Merge tag 'omap-for-v4.6/dt-ti81xx-signed' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #include <net/vxlan.h>
28 #include <linux/ip.h>
29 #include <net/ipv6.h>
30 #include <net/tcp.h>
31 #include <linux/if_ether.h>
32 #include <linux/if_vlan.h>
33 #include <linux/pkt_sched.h>
34 #include <linux/ethtool.h>
35 #include <linux/in.h>
36 #include <linux/random.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/bitops.h>
39
40 #include "qede.h"
41
42 static char version[] =
43         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
44
45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
48
49 static uint debug;
50 module_param(debug, uint, 0);
51 MODULE_PARM_DESC(debug, " Default debug msglevel");
52
53 static const struct qed_eth_ops *qed_ops;
54
55 #define CHIP_NUM_57980S_40              0x1634
56 #define CHIP_NUM_57980S_10              0x1666
57 #define CHIP_NUM_57980S_MF              0x1636
58 #define CHIP_NUM_57980S_100             0x1644
59 #define CHIP_NUM_57980S_50              0x1654
60 #define CHIP_NUM_57980S_25              0x1656
61
62 #ifndef PCI_DEVICE_ID_NX2_57980E
63 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
64 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
65 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
66 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
67 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
68 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
69 #endif
70
71 static const struct pci_device_id qede_pci_tbl[] = {
72         { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), 0 },
73         { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), 0 },
74         { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), 0 },
75         { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), 0 },
76         { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), 0 },
77         { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), 0 },
78         { 0 }
79 };
80
81 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
82
83 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
84
85 #define TX_TIMEOUT              (5 * HZ)
86
87 static void qede_remove(struct pci_dev *pdev);
88 static int qede_alloc_rx_buffer(struct qede_dev *edev,
89                                 struct qede_rx_queue *rxq);
90 static void qede_link_update(void *dev, struct qed_link_output *link);
91
92 static struct pci_driver qede_pci_driver = {
93         .name = "qede",
94         .id_table = qede_pci_tbl,
95         .probe = qede_probe,
96         .remove = qede_remove,
97 };
98
99 static struct qed_eth_cb_ops qede_ll_ops = {
100         {
101                 .link_update = qede_link_update,
102         },
103 };
104
105 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
106                              void *ptr)
107 {
108         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
109         struct ethtool_drvinfo drvinfo;
110         struct qede_dev *edev;
111
112         /* Currently only support name change */
113         if (event != NETDEV_CHANGENAME)
114                 goto done;
115
116         /* Check whether this is a qede device */
117         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
118                 goto done;
119
120         memset(&drvinfo, 0, sizeof(drvinfo));
121         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
122         if (strcmp(drvinfo.driver, "qede"))
123                 goto done;
124         edev = netdev_priv(ndev);
125
126         /* Notify qed of the name change */
127         if (!edev->ops || !edev->ops->common)
128                 goto done;
129         edev->ops->common->set_id(edev->cdev, edev->ndev->name,
130                                   "qede");
131
132 done:
133         return NOTIFY_DONE;
134 }
135
136 static struct notifier_block qede_netdev_notifier = {
137         .notifier_call = qede_netdev_event,
138 };
139
140 static
141 int __init qede_init(void)
142 {
143         int ret;
144         u32 qed_ver;
145
146         pr_notice("qede_init: %s\n", version);
147
148         qed_ver = qed_get_protocol_version(QED_PROTOCOL_ETH);
149         if (qed_ver !=  QEDE_ETH_INTERFACE_VERSION) {
150                 pr_notice("Version mismatch [%08x != %08x]\n",
151                           qed_ver,
152                           QEDE_ETH_INTERFACE_VERSION);
153                 return -EINVAL;
154         }
155
156         qed_ops = qed_get_eth_ops(QEDE_ETH_INTERFACE_VERSION);
157         if (!qed_ops) {
158                 pr_notice("Failed to get qed ethtool operations\n");
159                 return -EINVAL;
160         }
161
162         /* Must register notifier before pci ops, since we might miss
163          * interface rename after pci probe and netdev registeration.
164          */
165         ret = register_netdevice_notifier(&qede_netdev_notifier);
166         if (ret) {
167                 pr_notice("Failed to register netdevice_notifier\n");
168                 qed_put_eth_ops();
169                 return -EINVAL;
170         }
171
172         ret = pci_register_driver(&qede_pci_driver);
173         if (ret) {
174                 pr_notice("Failed to register driver\n");
175                 unregister_netdevice_notifier(&qede_netdev_notifier);
176                 qed_put_eth_ops();
177                 return -EINVAL;
178         }
179
180         return 0;
181 }
182
183 static void __exit qede_cleanup(void)
184 {
185         pr_notice("qede_cleanup called\n");
186
187         unregister_netdevice_notifier(&qede_netdev_notifier);
188         pci_unregister_driver(&qede_pci_driver);
189         qed_put_eth_ops();
190 }
191
192 module_init(qede_init);
193 module_exit(qede_cleanup);
194
195 /* -------------------------------------------------------------------------
196  * START OF FAST-PATH
197  * -------------------------------------------------------------------------
198  */
199
200 /* Unmap the data and free skb */
201 static int qede_free_tx_pkt(struct qede_dev *edev,
202                             struct qede_tx_queue *txq,
203                             int *len)
204 {
205         u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
206         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
207         struct eth_tx_1st_bd *first_bd;
208         struct eth_tx_bd *tx_data_bd;
209         int bds_consumed = 0;
210         int nbds;
211         bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
212         int i, split_bd_len = 0;
213
214         if (unlikely(!skb)) {
215                 DP_ERR(edev,
216                        "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
217                        idx, txq->sw_tx_cons, txq->sw_tx_prod);
218                 return -1;
219         }
220
221         *len = skb->len;
222
223         first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
224
225         bds_consumed++;
226
227         nbds = first_bd->data.nbds;
228
229         if (data_split) {
230                 struct eth_tx_bd *split = (struct eth_tx_bd *)
231                         qed_chain_consume(&txq->tx_pbl);
232                 split_bd_len = BD_UNMAP_LEN(split);
233                 bds_consumed++;
234         }
235         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
236                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
237
238         /* Unmap the data of the skb frags */
239         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
240                 tx_data_bd = (struct eth_tx_bd *)
241                         qed_chain_consume(&txq->tx_pbl);
242                 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
243                                BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
244         }
245
246         while (bds_consumed++ < nbds)
247                 qed_chain_consume(&txq->tx_pbl);
248
249         /* Free skb */
250         dev_kfree_skb_any(skb);
251         txq->sw_tx_ring[idx].skb = NULL;
252         txq->sw_tx_ring[idx].flags = 0;
253
254         return 0;
255 }
256
257 /* Unmap the data and free skb when mapping failed during start_xmit */
258 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
259                                     struct qede_tx_queue *txq,
260                                     struct eth_tx_1st_bd *first_bd,
261                                     int nbd,
262                                     bool data_split)
263 {
264         u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
265         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
266         struct eth_tx_bd *tx_data_bd;
267         int i, split_bd_len = 0;
268
269         /* Return prod to its position before this skb was handled */
270         qed_chain_set_prod(&txq->tx_pbl,
271                            le16_to_cpu(txq->tx_db.data.bd_prod),
272                            first_bd);
273
274         first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
275
276         if (data_split) {
277                 struct eth_tx_bd *split = (struct eth_tx_bd *)
278                                           qed_chain_produce(&txq->tx_pbl);
279                 split_bd_len = BD_UNMAP_LEN(split);
280                 nbd--;
281         }
282
283         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
284                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
285
286         /* Unmap the data of the skb frags */
287         for (i = 0; i < nbd; i++) {
288                 tx_data_bd = (struct eth_tx_bd *)
289                         qed_chain_produce(&txq->tx_pbl);
290                 if (tx_data_bd->nbytes)
291                         dma_unmap_page(&edev->pdev->dev,
292                                        BD_UNMAP_ADDR(tx_data_bd),
293                                        BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
294         }
295
296         /* Return again prod to its position before this skb was handled */
297         qed_chain_set_prod(&txq->tx_pbl,
298                            le16_to_cpu(txq->tx_db.data.bd_prod),
299                            first_bd);
300
301         /* Free skb */
302         dev_kfree_skb_any(skb);
303         txq->sw_tx_ring[idx].skb = NULL;
304         txq->sw_tx_ring[idx].flags = 0;
305 }
306
307 static u32 qede_xmit_type(struct qede_dev *edev,
308                           struct sk_buff *skb,
309                           int *ipv6_ext)
310 {
311         u32 rc = XMIT_L4_CSUM;
312         __be16 l3_proto;
313
314         if (skb->ip_summed != CHECKSUM_PARTIAL)
315                 return XMIT_PLAIN;
316
317         l3_proto = vlan_get_protocol(skb);
318         if (l3_proto == htons(ETH_P_IPV6) &&
319             (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
320                 *ipv6_ext = 1;
321
322         if (skb_is_gso(skb))
323                 rc |= XMIT_LSO;
324
325         return rc;
326 }
327
328 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
329                                          struct eth_tx_2nd_bd *second_bd,
330                                          struct eth_tx_3rd_bd *third_bd)
331 {
332         u8 l4_proto;
333         u16 bd2_bits1 = 0, bd2_bits2 = 0;
334
335         bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
336
337         bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
338                      ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
339                     << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
340
341         bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
342                       ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
343
344         if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
345                 l4_proto = ipv6_hdr(skb)->nexthdr;
346         else
347                 l4_proto = ip_hdr(skb)->protocol;
348
349         if (l4_proto == IPPROTO_UDP)
350                 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
351
352         if (third_bd)
353                 third_bd->data.bitfields |=
354                         cpu_to_le16(((tcp_hdrlen(skb) / 4) &
355                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
356                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
357
358         second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
359         second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
360 }
361
362 static int map_frag_to_bd(struct qede_dev *edev,
363                           skb_frag_t *frag,
364                           struct eth_tx_bd *bd)
365 {
366         dma_addr_t mapping;
367
368         /* Map skb non-linear frag data for DMA */
369         mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
370                                    skb_frag_size(frag),
371                                    DMA_TO_DEVICE);
372         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
373                 DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
374                 return -ENOMEM;
375         }
376
377         /* Setup the data pointer of the frag data */
378         BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
379
380         return 0;
381 }
382
383 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
384 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
385 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
386                              u8 xmit_type)
387 {
388         int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
389
390         if (xmit_type & XMIT_LSO) {
391                 int hlen;
392
393                 hlen = skb_transport_header(skb) +
394                        tcp_hdrlen(skb) - skb->data;
395
396                 /* linear payload would require its own BD */
397                 if (skb_headlen(skb) > hlen)
398                         allowed_frags--;
399         }
400
401         return (skb_shinfo(skb)->nr_frags > allowed_frags);
402 }
403 #endif
404
405 /* Main transmit function */
406 static
407 netdev_tx_t qede_start_xmit(struct sk_buff *skb,
408                             struct net_device *ndev)
409 {
410         struct qede_dev *edev = netdev_priv(ndev);
411         struct netdev_queue *netdev_txq;
412         struct qede_tx_queue *txq;
413         struct eth_tx_1st_bd *first_bd;
414         struct eth_tx_2nd_bd *second_bd = NULL;
415         struct eth_tx_3rd_bd *third_bd = NULL;
416         struct eth_tx_bd *tx_data_bd = NULL;
417         u16 txq_index;
418         u8 nbd = 0;
419         dma_addr_t mapping;
420         int rc, frag_idx = 0, ipv6_ext = 0;
421         u8 xmit_type;
422         u16 idx;
423         u16 hlen;
424         bool data_split;
425
426         /* Get tx-queue context and netdev index */
427         txq_index = skb_get_queue_mapping(skb);
428         WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
429         txq = QEDE_TX_QUEUE(edev, txq_index);
430         netdev_txq = netdev_get_tx_queue(ndev, txq_index);
431
432         WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
433                                (MAX_SKB_FRAGS + 1));
434
435         xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
436
437 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
438         if (qede_pkt_req_lin(edev, skb, xmit_type)) {
439                 if (skb_linearize(skb)) {
440                         DP_NOTICE(edev,
441                                   "SKB linearization failed - silently dropping this SKB\n");
442                         dev_kfree_skb_any(skb);
443                         return NETDEV_TX_OK;
444                 }
445         }
446 #endif
447
448         /* Fill the entry in the SW ring and the BDs in the FW ring */
449         idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
450         txq->sw_tx_ring[idx].skb = skb;
451         first_bd = (struct eth_tx_1st_bd *)
452                    qed_chain_produce(&txq->tx_pbl);
453         memset(first_bd, 0, sizeof(*first_bd));
454         first_bd->data.bd_flags.bitfields =
455                 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
456
457         /* Map skb linear data for DMA and set in the first BD */
458         mapping = dma_map_single(&edev->pdev->dev, skb->data,
459                                  skb_headlen(skb), DMA_TO_DEVICE);
460         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
461                 DP_NOTICE(edev, "SKB mapping failed\n");
462                 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
463                 return NETDEV_TX_OK;
464         }
465         nbd++;
466         BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
467
468         /* In case there is IPv6 with extension headers or LSO we need 2nd and
469          * 3rd BDs.
