x86/speculation: Fix redundant MDS mitigation message
[linux-2.6-block.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/list_sort.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/t10-pi.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such are scan, aen handling, fw activation,
70  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95                                            unsigned nsid);
96
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99         /*
100          * Revalidating a dead namespace sets capacity to 0. This will end
101          * buffered writers dirtying pages that can't be synced.
102          */
103         if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104                 return;
105         blk_set_queue_dying(ns->queue);
106         /* Forcibly unquiesce queues to avoid blocking dispatch */
107         blk_mq_unquiesce_queue(ns->queue);
108         /*
109          * Revalidate after unblocking dispatchers that may be holding bd_butex
110          */
111         revalidate_disk(ns->disk);
112 }
113
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116         /*
117          * Only new queue scan work when admin and IO queues are both alive
118          */
119         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120                 queue_work(nvme_wq, &ctrl->scan_work);
121 }
122
123 /*
124  * Use this function to proceed with scheduling reset_work for a controller
125  * that had previously been set to the resetting state. This is intended for
126  * code paths that can't be interrupted by other reset attempts. A hot removal
127  * may prevent this from succeeding.
128  */
129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
130 {
131         if (ctrl->state != NVME_CTRL_RESETTING)
132                 return -EBUSY;
133         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134                 return -EBUSY;
135         return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
138
139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
140 {
141         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
142                 return -EBUSY;
143         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
144                 return -EBUSY;
145         return 0;
146 }
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
148
149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
150 {
151         int ret;
152
153         ret = nvme_reset_ctrl(ctrl);
154         if (!ret) {
155                 flush_work(&ctrl->reset_work);
156                 if (ctrl->state != NVME_CTRL_LIVE)
157                         ret = -ENETRESET;
158         }
159
160         return ret;
161 }
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
163
164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
165 {
166         dev_info(ctrl->device,
167                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
168
169         flush_work(&ctrl->reset_work);
170         nvme_stop_ctrl(ctrl);
171         nvme_remove_namespaces(ctrl);
172         ctrl->ops->delete_ctrl(ctrl);
173         nvme_uninit_ctrl(ctrl);
174         nvme_put_ctrl(ctrl);
175 }
176
177 static void nvme_delete_ctrl_work(struct work_struct *work)
178 {
179         struct nvme_ctrl *ctrl =
180                 container_of(work, struct nvme_ctrl, delete_work);
181
182         nvme_do_delete_ctrl(ctrl);
183 }
184
185 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
186 {
187         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
188                 return -EBUSY;
189         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
190                 return -EBUSY;
191         return 0;
192 }
193 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
194
195 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
196 {
197         int ret = 0;
198
199         /*
200          * Keep a reference until nvme_do_delete_ctrl() complete,
201          * since ->delete_ctrl can free the controller.
202          */
203         nvme_get_ctrl(ctrl);
204         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
205                 ret = -EBUSY;
206         if (!ret)
207                 nvme_do_delete_ctrl(ctrl);
208         nvme_put_ctrl(ctrl);
209         return ret;
210 }
211
212 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
213 {
214         return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
215 }
216
217 static blk_status_t nvme_error_status(u16 status)
218 {
219         switch (status & 0x7ff) {
220         case NVME_SC_SUCCESS:
221                 return BLK_STS_OK;
222         case NVME_SC_CAP_EXCEEDED:
223                 return BLK_STS_NOSPC;
224         case NVME_SC_LBA_RANGE:
225                 return BLK_STS_TARGET;
226         case NVME_SC_BAD_ATTRIBUTES:
227         case NVME_SC_ONCS_NOT_SUPPORTED:
228         case NVME_SC_INVALID_OPCODE:
229         case NVME_SC_INVALID_FIELD:
230         case NVME_SC_INVALID_NS:
231                 return BLK_STS_NOTSUPP;
232         case NVME_SC_WRITE_FAULT:
233         case NVME_SC_READ_ERROR:
234         case NVME_SC_UNWRITTEN_BLOCK:
235         case NVME_SC_ACCESS_DENIED:
236         case NVME_SC_READ_ONLY:
237         case NVME_SC_COMPARE_FAILED:
238                 return BLK_STS_MEDIUM;
239         case NVME_SC_GUARD_CHECK:
240         case NVME_SC_APPTAG_CHECK:
241         case NVME_SC_REFTAG_CHECK:
242         case NVME_SC_INVALID_PI:
243                 return BLK_STS_PROTECTION;
244         case NVME_SC_RESERVATION_CONFLICT:
245                 return BLK_STS_NEXUS;
246         case NVME_SC_HOST_PATH_ERROR:
247                 return BLK_STS_TRANSPORT;
248         default:
249                 return BLK_STS_IOERR;
250         }
251 }
252
253 static inline bool nvme_req_needs_retry(struct request *req)
254 {
255         if (blk_noretry_request(req))
256                 return false;
257         if (nvme_req(req)->status & NVME_SC_DNR)
258                 return false;
259         if (nvme_req(req)->retries >= nvme_max_retries)
260                 return false;
261         return true;
262 }
263
264 static void nvme_retry_req(struct request *req)
265 {
266         struct nvme_ns *ns = req->q->queuedata;
267         unsigned long delay = 0;
268         u16 crd;
269
270         /* The mask and shift result must be <= 3 */
271         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
272         if (ns && crd)
273                 delay = ns->ctrl->crdt[crd - 1] * 100;
274
275         nvme_req(req)->retries++;
276         blk_mq_requeue_request(req, false);
277         blk_mq_delay_kick_requeue_list(req->q, delay);
278 }
279
280 void nvme_complete_rq(struct request *req)
281 {
282         blk_status_t status = nvme_error_status(nvme_req(req)->status);
283
284         trace_nvme_complete_rq(req);
285
286         if (nvme_req(req)->ctrl->kas)
287                 nvme_req(req)->ctrl->comp_seen = true;
288
289         if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
290                 if ((req->cmd_flags & REQ_NVME_MPATH) &&
291                     blk_path_error(status)) {
292                         nvme_failover_req(req);
293                         return;
294                 }
295
296                 if (!blk_queue_dying(req->q)) {
297                         nvme_retry_req(req);
298                         return;
299                 }
300         }
301
302         nvme_trace_bio_complete(req, status);
303         blk_mq_end_request(req, status);
304 }
305 EXPORT_SYMBOL_GPL(nvme_complete_rq);
306
307 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
308 {
309         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
310                                 "Cancelling I/O %d", req->tag);
311
312         /* don't abort one completed request */
313         if (blk_mq_request_completed(req))
314                 return true;
315
316         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
317         blk_mq_complete_request(req);
318         return true;
319 }
320 EXPORT_SYMBOL_GPL(nvme_cancel_request);
321
322 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
323                 enum nvme_ctrl_state new_state)
324 {
325         enum nvme_ctrl_state old_state;
326         unsigned long flags;
327         bool changed = false;
328
329         spin_lock_irqsave(&ctrl->lock, flags);
330
331         old_state = ctrl->state;
332         switch (new_state) {
333         case NVME_CTRL_LIVE:
334                 switch (old_state) {
335                 case NVME_CTRL_NEW:
336                 case NVME_CTRL_RESETTING:
337                 case NVME_CTRL_CONNECTING:
338                         changed = true;
339                         /* FALLTHRU */
340                 default:
341                         break;
342                 }
343                 break;
344         case NVME_CTRL_RESETTING:
345                 switch (old_state) {
346                 case NVME_CTRL_NEW:
347                 case NVME_CTRL_LIVE:
348                         changed = true;
349                         /* FALLTHRU */
350                 default:
351                         break;
352                 }
353                 break;
354         case NVME_CTRL_CONNECTING:
355                 switch (old_state) {
356                 case NVME_CTRL_NEW:
357                 case NVME_CTRL_RESETTING:
358                         changed = true;
359                         /* FALLTHRU */
360                 default:
361                         break;
362                 }
363                 break;
364         case NVME_CTRL_DELETING:
365                 switch (old_state) {
366                 case NVME_CTRL_LIVE:
367                 case NVME_CTRL_RESETTING:
368                 case NVME_CTRL_CONNECTING:
369                         changed = true;
370                         /* FALLTHRU */
371                 default:
372                         break;
373                 }
374                 break;
375         case NVME_CTRL_DEAD:
376                 switch (old_state) {
377                 case NVME_CTRL_DELETING:
378                         changed = true;
379                         /* FALLTHRU */
380                 default:
381                         break;
382                 }
383                 break;
384         default:
385                 break;
386         }
387
388         if (changed) {
389                 ctrl->state = new_state;
390                 wake_up_all(&ctrl->state_wq);
391         }
392
393         spin_unlock_irqrestore(&ctrl->lock, flags);
394         if (changed && ctrl->state == NVME_CTRL_LIVE)
395                 nvme_kick_requeue_lists(ctrl);
396         return changed;
397 }
398 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
399
400 /*
401  * Returns true for sink states that can't ever transition back to live.
402  */
403 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
404 {
405         switch (ctrl->state) {
406         case NVME_CTRL_NEW:
407         case NVME_CTRL_LIVE:
408         case NVME_CTRL_RESETTING:
409         case NVME_CTRL_CONNECTING:
410                 return false;
411         case NVME_CTRL_DELETING:
412         case NVME_CTRL_DEAD:
413                 return true;
414         default:
415                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
416                 return true;
417         }
418 }
419
420 /*
421  * Waits for the controller state to be resetting, or returns false if it is
422  * not possible to ever transition to that state.
423  */
424 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
425 {
426         wait_event(ctrl->state_wq,
427                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
428                    nvme_state_terminal(ctrl));
429         return ctrl->state == NVME_CTRL_RESETTING;
430 }
431 EXPORT_SYMBOL_GPL(nvme_wait_reset);
432
433 static void nvme_free_ns_head(struct kref *ref)
434 {
435         struct nvme_ns_head *head =
436                 container_of(ref, struct nvme_ns_head, ref);
437
438         nvme_mpath_remove_disk(head);
439         ida_simple_remove(&head->subsys->ns_ida, head->instance);
440         list_del_init(&head->entry);
441         cleanup_srcu_struct(&head->srcu);
442         nvme_put_subsystem(head->subsys);
443         kfree(head);
444 }
445
446 static void nvme_put_ns_head(struct nvme_ns_head *head)
447 {
448         kref_put(&head->ref, nvme_free_ns_head);
449 }
450
451 static void nvme_free_ns(struct kref *kref)
452 {
453         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
454
455         if (ns->ndev)
456                 nvme_nvm_unregister(ns);
457
458         put_disk(ns->disk);
459         nvme_put_ns_head(ns->head);
460         nvme_put_ctrl(ns->ctrl);
461         kfree(ns);
462 }
463
464 static void nvme_put_ns(struct nvme_ns *ns)
465 {
466         kref_put(&ns->kref, nvme_free_ns);
467 }
468
469 static inline void nvme_clear_nvme_request(struct request *req)
470 {
471         if (!(req->rq_flags & RQF_DONTPREP)) {
472                 nvme_req(req)->retries = 0;
473                 nvme_req(req)->flags = 0;
474                 req->rq_flags |= RQF_DONTPREP;
475         }
476 }
477
478 struct request *nvme_alloc_request(struct request_queue *q,
479                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
480 {
481         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
482         struct request *req;
483
484         if (qid == NVME_QID_ANY) {
485                 req = blk_mq_alloc_request(q, op, flags);
486         } else {
487                 req = blk_mq_alloc_request_hctx(q, op, flags,
488                                 qid ? qid - 1 : 0);
489         }
490         if (IS_ERR(req))
491                 return req;
492
493         req->cmd_flags |= REQ_FAILFAST_DRIVER;
494         nvme_clear_nvme_request(req);
495         nvme_req(req)->cmd = cmd;
496
497         return req;
498 }
499 EXPORT_SYMBOL_GPL(nvme_alloc_request);
500
501 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
502 {
503         struct nvme_command c;
504
505         memset(&c, 0, sizeof(c));
506
507         c.directive.opcode = nvme_admin_directive_send;
508         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
509         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
510         c.directive.dtype = NVME_DIR_IDENTIFY;
511         c.directive.tdtype = NVME_DIR_STREAMS;
512         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
513
514         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
515 }
516
517 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
518 {
519         return nvme_toggle_streams(ctrl, false);
520 }
521
522 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
523 {
524         return nvme_toggle_streams(ctrl, true);
525 }
526
527 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
528                                   struct streams_directive_params *s, u32 nsid)
529 {
530         struct nvme_command c;
531
532         memset(&c, 0, sizeof(c));
533         memset(s, 0, sizeof(*s));
534
535         c.directive.opcode = nvme_admin_directive_recv;
536         c.directive.nsid = cpu_to_le32(nsid);
537         c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
538         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
539         c.directive.dtype = NVME_DIR_STREAMS;
540
541         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
542 }
543
544 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
545 {
546         struct streams_directive_params s;
547         int ret;
548
549         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
550                 return 0;
551         if (!streams)
552                 return 0;
553
554         ret = nvme_enable_streams(ctrl);
555         if (ret)
556                 return ret;
557
558         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
559         if (ret)
560                 return ret;
561
562         ctrl->nssa = le16_to_cpu(s.nssa);
563         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
564                 dev_info(ctrl->device, "too few streams (%u) available\n",
565                                         ctrl->nssa);
566                 nvme_disable_streams(ctrl);
567                 return 0;
568         }
569
570         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
571         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
572         return 0;
573 }
574
575 /*
576  * Check if 'req' has a write hint associated with it. If it does, assign
577  * a valid namespace stream to the write.
578  */
579 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
580                                      struct request *req, u16 *control,
581                                      u32 *dsmgmt)
582 {
583         enum rw_hint streamid = req->write_hint;
584
585         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
586                 streamid = 0;
587         else {
588                 streamid--;
589                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
590                         return;
591
592                 *control |= NVME_RW_DTYPE_STREAMS;
593                 *dsmgmt |= streamid << 16;
594         }
595
596         if (streamid < ARRAY_SIZE(req->q->write_hints))
597                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
598 }
599
600 static inline void nvme_setup_flush(struct nvme_ns *ns,
601                 struct nvme_command *cmnd)
602 {
603         cmnd->common.opcode = nvme_cmd_flush;
604         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
605 }
606
607 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
608                 struct nvme_command *cmnd)
609 {
610         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
611         struct nvme_dsm_range *range;
612         struct bio *bio;
613
614         range = kmalloc_array(segments, sizeof(*range),
615                                 GFP_ATOMIC | __GFP_NOWARN);
616         if (!range) {
617                 /*
618                  * If we fail allocation our range, fallback to the controller
619                  * discard page. If that's also busy, it's safe to return
620                  * busy, as we know we can make progress once that's freed.
