NVMe: Fix reset/remove race
[linux-2.6-block.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/timer.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45
46 #include "nvme.h"
47
48 #define NVME_Q_DEPTH            1024
49 #define NVME_AQ_DEPTH           256
50 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
52                 
53 /*
54  * We handle AEN commands ourselves and don't even let the
55  * block layer know about them.
56  */
57 #define NVME_NR_AEN_COMMANDS    1
58 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
78  */
79 struct nvme_dev {
80         struct nvme_queue **queues;
81         struct blk_mq_tag_set tagset;
82         struct blk_mq_tag_set admin_tagset;
83         u32 __iomem *dbs;
84         struct device *dev;
85         struct dma_pool *prp_page_pool;
86         struct dma_pool *prp_small_pool;
87         unsigned queue_count;
88         unsigned online_queues;
89         unsigned max_qid;
90         int q_depth;
91         u32 db_stride;
92         struct msix_entry *entry;
93         void __iomem *bar;
94         struct work_struct reset_work;
95         struct work_struct scan_work;
96         struct work_struct remove_work;
97         struct work_struct async_work;
98         struct timer_list watchdog_timer;
99         struct mutex shutdown_lock;
100         bool subsystem;
101         void __iomem *cmb;
102         dma_addr_t cmb_dma_addr;
103         u64 cmb_size;
104         u32 cmbsz;
105         unsigned long flags;
106
107 #define NVME_CTRL_RESETTING    0
108 #define NVME_CTRL_REMOVING     1
109
110         struct nvme_ctrl ctrl;
111         struct completion ioq_wait;
112 };
113
114 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
115 {
116         return container_of(ctrl, struct nvme_dev, ctrl);
117 }
118
119 /*
120  * An NVM Express queue.  Each device has at least two (one for admin
121  * commands and one for I/O commands).
122  */
123 struct nvme_queue {
124         struct device *q_dmadev;
125         struct nvme_dev *dev;
126         char irqname[24];       /* nvme4294967295-65535\0 */
127         spinlock_t q_lock;
128         struct nvme_command *sq_cmds;
129         struct nvme_command __iomem *sq_cmds_io;
130         volatile struct nvme_completion *cqes;
131         struct blk_mq_tags **tags;
132         dma_addr_t sq_dma_addr;
133         dma_addr_t cq_dma_addr;
134         u32 __iomem *q_db;
135         u16 q_depth;
136         s16 cq_vector;
137         u16 sq_tail;
138         u16 cq_head;
139         u16 qid;
140         u8 cq_phase;
141         u8 cqe_seen;
142 };
143
144 /*
145  * The nvme_iod describes the data in an I/O, including the list of PRP
146  * entries.  You can't see it in this data structure because C doesn't let
147  * me express that.  Use nvme_init_iod to ensure there's enough space
148  * allocated to store the PRP list.
149  */
150 struct nvme_iod {
151         struct nvme_queue *nvmeq;
152         int aborted;
153         int npages;             /* In the PRP list. 0 means small pool in use */
154         int nents;              /* Used in scatterlist */
155         int length;             /* Of data, in bytes */
156         dma_addr_t first_dma;
157         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
158         struct scatterlist *sg;
159         struct scatterlist inline_sg[0];
160 };
161
162 /*
163  * Check we didin't inadvertently grow the command struct
164  */
165 static inline void _nvme_check_size(void)
166 {
167         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
168         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
169         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
170         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
171         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
172         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
173         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
174         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
175         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
176         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
177         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
178         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
179 }
180
181 /*
182  * Max size of iod being embedded in the request payload
183  */
184 #define NVME_INT_PAGES          2
185 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
186
187 /*
188  * Will slightly overestimate the number of pages needed.  This is OK
189  * as it only leads to a small amount of wasted memory for the lifetime of
190  * the I/O.
191  */
192 static int nvme_npages(unsigned size, struct nvme_dev *dev)
193 {
194         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
195                                       dev->ctrl.page_size);
196         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
197 }
198
199 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
200                 unsigned int size, unsigned int nseg)
201 {
202         return sizeof(__le64 *) * nvme_npages(size, dev) +
203                         sizeof(struct scatterlist) * nseg;
204 }
205
206 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
207 {
208         return sizeof(struct nvme_iod) +
209                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
210 }
211
212 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213                                 unsigned int hctx_idx)
214 {
215         struct nvme_dev *dev = data;
216         struct nvme_queue *nvmeq = dev->queues[0];
217
218         WARN_ON(hctx_idx != 0);
219         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220         WARN_ON(nvmeq->tags);
221
222         hctx->driver_data = nvmeq;
223         nvmeq->tags = &dev->admin_tagset.tags[0];
224         return 0;
225 }
226
227 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228 {
229         struct nvme_queue *nvmeq = hctx->driver_data;
230
231         nvmeq->tags = NULL;
232 }
233
234 static int nvme_admin_init_request(void *data, struct request *req,
235                                 unsigned int hctx_idx, unsigned int rq_idx,
236                                 unsigned int numa_node)
237 {
238         struct nvme_dev *dev = data;
239         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
240         struct nvme_queue *nvmeq = dev->queues[0];
241
242         BUG_ON(!nvmeq);
243         iod->nvmeq = nvmeq;
244         return 0;
245 }
246
247 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248                           unsigned int hctx_idx)
249 {
250         struct nvme_dev *dev = data;
251         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
252
253         if (!nvmeq->tags)
254                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
255
256         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
257         hctx->driver_data = nvmeq;
258         return 0;
259 }
260
261 static int nvme_init_request(void *data, struct request *req,
262                                 unsigned int hctx_idx, unsigned int rq_idx,
263                                 unsigned int numa_node)
264 {
265         struct nvme_dev *dev = data;
266         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
267         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268
269         BUG_ON(!nvmeq);
270         iod->nvmeq = nvmeq;
271         return 0;
272 }
273
274 static void nvme_queue_scan(struct nvme_dev *dev)
275 {
276         /*
277          * Do not queue new scan work when a controller is reset during
278          * removal.
279          */
280         if (test_bit(NVME_CTRL_REMOVING, &dev->flags))
281                 return;
282         queue_work(nvme_workq, &dev->scan_work);
283 }
284
285 static void nvme_complete_async_event(struct nvme_dev *dev,
286                 struct nvme_completion *cqe)
287 {
288         u16 status = le16_to_cpu(cqe->status) >> 1;
289         u32 result = le32_to_cpu(cqe->result);
290
291         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
292                 ++dev->ctrl.event_limit;
293                 queue_work(nvme_workq, &dev->async_work);
294         }
295
296         if (status != NVME_SC_SUCCESS)
297                 return;
298
299         switch (result & 0xff07) {
300         case NVME_AER_NOTICE_NS_CHANGED:
301                 dev_info(dev->ctrl.device, "rescanning\n");
302                 nvme_queue_scan(dev);
303         default:
304                 dev_warn(dev->ctrl.device, "async event result %08x\n", result);
305         }
306 }
307
308 /**
309  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
310  * @nvmeq: The queue to use
311  * @cmd: The command to send
312  *
313  * Safe to use from interrupt context
314  */
315 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
316                                                 struct nvme_command *cmd)
317 {
318         u16 tail = nvmeq->sq_tail;
319
320         if (nvmeq->sq_cmds_io)
321                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
322         else
323                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
324
325         if (++tail == nvmeq->q_depth)
326                 tail = 0;
327         writel(tail, nvmeq->q_db);
328         nvmeq->sq_tail = tail;
329 }
330
331 static __le64 **iod_list(struct request *req)
332 {
333         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
334         return (__le64 **)(iod->sg + req->nr_phys_segments);
335 }
336
337 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
338 {
339         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
340         int nseg = rq->nr_phys_segments;
341         unsigned size;
342
343         if (rq->cmd_flags & REQ_DISCARD)
344                 size = sizeof(struct nvme_dsm_range);
345         else
346                 size = blk_rq_bytes(rq);
347
348         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
349                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
350                 if (!iod->sg)
351                         return BLK_MQ_RQ_QUEUE_BUSY;
352         } else {
353                 iod->sg = iod->inline_sg;
354         }
355
356         iod->aborted = 0;
357         iod->npages = -1;
358         iod->nents = 0;
359         iod->length = size;
360         return 0;
361 }
362
363 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
364 {
365         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
366         const int last_prp = dev->ctrl.page_size / 8 - 1;
367         int i;
368         __le64 **list = iod_list(req);
369         dma_addr_t prp_dma = iod->first_dma;
370
371         if (iod->npages == 0)
372                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
373         for (i = 0; i < iod->npages; i++) {
374                 __le64 *prp_list = list[i];
375                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
376                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
377                 prp_dma = next_prp_dma;
378         }
379
380         if (iod->sg != iod->inline_sg)
381                 kfree(iod->sg);
382 }
383
384 #ifdef CONFIG_BLK_DEV_INTEGRITY
385 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
386 {
387         if (be32_to_cpu(pi->ref_tag) == v)
388                 pi->ref_tag = cpu_to_be32(p);
389 }
390
391 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
392 {
393         if (be32_to_cpu(pi->ref_tag) == p)
394                 pi->ref_tag = cpu_to_be32(v);
395 }
396
397 /**
398  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
399  *
400  * The virtual start sector is the one that was originally submitted by the
401  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
402  * start sector may be different. Remap protection information to match the
403  * physical LBA on writes, and back to the original seed on reads.
