Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6-block.git] / drivers / net / wireless / intel / iwlwifi / pcie / rx.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5  * Copyright(c) 2016 Intel Deutschland GmbH
6  *
7  * Portions of this file are derived from the ipw3945 project, as well
8  * as portions of the ieee80211 subsystem header files.
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc.,
21  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called LICENSE.
25  *
26  * Contact Information:
27  *  Intel Linux Wireless <linuxwifi@intel.com>
28  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
29  *
30  *****************************************************************************/
31 #include <linux/sched.h>
32 #include <linux/wait.h>
33 #include <linux/gfp.h>
34
35 #include "iwl-prph.h"
36 #include "iwl-io.h"
37 #include "internal.h"
38 #include "iwl-op-mode.h"
39
40 /******************************************************************************
41  *
42  * RX path functions
43  *
44  ******************************************************************************/
45
46 /*
47  * Rx theory of operation
48  *
49  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
50  * each of which point to Receive Buffers to be filled by the NIC.  These get
51  * used not only for Rx frames, but for any command response or notification
52  * from the NIC.  The driver and NIC manage the Rx buffers by means
53  * of indexes into the circular buffer.
54  *
55  * Rx Queue Indexes
56  * The host/firmware share two index registers for managing the Rx buffers.
57  *
58  * The READ index maps to the first position that the firmware may be writing
59  * to -- the driver can read up to (but not including) this position and get
60  * good data.
61  * The READ index is managed by the firmware once the card is enabled.
62  *
63  * The WRITE index maps to the last position the driver has read from -- the
64  * position preceding WRITE is the last slot the firmware can place a packet.
65  *
66  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
67  * WRITE = READ.
68  *
69  * During initialization, the host sets up the READ queue position to the first
70  * INDEX position, and WRITE to the last (READ - 1 wrapped)
71  *
72  * When the firmware places a packet in a buffer, it will advance the READ index
73  * and fire the RX interrupt.  The driver can then query the READ index and
74  * process as many packets as possible, moving the WRITE index forward as it
75  * resets the Rx queue buffers with new memory.
76  *
77  * The management in the driver is as follows:
78  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
79  *   When the interrupt handler is called, the request is processed.
80  *   The page is either stolen - transferred to the upper layer
81  *   or reused - added immediately to the iwl->rxq->rx_free list.
82  * + When the page is stolen - the driver updates the matching queue's used
83  *   count, detaches the RBD and transfers it to the queue used list.
84  *   When there are two used RBDs - they are transferred to the allocator empty
85  *   list. Work is then scheduled for the allocator to start allocating
86  *   eight buffers.
87  *   When there are another 6 used RBDs - they are transferred to the allocator
88  *   empty list and the driver tries to claim the pre-allocated buffers and
89  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
90  *   until ready.
91  *   When there are 8+ buffers in the free list - either from allocation or from
92  *   8 reused unstolen pages - restock is called to update the FW and indexes.
93  * + In order to make sure the allocator always has RBDs to use for allocation
94  *   the allocator has initial pool in the size of num_queues*(8-2) - the
95  *   maximum missing RBDs per allocation request (request posted with 2
96  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
97  *   The queues supplies the recycle of the rest of the RBDs.
98  * + A received packet is processed and handed to the kernel network stack,
99  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
100  * + If there are no allocated buffers in iwl->rxq->rx_free,
101  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
102  *   If there were enough free buffers and RX_STALLED is set it is cleared.
103  *
104  *
105  * Driver sequence:
106  *
107  * iwl_rxq_alloc()            Allocates rx_free
108  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
109  *                            iwl_pcie_rxq_restock.
110  *                            Used only during initialization.
111  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
112  *                            queue, updates firmware pointers, and updates
113  *                            the WRITE index.
114  * iwl_pcie_rx_allocator()     Background work for allocating pages.
115  *
116  * -- enable interrupts --
117  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
118  *                            READ INDEX, detaching the SKB from the pool.
119  *                            Moves the packet buffer from queue to rx_used.
120  *                            Posts and claims requests to the allocator.
121  *                            Calls iwl_pcie_rxq_restock to refill any empty
122  *                            slots.
123  *
124  * RBD life-cycle:
125  *
126  * Init:
127  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
128  *
129  * Regular Receive interrupt:
130  * Page Stolen:
131  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
132  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
133  * Page not Stolen:
134  * rxq.queue -> rxq.rx_free -> rxq.queue
135  * ...
136  *
137  */
138
139 /*
140  * iwl_rxq_space - Return number of free slots available in queue.
141  */
142 static int iwl_rxq_space(const struct iwl_rxq *rxq)
143 {
144         /* Make sure rx queue size is a power of 2 */
145         WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
146
147         /*
148          * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
149          * between empty and completely full queues.
150          * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
151          * defined for negative dividends.
152          */
153         return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
154 }
155
156 /*
157  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
158  */
159 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
160 {
161         return cpu_to_le32((u32)(dma_addr >> 8));
162 }
163
164 static void iwl_pcie_write_prph_64(struct iwl_trans *trans, u64 ofs, u64 val)
165 {
166         iwl_write_prph(trans, ofs, val & 0xffffffff);
167         iwl_write_prph(trans, ofs + 4, val >> 32);
168 }
169
170 /*
171  * iwl_pcie_rx_stop - stops the Rx DMA
172  */
173 int iwl_pcie_rx_stop(struct iwl_trans *trans)
174 {
175         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
176         return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
177                                    FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
178 }
179
180 /*
181  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
182  */
183 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
184                                     struct iwl_rxq *rxq)
185 {
186         u32 reg;
187
188         lockdep_assert_held(&rxq->lock);
189
190         /*
191          * explicitly wake up the NIC if:
192          * 1. shadow registers aren't enabled
193          * 2. there is a chance that the NIC is asleep
194          */
195         if (!trans->cfg->base_params->shadow_reg_enable &&
196             test_bit(STATUS_TPOWER_PMI, &trans->status)) {
197                 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
198
199                 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
200                         IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
201                                        reg);
202                         iwl_set_bit(trans, CSR_GP_CNTRL,
203                                     CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
204                         rxq->need_update = true;
205                         return;
206                 }
207         }
208
209         rxq->write_actual = round_down(rxq->write, 8);
210         if (trans->cfg->mq_rx_supported)
211                 iwl_write_prph(trans, RFH_Q_FRBDCB_WIDX(rxq->id),
212                                rxq->write_actual);
213         else
214                 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
215 }
216
217 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
218 {
219         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
220         int i;
221
222         for (i = 0; i < trans->num_rx_queues; i++) {
223                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
224
225                 if (!rxq->need_update)
226                         continue;
227                 spin_lock(&rxq->lock);
228                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
229                 rxq->need_update = false;
230                 spin_unlock(&rxq->lock);
231         }
232 }
233
234 static void iwl_pcie_rxq_mq_restock(struct iwl_trans *trans,
235                                     struct iwl_rxq *rxq)
236 {
237         struct iwl_rx_mem_buffer *rxb;
238
239         /*
240          * If the device isn't enabled - no need to try to add buffers...
241          * This can happen when we stop the device and still have an interrupt
242          * pending. We stop the APM before we sync the interrupts because we
243          * have to (see comment there). On the other hand, since the APM is
244          * stopped, we cannot access the HW (in particular not prph).
