x86/speculation: Fix redundant MDS mitigation message
[linux-2.6-block.git] / drivers / net / ethernet / sgi / ioc3-eth.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
3  *
4  * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
5  * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
6  *
7  * References:
8  *  o IOC3 ASIC specification 4.51, 1996-04-18
9  *  o IEEE 802.3 specification, 2000 edition
10  *  o DP38840A Specification, National Semiconductor, March 1997
11  *
12  * To do:
13  *
14  *  o Use prefetching for large packets.  What is a good lower limit for
15  *    prefetching?
16  *  o Use hardware checksums.
17  *  o Convert to using a IOC3 meta driver.
18  *  o Which PHYs might possibly be attached to the IOC3 in real live,
19  *    which workarounds are required for them?  Do we ever have Lucent's?
20  *  o For the 2.5 branch kill the mii-tool ioctls.
21  */
22
23 #define IOC3_NAME       "ioc3-eth"
24 #define IOC3_VERSION    "2.6.3-4"
25
26 #include <linux/delay.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/errno.h>
30 #include <linux/module.h>
31 #include <linux/pci.h>
32 #include <linux/crc32.h>
33 #include <linux/mii.h>
34 #include <linux/in.h>
35 #include <linux/io.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/gfp.h>
40
41 #ifdef CONFIG_SERIAL_8250
42 #include <linux/serial_core.h>
43 #include <linux/serial_8250.h>
44 #include <linux/serial_reg.h>
45 #endif
46
47 #include <linux/netdevice.h>
48 #include <linux/etherdevice.h>
49 #include <linux/ethtool.h>
50 #include <linux/skbuff.h>
51 #include <linux/dma-direct.h>
52
53 #include <net/ip.h>
54
55 #include <asm/byteorder.h>
56 #include <asm/pgtable.h>
57 #include <linux/uaccess.h>
58 #include <asm/sn/types.h>
59 #include <asm/sn/ioc3.h>
60 #include <asm/pci/bridge.h>
61
62 /* Number of RX buffers.  This is tunable in the range of 16 <= x < 512.
63  * The value must be a power of two.
64  */
65 #define RX_BUFFS                64
66 #define RX_RING_ENTRIES         512             /* fixed in hardware */
67 #define RX_RING_MASK            (RX_RING_ENTRIES - 1)
68 #define RX_RING_SIZE            (RX_RING_ENTRIES * sizeof(u64))
69
70 /* 128 TX buffers (not tunable) */
71 #define TX_RING_ENTRIES         128
72 #define TX_RING_MASK            (TX_RING_ENTRIES - 1)
73 #define TX_RING_SIZE            (TX_RING_ENTRIES * sizeof(struct ioc3_etxd))
74
75 /* IOC3 does dma transfers in 128 byte blocks */
76 #define IOC3_DMA_XFER_LEN       128UL
77
78 /* Every RX buffer starts with 8 byte descriptor data */
79 #define RX_OFFSET               (sizeof(struct ioc3_erxbuf) + NET_IP_ALIGN)
80 #define RX_BUF_SIZE             (13 * IOC3_DMA_XFER_LEN)
81
82 #define ETCSR_FD   ((21 << ETCSR_IPGR2_SHIFT) | (21 << ETCSR_IPGR1_SHIFT) | 21)
83 #define ETCSR_HD   ((17 << ETCSR_IPGR2_SHIFT) | (11 << ETCSR_IPGR1_SHIFT) | 21)
84
85 /* Private per NIC data of the driver.  */
86 struct ioc3_private {
87         struct ioc3_ethregs *regs;
88         struct ioc3 *all_regs;
89         struct device *dma_dev;
90         u32 *ssram;
91         unsigned long *rxr;             /* pointer to receiver ring */
92         struct ioc3_etxd *txr;
93         dma_addr_t rxr_dma;
94         dma_addr_t txr_dma;
95         struct sk_buff *rx_skbs[RX_RING_ENTRIES];
96         struct sk_buff *tx_skbs[TX_RING_ENTRIES];
97         int rx_ci;                      /* RX consumer index */
98         int rx_pi;                      /* RX producer index */
99         int tx_ci;                      /* TX consumer index */
100         int tx_pi;                      /* TX producer index */
101         int txqlen;
102         u32 emcr, ehar_h, ehar_l;
103         spinlock_t ioc3_lock;
104         struct mii_if_info mii;
105
106         struct net_device *dev;
107         struct pci_dev *pdev;
108
109         /* Members used by autonegotiation  */
110         struct timer_list ioc3_timer;
111 };
112
113 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
114 static void ioc3_set_multicast_list(struct net_device *dev);
115 static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void ioc3_timeout(struct net_device *dev);
117 static inline unsigned int ioc3_hash(const unsigned char *addr);
118 static void ioc3_start(struct ioc3_private *ip);
119 static inline void ioc3_stop(struct ioc3_private *ip);
120 static void ioc3_init(struct net_device *dev);
121 static int ioc3_alloc_rx_bufs(struct net_device *dev);
122 static void ioc3_free_rx_bufs(struct ioc3_private *ip);
123 static inline void ioc3_clean_tx_ring(struct ioc3_private *ip);
124
125 static const char ioc3_str[] = "IOC3 Ethernet";
126 static const struct ethtool_ops ioc3_ethtool_ops;
127
128
129 static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
130 {
131         return (~addr + 1) & (IOC3_DMA_XFER_LEN - 1UL);
132 }
133
134 static inline int ioc3_alloc_skb(struct ioc3_private *ip, struct sk_buff **skb,
135                                  struct ioc3_erxbuf **rxb, dma_addr_t *rxb_dma)
136 {
137         struct sk_buff *new_skb;
138         dma_addr_t d;
139         int offset;
140
141         new_skb = alloc_skb(RX_BUF_SIZE + IOC3_DMA_XFER_LEN - 1, GFP_ATOMIC);
142         if (!new_skb)
143                 return -ENOMEM;
144
145         /* ensure buffer is aligned to IOC3_DMA_XFER_LEN */
146         offset = aligned_rx_skb_addr((unsigned long)new_skb->data);
147         if (offset)
148                 skb_reserve(new_skb, offset);
149
150         d = dma_map_single(ip->dma_dev, new_skb->data,
151                            RX_BUF_SIZE, DMA_FROM_DEVICE);
152
153         if (dma_mapping_error(ip->dma_dev, d)) {
154                 dev_kfree_skb_any(new_skb);
155                 return -ENOMEM;
156         }
157         *rxb_dma = d;
158         *rxb = (struct ioc3_erxbuf *)new_skb->data;
159         skb_reserve(new_skb, RX_OFFSET);
160         *skb = new_skb;
161
162         return 0;
163 }
164
165 #ifdef CONFIG_PCI_XTALK_BRIDGE
166 static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr)
167 {
168         return (addr & ~PCI64_ATTR_BAR) | attr;
169 }
170
171 #define ERBAR_VAL       (ERBAR_BARRIER_BIT << ERBAR_RXBARR_SHIFT)
172 #else
173 static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr)
174 {
175         return addr;
176 }
177
178 #define ERBAR_VAL       0
179 #endif
180
181 #define IOC3_SIZE 0x100000
182
183 static inline u32 mcr_pack(u32 pulse, u32 sample)
184 {
185         return (pulse << 10) | (sample << 2);
186 }
187
188 static int nic_wait(u32 __iomem *mcr)
189 {
190         u32 m;
191
192         do {
193                 m = readl(mcr);
194         } while (!(m & 2));
195
196         return m & 1;
197 }
198
199 static int nic_reset(u32 __iomem *mcr)
200 {
201         int presence;
202
203         writel(mcr_pack(500, 65), mcr);
204         presence = nic_wait(mcr);
205
206         writel(mcr_pack(0, 500), mcr);
207         nic_wait(mcr);
208
209         return presence;
210 }
211
212 static inline int nic_read_bit(u32 __iomem *mcr)
213 {
214         int result;
215
216         writel(mcr_pack(6, 13), mcr);
217         result = nic_wait(mcr);
218         writel(mcr_pack(0, 100), mcr);
219         nic_wait(mcr);
220
221         return result;
222 }
223
224 static inline void nic_write_bit(u32 __iomem *mcr, int bit)
225 {
226         if (bit)
227                 writel(mcr_pack(6, 110), mcr);
228         else
229                 writel(mcr_pack(80, 30), mcr);
230
231         nic_wait(mcr);
232 }
233
234 /* Read a byte from an iButton device
235  */
236 static u32 nic_read_byte(u32 __iomem *mcr)
237 {
238         u32 result = 0;
239         int i;
240
241         for (i = 0; i < 8; i++)
242                 result = (result >> 1) | (nic_read_bit(mcr) << 7);
243
244         return result;
245 }
246