404  *
405  * Type 0 and 3 do not have a ref tag, so no remapping required.
406  */
407 static void nvme_dif_remap(struct request *req,
408                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
409 {
410         struct nvme_ns *ns = req->rq_disk->private_data;
411         struct bio_integrity_payload *bip;
412         struct t10_pi_tuple *pi;
413         void *p, *pmap;
414         u32 i, nlb, ts, phys, virt;
415
416         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
417                 return;
418
419         bip = bio_integrity(req->bio);
420         if (!bip)
421                 return;
422
423         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
424
425         p = pmap;
426         virt = bip_get_seed(bip);
427         phys = nvme_block_nr(ns, blk_rq_pos(req));
428         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
429         ts = ns->disk->queue->integrity.tuple_size;
430
431         for (i = 0; i < nlb; i++, virt++, phys++) {
432                 pi = (struct t10_pi_tuple *)p;
433                 dif_swap(phys, virt, pi);
434                 p += ts;
435         }
436         kunmap_atomic(pmap);
437 }
438 #else /* CONFIG_BLK_DEV_INTEGRITY */
439 static void nvme_dif_remap(struct request *req,
440                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
441 {
442 }
443 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
444 {
445 }
446 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
447 {
448 }
449 #endif
450
451 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
452                 int total_len)
453 {
454         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
455         struct dma_pool *pool;
456         int length = total_len;
457         struct scatterlist *sg = iod->sg;
458         int dma_len = sg_dma_len(sg);
459         u64 dma_addr = sg_dma_address(sg);
460         u32 page_size = dev->ctrl.page_size;
461         int offset = dma_addr & (page_size - 1);
462         __le64 *prp_list;
463         __le64 **list = iod_list(req);
464         dma_addr_t prp_dma;
465         int nprps, i;
466
467         length -= (page_size - offset);
468         if (length <= 0)
469                 return true;
470
471         dma_len -= (page_size - offset);
472         if (dma_len) {
473                 dma_addr += (page_size - offset);
474         } else {
475                 sg = sg_next(sg);
476                 dma_addr = sg_dma_address(sg);
477                 dma_len = sg_dma_len(sg);
478         }
479
480         if (length <= page_size) {
481                 iod->first_dma = dma_addr;
482                 return true;
483         }
484
485         nprps = DIV_ROUND_UP(length, page_size);
486         if (nprps <= (256 / 8)) {
487                 pool = dev->prp_small_pool;
488                 iod->npages = 0;
489         } else {
490                 pool = dev->prp_page_pool;
491                 iod->npages = 1;
492         }
493
494         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
495         if (!prp_list) {
496                 iod->first_dma = dma_addr;
497                 iod->npages = -1;
498                 return false;
499         }
500         list[0] = prp_list;
501         iod->first_dma = prp_dma;
502         i = 0;
503         for (;;) {
504                 if (i == page_size >> 3) {
505                         __le64 *old_prp_list = prp_list;
506                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
507                         if (!prp_list)
508                                 return false;
509                         list[iod->npages++] = prp_list;
510                         prp_list[0] = old_prp_list[i - 1];
511                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
512                         i = 1;
513                 }
514                 prp_list[i++] = cpu_to_le64(dma_addr);
515                 dma_len -= page_size;
516                 dma_addr += page_size;
517                 length -= page_size;
518                 if (length <= 0)
519                         break;
520                 if (dma_len > 0)
521                         continue;
522                 BUG_ON(dma_len < 0);
523                 sg = sg_next(sg);
524                 dma_addr = sg_dma_address(sg);
525                 dma_len = sg_dma_len(sg);
526         }
527
528         return true;
529 }
530
531 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
532                 struct nvme_command *cmnd)
533 {
534         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
535         struct request_queue *q = req->q;
536         enum dma_data_direction dma_dir = rq_data_dir(req) ?
537                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
538         int ret = BLK_MQ_RQ_QUEUE_ERROR;
539
540         sg_init_table(iod->sg, req->nr_phys_segments);
541         iod->nents = blk_rq_map_sg(q, req, iod->sg);
542         if (!iod->nents)
543                 goto out;
544
545         ret = BLK_MQ_RQ_QUEUE_BUSY;
546         if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
547                 goto out;
548
549         if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
550                 goto out_unmap;
551
552         ret = BLK_MQ_RQ_QUEUE_ERROR;
553         if (blk_integrity_rq(req)) {
554                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
555                         goto out_unmap;
556
557                 sg_init_table(&iod->meta_sg, 1);
558                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
559                         goto out_unmap;
560
561                 if (rq_data_dir(req))
562                         nvme_dif_remap(req, nvme_dif_prep);
563
564                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
565                         goto out_unmap;
566         }
567
568         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
569         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
570         if (blk_integrity_rq(req))
571                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
572         return BLK_MQ_RQ_QUEUE_OK;
573
574 out_unmap:
575         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
576 out:
577         return ret;
578 }
579
580 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
581 {
582         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583         enum dma_data_direction dma_dir = rq_data_dir(req) ?
584                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
585
586         if (iod->nents) {
587                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
588                 if (blk_integrity_rq(req)) {
589                         if (!rq_data_dir(req))
590                                 nvme_dif_remap(req, nvme_dif_complete);
591                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
592                 }
593         }
594
595         nvme_free_iod(dev, req);
596 }
597
598 /*
599  * We reuse the small pool to allocate the 16-byte range here as it is not
600  * worth having a special pool for these or additional cases to handle freeing
601  * the iod.
602  */
603 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
604                 struct request *req, struct nvme_command *cmnd)
605 {
606         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
607         struct nvme_dsm_range *range;
608
609         range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
610                                                 &iod->first_dma);
611         if (!range)
612                 return BLK_MQ_RQ_QUEUE_BUSY;
613         iod_list(req)[0] = (__le64 *)range;
614         iod->npages = 0;
615
616         range->cattr = cpu_to_le32(0);
617         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
618         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
619
620         memset(cmnd, 0, sizeof(*cmnd));
621         cmnd->dsm.opcode = nvme_cmd_dsm;
622         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
623         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
624         cmnd->dsm.nr = 0;
625         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
626         return BLK_MQ_RQ_QUEUE_OK;
627 }
628
629 /*
630  * NOTE: ns is NULL when called on the admin queue.