245          * So don't try to restock if the APM has been already stopped.
246          */
247         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
248                 return;
249
250         spin_lock(&rxq->lock);
251         while (rxq->free_count) {
252                 __le64 *bd = (__le64 *)rxq->bd;
253
254                 /* Get next free Rx buffer, remove from free list */
255                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
256                                        list);
257                 list_del(&rxb->list);
258
259                 /* 12 first bits are expected to be empty */
260                 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
261                 /* Point to Rx buffer via next RBD in circular buffer */
262                 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
263                 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
264                 rxq->free_count--;
265         }
266         spin_unlock(&rxq->lock);
267
268         /*
269          * If we've added more space for the firmware to place data, tell it.
270          * Increment device's write pointer in multiples of 8.
271          */
272         if (rxq->write_actual != (rxq->write & ~0x7)) {
273                 spin_lock(&rxq->lock);
274                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
275                 spin_unlock(&rxq->lock);
276         }
277 }
278
279 /*
280  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
281  *
282  * If there are slots in the RX queue that need to be restocked,
283  * and we have free pre-allocated buffers, fill the ranks as much
284  * as we can, pulling from rx_free.
285  *
286  * This moves the 'write' index forward to catch up with 'processed', and
287  * also updates the memory address in the firmware to reference the new
288  * target buffer.
289  */
290 static void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
291 {
292         struct iwl_rx_mem_buffer *rxb;
293
294         /*
295          * If the device isn't enabled - not need to try to add buffers...
296          * This can happen when we stop the device and still have an interrupt
297          * pending. We stop the APM before we sync the interrupts because we
298          * have to (see comment there). On the other hand, since the APM is
299          * stopped, we cannot access the HW (in particular not prph).
300          * So don't try to restock if the APM has been already stopped.
301          */
302         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
303                 return;
304
305         spin_lock(&rxq->lock);
306         while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
307                 __le32 *bd = (__le32 *)rxq->bd;
308                 /* The overwritten rxb must be a used one */
309                 rxb = rxq->queue[rxq->write];
310                 BUG_ON(rxb && rxb->page);
311
312                 /* Get next free Rx buffer, remove from free list */
313                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
314                                        list);
315                 list_del(&rxb->list);
316
317                 /* Point to Rx buffer via next RBD in circular buffer */
318                 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
319                 rxq->queue[rxq->write] = rxb;
320                 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
321                 rxq->free_count--;
322         }
323         spin_unlock(&rxq->lock);
324
325         /* If we've added more space for the firmware to place data, tell it.
326          * Increment device's write pointer in multiples of 8. */
327         if (rxq->write_actual != (rxq->write & ~0x7)) {
328                 spin_lock(&rxq->lock);
329                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
330                 spin_unlock(&rxq->lock);
331         }
332 }
333
334 /*
335  * iwl_pcie_rx_alloc_page - allocates and returns a page.
336  *
337  */
338 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
339                                            gfp_t priority)
340 {
341         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
342         struct page *page;
343         gfp_t gfp_mask = priority;
344
345         if (trans_pcie->rx_page_order > 0)
346                 gfp_mask |= __GFP_COMP;
347
348         /* Alloc a new receive buffer */
349         page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
350         if (!page) {
351                 if (net_ratelimit())
352                         IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
353                                        trans_pcie->rx_page_order);
354                 /*
355                  * Issue an error if we don't have enough pre-allocated
356                   * buffers.
357 `                */
358                 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
359                         IWL_CRIT(trans,
360                                  "Failed to alloc_pages\n");
361                 return NULL;
362         }
363         return page;
364 }
365
366 /*
367  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
368  *
369  * A used RBD is an Rx buffer that has been given to the stack. To use it again
370  * a page must be allocated and the RBD must point to the page. This function
371  * doesn't change the HW pointer but handles the list of pages that is used by
372  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
373  * allocated buffers.
374  */
375 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
376                                    struct iwl_rxq *rxq)
377 {
378         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
379         struct iwl_rx_mem_buffer *rxb;
380         struct page *page;
381
382         while (1) {
383                 spin_lock(&rxq->lock);
384                 if (list_empty(&rxq->rx_used)) {
385                         spin_unlock(&rxq->lock);
386                         return;
387                 }
388                 spin_unlock(&rxq->lock);
389
390                 /* Alloc a new receive buffer */
391                 page = iwl_pcie_rx_alloc_page(trans, priority);
392                 if (!page)
393                         return;
394
395                 spin_lock(&rxq->lock);
396
397                 if (list_empty(&rxq->rx_used)) {
398                         spin_unlock(&rxq->lock);
399                         __free_pages(page, trans_pcie->rx_page_order);
400                         return;
401                 }
402                 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
403                                        list);
404                 list_del(&rxb->list);
405                 spin_unlock(&rxq->lock);
406
407                 BUG_ON(rxb->page);
408                 rxb->page = page;
409                 /* Get physical address of the RB */
410                 rxb->page_dma =
411                         dma_map_page(trans->dev, page, 0,
412                                      PAGE_SIZE << trans_pcie->rx_page_order,
413                                      DMA_FROM_DEVICE);
414                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
415                         rxb->page = NULL;
416                         spin_lock(&rxq->lock);
417                         list_add(&rxb->list, &rxq->rx_used);
418                         spin_unlock(&rxq->lock);
419                         __free_pages(page, trans_pcie->rx_page_order);
420                         return;
421                 }
422
423                 spin_lock(&rxq->lock);
424
425                 list_add_tail(&rxb->list, &rxq->rx_free);
426                 rxq->free_count++;
427
428                 spin_unlock(&rxq->lock);
429         }
430 }
431
432 static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
433 {
434         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
435         int i;
436
437         for (i = 0; i < MQ_RX_POOL_SIZE; i++) {
438                 if (!trans_pcie->rx_pool[i].page)
439                         continue;
440                 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
441                                PAGE_SIZE << trans_pcie->rx_page_order,
442                                DMA_FROM_DEVICE);
443                 __free_pages(trans_pcie->rx_pool[i].page,
444                              trans_pcie->rx_page_order);
445                 trans_pcie->rx_pool[i].page = NULL;
446         }
447 }
448
449 /*
450  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
451  *
452  * Allocates for each received request 8 pages
453  * Called as a scheduled work item.
454  */
455 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
456 {
457         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
458         struct iwl_rb_allocator *rba = &trans_pcie->rba;
459         struct list_head local_empty;
460         int pending = atomic_xchg(&rba->req_pending, 0);
461
462         IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
463
464         /* If we were scheduled - there is at least one request */
465         spin_lock(&rba->lock);
466         /* swap out the rba->rbd_empty to a local list */
467         list_replace_init(&rba->rbd_empty, &local_empty);
468         spin_unlock(&rba->lock);
469
470         while (pending) {
471                 int i;
472                 struct list_head local_allocated;
473                 gfp_t gfp_mask = GFP_KERNEL;
474
475                 /* Do not post a warning if there are only a few requests */
476                 if (pending < RX_PENDING_WATERMARK)
477                         gfp_mask |= __GFP_NOWARN;
478
479                 INIT_LIST_HEAD(&local_allocated);
480
481                 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
482                         struct iwl_rx_mem_buffer *rxb;
483                         struct page *page;
484
485                         /* List should never be empty - each reused RBD is
486                          * returned to the list, and initial pool covers any
487                          * possible gap between the time the page is allocated
488                          * to the time the RBD is added.