247 /* Write a byte to an iButton device
248  */
249 static void nic_write_byte(u32 __iomem *mcr, int byte)
250 {
251         int i, bit;
252
253         for (i = 8; i; i--) {
254                 bit = byte & 1;
255                 byte >>= 1;
256
257                 nic_write_bit(mcr, bit);
258         }
259 }
260
261 static u64 nic_find(u32 __iomem *mcr, int *last)
262 {
263         int a, b, index, disc;
264         u64 address = 0;
265
266         nic_reset(mcr);
267         /* Search ROM.  */
268         nic_write_byte(mcr, 0xf0);
269
270         /* Algorithm from ``Book of iButton Standards''.  */
271         for (index = 0, disc = 0; index < 64; index++) {
272                 a = nic_read_bit(mcr);
273                 b = nic_read_bit(mcr);
274
275                 if (a && b) {
276                         pr_warn("NIC search failed (not fatal).\n");
277                         *last = 0;
278                         return 0;
279                 }
280
281                 if (!a && !b) {
282                         if (index == *last) {
283                                 address |= 1UL << index;
284                         } else if (index > *last) {
285                                 address &= ~(1UL << index);
286                                 disc = index;
287                         } else if ((address & (1UL << index)) == 0) {
288                                 disc = index;
289                         }
290                         nic_write_bit(mcr, address & (1UL << index));
291                         continue;
292                 } else {
293                         if (a)
294                                 address |= 1UL << index;
295                         else
296                                 address &= ~(1UL << index);
297                         nic_write_bit(mcr, a);
298                         continue;
299                 }
300         }
301
302         *last = disc;
303
304         return address;
305 }
306
307 static int nic_init(u32 __iomem *mcr)
308 {
309         const char *unknown = "unknown";
310         const char *type = unknown;
311         u8 crc;
312         u8 serial[6];
313         int save = 0, i;
314
315         while (1) {
316                 u64 reg;
317
318                 reg = nic_find(mcr, &save);
319
320                 switch (reg & 0xff) {
321                 case 0x91:
322                         type = "DS1981U";
323                         break;
324                 default:
325                         if (save == 0) {
326                                 /* Let the caller try again.  */
327                                 return -1;
328                         }
329                         continue;
330                 }
331
332                 nic_reset(mcr);
333
334                 /* Match ROM.  */
335                 nic_write_byte(mcr, 0x55);
336                 for (i = 0; i < 8; i++)
337                         nic_write_byte(mcr, (reg >> (i << 3)) & 0xff);
338
339                 reg >>= 8; /* Shift out type.  */
340                 for (i = 0; i < 6; i++) {
341                         serial[i] = reg & 0xff;
342                         reg >>= 8;
343                 }
344                 crc = reg & 0xff;
345                 break;
346         }
347
348         pr_info("Found %s NIC", type);
349         if (type != unknown)
350                 pr_cont(" registration number %pM, CRC %02x", serial, crc);
351         pr_cont(".\n");
352
353         return 0;
354 }
355
356 /* Read the NIC (Number-In-a-Can) device used to store the MAC address on
357  * SN0 / SN00 nodeboards and PCI cards.
358  */
359 static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
360 {
361         u32 __iomem *mcr = &ip->all_regs->mcr;
362         int tries = 2; /* There may be some problem with the battery?  */
363         u8 nic[14];
364         int i;
365
366         writel(1 << 21, &ip->all_regs->gpcr_s);
367
368         while (tries--) {
369                 if (!nic_init(mcr))
370                         break;
371                 udelay(500);
372         }
373
374         if (tries < 0) {
375                 pr_err("Failed to read MAC address\n");
376                 return;
377         }
378
379         /* Read Memory.  */
380         nic_write_byte(mcr, 0xf0);
381         nic_write_byte(mcr, 0x00);
382         nic_write_byte(mcr, 0x00);
383
384         for (i = 13; i >= 0; i--)
385                 nic[i] = nic_read_byte(mcr);
386
387         for (i = 2; i < 8; i++)
388                 ip->dev->dev_addr[i - 2] = nic[i];
389 }
390
391 /* Ok, this is hosed by design.  It's necessary to know what machine the
392  * NIC is in in order to know how to read the NIC address.  We also have
393  * to know if it's a PCI card or a NIC in on the node board ...
394  */
395 static void ioc3_get_eaddr(struct ioc3_private *ip)
396 {
397         ioc3_get_eaddr_nic(ip);
398
399         pr_info("Ethernet address is %pM.\n", ip->dev->dev_addr);
400 }
401
402 static void __ioc3_set_mac_address(struct net_device *dev)
403 {
404         struct ioc3_private *ip = netdev_priv(dev);
405
406         writel((dev->dev_addr[5] <<  8) |
407                dev->dev_addr[4],
408                &ip->regs->emar_h);
409         writel((dev->dev_addr[3] << 24) |
410                (dev->dev_addr[2] << 16) |
411                (dev->dev_addr[1] <<  8) |
412                dev->dev_addr[0],
413                &ip->regs->emar_l);
414 }
415
416 static int ioc3_set_mac_address(struct net_device *dev, void *addr)
417 {
418         struct ioc3_private *ip = netdev_priv(dev);
419         struct sockaddr *sa = addr;
420
421         memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
422
423         spin_lock_irq(&ip->ioc3_lock);
424         __ioc3_set_mac_address(dev);
425         spin_unlock_irq(&ip->ioc3_lock);
426
427         return 0;
428 }
429
430 /* Caller must hold the ioc3_lock ever for MII readers.  This is also
431  * used to protect the transmitter side but it's low contention.
432  */
433 static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
434 {
435         struct ioc3_private *ip = netdev_priv(dev);
436         struct ioc3_ethregs *regs = ip->regs;
437
438         while (readl(&regs->micr) & MICR_BUSY)
439                 ;
440         writel((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG,
441                &regs->micr);
442         while (readl(&regs->micr) & MICR_BUSY)
443                 ;
444
445         return readl(&regs->midr_r) & MIDR_DATA_MASK;
446 }
447
448 static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
449 {
450         struct ioc3_private *ip = netdev_priv(dev);
451         struct ioc3_ethregs *regs = ip->regs;
452
453         while (readl(&regs->micr) & MICR_BUSY)
454                 ;
455         writel(data, &regs->midr_w);
456         writel((phy << MICR_PHYADDR_SHIFT) | reg, &regs->micr);
457         while (readl(&regs->micr) & MICR_BUSY)
458                 ;
459 }
460
461 static int ioc3_mii_init(struct ioc3_private *ip);
462
463 static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
464 {
465         struct ioc3_private *ip = netdev_priv(dev);
466         struct ioc3_ethregs *regs = ip->regs;
467
468         dev->stats.collisions += readl(&regs->etcdc) & ETCDC_COLLCNT_MASK;
469         return &dev->stats;
470 }
471
472 static void ioc3_tcpudp_checksum(struct sk_buff *skb, u32 hwsum, int len)
473 {
474         struct ethhdr *eh = eth_hdr(skb);
475         unsigned int proto;
476         unsigned char *cp;
477         struct iphdr *ih;
478         u32 csum, ehsum;
479         u16 *ew;
480
481         /* Did hardware handle the checksum at all?  The cases we can handle
482          * are:
483          *
484          * - TCP and UDP checksums of IPv4 only.