621                  */
622                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
623                         return BLK_STS_RESOURCE;
624
625                 range = page_address(ns->ctrl->discard_page);
626         }
627
628         __rq_for_each_bio(bio, req) {
629                 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
630                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
631
632                 if (n < segments) {
633                         range[n].cattr = cpu_to_le32(0);
634                         range[n].nlb = cpu_to_le32(nlb);
635                         range[n].slba = cpu_to_le64(slba);
636                 }
637                 n++;
638         }
639
640         if (WARN_ON_ONCE(n != segments)) {
641                 if (virt_to_page(range) == ns->ctrl->discard_page)
642                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
643                 else
644                         kfree(range);
645                 return BLK_STS_IOERR;
646         }
647
648         cmnd->dsm.opcode = nvme_cmd_dsm;
649         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
650         cmnd->dsm.nr = cpu_to_le32(segments - 1);
651         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
652
653         req->special_vec.bv_page = virt_to_page(range);
654         req->special_vec.bv_offset = offset_in_page(range);
655         req->special_vec.bv_len = sizeof(*range) * segments;
656         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
657
658         return BLK_STS_OK;
659 }
660
661 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
662                 struct request *req, struct nvme_command *cmnd)
663 {
664         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
665                 return nvme_setup_discard(ns, req, cmnd);
666
667         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
668         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
669         cmnd->write_zeroes.slba =
670                 cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
671         cmnd->write_zeroes.length =
672                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
673         cmnd->write_zeroes.control = 0;
674         return BLK_STS_OK;
675 }
676
677 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
678                 struct request *req, struct nvme_command *cmnd)
679 {
680         struct nvme_ctrl *ctrl = ns->ctrl;
681         u16 control = 0;
682         u32 dsmgmt = 0;
683
684         if (req->cmd_flags & REQ_FUA)
685                 control |= NVME_RW_FUA;
686         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
687                 control |= NVME_RW_LR;
688
689         if (req->cmd_flags & REQ_RAHEAD)
690                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
691
692         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
693         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
694         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
695         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
696
697         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
698                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
699
700         if (ns->ms) {
701                 /*
702                  * If formated with metadata, the block layer always provides a
703                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
704                  * we enable the PRACT bit for protection information or set the
705                  * namespace capacity to zero to prevent any I/O.
706                  */
707                 if (!blk_integrity_rq(req)) {
708                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
709                                 return BLK_STS_NOTSUPP;
710                         control |= NVME_RW_PRINFO_PRACT;
711                 }
712
713                 switch (ns->pi_type) {
714                 case NVME_NS_DPS_PI_TYPE3:
715                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
716                         break;
717                 case NVME_NS_DPS_PI_TYPE1:
718                 case NVME_NS_DPS_PI_TYPE2:
719                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
720                                         NVME_RW_PRINFO_PRCHK_REF;
721                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
722                         break;
723                 }
724         }
725
726         cmnd->rw.control = cpu_to_le16(control);
727         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
728         return 0;
729 }
730
731 void nvme_cleanup_cmd(struct request *req)
732 {
733         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
734                 struct nvme_ns *ns = req->rq_disk->private_data;
735                 struct page *page = req->special_vec.bv_page;
736
737                 if (page == ns->ctrl->discard_page)
738                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
739                 else
740                         kfree(page_address(page) + req->special_vec.bv_offset);
741         }
742 }
743 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
744
745 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
746                 struct nvme_command *cmd)
747 {
748         blk_status_t ret = BLK_STS_OK;
749
750         nvme_clear_nvme_request(req);
751
752         memset(cmd, 0, sizeof(*cmd));
753         switch (req_op(req)) {
754         case REQ_OP_DRV_IN:
755         case REQ_OP_DRV_OUT:
756                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
757                 break;
758         case REQ_OP_FLUSH:
759                 nvme_setup_flush(ns, cmd);
760                 break;
761         case REQ_OP_WRITE_ZEROES:
762                 ret = nvme_setup_write_zeroes(ns, req, cmd);
763                 break;
764         case REQ_OP_DISCARD:
765                 ret = nvme_setup_discard(ns, req, cmd);
766                 break;
767         case REQ_OP_READ:
768         case REQ_OP_WRITE:
769                 ret = nvme_setup_rw(ns, req, cmd);
770                 break;
771         default:
772                 WARN_ON_ONCE(1);
773                 return BLK_STS_IOERR;
774         }
775
776         cmd->common.command_id = req->tag;
777         trace_nvme_setup_cmd(req, cmd);
778         return ret;
779 }
780 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
781
782 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
783 {
784         struct completion *waiting = rq->end_io_data;
785
786         rq->end_io_data = NULL;
787         complete(waiting);
788 }
789
790 static void nvme_execute_rq_polled(struct request_queue *q,
791                 struct gendisk *bd_disk, struct request *rq, int at_head)
792 {
793         DECLARE_COMPLETION_ONSTACK(wait);
794
795         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
796
797         rq->cmd_flags |= REQ_HIPRI;
798         rq->end_io_data = &wait;
799         blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
800
801         while (!completion_done(&wait)) {
802                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
803                 cond_resched();
804         }
805 }
806
807 /*
808  * Returns 0 on success.  If the result is negative, it's a Linux error code;
809  * if the result is positive, it's an NVM Express status code
810  */
811 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
812                 union nvme_result *result, void *buffer, unsigned bufflen,
813                 unsigned timeout, int qid, int at_head,
814                 blk_mq_req_flags_t flags, bool poll)
815 {
816         struct request *req;
817         int ret;
818
819         req = nvme_alloc_request(q, cmd, flags, qid);
820         if (IS_ERR(req))
821                 return PTR_ERR(req);
822
823         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
824
825         if (buffer && bufflen) {
826                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
827                 if (ret)
828                         goto out;
829         }
830
831         if (poll)
832                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
833         else
834                 blk_execute_rq(req->q, NULL, req, at_head);
835         if (result)
836                 *result = nvme_req(req)->result;
837         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
838                 ret = -EINTR;
839         else
840                 ret = nvme_req(req)->status;
841  out:
842         blk_mq_free_request(req);
843         return ret;
844 }
845 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
846
847 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
848                 void *buffer, unsigned bufflen)
849 {
850         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
851                         NVME_QID_ANY, 0, 0, false);
852 }
853 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
854
855 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
856                 unsigned len, u32 seed, bool write)
857 {
858         struct bio_integrity_payload *bip;
859         int ret = -ENOMEM;
860         void *buf;
861
862         buf = kmalloc(len, GFP_KERNEL);
863         if (!buf)
864                 goto out;
865
866         ret = -EFAULT;
867         if (write && copy_from_user(buf, ubuf, len))
868                 goto out_free_meta;
869
870         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
871         if (IS_ERR(bip)) {
872                 ret = PTR_ERR(bip);
873                 goto out_free_meta;
874         }
875
876         bip->bip_iter.bi_size = len;
877         bip->bip_iter.bi_sector = seed;
878         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
879                         offset_in_page(buf));
880         if (ret == len)
881                 return buf;
882         ret = -ENOMEM;
883 out_free_meta:
884         kfree(buf);
885 out:
886         return ERR_PTR(ret);
887 }
888
889 static int nvme_submit_user_cmd(struct request_queue *q,
890                 struct nvme_command *cmd, void __user *ubuffer,
891                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
892                 u32 meta_seed, u64 *result, unsigned timeout)
893 {
894         bool write = nvme_is_write(cmd);
895         struct nvme_ns *ns = q->queuedata;
896         struct gendisk *disk = ns ? ns->disk : NULL;
897         struct request *req;
898         struct bio *bio = NULL;
899         void *meta = NULL;
900         int ret;
901
902         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
903         if (IS_ERR(req))
904                 return PTR_ERR(req);
905
906         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
907         nvme_req(req)->flags |= NVME_REQ_USERCMD;
908
909         if (ubuffer && bufflen) {
910                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
911                                 GFP_KERNEL);
912                 if (ret)
913                         goto out;
914                 bio = req->bio;
915                 bio->bi_disk = disk;
916                 if (disk && meta_buffer && meta_len) {
917                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
918                                         meta_seed, write);
919                         if (IS_ERR(meta)) {
920                                 ret = PTR_ERR(meta);
921                                 goto out_unmap;
922                         }
923                         req->cmd_flags |= REQ_INTEGRITY;
924                 }
925         }
926
927         blk_execute_rq(req->q, disk, req, 0);
928         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
929                 ret = -EINTR;
930         else
931                 ret = nvme_req(req)->status;
932         if (result)
933                 *result = le64_to_cpu(nvme_req(req)->result.u64);
934         if (meta && !ret && !write) {
935                 if (copy_to_user(meta_buffer, meta, meta_len))
936                         ret = -EFAULT;
937         }
938         kfree(meta);
939  out_unmap:
940         if (bio)
941                 blk_rq_unmap_user(bio);
942  out:
943         blk_mq_free_request(req);
944         return ret;
945 }
946
947 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
948 {
949         struct nvme_ctrl *ctrl = rq->end_io_data;
950         unsigned long flags;
951         bool startka = false;
952
953         blk_mq_free_request(rq);
954
955         if (status) {
956                 dev_err(ctrl->device,
957                         "failed nvme_keep_alive_end_io error=%d\n",
958                                 status);
959                 return;
960         }
961
962         ctrl->comp_seen = false;
963         spin_lock_irqsave(&ctrl->lock, flags);
964         if (ctrl->state == NVME_CTRL_LIVE ||
965             ctrl->state == NVME_CTRL_CONNECTING)
966                 startka = true;
967         spin_unlock_irqrestore(&ctrl->lock, flags);
968         if (startka)
969                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
970 }
971
972 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
973 {
974         struct request *rq;
975
976         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
977                         NVME_QID_ANY);
978         if (IS_ERR(rq))
979                 return PTR_ERR(rq);
980
981         rq->timeout = ctrl->kato * HZ;
982         rq->end_io_data = ctrl;
983
984         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
985
986         return 0;
987 }
988
989 static void nvme_keep_alive_work(struct work_struct *work)
990 {
991         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
992                         struct nvme_ctrl, ka_work);
993         bool comp_seen = ctrl->comp_seen;
994
995         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
996                 dev_dbg(ctrl->device,
997                         "reschedule traffic based keep-alive timer\n");
998                 ctrl->comp_seen = false;
999                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
1000                 return;
1001         }
1002
1003         if (nvme_keep_alive(ctrl)) {
1004                 /* allocation failure, reset the controller */
1005                 dev_err(ctrl->device, "keep-alive failed\n");
1006                 nvme_reset_ctrl(ctrl);
1007                 return;
1008         }
1009 }
1010
1011 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1012 {
1013         if (unlikely(ctrl->kato == 0))
1014                 return;
1015
1016         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
1017 }
1018
1019 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1020 {
1021         if (unlikely(ctrl->kato == 0))
1022                 return;
1023
1024         cancel_delayed_work_sync(&ctrl->ka_work);
1025 }
1026 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1027
1028 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1029 {
1030         struct nvme_command c = { };
1031         int error;
1032
1033         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1034         c.identify.opcode = nvme_admin_identify;
1035         c.identify.cns = NVME_ID_CNS_CTRL;
1036
1037         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1038         if (!*id)
1039                 return -ENOMEM;
1040
1041         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1042                         sizeof(struct nvme_id_ctrl));
1043         if (error)
1044                 kfree(*id);
1045         return error;
1046 }
1047
1048 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1049                 struct nvme_ns_ids *ids)
1050 {
1051         struct nvme_command c = { };
1052         int status;
1053         void *data;
1054         int pos;
1055         int len;
1056
1057         c.identify.opcode = nvme_admin_identify;
1058         c.identify.nsid = cpu_to_le32(nsid);
1059         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1060
1061         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1062         if (!data)
1063                 return -ENOMEM;
1064
1065         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1066                                       NVME_IDENTIFY_DATA_SIZE);
1067         if (status)
1068                 goto free_data;
1069
1070         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1071                 struct nvme_ns_id_desc *cur = data + pos;
1072
1073                 if (cur->nidl == 0)
1074                         break;
1075
1076                 switch (cur->nidt) {
1077                 case NVME_NIDT_EUI64:
1078                         if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1079                                 dev_warn(ctrl->device,
1080                                          "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1081                                          cur->nidl);
1082                                 goto free_data;
1083                         }
1084                         len = NVME_NIDT_EUI64_LEN;
1085                         memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1086                         break;
1087                 case NVME_NIDT_NGUID:
1088                         if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1089                                 dev_warn(ctrl->device,
1090                                          "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1091                                          cur->nidl);
1092                                 goto free_data;
1093                         }
1094                         len = NVME_NIDT_NGUID_LEN;
1095                         memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1096                         break;
1097                 case NVME_NIDT_UUID:
1098                         if (cur->nidl != NVME_NIDT_UUID_LEN) {
1099                                 dev_warn(ctrl->device,
1100                                          "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1101                                          cur->nidl);
1102                                 goto free_data;
1103                         }
1104                         len = NVME_NIDT_UUID_LEN;
1105                         uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1106                         break;
1107                 default:
1108                         /* Skip unknown types */
1109                         len = cur->nidl;
1110                         break;
1111                 }
1112
1113                 len += sizeof(*cur);
1114         }
1115 free_data:
1116         kfree(data);
1117         return status;
1118 }
1119
1120 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1121 {
1122         struct nvme_command c = { };
1123
1124         c.identify.opcode = nvme_admin_identify;
1125         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1126         c.identify.nsid = cpu_to_le32(nsid);
1127         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1128                                     NVME_IDENTIFY_DATA_SIZE);
1129 }
1130
1131 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1132                 unsigned nsid, struct nvme_id_ns **id)
1133 {
1134         struct nvme_command c = { };
1135         int error;
1136
1137         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1138         c.identify.opcode = nvme_admin_identify;
1139         c.identify.nsid = cpu_to_le32(nsid);
1140         c.identify.cns = NVME_ID_CNS_NS;
1141
1142         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1143         if (!*id)
1144                 return -ENOMEM;
1145
1146         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1147         if (error) {
1148                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1149                 kfree(*id);
1150         }
1151
1152         return error;
1153 }
1154
1155 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1156                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1157 {
1158         struct nvme_command c;
1159         union nvme_result res;
1160         int ret;
1161
1162         memset(&c, 0, sizeof(c));
1163         c.features.opcode = op;
1164         c.features.fid = cpu_to_le32(fid);
1165         c.features.dword11 = cpu_to_le32(dword11);
1166
1167         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1168                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1169         if (ret >= 0 && result)
1170                 *result = le32_to_cpu(res.u32);
1171         return ret;
1172 }
1173
1174 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1175                       unsigned int dword11, void *buffer, size_t buflen,
1176                       u32 *result)
1177 {
1178         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1179                              buflen, result);
1180 }
1181 EXPORT_SYMBOL_GPL(nvme_set_features);
1182
1183 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1184                       unsigned int dword11, void *buffer, size_t buflen,
1185                       u32 *result)
1186 {
1187         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1188                              buflen, result);
1189 }
1190 EXPORT_SYMBOL_GPL(nvme_get_features);
1191
1192 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1193 {
1194         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1195         u32 result;
1196         int status, nr_io_queues;
1197
1198         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1199                         &result);
1200         if (status < 0)
1201                 return status;
1202
1203         /*
1204          * Degraded controllers might return an error when setting the queue
1205          * count.  We still want to be able to bring them online and offer
1206          * access to the admin queue, as that might be only way to fix them up.