489                          */
490                         BUG_ON(list_empty(&local_empty));
491                         /* Get the first rxb from the rbd list */
492                         rxb = list_first_entry(&local_empty,
493                                                struct iwl_rx_mem_buffer, list);
494                         BUG_ON(rxb->page);
495
496                         /* Alloc a new receive buffer */
497                         page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
498                         if (!page)
499                                 continue;
500                         rxb->page = page;
501
502                         /* Get physical address of the RB */
503                         rxb->page_dma = dma_map_page(trans->dev, page, 0,
504                                         PAGE_SIZE << trans_pcie->rx_page_order,
505                                         DMA_FROM_DEVICE);
506                         if (dma_mapping_error(trans->dev, rxb->page_dma)) {
507                                 rxb->page = NULL;
508                                 __free_pages(page, trans_pcie->rx_page_order);
509                                 continue;
510                         }
511
512                         /* move the allocated entry to the out list */
513                         list_move(&rxb->list, &local_allocated);
514                         i++;
515                 }
516
517                 pending--;
518                 if (!pending) {
519                         pending = atomic_xchg(&rba->req_pending, 0);
520                         IWL_DEBUG_RX(trans,
521                                      "Pending allocation requests = %d\n",
522                                      pending);
523                 }
524
525                 spin_lock(&rba->lock);
526                 /* add the allocated rbds to the allocator allocated list */
527                 list_splice_tail(&local_allocated, &rba->rbd_allocated);
528                 /* get more empty RBDs for current pending requests */
529                 list_splice_tail_init(&rba->rbd_empty, &local_empty);
530                 spin_unlock(&rba->lock);
531
532                 atomic_inc(&rba->req_ready);
533         }
534
535         spin_lock(&rba->lock);
536         /* return unused rbds to the allocator empty list */
537         list_splice_tail(&local_empty, &rba->rbd_empty);
538         spin_unlock(&rba->lock);
539 }
540
541 /*
542  * iwl_pcie_rx_allocator_get - Returns the pre-allocated pages
543 .*
544 .* Called by queue when the queue posted allocation request and
545  * has freed 8 RBDs in order to restock itself.
546  */
547 static int iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
548                                      struct iwl_rx_mem_buffer
549                                      *out[RX_CLAIM_REQ_ALLOC])
550 {
551         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
552         struct iwl_rb_allocator *rba = &trans_pcie->rba;
553         int i;
554
555         /*
556          * atomic_dec_if_positive returns req_ready - 1 for any scenario.
557          * If req_ready is 0 atomic_dec_if_positive will return -1 and this
558          * function will return -ENOMEM, as there are no ready requests.
559          * atomic_dec_if_positive will perofrm the *actual* decrement only if
560          * req_ready > 0, i.e. - there are ready requests and the function
561          * hands one request to the caller.
562          */
563         if (atomic_dec_if_positive(&rba->req_ready) < 0)
564                 return -ENOMEM;
565
566         spin_lock(&rba->lock);
567         for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
568                 /* Get next free Rx buffer, remove it from free list */
569                 out[i] = list_first_entry(&rba->rbd_allocated,
570                                struct iwl_rx_mem_buffer, list);
571                 list_del(&out[i]->list);
572         }
573         spin_unlock(&rba->lock);
574
575         return 0;
576 }
577
578 static void iwl_pcie_rx_allocator_work(struct work_struct *data)
579 {
580         struct iwl_rb_allocator *rba_p =
581                 container_of(data, struct iwl_rb_allocator, rx_alloc);
582         struct iwl_trans_pcie *trans_pcie =
583                 container_of(rba_p, struct iwl_trans_pcie, rba);
584
585         iwl_pcie_rx_allocator(trans_pcie->trans);
586 }
587
588 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
589 {
590         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
591         struct iwl_rb_allocator *rba = &trans_pcie->rba;
592         struct device *dev = trans->dev;
593         int i;
594         int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
595                                                       sizeof(__le32);
596
597         if (WARN_ON(trans_pcie->rxq))
598                 return -EINVAL;
599
600         trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
601                                   GFP_KERNEL);
602         if (!trans_pcie->rxq)
603                 return -EINVAL;
604
605         spin_lock_init(&rba->lock);
606
607         for (i = 0; i < trans->num_rx_queues; i++) {
608                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
609
610                 spin_lock_init(&rxq->lock);
611                 if (trans->cfg->mq_rx_supported)
612                         rxq->queue_size = MQ_RX_TABLE_SIZE;
613                 else
614                         rxq->queue_size = RX_QUEUE_SIZE;
615
616                 /*
617                  * Allocate the circular buffer of Read Buffer Descriptors
618                  * (RBDs)
619                  */
620                 rxq->bd = dma_zalloc_coherent(dev,
621                                              free_size * rxq->queue_size,
622                                              &rxq->bd_dma, GFP_KERNEL);
623                 if (!rxq->bd)
624                         goto err;
625
626                 if (trans->cfg->mq_rx_supported) {
627                         rxq->used_bd = dma_zalloc_coherent(dev,
628                                                            sizeof(__le32) *
629                                                            rxq->queue_size,
630                                                            &rxq->used_bd_dma,
631                                                            GFP_KERNEL);
632                         if (!rxq->used_bd)
633                                 goto err;
634                 }
635
636                 /*Allocate the driver's pointer to receive buffer status */
637                 rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
638                                                    &rxq->rb_stts_dma,
639                                                    GFP_KERNEL);
640                 if (!rxq->rb_stts)
641                         goto err;
642         }
643         return 0;
644
645 err:
646         for (i = 0; i < trans->num_rx_queues; i++) {
647                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
648
649                 if (rxq->bd)
650                         dma_free_coherent(dev, free_size * rxq->queue_size,
651                                           rxq->bd, rxq->bd_dma);
652                 rxq->bd_dma = 0;
653                 rxq->bd = NULL;
654
655                 if (rxq->rb_stts)
656                         dma_free_coherent(trans->dev,
657                                           sizeof(struct iwl_rb_status),
658                                           rxq->rb_stts, rxq->rb_stts_dma);
659
660                 if (rxq->used_bd)
661                         dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
662                                           rxq->used_bd, rxq->used_bd_dma);
663                 rxq->used_bd_dma = 0;
664                 rxq->used_bd = NULL;
665         }
666         kfree(trans_pcie->rxq);
667
668         return -ENOMEM;
669 }
670
671 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
672 {
673         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
674         u32 rb_size;
675         const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
676
677         switch (trans_pcie->rx_buf_size) {
678         case IWL_AMSDU_4K:
679                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