485          * - IPv6 would be doable but we keep that for later ...
486          * - Only unfragmented packets.  Did somebody already tell you
487          *   fragmentation is evil?
488          * - don't care about packet size.  Worst case when processing a
489          *   malformed packet we'll try to access the packet at ip header +
490          *   64 bytes which is still inside the skb.  Even in the unlikely
491          *   case where the checksum is right the higher layers will still
492          *   drop the packet as appropriate.
493          */
494         if (eh->h_proto != htons(ETH_P_IP))
495                 return;
496
497         ih = (struct iphdr *)((char *)eh + ETH_HLEN);
498         if (ip_is_fragment(ih))
499                 return;
500
501         proto = ih->protocol;
502         if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
503                 return;
504
505         /* Same as tx - compute csum of pseudo header  */
506         csum = hwsum +
507                (ih->tot_len - (ih->ihl << 2)) +
508                htons((u16)ih->protocol) +
509                (ih->saddr >> 16) + (ih->saddr & 0xffff) +
510                (ih->daddr >> 16) + (ih->daddr & 0xffff);
511
512         /* Sum up ethernet dest addr, src addr and protocol  */
513         ew = (u16 *)eh;
514         ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
515
516         ehsum = (ehsum & 0xffff) + (ehsum >> 16);
517         ehsum = (ehsum & 0xffff) + (ehsum >> 16);
518
519         csum += 0xffff ^ ehsum;
520
521         /* In the next step we also subtract the 1's complement
522          * checksum of the trailing ethernet CRC.
523          */
524         cp = (char *)eh + len;  /* points at trailing CRC */
525         if (len & 1) {
526                 csum += 0xffff ^ (u16)((cp[1] << 8) | cp[0]);
527                 csum += 0xffff ^ (u16)((cp[3] << 8) | cp[2]);
528         } else {
529                 csum += 0xffff ^ (u16)((cp[0] << 8) | cp[1]);
530                 csum += 0xffff ^ (u16)((cp[2] << 8) | cp[3]);
531         }
532
533         csum = (csum & 0xffff) + (csum >> 16);
534         csum = (csum & 0xffff) + (csum >> 16);
535
536         if (csum == 0xffff)
537                 skb->ip_summed = CHECKSUM_UNNECESSARY;
538 }
539
540 static inline void ioc3_rx(struct net_device *dev)
541 {
542         struct ioc3_private *ip = netdev_priv(dev);
543         struct sk_buff *skb, *new_skb;
544         int rx_entry, n_entry, len;
545         struct ioc3_erxbuf *rxb;
546         unsigned long *rxr;
547         dma_addr_t d;
548         u32 w0, err;
549
550         rxr = ip->rxr;          /* Ring base */
551         rx_entry = ip->rx_ci;                           /* RX consume index */
552         n_entry = ip->rx_pi;
553
554         skb = ip->rx_skbs[rx_entry];
555         rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
556         w0 = be32_to_cpu(rxb->w0);
557
558         while (w0 & ERXBUF_V) {
559                 err = be32_to_cpu(rxb->err);            /* It's valid ...  */
560                 if (err & ERXBUF_GOODPKT) {
561                         len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
562                         skb_put(skb, len);
563                         skb->protocol = eth_type_trans(skb, dev);
564
565                         if (ioc3_alloc_skb(ip, &new_skb, &rxb, &d)) {
566                                 /* Ouch, drop packet and just recycle packet
567                                  * to keep the ring filled.
568                                  */
569                                 dev->stats.rx_dropped++;
570                                 new_skb = skb;
571                                 d = rxr[rx_entry];
572                                 goto next;
573                         }
574
575                         if (likely(dev->features & NETIF_F_RXCSUM))
576                                 ioc3_tcpudp_checksum(skb,
577                                                      w0 & ERXBUF_IPCKSUM_MASK,
578                                                      len);
579
580                         dma_unmap_single(ip->dma_dev, rxr[rx_entry],
581                                          RX_BUF_SIZE, DMA_FROM_DEVICE);
582
583                         netif_rx(skb);
584
585                         ip->rx_skbs[rx_entry] = NULL;   /* Poison  */
586
587                         dev->stats.rx_packets++;                /* Statistics */
588                         dev->stats.rx_bytes += len;
589                 } else {
590                         /* The frame is invalid and the skb never
591                          * reached the network layer so we can just
592                          * recycle it.
593                          */
594                         new_skb = skb;
595                         d = rxr[rx_entry];
596                         dev->stats.rx_errors++;
597                 }
598                 if (err & ERXBUF_CRCERR)        /* Statistics */
599                         dev->stats.rx_crc_errors++;
600                 if (err & ERXBUF_FRAMERR)
601                         dev->stats.rx_frame_errors++;
602
603 next:
604                 ip->rx_skbs[n_entry] = new_skb;
605                 rxr[n_entry] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR));
606                 rxb->w0 = 0;                            /* Clear valid flag */
607                 n_entry = (n_entry + 1) & RX_RING_MASK; /* Update erpir */
608
609                 /* Now go on to the next ring entry.  */
610                 rx_entry = (rx_entry + 1) & RX_RING_MASK;
611                 skb = ip->rx_skbs[rx_entry];
612                 rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
613                 w0 = be32_to_cpu(rxb->w0);
614         }
615         writel((n_entry << 3) | ERPIR_ARM, &ip->regs->erpir);
616         ip->rx_pi = n_entry;
617         ip->rx_ci = rx_entry;
618 }
619
620 static inline void ioc3_tx(struct net_device *dev)
621 {
622         struct ioc3_private *ip = netdev_priv(dev);
623         struct ioc3_ethregs *regs = ip->regs;
624         unsigned long packets, bytes;
625         int tx_entry, o_entry;
626         struct sk_buff *skb;
627         u32 etcir;
628
629         spin_lock(&ip->ioc3_lock);
630         etcir = readl(&regs->etcir);
631
632         tx_entry = (etcir >> 7) & TX_RING_MASK;
633         o_entry = ip->tx_ci;
634         packets = 0;
635         bytes = 0;
636
637         while (o_entry != tx_entry) {
638                 packets++;
639                 skb = ip->tx_skbs[o_entry];
640                 bytes += skb->len;
641                 dev_consume_skb_irq(skb);
642                 ip->tx_skbs[o_entry] = NULL;
643
644                 o_entry = (o_entry + 1) & TX_RING_MASK; /* Next */
645
646                 etcir = readl(&regs->etcir);            /* More pkts sent?  */
647                 tx_entry = (etcir >> 7) & TX_RING_MASK;
648         }
649
650         dev->stats.tx_packets += packets;
651         dev->stats.tx_bytes += bytes;
652         ip->txqlen -= packets;
653
654         if (netif_queue_stopped(dev) && ip->txqlen < TX_RING_ENTRIES)
655                 netif_wake_queue(dev);
656
657         ip->tx_ci = o_entry;
658         spin_unlock(&ip->ioc3_lock);
659 }
660
661 /* Deal with fatal IOC3 errors.  This condition might be caused by a hard or
662  * software problems, so we should try to recover
663  * more gracefully if this ever happens.  In theory we might be flooded
664  * with such error interrupts if something really goes wrong, so we might
665  * also consider to take the interface down.