631  */
632 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
633                          const struct blk_mq_queue_data *bd)
634 {
635         struct nvme_ns *ns = hctx->queue->queuedata;
636         struct nvme_queue *nvmeq = hctx->driver_data;
637         struct nvme_dev *dev = nvmeq->dev;
638         struct request *req = bd->rq;
639         struct nvme_command cmnd;
640         int ret = BLK_MQ_RQ_QUEUE_OK;
641
642         /*
643          * If formated with metadata, require the block layer provide a buffer
644          * unless this namespace is formated such that the metadata can be
645          * stripped/generated by the controller with PRACT=1.
646          */
647         if (ns && ns->ms && !blk_integrity_rq(req)) {
648                 if (!(ns->pi_type && ns->ms == 8) &&
649                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
650                         blk_mq_end_request(req, -EFAULT);
651                         return BLK_MQ_RQ_QUEUE_OK;
652                 }
653         }
654
655         ret = nvme_init_iod(req, dev);
656         if (ret)
657                 return ret;
658
659         if (req->cmd_flags & REQ_DISCARD) {
660                 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
661         } else {
662                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
663                         memcpy(&cmnd, req->cmd, sizeof(cmnd));
664                 else if (req->cmd_flags & REQ_FLUSH)
665                         nvme_setup_flush(ns, &cmnd);
666                 else
667                         nvme_setup_rw(ns, req, &cmnd);
668
669                 if (req->nr_phys_segments)
670                         ret = nvme_map_data(dev, req, &cmnd);
671         }
672
673         if (ret)
674                 goto out;
675
676         cmnd.common.command_id = req->tag;
677         blk_mq_start_request(req);
678
679         spin_lock_irq(&nvmeq->q_lock);
680         if (unlikely(nvmeq->cq_vector < 0)) {
681                 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
682                         ret = BLK_MQ_RQ_QUEUE_BUSY;
683                 else
684                         ret = BLK_MQ_RQ_QUEUE_ERROR;
685                 spin_unlock_irq(&nvmeq->q_lock);
686                 goto out;
687         }
688         __nvme_submit_cmd(nvmeq, &cmnd);
689         nvme_process_cq(nvmeq);
690         spin_unlock_irq(&nvmeq->q_lock);
691         return BLK_MQ_RQ_QUEUE_OK;
692 out:
693         nvme_free_iod(dev, req);
694         return ret;
695 }
696
697 static void nvme_complete_rq(struct request *req)
698 {
699         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
700         struct nvme_dev *dev = iod->nvmeq->dev;
701         int error = 0;
702
703         nvme_unmap_data(dev, req);
704
705         if (unlikely(req->errors)) {
706                 if (nvme_req_needs_retry(req, req->errors)) {
707                         nvme_requeue_req(req);
708                         return;
709                 }
710
711                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
712                         error = req->errors;
713                 else
714                         error = nvme_error_status(req->errors);
715         }
716
717         if (unlikely(iod->aborted)) {
718                 dev_warn(dev->ctrl.device,
719                         "completing aborted command with status: %04x\n",
720                         req->errors);
721         }
722
723         blk_mq_end_request(req, error);
724 }
725
726 /* We read the CQE phase first to check if the rest of the entry is valid */
727 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
728                 u16 phase)
729 {
730         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
731 }
732
733 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
734 {
735         u16 head, phase;
736
737         head = nvmeq->cq_head;
738         phase = nvmeq->cq_phase;
739
740         while (nvme_cqe_valid(nvmeq, head, phase)) {
741                 struct nvme_completion cqe = nvmeq->cqes[head];
742                 struct request *req;
743
744                 if (++head == nvmeq->q_depth) {
745                         head = 0;
746                         phase = !phase;
747                 }
748
749                 if (tag && *tag == cqe.command_id)
750                         *tag = -1;
751
752                 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
753                         dev_warn(nvmeq->dev->ctrl.device,
754                                 "invalid id %d completed on queue %d\n",
755                                 cqe.command_id, le16_to_cpu(cqe.sq_id));
756                         continue;
757                 }
758
759                 /*
760                  * AEN requests are special as they don't time out and can
761                  * survive any kind of queue freeze and often don't respond to
762                  * aborts.  We don't even bother to allocate a struct request
763                  * for them but rather special case them here.
764                  */
765                 if (unlikely(nvmeq->qid == 0 &&
766                                 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
767                         nvme_complete_async_event(nvmeq->dev, &cqe);
768                         continue;
769                 }
770
771                 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
772                 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
773                         memcpy(req->special, &cqe, sizeof(cqe));
774                 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
775
776         }
777
778         /* If the controller ignores the cq head doorbell and continuously
779          * writes to the queue, it is theoretically possible to wrap around
780          * the queue twice and mistakenly return IRQ_NONE.  Linux only
781          * requires that 0.1% of your interrupts are handled, so this isn't
782          * a big problem.
783          */
784         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
785                 return;
786
787         if (likely(nvmeq->cq_vector >= 0))
788                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
789         nvmeq->cq_head = head;
790         nvmeq->cq_phase = phase;
791
792         nvmeq->cqe_seen = 1;
793 }
794
795 static void nvme_process_cq(struct nvme_queue *nvmeq)
796 {
797         __nvme_process_cq(nvmeq, NULL);
798 }
799
800 static irqreturn_t nvme_irq(int irq, void *data)
801 {
802         irqreturn_t result;
803         struct nvme_queue *nvmeq = data;
804         spin_lock(&nvmeq->q_lock);
805         nvme_process_cq(nvmeq);
806         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
807         nvmeq->cqe_seen = 0;
808         spin_unlock(&nvmeq->q_lock);
809         return result;
810 }
811
812 static irqreturn_t nvme_irq_check(int irq, void *data)
813 {
814         struct nvme_queue *nvmeq = data;
815         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
816                 return IRQ_WAKE_THREAD;
817         return IRQ_NONE;
818 }
819
820 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
821 {
822         struct nvme_queue *nvmeq = hctx->driver_data;
823
824         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
825                 spin_lock_irq(&nvmeq->q_lock);
826                 __nvme_process_cq(nvmeq, &tag);
827                 spin_unlock_irq(&nvmeq->q_lock);
828
829                 if (tag == -1)
830                         return 1;
831         }
832
833         return 0;
834 }
835
836 static void nvme_async_event_work(struct work_struct *work)
837 {
838         struct nvme_dev *dev = container_of(work, struct nvme_dev, async_work);
839         struct nvme_queue *nvmeq = dev->queues[0];
840         struct nvme_command c;
841
842         memset(&c, 0, sizeof(c));
843         c.common.opcode = nvme_admin_async_event;
844
845         spin_lock_irq(&nvmeq->q_lock);
846         while (dev->ctrl.event_limit > 0) {
847                 c.common.command_id = NVME_AQ_BLKMQ_DEPTH +
848                         --dev->ctrl.event_limit;
849                 __nvme_submit_cmd(nvmeq, &c);
850         }
851         spin_unlock_irq(&nvmeq->q_lock);
852 }
853
854 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
855 {
856         struct nvme_command c;
857
858         memset(&c, 0, sizeof(c));
859         c.delete_queue.opcode = opcode;
860         c.delete_queue.qid = cpu_to_le16(id);
861
862         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
863 }
864
865 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
866                                                 struct nvme_queue *nvmeq)
867 {
868         struct nvme_command c;
869         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
870
871         /*
872          * Note: we (ab)use the fact the the prp fields survive if no data
873          * is attached to the request.
874          */
875         memset(&c, 0, sizeof(c));
876         c.create_cq.opcode = nvme_admin_create_cq;
877         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
878         c.create_cq.cqid = cpu_to_le16(qid);
879         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
880         c.create_cq.cq_flags = cpu_to_le16(flags);
881         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
882
883         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
884 }
885
886 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
887                                                 struct nvme_queue *nvmeq)
888 {
889         struct nvme_command c;
890         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
891
892         /*
893          * Note: we (ab)use the fact the the prp fields survive if no data
894          * is attached to the request.