680                 break;
681         case IWL_AMSDU_8K:
682                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
683                 break;
684         case IWL_AMSDU_12K:
685                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
686                 break;
687         default:
688                 WARN_ON(1);
689                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
690         }
691
692         /* Stop Rx DMA */
693         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
694         /* reset and flush pointers */
695         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
696         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
697         iwl_write_direct32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
698
699         /* Reset driver's Rx queue write index */
700         iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
701
702         /* Tell device where to find RBD circular buffer in DRAM */
703         iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
704                            (u32)(rxq->bd_dma >> 8));
705
706         /* Tell device where in DRAM to update its Rx status */
707         iwl_write_direct32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
708                            rxq->rb_stts_dma >> 4);
709
710         /* Enable Rx DMA
711          * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
712          *      the credit mechanism in 5000 HW RX FIFO
713          * Direct rx interrupts to hosts
714          * Rx buffer size 4 or 8k or 12k
715          * RB timeout 0x10
716          * 256 RBDs
717          */
718         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
719                            FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
720                            FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
721                            FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
722                            rb_size|
723                            (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS)|
724                            (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
725
726         /* Set interrupt coalescing timer to default (2048 usecs) */
727         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
728
729         /* W/A for interrupt coalescing bug in 7260 and 3160 */
730         if (trans->cfg->host_interrupt_operation_mode)
731                 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
732 }
733
734 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
735 {
736         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
737         u32 rb_size, enabled = 0;
738         int i;
739
740         switch (trans_pcie->rx_buf_size) {
741         case IWL_AMSDU_4K:
742                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
743                 break;
744         case IWL_AMSDU_8K:
745                 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
746                 break;
747         case IWL_AMSDU_12K:
748                 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
749                 break;
750         default:
751                 WARN_ON(1);
752                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
753         }
754
755         /* Stop Rx DMA */
756         iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
757         /* disable free amd used rx queue operation */
758         iwl_write_prph(trans, RFH_RXF_RXQ_ACTIVE, 0);
759
760         for (i = 0; i < trans->num_rx_queues; i++) {
761                 /* Tell device where to find RBD free table in DRAM */
762                 iwl_pcie_write_prph_64(trans, RFH_Q_FRBDCB_BA_LSB(i),
763                                        (u64)(trans_pcie->rxq[i].bd_dma));
764                 /* Tell device where to find RBD used table in DRAM */
765                 iwl_pcie_write_prph_64(trans, RFH_Q_URBDCB_BA_LSB(i),
766                                        (u64)(trans_pcie->rxq[i].used_bd_dma));
767                 /* Tell device where in DRAM to update its Rx status */
768                 iwl_pcie_write_prph_64(trans, RFH_Q_URBD_STTS_WPTR_LSB(i),
769                                        trans_pcie->rxq[i].rb_stts_dma);
770                 /* Reset device indice tables */
771                 iwl_write_prph(trans, RFH_Q_FRBDCB_WIDX(i), 0);
772                 iwl_write_prph(trans, RFH_Q_FRBDCB_RIDX(i), 0);
773                 iwl_write_prph(trans, RFH_Q_URBDCB_WIDX(i), 0);
774
775                 enabled |= BIT(i) | BIT(i + 16);
776         }
777
778         /* restock default queue */
779         iwl_pcie_rxq_mq_restock(trans, &trans_pcie->rxq[0]);
780
781         /*
782          * Enable Rx DMA
783          * Single frame mode
784          * Rx buffer size 4 or 8k or 12k
785          * Min RB size 4 or 8
786          * 512 RBDs
787          */
788         iwl_write_prph(trans, RFH_RXF_DMA_CFG,
789                        RFH_DMA_EN_ENABLE_VAL |
790                        rb_size | RFH_RXF_DMA_SINGLE_FRAME_MASK |
791                        RFH_RXF_DMA_MIN_RB_4_8 |
792                        RFH_RXF_DMA_RBDCB_SIZE_512);
793
794         iwl_write_prph(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP |
795                                           RFH_GEN_CFG_SERVICE_DMA_SNOOP);
796         iwl_write_prph(trans, RFH_RXF_RXQ_ACTIVE, enabled);
797
798         /* Set interrupt coalescing timer to default (2048 usecs) */
799         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
800 }
801
802 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
803 {
804         lockdep_assert_held(&rxq->lock);
805
806         INIT_LIST_HEAD(&rxq->rx_free);
807         INIT_LIST_HEAD(&rxq->rx_used);
808         rxq->free_count = 0;
809         rxq->used_count = 0;
810 }
811
812 static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
813 {
814         WARN_ON(1);
815         return 0;
816 }
817
818 int iwl_pcie_rx_init(struct iwl_trans *trans)
819 {
820         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
821         struct iwl_rxq *def_rxq;
822         struct iwl_rb_allocator *rba = &trans_pcie->rba;
823         int i, err, num_rbds, allocator_pool_size;
824
825         if (!trans_pcie->rxq) {
826                 err = iwl_pcie_rx_alloc(trans);
827                 if (err)
828                         return err;
829         }
830         def_rxq = trans_pcie->rxq;
831         if (!rba->alloc_wq)
832                 rba->alloc_wq = alloc_workqueue("rb_allocator",
833                                                 WQ_HIGHPRI | WQ_UNBOUND, 1);
834         INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);
835
836         spin_lock(&rba->lock);
837         atomic_set(&rba->req_pending, 0);
838         atomic_set(&rba->req_ready, 0);
839         INIT_LIST_HEAD(&rba->rbd_allocated);
840         INIT_LIST_HEAD(&rba->rbd_empty);
841         spin_unlock(&rba->lock);
842
843         /* free all first - we might be reconfigured for a different size */
844         iwl_pcie_free_rbs_pool(trans);
845
846         for (i = 0; i < RX_QUEUE_SIZE; i++)
847                 def_rxq->queue[i] = NULL;
848
849         for (i = 0; i < trans->num_rx_queues; i++) {
850                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
851
852                 rxq->id = i;
853
854                 spin_lock(&rxq->lock);
855                 /*
856                  * Set read write pointer to reflect that we have processed
857                  * and used all buffers, but have not restocked the Rx queue
858                  * with fresh buffers
859                  */
860                 rxq->read = 0;
861                 rxq->write = 0;
862                 rxq->write_actual = 0;
863                 memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
864
865                 iwl_pcie_rx_init_rxb_lists(rxq);
866
867                 if (!rxq->napi.poll)
868                         netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
869                                        iwl_pcie_dummy_napi_poll, 64);
870
871                 spin_unlock(&rxq->lock);
872         }
873
874         /* move the pool to the default queue and allocator ownerships */
875         num_rbds = trans->cfg->mq_rx_supported ?