470          */
471         if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
472                 second_bd = (struct eth_tx_2nd_bd *)
473                         qed_chain_produce(&txq->tx_pbl);
474                 memset(second_bd, 0, sizeof(*second_bd));
475
476                 nbd++;
477                 third_bd = (struct eth_tx_3rd_bd *)
478                         qed_chain_produce(&txq->tx_pbl);
479                 memset(third_bd, 0, sizeof(*third_bd));
480
481                 nbd++;
482                 /* We need to fill in additional data in second_bd... */
483                 tx_data_bd = (struct eth_tx_bd *)second_bd;
484         }
485
486         if (skb_vlan_tag_present(skb)) {
487                 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
488                 first_bd->data.bd_flags.bitfields |=
489                         1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
490         }
491
492         /* Fill the parsing flags & params according to the requested offload */
493         if (xmit_type & XMIT_L4_CSUM) {
494                 u16 temp = 1 << ETH_TX_DATA_1ST_BD_TUNN_CFG_OVERRIDE_SHIFT;
495
496                 /* We don't re-calculate IP checksum as it is already done by
497                  * the upper stack
498                  */
499                 first_bd->data.bd_flags.bitfields |=
500                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
501
502                 first_bd->data.bitfields |= cpu_to_le16(temp);
503
504                 /* If the packet is IPv6 with extension header, indicate that
505                  * to FW and pass few params, since the device cracker doesn't
506                  * support parsing IPv6 with extension header/s.
507                  */
508                 if (unlikely(ipv6_ext))
509                         qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
510         }
511
512         if (xmit_type & XMIT_LSO) {
513                 first_bd->data.bd_flags.bitfields |=
514                         (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
515                 third_bd->data.lso_mss =
516                         cpu_to_le16(skb_shinfo(skb)->gso_size);
517
518                 first_bd->data.bd_flags.bitfields |=
519                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
520                 hlen = skb_transport_header(skb) +
521                        tcp_hdrlen(skb) - skb->data;
522
523                 /* @@@TBD - if will not be removed need to check */
524                 third_bd->data.bitfields |=
525                         cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
526
527                 /* Make life easier for FW guys who can't deal with header and
528                  * data on same BD. If we need to split, use the second bd...
529                  */
530                 if (unlikely(skb_headlen(skb) > hlen)) {
531                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
532                                    "TSO split header size is %d (%x:%x)\n",
533                                    first_bd->nbytes, first_bd->addr.hi,
534                                    first_bd->addr.lo);
535
536                         mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
537                                            le32_to_cpu(first_bd->addr.lo)) +
538                                            hlen;
539
540                         BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
541                                               le16_to_cpu(first_bd->nbytes) -
542                                               hlen);
543
544                         /* this marks the BD as one that has no
545                          * individual mapping
546                          */
547                         txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
548
549                         first_bd->nbytes = cpu_to_le16(hlen);
550
551                         tx_data_bd = (struct eth_tx_bd *)third_bd;
552                         data_split = true;
553                 }
554         }
555
556         /* Handle fragmented skb */
557         /* special handle for frags inside 2nd and 3rd bds.. */
558         while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
559                 rc = map_frag_to_bd(edev,
560                                     &skb_shinfo(skb)->frags[frag_idx],
561                                     tx_data_bd);
562                 if (rc) {
563                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
564                                                 data_split);
565                         return NETDEV_TX_OK;
566                 }
567
568                 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
569                         tx_data_bd = (struct eth_tx_bd *)third_bd;
570                 else
571                         tx_data_bd = NULL;
572
573                 frag_idx++;
574         }
575
576         /* map last frags into 4th, 5th .... */
577         for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
578                 tx_data_bd = (struct eth_tx_bd *)
579                              qed_chain_produce(&txq->tx_pbl);
580
581                 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
582
583                 rc = map_frag_to_bd(edev,
584                                     &skb_shinfo(skb)->frags[frag_idx],
585                                     tx_data_bd);
586                 if (rc) {
587                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
588                                                 data_split);
589                         return NETDEV_TX_OK;
590                 }
591         }
592
593         /* update the first BD with the actual num BDs */
594         first_bd->data.nbds = nbd;
595
596         netdev_tx_sent_queue(netdev_txq, skb->len);
597
598         skb_tx_timestamp(skb);
599
600         /* Advance packet producer only before sending the packet since mapping
601          * of pages may fail.
602          */
603         txq->sw_tx_prod++;
604
605         /* 'next page' entries are counted in the producer value */
606         txq->tx_db.data.bd_prod =
607                 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
608
609         /* wmb makes sure that the BDs data is updated before updating the
610          * producer, otherwise FW may read old data from the BDs.
611          */
612         wmb();
613         barrier();
614         writel(txq->tx_db.raw, txq->doorbell_addr);
615
616         /* mmiowb is needed to synchronize doorbell writes from more than one
617          * processor. It guarantees that the write arrives to the device before
618          * the queue lock is released and another start_xmit is called (possibly
619          * on another CPU). Without this barrier, the next doorbell can bypass
620          * this doorbell. This is applicable to IA64/Altix systems.
621          */
622         mmiowb();
623
624         if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
625                       < (MAX_SKB_FRAGS + 1))) {
626                 netif_tx_stop_queue(netdev_txq);
627                 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
628                            "Stop queue was called\n");
629                 /* paired memory barrier is in qede_tx_int(), we have to keep
630                  * ordering of set_bit() in netif_tx_stop_queue() and read of
631                  * fp->bd_tx_cons
632                  */
633                 smp_mb();
634
635                 if (qed_chain_get_elem_left(&txq->tx_pbl)
636                      >= (MAX_SKB_FRAGS + 1) &&
637                     (edev->state == QEDE_STATE_OPEN)) {
638                         netif_tx_wake_queue(netdev_txq);
639                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
640                                    "Wake queue was called\n");
641                 }
642         }
643
644         return NETDEV_TX_OK;
645 }
646
647 static int qede_txq_has_work(struct qede_tx_queue *txq)
648 {
649         u16 hw_bd_cons;
650
651         /* Tell compiler that consumer and producer can change */
652         barrier();
653         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
654         if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
655                 return 0;
656
657         return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
658 }
659
660 static int qede_tx_int(struct qede_dev *edev,
661                        struct qede_tx_queue *txq)
662 {
663         struct netdev_queue *netdev_txq;
664         u16 hw_bd_cons;
665         unsigned int pkts_compl = 0, bytes_compl = 0;
666         int rc;
667
668         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
669
670         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
671         barrier();
672
673         while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
674                 int len = 0;
675
676                 rc = qede_free_tx_pkt(edev, txq, &len);
677                 if (rc) {
678                         DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
679                                   hw_bd_cons,
680                                   qed_chain_get_cons_idx(&txq->tx_pbl));
681                         break;
682                 }
683
684                 bytes_compl += len;
685                 pkts_compl++;
686                 txq->sw_tx_cons++;
687         }
688
689         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
690
691         /* Need to make the tx_bd_cons update visible to start_xmit()
692          * before checking for netif_tx_queue_stopped().  Without the
693          * memory barrier, there is a small possibility that
694          * start_xmit() will miss it and cause the queue to be stopped
695          * forever.
696          * On the other hand we need an rmb() here to ensure the proper
697          * ordering of bit testing in the following
698          * netif_tx_queue_stopped(txq) call.
699          */
700         smp_mb();
701
702         if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
703                 /* Taking tx_lock is needed to prevent reenabling the queue
704                  * while it's empty. This could have happen if rx_action() gets
705                  * suspended in qede_tx_int() after the condition before
706                  * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
707                  *
708                  * stops the queue->sees fresh tx_bd_cons->releases the queue->
709                  * sends some packets consuming the whole queue again->
710                  * stops the queue
711                  */
712
713                 __netif_tx_lock(netdev_txq, smp_processor_id());
714
715                 if ((netif_tx_queue_stopped(netdev_txq)) &&
716                     (edev->state == QEDE_STATE_OPEN) &&
717                     (qed_chain_get_elem_left(&txq->tx_pbl)
718                       >= (MAX_SKB_FRAGS + 1))) {
719                         netif_tx_wake_queue(netdev_txq);
720                         DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
721                                    "Wake queue was called\n");
722                 }
723
724                 __netif_tx_unlock(netdev_txq);
725         }
726
727         return 0;
728 }
729
730 static bool qede_has_rx_work(struct qede_rx_queue *rxq)
731 {
732         u16 hw_comp_cons, sw_comp_cons;
733
734         /* Tell compiler that status block fields can change */
735         barrier();
736
737         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
738         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
739
740         return hw_comp_cons != sw_comp_cons;
741 }
742
743 static bool qede_has_tx_work(struct qede_fastpath *fp)
744 {
745         u8 tc;
746
747         for (tc = 0; tc < fp->edev->num_tc; tc++)
748                 if (qede_txq_has_work(&fp->txqs[tc]))
749                         return true;
750         return false;
751 }
752
753 /* This function reuses the buffer(from an offset) from
754  * consumer index to producer index in the bd ring
755  */
756 static inline void qede_reuse_page(struct qede_dev *edev,
757                                    struct qede_rx_queue *rxq,
758                                    struct sw_rx_data *curr_cons)
759 {
760         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
761         struct sw_rx_data *curr_prod;
762         dma_addr_t new_mapping;
763
764         curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
765         *curr_prod = *curr_cons;
766
767         new_mapping = curr_prod->mapping + curr_prod->page_offset;
768
769         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
770         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
771
772         rxq->sw_rx_prod++;
773         curr_cons->data = NULL;
774 }
775
776 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
777                                          struct qede_rx_queue *rxq,
778                                          struct sw_rx_data *curr_cons)
779 {
780         /* Move to the next segment in the page */
781         curr_cons->page_offset += rxq->rx_buf_seg_size;
782
783         if (curr_cons->page_offset == PAGE_SIZE) {
784                 if (unlikely(qede_alloc_rx_buffer(edev, rxq)))
785                         return -ENOMEM;
786
787                 dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
788                                PAGE_SIZE, DMA_FROM_DEVICE);
789         } else {
790                 /* Increment refcount of the page as we don't want
791                  * network stack to take the ownership of the page
792                  * which can be recycled multiple times by the driver.