1207          */
1208         if (status > 0) {
1209                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1210                 *count = 0;
1211         } else {
1212                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1213                 *count = min(*count, nr_io_queues);
1214         }
1215
1216         return 0;
1217 }
1218 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1219
1220 #define NVME_AEN_SUPPORTED \
1221         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1222          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1223
1224 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1225 {
1226         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1227         int status;
1228
1229         if (!supported_aens)
1230                 return;
1231
1232         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1233                         NULL, 0, &result);
1234         if (status)
1235                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1236                          supported_aens);
1237
1238         queue_work(nvme_wq, &ctrl->async_event_work);
1239 }
1240
1241 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1242 {
1243         struct nvme_user_io io;
1244         struct nvme_command c;
1245         unsigned length, meta_len;
1246         void __user *metadata;
1247
1248         if (copy_from_user(&io, uio, sizeof(io)))
1249                 return -EFAULT;
1250         if (io.flags)
1251                 return -EINVAL;
1252
1253         switch (io.opcode) {
1254         case nvme_cmd_write:
1255         case nvme_cmd_read:
1256         case nvme_cmd_compare:
1257                 break;
1258         default:
1259                 return -EINVAL;
1260         }
1261
1262         length = (io.nblocks + 1) << ns->lba_shift;
1263         meta_len = (io.nblocks + 1) * ns->ms;
1264         metadata = (void __user *)(uintptr_t)io.metadata;
1265
1266         if (ns->ext) {
1267                 length += meta_len;
1268                 meta_len = 0;
1269         } else if (meta_len) {
1270                 if ((io.metadata & 3) || !io.metadata)
1271                         return -EINVAL;
1272         }
1273
1274         memset(&c, 0, sizeof(c));
1275         c.rw.opcode = io.opcode;
1276         c.rw.flags = io.flags;
1277         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1278         c.rw.slba = cpu_to_le64(io.slba);
1279         c.rw.length = cpu_to_le16(io.nblocks);
1280         c.rw.control = cpu_to_le16(io.control);
1281         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1282         c.rw.reftag = cpu_to_le32(io.reftag);
1283         c.rw.apptag = cpu_to_le16(io.apptag);
1284         c.rw.appmask = cpu_to_le16(io.appmask);
1285
1286         return nvme_submit_user_cmd(ns->queue, &c,
1287                         (void __user *)(uintptr_t)io.addr, length,
1288                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1289 }
1290
1291 static u32 nvme_known_admin_effects(u8 opcode)
1292 {
1293         switch (opcode) {
1294         case nvme_admin_format_nvm:
1295                 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1296                                         NVME_CMD_EFFECTS_CSE_MASK;
1297         case nvme_admin_sanitize_nvm:
1298                 return NVME_CMD_EFFECTS_CSE_MASK;
1299         default:
1300                 break;
1301         }
1302         return 0;
1303 }
1304
1305 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1306                                                                 u8 opcode)
1307 {
1308         u32 effects = 0;
1309
1310         if (ns) {
1311                 if (ctrl->effects)
1312                         effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1313                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1314                         dev_warn(ctrl->device,
1315                                  "IO command:%02x has unhandled effects:%08x\n",
1316                                  opcode, effects);
1317                 return 0;
1318         }
1319
1320         if (ctrl->effects)
1321                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1322         effects |= nvme_known_admin_effects(opcode);
1323
1324         /*
1325          * For simplicity, IO to all namespaces is quiesced even if the command
1326          * effects say only one namespace is affected.
1327          */
1328         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1329                 mutex_lock(&ctrl->scan_lock);
1330                 mutex_lock(&ctrl->subsys->lock);
1331                 nvme_mpath_start_freeze(ctrl->subsys);
1332                 nvme_mpath_wait_freeze(ctrl->subsys);
1333                 nvme_start_freeze(ctrl);
1334                 nvme_wait_freeze(ctrl);
1335         }
1336         return effects;
1337 }
1338
1339 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1340 {
1341         struct nvme_ns *ns;
1342
1343         down_read(&ctrl->namespaces_rwsem);
1344         list_for_each_entry(ns, &ctrl->namespaces, list)
1345                 if (ns->disk && nvme_revalidate_disk(ns->disk))
1346                         nvme_set_queue_dying(ns);
1347         up_read(&ctrl->namespaces_rwsem);
1348 }
1349
1350 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1351 {
1352         /*
1353          * Revalidate LBA changes prior to unfreezing. This is necessary to
1354          * prevent memory corruption if a logical block size was changed by
1355          * this command.
1356          */
1357         if (effects & NVME_CMD_EFFECTS_LBCC)
1358                 nvme_update_formats(ctrl);
1359         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1360                 nvme_unfreeze(ctrl);
1361                 nvme_mpath_unfreeze(ctrl->subsys);
1362                 mutex_unlock(&ctrl->subsys->lock);
1363                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1364                 mutex_unlock(&ctrl->scan_lock);
1365         }
1366         if (effects & NVME_CMD_EFFECTS_CCC)
1367                 nvme_init_identify(ctrl);
1368         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1369                 nvme_queue_scan(ctrl);
1370 }
1371
1372 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1373                         struct nvme_passthru_cmd __user *ucmd)
1374 {
1375         struct nvme_passthru_cmd cmd;
1376         struct nvme_command c;
1377         unsigned timeout = 0;
1378         u32 effects;
1379         u64 result;
1380         int status;
1381
1382         if (!capable(CAP_SYS_ADMIN))
1383                 return -EACCES;
1384         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1385                 return -EFAULT;
1386         if (cmd.flags)
1387                 return -EINVAL;
1388
1389         memset(&c, 0, sizeof(c));
1390         c.common.opcode = cmd.opcode;
1391         c.common.flags = cmd.flags;
1392         c.common.nsid = cpu_to_le32(cmd.nsid);
1393         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1394         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1395         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1396         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1397         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1398         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1399         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1400         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1401
1402         if (cmd.timeout_ms)
1403                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1404
1405         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1406         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1407                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1408                         (void __user *)(uintptr_t)cmd.metadata,
1409                         cmd.metadata_len, 0, &result, timeout);
1410         nvme_passthru_end(ctrl, effects);
1411
1412         if (status >= 0) {
1413                 if (put_user(result, &ucmd->result))
1414                         return -EFAULT;
1415         }
1416
1417         return status;
1418 }
1419
1420 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1421                         struct nvme_passthru_cmd64 __user *ucmd)
1422 {
1423         struct nvme_passthru_cmd64 cmd;
1424         struct nvme_command c;
1425         unsigned timeout = 0;
1426         u32 effects;
1427         int status;
1428
1429         if (!capable(CAP_SYS_ADMIN))
1430                 return -EACCES;
1431         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1432                 return -EFAULT;
1433         if (cmd.flags)
1434                 return -EINVAL;
1435
1436         memset(&c, 0, sizeof(c));
1437         c.common.opcode = cmd.opcode;
1438         c.common.flags = cmd.flags;
1439         c.common.nsid = cpu_to_le32(cmd.nsid);
1440         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1441         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1442         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1443         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1444         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1445         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1446         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1447         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1448
1449         if (cmd.timeout_ms)
1450                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1451
1452         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1453         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1454                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1455                         (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1456                         0, &cmd.result, timeout);
1457         nvme_passthru_end(ctrl, effects);
1458
1459         if (status >= 0) {
1460                 if (put_user(cmd.result, &ucmd->result))
1461                         return -EFAULT;
1462         }
1463
1464         return status;
1465 }
1466
1467 /*
1468  * Issue ioctl requests on the first available path.  Note that unlike normal
1469  * block layer requests we will not retry failed request on another controller.
1470  */
1471 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1472                 struct nvme_ns_head **head, int *srcu_idx)
1473 {
1474 #ifdef CONFIG_NVME_MULTIPATH
1475         if (disk->fops == &nvme_ns_head_ops) {
1476                 struct nvme_ns *ns;
1477
1478                 *head = disk->private_data;
1479                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1480                 ns = nvme_find_path(*head);
1481                 if (!ns)
1482                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1483                 return ns;
1484         }
1485 #endif
1486         *head = NULL;
1487         *srcu_idx = -1;
1488         return disk->private_data;
1489 }
1490
1491 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1492 {
1493         if (head)
1494                 srcu_read_unlock(&head->srcu, idx);
1495 }
1496
1497 static bool is_ctrl_ioctl(unsigned int cmd)
1498 {
1499         if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1500                 return true;
1501         if (is_sed_ioctl(cmd))
1502                 return true;
1503         return false;
1504 }
1505
1506 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1507                                   void __user *argp,
1508                                   struct nvme_ns_head *head,
1509                                   int srcu_idx)
1510 {
1511         struct nvme_ctrl *ctrl = ns->ctrl;
1512         int ret;
1513
1514         nvme_get_ctrl(ns->ctrl);
1515         nvme_put_ns_from_disk(head, srcu_idx);
1516
1517         switch (cmd) {
1518         case NVME_IOCTL_ADMIN_CMD:
1519                 ret = nvme_user_cmd(ctrl, NULL, argp);
1520                 break;
1521         case NVME_IOCTL_ADMIN64_CMD:
1522                 ret = nvme_user_cmd64(ctrl, NULL, argp);
1523                 break;
1524         default:
1525                 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1526                 break;
1527         }
1528         nvme_put_ctrl(ctrl);
1529         return ret;
1530 }
1531
1532 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1533                 unsigned int cmd, unsigned long arg)
1534 {
1535         struct nvme_ns_head *head = NULL;
1536         void __user *argp = (void __user *)arg;
1537         struct nvme_ns *ns;
1538         int srcu_idx, ret;
1539
1540         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1541         if (unlikely(!ns))
1542                 return -EWOULDBLOCK;
1543
1544         /*
1545          * Handle ioctls that apply to the controller instead of the namespace
1546          * seperately and drop the ns SRCU reference early.  This avoids a
1547          * deadlock when deleting namespaces using the passthrough interface.
1548          */
1549         if (is_ctrl_ioctl(cmd))
1550                 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1551
1552         switch (cmd) {
1553         case NVME_IOCTL_ID:
1554                 force_successful_syscall_return();
1555                 ret = ns->head->ns_id;
1556                 break;
1557         case NVME_IOCTL_IO_CMD:
1558                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1559                 break;
1560         case NVME_IOCTL_SUBMIT_IO:
1561                 ret = nvme_submit_io(ns, argp);
1562                 break;
1563         case NVME_IOCTL_IO64_CMD:
1564                 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1565                 break;
1566         default:
1567                 if (ns->ndev)
1568                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1569                 else
1570                         ret = -ENOTTY;
1571         }
1572
1573         nvme_put_ns_from_disk(head, srcu_idx);
1574         return ret;
1575 }
1576
1577 static int nvme_open(struct block_device *bdev, fmode_t mode)
1578 {
1579         struct nvme_ns *ns = bdev->bd_disk->private_data;
1580
1581 #ifdef CONFIG_NVME_MULTIPATH
1582         /* should never be called due to GENHD_FL_HIDDEN */
1583         if (WARN_ON_ONCE(ns->head->disk))
1584                 goto fail;
1585 #endif
1586         if (!kref_get_unless_zero(&ns->kref))
1587                 goto fail;
1588         if (!try_module_get(ns->ctrl->ops->module))
1589                 goto fail_put_ns;
1590
1591         return 0;
1592
1593 fail_put_ns:
1594         nvme_put_ns(ns);
1595 fail:
1596         return -ENXIO;
1597 }
1598
1599 static void nvme_release(struct gendisk *disk, fmode_t mode)
1600 {
1601         struct nvme_ns *ns = disk->private_data;
1602
1603         module_put(ns->ctrl->ops->module);
1604         nvme_put_ns(ns);
1605 }
1606
1607 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1608 {
1609         /* some standard values */
1610         geo->heads = 1 << 6;
1611         geo->sectors = 1 << 5;
1612         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1613         return 0;
1614 }
1615
1616 #ifdef CONFIG_BLK_DEV_INTEGRITY
1617 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1618 {
1619         struct blk_integrity integrity;
1620
1621         memset(&integrity, 0, sizeof(integrity));
1622         switch (pi_type) {
1623         case NVME_NS_DPS_PI_TYPE3:
1624                 integrity.profile = &t10_pi_type3_crc;
1625                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1626                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1627                 break;
1628         case NVME_NS_DPS_PI_TYPE1:
1629         case NVME_NS_DPS_PI_TYPE2:
1630                 integrity.profile = &t10_pi_type1_crc;
1631                 integrity.tag_size = sizeof(u16);
1632                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1633                 break;
1634         default:
1635                 integrity.profile = NULL;
1636                 break;
1637         }
1638         integrity.tuple_size = ms;
1639         blk_integrity_register(disk, &integrity);
1640         blk_queue_max_integrity_segments(disk->queue, 1);
1641 }
1642 #else
1643 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1644 {
1645 }
1646 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1647
1648 static void nvme_set_chunk_size(struct nvme_ns *ns)
1649 {
1650         u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1651         blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1652 }
1653
1654 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1655 {
1656         struct nvme_ctrl *ctrl = ns->ctrl;
1657         struct request_queue *queue = disk->queue;
1658         u32 size = queue_logical_block_size(queue);
1659
1660         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1661                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1662                 return;
1663         }
1664
1665         if (ctrl->nr_streams && ns->sws && ns->sgs)
1666                 size *= ns->sws * ns->sgs;
1667
1668         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1669                         NVME_DSM_MAX_RANGES);
1670
1671         queue->limits.discard_alignment = 0;
1672         queue->limits.discard_granularity = size;
1673
1674         /* If discard is already enabled, don't reset queue limits */
1675         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1676                 return;
1677
1678         blk_queue_max_discard_sectors(queue, UINT_MAX);
1679         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1680
1681         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1682                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1683 }
1684
1685 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1686 {
1687         u32 max_sectors;
1688         unsigned short bs = 1 << ns->lba_shift;
1689
1690         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1691             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1692                 return;
1693         /*
1694          * Even though NVMe spec explicitly states that MDTS is not
1695          * applicable to the write-zeroes:- "The restriction does not apply to
1696          * commands that do not transfer data between the host and the
1697          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1698          * In order to be more cautious use controller's max_hw_sectors value
1699          * to configure the maximum sectors for the write-zeroes which is
1700          * configured based on the controller's MDTS field in the
1701          * nvme_init_identify() if available.