895          */
896         memset(&c, 0, sizeof(c));
897         c.create_sq.opcode = nvme_admin_create_sq;
898         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
899         c.create_sq.sqid = cpu_to_le16(qid);
900         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
901         c.create_sq.sq_flags = cpu_to_le16(flags);
902         c.create_sq.cqid = cpu_to_le16(qid);
903
904         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
905 }
906
907 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
908 {
909         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
910 }
911
912 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
913 {
914         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
915 }
916
917 static void abort_endio(struct request *req, int error)
918 {
919         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
920         struct nvme_queue *nvmeq = iod->nvmeq;
921         u16 status = req->errors;
922
923         dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
924         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
925         blk_mq_free_request(req);
926 }
927
928 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
929 {
930         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
931         struct nvme_queue *nvmeq = iod->nvmeq;
932         struct nvme_dev *dev = nvmeq->dev;
933         struct request *abort_req;
934         struct nvme_command cmd;
935
936         /*
937          * Shutdown immediately if controller times out while starting. The
938          * reset work will see the pci device disabled when it gets the forced
939          * cancellation error. All outstanding requests are completed on
940          * shutdown, so we return BLK_EH_HANDLED.
941          */
942         if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
943                 dev_warn(dev->ctrl.device,
944                          "I/O %d QID %d timeout, disable controller\n",
945                          req->tag, nvmeq->qid);
946                 nvme_dev_disable(dev, false);
947                 req->errors = NVME_SC_CANCELLED;
948                 return BLK_EH_HANDLED;
949         }
950
951         /*
952          * Shutdown the controller immediately and schedule a reset if the
953          * command was already aborted once before and still hasn't been
954          * returned to the driver, or if this is the admin queue.
955          */
956         if (!nvmeq->qid || iod->aborted) {
957                 dev_warn(dev->ctrl.device,
958                          "I/O %d QID %d timeout, reset controller\n",
959                          req->tag, nvmeq->qid);
960                 nvme_dev_disable(dev, false);
961                 queue_work(nvme_workq, &dev->reset_work);
962
963                 /*
964                  * Mark the request as handled, since the inline shutdown
965                  * forces all outstanding requests to complete.
966                  */
967                 req->errors = NVME_SC_CANCELLED;
968                 return BLK_EH_HANDLED;
969         }
970
971         iod->aborted = 1;
972
973         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
974                 atomic_inc(&dev->ctrl.abort_limit);
975                 return BLK_EH_RESET_TIMER;
976         }
977
978         memset(&cmd, 0, sizeof(cmd));
979         cmd.abort.opcode = nvme_admin_abort_cmd;
980         cmd.abort.cid = req->tag;
981         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
982
983         dev_warn(nvmeq->dev->ctrl.device,
984                 "I/O %d QID %d timeout, aborting\n",
985                  req->tag, nvmeq->qid);
986
987         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
988                         BLK_MQ_REQ_NOWAIT);
989         if (IS_ERR(abort_req)) {
990                 atomic_inc(&dev->ctrl.abort_limit);
991                 return BLK_EH_RESET_TIMER;
992         }
993
994         abort_req->timeout = ADMIN_TIMEOUT;
995         abort_req->end_io_data = NULL;
996         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
997
998         /*
999          * The aborted req will be completed on receiving the abort req.
1000          * We enable the timer again. If hit twice, it'll cause a device reset,
1001          * as the device then is in a faulty state.
1002          */
1003         return BLK_EH_RESET_TIMER;
1004 }
1005
1006 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1007 {
1008         struct nvme_queue *nvmeq = data;
1009         int status;
1010
1011         if (!blk_mq_request_started(req))
1012                 return;
1013
1014         dev_dbg_ratelimited(nvmeq->dev->ctrl.device,
1015                  "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
1016
1017         status = NVME_SC_ABORT_REQ;
1018         if (blk_queue_dying(req->q))
1019                 status |= NVME_SC_DNR;
1020         blk_mq_complete_request(req, status);
1021 }
1022
1023 static void nvme_free_queue(struct nvme_queue *nvmeq)
1024 {
1025         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1026                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1027         if (nvmeq->sq_cmds)
1028                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1029                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1030         kfree(nvmeq);
1031 }
1032
1033 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1034 {
1035         int i;
1036
1037         for (i = dev->queue_count - 1; i >= lowest; i--) {
1038                 struct nvme_queue *nvmeq = dev->queues[i];
1039                 dev->queue_count--;
1040                 dev->queues[i] = NULL;
1041                 nvme_free_queue(nvmeq);
1042         }
1043 }
1044
1045 /**
1046  * nvme_suspend_queue - put queue into suspended state
1047  * @nvmeq - queue to suspend
1048  */
1049 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1050 {
1051         int vector;
1052
1053         spin_lock_irq(&nvmeq->q_lock);
1054         if (nvmeq->cq_vector == -1) {
1055                 spin_unlock_irq(&nvmeq->q_lock);
1056                 return 1;
1057         }
1058         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1059         nvmeq->dev->online_queues--;
1060         nvmeq->cq_vector = -1;
1061         spin_unlock_irq(&nvmeq->q_lock);
1062
1063         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1064                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1065
1066         irq_set_affinity_hint(vector, NULL);
1067         free_irq(vector, nvmeq);
1068
1069         return 0;
1070 }
1071
1072 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1073 {
1074         spin_lock_irq(&nvmeq->q_lock);
1075         if (nvmeq->tags && *nvmeq->tags)
1076                 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1077         spin_unlock_irq(&nvmeq->q_lock);
1078 }
1079
1080 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1081 {
1082         struct nvme_queue *nvmeq = dev->queues[0];
1083
1084         if (!nvmeq)
1085                 return;
1086         if (nvme_suspend_queue(nvmeq))
1087                 return;
1088
1089         if (shutdown)
1090                 nvme_shutdown_ctrl(&dev->ctrl);
1091         else
1092                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1093                                                 dev->bar + NVME_REG_CAP));
1094
1095         spin_lock_irq(&nvmeq->q_lock);
1096         nvme_process_cq(nvmeq);
1097         spin_unlock_irq(&nvmeq->q_lock);
1098 }
1099
1100 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1101                                 int entry_size)
1102 {
1103         int q_depth = dev->q_depth;
1104         unsigned q_size_aligned = roundup(q_depth * entry_size,
1105                                           dev->ctrl.page_size);
1106
1107         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1108                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1109                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1110                 q_depth = div_u64(mem_per_q, entry_size);
1111
1112                 /*
1113                  * Ensure the reduced q_depth is above some threshold where it
1114                  * would be better to map queues in system memory with the
1115                  * original depth
1116                  */
1117                 if (q_depth < 64)
1118                         return -ENOMEM;
1119         }
1120
1121         return q_depth;
1122 }
1123
1124 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1125                                 int qid, int depth)
1126 {
1127         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1128                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1129                                                       dev->ctrl.page_size);
1130                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1131                 nvmeq->sq_cmds_io = dev->cmb + offset;
1132         } else {
1133                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1134                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1135                 if (!nvmeq->sq_cmds)
1136                         return -ENOMEM;
1137         }
1138
1139         return 0;
1140 }
1141
1142 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1143                                                         int depth)
1144 {
1145         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1146         if (!nvmeq)
1147                 return NULL;
1148
1149         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1150                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1151         if (!nvmeq->cqes)
1152                 goto free_nvmeq;
1153
1154         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1155                 goto free_cqdma;
1156
1157         nvmeq->q_dmadev = dev->dev;
1158         nvmeq->dev = dev;
1159         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1160                         dev->ctrl.instance, qid);
1161         spin_lock_init(&nvmeq->q_lock);
1162         nvmeq->cq_head = 0;
1163         nvmeq->cq_phase = 1;
1164         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1165         nvmeq->q_depth = depth;
1166         nvmeq->qid = qid;
1167         nvmeq->cq_vector = -1;
1168         dev->queues[qid] = nvmeq;
1169         dev->queue_count++;
1170
1171         return nvmeq;
1172
1173  free_cqdma:
1174         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1175                                                         nvmeq->cq_dma_addr);
1176  free_nvmeq:
1177         kfree(nvmeq);
1178         return NULL;
1179 }
1180
1181 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1182                                                         const char *name)
1183 {