793                  */
794                 atomic_inc(&curr_cons->data->_count);
795                 qede_reuse_page(edev, rxq, curr_cons);
796         }
797
798         return 0;
799 }
800
801 static inline void qede_update_rx_prod(struct qede_dev *edev,
802                                        struct qede_rx_queue *rxq)
803 {
804         u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
805         u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
806         struct eth_rx_prod_data rx_prods = {0};
807
808         /* Update producers */
809         rx_prods.bd_prod = cpu_to_le16(bd_prod);
810         rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
811
812         /* Make sure that the BD and SGE data is updated before updating the
813          * producers since FW might read the BD/SGE right after the producer
814          * is updated.
815          */
816         wmb();
817
818         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
819                         (u32 *)&rx_prods);
820
821         /* mmiowb is needed to synchronize doorbell writes from more than one
822          * processor. It guarantees that the write arrives to the device before
823          * the napi lock is released and another qede_poll is called (possibly
824          * on another CPU). Without this barrier, the next doorbell can bypass
825          * this doorbell. This is applicable to IA64/Altix systems.
826          */
827         mmiowb();
828 }
829
830 static u32 qede_get_rxhash(struct qede_dev *edev,
831                            u8 bitfields,
832                            __le32 rss_hash,
833                            enum pkt_hash_types *rxhash_type)
834 {
835         enum rss_hash_type htype;
836
837         htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
838
839         if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
840                 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
841                                 (htype == RSS_HASH_TYPE_IPV6)) ?
842                                 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
843                 return le32_to_cpu(rss_hash);
844         }
845         *rxhash_type = PKT_HASH_TYPE_NONE;
846         return 0;
847 }
848
849 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
850 {
851         skb_checksum_none_assert(skb);
852
853         if (csum_flag & QEDE_CSUM_UNNECESSARY)
854                 skb->ip_summed = CHECKSUM_UNNECESSARY;
855 }
856
857 static inline void qede_skb_receive(struct qede_dev *edev,
858                                     struct qede_fastpath *fp,
859                                     struct sk_buff *skb,
860                                     u16 vlan_tag)
861 {
862         if (vlan_tag)
863                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
864                                        vlan_tag);
865
866         napi_gro_receive(&fp->napi, skb);
867 }
868
869 static void qede_set_gro_params(struct qede_dev *edev,
870                                 struct sk_buff *skb,
871                                 struct eth_fast_path_rx_tpa_start_cqe *cqe)
872 {
873         u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
874
875         if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
876             PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
877                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
878         else
879                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
880
881         skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
882                                         cqe->header_len;
883 }
884
885 static int qede_fill_frag_skb(struct qede_dev *edev,
886                               struct qede_rx_queue *rxq,
887                               u8 tpa_agg_index,
888                               u16 len_on_bd)
889 {
890         struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
891                                                          NUM_RX_BDS_MAX];
892         struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
893         struct sk_buff *skb = tpa_info->skb;
894
895         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
896                 goto out;
897
898         /* Add one frag and update the appropriate fields in the skb */
899         skb_fill_page_desc(skb, tpa_info->frag_id++,
900                            current_bd->data, current_bd->page_offset,
901                            len_on_bd);
902
903         if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
904                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
905                 goto out;
906         }
907
908         qed_chain_consume(&rxq->rx_bd_ring);
909         rxq->sw_rx_cons++;
910
911         skb->data_len += len_on_bd;
912         skb->truesize += rxq->rx_buf_seg_size;
913         skb->len += len_on_bd;
914
915         return 0;
916
917 out:
918         return -ENOMEM;
919 }
920
921 static void qede_tpa_start(struct qede_dev *edev,
922                            struct qede_rx_queue *rxq,
923                            struct eth_fast_path_rx_tpa_start_cqe *cqe)
924 {
925         struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
926         struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
927         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
928         struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
929         dma_addr_t mapping = tpa_info->replace_buf_mapping;
930         struct sw_rx_data *sw_rx_data_cons;
931         struct sw_rx_data *sw_rx_data_prod;
932         enum pkt_hash_types rxhash_type;
933         u32 rxhash;
934
935         sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
936         sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
937
938         /* Use pre-allocated replacement buffer - we can't release the agg.
939          * start until its over and we don't want to risk allocation failing
940          * here, so re-allocate when aggregation will be over.
941          */
942         dma_unmap_addr_set(sw_rx_data_prod, mapping,
943                            dma_unmap_addr(replace_buf, mapping));
944
945         sw_rx_data_prod->data = replace_buf->data;
946         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
947         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
948         sw_rx_data_prod->page_offset = replace_buf->page_offset;
949
950         rxq->sw_rx_prod++;
951
952         /* move partial skb from cons to pool (don't unmap yet)
953          * save mapping, incase we drop the packet later on.
954          */
955         tpa_info->start_buf = *sw_rx_data_cons;
956         mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
957                            le32_to_cpu(rx_bd_cons->addr.lo));
958
959         tpa_info->start_buf_mapping = mapping;
960         rxq->sw_rx_cons++;
961
962         /* set tpa state to start only if we are able to allocate skb
963          * for this aggregation, otherwise mark as error and aggregation will
964          * be dropped
965          */
966         tpa_info->skb = netdev_alloc_skb(edev->ndev,
967                                          le16_to_cpu(cqe->len_on_first_bd));
968         if (unlikely(!tpa_info->skb)) {
969                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
970                 return;
971         }
972
973         skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
974         memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
975
976         /* Start filling in the aggregation info */
977         tpa_info->frag_id = 0;
978         tpa_info->agg_state = QEDE_AGG_STATE_START;
979
980         rxhash = qede_get_rxhash(edev, cqe->bitfields,
981                                  cqe->rss_hash, &rxhash_type);
982         skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
983         if ((le16_to_cpu(cqe->pars_flags.flags) >>
984              PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
985                     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
986                 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
987         else
988                 tpa_info->vlan_tag = 0;
989
990         /* This is needed in order to enable forwarding support */
991         qede_set_gro_params(edev, tpa_info->skb, cqe);
992
993         if (likely(cqe->ext_bd_len_list[0]))
994                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
995                                    le16_to_cpu(cqe->ext_bd_len_list[0]));
996
997         if (unlikely(cqe->ext_bd_len_list[1])) {
998                 DP_ERR(edev,
999                        "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1000                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1001         }
1002 }
1003
1004 #ifdef CONFIG_INET
1005 static void qede_gro_ip_csum(struct sk_buff *skb)
1006 {
1007         const struct iphdr *iph = ip_hdr(skb);
1008         struct tcphdr *th;
1009
1010         skb_set_network_header(skb, 0);
1011         skb_set_transport_header(skb, sizeof(struct iphdr));
1012         th = tcp_hdr(skb);
1013
1014         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1015                                   iph->saddr, iph->daddr, 0);
1016
1017         tcp_gro_complete(skb);
1018 }
1019
1020 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1021 {
1022         struct ipv6hdr *iph = ipv6_hdr(skb);
1023         struct tcphdr *th;
1024
1025         skb_set_network_header(skb, 0);
1026         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1027         th = tcp_hdr(skb);
1028
1029         th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1030                                   &iph->saddr, &iph->daddr, 0);
1031         tcp_gro_complete(skb);
1032 }
1033 #endif
1034
1035 static void qede_gro_receive(struct qede_dev *edev,
1036                              struct qede_fastpath *fp,
1037                              struct sk_buff *skb,
1038                              u16 vlan_tag)
1039 {
1040 #ifdef CONFIG_INET
1041         if (skb_shinfo(skb)->gso_size) {
1042                 switch (skb->protocol) {
1043                 case htons(ETH_P_IP):
1044                         qede_gro_ip_csum(skb);
1045                         break;
1046                 case htons(ETH_P_IPV6):
1047                         qede_gro_ipv6_csum(skb);
1048                         break;
1049                 default:
1050                         DP_ERR(edev,
1051                                "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1052                                ntohs(skb->protocol));
1053                 }
1054         }
1055 #endif
1056         skb_record_rx_queue(skb, fp->rss_id);
1057         qede_skb_receive(edev, fp, skb, vlan_tag);
1058 }
1059
1060 static inline void qede_tpa_cont(struct qede_dev *edev,
1061                                  struct qede_rx_queue *rxq,
1062                                  struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1063 {
1064         int i;
1065
1066         for (i = 0; cqe->len_list[i]; i++)
1067                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1068                                    le16_to_cpu(cqe->len_list[i]));
1069
1070         if (unlikely(i > 1))
1071                 DP_ERR(edev,
1072                        "Strange - TPA cont with more than a single len_list entry\n");
1073 }
1074
1075 static void qede_tpa_end(struct qede_dev *edev,
1076                          struct qede_fastpath *fp,
1077                          struct eth_fast_path_rx_tpa_end_cqe *cqe)
1078 {
1079         struct qede_rx_queue *rxq = fp->rxq;
1080         struct qede_agg_info *tpa_info;
1081         struct sk_buff *skb;
1082         int i;
1083
1084         tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1085         skb = tpa_info->skb;
1086
1087         for (i = 0; cqe->len_list[i]; i++)
1088                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1089                                    le16_to_cpu(cqe->len_list[i]));
1090         if (unlikely(i > 1))
1091                 DP_ERR(edev,
1092                        "Strange - TPA emd with more than a single len_list entry\n");
1093
1094         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1095                 goto err;
1096
1097         /* Sanity */
1098         if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1099                 DP_ERR(edev,
1100                        "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1101                        cqe->num_of_bds, tpa_info->frag_id);
1102         if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1103                 DP_ERR(edev,
1104                        "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1105                        le16_to_cpu(cqe->total_packet_len), skb->len);
1106
1107         memcpy(skb->data,
1108                page_address(tpa_info->start_buf.data) +
1109                 tpa_info->start_cqe.placement_offset +
1110                 tpa_info->start_buf.page_offset,
1111                le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1112
1113         /* Recycle [mapped] start buffer for the next replacement */
1114         tpa_info->replace_buf = tpa_info->start_buf;
1115         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1116
1117         /* Finalize the SKB */
1118         skb->protocol = eth_type_trans(skb, edev->ndev);
1119         skb->ip_summed = CHECKSUM_UNNECESSARY;
1120
1121         /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1122          * to skb_shinfo(skb)->gso_segs
1123          */
1124         NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1125
1126         qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1127
1128         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1129
1130         return;
1131 err:
1132         /* The BD starting the aggregation is still mapped; Re-use it for
1133          * future aggregations [as replacement buffer]
1134          */
1135         memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1136                sizeof(struct sw_rx_data));
1137         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1138         tpa_info->start_buf.data = NULL;
1139         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1140         dev_kfree_skb_any(tpa_info->skb);
1141         tpa_info->skb = NULL;
1142 }
1143
1144 static u8 qede_check_csum(u16 flag)
1145 {
1146         u16 csum_flag = 0;
1147         u8 csum = 0;
1148
1149         if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1150              PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) {
1151                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1152                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1153                 csum = QEDE_CSUM_UNNECESSARY;
1154         }
1155
1156         csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1157                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1158
1159         if (csum_flag & flag)
1160                 return QEDE_CSUM_ERROR;
1161
1162         return csum;
1163 }
1164
1165 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1166 {
1167         struct qede_dev *edev = fp->edev;
1168         struct qede_rx_queue *rxq = fp->rxq;
1169
1170         u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1171         int rx_pkt = 0;
1172         u8 csum_flag;
1173
1174         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1175         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1176
1177         /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1178          * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1179          * read before it is written by FW, then FW writes CQE and SB, and then
1180          * the CPU reads the hw_comp_cons, it will use an old CQE.