666  */
667 static void ioc3_error(struct net_device *dev, u32 eisr)
668 {
669         struct ioc3_private *ip = netdev_priv(dev);
670
671         spin_lock(&ip->ioc3_lock);
672
673         if (eisr & EISR_RXOFLO)
674                 net_err_ratelimited("%s: RX overflow.\n", dev->name);
675         if (eisr & EISR_RXBUFOFLO)
676                 net_err_ratelimited("%s: RX buffer overflow.\n", dev->name);
677         if (eisr & EISR_RXMEMERR)
678                 net_err_ratelimited("%s: RX PCI error.\n", dev->name);
679         if (eisr & EISR_RXPARERR)
680                 net_err_ratelimited("%s: RX SSRAM parity error.\n", dev->name);
681         if (eisr & EISR_TXBUFUFLO)
682                 net_err_ratelimited("%s: TX buffer underflow.\n", dev->name);
683         if (eisr & EISR_TXMEMERR)
684                 net_err_ratelimited("%s: TX PCI error.\n", dev->name);
685
686         ioc3_stop(ip);
687         ioc3_free_rx_bufs(ip);
688         ioc3_clean_tx_ring(ip);
689
690         ioc3_init(dev);
691         if (ioc3_alloc_rx_bufs(dev)) {
692                 netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
693                 spin_unlock(&ip->ioc3_lock);
694                 return;
695         }
696         ioc3_start(ip);
697         ioc3_mii_init(ip);
698
699         netif_wake_queue(dev);
700
701         spin_unlock(&ip->ioc3_lock);
702 }
703
704 /* The interrupt handler does all of the Rx thread work and cleans up
705  * after the Tx thread.
706  */
707 static irqreturn_t ioc3_interrupt(int irq, void *dev_id)
708 {
709         struct ioc3_private *ip = netdev_priv(dev_id);
710         struct ioc3_ethregs *regs = ip->regs;
711         u32 eisr;
712
713         eisr = readl(&regs->eisr);
714         writel(eisr, &regs->eisr);
715         readl(&regs->eisr);                             /* Flush */
716
717         if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
718                     EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
719                 ioc3_error(dev_id, eisr);
720         if (eisr & EISR_RXTIMERINT)
721                 ioc3_rx(dev_id);
722         if (eisr & EISR_TXEXPLICIT)
723                 ioc3_tx(dev_id);
724
725         return IRQ_HANDLED;
726 }
727
728 static inline void ioc3_setup_duplex(struct ioc3_private *ip)
729 {
730         struct ioc3_ethregs *regs = ip->regs;
731
732         spin_lock_irq(&ip->ioc3_lock);
733
734         if (ip->mii.full_duplex) {
735                 writel(ETCSR_FD, &regs->etcsr);
736                 ip->emcr |= EMCR_DUPLEX;
737         } else {
738                 writel(ETCSR_HD, &regs->etcsr);
739                 ip->emcr &= ~EMCR_DUPLEX;
740         }
741         writel(ip->emcr, &regs->emcr);
742
743         spin_unlock_irq(&ip->ioc3_lock);
744 }
745
746 static void ioc3_timer(struct timer_list *t)
747 {
748         struct ioc3_private *ip = from_timer(ip, t, ioc3_timer);
749
750         /* Print the link status if it has changed */
751         mii_check_media(&ip->mii, 1, 0);
752         ioc3_setup_duplex(ip);
753
754         ip->ioc3_timer.expires = jiffies + ((12 * HZ) / 10); /* 1.2s */
755         add_timer(&ip->ioc3_timer);
756 }
757
758 /* Try to find a PHY.  There is no apparent relation between the MII addresses
759  * in the SGI documentation and what we find in reality, so we simply probe
760  * for the PHY.  It seems IOC3 PHYs usually live on address 31.  One of my
761  * onboard IOC3s has the special oddity that probing doesn't seem to find it
762  * yet the interface seems to work fine, so if probing fails we for now will
763  * simply default to PHY 31 instead of bailing out.
764  */
765 static int ioc3_mii_init(struct ioc3_private *ip)
766 {
767         int ioc3_phy_workaround = 1;
768         int i, found = 0, res = 0;
769         u16 word;
770
771         for (i = 0; i < 32; i++) {
772                 word = ioc3_mdio_read(ip->dev, i, MII_PHYSID1);
773
774                 if (word != 0xffff && word != 0x0000) {
775                         found = 1;
776                         break;                  /* Found a PHY          */
777                 }
778         }
779
780         if (!found) {
781                 if (ioc3_phy_workaround) {
782                         i = 31;
783                 } else {
784                         ip->mii.phy_id = -1;
785                         res = -ENODEV;
786                         goto out;
787                 }
788         }
789
790         ip->mii.phy_id = i;
791
792 out:
793         return res;
794 }
795
796 static void ioc3_mii_start(struct ioc3_private *ip)
797 {
798         ip->ioc3_timer.expires = jiffies + (12 * HZ) / 10;  /* 1.2 sec. */
799         add_timer(&ip->ioc3_timer);
800 }
801
802 static inline void ioc3_tx_unmap(struct ioc3_private *ip, int entry)
803 {
804         struct ioc3_etxd *desc;
805         u32 cmd, bufcnt, len;
806
807         desc = &ip->txr[entry];
808         cmd = be32_to_cpu(desc->cmd);
809         bufcnt = be32_to_cpu(desc->bufcnt);
810         if (cmd & ETXD_B1V) {
811                 len = (bufcnt & ETXD_B1CNT_MASK) >> ETXD_B1CNT_SHIFT;
812                 dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p1),
813                                  len, DMA_TO_DEVICE);
814         }
815         if (cmd & ETXD_B2V) {
816                 len = (bufcnt & ETXD_B2CNT_MASK) >> ETXD_B2CNT_SHIFT;
817                 dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p2),
818                                  len, DMA_TO_DEVICE);
819         }
820 }
821
822 static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
823 {
824         struct sk_buff *skb;
825         int i;
826
827         for (i = 0; i < TX_RING_ENTRIES; i++) {
828                 skb = ip->tx_skbs[i];
829                 if (skb) {
830                         ioc3_tx_unmap(ip, i);
831                         ip->tx_skbs[i] = NULL;
832                         dev_kfree_skb_any(skb);
833                 }
834                 ip->txr[i].cmd = 0;
835         }
836         ip->tx_pi = 0;
837         ip->tx_ci = 0;
838 }
839
840 static void ioc3_free_rx_bufs(struct ioc3_private *ip)
841 {
842         int rx_entry, n_entry;
843         struct sk_buff *skb;
844
845         n_entry = ip->rx_ci;
846         rx_entry = ip->rx_pi;
847
848         while (n_entry != rx_entry) {
849                 skb = ip->rx_skbs[n_entry];
850                 if (skb) {
851                         dma_unmap_single(ip->dma_dev,
852                                          be64_to_cpu(ip->rxr[n_entry]),
853                                          RX_BUF_SIZE, DMA_FROM_DEVICE);
854                         dev_kfree_skb_any(skb);
855                 }
856                 n_entry = (n_entry + 1) & RX_RING_MASK;
857         }
858 }
859
860 static int ioc3_alloc_rx_bufs(struct net_device *dev)
861 {
862         struct ioc3_private *ip = netdev_priv(dev);
863         struct ioc3_erxbuf *rxb;
864         dma_addr_t d;
865         int i;
866
867         /* Now the rx buffers.  The RX ring may be larger but
868          * we only allocate 16 buffers for now.  Need to tune
869          * this for performance and memory later.