1184         if (use_threaded_interrupts)
1185                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1186                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1187                                         name, nvmeq);
1188         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1189                                 IRQF_SHARED, name, nvmeq);
1190 }
1191
1192 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1193 {
1194         struct nvme_dev *dev = nvmeq->dev;
1195
1196         spin_lock_irq(&nvmeq->q_lock);
1197         nvmeq->sq_tail = 0;
1198         nvmeq->cq_head = 0;
1199         nvmeq->cq_phase = 1;
1200         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1201         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1202         dev->online_queues++;
1203         spin_unlock_irq(&nvmeq->q_lock);
1204 }
1205
1206 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1207 {
1208         struct nvme_dev *dev = nvmeq->dev;
1209         int result;
1210
1211         nvmeq->cq_vector = qid - 1;
1212         result = adapter_alloc_cq(dev, qid, nvmeq);
1213         if (result < 0)
1214                 return result;
1215
1216         result = adapter_alloc_sq(dev, qid, nvmeq);
1217         if (result < 0)
1218                 goto release_cq;
1219
1220         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1221         if (result < 0)
1222                 goto release_sq;
1223
1224         nvme_init_queue(nvmeq, qid);
1225         return result;
1226
1227  release_sq:
1228         adapter_delete_sq(dev, qid);
1229  release_cq:
1230         adapter_delete_cq(dev, qid);
1231         return result;
1232 }
1233
1234 static struct blk_mq_ops nvme_mq_admin_ops = {
1235         .queue_rq       = nvme_queue_rq,
1236         .complete       = nvme_complete_rq,
1237         .map_queue      = blk_mq_map_queue,
1238         .init_hctx      = nvme_admin_init_hctx,
1239         .exit_hctx      = nvme_admin_exit_hctx,
1240         .init_request   = nvme_admin_init_request,
1241         .timeout        = nvme_timeout,
1242 };
1243
1244 static struct blk_mq_ops nvme_mq_ops = {
1245         .queue_rq       = nvme_queue_rq,
1246         .complete       = nvme_complete_rq,
1247         .map_queue      = blk_mq_map_queue,
1248         .init_hctx      = nvme_init_hctx,
1249         .init_request   = nvme_init_request,
1250         .timeout        = nvme_timeout,
1251         .poll           = nvme_poll,
1252 };
1253
1254 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1255 {
1256         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1257                 /*
1258                  * If the controller was reset during removal, it's possible
1259                  * user requests may be waiting on a stopped queue. Start the
1260                  * queue to flush these to completion.
1261                  */
1262                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1263                 blk_cleanup_queue(dev->ctrl.admin_q);
1264                 blk_mq_free_tag_set(&dev->admin_tagset);
1265         }
1266 }
1267
1268 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1269 {
1270         if (!dev->ctrl.admin_q) {
1271                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1272                 dev->admin_tagset.nr_hw_queues = 1;
1273
1274                 /*
1275                  * Subtract one to leave an empty queue entry for 'Full Queue'
1276                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1277                  */
1278                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1279                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1280                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1281                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1282                 dev->admin_tagset.driver_data = dev;
1283
1284                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1285                         return -ENOMEM;
1286
1287                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1288                 if (IS_ERR(dev->ctrl.admin_q)) {
1289                         blk_mq_free_tag_set(&dev->admin_tagset);
1290                         return -ENOMEM;
1291                 }
1292                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1293                         nvme_dev_remove_admin(dev);
1294                         dev->ctrl.admin_q = NULL;
1295                         return -ENODEV;
1296                 }
1297         } else
1298                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1299
1300         return 0;
1301 }
1302
1303 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1304 {
1305         int result;
1306         u32 aqa;
1307         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1308         struct nvme_queue *nvmeq;
1309
1310         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1311                                                 NVME_CAP_NSSRC(cap) : 0;
1312
1313         if (dev->subsystem &&
1314             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1315                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1316
1317         result = nvme_disable_ctrl(&dev->ctrl, cap);
1318         if (result < 0)
1319                 return result;
1320
1321         nvmeq = dev->queues[0];
1322         if (!nvmeq) {
1323                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1324                 if (!nvmeq)
1325                         return -ENOMEM;
1326         }
1327
1328         aqa = nvmeq->q_depth - 1;
1329         aqa |= aqa << 16;
1330
1331         writel(aqa, dev->bar + NVME_REG_AQA);
1332         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1333         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1334
1335         result = nvme_enable_ctrl(&dev->ctrl, cap);
1336         if (result)
1337                 goto free_nvmeq;
1338
1339         nvmeq->cq_vector = 0;
1340         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1341         if (result) {
1342                 nvmeq->cq_vector = -1;
1343                 goto free_nvmeq;
1344         }
1345
1346         return result;
1347
1348  free_nvmeq:
1349         nvme_free_queues(dev, 0);
1350         return result;
1351 }
1352
1353 static void nvme_watchdog_timer(unsigned long data)
1354 {
1355         struct nvme_dev *dev = (struct nvme_dev *)data;
1356         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1357
1358         /*
1359          * Skip controllers currently under reset.
1360          */
1361         if (!work_pending(&dev->reset_work) && !work_busy(&dev->reset_work) &&
1362             ((csts & NVME_CSTS_CFS) ||
1363              (dev->subsystem && (csts & NVME_CSTS_NSSRO)))) {
1364                 if (queue_work(nvme_workq, &dev->reset_work)) {
1365                         dev_warn(dev->dev,
1366                                 "Failed status: 0x%x, reset controller.\n",
1367                                 csts);
1368                 }
1369                 return;
1370         }
1371
1372         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1373 }
1374
1375 static int nvme_create_io_queues(struct nvme_dev *dev)
1376 {
1377         unsigned i, max;
1378         int ret = 0;
1379
1380         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1381                 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1382                         ret = -ENOMEM;
1383                         break;
1384                 }
1385         }
1386
1387         max = min(dev->max_qid, dev->queue_count - 1);
1388         for (i = dev->online_queues; i <= max; i++) {
1389                 ret = nvme_create_queue(dev->queues[i], i);
1390                 if (ret) {
1391                         nvme_free_queues(dev, i);
1392                         break;
1393                 }
1394         }
1395
1396         /*
1397          * Ignore failing Create SQ/CQ commands, we can continue with less
1398          * than the desired aount of queues, and even a controller without
1399          * I/O queues an still be used to issue admin commands.  This might
1400          * be useful to upgrade a buggy firmware for example.
1401          */
1402         return ret >= 0 ? 0 : ret;
1403 }
1404
1405 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1406 {
1407         u64 szu, size, offset;
1408         u32 cmbloc;
1409         resource_size_t bar_size;
1410         struct pci_dev *pdev = to_pci_dev(dev->dev);
1411         void __iomem *cmb;
1412         dma_addr_t dma_addr;
1413
1414         if (!use_cmb_sqes)
1415                 return NULL;
1416
1417         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1418         if (!(NVME_CMB_SZ(dev->cmbsz)))
1419                 return NULL;
1420
1421         cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1422
1423         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1424         size = szu * NVME_CMB_SZ(dev->cmbsz);
1425         offset = szu * NVME_CMB_OFST(cmbloc);
1426         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1427
1428         if (offset > bar_size)
1429                 return NULL;
1430
1431         /*
1432          * Controllers may support a CMB size larger than their BAR,
1433          * for example, due to being behind a bridge. Reduce the CMB to
1434          * the reported size of the BAR
1435          */
1436         if (size > bar_size - offset)
1437                 size = bar_size - offset;
1438
1439         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1440         cmb = ioremap_wc(dma_addr, size);
1441         if (!cmb)
1442                 return NULL;
1443
1444         dev->cmb_dma_addr = dma_addr;
1445         dev->cmb_size = size;
1446         return cmb;
1447 }
1448
1449 static inline void nvme_release_cmb(struct nvme_dev *dev)
1450 {
1451         if (dev->cmb) {
1452                 iounmap(dev->cmb);
1453                 dev->cmb = NULL;
1454         }
1455 }
1456
1457 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1458 {
1459         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1460 }
1461
1462 static int nvme_setup_io_queues(struct nvme_dev *dev)
1463 {
1464         struct nvme_queue *adminq = dev->queues[0];
1465         struct pci_dev *pdev = to_pci_dev(dev->dev);
1466         int result, i, vecs, nr_io_queues, size;
1467
1468         nr_io_queues = num_possible_cpus();
1469         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1470         if (result < 0)
1471                 return result;
1472
1473         /*
1474          * Degraded controllers might return an error when setting the queue
1475          * count.  We still want to be able to bring them online and offer
1476          * access to the admin queue, as that might be only way to fix them up.