1181          */
1182         rmb();
1183
1184         /* Loop to complete all indicated BDs */
1185         while (sw_comp_cons != hw_comp_cons) {
1186                 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1187                 enum pkt_hash_types rxhash_type;
1188                 enum eth_rx_cqe_type cqe_type;
1189                 struct sw_rx_data *sw_rx_data;
1190                 union eth_rx_cqe *cqe;
1191                 struct sk_buff *skb;
1192                 struct page *data;
1193                 __le16 flags;
1194                 u16 len, pad;
1195                 u32 rx_hash;
1196
1197                 /* Get the CQE from the completion ring */
1198                 cqe = (union eth_rx_cqe *)
1199                         qed_chain_consume(&rxq->rx_comp_ring);
1200                 cqe_type = cqe->fast_path_regular.type;
1201
1202                 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1203                         edev->ops->eth_cqe_completion(
1204                                         edev->cdev, fp->rss_id,
1205                                         (struct eth_slow_path_rx_cqe *)cqe);
1206                         goto next_cqe;
1207                 }
1208
1209                 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1210                         switch (cqe_type) {
1211                         case ETH_RX_CQE_TYPE_TPA_START:
1212                                 qede_tpa_start(edev, rxq,
1213                                                &cqe->fast_path_tpa_start);
1214                                 goto next_cqe;
1215                         case ETH_RX_CQE_TYPE_TPA_CONT:
1216                                 qede_tpa_cont(edev, rxq,
1217                                               &cqe->fast_path_tpa_cont);
1218                                 goto next_cqe;
1219                         case ETH_RX_CQE_TYPE_TPA_END:
1220                                 qede_tpa_end(edev, fp,
1221                                              &cqe->fast_path_tpa_end);
1222                                 goto next_rx_only;
1223                         default:
1224                                 break;
1225                         }
1226                 }
1227
1228                 /* Get the data from the SW ring */
1229                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1230                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1231                 data = sw_rx_data->data;
1232
1233                 fp_cqe = &cqe->fast_path_regular;
1234                 len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1235                 pad = fp_cqe->placement_offset;
1236                 flags = cqe->fast_path_regular.pars_flags.flags;
1237
1238                 /* If this is an error packet then drop it */
1239                 parse_flag = le16_to_cpu(flags);
1240
1241                 csum_flag = qede_check_csum(parse_flag);
1242                 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1243                         DP_NOTICE(edev,
1244                                   "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1245                                   sw_comp_cons, parse_flag);
1246                         rxq->rx_hw_errors++;
1247                         qede_reuse_page(edev, rxq, sw_rx_data);
1248                         goto next_rx;
1249                 }
1250
1251                 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1252                 if (unlikely(!skb)) {
1253                         DP_NOTICE(edev,
1254                                   "Build_skb failed, dropping incoming packet\n");
1255                         qede_reuse_page(edev, rxq, sw_rx_data);
1256                         rxq->rx_alloc_errors++;
1257                         goto next_rx;
1258                 }
1259
1260                 /* Copy data into SKB */
1261                 if (len + pad <= QEDE_RX_HDR_SIZE) {
1262                         memcpy(skb_put(skb, len),
1263                                page_address(data) + pad +
1264                                 sw_rx_data->page_offset, len);
1265                         qede_reuse_page(edev, rxq, sw_rx_data);
1266                 } else {
1267                         struct skb_frag_struct *frag;
1268                         unsigned int pull_len;
1269                         unsigned char *va;
1270
1271                         frag = &skb_shinfo(skb)->frags[0];
1272
1273                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1274                                         pad + sw_rx_data->page_offset,
1275                                         len, rxq->rx_buf_seg_size);
1276
1277                         va = skb_frag_address(frag);
1278                         pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1279
1280                         /* Align the pull_len to optimize memcpy */
1281                         memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1282
1283                         skb_frag_size_sub(frag, pull_len);
1284                         frag->page_offset += pull_len;
1285                         skb->data_len -= pull_len;
1286                         skb->tail += pull_len;
1287
1288                         if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1289                                                             sw_rx_data))) {
1290                                 DP_ERR(edev, "Failed to allocate rx buffer\n");
1291                                 rxq->rx_alloc_errors++;
1292                                 goto next_cqe;
1293                         }
1294                 }
1295
1296                 if (fp_cqe->bd_num != 1) {
1297                         u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1298                         u8 num_frags;
1299
1300                         pkt_len -= len;
1301
1302                         for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1303                              num_frags--) {
1304                                 u16 cur_size = pkt_len > rxq->rx_buf_size ?
1305                                                 rxq->rx_buf_size : pkt_len;
1306
1307                                 WARN_ONCE(!cur_size,
1308                                           "Still got %d BDs for mapping jumbo, but length became 0\n",
1309                                           num_frags);
1310
1311                                 if (unlikely(qede_alloc_rx_buffer(edev, rxq)))
1312                                         goto next_cqe;
1313
1314                                 rxq->sw_rx_cons++;
1315                                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1316                                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1317                                 qed_chain_consume(&rxq->rx_bd_ring);
1318                                 dma_unmap_page(&edev->pdev->dev,
1319                                                sw_rx_data->mapping,
1320                                                PAGE_SIZE, DMA_FROM_DEVICE);
1321
1322                                 skb_fill_page_desc(skb,
1323                                                    skb_shinfo(skb)->nr_frags++,
1324                                                    sw_rx_data->data, 0,
1325                                                    cur_size);
1326
1327                                 skb->truesize += PAGE_SIZE;
1328                                 skb->data_len += cur_size;
1329                                 skb->len += cur_size;
1330                                 pkt_len -= cur_size;
1331                         }
1332
1333                         if (pkt_len)
1334                                 DP_ERR(edev,
1335                                        "Mapped all BDs of jumbo, but still have %d bytes\n",
1336                                        pkt_len);
1337                 }
1338
1339                 skb->protocol = eth_type_trans(skb, edev->ndev);
1340
1341                 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1342                                           fp_cqe->rss_hash,
1343                                           &rxhash_type);
1344
1345                 skb_set_hash(skb, rx_hash, rxhash_type);
1346
1347                 qede_set_skb_csum(skb, csum_flag);
1348
1349                 skb_record_rx_queue(skb, fp->rss_id);
1350
1351                 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1352
1353                 qed_chain_consume(&rxq->rx_bd_ring);
1354 next_rx:
1355                 rxq->sw_rx_cons++;
1356 next_rx_only:
1357                 rx_pkt++;
1358
1359 next_cqe: /* don't consume bd rx buffer */
1360                 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1361                 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1362                 /* CR TPA - revisit how to handle budget in TPA perhaps
1363                  * increase on "end"
1364                  */
1365                 if (rx_pkt == budget)
1366                         break;
1367         } /* repeat while sw_comp_cons != hw_comp_cons... */
1368
1369         /* Update producers */
1370         qede_update_rx_prod(edev, rxq);
1371
1372         return rx_pkt;
1373 }
1374
1375 static int qede_poll(struct napi_struct *napi, int budget)
1376 {
1377         int work_done = 0;
1378         struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1379                                                  napi);
1380         struct qede_dev *edev = fp->edev;
1381
1382         while (1) {
1383                 u8 tc;
1384
1385                 for (tc = 0; tc < edev->num_tc; tc++)
1386                         if (qede_txq_has_work(&fp->txqs[tc]))
1387                                 qede_tx_int(edev, &fp->txqs[tc]);
1388
1389                 if (qede_has_rx_work(fp->rxq)) {
1390                         work_done += qede_rx_int(fp, budget - work_done);
1391
1392                         /* must not complete if we consumed full budget */
1393                         if (work_done >= budget)
1394                                 break;
1395                 }
1396
1397                 /* Fall out from the NAPI loop if needed */
1398                 if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
1399                         qed_sb_update_sb_idx(fp->sb_info);
1400                         /* *_has_*_work() reads the status block,
1401                          * thus we need to ensure that status block indices
1402                          * have been actually read (qed_sb_update_sb_idx)
1403                          * prior to this check (*_has_*_work) so that
1404                          * we won't write the "newer" value of the status block
1405                          * to HW (if there was a DMA right after
1406                          * qede_has_rx_work and if there is no rmb, the memory
1407                          * reading (qed_sb_update_sb_idx) may be postponed
1408                          * to right before *_ack_sb). In this case there
1409                          * will never be another interrupt until there is
1410                          * another update of the status block, while there
1411                          * is still unhandled work.