876                      MQ_RX_POOL_SIZE : RX_QUEUE_SIZE;
877         allocator_pool_size = trans->num_rx_queues *
878                 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
879         for (i = 0; i < num_rbds; i++) {
880                 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
881
882                 if (i < allocator_pool_size)
883                         list_add(&rxb->list, &rba->rbd_empty);
884                 else
885                         list_add(&rxb->list, &def_rxq->rx_used);
886                 trans_pcie->global_table[i] = rxb;
887                 rxb->vid = (u16)i;
888         }
889
890         iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
891         if (trans->cfg->mq_rx_supported) {
892                 iwl_pcie_rx_mq_hw_init(trans);
893         } else {
894                 iwl_pcie_rxq_restock(trans, def_rxq);
895                 iwl_pcie_rx_hw_init(trans, def_rxq);
896         }
897
898         spin_lock(&def_rxq->lock);
899         iwl_pcie_rxq_inc_wr_ptr(trans, def_rxq);
900         spin_unlock(&def_rxq->lock);
901
902         return 0;
903 }
904
905 void iwl_pcie_rx_free(struct iwl_trans *trans)
906 {
907         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
908         struct iwl_rb_allocator *rba = &trans_pcie->rba;
909         int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
910                                               sizeof(__le32);
911         int i;
912
913         /*
914          * if rxq is NULL, it means that nothing has been allocated,
915          * exit now
916          */
917         if (!trans_pcie->rxq) {
918                 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
919                 return;
920         }
921
922         cancel_work_sync(&rba->rx_alloc);
923         if (rba->alloc_wq) {
924                 destroy_workqueue(rba->alloc_wq);
925                 rba->alloc_wq = NULL;
926         }
927
928         iwl_pcie_free_rbs_pool(trans);
929
930         for (i = 0; i < trans->num_rx_queues; i++) {
931                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
932
933                 if (rxq->bd)
934                         dma_free_coherent(trans->dev,
935                                           free_size * rxq->queue_size,
936                                           rxq->bd, rxq->bd_dma);
937                 rxq->bd_dma = 0;
938                 rxq->bd = NULL;
939
940                 if (rxq->rb_stts)
941                         dma_free_coherent(trans->dev,
942                                           sizeof(struct iwl_rb_status),
943                                           rxq->rb_stts, rxq->rb_stts_dma);
944                 else
945                         IWL_DEBUG_INFO(trans,
946                                        "Free rxq->rb_stts which is NULL\n");
947
948                 if (rxq->used_bd)
949                         dma_free_coherent(trans->dev,
950                                           sizeof(__le32) * rxq->queue_size,
951                                           rxq->used_bd, rxq->used_bd_dma);
952                 rxq->used_bd_dma = 0;
953                 rxq->used_bd = NULL;
954
955                 if (rxq->napi.poll)
956                         netif_napi_del(&rxq->napi);
957         }
958         kfree(trans_pcie->rxq);
959 }
960
961 /*
962  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
963  *
964  * Called when a RBD can be reused. The RBD is transferred to the allocator.
965  * When there are 2 empty RBDs - a request for allocation is posted
966  */
967 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
968                                   struct iwl_rx_mem_buffer *rxb,
969                                   struct iwl_rxq *rxq, bool emergency)
970 {
971         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
972         struct iwl_rb_allocator *rba = &trans_pcie->rba;
973
974         /* Move the RBD to the used list, will be moved to allocator in batches
975          * before claiming or posting a request*/
976         list_add_tail(&rxb->list, &rxq->rx_used);
977
978         if (unlikely(emergency))
979                 return;
980
981         /* Count the allocator owned RBDs */
982         rxq->used_count++;
983
984         /* If we have RX_POST_REQ_ALLOC new released rx buffers -
985          * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
986          * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
987          * after but we still need to post another request.
988          */
989         if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
990                 /* Move the 2 RBDs to the allocator ownership.
991                  Allocator has another 6 from pool for the request completion*/
992                 spin_lock(&rba->lock);
993                 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
994                 spin_unlock(&rba->lock);
995
996                 atomic_inc(&rba->req_pending);
997                 queue_work(rba->alloc_wq, &rba->rx_alloc);
998         }
999 }
1000
1001 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1002                                 struct iwl_rxq *rxq,
1003                                 struct iwl_rx_mem_buffer *rxb,
1004                                 bool emergency)
1005 {
1006         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1007         struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
1008         bool page_stolen = false;
1009         int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1010         u32 offset = 0;
1011
1012         if (WARN_ON(!rxb))
1013                 return;
1014
1015         dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1016
1017         while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1018                 struct iwl_rx_packet *pkt;
1019                 u16 sequence;
1020                 bool reclaim;
1021                 int index, cmd_index, len;
1022                 struct iwl_rx_cmd_buffer rxcb = {
1023                         ._offset = offset,
1024                         ._rx_page_order = trans_pcie->rx_page_order,
1025                         ._page = rxb->page,
1026                         ._page_stolen = false,
1027                         .truesize = max_len,
1028                 };
1029
1030                 pkt = rxb_addr(&rxcb);
1031
1032                 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
1033                         break;
1034
1035                 IWL_DEBUG_RX(trans,
1036                              "cmd at offset %d: %s (0x%.2x, seq 0x%x)\n",
1037                              rxcb._offset,
1038                              iwl_get_cmd_string(trans,
1039                                                 iwl_cmd_id(pkt->hdr.cmd,
1040                                                            pkt->hdr.group_id,
1041                                                            0)),
1042                              pkt->hdr.cmd, le16_to_cpu(pkt->hdr.sequence));
1043
1044                 len = iwl_rx_packet_len(pkt);
1045                 len += sizeof(u32); /* account for status word */
1046                 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1047                 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1048
1049                 /* Reclaim a command buffer only if this packet is a response
1050                  *   to a (driver-originated) command.
1051                  * If the packet (e.g. Rx frame) originated from uCode,
1052                  *   there is no command buffer to reclaim.
1053                  * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1054                  *   but apparently a few don't get set; catch them here. */
1055                 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1056                 if (reclaim) {
1057                         int i;
1058
1059                         for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1060                                 if (trans_pcie->no_reclaim_cmds[i] ==
1061                                                         pkt->hdr.cmd) {
1062                                         reclaim = false;
1063                                         break;
1064                                 }
1065                         }
1066                 }
1067
1068                 sequence = le16_to_cpu(pkt->hdr.sequence);
1069                 index = SEQ_TO_INDEX(sequence);
1070                 cmd_index = get_cmd_index(&txq->q, index);
1071
1072                 if (rxq->id == 0)
1073                         iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1074                                        &rxcb);
1075                 else
1076                         iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1077                                            &rxcb, rxq->id);
1078
1079                 if (reclaim) {
1080                         kzfree(txq->entries[cmd_index].free_buf);
1081                         txq->entries[cmd_index].free_buf = NULL;
1082                 }
1083
1084                 /*
1085                  * After here, we should always check rxcb._page_stolen,
1086                  * if it is true then one of the handlers took the page.