1702          */
1703         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1704                 max_sectors = ((u32)(USHRT_MAX + 1) * bs) >> 9;
1705         else
1706                 max_sectors = ((u32)(ns->ctrl->max_hw_sectors + 1) * bs) >> 9;
1707
1708         blk_queue_max_write_zeroes_sectors(disk->queue, max_sectors);
1709 }
1710
1711 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1712                 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1713 {
1714         int ret = 0;
1715
1716         memset(ids, 0, sizeof(*ids));
1717
1718         if (ctrl->vs >= NVME_VS(1, 1, 0))
1719                 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1720         if (ctrl->vs >= NVME_VS(1, 2, 0))
1721                 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1722         if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1723                  /* Don't treat error as fatal we potentially
1724                   * already have a NGUID or EUI-64
1725                   */
1726                 ret = nvme_identify_ns_descs(ctrl, nsid, ids);
1727                 if (ret)
1728                         dev_warn(ctrl->device,
1729                                  "Identify Descriptors failed (%d)\n", ret);
1730         }
1731         return ret;
1732 }
1733
1734 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1735 {
1736         return !uuid_is_null(&ids->uuid) ||
1737                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1738                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1739 }
1740
1741 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1742 {
1743         return uuid_equal(&a->uuid, &b->uuid) &&
1744                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1745                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1746 }
1747
1748 static void nvme_update_disk_info(struct gendisk *disk,
1749                 struct nvme_ns *ns, struct nvme_id_ns *id)
1750 {
1751         sector_t capacity = le64_to_cpu(id->nsze) << (ns->lba_shift - 9);
1752         unsigned short bs = 1 << ns->lba_shift;
1753         u32 atomic_bs, phys_bs, io_opt;
1754
1755         if (ns->lba_shift > PAGE_SHIFT) {
1756                 /* unsupported block size, set capacity to 0 later */
1757                 bs = (1 << 9);
1758         }
1759         blk_mq_freeze_queue(disk->queue);
1760         blk_integrity_unregister(disk);
1761
1762         if (id->nabo == 0) {
1763                 /*
1764                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1765                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1766                  * 0 then AWUPF must be used instead.
1767                  */
1768                 if (id->nsfeat & (1 << 1) && id->nawupf)
1769                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1770                 else
1771                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1772         } else {
1773                 atomic_bs = bs;
1774         }
1775         phys_bs = bs;
1776         io_opt = bs;
1777         if (id->nsfeat & (1 << 4)) {
1778                 /* NPWG = Namespace Preferred Write Granularity */
1779                 phys_bs *= 1 + le16_to_cpu(id->npwg);
1780                 /* NOWS = Namespace Optimal Write Size */
1781                 io_opt *= 1 + le16_to_cpu(id->nows);
1782         }
1783
1784         blk_queue_logical_block_size(disk->queue, bs);
1785         /*
1786          * Linux filesystems assume writing a single physical block is
1787          * an atomic operation. Hence limit the physical block size to the
1788          * value of the Atomic Write Unit Power Fail parameter.
1789          */
1790         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1791         blk_queue_io_min(disk->queue, phys_bs);
1792         blk_queue_io_opt(disk->queue, io_opt);
1793
1794         if (ns->ms && !ns->ext &&
1795             (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1796                 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1797         if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1798             ns->lba_shift > PAGE_SHIFT)
1799                 capacity = 0;
1800
1801         set_capacity(disk, capacity);
1802
1803         nvme_config_discard(disk, ns);
1804         nvme_config_write_zeroes(disk, ns);
1805
1806         if (id->nsattr & (1 << 0))
1807                 set_disk_ro(disk, true);
1808         else
1809                 set_disk_ro(disk, false);
1810
1811         blk_mq_unfreeze_queue(disk->queue);
1812 }
1813
1814 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1815 {
1816         struct nvme_ns *ns = disk->private_data;
1817
1818         /*
1819          * If identify namespace failed, use default 512 byte block size so
1820          * block layer can use before failing read/write for 0 capacity.
1821          */
1822         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1823         if (ns->lba_shift == 0)
1824                 ns->lba_shift = 9;
1825         ns->noiob = le16_to_cpu(id->noiob);
1826         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1827         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1828         /* the PI implementation requires metadata equal t10 pi tuple size */
1829         if (ns->ms == sizeof(struct t10_pi_tuple))
1830                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1831         else
1832                 ns->pi_type = 0;
1833
1834         if (ns->noiob)
1835                 nvme_set_chunk_size(ns);
1836         nvme_update_disk_info(disk, ns, id);
1837 #ifdef CONFIG_NVME_MULTIPATH
1838         if (ns->head->disk) {
1839                 nvme_update_disk_info(ns->head->disk, ns, id);
1840                 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1841                 revalidate_disk(ns->head->disk);
1842         }
1843 #endif
1844 }
1845
1846 static int nvme_revalidate_disk(struct gendisk *disk)
1847 {
1848         struct nvme_ns *ns = disk->private_data;
1849         struct nvme_ctrl *ctrl = ns->ctrl;
1850         struct nvme_id_ns *id;
1851         struct nvme_ns_ids ids;
1852         int ret = 0;
1853
1854         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1855                 set_capacity(disk, 0);
1856                 return -ENODEV;
1857         }
1858
1859         ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1860         if (ret)
1861                 goto out;
1862
1863         if (id->ncap == 0) {
1864                 ret = -ENODEV;
1865                 goto free_id;
1866         }
1867
1868         __nvme_revalidate_disk(disk, id);
1869         ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1870         if (ret)
1871                 goto free_id;
1872
1873         if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1874                 dev_err(ctrl->device,
1875                         "identifiers changed for nsid %d\n", ns->head->ns_id);
1876                 ret = -ENODEV;
1877         }
1878
1879 free_id:
1880         kfree(id);
1881 out:
1882         /*
1883          * Only fail the function if we got a fatal error back from the
1884          * device, otherwise ignore the error and just move on.
1885          */
1886         if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1887                 ret = 0;
1888         else if (ret > 0)
1889                 ret = blk_status_to_errno(nvme_error_status(ret));
1890         return ret;
1891 }
1892
1893 static char nvme_pr_type(enum pr_type type)
1894 {
1895         switch (type) {
1896         case PR_WRITE_EXCLUSIVE:
1897                 return 1;
1898         case PR_EXCLUSIVE_ACCESS:
1899                 return 2;
1900         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1901                 return 3;
1902         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1903                 return 4;
1904         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1905                 return 5;
1906         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1907                 return 6;
1908         default:
1909                 return 0;
1910         }
1911 };
1912
1913 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1914                                 u64 key, u64 sa_key, u8 op)
1915 {
1916         struct nvme_ns_head *head = NULL;
1917         struct nvme_ns *ns;
1918         struct nvme_command c;
1919         int srcu_idx, ret;
1920         u8 data[16] = { 0, };
1921
1922         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1923         if (unlikely(!ns))
1924                 return -EWOULDBLOCK;
1925
1926         put_unaligned_le64(key, &data[0]);
1927         put_unaligned_le64(sa_key, &data[8]);
1928
1929         memset(&c, 0, sizeof(c));
1930         c.common.opcode = op;
1931         c.common.nsid = cpu_to_le32(ns->head->ns_id);
1932         c.common.cdw10 = cpu_to_le32(cdw10);
1933
1934         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1935         nvme_put_ns_from_disk(head, srcu_idx);
1936         return ret;
1937 }
1938
1939 static int nvme_pr_register(struct block_device *bdev, u64 old,
1940                 u64 new, unsigned flags)
1941 {
1942         u32 cdw10;
1943
1944         if (flags & ~PR_FL_IGNORE_KEY)
1945                 return -EOPNOTSUPP;
1946
1947         cdw10 = old ? 2 : 0;
1948         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1949         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1950         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1951 }
1952
1953 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1954                 enum pr_type type, unsigned flags)
1955 {
1956         u32 cdw10;
1957
1958         if (flags & ~PR_FL_IGNORE_KEY)
1959                 return -EOPNOTSUPP;
1960
1961         cdw10 = nvme_pr_type(type) << 8;
1962         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1963         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1964 }
1965
1966 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1967                 enum pr_type type, bool abort)
1968 {
1969         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1970         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1971 }
1972
1973 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1974 {
1975         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1976         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1977 }
1978
1979 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1980 {
1981         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1982         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1983 }
1984
1985 static const struct pr_ops nvme_pr_ops = {
1986         .pr_register    = nvme_pr_register,
1987         .pr_reserve     = nvme_pr_reserve,
1988         .pr_release     = nvme_pr_release,
1989         .pr_preempt     = nvme_pr_preempt,
1990         .pr_clear       = nvme_pr_clear,
1991 };
1992
1993 #ifdef CONFIG_BLK_SED_OPAL
1994 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1995                 bool send)
1996 {
1997         struct nvme_ctrl *ctrl = data;
1998         struct nvme_command cmd;
1999
2000         memset(&cmd, 0, sizeof(cmd));
2001         if (send)
2002                 cmd.common.opcode = nvme_admin_security_send;
2003         else
2004                 cmd.common.opcode = nvme_admin_security_recv;
2005         cmd.common.nsid = 0;
2006         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2007         cmd.common.cdw11 = cpu_to_le32(len);
2008
2009         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2010                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2011 }
2012 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2013 #endif /* CONFIG_BLK_SED_OPAL */
2014
2015 static const struct block_device_operations nvme_fops = {
2016         .owner          = THIS_MODULE,
2017         .ioctl          = nvme_ioctl,
2018         .compat_ioctl   = nvme_ioctl,
2019         .open           = nvme_open,
2020         .release        = nvme_release,
2021         .getgeo         = nvme_getgeo,
2022         .revalidate_disk= nvme_revalidate_disk,
2023         .pr_ops         = &nvme_pr_ops,
2024 };
2025
2026 #ifdef CONFIG_NVME_MULTIPATH
2027 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2028 {
2029         struct nvme_ns_head *head = bdev->bd_disk->private_data;
2030
2031         if (!kref_get_unless_zero(&head->ref))
2032                 return -ENXIO;
2033         return 0;
2034 }
2035
2036 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2037 {
2038         nvme_put_ns_head(disk->private_data);
2039 }
2040
2041 const struct block_device_operations nvme_ns_head_ops = {
2042         .owner          = THIS_MODULE,
2043         .open           = nvme_ns_head_open,
2044         .release        = nvme_ns_head_release,
2045         .ioctl          = nvme_ioctl,
2046         .compat_ioctl   = nvme_ioctl,
2047         .getgeo         = nvme_getgeo,
2048         .pr_ops         = &nvme_pr_ops,
2049 };
2050 #endif /* CONFIG_NVME_MULTIPATH */
2051
2052 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2053 {
2054         unsigned long timeout =
2055                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2056         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2057         int ret;
2058
2059         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2060                 if (csts == ~0)
2061                         return -ENODEV;
2062                 if ((csts & NVME_CSTS_RDY) == bit)
2063                         break;
2064
2065                 msleep(100);
2066                 if (fatal_signal_pending(current))
2067                         return -EINTR;
2068                 if (time_after(jiffies, timeout)) {
2069                         dev_err(ctrl->device,
2070                                 "Device not ready; aborting %s\n", enabled ?
2071                                                 "initialisation" : "reset");
2072                         return -ENODEV;
2073                 }
2074         }
2075
2076         return ret;
2077 }
2078
2079 /*
2080  * If the device has been passed off to us in an enabled state, just clear
2081  * the enabled bit.  The spec says we should set the 'shutdown notification
2082  * bits', but doing so may cause the device to complete commands to the
2083  * admin queue ... and we don't know what memory that might be pointing at!
2084  */
2085 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2086 {
2087         int ret;
2088
2089         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2090         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2091
2092         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2093         if (ret)
2094                 return ret;
2095
2096         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2097                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2098
2099         return nvme_wait_ready(ctrl, ctrl->cap, false);
2100 }
2101 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2102
2103 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2104 {
2105         /*
2106          * Default to a 4K page size, with the intention to update this
2107          * path in the future to accomodate architectures with differing
2108          * kernel and IO page sizes.
2109          */
2110         unsigned dev_page_min, page_shift = 12;
2111         int ret;
2112
2113         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2114         if (ret) {
2115                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2116                 return ret;
2117         }
2118         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2119
2120         if (page_shift < dev_page_min) {
2121                 dev_err(ctrl->device,
2122                         "Minimum device page size %u too large for host (%u)\n",
2123                         1 << dev_page_min, 1 << page_shift);
2124                 return -ENODEV;
2125         }
2126
2127         ctrl->page_size = 1 << page_shift;
2128
2129         ctrl->ctrl_config = NVME_CC_CSS_NVM;
2130         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2131         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2132         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2133         ctrl->ctrl_config |= NVME_CC_ENABLE;
2134
2135         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2136         if (ret)
2137                 return ret;
2138         return nvme_wait_ready(ctrl, ctrl->cap, true);
2139 }
2140 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2141
2142 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2143 {
2144         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2145         u32 csts;
2146         int ret;
2147
2148         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2149         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2150
2151         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2152         if (ret)
2153                 return ret;
2154
2155         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2156                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2157                         break;
2158
2159                 msleep(100);
2160                 if (fatal_signal_pending(current))
2161                         return -EINTR;
2162                 if (time_after(jiffies, timeout)) {
2163                         dev_err(ctrl->device,
2164                                 "Device shutdown incomplete; abort shutdown\n");
2165                         return -ENODEV;
2166                 }
2167         }
2168
2169         return ret;
2170 }
2171 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2172
2173 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2174                 struct request_queue *q)
2175 {
2176         bool vwc = false;
2177
2178         if (ctrl->max_hw_sectors) {
2179                 u32 max_segments =
2180                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2181
2182                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2183                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2184                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2185         }
2186         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2187             is_power_of_2(ctrl->max_hw_sectors))
2188                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2189         blk_queue_virt_boundary(q, ctrl->page_size - 1);
2190         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2191                 vwc = true;
2192         blk_queue_write_cache(q, vwc, vwc);
2193 }
2194
2195 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2196 {
2197         __le64 ts;
2198         int ret;
2199
2200         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2201                 return 0;
2202
2203         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2204         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2205                         NULL);
2206         if (ret)
2207                 dev_warn_once(ctrl->device,
2208                         "could not set timestamp (%d)\n", ret);
2209         return ret;
2210 }
2211
2212 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2213 {
2214         struct nvme_feat_host_behavior *host;
2215         int ret;
2216
2217         /* Don't bother enabling the feature if retry delay is not reported */
2218         if (!ctrl->crdt[0])
2219                 return 0;
2220
2221         host = kzalloc(sizeof(*host), GFP_KERNEL);
2222         if (!host)
2223                 return 0;
2224
2225         host->acre = NVME_ENABLE_ACRE;
2226         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2227                                 host, sizeof(*host), NULL);
2228         kfree(host);
2229         return ret;
2230 }
2231
2232 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2233 {
2234         /*
2235          * APST (Autonomous Power State Transition) lets us program a
2236          * table of power state transitions that the controller will
2237          * perform automatically.  We configure it with a simple
2238          * heuristic: we are willing to spend at most 2% of the time
2239          * transitioning between power states.  Therefore, when running
2240          * in any given state, we will enter the next lower-power
2241          * non-operational state after waiting 50 * (enlat + exlat)
2242          * microseconds, as long as that state's exit latency is under
2243          * the requested maximum latency.
