .shutdown       = nvme_shutdown,
2185         .driver         = {
2186                 .pm     = &nvme_dev_pm_ops,
2187         },
2188         .err_handler    = &nvme_err_handler,
2189 };
2190
2191 static int __init nvme_init(void)
2192 {
2193         int result;
2194
2195         nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2196         if (!nvme_workq)
2197                 return -ENOMEM;
2198
2199         result = pci_register_driver(&nvme_driver);
2200         if (result)
2201                 destroy_workqueue(nvme_workq);
2202         return result;
2203 }
2204
2205 static void __exit nvme_exit(void)
2206 {
2207         pci_unregister_driver(&nvme_driver);
2208         destroy_workqueue(nvme_workq);
2209         _nvme_check_size();
2210 }
2211
2212 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2213 MODULE_LICENSE("GPL");
2214 MODULE_VERSION("1.0");
2215 module_init(nvme_init);
2216 module_exit(nvme_exit);