870          */
871         for (i = 0; i < RX_BUFFS; i++) {
872                 if (ioc3_alloc_skb(ip, &ip->rx_skbs[i], &rxb, &d))
873                         return -ENOMEM;
874
875                 rxb->w0 = 0;    /* Clear valid flag */
876                 ip->rxr[i] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR));
877         }
878         ip->rx_ci = 0;
879         ip->rx_pi = RX_BUFFS;
880
881         return 0;
882 }
883
884 static inline void ioc3_ssram_disc(struct ioc3_private *ip)
885 {
886         struct ioc3_ethregs *regs = ip->regs;
887         u32 *ssram0 = &ip->ssram[0x0000];
888         u32 *ssram1 = &ip->ssram[0x4000];
889         u32 pattern = 0x5555;
890
891         /* Assume the larger size SSRAM and enable parity checking */
892         writel(readl(&regs->emcr) | (EMCR_BUFSIZ | EMCR_RAMPAR), &regs->emcr);
893         readl(&regs->emcr); /* Flush */
894
895         writel(pattern, ssram0);
896         writel(~pattern & IOC3_SSRAM_DM, ssram1);
897
898         if ((readl(ssram0) & IOC3_SSRAM_DM) != pattern ||
899             (readl(ssram1) & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
900                 /* set ssram size to 64 KB */
901                 ip->emcr |= EMCR_RAMPAR;
902                 writel(readl(&regs->emcr) & ~EMCR_BUFSIZ, &regs->emcr);
903         } else {
904                 ip->emcr |= EMCR_BUFSIZ | EMCR_RAMPAR;
905         }
906 }
907
908 static void ioc3_init(struct net_device *dev)
909 {
910         struct ioc3_private *ip = netdev_priv(dev);
911         struct ioc3_ethregs *regs = ip->regs;
912
913         del_timer_sync(&ip->ioc3_timer);        /* Kill if running      */
914
915         writel(EMCR_RST, &regs->emcr);          /* Reset                */
916         readl(&regs->emcr);                     /* Flush WB             */
917         udelay(4);                              /* Give it time ...     */
918         writel(0, &regs->emcr);
919         readl(&regs->emcr);
920
921         /* Misc registers  */
922         writel(ERBAR_VAL, &regs->erbar);
923         readl(&regs->etcdc);                    /* Clear on read */
924         writel(15, &regs->ercsr);               /* RX low watermark  */
925         writel(0, &regs->ertr);                 /* Interrupt immediately */
926         __ioc3_set_mac_address(dev);
927         writel(ip->ehar_h, &regs->ehar_h);
928         writel(ip->ehar_l, &regs->ehar_l);
929         writel(42, &regs->ersr);                /* XXX should be random */
930 }
931
932 static void ioc3_start(struct ioc3_private *ip)
933 {
934         struct ioc3_ethregs *regs = ip->regs;
935         unsigned long ring;
936
937         /* Now the rx ring base, consume & produce registers.  */
938         ring = ioc3_map(ip->rxr_dma, PCI64_ATTR_PREC);
939         writel(ring >> 32, &regs->erbr_h);
940         writel(ring & 0xffffffff, &regs->erbr_l);
941         writel(ip->rx_ci << 3, &regs->ercir);
942         writel((ip->rx_pi << 3) | ERPIR_ARM, &regs->erpir);
943
944         ring = ioc3_map(ip->txr_dma, PCI64_ATTR_PREC);
945
946         ip->txqlen = 0;                                 /* nothing queued  */
947
948         /* Now the tx ring base, consume & produce registers.  */
949         writel(ring >> 32, &regs->etbr_h);
950         writel(ring & 0xffffffff, &regs->etbr_l);
951         writel(ip->tx_pi << 7, &regs->etpir);
952         writel(ip->tx_ci << 7, &regs->etcir);
953         readl(&regs->etcir);                            /* Flush */
954
955         ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
956                     EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
957         writel(ip->emcr, &regs->emcr);
958         writel(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
959                EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
960                EISR_TXEXPLICIT | EISR_TXMEMERR, &regs->eier);
961         readl(&regs->eier);
962 }
963
964 static inline void ioc3_stop(struct ioc3_private *ip)
965 {
966         struct ioc3_ethregs *regs = ip->regs;
967
968         writel(0, &regs->emcr);                 /* Shutup */
969         writel(0, &regs->eier);                 /* Disable interrupts */
970         readl(&regs->eier);                     /* Flush */
971 }
972
973 static int ioc3_open(struct net_device *dev)
974 {
975         struct ioc3_private *ip = netdev_priv(dev);
976
977         if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
978                 netdev_err(dev, "Can't get irq %d\n", dev->irq);
979
980                 return -EAGAIN;
981         }
982
983         ip->ehar_h = 0;
984         ip->ehar_l = 0;
985
986         ioc3_init(dev);
987         if (ioc3_alloc_rx_bufs(dev)) {
988                 netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
989                 return -ENOMEM;
990         }
991         ioc3_start(ip);
992         ioc3_mii_start(ip);
993
994         netif_start_queue(dev);
995         return 0;
996 }
997
998 static int ioc3_close(struct net_device *dev)
999 {
1000         struct ioc3_private *ip = netdev_priv(dev);
1001
1002         del_timer_sync(&ip->ioc3_timer);
1003
1004         netif_stop_queue(dev);
1005
1006         ioc3_stop(ip);
1007         free_irq(dev->irq, dev);
1008
1009         ioc3_free_rx_bufs(ip);
1010         ioc3_clean_tx_ring(ip);
1011
1012         return 0;
1013 }
1014
1015 /* MENET cards have four IOC3 chips, which are attached to two sets of
1016  * PCI slot resources each: the primary connections are on slots
1017  * 0..3 and the secondaries are on 4..7
1018  *
1019  * All four ethernets are brought out to connectors; six serial ports
1020  * (a pair from each of the first three IOC3s) are brought out to
1021  * MiniDINs; all other subdevices are left swinging in the wind, leave
1022  * them disabled.
1023  */
1024
1025 static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1026 {
1027         struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1028         int ret = 0;
1029
1030         if (dev) {
1031                 if (dev->vendor == PCI_VENDOR_ID_SGI &&
1032                     dev->device == PCI_DEVICE_ID_SGI_IOC3)
1033                         ret = 1;
1034                 pci_dev_put(dev);
1035         }
1036
1037         return ret;
1038 }
1039
1040 static int ioc3_is_menet(struct pci_dev *pdev)
1041 {
1042         return !pdev->bus->parent &&
1043                ioc3_adjacent_is_ioc3(pdev, 0) &&
1044                ioc3_adjacent_is_ioc3(pdev, 1) &&
1045                ioc3_adjacent_is_ioc3(pdev, 2);
1046 }
1047
1048 #ifdef CONFIG_SERIAL_8250
1049 /* Note about serial ports and consoles:
1050  * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1051  * connected to the master node (look in ip27_setup_console() and
1052  * ip27prom_console_write()).
1053  *
1054  * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1055  * addresses on a partitioned machine. Since we currently use the ioc3
1056  * serial ports, we use dynamic serial port discovery that the serial.c
1057  * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1058  * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1059  * than UARTB's, although UARTA on o200s has traditionally been known as
1060  * port 0. So, we just use one serial port from each ioc3 (since the
1061  * serial driver adds addresses to get to higher ports).
1062  *
1063  * The first one to do a register_console becomes the preferred console
1064  * (if there is no kernel command line console= directive). /dev/console
1065  * (ie 5, 1) is then "aliased" into the device number returned by the
1066  * "device" routine referred to in this console structure
1067  * (ip27prom_console_dev).
1068  *
1069  * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1070  * around ioc3 oddities in this respect.
1071  *
1072  * The IOC3 serials use a 22MHz clock rate with an additional divider which
1073  * can be programmed in the SCR register if the DLAB bit is set.