1477          */
1478         if (result > 0) {
1479                 dev_err(dev->ctrl.device,
1480                         "Could not set queue count (%d)\n", result);
1481                 nr_io_queues = 0;
1482                 result = 0;
1483         }
1484
1485         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1486                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1487                                 sizeof(struct nvme_command));
1488                 if (result > 0)
1489                         dev->q_depth = result;
1490                 else
1491                         nvme_release_cmb(dev);
1492         }
1493
1494         size = db_bar_size(dev, nr_io_queues);
1495         if (size > 8192) {
1496                 iounmap(dev->bar);
1497                 do {
1498                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1499                         if (dev->bar)
1500                                 break;
1501                         if (!--nr_io_queues)
1502                                 return -ENOMEM;
1503                         size = db_bar_size(dev, nr_io_queues);
1504                 } while (1);
1505                 dev->dbs = dev->bar + 4096;
1506                 adminq->q_db = dev->dbs;
1507         }
1508
1509         /* Deregister the admin queue's interrupt */
1510         free_irq(dev->entry[0].vector, adminq);
1511
1512         /*
1513          * If we enable msix early due to not intx, disable it again before
1514          * setting up the full range we need.
1515          */
1516         if (!pdev->irq)
1517                 pci_disable_msix(pdev);
1518
1519         for (i = 0; i < nr_io_queues; i++)
1520                 dev->entry[i].entry = i;
1521         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1522         if (vecs < 0) {
1523                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1524                 if (vecs < 0) {
1525                         vecs = 1;
1526                 } else {
1527                         for (i = 0; i < vecs; i++)
1528                                 dev->entry[i].vector = i + pdev->irq;
1529                 }
1530         }
1531
1532         /*
1533          * Should investigate if there's a performance win from allocating
1534          * more queues than interrupt vectors; it might allow the submission
1535          * path to scale better, even if the receive path is limited by the
1536          * number of interrupts.
1537          */
1538         nr_io_queues = vecs;
1539         dev->max_qid = nr_io_queues;
1540
1541         result = queue_request_irq(dev, adminq, adminq->irqname);
1542         if (result) {
1543                 adminq->cq_vector = -1;
1544                 goto free_queues;
1545         }
1546         return nvme_create_io_queues(dev);
1547
1548  free_queues:
1549         nvme_free_queues(dev, 1);
1550         return result;
1551 }
1552
1553 static void nvme_set_irq_hints(struct nvme_dev *dev)
1554 {
1555         struct nvme_queue *nvmeq;
1556         int i;
1557
1558         for (i = 0; i < dev->online_queues; i++) {
1559                 nvmeq = dev->queues[i];
1560
1561                 if (!nvmeq->tags || !(*nvmeq->tags))
1562                         continue;
1563
1564                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1565                                         blk_mq_tags_cpumask(*nvmeq->tags));
1566         }
1567 }
1568
1569 static void nvme_dev_scan(struct work_struct *work)
1570 {
1571         struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1572
1573         if (!dev->tagset.tags)
1574                 return;
1575         nvme_scan_namespaces(&dev->ctrl);
1576         nvme_set_irq_hints(dev);
1577 }
1578
1579 static void nvme_del_queue_end(struct request *req, int error)
1580 {
1581         struct nvme_queue *nvmeq = req->end_io_data;
1582
1583         blk_mq_free_request(req);
1584         complete(&nvmeq->dev->ioq_wait);
1585 }
1586
1587 static void nvme_del_cq_end(struct request *req, int error)
1588 {
1589         struct nvme_queue *nvmeq = req->end_io_data;
1590
1591         if (!error) {
1592                 unsigned long flags;
1593
1594                 spin_lock_irqsave(&nvmeq->q_lock, flags);
1595                 nvme_process_cq(nvmeq);
1596                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1597         }
1598
1599         nvme_del_queue_end(req, error);
1600 }
1601
1602 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1603 {
1604         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1605         struct request *req;
1606         struct nvme_command cmd;
1607
1608         memset(&cmd, 0, sizeof(cmd));
1609         cmd.delete_queue.opcode = opcode;
1610         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1611
1612         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1613         if (IS_ERR(req))
1614                 return PTR_ERR(req);
1615
1616         req->timeout = ADMIN_TIMEOUT;
1617         req->end_io_data = nvmeq;
1618
1619         blk_execute_rq_nowait(q, NULL, req, false,
1620                         opcode == nvme_admin_delete_cq ?
1621                                 nvme_del_cq_end : nvme_del_queue_end);
1622         return 0;
1623 }
1624
1625 static void nvme_disable_io_queues(struct nvme_dev *dev)
1626 {
1627         int pass;
1628         unsigned long timeout;
1629         u8 opcode = nvme_admin_delete_sq;
1630
1631         for (pass = 0; pass < 2; pass++) {
1632                 int sent = 0, i = dev->queue_count - 1;
1633
1634                 reinit_completion(&dev->ioq_wait);
1635  retry:
1636                 timeout = ADMIN_TIMEOUT;
1637                 for (; i > 0; i--) {
1638                         struct nvme_queue *nvmeq = dev->queues[i];
1639
1640                         if (!pass)
1641                                 nvme_suspend_queue(nvmeq);
1642                         if (nvme_delete_queue(nvmeq, opcode))
1643                                 break;
1644                         ++sent;
1645                 }
1646                 while (sent--) {
1647                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1648                         if (timeout == 0)
1649                                 return;
1650                         if (i)
1651                                 goto retry;
1652                 }
1653                 opcode = nvme_admin_delete_cq;
1654         }
1655 }
1656
1657 /*
1658  * Return: error value if an error occurred setting up the queues or calling
1659  * Identify Device.  0 if these succeeded, even if adding some of the
1660  * namespaces failed.  At the moment, these failures are silent.  TBD which
1661  * failures should be reported.
1662  */
1663 static int nvme_dev_add(struct nvme_dev *dev)
1664 {
1665         if (!dev->ctrl.tagset) {
1666                 dev->tagset.ops = &nvme_mq_ops;
1667                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1668                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1669                 dev->tagset.numa_node = dev_to_node(dev->dev);
1670                 dev->tagset.queue_depth =
1671                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1672                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1673                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1674                 dev->tagset.driver_data = dev;
1675
1676                 if (blk_mq_alloc_tag_set(&dev->tagset))
1677                         return 0;
1678                 dev->ctrl.tagset = &dev->tagset;
1679         } else {
1680                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1681
1682                 /* Free previously allocated queues that are no longer usable */
1683                 nvme_free_queues(dev, dev->online_queues);
1684         }
1685
1686         nvme_queue_scan(dev);
1687         return 0;
1688 }
1689
1690 static int nvme_pci_enable(struct nvme_dev *dev)
1691 {
1692         u64 cap;
1693         int result = -ENOMEM;
1694         struct pci_dev *pdev = to_pci_dev(dev->dev);
1695
1696         if (pci_enable_device_mem(pdev))
1697                 return result;
1698
1699         dev->entry[0].vector = pdev->irq;
1700         pci_set_master(pdev);
1701
1702         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1703             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1704                 goto disable;
1705
1706         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1707                 result = -ENODEV;
1708                 goto disable;
1709         }
1710
1711         /*
1712          * Some devices don't advertse INTx interrupts, pre-enable a single
1713          * MSIX vec for setup. We'll adjust this later.