1412                          */
1413                         rmb();
1414
1415                         if (!(qede_has_rx_work(fp->rxq) ||
1416                               qede_has_tx_work(fp))) {
1417                                 napi_complete(napi);
1418                                 /* Update and reenable interrupts */
1419                                 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1420                                            1 /*update*/);
1421                                 break;
1422                         }
1423                 }
1424         }
1425
1426         return work_done;
1427 }
1428
1429 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1430 {
1431         struct qede_fastpath *fp = fp_cookie;
1432
1433         qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1434
1435         napi_schedule_irqoff(&fp->napi);
1436         return IRQ_HANDLED;
1437 }
1438
1439 /* -------------------------------------------------------------------------
1440  * END OF FAST-PATH
1441  * -------------------------------------------------------------------------
1442  */
1443
1444 static int qede_open(struct net_device *ndev);
1445 static int qede_close(struct net_device *ndev);
1446 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1447 static void qede_set_rx_mode(struct net_device *ndev);
1448 static void qede_config_rx_mode(struct net_device *ndev);
1449
1450 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1451                                  enum qed_filter_xcast_params_type opcode,
1452                                  unsigned char mac[ETH_ALEN])
1453 {
1454         struct qed_filter_params filter_cmd;
1455
1456         memset(&filter_cmd, 0, sizeof(filter_cmd));
1457         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1458         filter_cmd.filter.ucast.type = opcode;
1459         filter_cmd.filter.ucast.mac_valid = 1;
1460         ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1461
1462         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1463 }
1464
1465 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1466                                   enum qed_filter_xcast_params_type opcode,
1467                                   u16 vid)
1468 {
1469         struct qed_filter_params filter_cmd;
1470
1471         memset(&filter_cmd, 0, sizeof(filter_cmd));
1472         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1473         filter_cmd.filter.ucast.type = opcode;
1474         filter_cmd.filter.ucast.vlan_valid = 1;
1475         filter_cmd.filter.ucast.vlan = vid;
1476
1477         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1478 }
1479
1480 void qede_fill_by_demand_stats(struct qede_dev *edev)
1481 {
1482         struct qed_eth_stats stats;
1483
1484         edev->ops->get_vport_stats(edev->cdev, &stats);
1485         edev->stats.no_buff_discards = stats.no_buff_discards;
1486         edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1487         edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1488         edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1489         edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1490         edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1491         edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1492         edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1493         edev->stats.mac_filter_discards = stats.mac_filter_discards;
1494
1495         edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1496         edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1497         edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1498         edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1499         edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1500         edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1501         edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1502         edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1503         edev->stats.coalesced_events = stats.tpa_coalesced_events;
1504         edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1505         edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1506         edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1507
1508         edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1509         edev->stats.rx_127_byte_packets = stats.rx_127_byte_packets;
1510         edev->stats.rx_255_byte_packets = stats.rx_255_byte_packets;
1511         edev->stats.rx_511_byte_packets = stats.rx_511_byte_packets;
1512         edev->stats.rx_1023_byte_packets = stats.rx_1023_byte_packets;
1513         edev->stats.rx_1518_byte_packets = stats.rx_1518_byte_packets;
1514         edev->stats.rx_1522_byte_packets = stats.rx_1522_byte_packets;
1515         edev->stats.rx_2047_byte_packets = stats.rx_2047_byte_packets;
1516         edev->stats.rx_4095_byte_packets = stats.rx_4095_byte_packets;
1517         edev->stats.rx_9216_byte_packets = stats.rx_9216_byte_packets;
1518         edev->stats.rx_16383_byte_packets = stats.rx_16383_byte_packets;
1519         edev->stats.rx_crc_errors = stats.rx_crc_errors;
1520         edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1521         edev->stats.rx_pause_frames = stats.rx_pause_frames;
1522         edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1523         edev->stats.rx_align_errors = stats.rx_align_errors;
1524         edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1525         edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1526         edev->stats.rx_jabbers = stats.rx_jabbers;
1527         edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1528         edev->stats.rx_fragments = stats.rx_fragments;
1529         edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1530         edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1531         edev->stats.tx_128_to_255_byte_packets =
1532                                 stats.tx_128_to_255_byte_packets;
1533         edev->stats.tx_256_to_511_byte_packets =
1534                                 stats.tx_256_to_511_byte_packets;
1535         edev->stats.tx_512_to_1023_byte_packets =
1536                                 stats.tx_512_to_1023_byte_packets;
1537         edev->stats.tx_1024_to_1518_byte_packets =
1538                                 stats.tx_1024_to_1518_byte_packets;
1539         edev->stats.tx_1519_to_2047_byte_packets =
1540                                 stats.tx_1519_to_2047_byte_packets;
1541         edev->stats.tx_2048_to_4095_byte_packets =
1542                                 stats.tx_2048_to_4095_byte_packets;
1543         edev->stats.tx_4096_to_9216_byte_packets =
1544                                 stats.tx_4096_to_9216_byte_packets;
1545         edev->stats.tx_9217_to_16383_byte_packets =
1546                                 stats.tx_9217_to_16383_byte_packets;
1547         edev->stats.tx_pause_frames = stats.tx_pause_frames;
1548         edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1549         edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1550         edev->stats.tx_total_collisions = stats.tx_total_collisions;
1551         edev->stats.brb_truncates = stats.brb_truncates;
1552         edev->stats.brb_discards = stats.brb_discards;
1553         edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1554 }
1555
1556 static struct rtnl_link_stats64 *qede_get_stats64(
1557                             struct net_device *dev,
1558                             struct rtnl_link_stats64 *stats)
1559 {
1560         struct qede_dev *edev = netdev_priv(dev);
1561
1562         qede_fill_by_demand_stats(edev);
1563
1564         stats->rx_packets = edev->stats.rx_ucast_pkts +
1565                             edev->stats.rx_mcast_pkts +
1566                             edev->stats.rx_bcast_pkts;
1567         stats->tx_packets = edev->stats.tx_ucast_pkts +
1568                             edev->stats.tx_mcast_pkts +
1569                             edev->stats.tx_bcast_pkts;
1570
1571         stats->rx_bytes = edev->stats.rx_ucast_bytes +
1572                           edev->stats.rx_mcast_bytes +
1573                           edev->stats.rx_bcast_bytes;
1574
1575         stats->tx_bytes = edev->stats.tx_ucast_bytes +
1576                           edev->stats.tx_mcast_bytes +
1577                           edev->stats.tx_bcast_bytes;
1578
1579         stats->tx_errors = edev->stats.tx_err_drop_pkts;
1580         stats->multicast = edev->stats.rx_mcast_pkts +
1581                            edev->stats.rx_bcast_pkts;
1582
1583         stats->rx_fifo_errors = edev->stats.no_buff_discards;
1584
1585         stats->collisions = edev->stats.tx_total_collisions;
1586         stats->rx_crc_errors = edev->stats.rx_crc_errors;
1587         stats->rx_frame_errors = edev->stats.rx_align_errors;
1588
1589         return stats;
1590 }
1591
1592 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1593 {
1594         struct qed_update_vport_params params;
1595         int rc;
1596
1597         /* Proceed only if action actually needs to be performed */
1598         if (edev->accept_any_vlan == action)
1599                 return;
1600
1601         memset(&params, 0, sizeof(params));
1602
1603         params.vport_id = 0;
1604         params.accept_any_vlan = action;
1605         params.update_accept_any_vlan_flg = 1;
1606
1607         rc = edev->ops->vport_update(edev->cdev, &params);
1608         if (rc) {
1609                 DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1610                        action ? "enable" : "disable");
1611         } else {
1612                 DP_INFO(edev, "%s accept-any-vlan\n",
1613                         action ? "enabled" : "disabled");
1614                 edev->accept_any_vlan = action;
1615         }
1616 }
1617
1618 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1619 {
1620         struct qede_dev *edev = netdev_priv(dev);
1621         struct qede_vlan *vlan, *tmp;
1622         int rc;
1623
1624         DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1625
1626         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1627         if (!vlan) {
1628                 DP_INFO(edev, "Failed to allocate struct for vlan\n");
1629                 return -ENOMEM;
1630         }
1631         INIT_LIST_HEAD(&vlan->list);
1632         vlan->vid = vid;
1633         vlan->configured = false;
1634
1635         /* Verify vlan isn't already configured */
1636         list_for_each_entry(tmp, &edev->vlan_list, list) {
1637                 if (tmp->vid == vlan->vid) {
1638                         DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1639                                    "vlan already configured\n");
1640                         kfree(vlan);
1641                         return -EEXIST;
1642                 }
1643         }
1644
1645         /* If interface is down, cache this VLAN ID and return */
1646         if (edev->state != QEDE_STATE_OPEN) {
1647                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1648                            "Interface is down, VLAN %d will be configured when interface is up\n",
1649                            vid);
1650                 if (vid != 0)
1651                         edev->non_configured_vlans++;
1652                 list_add(&vlan->list, &edev->vlan_list);
1653
1654                 return 0;
1655         }
1656
1657         /* Check for the filter limit.
1658          * Note - vlan0 has a reserved filter and can be added without
1659          * worrying about quota
1660          */
1661         if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1662             (vlan->vid == 0)) {
1663                 rc = qede_set_ucast_rx_vlan(edev,
1664                                             QED_FILTER_XCAST_TYPE_ADD,
1665                                             vlan->vid);
1666                 if (rc) {
1667                         DP_ERR(edev, "Failed to configure VLAN %d\n",
1668                                vlan->vid);
1669                         kfree(vlan);
1670                         return -EINVAL;
1671                 }
1672                 vlan->configured = true;
1673
1674                 /* vlan0 filter isn't consuming out of our quota */
1675                 if (vlan->vid != 0)
1676                         edev->configured_vlans++;
1677         } else {
1678                 /* Out of quota; Activate accept-any-VLAN mode */
1679                 if (!edev->non_configured_vlans)
1680                         qede_config_accept_any_vlan(edev, true);
1681
1682                 edev->non_configured_vlans++;
1683         }
1684
1685         list_add(&vlan->list, &edev->vlan_list);
1686
1687         return 0;
1688 }
1689
1690 static void qede_del_vlan_from_list(struct qede_dev *edev,
1691                                     struct qede_vlan *vlan)
1692 {
1693         /* vlan0 filter isn't consuming out of our quota */
1694         if (vlan->vid != 0) {
1695                 if (vlan->configured)
1696                         edev->configured_vlans--;
1697                 else
1698                         edev->non_configured_vlans--;
1699         }
1700
1701         list_del(&vlan->list);
1702         kfree(vlan);
1703 }
1704
1705 static int qede_configure_vlan_filters(struct qede_dev *edev)
1706 {
1707         int rc = 0, real_rc = 0, accept_any_vlan = 0;
1708         struct qed_dev_eth_info *dev_info;
1709         struct qede_vlan *vlan = NULL;
1710
1711         if (list_empty(&edev->vlan_list))
1712                 return 0;
1713
1714         dev_info = &edev->dev_info;
1715
1716         /* Configure non-configured vlans */
1717         list_for_each_entry(vlan, &edev->vlan_list, list) {
1718                 if (vlan->configured)
1719                         continue;
1720
1721                 /* We have used all our credits, now enable accept_any_vlan */
1722                 if ((vlan->vid != 0) &&
1723                     (edev->configured_vlans == dev_info->num_vlan_filters)) {
1724                         accept_any_vlan = 1;
1725                         continue;
1726                 }
1727
1728                 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
1729
1730                 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
1731                                             vlan->vid);
1732                 if (rc) {
1733                         DP_ERR(edev, "Failed to configure VLAN %u\n",
1734                                vlan->vid);
1735                         real_rc = rc;
1736                         continue;
1737                 }
1738
1739                 vlan->configured = true;
1740                 /* vlan0 filter doesn't consume our VLAN filter's quota */
1741                 if (vlan->vid != 0) {
1742                         edev->non_configured_vlans--;
1743                         edev->configured_vlans++;
1744                 }
1745         }
1746
1747         /* enable accept_any_vlan mode if we have more VLANs than credits,
1748          * or remove accept_any_vlan mode if we've actually removed
1749          * a non-configured vlan, and all remaining vlans are truly configured.
1750          */
1751
1752         if (accept_any_vlan)
1753                 qede_config_accept_any_vlan(edev, true);
1754         else if (!edev->non_configured_vlans)
1755                 qede_config_accept_any_vlan(edev, false);
1756
1757         return real_rc;
1758 }
1759
1760 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1761 {
1762         struct qede_dev *edev = netdev_priv(dev);
1763         struct qede_vlan *vlan = NULL;
1764         int rc;
1765
1766         DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
1767
1768         /* Find whether entry exists */
1769         list_for_each_entry(vlan, &edev->vlan_list, list)
1770                 if (vlan->vid == vid)
1771                         break;
1772
1773         if (!vlan || (vlan->vid != vid)) {
1774                 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1775                            "Vlan isn't configured\n");
1776                 return 0;
1777         }
1778
1779         if (edev->state != QEDE_STATE_OPEN) {
1780                 /* As interface is already down, we don't have a VPORT
1781                  * instance to remove vlan filter. So just update vlan list
1782                  */
1783                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1784                            "Interface is down, removing VLAN from list only\n");
1785                 qede_del_vlan_from_list(edev, vlan);
1786                 return 0;
1787         }
1788
1789         /* Remove vlan */
1790         rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid);
1791         if (rc) {
1792                 DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
1793                 return -EINVAL;
1794         }
1795
1796         qede_del_vlan_from_list(edev, vlan);
1797
1798         /* We have removed a VLAN - try to see if we can
1799          * configure non-configured VLAN from the list.