1087                  */
1088
1089                 if (reclaim) {
1090                         /* Invoke any callbacks, transfer the buffer to caller,
1091                          * and fire off the (possibly) blocking
1092                          * iwl_trans_send_cmd()
1093                          * as we reclaim the driver command queue */
1094                         if (!rxcb._page_stolen)
1095                                 iwl_pcie_hcmd_complete(trans, &rxcb);
1096                         else
1097                                 IWL_WARN(trans, "Claim null rxb?\n");
1098                 }
1099
1100                 page_stolen |= rxcb._page_stolen;
1101                 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1102         }
1103
1104         /* page was stolen from us -- free our reference */
1105         if (page_stolen) {
1106                 __free_pages(rxb->page, trans_pcie->rx_page_order);
1107                 rxb->page = NULL;
1108         }
1109
1110         /* Reuse the page if possible. For notification packets and
1111          * SKBs that fail to Rx correctly, add them back into the
1112          * rx_free list for reuse later. */
1113         if (rxb->page != NULL) {
1114                 rxb->page_dma =
1115                         dma_map_page(trans->dev, rxb->page, 0,
1116                                      PAGE_SIZE << trans_pcie->rx_page_order,
1117                                      DMA_FROM_DEVICE);
1118                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1119                         /*
1120                          * free the page(s) as well to not break
1121                          * the invariant that the items on the used
1122                          * list have no page(s)
1123                          */
1124                         __free_pages(rxb->page, trans_pcie->rx_page_order);
1125                         rxb->page = NULL;
1126                         iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1127                 } else {
1128                         list_add_tail(&rxb->list, &rxq->rx_free);
1129                         rxq->free_count++;
1130                 }
1131         } else
1132                 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1133 }
1134
1135 /*
1136  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1137  */
1138 static void iwl_pcie_rx_handle(struct iwl_trans *trans)
1139 {
1140         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1141         struct iwl_rxq *rxq = &trans_pcie->rxq[0];
1142         u32 r, i, j, count = 0;
1143         bool emergency = false;
1144
1145 restart:
1146         spin_lock(&rxq->lock);
1147         /* uCode's read index (stored in shared DRAM) indicates the last Rx
1148          * buffer that the driver may process (last buffer filled by ucode). */
1149         r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1150         i = rxq->read;
1151
1152         /* Rx interrupt, but nothing sent from uCode */
1153         if (i == r)
1154                 IWL_DEBUG_RX(trans, "HW = SW = %d\n", r);
1155
1156         while (i != r) {
1157                 struct iwl_rx_mem_buffer *rxb;
1158
1159                 if (unlikely(rxq->used_count == rxq->queue_size / 2))
1160                         emergency = true;
1161
1162                 if (trans->cfg->mq_rx_supported) {
1163                         /*
1164                          * used_bd is a 32 bit but only 12 are used to retrieve
1165                          * the vid
1166                          */
1167                         u16 vid = (u16)le32_to_cpu(rxq->used_bd[i]);
1168
1169                         rxb = trans_pcie->global_table[vid];
1170                 } else {
1171                         rxb = rxq->queue[i];
1172                         rxq->queue[i] = NULL;
1173                 }
1174
1175                 IWL_DEBUG_RX(trans, "rxbuf: HW = %d, SW = %d\n", r, i);
1176                 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1177
1178                 i = (i + 1) & (rxq->queue_size - 1);
1179
1180                 /* If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1181                  * try to claim the pre-allocated buffers from the allocator */
1182                 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) {
1183                         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1184                         struct iwl_rx_mem_buffer *out[RX_CLAIM_REQ_ALLOC];
1185
1186                         if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 &&
1187                             !emergency) {
1188                                 /* Add the remaining 6 empty RBDs
1189                                 * for allocator use
1190                                  */
1191                                 spin_lock(&rba->lock);
1192                                 list_splice_tail_init(&rxq->rx_used,
1193                                                       &rba->rbd_empty);
1194                                 spin_unlock(&rba->lock);
1195                         }
1196
1197                         /* If not ready - continue, will try to reclaim later.
1198                         * No need to reschedule work - allocator exits only on
1199                         * success */
1200                         if (!iwl_pcie_rx_allocator_get(trans, out)) {
1201                                 /* If success - then RX_CLAIM_REQ_ALLOC
1202                                  * buffers were retrieved and should be added
1203                                  * to free list */
1204                                 rxq->used_count -= RX_CLAIM_REQ_ALLOC;
1205                                 for (j = 0; j < RX_CLAIM_REQ_ALLOC; j++) {
1206                                         list_add_tail(&out[j]->list,
1207                                                       &rxq->rx_free);
1208                                         rxq->free_count++;
1209                                 }
1210                         }
1211                 }
1212                 if (emergency) {
1213                         count++;
1214                         if (count == 8) {
1215                                 count = 0;
1216                                 if (rxq->used_count < rxq->queue_size / 3)
1217                                         emergency = false;
1218                                 spin_unlock(&rxq->lock);
1219                                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1220                                 spin_lock(&rxq->lock);
1221                         }
1222                 }
1223                 /* handle restock for three cases, can be all of them at once:
1224                 * - we just pulled buffers from the allocator
1225                 * - we have 8+ unstolen pages accumulated
1226                 * - we are in emergency and allocated buffers
1227                  */
1228                 if (rxq->free_count >=  RX_CLAIM_REQ_ALLOC) {
1229                         rxq->read = i;
1230                         spin_unlock(&rxq->lock);
1231                         if (trans->cfg->mq_rx_supported)
1232                                 iwl_pcie_rxq_mq_restock(trans, rxq);
1233                         else
1234                                 iwl_pcie_rxq_restock(trans, rxq);
1235                         goto restart;
1236                 }
1237         }
1238
1239         /* Backtrack one entry */
1240         rxq->read = i;
1241         spin_unlock(&rxq->lock);
1242
1243         /*
1244          * handle a case where in emergency there are some unallocated RBDs.
1245          * those RBDs are in the used list, but are not tracked by the queue's
1246          * used_count which counts allocator owned RBDs.
1247          * unallocated emergency RBDs must be allocated on exit, otherwise
1248          * when called again the function may not be in emergency mode and
1249          * they will be handed to the allocator with no tracking in the RBD
1250          * allocator counters, which will lead to them never being claimed back
1251          * by the queue.
1252          * by allocating them here, they are now in the queue free list, and
1253          * will be restocked by the next call of iwl_pcie_rxq_restock.
1254          */
1255         if (unlikely(emergency && count))
1256                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1257
1258         if (rxq->napi.poll)
1259                 napi_gro_flush(&rxq->napi, false);
1260 }
1261
1262 /*
1263  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1264  */
1265 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1266 {
1267         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1268         int i;
1269
1270         /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1271         if (trans->cfg->internal_wimax_coex &&
1272             !trans->cfg->apmg_not_supported &&
1273             (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1274                              APMS_CLK_VAL_MRB_FUNC_MODE) ||
1275              (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1276                             APMG_PS_CTRL_VAL_RESET_REQ))) {
1277                 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1278                 iwl_op_mode_wimax_active(trans->op_mode);
1279                 wake_up(&trans_pcie->wait_command_queue);
1280                 return;
1281         }
1282
1283         iwl_pcie_dump_csr(trans);
1284         iwl_dump_fh(trans, NULL);
1285
1286         local_bh_disable();
1287         /* The STATUS_FW_ERROR bit is set in this function. This must happen
1288          * before we wake up the command caller, to ensure a proper cleanup. */
1289         iwl_trans_fw_error(trans);
1290         local_bh_enable();
1291
1292         for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
1293                 del_timer(&trans_pcie->txq[i].stuck_timer);
1294
1295         clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1296         wake_up(&trans_pcie->wait_command_queue);
1297 }
1298
1299 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1300 {
1301         u32 inta;
1302
1303         lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1304
1305         trace_iwlwifi_dev_irq(trans->dev);
1306
1307         /* Discover which interrupts are active/pending */
1308         inta = iwl_read32(trans, CSR_INT);
1309
1310         /* the thread will service interrupts and re-enable them */
1311         return inta;
1312 }
1313
1314 /* a device (PCI-E) page is 4096 bytes long */
1315 #define ICT_SHIFT       12
1316 #define ICT_SIZE        (1 << ICT_SHIFT)
1317 #define ICT_COUNT       (ICT_SIZE / sizeof(u32))
1318
1319 /* interrupt handler using ict table, with this interrupt driver will
1320  * stop using INTA register to get device's interrupt, reading this register
1321  * is expensive, device will write interrupts in ICT dram table, increment
1322  * index then will fire interrupt to driver, driver will OR all ICT table
1323  * entries from current index up to table entry with 0 value. the result is
1324  * the interrupt we need to service, driver will set the entries back to 0 and
1325  * set index.