2244          *
2245          * We will not autonomously enter any non-operational state for
2246          * which the total latency exceeds ps_max_latency_us.  Users
2247          * can set ps_max_latency_us to zero to turn off APST.
2248          */
2249
2250         unsigned apste;
2251         struct nvme_feat_auto_pst *table;
2252         u64 max_lat_us = 0;
2253         int max_ps = -1;
2254         int ret;
2255
2256         /*
2257          * If APST isn't supported or if we haven't been initialized yet,
2258          * then don't do anything.
2259          */
2260         if (!ctrl->apsta)
2261                 return 0;
2262
2263         if (ctrl->npss > 31) {
2264                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2265                 return 0;
2266         }
2267
2268         table = kzalloc(sizeof(*table), GFP_KERNEL);
2269         if (!table)
2270                 return 0;
2271
2272         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2273                 /* Turn off APST. */
2274                 apste = 0;
2275                 dev_dbg(ctrl->device, "APST disabled\n");
2276         } else {
2277                 __le64 target = cpu_to_le64(0);
2278                 int state;
2279
2280                 /*
2281                  * Walk through all states from lowest- to highest-power.
2282                  * According to the spec, lower-numbered states use more
2283                  * power.  NPSS, despite the name, is the index of the
2284                  * lowest-power state, not the number of states.
2285                  */
2286                 for (state = (int)ctrl->npss; state >= 0; state--) {
2287                         u64 total_latency_us, exit_latency_us, transition_ms;
2288
2289                         if (target)
2290                                 table->entries[state] = target;
2291
2292                         /*
2293                          * Don't allow transitions to the deepest state
2294                          * if it's quirked off.
2295                          */
2296                         if (state == ctrl->npss &&
2297                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2298                                 continue;
2299
2300                         /*
2301                          * Is this state a useful non-operational state for
2302                          * higher-power states to autonomously transition to?
2303                          */
2304                         if (!(ctrl->psd[state].flags &
2305                               NVME_PS_FLAGS_NON_OP_STATE))
2306                                 continue;
2307
2308                         exit_latency_us =
2309                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2310                         if (exit_latency_us > ctrl->ps_max_latency_us)
2311                                 continue;
2312
2313                         total_latency_us =
2314                                 exit_latency_us +
2315                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2316
2317                         /*
2318                          * This state is good.  Use it as the APST idle
2319                          * target for higher power states.
2320                          */
2321                         transition_ms = total_latency_us + 19;
2322                         do_div(transition_ms, 20);
2323                         if (transition_ms > (1 << 24) - 1)
2324                                 transition_ms = (1 << 24) - 1;
2325
2326                         target = cpu_to_le64((state << 3) |
2327                                              (transition_ms << 8));
2328
2329                         if (max_ps == -1)
2330                                 max_ps = state;
2331
2332                         if (total_latency_us > max_lat_us)
2333                                 max_lat_us = total_latency_us;
2334                 }
2335
2336                 apste = 1;
2337
2338                 if (max_ps == -1) {
2339                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2340                 } else {
2341                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2342                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2343                 }
2344         }
2345
2346         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2347                                 table, sizeof(*table), NULL);
2348         if (ret)
2349                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2350
2351         kfree(table);
2352         return ret;
2353 }
2354
2355 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2356 {
2357         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2358         u64 latency;
2359
2360         switch (val) {
2361         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2362         case PM_QOS_LATENCY_ANY:
2363                 latency = U64_MAX;
2364                 break;
2365
2366         default:
2367                 latency = val;
2368         }
2369
2370         if (ctrl->ps_max_latency_us != latency) {
2371                 ctrl->ps_max_latency_us = latency;
2372                 nvme_configure_apst(ctrl);
2373         }
2374 }
2375
2376 struct nvme_core_quirk_entry {
2377         /*
2378          * NVMe model and firmware strings are padded with spaces.  For
2379          * simplicity, strings in the quirk table are padded with NULLs
2380          * instead.
2381          */
2382         u16 vid;
2383         const char *mn;
2384         const char *fr;
2385         unsigned long quirks;
2386 };
2387
2388 static const struct nvme_core_quirk_entry core_quirks[] = {
2389         {
2390                 /*
2391                  * This Toshiba device seems to die using any APST states.  See:
2392                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2393                  */
2394                 .vid = 0x1179,
2395                 .mn = "THNSF5256GPUK TOSHIBA",
2396                 .quirks = NVME_QUIRK_NO_APST,
2397         },
2398         {
2399                 /*
2400                  * This LiteON CL1-3D*-Q11 firmware version has a race
2401                  * condition associated with actions related to suspend to idle
2402                  * LiteON has resolved the problem in future firmware
2403                  */
2404                 .vid = 0x14a4,
2405                 .fr = "22301111",
2406                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2407         },
2408         {
2409                 /*
2410                  * This Kingston E8FK11.T firmware version has no interrupt
2411                  * after resume with actions related to suspend to idle
2412                  * https://bugzilla.kernel.org/show_bug.cgi?id=204887
2413                  */
2414                 .vid = 0x2646,
2415                 .fr = "E8FK11.T",
2416                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2417         }
2418 };
2419
2420 /* match is null-terminated but idstr is space-padded. */
2421 static bool string_matches(const char *idstr, const char *match, size_t len)
2422 {
2423         size_t matchlen;
2424
2425         if (!match)
2426                 return true;
2427
2428         matchlen = strlen(match);
2429         WARN_ON_ONCE(matchlen > len);
2430
2431         if (memcmp(idstr, match, matchlen))
2432                 return false;
2433
2434         for (; matchlen < len; matchlen++)
2435                 if (idstr[matchlen] != ' ')
2436                         return false;
2437
2438         return true;
2439 }
2440
2441 static bool quirk_matches(const struct nvme_id_ctrl *id,
2442                           const struct nvme_core_quirk_entry *q)
2443 {
2444         return q->vid == le16_to_cpu(id->vid) &&
2445                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2446                 string_matches(id->fr, q->fr, sizeof(id->fr));
2447 }
2448
2449 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2450                 struct nvme_id_ctrl *id)
2451 {
2452         size_t nqnlen;
2453         int off;
2454
2455         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2456                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2457                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2458                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2459                         return;
2460                 }
2461
2462                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2463                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2464         }
2465
2466         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2467         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2468                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2469                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2470         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2471         off += sizeof(id->sn);
2472         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2473         off += sizeof(id->mn);
2474         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2475 }
2476
2477 static void nvme_release_subsystem(struct device *dev)
2478 {
2479         struct nvme_subsystem *subsys =
2480                 container_of(dev, struct nvme_subsystem, dev);
2481
2482         if (subsys->instance >= 0)
2483                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2484         kfree(subsys);
2485 }
2486
2487 static void nvme_destroy_subsystem(struct kref *ref)
2488 {
2489         struct nvme_subsystem *subsys =
2490                         container_of(ref, struct nvme_subsystem, ref);
2491
2492         mutex_lock(&nvme_subsystems_lock);
2493         list_del(&subsys->entry);
2494         mutex_unlock(&nvme_subsystems_lock);
2495
2496         ida_destroy(&subsys->ns_ida);
2497         device_del(&subsys->dev);
2498         put_device(&subsys->dev);
2499 }
2500
2501 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2502 {
2503         kref_put(&subsys->ref, nvme_destroy_subsystem);
2504 }
2505
2506 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2507 {
2508         struct nvme_subsystem *subsys;
2509
2510         lockdep_assert_held(&nvme_subsystems_lock);
2511
2512         /*
2513          * Fail matches for discovery subsystems. This results
2514          * in each discovery controller bound to a unique subsystem.
2515          * This avoids issues with validating controller values
2516          * that can only be true when there is a single unique subsystem.
2517          * There may be multiple and completely independent entities
2518          * that provide discovery controllers.
2519          */
2520         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2521                 return NULL;
2522
2523         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2524                 if (strcmp(subsys->subnqn, subsysnqn))
2525                         continue;
2526                 if (!kref_get_unless_zero(&subsys->ref))
2527                         continue;
2528                 return subsys;
2529         }
2530
2531         return NULL;
2532 }
2533
2534 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2535         struct device_attribute subsys_attr_##_name = \
2536                 __ATTR(_name, _mode, _show, NULL)
2537
2538 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2539                                     struct device_attribute *attr,
2540                                     char *buf)
2541 {
2542         struct nvme_subsystem *subsys =
2543                 container_of(dev, struct nvme_subsystem, dev);
2544
2545         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2546 }
2547 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2548
2549 #define nvme_subsys_show_str_function(field)                            \
2550 static ssize_t subsys_##field##_show(struct device *dev,                \
2551                             struct device_attribute *attr, char *buf)   \
2552 {                                                                       \
2553         struct nvme_subsystem *subsys =                                 \
2554                 container_of(dev, struct nvme_subsystem, dev);          \
2555         return sprintf(buf, "%.*s\n",                                   \
2556                        (int)sizeof(subsys->field), subsys->field);      \
2557 }                                                                       \
2558 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2559
2560 nvme_subsys_show_str_function(model);
2561 nvme_subsys_show_str_function(serial);
2562 nvme_subsys_show_str_function(firmware_rev);
2563
2564 static struct attribute *nvme_subsys_attrs[] = {
2565         &subsys_attr_model.attr,
2566         &subsys_attr_serial.attr,
2567         &subsys_attr_firmware_rev.attr,
2568         &subsys_attr_subsysnqn.attr,
2569 #ifdef CONFIG_NVME_MULTIPATH
2570         &subsys_attr_iopolicy.attr,
2571 #endif
2572         NULL,
2573 };
2574
2575 static struct attribute_group nvme_subsys_attrs_group = {
2576         .attrs = nvme_subsys_attrs,
2577 };
2578
2579 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2580         &nvme_subsys_attrs_group,
2581         NULL,
2582 };
2583
2584 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2585                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2586 {
2587         struct nvme_ctrl *tmp;
2588
2589         lockdep_assert_held(&nvme_subsystems_lock);
2590
2591         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2592                 if (tmp->state == NVME_CTRL_DELETING ||
2593                     tmp->state == NVME_CTRL_DEAD)
2594                         continue;
2595
2596                 if (tmp->cntlid == ctrl->cntlid) {
2597                         dev_err(ctrl->device,
2598                                 "Duplicate cntlid %u with %s, rejecting\n",
2599                                 ctrl->cntlid, dev_name(tmp->device));
2600                         return false;
2601                 }
2602
2603                 if ((id->cmic & (1 << 1)) ||
2604                     (ctrl->opts && ctrl->opts->discovery_nqn))
2605                         continue;
2606
2607                 dev_err(ctrl->device,
2608                         "Subsystem does not support multiple controllers\n");
2609                 return false;
2610         }
2611
2612         return true;
2613 }
2614
2615 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2616 {
2617         struct nvme_subsystem *subsys, *found;
2618         int ret;
2619
2620         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2621         if (!subsys)
2622                 return -ENOMEM;
2623
2624         subsys->instance = -1;
2625         mutex_init(&subsys->lock);
2626         kref_init(&subsys->ref);
2627         INIT_LIST_HEAD(&subsys->ctrls);
2628         INIT_LIST_HEAD(&subsys->nsheads);
2629         nvme_init_subnqn(subsys, ctrl, id);
2630         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2631         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2632         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2633         subsys->vendor_id = le16_to_cpu(id->vid);
2634         subsys->cmic = id->cmic;
2635         subsys->awupf = le16_to_cpu(id->awupf);
2636 #ifdef CONFIG_NVME_MULTIPATH
2637         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2638 #endif
2639
2640         subsys->dev.class = nvme_subsys_class;
2641         subsys->dev.release = nvme_release_subsystem;
2642         subsys->dev.groups = nvme_subsys_attrs_groups;
2643         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2644         device_initialize(&subsys->dev);
2645
2646         mutex_lock(&nvme_subsystems_lock);
2647         found = __nvme_find_get_subsystem(subsys->subnqn);
2648         if (found) {
2649                 put_device(&subsys->dev);
2650                 subsys = found;
2651
2652                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2653                         ret = -EINVAL;
2654                         goto out_put_subsystem;
2655                 }
2656         } else {
2657                 ret = device_add(&subsys->dev);
2658                 if (ret) {
2659                         dev_err(ctrl->device,
2660                                 "failed to register subsystem device.\n");
2661                         put_device(&subsys->dev);
2662                         goto out_unlock;
2663                 }
2664                 ida_init(&subsys->ns_ida);
2665                 list_add_tail(&subsys->entry, &nvme_subsystems);
2666         }
2667
2668         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2669                                 dev_name(ctrl->device));
2670         if (ret) {
2671                 dev_err(ctrl->device,
2672                         "failed to create sysfs link from subsystem.\n");
2673                 goto out_put_subsystem;
2674         }
2675
2676         if (!found)
2677                 subsys->instance = ctrl->instance;
2678         ctrl->subsys = subsys;
2679         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2680         mutex_unlock(&nvme_subsystems_lock);
2681         return 0;
2682
2683 out_put_subsystem:
2684         nvme_put_subsystem(subsys);
2685 out_unlock:
2686         mutex_unlock(&nvme_subsystems_lock);
2687         return ret;
2688 }
2689
2690 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2691                 void *log, size_t size, u64 offset)
2692 {
2693         struct nvme_command c = { };
2694         unsigned long dwlen = size / 4 - 1;
2695
2696         c.get_log_page.opcode = nvme_admin_get_log_page;
2697         c.get_log_page.nsid = cpu_to_le32(nsid);
2698         c.get_log_page.lid = log_page;
2699         c.get_log_page.lsp = lsp;
2700         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2701         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2702         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2703         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2704
2705         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2706 }
2707
2708 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2709 {
2710         int ret;
2711
2712         if (!ctrl->effects)
2713                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2714
2715         if (!ctrl->effects)
2716                 return 0;
2717
2718         ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2719                         ctrl->effects, sizeof(*ctrl->effects), 0);
2720         if (ret) {
2721                 kfree(ctrl->effects);
2722                 ctrl->effects = NULL;
2723         }
2724         return ret;
2725 }
2726
2727 /*
2728  * Initialize the cached copies of the Identify data and various controller
2729  * register in our nvme_ctrl structure.  This should be called as soon as
2730  * the admin queue is fully up and running.
2731  */
2732 int nvme_init_identify(struct nvme_ctrl *ctrl)
2733 {
2734         struct nvme_id_ctrl *id;
2735         int ret, page_shift;
2736         u32 max_hw_sectors;
2737         bool prev_apst_enabled;
2738
2739         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2740         if (ret) {
2741                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2742                 return ret;
2743         }
2744         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2745         ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2746
2747         if (ctrl->vs >= NVME_VS(1, 1, 0))
2748                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2749
2750         ret = nvme_identify_ctrl(ctrl, &id);
2751         if (ret) {
2752                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2753                 return -EIO;
2754         }
2755
2756         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2757                 ret = nvme_get_effects_log(ctrl);
2758                 if (ret < 0)
2759                         goto out_free;
2760         }
2761
2762         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2763                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2764
2765         if (!ctrl->identified) {
2766                 int i;
2767
2768                 ret = nvme_init_subsystem(ctrl, id);
2769                 if (ret)
2770                         goto out_free;
2771
2772                 /*
2773                  * Check for quirks.  Quirk can depend on firmware version,
2774                  * so, in principle, the set of quirks present can change
2775                  * across a reset.  As a possible future enhancement, we
2776                  * could re-scan for quirks every time we reinitialize
2777                  * the device, but we'd have to make sure that the driver
2778                  * behaves intelligently if the quirks change.