1800          */
1801         rc = qede_configure_vlan_filters(edev);
1802
1803         return rc;
1804 }
1805
1806 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
1807 {
1808         struct qede_vlan *vlan = NULL;
1809
1810         if (list_empty(&edev->vlan_list))
1811                 return;
1812
1813         list_for_each_entry(vlan, &edev->vlan_list, list) {
1814                 if (!vlan->configured)
1815                         continue;
1816
1817                 vlan->configured = false;
1818
1819                 /* vlan0 filter isn't consuming out of our quota */
1820                 if (vlan->vid != 0) {
1821                         edev->non_configured_vlans++;
1822                         edev->configured_vlans--;
1823                 }
1824
1825                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1826                            "marked vlan %d as non-configured\n",
1827                            vlan->vid);
1828         }
1829
1830         edev->accept_any_vlan = false;
1831 }
1832
1833 static const struct net_device_ops qede_netdev_ops = {
1834         .ndo_open = qede_open,
1835         .ndo_stop = qede_close,
1836         .ndo_start_xmit = qede_start_xmit,
1837         .ndo_set_rx_mode = qede_set_rx_mode,
1838         .ndo_set_mac_address = qede_set_mac_addr,
1839         .ndo_validate_addr = eth_validate_addr,
1840         .ndo_change_mtu = qede_change_mtu,
1841         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
1842         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
1843         .ndo_get_stats64 = qede_get_stats64,
1844 };
1845
1846 /* -------------------------------------------------------------------------
1847  * START OF PROBE / REMOVE
1848  * -------------------------------------------------------------------------
1849  */
1850
1851 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
1852                                             struct pci_dev *pdev,
1853                                             struct qed_dev_eth_info *info,
1854                                             u32 dp_module,
1855                                             u8 dp_level)
1856 {
1857         struct net_device *ndev;
1858         struct qede_dev *edev;
1859
1860         ndev = alloc_etherdev_mqs(sizeof(*edev),
1861                                   info->num_queues,
1862                                   info->num_queues);
1863         if (!ndev) {
1864                 pr_err("etherdev allocation failed\n");
1865                 return NULL;
1866         }
1867
1868         edev = netdev_priv(ndev);
1869         edev->ndev = ndev;
1870         edev->cdev = cdev;
1871         edev->pdev = pdev;
1872         edev->dp_module = dp_module;
1873         edev->dp_level = dp_level;
1874         edev->ops = qed_ops;
1875         edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
1876         edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
1877
1878         DP_INFO(edev, "Allocated netdev with 64 tx queues and 64 rx queues\n");
1879
1880         SET_NETDEV_DEV(ndev, &pdev->dev);
1881
1882         memset(&edev->stats, 0, sizeof(edev->stats));
1883         memcpy(&edev->dev_info, info, sizeof(*info));
1884
1885         edev->num_tc = edev->dev_info.num_tc;
1886
1887         INIT_LIST_HEAD(&edev->vlan_list);
1888
1889         return edev;
1890 }
1891
1892 static void qede_init_ndev(struct qede_dev *edev)
1893 {
1894         struct net_device *ndev = edev->ndev;
1895         struct pci_dev *pdev = edev->pdev;
1896         u32 hw_features;
1897
1898         pci_set_drvdata(pdev, ndev);
1899
1900         ndev->mem_start = edev->dev_info.common.pci_mem_start;
1901         ndev->base_addr = ndev->mem_start;
1902         ndev->mem_end = edev->dev_info.common.pci_mem_end;
1903         ndev->irq = edev->dev_info.common.pci_irq;
1904
1905         ndev->watchdog_timeo = TX_TIMEOUT;
1906
1907         ndev->netdev_ops = &qede_netdev_ops;
1908
1909         qede_set_ethtool_ops(ndev);
1910
1911         /* user-changeble features */
1912         hw_features = NETIF_F_GRO | NETIF_F_SG |
1913                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1914                       NETIF_F_TSO | NETIF_F_TSO6;
1915
1916         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1917                               NETIF_F_HIGHDMA;
1918         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1919                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
1920                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
1921
1922         ndev->hw_features = hw_features;
1923
1924         /* Set network device HW mac */
1925         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
1926 }
1927
1928 /* This function converts from 32b param to two params of level and module
1929  * Input 32b decoding:
1930  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
1931  * 'happy' flow, e.g. memory allocation failed.
1932  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
1933  * and provide important parameters.
1934  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
1935  * module. VERBOSE prints are for tracking the specific flow in low level.
1936  *
1937  * Notice that the level should be that of the lowest required logs.
1938  */
1939 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
1940 {
1941         *p_dp_level = QED_LEVEL_NOTICE;
1942         *p_dp_module = 0;
1943
1944         if (debug & QED_LOG_VERBOSE_MASK) {
1945                 *p_dp_level = QED_LEVEL_VERBOSE;
1946                 *p_dp_module = (debug & 0x3FFFFFFF);
1947         } else if (debug & QED_LOG_INFO_MASK) {
1948                 *p_dp_level = QED_LEVEL_INFO;
1949         } else if (debug & QED_LOG_NOTICE_MASK) {
1950                 *p_dp_level = QED_LEVEL_NOTICE;
1951         }
1952 }
1953
1954 static void qede_free_fp_array(struct qede_dev *edev)
1955 {
1956         if (edev->fp_array) {
1957                 struct qede_fastpath *fp;
1958                 int i;
1959
1960                 for_each_rss(i) {
1961                         fp = &edev->fp_array[i];
1962
1963                         kfree(fp->sb_info);
1964                         kfree(fp->rxq);
1965                         kfree(fp->txqs);
1966                 }
1967                 kfree(edev->fp_array);
1968         }
1969         edev->num_rss = 0;
1970 }
1971
1972 static int qede_alloc_fp_array(struct qede_dev *edev)
1973 {
1974         struct qede_fastpath *fp;
1975         int i;
1976
1977         edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
1978                                  sizeof(*edev->fp_array), GFP_KERNEL);
1979         if (!edev->fp_array) {
1980                 DP_NOTICE(edev, "fp array allocation failed\n");
1981                 goto err;
1982         }
1983
1984         for_each_rss(i) {
1985                 fp = &edev->fp_array[i];
1986
1987                 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
1988                 if (!fp->sb_info) {
1989                         DP_NOTICE(edev, "sb info struct allocation failed\n");
1990                         goto err;
1991                 }
1992
1993                 fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
1994                 if (!fp->rxq) {
1995                         DP_NOTICE(edev, "RXQ struct allocation failed\n");
1996                         goto err;
1997                 }
1998
1999                 fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2000                 if (!fp->txqs) {
2001                         DP_NOTICE(edev, "TXQ array allocation failed\n");
2002                         goto err;
2003                 }
2004         }
2005
2006         return 0;
2007 err:
2008         qede_free_fp_array(edev);
2009         return -ENOMEM;
2010 }
2011
2012 static void qede_sp_task(struct work_struct *work)
2013 {
2014         struct qede_dev *edev = container_of(work, struct qede_dev,
2015                                              sp_task.work);
2016         mutex_lock(&edev->qede_lock);
2017
2018         if (edev->state == QEDE_STATE_OPEN) {
2019                 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2020                         qede_config_rx_mode(edev->ndev);
2021         }
2022
2023         mutex_unlock(&edev->qede_lock);
2024 }
2025
2026 static void qede_update_pf_params(struct qed_dev *cdev)
2027 {
2028         struct qed_pf_params pf_params;
2029
2030         /* 16 rx + 16 tx */
2031         memset(&pf_params, 0, sizeof(struct qed_pf_params));
2032         pf_params.eth_pf_params.num_cons = 32;
2033         qed_ops->common->update_pf_params(cdev, &pf_params);
2034 }
2035
2036 enum qede_probe_mode {
2037         QEDE_PROBE_NORMAL,
2038 };
2039
2040 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2041                         enum qede_probe_mode mode)
2042 {
2043         struct qed_slowpath_params params;
2044         struct qed_dev_eth_info dev_info;
2045         struct qede_dev *edev;
2046         struct qed_dev *cdev;
2047         int rc;
2048
2049         if (unlikely(dp_level & QED_LEVEL_INFO))
2050                 pr_notice("Starting qede probe\n");
2051
2052         cdev = qed_ops->common->probe(pdev, QED_PROTOCOL_ETH,
2053                                       dp_module, dp_level);
2054         if (!cdev) {
2055                 rc = -ENODEV;
2056                 goto err0;
2057         }
2058
2059         qede_update_pf_params(cdev);
2060
2061         /* Start the Slowpath-process */
2062         memset(&params, 0, sizeof(struct qed_slowpath_params));
2063         params.int_mode = QED_INT_MODE_MSIX;
2064         params.drv_major = QEDE_MAJOR_VERSION;
2065         params.drv_minor = QEDE_MINOR_VERSION;
2066         params.drv_rev = QEDE_REVISION_VERSION;
2067         params.drv_eng = QEDE_ENGINEERING_VERSION;
2068         strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2069         rc = qed_ops->common->slowpath_start(cdev, &params);
2070         if (rc) {
2071                 pr_notice("Cannot start slowpath\n");
2072                 goto err1;
2073         }
2074
2075         /* Learn information crucial for qede to progress */
2076         rc = qed_ops->fill_dev_info(cdev, &dev_info);
2077         if (rc)
2078                 goto err2;
2079
2080         edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2081                                    dp_level);
2082         if (!edev) {
2083                 rc = -ENOMEM;
2084                 goto err2;
2085         }
2086
2087         qede_init_ndev(edev);
2088
2089         rc = register_netdev(edev->ndev);
2090         if (rc) {
2091                 DP_NOTICE(edev, "Cannot register net-device\n");
2092                 goto err3;
2093         }
2094
2095         edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2096
2097         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2098
2099         INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2100         mutex_init(&edev->qede_lock);
2101
2102         DP_INFO(edev, "Ending successfully qede probe\n");
2103
2104         return 0;
2105
2106 err3:
2107         free_netdev(edev->ndev);
2108 err2:
2109         qed_ops->common->slowpath_stop(cdev);
2110 err1:
2111         qed_ops->common->remove(cdev);
2112 err0:
2113         return rc;
2114 }
2115
2116 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2117 {
2118         u32 dp_module = 0;
2119         u8 dp_level = 0;
2120
2121         qede_config_debug(debug, &dp_module, &dp_level);
2122
2123         return __qede_probe(pdev, dp_module, dp_level,
2124                             QEDE_PROBE_NORMAL);
2125 }
2126
2127 enum qede_remove_mode {
2128         QEDE_REMOVE_NORMAL,
2129 };
2130
2131 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2132 {
2133         struct net_device *ndev = pci_get_drvdata(pdev);
2134         struct qede_dev *edev = netdev_priv(ndev);
2135         struct qed_dev *cdev = edev->cdev;
2136
2137         DP_INFO(edev, "Starting qede_remove\n");
2138
2139         cancel_delayed_work_sync(&edev->sp_task);
2140         unregister_netdev(ndev);
2141
2142         edev->ops->common->set_power_state(cdev, PCI_D0);
2143
2144         pci_set_drvdata(pdev, NULL);
2145
2146         free_netdev(ndev);
2147
2148         /* Use global ops since we've freed edev */
2149         qed_ops->common->slowpath_stop(cdev);
2150         qed_ops->common->remove(cdev);
2151
2152         pr_notice("Ending successfully qede_remove\n");
2153 }
2154
2155 static void qede_remove(struct pci_dev *pdev)
2156 {
2157         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
2158 }
2159
2160 /* -------------------------------------------------------------------------
2161  * START OF LOAD / UNLOAD
2162  * -------------------------------------------------------------------------
2163  */
2164
2165 static int qede_set_num_queues(struct qede_dev *edev)
2166 {
2167         int rc;
2168         u16 rss_num;
2169
2170         /* Setup queues according to possible resources*/
2171         if (edev->req_rss)
2172                 rss_num = edev->req_rss;
2173         else
2174                 rss_num = netif_get_num_default_rss_queues() *
2175                           edev->dev_info.common.num_hwfns;
2176
2177         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2178
2179         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2180         if (rc > 0) {
2181                 /* Managed to request interrupts for our queues */
2182                 edev->num_rss = rc;
2183                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2184                         QEDE_RSS_CNT(edev), rss_num);
2185                 rc = 0;
2186         }
2187         return rc;
2188 }
2189
2190 static void qede_free_mem_sb(struct qede_dev *edev,
2191                              struct qed_sb_info *sb_info)
2192 {
2193         if (sb_info->sb_virt)
2194                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2195                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
2196 }
2197
2198 /* This function allocates fast-path status block memory */
2199 static int qede_alloc_mem_sb(struct qede_dev *edev,
2200                              struct qed_sb_info *sb_info,
2201                              u16 sb_id)
2202 {
2203         struct status_block *sb_virt;
2204         dma_addr_t sb_phys;
2205         int rc;
2206
2207         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2208                                      sizeof(*sb_virt),
2209                                      &sb_phys, GFP_KERNEL);
2210         if (!sb_virt) {
2211                 DP_ERR(edev, "Status block allocation failed\n");
2212                 return -ENOMEM;
2213         }
2214
2215         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2216                                         sb_virt, sb_phys, sb_id,
2217                                         QED_SB_TYPE_L2_QUEUE);
2218         if (rc) {
2219                 DP_ERR(edev, "Status block initialization failed\n");
2220                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2221                                   sb_virt, sb_phys);
2222                 return rc;
2223         }
2224
2225         return 0;
2226 }
2227
2228 static void qede_free_rx_buffers(struct qede_dev *edev,
2229                                  struct qede_rx_queue *rxq)
2230 {
2231         u16 i;
2232
2233         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2234                 struct sw_rx_data *rx_buf;
2235                 struct page *data;
2236
2237                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2238                 data = rx_buf->data;
2239
2240                 dma_unmap_page(&edev->pdev->dev,
2241                                rx_buf->mapping,
2242                                PAGE_SIZE, DMA_FROM_DEVICE);
2243
2244                 rx_buf->data = NULL;
2245                 __free_page(data);
2246         }
2247 }
2248
2249 static void qede_free_sge_mem(struct qede_dev *edev,
2250                               struct qede_rx_queue *rxq) {
2251         int i;
2252
2253         if (edev->gro_disable)
2254                 return;
2255
2256         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2257                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2258                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2259
2260                 if (replace_buf) {
2261                         dma_unmap_page(&edev->pdev->dev,
2262                                        dma_unmap_addr(replace_buf, mapping),
2263                                        PAGE_SIZE, DMA_FROM_DEVICE);
2264                         __free_page(replace_buf->data);
2265                 }
2266         }
2267 }
2268
2269 static void qede_free_mem_rxq(struct qede_dev *edev,
2270                               struct qede_rx_queue *rxq)
2271 {
2272         qede_free_sge_mem(edev, rxq);
2273
2274         /* Free rx buffers */
2275         qede_free_rx_buffers(edev, rxq);
2276
2277         /* Free the parallel SW ring */
2278         kfree(rxq->sw_rx_ring);
2279
2280         /* Free the real RQ ring used by FW */
2281         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2282         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2283 }
2284
2285 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2286                                 struct qede_rx_queue *rxq)
2287 {
2288         struct sw_rx_data *sw_rx_data;
2289         struct eth_rx_bd *rx_bd;
2290         dma_addr_t mapping;
2291         struct page *data;
2292         u16 rx_buf_size;
2293
2294         rx_buf_size = rxq->rx_buf_size;
2295
2296         data = alloc_pages(GFP_ATOMIC, 0);
2297         if (unlikely(!data)) {
2298                 DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2299                 return -ENOMEM;
2300         }
2301
2302         /* Map the entire page as it would be used
2303          * for multiple RX buffer segment size mapping.