1326  */
1327 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1328 {
1329         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1330         u32 inta;
1331         u32 val = 0;
1332         u32 read;
1333
1334         trace_iwlwifi_dev_irq(trans->dev);
1335
1336         /* Ignore interrupt if there's nothing in NIC to service.
1337          * This may be due to IRQ shared with another device,
1338          * or due to sporadic interrupts thrown from our NIC. */
1339         read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1340         trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1341         if (!read)
1342                 return 0;
1343
1344         /*
1345          * Collect all entries up to the first 0, starting from ict_index;
1346          * note we already read at ict_index.
1347          */
1348         do {
1349                 val |= read;
1350                 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1351                                 trans_pcie->ict_index, read);
1352                 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1353                 trans_pcie->ict_index =
1354                         ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1355
1356                 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1357                 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1358                                            read);
1359         } while (read);
1360
1361         /* We should not get this value, just ignore it. */
1362         if (val == 0xffffffff)
1363                 val = 0;
1364
1365         /*
1366          * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1367          * (bit 15 before shifting it to 31) to clear when using interrupt
1368          * coalescing. fortunately, bits 18 and 19 stay set when this happens
1369          * so we use them to decide on the real state of the Rx bit.
1370          * In order words, bit 15 is set if bit 18 or bit 19 are set.
1371          */
1372         if (val & 0xC0000)
1373                 val |= 0x8000;
1374
1375         inta = (0xff & val) | ((0xff00 & val) << 16);
1376         return inta;
1377 }
1378
1379 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1380 {
1381         struct iwl_trans *trans = dev_id;
1382         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1383         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1384         u32 inta = 0;
1385         u32 handled = 0;
1386
1387         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1388
1389         spin_lock(&trans_pcie->irq_lock);
1390
1391         /* dram interrupt table not set yet,
1392          * use legacy interrupt.
1393          */
1394         if (likely(trans_pcie->use_ict))
1395                 inta = iwl_pcie_int_cause_ict(trans);
1396         else
1397                 inta = iwl_pcie_int_cause_non_ict(trans);
1398
1399         if (iwl_have_debug_level(IWL_DL_ISR)) {
1400                 IWL_DEBUG_ISR(trans,
1401                               "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1402                               inta, trans_pcie->inta_mask,
1403                               iwl_read32(trans, CSR_INT_MASK),
1404                               iwl_read32(trans, CSR_FH_INT_STATUS));
1405                 if (inta & (~trans_pcie->inta_mask))
1406                         IWL_DEBUG_ISR(trans,
1407                                       "We got a masked interrupt (0x%08x)\n",
1408                                       inta & (~trans_pcie->inta_mask));
1409         }
1410
1411         inta &= trans_pcie->inta_mask;
1412
1413         /*
1414          * Ignore interrupt if there's nothing in NIC to service.
1415          * This may be due to IRQ shared with another device,
1416          * or due to sporadic interrupts thrown from our NIC.
1417          */
1418         if (unlikely(!inta)) {
1419                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1420                 /*
1421                  * Re-enable interrupts here since we don't
1422                  * have anything to service
1423                  */
1424                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1425                         iwl_enable_interrupts(trans);
1426                 spin_unlock(&trans_pcie->irq_lock);
1427                 lock_map_release(&trans->sync_cmd_lockdep_map);
1428                 return IRQ_NONE;
1429         }
1430
1431         if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1432                 /*
1433                  * Hardware disappeared. It might have
1434                  * already raised an interrupt.
1435                  */
1436                 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1437                 spin_unlock(&trans_pcie->irq_lock);
1438                 goto out;
1439         }
1440
1441         /* Ack/clear/reset pending uCode interrupts.
1442          * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1443          */
1444         /* There is a hardware bug in the interrupt mask function that some
1445          * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1446          * they are disabled in the CSR_INT_MASK register. Furthermore the
1447          * ICT interrupt handling mechanism has another bug that might cause
1448          * these unmasked interrupts fail to be detected. We workaround the
1449          * hardware bugs here by ACKing all the possible interrupts so that
1450          * interrupt coalescing can still be achieved.
1451          */
1452         iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1453
1454         if (iwl_have_debug_level(IWL_DL_ISR))
1455                 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1456                               inta, iwl_read32(trans, CSR_INT_MASK));
1457
1458         spin_unlock(&trans_pcie->irq_lock);
1459
1460         /* Now service all interrupt bits discovered above. */
1461         if (inta & CSR_INT_BIT_HW_ERR) {
1462                 IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1463
1464                 /* Tell the device to stop sending interrupts */
1465                 iwl_disable_interrupts(trans);
1466
1467                 isr_stats->hw++;
1468                 iwl_pcie_irq_handle_error(trans);
1469
1470                 handled |= CSR_INT_BIT_HW_ERR;
1471
1472                 goto out;
1473         }
1474
1475         if (iwl_have_debug_level(IWL_DL_ISR)) {
1476                 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1477                 if (inta & CSR_INT_BIT_SCD) {
1478                         IWL_DEBUG_ISR(trans,
1479                                       "Scheduler finished to transmit the frame/frames.\n");
1480                         isr_stats->sch++;
1481                 }
1482
1483                 /* Alive notification via Rx interrupt will do the real work */
1484                 if (inta & CSR_INT_BIT_ALIVE) {
1485                         IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1486                         isr_stats->alive++;
1487                 }
1488         }
1489
1490         /* Safely ignore these bits for debug checks below */
1491         inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1492
1493         /* HW RF KILL switch toggled */
1494         if (inta & CSR_INT_BIT_RF_KILL) {
1495                 bool hw_rfkill;
1496
1497                 hw_rfkill = iwl_is_rfkill_set(trans);
1498                 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1499                          hw_rfkill ? "disable radio" : "enable radio");
1500
1501                 isr_stats->rfkill++;
1502
1503                 mutex_lock(&trans_pcie->mutex);
1504                 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1505                 mutex_unlock(&trans_pcie->mutex);
1506                 if (hw_rfkill) {
1507                         set_bit(STATUS_RFKILL, &trans->status);
1508                         if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1509                                                &trans->status))
1510                                 IWL_DEBUG_RF_KILL(trans,
1511                                                   "Rfkill while SYNC HCMD in flight\n");
1512                         wake_up(&trans_pcie->wait_command_queue);
1513                 } else {
1514                         clear_bit(STATUS_RFKILL, &trans->status);
1515                 }
1516
1517                 handled |= CSR_INT_BIT_RF_KILL;
1518         }
1519
1520         /* Chip got too hot and stopped itself */
1521         if (inta & CSR_INT_BIT_CT_KILL) {
1522                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1523                 isr_stats->ctkill++;
1524                 handled |= CSR_INT_BIT_CT_KILL;
1525         }
1526
1527         /* Error detected by uCode */
1528         if (inta & CSR_INT_BIT_SW_ERR) {
1529                 IWL_ERR(trans, "Microcode SW error detected. "
1530                         " Restarting 0x%X.\n", inta);
1531                 isr_stats->sw++;
1532                 iwl_pcie_irq_handle_error(trans);
1533                 handled |= CSR_INT_BIT_SW_ERR;
1534         }
1535
1536         /* uCode wakes up after power-down sleep */
1537         if (inta & CSR_INT_BIT_WAKEUP) {
1538                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1539                 iwl_pcie_rxq_check_wrptr(trans);
1540                 iwl_pcie_txq_check_wrptrs(trans);
1541
1542                 isr_stats->wakeup++;
1543
1544                 handled |= CSR_INT_BIT_WAKEUP;
1545         }
1546
1547         /* All uCode command responses, including Tx command responses,
1548          * Rx "responses" (frame-received notification), and other
1549          * notifications from uCode come through here*/
1550         if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1551                     CSR_INT_BIT_RX_PERIODIC)) {
1552                 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1553                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1554                         handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1555                         iwl_write32(trans, CSR_FH_INT_STATUS,
1556                                         CSR_FH_INT_RX_MASK);
1557                 }
1558                 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1559                         handled |= CSR_INT_BIT_RX_PERIODIC;
1560                         iwl_write32(trans,
1561                                 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1562                 }
1563                 /* Sending RX interrupt require many steps to be done in the
1564                  * the device:
1565                  * 1- write interrupt to current index in ICT table.