2779                  */
2780                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2781                         if (quirk_matches(id, &core_quirks[i]))
2782                                 ctrl->quirks |= core_quirks[i].quirks;
2783                 }
2784         }
2785
2786         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2787                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2788                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2789         }
2790
2791         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2792         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2793         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2794
2795         ctrl->oacs = le16_to_cpu(id->oacs);
2796         ctrl->oncs = le16_to_cpu(id->oncs);
2797         ctrl->mtfa = le16_to_cpu(id->mtfa);
2798         ctrl->oaes = le32_to_cpu(id->oaes);
2799         atomic_set(&ctrl->abort_limit, id->acl + 1);
2800         ctrl->vwc = id->vwc;
2801         if (id->mdts)
2802                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2803         else
2804                 max_hw_sectors = UINT_MAX;
2805         ctrl->max_hw_sectors =
2806                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2807
2808         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2809         ctrl->sgls = le32_to_cpu(id->sgls);
2810         ctrl->kas = le16_to_cpu(id->kas);
2811         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2812         ctrl->ctratt = le32_to_cpu(id->ctratt);
2813
2814         if (id->rtd3e) {
2815                 /* us -> s */
2816                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2817
2818                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2819                                                  shutdown_timeout, 60);
2820
2821                 if (ctrl->shutdown_timeout != shutdown_timeout)
2822                         dev_info(ctrl->device,
2823                                  "Shutdown timeout set to %u seconds\n",
2824                                  ctrl->shutdown_timeout);
2825         } else
2826                 ctrl->shutdown_timeout = shutdown_timeout;
2827
2828         ctrl->npss = id->npss;
2829         ctrl->apsta = id->apsta;
2830         prev_apst_enabled = ctrl->apst_enabled;
2831         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2832                 if (force_apst && id->apsta) {
2833                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2834                         ctrl->apst_enabled = true;
2835                 } else {
2836                         ctrl->apst_enabled = false;
2837                 }
2838         } else {
2839                 ctrl->apst_enabled = id->apsta;
2840         }
2841         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2842
2843         if (ctrl->ops->flags & NVME_F_FABRICS) {
2844                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2845                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2846                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2847                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2848
2849                 /*
2850                  * In fabrics we need to verify the cntlid matches the
2851                  * admin connect
2852                  */
2853                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2854                         ret = -EINVAL;
2855                         goto out_free;
2856                 }
2857
2858                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2859                         dev_err(ctrl->device,
2860                                 "keep-alive support is mandatory for fabrics\n");
2861                         ret = -EINVAL;
2862                         goto out_free;
2863                 }
2864         } else {
2865                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2866                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2867                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2868                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2869         }
2870
2871         ret = nvme_mpath_init(ctrl, id);
2872         kfree(id);
2873
2874         if (ret < 0)
2875                 return ret;
2876
2877         if (ctrl->apst_enabled && !prev_apst_enabled)
2878                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2879         else if (!ctrl->apst_enabled && prev_apst_enabled)
2880                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2881
2882         ret = nvme_configure_apst(ctrl);
2883         if (ret < 0)
2884                 return ret;
2885         
2886         ret = nvme_configure_timestamp(ctrl);
2887         if (ret < 0)
2888                 return ret;
2889
2890         ret = nvme_configure_directives(ctrl);
2891         if (ret < 0)
2892                 return ret;
2893
2894         ret = nvme_configure_acre(ctrl);
2895         if (ret < 0)
2896                 return ret;
2897
2898         ctrl->identified = true;
2899
2900         return 0;
2901
2902 out_free:
2903         kfree(id);
2904         return ret;
2905 }
2906 EXPORT_SYMBOL_GPL(nvme_init_identify);
2907
2908 static int nvme_dev_open(struct inode *inode, struct file *file)
2909 {
2910         struct nvme_ctrl *ctrl =
2911                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2912
2913         switch (ctrl->state) {
2914         case NVME_CTRL_LIVE:
2915                 break;
2916         default:
2917                 return -EWOULDBLOCK;
2918         }
2919
2920         file->private_data = ctrl;
2921         return 0;
2922 }
2923
2924 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2925 {
2926         struct nvme_ns *ns;
2927         int ret;
2928
2929         down_read(&ctrl->namespaces_rwsem);
2930         if (list_empty(&ctrl->namespaces)) {
2931                 ret = -ENOTTY;
2932                 goto out_unlock;
2933         }
2934
2935         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2936         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2937                 dev_warn(ctrl->device,
2938                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2939                 ret = -EINVAL;
2940                 goto out_unlock;
2941         }
2942
2943         dev_warn(ctrl->device,
2944                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2945         kref_get(&ns->kref);
2946         up_read(&ctrl->namespaces_rwsem);
2947
2948         ret = nvme_user_cmd(ctrl, ns, argp);
2949         nvme_put_ns(ns);
2950         return ret;
2951
2952 out_unlock:
2953         up_read(&ctrl->namespaces_rwsem);
2954         return ret;
2955 }
2956
2957 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2958                 unsigned long arg)
2959 {
2960         struct nvme_ctrl *ctrl = file->private_data;
2961         void __user *argp = (void __user *)arg;
2962
2963         switch (cmd) {
2964         case NVME_IOCTL_ADMIN_CMD:
2965                 return nvme_user_cmd(ctrl, NULL, argp);
2966         case NVME_IOCTL_ADMIN64_CMD:
2967                 return nvme_user_cmd64(ctrl, NULL, argp);
2968         case NVME_IOCTL_IO_CMD:
2969                 return nvme_dev_user_cmd(ctrl, argp);
2970         case NVME_IOCTL_RESET:
2971                 dev_warn(ctrl->device, "resetting controller\n");
2972                 return nvme_reset_ctrl_sync(ctrl);
2973         case NVME_IOCTL_SUBSYS_RESET:
2974                 return nvme_reset_subsystem(ctrl);
2975         case NVME_IOCTL_RESCAN:
2976                 nvme_queue_scan(ctrl);
2977                 return 0;
2978         default:
2979                 return -ENOTTY;
2980         }
2981 }
2982
2983 static const struct file_operations nvme_dev_fops = {
2984         .owner          = THIS_MODULE,
2985         .open           = nvme_dev_open,
2986         .unlocked_ioctl = nvme_dev_ioctl,
2987         .compat_ioctl   = nvme_dev_ioctl,
2988 };
2989
2990 static ssize_t nvme_sysfs_reset(struct device *dev,
2991                                 struct device_attribute *attr, const char *buf,
2992                                 size_t count)
2993 {
2994         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2995         int ret;
2996
2997         ret = nvme_reset_ctrl_sync(ctrl);
2998         if (ret < 0)
2999                 return ret;
3000         return count;
3001 }
3002 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3003
3004 static ssize_t nvme_sysfs_rescan(struct device *dev,
3005                                 struct device_attribute *attr, const char *buf,
3006                                 size_t count)
3007 {
3008         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3009
3010         nvme_queue_scan(ctrl);
3011         return count;
3012 }
3013 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3014
3015 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3016 {
3017         struct gendisk *disk = dev_to_disk(dev);
3018
3019         if (disk->fops == &nvme_fops)
3020                 return nvme_get_ns_from_dev(dev)->head;
3021         else
3022                 return disk->private_data;
3023 }
3024
3025 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3026                 char *buf)
3027 {
3028         struct nvme_ns_head *head = dev_to_ns_head(dev);
3029         struct nvme_ns_ids *ids = &head->ids;
3030         struct nvme_subsystem *subsys = head->subsys;
3031         int serial_len = sizeof(subsys->serial);
3032         int model_len = sizeof(subsys->model);
3033
3034         if (!uuid_is_null(&ids->uuid))
3035                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3036
3037         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3038                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3039
3040         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3041                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3042
3043         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3044                                   subsys->serial[serial_len - 1] == '\0'))
3045                 serial_len--;
3046         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3047                                  subsys->model[model_len - 1] == '\0'))
3048                 model_len--;
3049
3050         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3051                 serial_len, subsys->serial, model_len, subsys->model,
3052                 head->ns_id);
3053 }
3054 static DEVICE_ATTR_RO(wwid);
3055
3056 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3057                 char *buf)
3058 {
3059         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3060 }
3061 static DEVICE_ATTR_RO(nguid);
3062
3063 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3064                 char *buf)
3065 {
3066         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3067
3068         /* For backward compatibility expose the NGUID to userspace if
3069          * we have no UUID set
3070          */
3071         if (uuid_is_null(&ids->uuid)) {
3072                 printk_ratelimited(KERN_WARNING
3073                                    "No UUID available providing old NGUID\n");
3074                 return sprintf(buf, "%pU\n", ids->nguid);
3075         }
3076         return sprintf(buf, "%pU\n", &ids->uuid);
3077 }
3078 static DEVICE_ATTR_RO(uuid);
3079
3080 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3081                 char *buf)
3082 {
3083         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3084 }
3085 static DEVICE_ATTR_RO(eui);
3086
3087 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3088                 char *buf)
3089 {
3090         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3091 }
3092 static DEVICE_ATTR_RO(nsid);
3093
3094 static struct attribute *nvme_ns_id_attrs[] = {
3095         &dev_attr_wwid.attr,
3096         &dev_attr_uuid.attr,
3097         &dev_attr_nguid.attr,
3098         &dev_attr_eui.attr,
3099         &dev_attr_nsid.attr,
3100 #ifdef CONFIG_NVME_MULTIPATH
3101         &dev_attr_ana_grpid.attr,
3102         &dev_attr_ana_state.attr,
3103 #endif
3104         NULL,
3105 };
3106
3107 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3108                 struct attribute *a, int n)
3109 {
3110         struct device *dev = container_of(kobj, struct device, kobj);
3111         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3112
3113         if (a == &dev_attr_uuid.attr) {
3114                 if (uuid_is_null(&ids->uuid) &&
3115                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3116                         return 0;
3117         }
3118         if (a == &dev_attr_nguid.attr) {
3119                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3120                         return 0;
3121         }
3122         if (a == &dev_attr_eui.attr) {
3123                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3124                         return 0;
3125         }
3126 #ifdef CONFIG_NVME_MULTIPATH
3127         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3128                 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3129                         return 0;
3130                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3131                         return 0;
3132         }
3133 #endif
3134         return a->mode;
3135 }
3136
3137 static const struct attribute_group nvme_ns_id_attr_group = {
3138         .attrs          = nvme_ns_id_attrs,
3139         .is_visible     = nvme_ns_id_attrs_are_visible,
3140 };
3141
3142 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3143         &nvme_ns_id_attr_group,
3144 #ifdef CONFIG_NVM
3145         &nvme_nvm_attr_group,
3146 #endif
3147         NULL,
3148 };
3149
3150 #define nvme_show_str_function(field)                                           \
3151 static ssize_t  field##_show(struct device *dev,                                \
3152                             struct device_attribute *attr, char *buf)           \
3153 {                                                                               \
3154         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3155         return sprintf(buf, "%.*s\n",                                           \
3156                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3157 }                                                                               \
3158 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3159
3160 nvme_show_str_function(model);
3161 nvme_show_str_function(serial);
3162 nvme_show_str_function(firmware_rev);
3163
3164 #define nvme_show_int_function(field)                                           \
3165 static ssize_t  field##_show(struct device *dev,                                \
3166                             struct device_attribute *attr, char *buf)           \
3167 {                                                                               \
3168         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3169         return sprintf(buf, "%d\n", ctrl->field);       \
3170 }                                                                               \
3171 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3172
3173 nvme_show_int_function(cntlid);
3174 nvme_show_int_function(numa_node);
3175 nvme_show_int_function(queue_count);
3176 nvme_show_int_function(sqsize);
3177
3178 static ssize_t nvme_sysfs_delete(struct device *dev,
3179                                 struct device_attribute *attr, const char *buf,
3180                                 size_t count)
3181 {
3182         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3183
3184         if (device_remove_file_self(dev, attr))
3185                 nvme_delete_ctrl_sync(ctrl);
3186         return count;
3187 }
3188 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3189
3190 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3191                                          struct device_attribute *attr,
3192                                          char *buf)
3193 {
3194         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3195
3196         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3197 }
3198 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3199
3200 static ssize_t nvme_sysfs_show_state(struct device *dev,
3201                                      struct device_attribute *attr,
3202                                      char *buf)
3203 {
3204         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3205         static const char *const state_name[] = {
3206                 [NVME_CTRL_NEW]         = "new",
3207                 [NVME_CTRL_LIVE]        = "live",
3208                 [NVME_CTRL_RESETTING]   = "resetting",
3209                 [NVME_CTRL_CONNECTING]  = "connecting",
3210                 [NVME_CTRL_DELETING]    = "deleting",
3211                 [NVME_CTRL_DEAD]        = "dead",
3212         };
3213
3214         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3215             state_name[ctrl->state])
3216                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3217
3218         return sprintf(buf, "unknown state\n");
3219 }
3220
3221 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3222
3223 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3224                                          struct device_attribute *attr,
3225                                          char *buf)
3226 {
3227         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3228
3229         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3230 }
3231 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3232
3233 static ssize_t nvme_sysfs_show_address(struct device *dev,
3234                                          struct device_attribute *attr,
3235                                          char *buf)
3236 {
3237         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3238
3239         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3240 }
3241 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3242
3243 static struct attribute *nvme_dev_attrs[] = {
3244         &dev_attr_reset_controller.attr,