2304          */
2305         mapping = dma_map_page(&edev->pdev->dev, data, 0,
2306                                PAGE_SIZE, DMA_FROM_DEVICE);
2307         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2308                 __free_page(data);
2309                 DP_NOTICE(edev, "Failed to map Rx buffer\n");
2310                 return -ENOMEM;
2311         }
2312
2313         sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2314         sw_rx_data->page_offset = 0;
2315         sw_rx_data->data = data;
2316         sw_rx_data->mapping = mapping;
2317
2318         /* Advance PROD and get BD pointer */
2319         rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2320         WARN_ON(!rx_bd);
2321         rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2322         rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2323
2324         rxq->sw_rx_prod++;
2325
2326         return 0;
2327 }
2328
2329 static int qede_alloc_sge_mem(struct qede_dev *edev,
2330                               struct qede_rx_queue *rxq)
2331 {
2332         dma_addr_t mapping;
2333         int i;
2334
2335         if (edev->gro_disable)
2336                 return 0;
2337
2338         if (edev->ndev->mtu > PAGE_SIZE) {
2339                 edev->gro_disable = 1;
2340                 return 0;
2341         }
2342
2343         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2344                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2345                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2346
2347                 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2348                 if (unlikely(!replace_buf->data)) {
2349                         DP_NOTICE(edev,
2350                                   "Failed to allocate TPA skb pool [replacement buffer]\n");
2351                         goto err;
2352                 }
2353
2354                 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2355                                        rxq->rx_buf_size, DMA_FROM_DEVICE);
2356                 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2357                         DP_NOTICE(edev,
2358                                   "Failed to map TPA replacement buffer\n");
2359                         goto err;
2360                 }
2361
2362                 dma_unmap_addr_set(replace_buf, mapping, mapping);
2363                 tpa_info->replace_buf.page_offset = 0;
2364
2365                 tpa_info->replace_buf_mapping = mapping;
2366                 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2367         }
2368
2369         return 0;
2370 err:
2371         qede_free_sge_mem(edev, rxq);
2372         edev->gro_disable = 1;
2373         return -ENOMEM;
2374 }
2375
2376 /* This function allocates all memory needed per Rx queue */
2377 static int qede_alloc_mem_rxq(struct qede_dev *edev,
2378                               struct qede_rx_queue *rxq)
2379 {
2380         int i, rc, size, num_allocated;
2381
2382         rxq->num_rx_buffers = edev->q_num_rx_buffers;
2383
2384         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2385                            edev->ndev->mtu;
2386         if (rxq->rx_buf_size > PAGE_SIZE)
2387                 rxq->rx_buf_size = PAGE_SIZE;
2388
2389         /* Segment size to spilt a page in multiple equal parts */
2390         rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2391
2392         /* Allocate the parallel driver ring for Rx buffers */
2393         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2394         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2395         if (!rxq->sw_rx_ring) {
2396                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
2397                 goto err;
2398         }
2399
2400         /* Allocate FW Rx ring  */
2401         rc = edev->ops->common->chain_alloc(edev->cdev,
2402                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2403                                             QED_CHAIN_MODE_NEXT_PTR,
2404                                             RX_RING_SIZE,
2405                                             sizeof(struct eth_rx_bd),
2406                                             &rxq->rx_bd_ring);
2407
2408         if (rc)
2409                 goto err;
2410
2411         /* Allocate FW completion ring */
2412         rc = edev->ops->common->chain_alloc(edev->cdev,
2413                                             QED_CHAIN_USE_TO_CONSUME,
2414                                             QED_CHAIN_MODE_PBL,
2415                                             RX_RING_SIZE,
2416                                             sizeof(union eth_rx_cqe),
2417                                             &rxq->rx_comp_ring);
2418         if (rc)
2419                 goto err;
2420
2421         /* Allocate buffers for the Rx ring */
2422         for (i = 0; i < rxq->num_rx_buffers; i++) {
2423                 rc = qede_alloc_rx_buffer(edev, rxq);
2424                 if (rc)
2425                         break;
2426         }
2427         num_allocated = i;
2428         if (!num_allocated) {
2429                 DP_ERR(edev, "Rx buffers allocation failed\n");
2430                 goto err;
2431         } else if (num_allocated < rxq->num_rx_buffers) {
2432                 DP_NOTICE(edev,
2433                           "Allocated less buffers than desired (%d allocated)\n",
2434                           num_allocated);
2435         }
2436
2437         qede_alloc_sge_mem(edev, rxq);
2438
2439         return 0;
2440
2441 err:
2442         qede_free_mem_rxq(edev, rxq);
2443         return -ENOMEM;
2444 }
2445
2446 static void qede_free_mem_txq(struct qede_dev *edev,
2447                               struct qede_tx_queue *txq)
2448 {
2449         /* Free the parallel SW ring */
2450         kfree(txq->sw_tx_ring);
2451
2452         /* Free the real RQ ring used by FW */
2453         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2454 }
2455
2456 /* This function allocates all memory needed per Tx queue */
2457 static int qede_alloc_mem_txq(struct qede_dev *edev,
2458                               struct qede_tx_queue *txq)
2459 {
2460         int size, rc;
2461         union eth_tx_bd_types *p_virt;
2462
2463         txq->num_tx_buffers = edev->q_num_tx_buffers;
2464
2465         /* Allocate the parallel driver ring for Tx buffers */
2466         size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2467         txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2468         if (!txq->sw_tx_ring) {
2469                 DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2470                 goto err;
2471         }
2472
2473         rc = edev->ops->common->chain_alloc(edev->cdev,
2474                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2475                                             QED_CHAIN_MODE_PBL,
2476                                             NUM_TX_BDS_MAX,
2477                                             sizeof(*p_virt),
2478                                             &txq->tx_pbl);
2479         if (rc)
2480                 goto err;
2481
2482         return 0;
2483
2484 err:
2485         qede_free_mem_txq(edev, txq);
2486         return -ENOMEM;
2487 }
2488
2489 /* This function frees all memory of a single fp */
2490 static void qede_free_mem_fp(struct qede_dev *edev,
2491                              struct qede_fastpath *fp)
2492 {
2493         int tc;
2494
2495         qede_free_mem_sb(edev, fp->sb_info);
2496
2497         qede_free_mem_rxq(edev, fp->rxq);
2498
2499         for (tc = 0; tc < edev->num_tc; tc++)
2500                 qede_free_mem_txq(edev, &fp->txqs[tc]);
2501 }
2502
2503 /* This function allocates all memory needed for a single fp (i.e. an entity
2504  * which contains status block, one rx queue and multiple per-TC tx queues.