1566                  * 2- dma RX frame.
1567                  * 3- update RX shared data to indicate last write index.
1568                  * 4- send interrupt.
1569                  * This could lead to RX race, driver could receive RX interrupt
1570                  * but the shared data changes does not reflect this;
1571                  * periodic interrupt will detect any dangling Rx activity.
1572                  */
1573
1574                 /* Disable periodic interrupt; we use it as just a one-shot. */
1575                 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1576                             CSR_INT_PERIODIC_DIS);
1577
1578                 /*
1579                  * Enable periodic interrupt in 8 msec only if we received
1580                  * real RX interrupt (instead of just periodic int), to catch
1581                  * any dangling Rx interrupt.  If it was just the periodic
1582                  * interrupt, there was no dangling Rx activity, and no need
1583                  * to extend the periodic interrupt; one-shot is enough.
1584                  */
1585                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1586                         iwl_write8(trans, CSR_INT_PERIODIC_REG,
1587                                    CSR_INT_PERIODIC_ENA);
1588
1589                 isr_stats->rx++;
1590
1591                 local_bh_disable();
1592                 iwl_pcie_rx_handle(trans);
1593                 local_bh_enable();
1594         }
1595
1596         /* This "Tx" DMA channel is used only for loading uCode */
1597         if (inta & CSR_INT_BIT_FH_TX) {
1598                 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1599                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1600                 isr_stats->tx++;
1601                 handled |= CSR_INT_BIT_FH_TX;
1602                 /* Wake up uCode load routine, now that load is complete */
1603                 trans_pcie->ucode_write_complete = true;
1604                 wake_up(&trans_pcie->ucode_write_waitq);
1605         }
1606
1607         if (inta & ~handled) {
1608                 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1609                 isr_stats->unhandled++;
1610         }
1611
1612         if (inta & ~(trans_pcie->inta_mask)) {
1613                 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1614                          inta & ~trans_pcie->inta_mask);
1615         }
1616
1617         /* we are loading the firmware, enable FH_TX interrupt only */
1618         if (handled & CSR_INT_BIT_FH_TX)
1619                 iwl_enable_fw_load_int(trans);
1620         /* only Re-enable all interrupt if disabled by irq */
1621         else if (test_bit(STATUS_INT_ENABLED, &trans->status))
1622                 iwl_enable_interrupts(trans);
1623         /* Re-enable RF_KILL if it occurred */
1624         else if (handled & CSR_INT_BIT_RF_KILL)
1625                 iwl_enable_rfkill_int(trans);
1626
1627 out:
1628         lock_map_release(&trans->sync_cmd_lockdep_map);
1629         return IRQ_HANDLED;
1630 }
1631
1632 /******************************************************************************
1633  *
1634  * ICT functions
1635  *
1636  ******************************************************************************/
1637
1638 /* Free dram table */
1639 void iwl_pcie_free_ict(struct iwl_trans *trans)
1640 {
1641         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1642
1643         if (trans_pcie->ict_tbl) {
1644                 dma_free_coherent(trans->dev, ICT_SIZE,
1645                                   trans_pcie->ict_tbl,
1646                                   trans_pcie->ict_tbl_dma);
1647                 trans_pcie->ict_tbl = NULL;
1648                 trans_pcie->ict_tbl_dma = 0;
1649         }
1650 }
1651
1652 /*
1653  * allocate dram shared table, it is an aligned memory
1654  * block of ICT_SIZE.
1655  * also reset all data related to ICT table interrupt.
1656  */
1657 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1658 {
1659         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1660
1661         trans_pcie->ict_tbl =
1662                 dma_zalloc_coherent(trans->dev, ICT_SIZE,
1663                                    &trans_pcie->ict_tbl_dma,
1664                                    GFP_KERNEL);
1665         if (!trans_pcie->ict_tbl)
1666                 return -ENOMEM;
1667
1668         /* just an API sanity check ... it is guaranteed to be aligned */
1669         if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1670                 iwl_pcie_free_ict(trans);
1671                 return -EINVAL;
1672         }
1673
1674         return 0;
1675 }
1676
1677 /* Device is going up inform it about using ICT interrupt table,
1678  * also we need to tell the driver to start using ICT interrupt.
1679  */
1680 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1681 {
1682         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1683         u32 val;
1684
1685         if (!trans_pcie->ict_tbl)
1686                 return;
1687
1688         spin_lock(&trans_pcie->irq_lock);
1689         iwl_disable_interrupts(trans);
1690
1691         memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1692
1693         val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1694
1695         val |= CSR_DRAM_INT_TBL_ENABLE |
1696                CSR_DRAM_INIT_TBL_WRAP_CHECK |
1697                CSR_DRAM_INIT_TBL_WRITE_POINTER;
1698
1699         IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1700
1701         iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1702         trans_pcie->use_ict = true;
1703         trans_pcie->ict_index = 0;
1704         iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1705         iwl_enable_interrupts(trans);
1706         spin_unlock(&trans_pcie->irq_lock);
1707 }
1708
1709 /* Device is going down disable ict interrupt usage */
1710 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1711 {
1712         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1713
1714         spin_lock(&trans_pcie->irq_lock);
1715         trans_pcie->use_ict = false;
1716         spin_unlock(&trans_pcie->irq_lock);
1717 }
1718
1719 irqreturn_t iwl_pcie_isr(int irq, void *data)
1720 {
1721         struct iwl_trans *trans = data;
1722
1723         if (!trans)
1724                 return IRQ_NONE;
1725
1726         /* Disable (but don't clear!) interrupts here to avoid
1727          * back-to-back ISRs and sporadic interrupts from our NIC.
1728          * If we have something to service, the tasklet will re-enable ints.
1729          * If we *don't* have something, we'll re-enable before leaving here.
1730          */
1731         iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1732
1733         return IRQ_WAKE_THREAD;
1734 }