1074  *
1075  * Register to interrupt zero because we share the interrupt with
1076  * the serial driver which we don't properly support yet.
1077  *
1078  * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1079  * registered.
1080  */
1081 static void ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1082 {
1083 #define COSMISC_CONSTANT 6
1084
1085         struct uart_8250_port port = {
1086                 .port = {
1087                         .irq            = 0,
1088                         .flags          = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1089                         .iotype         = UPIO_MEM,
1090                         .regshift       = 0,
1091                         .uartclk        = (22000000 << 1) / COSMISC_CONSTANT,
1092
1093                         .membase        = (unsigned char __iomem *)uart,
1094                         .mapbase        = (unsigned long)uart,
1095                 }
1096         };
1097         unsigned char lcr;
1098
1099         lcr = readb(&uart->iu_lcr);
1100         writeb(lcr | UART_LCR_DLAB, &uart->iu_lcr);
1101         writeb(COSMISC_CONSTANT, &uart->iu_scr);
1102         writeb(lcr, &uart->iu_lcr);
1103         readb(&uart->iu_lcr);
1104         serial8250_register_8250_port(&port);
1105 }
1106
1107 static void ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1108 {
1109         u32 sio_iec;
1110
1111         /* We need to recognice and treat the fourth MENET serial as it
1112          * does not have an SuperIO chip attached to it, therefore attempting
1113          * to access it will result in bus errors.  We call something an
1114          * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1115          * in it.  This is paranoid but we want to avoid blowing up on a
1116          * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1117          * not paranoid enough ...
1118          */
1119         if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1120                 return;
1121
1122         /* Switch IOC3 to PIO mode.  It probably already was but let's be
1123          * paranoid
1124          */
1125         writel(GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL, &ioc3->gpcr_s);
1126         readl(&ioc3->gpcr_s);
1127         writel(0, &ioc3->gppr[6]);
1128         readl(&ioc3->gppr[6]);
1129         writel(0, &ioc3->gppr[7]);
1130         readl(&ioc3->gppr[7]);
1131         writel(readl(&ioc3->port_a.sscr) & ~SSCR_DMA_EN, &ioc3->port_a.sscr);
1132         readl(&ioc3->port_a.sscr);
1133         writel(readl(&ioc3->port_b.sscr) & ~SSCR_DMA_EN, &ioc3->port_b.sscr);
1134         readl(&ioc3->port_b.sscr);
1135         /* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1136         sio_iec = readl(&ioc3->sio_iec);
1137         sio_iec &= ~(SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1138                      SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1139                      SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1140                      SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1141         sio_iec |= SIO_IR_SA_INT;
1142         sio_iec &= ~(SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1143                      SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1144                      SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1145                      SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1146         sio_iec |= SIO_IR_SB_INT;
1147         writel(sio_iec, &ioc3->sio_iec);
1148         writel(0, &ioc3->port_a.sscr);
1149         writel(0, &ioc3->port_b.sscr);
1150
1151         ioc3_8250_register(&ioc3->sregs.uarta);
1152         ioc3_8250_register(&ioc3->sregs.uartb);
1153 }
1154 #endif
1155
1156 static const struct net_device_ops ioc3_netdev_ops = {
1157         .ndo_open               = ioc3_open,
1158         .ndo_stop               = ioc3_close,
1159         .ndo_start_xmit         = ioc3_start_xmit,
1160         .ndo_tx_timeout         = ioc3_timeout,
1161         .ndo_get_stats          = ioc3_get_stats,
1162         .ndo_set_rx_mode        = ioc3_set_multicast_list,
1163         .ndo_do_ioctl           = ioc3_ioctl,
1164         .ndo_validate_addr      = eth_validate_addr,
1165         .ndo_set_mac_address    = ioc3_set_mac_address,
1166 };
1167
1168 static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1169 {
1170         unsigned int sw_physid1, sw_physid2;
1171         struct net_device *dev = NULL;
1172         struct ioc3_private *ip;
1173         struct ioc3 *ioc3;
1174         unsigned long ioc3_base, ioc3_size;
1175         u32 vendor, model, rev;
1176         int err, pci_using_dac;
1177
1178         /* Configure DMA attributes. */
1179         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1180         if (!err) {
1181                 pci_using_dac = 1;
1182                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1183                 if (err < 0) {
1184                         pr_err("%s: Unable to obtain 64 bit DMA for consistent allocations\n",
1185                                pci_name(pdev));
1186                         goto out;
1187                 }
1188         } else {
1189                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1190                 if (err) {
1191                         pr_err("%s: No usable DMA configuration, aborting.\n",
1192                                pci_name(pdev));
1193                         goto out;
1194                 }
1195                 pci_using_dac = 0;
1196         }
1197
1198         if (pci_enable_device(pdev))
1199                 return -ENODEV;
1200
1201         dev = alloc_etherdev(sizeof(struct ioc3_private));
1202         if (!dev) {
1203                 err = -ENOMEM;
1204                 goto out_disable;
1205         }
1206
1207         if (pci_using_dac)
1208                 dev->features |= NETIF_F_HIGHDMA;
1209
1210         err = pci_request_regions(pdev, "ioc3");
1211         if (err)
1212                 goto out_free;
1213
1214         SET_NETDEV_DEV(dev, &pdev->dev);
1215
1216         ip = netdev_priv(dev);
1217         ip->dev = dev;
1218         ip->dma_dev = &pdev->dev;
1219
1220         dev->irq = pdev->irq;
1221
1222         ioc3_base = pci_resource_start(pdev, 0);
1223         ioc3_size = pci_resource_len(pdev, 0);
1224         ioc3 = (struct ioc3 *)ioremap(ioc3_base, ioc3_size);
1225         if (!ioc3) {
1226                 pr_err("ioc3eth(%s): ioremap failed, goodbye.\n",
1227                        pci_name(pdev));
1228                 err = -ENOMEM;
1229                 goto out_res;
1230         }
1231         ip->regs = &ioc3->eth;
1232         ip->ssram = ioc3->ssram;
1233         ip->all_regs = ioc3;
1234
1235 #ifdef CONFIG_SERIAL_8250
1236         ioc3_serial_probe(pdev, ioc3);
1237 #endif
1238
1239         spin_lock_init(&ip->ioc3_lock);
1240         timer_setup(&ip->ioc3_timer, ioc3_timer, 0);
1241
1242         ioc3_stop(ip);
1243
1244         /* Allocate rx ring.  4kb = 512 entries, must be 4kb aligned */
1245         ip->rxr = dma_direct_alloc_pages(ip->dma_dev, RX_RING_SIZE,
1246                                          &ip->rxr_dma, GFP_ATOMIC, 0);
1247         if (!ip->rxr) {
1248                 pr_err("ioc3-eth: rx ring allocation failed\n");
1249                 err = -ENOMEM;
1250                 goto out_stop;
1251         }
1252
1253         /* Allocate tx rings.  16kb = 128 bufs, must be 16kb aligned  */
1254         ip->txr = dma_direct_alloc_pages(ip->dma_dev, TX_RING_SIZE,
1255                                          &ip->txr_dma,
1256                                          GFP_KERNEL | __GFP_ZERO, 0);
1257         if (!ip->txr) {
1258                 pr_err("ioc3-eth: tx ring allocation failed\n");
1259                 err = -ENOMEM;
1260                 goto out_stop;
1261         }
1262
1263         ioc3_init(dev);
1264
1265         ip->pdev = pdev;
1266
1267         ip->mii.phy_id_mask = 0x1f;
1268         ip->mii.reg_num_mask = 0x1f;
1269         ip->mii.dev = dev;
1270         ip->mii.mdio_read = ioc3_mdio_read;
1271         ip->mii.mdio_write = ioc3_mdio_write;
1272
1273         ioc3_mii_init(ip);
1274
1275         if (ip->mii.phy_id == -1) {
1276                 pr_err("ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1277                        pci_name(pdev));
1278                 err = -ENODEV;
1279                 goto out_stop;
1280         }
1281
1282         ioc3_mii_start(ip);
1283         ioc3_ssram_disc(ip);
1284         ioc3_get_eaddr(ip);
1285
1286         /* The IOC3-specific entries in the device structure. */
1287         dev->watchdog_timeo     = 5 * HZ;
1288         dev->netdev_ops         = &ioc3_netdev_ops;
1289         dev->ethtool_ops        = &ioc3_ethtool_ops;
1290         dev->hw_features        = NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
1291         dev->features           = NETIF_F_IP_CSUM;
1292
1293         sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1294         sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1295
1296         err = register_netdev(dev);
1297         if (err)
1298                 goto out_stop;
1299
1300         mii_check_media(&ip->mii, 1, 1);
1301         ioc3_setup_duplex(ip);
1302
1303         vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1304         model  = (sw_physid2 >> 4) & 0x3f;
1305         rev    = sw_physid2 & 0xf;
1306         netdev_info(dev, "Using PHY %d, vendor 0x%x, model %d, rev %d.\n",
1307                     ip->mii.phy_id, vendor, model, rev);
1308         netdev_info(dev, "IOC3 SSRAM has %d kbyte.\n",
1309                     ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1310
1311         return 0;
1312
1313 out_stop:
1314         del_timer_sync(&ip->ioc3_timer);
1315         if (ip->rxr)
1316                 dma_direct_free_pages(ip->dma_dev, RX_RING_SIZE, ip->rxr,
1317                                       ip->rxr_dma, 0);
1318         if (ip->txr)
1319                 dma_direct_free_pages(ip->dma_dev, TX_RING_SIZE, ip->txr,
1320                                       ip->txr_dma, 0);
1321 out_res:
1322         pci_release_regions(pdev);
1323 out_free:
1324         free_netdev(dev);
1325 out_disable:
1326         /* We should call pci_disable_device(pdev); here if the IOC3 wasn't
1327          * such a weird device ...