1714          */
1715         if (!pdev->irq) {
1716                 result = pci_enable_msix(pdev, dev->entry, 1);
1717                 if (result < 0)
1718                         goto disable;
1719         }
1720
1721         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1722
1723         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1724         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1725         dev->dbs = dev->bar + 4096;
1726
1727         /*
1728          * Temporary fix for the Apple controller found in the MacBook8,1 and
1729          * some MacBook7,1 to avoid controller resets and data loss.
1730          */
1731         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1732                 dev->q_depth = 2;
1733                 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1734                         "queue depth=%u to work around controller resets\n",
1735                         dev->q_depth);
1736         }
1737
1738         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1739                 dev->cmb = nvme_map_cmb(dev);
1740
1741         pci_enable_pcie_error_reporting(pdev);
1742         pci_save_state(pdev);
1743         return 0;
1744
1745  disable:
1746         pci_disable_device(pdev);
1747         return result;
1748 }
1749
1750 static void nvme_dev_unmap(struct nvme_dev *dev)
1751 {
1752         if (dev->bar)
1753                 iounmap(dev->bar);
1754         pci_release_regions(to_pci_dev(dev->dev));
1755 }
1756
1757 static void nvme_pci_disable(struct nvme_dev *dev)
1758 {
1759         struct pci_dev *pdev = to_pci_dev(dev->dev);
1760
1761         if (pdev->msi_enabled)
1762                 pci_disable_msi(pdev);
1763         else if (pdev->msix_enabled)
1764                 pci_disable_msix(pdev);
1765
1766         if (pci_is_enabled(pdev)) {
1767                 pci_disable_pcie_error_reporting(pdev);
1768                 pci_disable_device(pdev);
1769         }
1770 }
1771
1772 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1773 {
1774         int i;
1775         u32 csts = -1;
1776
1777         del_timer_sync(&dev->watchdog_timer);
1778
1779         mutex_lock(&dev->shutdown_lock);
1780         if (pci_is_enabled(to_pci_dev(dev->dev))) {
1781                 nvme_stop_queues(&dev->ctrl);
1782                 csts = readl(dev->bar + NVME_REG_CSTS);
1783         }
1784         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1785                 for (i = dev->queue_count - 1; i >= 0; i--) {
1786                         struct nvme_queue *nvmeq = dev->queues[i];
1787                         nvme_suspend_queue(nvmeq);
1788                 }
1789         } else {
1790                 nvme_disable_io_queues(dev);
1791                 nvme_disable_admin_queue(dev, shutdown);
1792         }
1793         nvme_pci_disable(dev);
1794
1795         for (i = dev->queue_count - 1; i >= 0; i--)
1796                 nvme_clear_queue(dev->queues[i]);
1797         mutex_unlock(&dev->shutdown_lock);
1798 }
1799
1800 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1801 {
1802         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1803                                                 PAGE_SIZE, PAGE_SIZE, 0);
1804         if (!dev->prp_page_pool)
1805                 return -ENOMEM;
1806
1807         /* Optimisation for I/Os between 4k and 128k */
1808         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1809                                                 256, 256, 0);
1810         if (!dev->prp_small_pool) {
1811                 dma_pool_destroy(dev->prp_page_pool);
1812                 return -ENOMEM;
1813         }
1814         return 0;
1815 }
1816
1817 static void nvme_release_prp_pools(struct nvme_dev *dev)
1818 {
1819         dma_pool_destroy(dev->prp_page_pool);
1820         dma_pool_destroy(dev->prp_small_pool);
1821 }
1822
1823 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1824 {
1825         struct nvme_dev *dev = to_nvme_dev(ctrl);
1826
1827         put_device(dev->dev);
1828         if (dev->tagset.tags)
1829                 blk_mq_free_tag_set(&dev->tagset);
1830         if (dev->ctrl.admin_q)
1831                 blk_put_queue(dev->ctrl.admin_q);
1832         kfree(dev->queues);
1833         kfree(dev->entry);
1834         kfree(dev);
1835 }
1836
1837 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1838 {
1839         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1840
1841         kref_get(&dev->ctrl.kref);
1842         nvme_dev_disable(dev, false);
1843         if (!schedule_work(&dev->remove_work))
1844                 nvme_put_ctrl(&dev->ctrl);
1845 }
1846
1847 static void nvme_reset_work(struct work_struct *work)
1848 {
1849         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1850         int result = -ENODEV;
1851
1852         if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1853                 goto out;
1854
1855         /*
1856          * If we're called to reset a live controller first shut it down before
1857          * moving on.
1858          */
1859         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1860                 nvme_dev_disable(dev, false);
1861
1862         if (test_bit(NVME_CTRL_REMOVING, &dev->flags))
1863                 goto out;
1864
1865         set_bit(NVME_CTRL_RESETTING, &dev->flags);
1866
1867         result = nvme_pci_enable(dev);
1868         if (result)
1869                 goto out;
1870
1871         result = nvme_configure_admin_queue(dev);
1872         if (result)
1873                 goto out;
1874
1875         nvme_init_queue(dev->queues[0], 0);
1876         result = nvme_alloc_admin_tags(dev);
1877         if (result)
1878                 goto out;
1879
1880         result = nvme_init_identify(&dev->ctrl);
1881         if (result)
1882                 goto out;
1883
1884         result = nvme_setup_io_queues(dev);
1885         if (result)
1886                 goto out;
1887
1888         dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
1889         queue_work(nvme_workq, &dev->async_work);
1890
1891         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1892
1893         /*
1894          * Keep the controller around but remove all namespaces if we don't have
1895          * any working I/O queue.