3245         &dev_attr_rescan_controller.attr,
3246         &dev_attr_model.attr,
3247         &dev_attr_serial.attr,
3248         &dev_attr_firmware_rev.attr,
3249         &dev_attr_cntlid.attr,
3250         &dev_attr_delete_controller.attr,
3251         &dev_attr_transport.attr,
3252         &dev_attr_subsysnqn.attr,
3253         &dev_attr_address.attr,
3254         &dev_attr_state.attr,
3255         &dev_attr_numa_node.attr,
3256         &dev_attr_queue_count.attr,
3257         &dev_attr_sqsize.attr,
3258         NULL
3259 };
3260
3261 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3262                 struct attribute *a, int n)
3263 {
3264         struct device *dev = container_of(kobj, struct device, kobj);
3265         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3266
3267         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3268                 return 0;
3269         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3270                 return 0;
3271
3272         return a->mode;
3273 }
3274
3275 static struct attribute_group nvme_dev_attrs_group = {
3276         .attrs          = nvme_dev_attrs,
3277         .is_visible     = nvme_dev_attrs_are_visible,
3278 };
3279
3280 static const struct attribute_group *nvme_dev_attr_groups[] = {
3281         &nvme_dev_attrs_group,
3282         NULL,
3283 };
3284
3285 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3286                 unsigned nsid)
3287 {
3288         struct nvme_ns_head *h;
3289
3290         lockdep_assert_held(&subsys->lock);
3291
3292         list_for_each_entry(h, &subsys->nsheads, entry) {
3293                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3294                         return h;
3295         }
3296
3297         return NULL;
3298 }
3299
3300 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3301                 struct nvme_ns_head *new)
3302 {
3303         struct nvme_ns_head *h;
3304
3305         lockdep_assert_held(&subsys->lock);
3306
3307         list_for_each_entry(h, &subsys->nsheads, entry) {
3308                 if (nvme_ns_ids_valid(&new->ids) &&
3309                     !list_empty(&h->list) &&
3310                     nvme_ns_ids_equal(&new->ids, &h->ids))
3311                         return -EINVAL;
3312         }
3313
3314         return 0;
3315 }
3316
3317 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3318                 unsigned nsid, struct nvme_id_ns *id)
3319 {
3320         struct nvme_ns_head *head;
3321         size_t size = sizeof(*head);
3322         int ret = -ENOMEM;
3323
3324 #ifdef CONFIG_NVME_MULTIPATH
3325         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3326 #endif
3327
3328         head = kzalloc(size, GFP_KERNEL);
3329         if (!head)
3330                 goto out;
3331         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3332         if (ret < 0)
3333                 goto out_free_head;
3334         head->instance = ret;
3335         INIT_LIST_HEAD(&head->list);
3336         ret = init_srcu_struct(&head->srcu);
3337         if (ret)
3338                 goto out_ida_remove;
3339         head->subsys = ctrl->subsys;
3340         head->ns_id = nsid;
3341         kref_init(&head->ref);
3342
3343         ret = nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3344         if (ret)
3345                 goto out_cleanup_srcu;
3346
3347         ret = __nvme_check_ids(ctrl->subsys, head);
3348         if (ret) {
3349                 dev_err(ctrl->device,
3350                         "duplicate IDs for nsid %d\n", nsid);
3351                 goto out_cleanup_srcu;
3352         }
3353
3354         ret = nvme_mpath_alloc_disk(ctrl, head);
3355         if (ret)
3356                 goto out_cleanup_srcu;
3357
3358         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3359
3360         kref_get(&ctrl->subsys->ref);
3361
3362         return head;
3363 out_cleanup_srcu:
3364         cleanup_srcu_struct(&head->srcu);
3365 out_ida_remove:
3366         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3367 out_free_head:
3368         kfree(head);
3369 out:
3370         if (ret > 0)
3371                 ret = blk_status_to_errno(nvme_error_status(ret));
3372         return ERR_PTR(ret);
3373 }
3374
3375 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3376                 struct nvme_id_ns *id)
3377 {
3378         struct nvme_ctrl *ctrl = ns->ctrl;
3379         bool is_shared = id->nmic & (1 << 0);
3380         struct nvme_ns_head *head = NULL;
3381         int ret = 0;
3382
3383         mutex_lock(&ctrl->subsys->lock);
3384         if (is_shared)
3385                 head = __nvme_find_ns_head(ctrl->subsys, nsid);
3386         if (!head) {
3387                 head = nvme_alloc_ns_head(ctrl, nsid, id);
3388                 if (IS_ERR(head)) {
3389                         ret = PTR_ERR(head);
3390                         goto out_unlock;
3391                 }
3392         } else {
3393                 struct nvme_ns_ids ids;
3394
3395                 ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3396                 if (ret)
3397                         goto out_unlock;
3398
3399                 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3400                         dev_err(ctrl->device,
3401                                 "IDs don't match for shared namespace %d\n",
3402                                         nsid);
3403                         ret = -EINVAL;
3404                         goto out_unlock;
3405                 }
3406         }
3407
3408         list_add_tail(&ns->siblings, &head->list);
3409         ns->head = head;
3410
3411 out_unlock:
3412         mutex_unlock(&ctrl->subsys->lock);
3413         if (ret > 0)
3414                 ret = blk_status_to_errno(nvme_error_status(ret));
3415         return ret;
3416 }
3417
3418 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3419 {
3420         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3421         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3422
3423         return nsa->head->ns_id - nsb->head->ns_id;
3424 }
3425
3426 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3427 {
3428         struct nvme_ns *ns, *ret = NULL;
3429
3430         down_read(&ctrl->namespaces_rwsem);
3431         list_for_each_entry(ns, &ctrl->namespaces, list) {
3432                 if (ns->head->ns_id == nsid) {
3433                         if (!kref_get_unless_zero(&ns->kref))
3434                                 continue;
3435                         ret = ns;
3436                         break;
3437                 }
3438                 if (ns->head->ns_id > nsid)
3439                         break;
3440         }
3441         up_read(&ctrl->namespaces_rwsem);
3442         return ret;
3443 }
3444
3445 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3446 {
3447         struct streams_directive_params s;
3448         int ret;
3449
3450         if (!ctrl->nr_streams)
3451                 return 0;
3452
3453         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3454         if (ret)
3455                 return ret;
3456
3457         ns->sws = le32_to_cpu(s.sws);
3458         ns->sgs = le16_to_cpu(s.sgs);
3459
3460         if (ns->sws) {
3461                 unsigned int bs = 1 << ns->lba_shift;
3462
3463                 blk_queue_io_min(ns->queue, bs * ns->sws);
3464                 if (ns->sgs)
3465                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3466         }
3467
3468         return 0;
3469 }
3470
3471 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3472 {
3473         struct nvme_ns *ns;
3474         struct gendisk *disk;
3475         struct nvme_id_ns *id;
3476         char disk_name[DISK_NAME_LEN];
3477         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3478
3479         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3480         if (!ns)
3481                 return -ENOMEM;
3482
3483         ns->queue = blk_mq_init_queue(ctrl->tagset);
3484         if (IS_ERR(ns->queue)) {
3485                 ret = PTR_ERR(ns->queue);
3486                 goto out_free_ns;
3487         }
3488
3489         if (ctrl->opts && ctrl->opts->data_digest)
3490                 ns->queue->backing_dev_info->capabilities
3491                         |= BDI_CAP_STABLE_WRITES;
3492
3493         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3494         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3495                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3496
3497         ns->queue->queuedata = ns;
3498         ns->ctrl = ctrl;
3499
3500         kref_init(&ns->kref);
3501         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3502
3503         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3504         nvme_set_queue_limits(ctrl, ns->queue);
3505
3506         ret = nvme_identify_ns(ctrl, nsid, &id);
3507         if (ret)
3508                 goto out_free_queue;
3509
3510         if (id->ncap == 0) {
3511                 ret = -EINVAL;
3512                 goto out_free_id;
3513         }
3514
3515         ret = nvme_init_ns_head(ns, nsid, id);
3516         if (ret)
3517                 goto out_free_id;
3518         nvme_setup_streams_ns(ctrl, ns);
3519         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3520
3521         disk = alloc_disk_node(0, node);
3522         if (!disk) {
3523                 ret = -ENOMEM;
3524                 goto out_unlink_ns;
3525         }
3526
3527         disk->fops = &nvme_fops;
3528         disk->private_data = ns;
3529         disk->queue = ns->queue;
3530         disk->flags = flags;
3531         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3532         ns->disk = disk;
3533
3534         __nvme_revalidate_disk(disk, id);
3535
3536         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3537                 ret = nvme_nvm_register(ns, disk_name, node);
3538                 if (ret) {
3539                         dev_warn(ctrl->device, "LightNVM init failure\n");
3540                         goto out_put_disk;
3541                 }
3542         }
3543
3544         down_write(&ctrl->namespaces_rwsem);
3545         list_add_tail(&ns->list, &ctrl->namespaces);
3546         up_write(&ctrl->namespaces_rwsem);
3547
3548         nvme_get_ctrl(ctrl);
3549
3550         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3551
3552         nvme_mpath_add_disk(ns, id);
3553         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3554         kfree(id);
3555
3556         return 0;
3557  out_put_disk:
3558         put_disk(ns->disk);
3559  out_unlink_ns:
3560         mutex_lock(&ctrl->subsys->lock);
3561         list_del_rcu(&ns->siblings);
3562         mutex_unlock(&ctrl->subsys->lock);
3563         nvme_put_ns_head(ns->head);
3564  out_free_id:
3565         kfree(id);
3566  out_free_queue:
3567         blk_cleanup_queue(ns->queue);
3568  out_free_ns:
3569         kfree(ns);
3570         if (ret > 0)
3571                 ret = blk_status_to_errno(nvme_error_status(ret));
3572         return ret;
3573 }
3574
3575 static void nvme_ns_remove(struct nvme_ns *ns)
3576 {
3577         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3578                 return;
3579
3580         nvme_fault_inject_fini(&ns->fault_inject);
3581
3582         mutex_lock(&ns->ctrl->subsys->lock);
3583         list_del_rcu(&ns->siblings);
3584         mutex_unlock(&ns->ctrl->subsys->lock);
3585         synchronize_rcu(); /* guarantee not available in head->list */
3586         nvme_mpath_clear_current_path(ns);
3587         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3588
3589         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3590                 del_gendisk(ns->disk);
3591                 blk_cleanup_queue(ns->queue);
3592                 if (blk_get_integrity(ns->disk))
3593                         blk_integrity_unregister(ns->disk);
3594         }
3595
3596         down_write(&ns->ctrl->namespaces_rwsem);
3597         list_del_init(&ns->list);
3598         up_write(&ns->ctrl->namespaces_rwsem);
3599
3600         nvme_mpath_check_last_path(ns);
3601         nvme_put_ns(ns);
3602 }
3603
3604 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3605 {
3606         struct nvme_ns *ns;
3607
3608         ns = nvme_find_get_ns(ctrl, nsid);
3609         if (ns) {
3610                 if (ns->disk && revalidate_disk(ns->disk))
3611                         nvme_ns_remove(ns);
3612                 nvme_put_ns(ns);
3613         } else
3614                 nvme_alloc_ns(ctrl, nsid);
3615 }
3616
3617 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3618                                         unsigned nsid)
3619 {
3620         struct nvme_ns *ns, *next;
3621         LIST_HEAD(rm_list);
3622
3623         down_write(&ctrl->namespaces_rwsem);
3624         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3625                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3626                         list_move_tail(&ns->list, &rm_list);
3627         }
3628         up_write(&ctrl->namespaces_rwsem);
3629
3630         list_for_each_entry_safe(ns, next, &rm_list, list)
3631                 nvme_ns_remove(ns);
3632
3633 }
3634
3635 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3636 {
3637         struct nvme_ns *ns;
3638         __le32 *ns_list;
3639         unsigned i, j, nsid, prev = 0;
3640         unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3641         int ret = 0;
3642
3643         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3644         if (!ns_list)
3645                 return -ENOMEM;
3646
3647         for (i = 0; i < num_lists; i++) {
3648                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3649                 if (ret)
3650                         goto free;
3651
3652                 for (j = 0; j < min(nn, 1024U); j++) {
3653                         nsid = le32_to_cpu(ns_list[j]);
3654                         if (!nsid)
3655                                 goto out;
3656
3657                         nvme_validate_ns(ctrl, nsid);
3658
3659                         while (++prev < nsid) {
3660                                 ns = nvme_find_get_ns(ctrl, prev);
3661                                 if (ns) {
3662                                         nvme_ns_remove(ns);
3663                                         nvme_put_ns(ns);
3664                                 }
3665                         }
3666                 }
3667                 nn -= j;
3668         }
3669  out:
3670         nvme_remove_invalid_namespaces(ctrl, prev);
3671  free:
3672         kfree(ns_list);
3673         return ret;
3674 }
3675
3676 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3677 {
3678         unsigned i;
3679
3680         for (i = 1; i <= nn; i++)
3681                 nvme_validate_ns(ctrl, i);
3682
3683         nvme_remove_invalid_namespaces(ctrl, nn);
3684 }
3685
3686 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3687 {
3688         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3689         __le32 *log;
3690         int error;
3691
3692         log = kzalloc(log_size, GFP_KERNEL);
3693         if (!log)
3694                 return;
3695
3696         /*
3697          * We need to read the log to clear the AEN, but we don't want to rely
3698          * on it for the changed namespace information as userspace could have
3699          * raced with us in reading the log page, which could cause us to miss
3700          * updates.
3701          */
3702         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3703                         log_size, 0);
3704         if (error)
3705                 dev_warn(ctrl->device,
3706                         "reading changed ns log failed: %d\n", error);
3707
3708         kfree(log);
3709 }
3710
3711 static void nvme_scan_work(struct work_struct *work)
3712 {
3713         struct nvme_ctrl *ctrl =
3714                 container_of(work, struct nvme_ctrl, scan_work);
3715         struct nvme_id_ctrl *id;
3716         unsigned nn;
3717
3718         /* No tagset on a live ctrl means IO queues could not created */
3719         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3720                 return;
3721
3722         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3723                 dev_info(ctrl->device, "rescanning namespaces.\n");
3724                 nvme_clear_changed_ns_log(ctrl);
3725         }
3726
3727         if (nvme_identify_ctrl(ctrl, &id))
3728                 return;
3729
3730         mutex_lock(&ctrl->scan_lock);
3731         nn = le32_to_cpu(id->nn);
3732         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3733             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3734                 if (!nvme_scan_ns_list(ctrl, nn))
3735                         goto out_free_id;
3736         }
3737         nvme_scan_ns_sequential(ctrl, nn);
3738 out_free_id:
3739         mutex_unlock(&ctrl->scan_lock);
3740         kfree(id);
3741         down_write(&ctrl->namespaces_rwsem);
3742         list_sort(NULL, &ctrl->namespaces, ns_cmp);
3743         up_write(&ctrl->namespaces_rwsem);
3744 }
3745
3746 /*
3747  * This function iterates the namespace list unlocked to allow recovery from
3748  * controller failure. It is up to the caller to ensure the namespace list is
3749  * not modified by scan work while this function is executing.
3750  */
3751 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3752 {
3753         struct nvme_ns *ns, *next;
3754         LIST_HEAD(ns_list);
3755
3756         /*
3757          * make sure to requeue I/O to all namespaces as these
3758          * might result from the scan itself and must complete
3759          * for the scan_work to make progress
3760          */
3761         nvme_mpath_clear_ctrl_paths(ctrl);
3762
3763         /* prevent racing with ns scanning */
3764         flush_work(&ctrl->scan_work);
3765
3766         /*
3767          * The dead states indicates the controller was not gracefully
3768          * disconnected. In that case, we won't be able to flush any data while
3769          * removing the namespaces' disks; fail all the queues now to avoid
3770          * potentially having to clean up the failed sync later.