1328          */
1329 out:
1330         return err;
1331 }
1332
1333 static void ioc3_remove_one(struct pci_dev *pdev)
1334 {
1335         struct net_device *dev = pci_get_drvdata(pdev);
1336         struct ioc3_private *ip = netdev_priv(dev);
1337
1338         dma_direct_free_pages(ip->dma_dev, RX_RING_SIZE, ip->rxr,
1339                               ip->rxr_dma, 0);
1340         dma_direct_free_pages(ip->dma_dev, TX_RING_SIZE, ip->txr,
1341                               ip->txr_dma, 0);
1342
1343         unregister_netdev(dev);
1344         del_timer_sync(&ip->ioc3_timer);
1345
1346         iounmap(ip->all_regs);
1347         pci_release_regions(pdev);
1348         free_netdev(dev);
1349         /* We should call pci_disable_device(pdev); here if the IOC3 wasn't
1350          * such a weird device ...
1351          */
1352 }
1353
1354 static const struct pci_device_id ioc3_pci_tbl[] = {
1355         { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1356         { 0 }
1357 };
1358 MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1359
1360 static struct pci_driver ioc3_driver = {
1361         .name           = "ioc3-eth",
1362         .id_table       = ioc3_pci_tbl,
1363         .probe          = ioc3_probe,
1364         .remove         = ioc3_remove_one,
1365 };
1366
1367 static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1368 {
1369         struct ioc3_private *ip = netdev_priv(dev);
1370         struct ioc3_etxd *desc;
1371         unsigned long data;
1372         unsigned int len;
1373         int produce;
1374         u32 w0 = 0;
1375
1376         /* IOC3 has a fairly simple minded checksumming hardware which simply
1377          * adds up the 1's complement checksum for the entire packet and
1378          * inserts it at an offset which can be specified in the descriptor
1379          * into the transmit packet.  This means we have to compensate for the
1380          * MAC header which should not be summed and the TCP/UDP pseudo headers
1381          * manually.
1382          */
1383         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1384                 const struct iphdr *ih = ip_hdr(skb);
1385                 const int proto = ntohs(ih->protocol);
1386                 unsigned int csoff;
1387                 u32 csum, ehsum;
1388                 u16 *eh;
1389
1390                 /* The MAC header.  skb->mac seem the logic approach
1391                  * to find the MAC header - except it's a NULL pointer ...
1392                  */
1393                 eh = (u16 *)skb->data;
1394
1395                 /* Sum up dest addr, src addr and protocol  */
1396                 ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1397
1398                 /* Skip IP header; it's sum is always zero and was
1399                  * already filled in by ip_output.c
1400                  */
1401                 csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1402                                           ih->tot_len - (ih->ihl << 2),
1403                                           proto, csum_fold(ehsum));
1404
1405                 csum = (csum & 0xffff) + (csum >> 16);  /* Fold again */
1406                 csum = (csum & 0xffff) + (csum >> 16);
1407
1408                 csoff = ETH_HLEN + (ih->ihl << 2);
1409                 if (proto == IPPROTO_UDP) {
1410                         csoff += offsetof(struct udphdr, check);
1411                         udp_hdr(skb)->check = csum;
1412                 }
1413                 if (proto == IPPROTO_TCP) {
1414                         csoff += offsetof(struct tcphdr, check);
1415                         tcp_hdr(skb)->check = csum;
1416                 }
1417
1418                 w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1419         }
1420
1421         spin_lock_irq(&ip->ioc3_lock);
1422
1423         data = (unsigned long)skb->data;
1424         len = skb->len;
1425
1426         produce = ip->tx_pi;
1427         desc = &ip->txr[produce];
1428
1429         if (len <= 104) {
1430                 /* Short packet, let's copy it directly into the ring.  */
1431                 skb_copy_from_linear_data(skb, desc->data, skb->len);
1432                 if (len < ETH_ZLEN) {
1433                         /* Very short packet, pad with zeros at the end. */
1434                         memset(desc->data + len, 0, ETH_ZLEN - len);
1435                         len = ETH_ZLEN;
1436                 }
1437                 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1438                 desc->bufcnt = cpu_to_be32(len);
1439         } else if ((data ^ (data + len - 1)) & 0x4000) {
1440                 unsigned long b2 = (data | 0x3fffUL) + 1UL;
1441                 unsigned long s1 = b2 - data;
1442                 unsigned long s2 = data + len - b2;
1443                 dma_addr_t d1, d2;
1444
1445                 desc->cmd    = cpu_to_be32(len | ETXD_INTWHENDONE |
1446                                            ETXD_B1V | ETXD_B2V | w0);
1447                 desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1448                                            (s2 << ETXD_B2CNT_SHIFT));
1449                 d1 = dma_map_single(ip->dma_dev, skb->data, s1, DMA_TO_DEVICE);
1450                 if (dma_mapping_error(ip->dma_dev, d1))
1451                         goto drop_packet;
1452                 d2 = dma_map_single(ip->dma_dev, (void *)b2, s1, DMA_TO_DEVICE);
1453                 if (dma_mapping_error(ip->dma_dev, d2)) {
1454                         dma_unmap_single(ip->dma_dev, d1, len, DMA_TO_DEVICE);
1455                         goto drop_packet;
1456                 }
1457                 desc->p1     = cpu_to_be64(ioc3_map(d1, PCI64_ATTR_PREF));
1458                 desc->p2     = cpu_to_be64(ioc3_map(d2, PCI64_ATTR_PREF));
1459         } else {
1460                 dma_addr_t d;
1461
1462                 /* Normal sized packet that doesn't cross a page boundary. */
1463                 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1464                 desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1465                 d = dma_map_single(ip->dma_dev, skb->data, len, DMA_TO_DEVICE);
1466                 if (dma_mapping_error(ip->dma_dev, d))
1467                         goto drop_packet;
1468                 desc->p1     = cpu_to_be64(ioc3_map(d, PCI64_ATTR_PREF));
1469         }
1470
1471         mb(); /* make sure all descriptor changes are visible */
1472
1473         ip->tx_skbs[produce] = skb;                     /* Remember skb */