1896          */
1897         if (dev->online_queues < 2) {
1898                 dev_warn(dev->ctrl.device, "IO queues not created\n");
1899                 nvme_remove_namespaces(&dev->ctrl);
1900         } else {
1901                 nvme_start_queues(&dev->ctrl);
1902                 nvme_dev_add(dev);
1903         }
1904
1905         clear_bit(NVME_CTRL_RESETTING, &dev->flags);
1906         return;
1907
1908  out:
1909         nvme_remove_dead_ctrl(dev, result);
1910 }
1911
1912 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1913 {
1914         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1915         struct pci_dev *pdev = to_pci_dev(dev->dev);
1916
1917         nvme_kill_queues(&dev->ctrl);
1918         if (pci_get_drvdata(pdev))
1919                 pci_stop_and_remove_bus_device_locked(pdev);
1920         nvme_put_ctrl(&dev->ctrl);
1921 }
1922
1923 static int nvme_reset(struct nvme_dev *dev)
1924 {
1925         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1926                 return -ENODEV;
1927
1928         if (!queue_work(nvme_workq, &dev->reset_work))
1929                 return -EBUSY;
1930
1931         flush_work(&dev->reset_work);
1932         return 0;
1933 }
1934
1935 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1936 {
1937         *val = readl(to_nvme_dev(ctrl)->bar + off);
1938         return 0;
1939 }
1940
1941 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1942 {
1943         writel(val, to_nvme_dev(ctrl)->bar + off);
1944         return 0;
1945 }
1946
1947 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1948 {
1949         *val = readq(to_nvme_dev(ctrl)->bar + off);
1950         return 0;
1951 }
1952
1953 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
1954 {
1955         struct nvme_dev *dev = to_nvme_dev(ctrl);
1956
1957         return !dev->bar || dev->online_queues < 2;
1958 }
1959
1960 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1961 {
1962         return nvme_reset(to_nvme_dev(ctrl));
1963 }
1964
1965 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1966         .module                 = THIS_MODULE,
1967         .reg_read32             = nvme_pci_reg_read32,
1968         .reg_write32            = nvme_pci_reg_write32,
1969         .reg_read64             = nvme_pci_reg_read64,
1970         .io_incapable           = nvme_pci_io_incapable,
1971         .reset_ctrl             = nvme_pci_reset_ctrl,
1972         .free_ctrl              = nvme_pci_free_ctrl,
1973 };
1974
1975 static int nvme_dev_map(struct nvme_dev *dev)
1976 {
1977         int bars;
1978         struct pci_dev *pdev = to_pci_dev(dev->dev);
1979
1980         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1981         if (!bars)
1982                 return -ENODEV;
1983         if (pci_request_selected_regions(pdev, bars, "nvme"))
1984                 return -ENODEV;
1985
1986         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1987         if (!dev->bar)
1988                 goto release;
1989
1990        return 0;
1991   release:
1992        pci_release_regions(pdev);
1993        return -ENODEV;
1994 }
1995
1996 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1997 {
1998         int node, result = -ENOMEM;
1999         struct nvme_dev *dev;
2000
2001         node = dev_to_node(&pdev->dev);
2002         if (node == NUMA_NO_NODE)
2003                 set_dev_node(&pdev->dev, 0);
2004
2005         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2006         if (!dev)
2007                 return -ENOMEM;
2008         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2009                                                         GFP_KERNEL, node);
2010         if (!dev->entry)
2011                 goto free;
2012         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2013                                                         GFP_KERNEL, node);
2014         if (!dev->queues)
2015                 goto free;
2016
2017         dev->dev = get_device(&pdev->dev);
2018         pci_set_drvdata(pdev, dev);
2019
2020         result = nvme_dev_map(dev);
2021         if (result)
2022                 goto free;
2023
2024         INIT_WORK(&dev->scan_work, nvme_dev_scan);
2025         INIT_WORK(&dev->reset_work, nvme_reset_work);
2026         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2027         INIT_WORK(&dev->async_work, nvme_async_event_work);
2028         setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2029                 (unsigned long)dev);
2030         mutex_init(&dev->shutdown_lock);
2031         init_completion(&dev->ioq_wait);
2032
2033         result = nvme_setup_prp_pools(dev);
2034         if (result)
2035                 goto put_pci;
2036
2037         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2038                         id->driver_data);
2039         if (result)
2040                 goto release_pools;
2041
2042         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2043
2044         queue_work(nvme_workq, &dev->reset_work);
2045         return 0;
2046
2047  release_pools:
2048         nvme_release_prp_pools(dev);
2049  put_pci:
2050         put_device(dev->dev);
2051         nvme_dev_unmap(dev);
2052  free:
2053         kfree(dev->queues);
2054         kfree(dev->entry);
2055         kfree(dev);
2056         return result;
2057 }
2058
2059 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2060 {
2061         struct nvme_dev *dev = pci_get_drvdata(pdev);
2062
2063         if (prepare)
2064                 nvme_dev_disable(dev, false);
2065         else
2066                 queue_work(nvme_workq, &dev->reset_work);
2067 }
2068
2069 static void nvme_shutdown(struct pci_dev *pdev)
2070 {
2071         struct nvme_dev *dev = pci_get_drvdata(pdev);
2072         nvme_dev_disable(dev, true);
2073 }
2074
2075 /*
2076  * The driver's remove may be called on a device in a partially initialized
2077  * state. This function must not have any dependencies on the device state in
2078  * order to proceed.
2079  */
2080 static void nvme_remove(struct pci_dev *pdev)
2081 {
2082         struct nvme_dev *dev = pci_get_drvdata(pdev);
2083
2084         set_bit(NVME_CTRL_REMOVING, &dev->flags);
2085         pci_set_drvdata(pdev, NULL);
2086         flush_work(&dev->async_work);
2087         flush_work(&dev->reset_work);
2088         flush_work(&dev->scan_work);
2089         nvme_remove_namespaces(&dev->ctrl);
2090         nvme_uninit_ctrl(&dev->ctrl);
2091         nvme_dev_disable(dev, true);
2092         flush_work(&dev->reset_work);
2093         nvme_dev_remove_admin(dev);
2094         nvme_free_queues(dev, 0);
2095         nvme_release_cmb(dev);
2096         nvme_release_prp_pools(dev);
2097         nvme_dev_unmap(dev);
2098         nvme_put_ctrl(&dev->ctrl);
2099 }
2100
2101 #ifdef CONFIG_PM_SLEEP
2102 static int nvme_suspend(struct device *dev)
2103 {
2104         struct pci_dev *pdev = to_pci_dev(dev);
2105         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2106
2107         nvme_dev_disable(ndev, true);
2108         return 0;
2109 }
2110
2111 static int nvme_resume(struct device *dev)
2112 {
2113         struct pci_dev *pdev = to_pci_dev(dev);
2114         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2115
2116         queue_work(nvme_workq, &ndev->reset_work);
2117         return 0;
2118 }
2119 #endif
2120
2121 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2122
2123 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2124                                                 pci_channel_state_t state)
2125 {
2126         struct nvme_dev *dev = pci_get_drvdata(pdev);
2127
2128         /*
2129          * A frozen channel requires a reset. When detected, this method will
2130          * shutdown the controller to quiesce. The controller will be restarted
2131          * after the slot reset through driver's slot_reset callback.
2132          */
2133         dev_warn(dev->ctrl.device, "error detected: state:%d\n", state);
2134         switch (state) {
2135         case pci_channel_io_normal:
2136                 return PCI_ERS_RESULT_CAN_RECOVER;
2137         case pci_channel_io_frozen:
2138                 nvme_dev_disable(dev, false);
2139                 return PCI_ERS_RESULT_NEED_RESET;
2140         case pci_channel_io_perm_failure:
2141                 return PCI_ERS_RESULT_DISCONNECT;
2142         }
2143         return PCI_ERS_RESULT_NEED_RESET;
2144 }
2145
2146 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2147 {
2148         struct nvme_dev *dev = pci_get_drvdata(pdev);
2149
2150         dev_info(dev->ctrl.device, "restart after slot reset\n");
2151         pci_restore_state(pdev);
2152         queue_work(nvme_workq, &dev->reset_work);
2153         return PCI_ERS_RESULT_RECOVERED;
2154 }
2155
2156 static void nvme_error_resume(struct pci_dev *pdev)
2157 {
2158         pci_cleanup_aer_uncorrect_error_status(pdev);
2159 }
2160
2161 static const struct pci_error_handlers nvme_err_handler = {
2162         .error_detected = nvme_error_detected,
2163         .slot_reset     = nvme_slot_reset,
2164         .resume         = nvme_error_resume,
2165         .reset_notify   = nvme_reset_notify,
2166 };
2167
2168 /* Move to pci_ids.h later */
2169 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2170
2171 static const struct pci_device_id nvme_id_table[] = {
2172         { PCI_VDEVICE(INTEL, 0x0953),
2173                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2174                                 NVME_QUIRK_DISCARD_ZEROES, },
2175         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2176                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2177         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2178         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2179         { 0, }
2180 };
2181 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2182
2183 static struct pci_driver nvme_driver = {
2184         .name           = "nvme",
2185         .id_table       = nvme_id_table,
2186         .probe          = nvme_probe,
2187         .remove         = nvme_remove,
2188         .shutdown       = nvme_shutdown,
2189         .driver         = {
2190                 .pm     = &nvme_dev_pm_ops,
2191         },
2192         .err_handler    = &nvme_err_handler,
2193 };
2194
2195 static int __init nvme_init(void)
2196 {
2197         int result;
2198
2199         nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2200         if (!nvme_workq)
2201                 return -ENOMEM;
2202
2203         result = pci_register_driver(&nvme_driver);
2204         if (result)
2205                 destroy_workqueue(nvme_workq);
2206         return result;
2207 }
2208
2209 static void __exit nvme_exit(void)
2210 {
2211         pci_unregister_driver(&nvme_driver);
2212         destroy_workqueue(nvme_workq);
2213         _nvme_check_size();
2214 }
2215
2216 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2217 MODULE_LICENSE("GPL");
2218 MODULE_VERSION("1.0");
2219 module_init(nvme_init);
2220 module_exit(nvme_exit);