3771          */
3772         if (ctrl->state == NVME_CTRL_DEAD)
3773                 nvme_kill_queues(ctrl);
3774
3775         down_write(&ctrl->namespaces_rwsem);
3776         list_splice_init(&ctrl->namespaces, &ns_list);
3777         up_write(&ctrl->namespaces_rwsem);
3778
3779         list_for_each_entry_safe(ns, next, &ns_list, list)
3780                 nvme_ns_remove(ns);
3781 }
3782 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3783
3784 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3785 {
3786         struct nvme_ctrl *ctrl =
3787                 container_of(dev, struct nvme_ctrl, ctrl_device);
3788         struct nvmf_ctrl_options *opts = ctrl->opts;
3789         int ret;
3790
3791         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3792         if (ret)
3793                 return ret;
3794
3795         if (opts) {
3796                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3797                 if (ret)
3798                         return ret;
3799
3800                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3801                                 opts->trsvcid ?: "none");
3802                 if (ret)
3803                         return ret;
3804
3805                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3806                                 opts->host_traddr ?: "none");
3807         }
3808         return ret;
3809 }
3810
3811 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3812 {
3813         char *envp[2] = { NULL, NULL };
3814         u32 aen_result = ctrl->aen_result;
3815
3816         ctrl->aen_result = 0;
3817         if (!aen_result)
3818                 return;
3819
3820         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3821         if (!envp[0])
3822                 return;
3823         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3824         kfree(envp[0]);
3825 }
3826
3827 static void nvme_async_event_work(struct work_struct *work)
3828 {
3829         struct nvme_ctrl *ctrl =
3830                 container_of(work, struct nvme_ctrl, async_event_work);
3831
3832         nvme_aen_uevent(ctrl);
3833         ctrl->ops->submit_async_event(ctrl);
3834 }
3835
3836 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3837 {
3838
3839         u32 csts;
3840
3841         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3842                 return false;
3843
3844         if (csts == ~0)
3845                 return false;
3846
3847         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3848 }
3849
3850 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3851 {
3852         struct nvme_fw_slot_info_log *log;
3853
3854         log = kmalloc(sizeof(*log), GFP_KERNEL);
3855         if (!log)
3856                 return;
3857
3858         if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3859                         sizeof(*log), 0))
3860                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3861         kfree(log);
3862 }
3863
3864 static void nvme_fw_act_work(struct work_struct *work)
3865 {
3866         struct nvme_ctrl *ctrl = container_of(work,
3867                                 struct nvme_ctrl, fw_act_work);
3868         unsigned long fw_act_timeout;
3869
3870         if (ctrl->mtfa)
3871                 fw_act_timeout = jiffies +
3872                                 msecs_to_jiffies(ctrl->mtfa * 100);
3873         else
3874                 fw_act_timeout = jiffies +
3875                                 msecs_to_jiffies(admin_timeout * 1000);
3876
3877         nvme_stop_queues(ctrl);
3878         while (nvme_ctrl_pp_status(ctrl)) {
3879                 if (time_after(jiffies, fw_act_timeout)) {
3880                         dev_warn(ctrl->device,
3881                                 "Fw activation timeout, reset controller\n");
3882                         nvme_try_sched_reset(ctrl);
3883                         return;
3884                 }
3885                 msleep(100);
3886         }
3887
3888         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
3889                 return;
3890
3891         nvme_start_queues(ctrl);
3892         /* read FW slot information to clear the AER */
3893         nvme_get_fw_slot_info(ctrl);
3894 }
3895
3896 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3897 {
3898         u32 aer_notice_type = (result & 0xff00) >> 8;
3899
3900         trace_nvme_async_event(ctrl, aer_notice_type);
3901
3902         switch (aer_notice_type) {
3903         case NVME_AER_NOTICE_NS_CHANGED:
3904                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3905                 nvme_queue_scan(ctrl);
3906                 break;
3907         case NVME_AER_NOTICE_FW_ACT_STARTING:
3908                 /*
3909                  * We are (ab)using the RESETTING state to prevent subsequent
3910                  * recovery actions from interfering with the controller's
3911                  * firmware activation.
3912                  */
3913                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
3914                         queue_work(nvme_wq, &ctrl->fw_act_work);
3915                 break;
3916 #ifdef CONFIG_NVME_MULTIPATH
3917         case NVME_AER_NOTICE_ANA:
3918                 if (!ctrl->ana_log_buf)
3919                         break;
3920                 queue_work(nvme_wq, &ctrl->ana_work);
3921                 break;
3922 #endif
3923         case NVME_AER_NOTICE_DISC_CHANGED:
3924                 ctrl->aen_result = result;
3925                 break;
3926         default:
3927                 dev_warn(ctrl->device, "async event result %08x\n", result);
3928         }
3929 }
3930
3931 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3932                 volatile union nvme_result *res)
3933 {
3934         u32 result = le32_to_cpu(res->u32);
3935         u32 aer_type = result & 0x07;
3936
3937         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3938                 return;
3939
3940         switch (aer_type) {
3941         case NVME_AER_NOTICE:
3942                 nvme_handle_aen_notice(ctrl, result);
3943                 break;
3944         case NVME_AER_ERROR:
3945         case NVME_AER_SMART:
3946         case NVME_AER_CSS:
3947         case NVME_AER_VS:
3948                 trace_nvme_async_event(ctrl, aer_type);
3949                 ctrl->aen_result = result;
3950                 break;
3951         default:
3952                 break;
3953         }
3954         queue_work(nvme_wq, &ctrl->async_event_work);
3955 }
3956 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3957
3958 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3959 {
3960         nvme_mpath_stop(ctrl);
3961         nvme_stop_keep_alive(ctrl);
3962         flush_work(&ctrl->async_event_work);
3963         cancel_work_sync(&ctrl->fw_act_work);
3964 }
3965 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3966
3967 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3968 {
3969         if (ctrl->kato)
3970                 nvme_start_keep_alive(ctrl);
3971
3972         nvme_enable_aen(ctrl);
3973
3974         if (ctrl->queue_count > 1) {
3975                 nvme_queue_scan(ctrl);
3976                 nvme_start_queues(ctrl);
3977         }
3978 }
3979 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3980
3981 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3982 {
3983         nvme_fault_inject_fini(&ctrl->fault_inject);
3984         dev_pm_qos_hide_latency_tolerance(ctrl->device);
3985         cdev_device_del(&ctrl->cdev, ctrl->device);
3986 }
3987 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3988
3989 static void nvme_free_ctrl(struct device *dev)
3990 {
3991         struct nvme_ctrl *ctrl =
3992                 container_of(dev, struct nvme_ctrl, ctrl_device);
3993         struct nvme_subsystem *subsys = ctrl->subsys;
3994
3995         if (subsys && ctrl->instance != subsys->instance)
3996                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3997
3998         kfree(ctrl->effects);
3999         nvme_mpath_uninit(ctrl);
4000         __free_page(ctrl->discard_page);
4001
4002         if (subsys) {
4003                 mutex_lock(&nvme_subsystems_lock);
4004                 list_del(&ctrl->subsys_entry);
4005                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4006                 mutex_unlock(&nvme_subsystems_lock);
4007         }
4008
4009         ctrl->ops->free_ctrl(ctrl);
4010
4011         if (subsys)
4012                 nvme_put_subsystem(subsys);
4013 }
4014
4015 /*
4016  * Initialize a NVMe controller structures.  This needs to be called during
4017  * earliest initialization so that we have the initialized structured around
4018  * during probing.
4019  */
4020 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4021                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4022 {
4023         int ret;
4024
4025         ctrl->state = NVME_CTRL_NEW;
4026         spin_lock_init(&ctrl->lock);
4027         mutex_init(&ctrl->scan_lock);
4028         INIT_LIST_HEAD(&ctrl->namespaces);
4029         init_rwsem(&ctrl->namespaces_rwsem);
4030         ctrl->dev = dev;
4031         ctrl->ops = ops;
4032         ctrl->quirks = quirks;
4033         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4034         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4035         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4036         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4037         init_waitqueue_head(&ctrl->state_wq);
4038
4039         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4040         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4041         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4042
4043         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4044                         PAGE_SIZE);
4045         ctrl->discard_page = alloc_page(GFP_KERNEL);
4046         if (!ctrl->discard_page) {
4047                 ret = -ENOMEM;
4048                 goto out;
4049         }
4050
4051         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4052         if (ret < 0)
4053                 goto out;
4054         ctrl->instance = ret;
4055
4056         device_initialize(&ctrl->ctrl_device);
4057         ctrl->device = &ctrl->ctrl_device;
4058         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4059         ctrl->device->class = nvme_class;
4060         ctrl->device->parent = ctrl->dev;
4061         ctrl->device->groups = nvme_dev_attr_groups;
4062         ctrl->device->release = nvme_free_ctrl;
4063         dev_set_drvdata(ctrl->device, ctrl);
4064         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4065         if (ret)
4066                 goto out_release_instance;
4067
4068         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4069         ctrl->cdev.owner = ops->module;
4070         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4071         if (ret)
4072                 goto out_free_name;
4073
4074         /*
4075          * Initialize latency tolerance controls.  The sysfs files won't
4076          * be visible to userspace unless the device actually supports APST.
4077          */
4078         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4079         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4080                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4081
4082         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4083
4084         return 0;
4085 out_free_name:
4086         kfree_const(ctrl->device->kobj.name);
4087 out_release_instance:
4088         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4089 out:
4090         if (ctrl->discard_page)
4091                 __free_page(ctrl->discard_page);
4092         return ret;
4093 }
4094 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4095
4096 /**
4097  * nvme_kill_queues(): Ends all namespace queues
4098  * @ctrl: the dead controller that needs to end
4099  *
4100  * Call this function when the driver determines it is unable to get the
4101  * controller in a state capable of servicing IO.
4102  */
4103 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4104 {
4105         struct nvme_ns *ns;
4106
4107         down_read(&ctrl->namespaces_rwsem);
4108
4109         /* Forcibly unquiesce queues to avoid blocking dispatch */
4110         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4111                 blk_mq_unquiesce_queue(ctrl->admin_q);
4112
4113         list_for_each_entry(ns, &ctrl->namespaces, list)
4114                 nvme_set_queue_dying(ns);
4115
4116         up_read(&ctrl->namespaces_rwsem);
4117 }
4118 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4119
4120 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4121 {
4122         struct nvme_ns *ns;
4123
4124         down_read(&ctrl->namespaces_rwsem);
4125         list_for_each_entry(ns, &ctrl->namespaces, list)
4126                 blk_mq_unfreeze_queue(ns->queue);
4127         up_read(&ctrl->namespaces_rwsem);
4128 }
4129 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4130
4131 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4132 {
4133         struct nvme_ns *ns;
4134
4135         down_read(&ctrl->namespaces_rwsem);
4136         list_for_each_entry(ns, &ctrl->namespaces, list) {
4137                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4138                 if (timeout <= 0)
4139                         break;
4140         }
4141         up_read(&ctrl->namespaces_rwsem);
4142 }
4143 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4144
4145 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4146 {
4147         struct nvme_ns *ns;
4148
4149         down_read(&ctrl->namespaces_rwsem);
4150         list_for_each_entry(ns, &ctrl->namespaces, list)
4151                 blk_mq_freeze_queue_wait(ns->queue);
4152         up_read(&ctrl->namespaces_rwsem);
4153 }
4154 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4155
4156 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4157 {
4158         struct nvme_ns *ns;
4159
4160         down_read(&ctrl->namespaces_rwsem);
4161         list_for_each_entry(ns, &ctrl->namespaces, list)
4162                 blk_freeze_queue_start(ns->queue);
4163         up_read(&ctrl->namespaces_rwsem);
4164 }
4165 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4166
4167 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4168 {
4169         struct nvme_ns *ns;
4170
4171         down_read(&ctrl->namespaces_rwsem);
4172         list_for_each_entry(ns, &ctrl->namespaces, list)
4173                 blk_mq_quiesce_queue(ns->queue);
4174         up_read(&ctrl->namespaces_rwsem);
4175 }
4176 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4177
4178 void nvme_start_queues(struct nvme_ctrl *ctrl)
4179 {
4180         struct nvme_ns *ns;
4181
4182         down_read(&ctrl->namespaces_rwsem);
4183         list_for_each_entry(ns, &ctrl->namespaces, list)
4184                 blk_mq_unquiesce_queue(ns->queue);
4185         up_read(&ctrl->namespaces_rwsem);
4186 }
4187 EXPORT_SYMBOL_GPL(nvme_start_queues);
4188
4189
4190 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4191 {
4192         struct nvme_ns *ns;
4193
4194         down_read(&ctrl->namespaces_rwsem);
4195         list_for_each_entry(ns, &ctrl->namespaces, list)
4196                 blk_sync_queue(ns->queue);
4197         up_read(&ctrl->namespaces_rwsem);
4198
4199         if (ctrl->admin_q)
4200                 blk_sync_queue(ctrl->admin_q);
4201 }
4202 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4203
4204 /*
4205  * Check we didn't inadvertently grow the command structure sizes:
4206  */
4207 static inline void _nvme_check_size(void)
4208 {
4209         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4210         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4211         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4212         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4213         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4214         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4215         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4216         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4217         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4218         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4219         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4220         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4221         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4222         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4223         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4224         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4225         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4226 }
4227
4228
4229 static int __init nvme_core_init(void)
4230 {
4231         int result = -ENOMEM;
4232
4233         _nvme_check_size();
4234
4235         nvme_wq = alloc_workqueue("nvme-wq",
4236                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4237         if (!nvme_wq)
4238                 goto out;
4239
4240         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4241                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4242         if (!nvme_reset_wq)
4243                 goto destroy_wq;
4244
4245         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4246                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4247         if (!nvme_delete_wq)
4248                 goto destroy_reset_wq;
4249
4250         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4251         if (result < 0)
4252                 goto destroy_delete_wq;
4253
4254         nvme_class = class_create(THIS_MODULE, "nvme");
4255         if (IS_ERR(nvme_class)) {
4256                 result = PTR_ERR(nvme_class);
4257                 goto unregister_chrdev;
4258         }
4259         nvme_class->dev_uevent = nvme_class_uevent;
4260
4261         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4262         if (IS_ERR(nvme_subsys_class)) {
4263                 result = PTR_ERR(nvme_subsys_class);
4264                 goto destroy_class;
4265         }
4266         return 0;
4267
4268 destroy_class:
4269         class_destroy(nvme_class);
4270 unregister_chrdev:
4271         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4272 destroy_delete_wq:
4273         destroy_workqueue(nvme_delete_wq);
4274 destroy_reset_wq:
4275         destroy_workqueue(nvme_reset_wq);
4276 destroy_wq:
4277         destroy_workqueue(nvme_wq);
4278 out:
4279         return result;
4280 }
4281
4282 static void __exit nvme_core_exit(void)
4283 {
4284         class_destroy(nvme_subsys_class);
4285         class_destroy(nvme_class);
4286         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4287         destroy_workqueue(nvme_delete_wq);
4288         destroy_workqueue(nvme_reset_wq);
4289         destroy_workqueue(nvme_wq);
4290 }
4291
4292 MODULE_LICENSE("GPL");
4293 MODULE_VERSION("1.0");
4294 module_init(nvme_core_init);
4295 module_exit(nvme_core_exit);