1474         produce = (produce + 1) & TX_RING_MASK;
1475         ip->tx_pi = produce;
1476         writel(produce << 7, &ip->regs->etpir);         /* Fire ... */
1477
1478         ip->txqlen++;
1479
1480         if (ip->txqlen >= (TX_RING_ENTRIES - 1))
1481                 netif_stop_queue(dev);
1482
1483         spin_unlock_irq(&ip->ioc3_lock);
1484
1485         return NETDEV_TX_OK;
1486
1487 drop_packet:
1488         dev_kfree_skb_any(skb);
1489         dev->stats.tx_dropped++;
1490
1491         spin_unlock_irq(&ip->ioc3_lock);
1492
1493         return NETDEV_TX_OK;
1494 }
1495
1496 static void ioc3_timeout(struct net_device *dev)
1497 {
1498         struct ioc3_private *ip = netdev_priv(dev);
1499
1500         netdev_err(dev, "transmit timed out, resetting\n");
1501
1502         spin_lock_irq(&ip->ioc3_lock);
1503
1504         ioc3_stop(ip);
1505         ioc3_free_rx_bufs(ip);
1506         ioc3_clean_tx_ring(ip);
1507
1508         ioc3_init(dev);
1509         if (ioc3_alloc_rx_bufs(dev)) {
1510                 netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
1511                 spin_unlock_irq(&ip->ioc3_lock);
1512                 return;
1513         }
1514         ioc3_start(ip);
1515         ioc3_mii_init(ip);
1516         ioc3_mii_start(ip);
1517
1518         spin_unlock_irq(&ip->ioc3_lock);
1519
1520         netif_wake_queue(dev);
1521 }
1522
1523 /* Given a multicast ethernet address, this routine calculates the
1524  * address's bit index in the logical address filter mask
1525  */
1526 static inline unsigned int ioc3_hash(const unsigned char *addr)
1527 {
1528         unsigned int temp = 0;
1529         int bits;
1530         u32 crc;
1531
1532         crc = ether_crc_le(ETH_ALEN, addr);
1533
1534         crc &= 0x3f;    /* bit reverse lowest 6 bits for hash index */
1535         for (bits = 6; --bits >= 0; ) {
1536                 temp <<= 1;
1537                 temp |= (crc & 0x1);
1538                 crc >>= 1;
1539         }
1540
1541         return temp;
1542 }
1543
1544 static void ioc3_get_drvinfo(struct net_device *dev,
1545                              struct ethtool_drvinfo *info)
1546 {
1547         struct ioc3_private *ip = netdev_priv(dev);
1548
1549         strlcpy(info->driver, IOC3_NAME, sizeof(info->driver));
1550         strlcpy(info->version, IOC3_VERSION, sizeof(info->version));
1551         strlcpy(info->bus_info, pci_name(ip->pdev), sizeof(info->bus_info));
1552 }
1553
1554 static int ioc3_get_link_ksettings(struct net_device *dev,
1555                                    struct ethtool_link_ksettings *cmd)
1556 {
1557         struct ioc3_private *ip = netdev_priv(dev);
1558
1559         spin_lock_irq(&ip->ioc3_lock);
1560         mii_ethtool_get_link_ksettings(&ip->mii, cmd);
1561         spin_unlock_irq(&ip->ioc3_lock);
1562
1563         return 0;
1564 }
1565
1566 static int ioc3_set_link_ksettings(struct net_device *dev,
1567                                    const struct ethtool_link_ksettings *cmd)
1568 {
1569         struct ioc3_private *ip = netdev_priv(dev);
1570         int rc;
1571
1572         spin_lock_irq(&ip->ioc3_lock);
1573         rc = mii_ethtool_set_link_ksettings(&ip->mii, cmd);
1574         spin_unlock_irq(&ip->ioc3_lock);
1575
1576         return rc;
1577 }
1578
1579 static int ioc3_nway_reset(struct net_device *dev)
1580 {
1581         struct ioc3_private *ip = netdev_priv(dev);
1582         int rc;
1583
1584         spin_lock_irq(&ip->ioc3_lock);
1585         rc = mii_nway_restart(&ip->mii);
1586         spin_unlock_irq(&ip->ioc3_lock);
1587
1588         return rc;
1589 }
1590
1591 static u32 ioc3_get_link(struct net_device *dev)
1592 {
1593         struct ioc3_private *ip = netdev_priv(dev);
1594         int rc;
1595
1596         spin_lock_irq(&ip->ioc3_lock);
1597         rc = mii_link_ok(&ip->mii);
1598         spin_unlock_irq(&ip->ioc3_lock);
1599
1600         return rc;
1601 }
1602
1603 static const struct ethtool_ops ioc3_ethtool_ops = {
1604         .get_drvinfo            = ioc3_get_drvinfo,
1605         .nway_reset             = ioc3_nway_reset,
1606         .get_link               = ioc3_get_link,
1607         .get_link_ksettings     = ioc3_get_link_ksettings,
1608         .set_link_ksettings     = ioc3_set_link_ksettings,
1609 };
1610
1611 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1612 {
1613         struct ioc3_private *ip = netdev_priv(dev);
1614         int rc;
1615
1616         spin_lock_irq(&ip->ioc3_lock);
1617         rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1618         spin_unlock_irq(&ip->ioc3_lock);
1619
1620         return rc;
1621 }
1622
1623 static void ioc3_set_multicast_list(struct net_device *dev)
1624 {
1625         struct ioc3_private *ip = netdev_priv(dev);
1626         struct ioc3_ethregs *regs = ip->regs;
1627         struct netdev_hw_addr *ha;
1628         u64 ehar = 0;
1629
1630         spin_lock_irq(&ip->ioc3_lock);
1631
1632         if (dev->flags & IFF_PROMISC) {                 /* Set promiscuous.  */
1633                 ip->emcr |= EMCR_PROMISC;
1634                 writel(ip->emcr, &regs->emcr);
1635                 readl(&regs->emcr);
1636         } else {
1637                 ip->emcr &= ~EMCR_PROMISC;
1638                 writel(ip->emcr, &regs->emcr);          /* Clear promiscuous. */
1639                 readl(&regs->emcr);
1640
1641                 if ((dev->flags & IFF_ALLMULTI) ||
1642                     (netdev_mc_count(dev) > 64)) {
1643                         /* Too many for hashing to make sense or we want all
1644                          * multicast packets anyway,  so skip computing all the
1645                          * hashes and just accept all packets.
1646                          */
1647                         ip->ehar_h = 0xffffffff;
1648                         ip->ehar_l = 0xffffffff;
1649                 } else {
1650                         netdev_for_each_mc_addr(ha, dev) {
1651                                 ehar |= (1UL << ioc3_hash(ha->addr));
1652                         }
1653                         ip->ehar_h = ehar >> 32;
1654                         ip->ehar_l = ehar & 0xffffffff;
1655                 }
1656                 writel(ip->ehar_h, &regs->ehar_h);
1657                 writel(ip->ehar_l, &regs->ehar_l);
1658         }
1659
1660         spin_unlock_irq(&ip->ioc3_lock);
1661 }
1662
1663 module_pci_driver(ioc3_driver);
1664 MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1665 MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1666 MODULE_LICENSE("GPL");