2505  */
2506 static int qede_alloc_mem_fp(struct qede_dev *edev,
2507                              struct qede_fastpath *fp)
2508 {
2509         int rc, tc;
2510
2511         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2512         if (rc)
2513                 goto err;
2514
2515         rc = qede_alloc_mem_rxq(edev, fp->rxq);
2516         if (rc)
2517                 goto err;
2518
2519         for (tc = 0; tc < edev->num_tc; tc++) {
2520                 rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2521                 if (rc)
2522                         goto err;
2523         }
2524
2525         return 0;
2526
2527 err:
2528         qede_free_mem_fp(edev, fp);
2529         return -ENOMEM;
2530 }
2531
2532 static void qede_free_mem_load(struct qede_dev *edev)
2533 {
2534         int i;
2535
2536         for_each_rss(i) {
2537                 struct qede_fastpath *fp = &edev->fp_array[i];
2538
2539                 qede_free_mem_fp(edev, fp);
2540         }
2541 }
2542
2543 /* This function allocates all qede memory at NIC load. */
2544 static int qede_alloc_mem_load(struct qede_dev *edev)
2545 {
2546         int rc = 0, rss_id;
2547
2548         for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2549                 struct qede_fastpath *fp = &edev->fp_array[rss_id];
2550
2551                 rc = qede_alloc_mem_fp(edev, fp);
2552                 if (rc)
2553                         break;
2554         }
2555
2556         if (rss_id != QEDE_RSS_CNT(edev)) {
2557                 /* Failed allocating memory for all the queues */
2558                 if (!rss_id) {
2559                         DP_ERR(edev,
2560                                "Failed to allocate memory for the leading queue\n");
2561                         rc = -ENOMEM;
2562                 } else {
2563                         DP_NOTICE(edev,
2564                                   "Failed to allocate memory for all of RSS queues\n Desired: %d queues, allocated: %d queues\n",
2565                                   QEDE_RSS_CNT(edev), rss_id);
2566                 }
2567                 edev->num_rss = rss_id;
2568         }
2569
2570         return 0;
2571 }
2572
2573 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
2574 static void qede_init_fp(struct qede_dev *edev)
2575 {
2576         int rss_id, txq_index, tc;
2577         struct qede_fastpath *fp;
2578
2579         for_each_rss(rss_id) {
2580                 fp = &edev->fp_array[rss_id];
2581
2582                 fp->edev = edev;
2583                 fp->rss_id = rss_id;
2584
2585                 memset((void *)&fp->napi, 0, sizeof(fp->napi));
2586
2587                 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
2588
2589                 memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
2590                 fp->rxq->rxq_id = rss_id;
2591
2592                 memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
2593                 for (tc = 0; tc < edev->num_tc; tc++) {
2594                         txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
2595                         fp->txqs[tc].index = txq_index;
2596                 }
2597
2598                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
2599                          edev->ndev->name, rss_id);
2600         }
2601
2602         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
2603 }
2604
2605 static int qede_set_real_num_queues(struct qede_dev *edev)
2606 {
2607         int rc = 0;
2608
2609         rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
2610         if (rc) {
2611                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
2612                 return rc;
2613         }
2614         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
2615         if (rc) {
2616                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
2617                 return rc;
2618         }
2619
2620         return 0;
2621 }
2622
2623 static void qede_napi_disable_remove(struct qede_dev *edev)
2624 {
2625         int i;
2626
2627         for_each_rss(i) {
2628                 napi_disable(&edev->fp_array[i].napi);
2629
2630                 netif_napi_del(&edev->fp_array[i].napi);
2631         }
2632 }
2633
2634 static void qede_napi_add_enable(struct qede_dev *edev)
2635 {
2636         int i;
2637
2638         /* Add NAPI objects */
2639         for_each_rss(i) {
2640                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
2641                                qede_poll, NAPI_POLL_WEIGHT);
2642                 napi_enable(&edev->fp_array[i].napi);
2643         }
2644 }
2645
2646 static void qede_sync_free_irqs(struct qede_dev *edev)
2647 {
2648         int i;
2649
2650         for (i = 0; i < edev->int_info.used_cnt; i++) {
2651                 if (edev->int_info.msix_cnt) {
2652                         synchronize_irq(edev->int_info.msix[i].vector);
2653                         free_irq(edev->int_info.msix[i].vector,
2654                                  &edev->fp_array[i]);
2655                 } else {
2656                         edev->ops->common->simd_handler_clean(edev->cdev, i);
2657                 }
2658         }
2659
2660         edev->int_info.used_cnt = 0;
2661 }
2662
2663 static int qede_req_msix_irqs(struct qede_dev *edev)
2664 {
2665         int i, rc;
2666
2667         /* Sanitize number of interrupts == number of prepared RSS queues */
2668         if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
2669                 DP_ERR(edev,
2670                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
2671                        QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
2672                 return -EINVAL;
2673         }
2674
2675         for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
2676                 rc = request_irq(edev->int_info.msix[i].vector,
2677                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
2678                                  &edev->fp_array[i]);
2679                 if (rc) {
2680                         DP_ERR(edev, "Request fp %d irq failed\n", i);
2681                         qede_sync_free_irqs(edev);
2682                         return rc;
2683                 }
2684                 DP_VERBOSE(edev, NETIF_MSG_INTR,
2685                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
2686                            edev->fp_array[i].name, i,
2687                            &edev->fp_array[i]);
2688                 edev->int_info.used_cnt++;
2689         }
2690
2691         return 0;
2692 }
2693
2694 static void qede_simd_fp_handler(void *cookie)
2695 {
2696         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
2697
2698         napi_schedule_irqoff(&fp->napi);
2699 }
2700
2701 static int qede_setup_irqs(struct qede_dev *edev)
2702 {
2703         int i, rc = 0;
2704
2705         /* Learn Interrupt configuration */
2706         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
2707         if (rc)
2708                 return rc;
2709
2710         if (edev->int_info.msix_cnt) {
2711                 rc = qede_req_msix_irqs(edev);
2712                 if (rc)
2713                         return rc;
2714                 edev->ndev->irq = edev->int_info.msix[0].vector;
2715         } else {
2716                 const struct qed_common_ops *ops;
2717
2718                 /* qed should learn receive the RSS ids and callbacks */
2719                 ops = edev->ops->common;
2720                 for (i = 0; i < QEDE_RSS_CNT(edev); i++)
2721                         ops->simd_handler_config(edev->cdev,
2722                                                  &edev->fp_array[i], i,
2723                                                  qede_simd_fp_handler);
2724                 edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
2725         }
2726         return 0;
2727 }
2728
2729 static int qede_drain_txq(struct qede_dev *edev,
2730                           struct qede_tx_queue *txq,
2731                           bool allow_drain)
2732 {
2733         int rc, cnt = 1000;
2734
2735         while (txq->sw_tx_cons != txq->sw_tx_prod) {
2736                 if (!cnt) {
2737                         if (allow_drain) {
2738                                 DP_NOTICE(edev,
2739                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
2740                                           txq->index);
2741                                 rc = edev->ops->common->drain(edev->cdev);
2742                                 if (rc)
2743                                         return rc;
2744                                 return qede_drain_txq(edev, txq, false);
2745                         }
2746                         DP_NOTICE(edev,
2747                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2748                                   txq->index, txq->sw_tx_prod,
2749                                   txq->sw_tx_cons);
2750                         return -ENODEV;
2751                 }
2752                 cnt--;
2753                 usleep_range(1000, 2000);
2754                 barrier();
2755         }
2756
2757         /* FW finished processing, wait for HW to transmit all tx packets */
2758         usleep_range(1000, 2000);
2759
2760         return 0;
2761 }
2762
2763 static int qede_stop_queues(struct qede_dev *edev)
2764 {
2765         struct qed_update_vport_params vport_update_params;
2766         struct qed_dev *cdev = edev->cdev;
2767         int rc, tc, i;
2768
2769         /* Disable the vport */
2770         memset(&vport_update_params, 0, sizeof(vport_update_params));
2771         vport_update_params.vport_id = 0;
2772         vport_update_params.update_vport_active_flg = 1;
2773         vport_update_params.vport_active_flg = 0;
2774         vport_update_params.update_rss_flg = 0;
2775
2776         rc = edev->ops->vport_update(cdev, &vport_update_params);
2777         if (rc) {
2778                 DP_ERR(edev, "Failed to update vport\n");
2779                 return rc;
2780         }
2781
2782         /* Flush Tx queues. If needed, request drain from MCP */
2783         for_each_rss(i) {
2784                 struct qede_fastpath *fp = &edev->fp_array[i];
2785
2786                 for (tc = 0; tc < edev->num_tc; tc++) {
2787                         struct qede_tx_queue *txq = &fp->txqs[tc];
2788
2789                         rc = qede_drain_txq(edev, txq, true);
2790                         if (rc)
2791                                 return rc;
2792                 }
2793         }
2794
2795         /* Stop all Queues in reverse order*/
2796         for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
2797                 struct qed_stop_rxq_params rx_params;
2798
2799                 /* Stop the Tx Queue(s)*/
2800                 for (tc = 0; tc < edev->num_tc; tc++) {
2801                         struct qed_stop_txq_params tx_params;
2802
2803                         tx_params.rss_id = i;
2804                         tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
2805                         rc = edev->ops->q_tx_stop(cdev, &tx_params);
2806                         if (rc) {
2807                                 DP_ERR(edev, "Failed to stop TXQ #%d\n",
2808                                        tx_params.tx_queue_id);
2809                                 return rc;
2810                         }
2811                 }
2812
2813                 /* Stop the Rx Queue*/
2814                 memset(&rx_params, 0, sizeof(rx_params));
2815                 rx_params.rss_id = i;
2816                 rx_params.rx_queue_id = i;
2817
2818                 rc = edev->ops->q_rx_stop(cdev, &rx_params);
2819                 if (rc) {
2820                         DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2821                         return rc;
2822                 }
2823         }
2824
2825         /* Stop the vport */
2826         rc = edev->ops->vport_stop(cdev, 0);
2827         if (rc)
2828                 DP_ERR(edev, "Failed to stop VPORT\n");
2829
2830         return rc;
2831 }
2832
2833 static int qede_start_queues(struct qede_dev *edev)
2834 {
2835         int rc, tc, i;
2836         int vlan_removal_en = 1;
2837         struct qed_dev *cdev = edev->cdev;
2838         struct qed_update_vport_rss_params *rss_params = &edev->rss_params;
2839         struct qed_update_vport_params vport_update_params;
2840         struct qed_queue_start_common_params q_params;
2841         struct qed_start_vport_params start = {0};
2842
2843         if (!edev->num_rss) {
2844                 DP_ERR(edev,
2845                        "Cannot update V-VPORT as active as there are no Rx queues\n");
2846                 return -EINVAL;
2847         }
2848
2849         start.gro_enable = !edev->gro_disable;
2850         start.mtu = edev->ndev->mtu;
2851         start.vport_id = 0;
2852         start.drop_ttl0 = true;
2853         start.remove_inner_vlan = vlan_removal_en;
2854
2855         rc = edev->ops->vport_start(cdev, &start);
2856
2857         if (rc) {
2858                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2859                 return rc;
2860         }
2861
2862         DP_VERBOSE(edev, NETIF_MSG_IFUP,
2863                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2864                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2865
2866         for_each_rss(i) {
2867                 struct qede_fastpath *fp = &edev->fp_array[i];
2868                 dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
2869
2870                 memset(&q_params, 0, sizeof(q_params));
2871                 q_params.rss_id = i;
2872                 q_params.queue_id = i;
2873                 q_params.vport_id = 0;
2874                 q_params.sb = fp->sb_info->igu_sb_id;
2875                 q_params.sb_idx = RX_PI;
2876
2877                 rc = edev->ops->q_rx_start(cdev, &q_params,
2878                                            fp->rxq->rx_buf_size,
2879                                            fp->rxq->rx_bd_ring.p_phys_addr,
2880                                            phys_table,
2881                                            fp->rxq->rx_comp_ring.page_cnt,
2882                                            &fp->rxq->hw_rxq_prod_addr);
2883                 if (rc) {
2884                         DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
2885                         return rc;
2886                 }
2887
2888                 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
2889
2890                 qede_update_rx_prod(edev, fp->rxq);
2891
2892                 for (tc = 0; tc < edev->num_tc; tc++) {
2893                         struct qede_tx_queue *txq = &fp->txqs[tc];
2894                         int txq_index = tc * QEDE_RSS_CNT(edev) + i;
2895
2896                         memset(&q_params, 0, sizeof(q_params));
2897                         q_params.rss_id = i;
2898                         q_params.queue_id = txq_index;
2899                         q_params.vport_id = 0;
2900                         q_params.sb = fp->sb_info->igu_sb_id;
2901                         q_params.sb_idx = TX_PI(tc);
2902
2903                         rc = edev->ops->q_tx_start(cdev, &q_params,
2904                                                    txq->tx_pbl.pbl.p_phys_table,
2905                                                    txq->tx_pbl.page_cnt,
2906                                                    &txq->doorbell_addr);
2907                         if (rc) {
2908                                 DP_ERR(edev, "Start TXQ #%d failed %d\n",
2909                                        txq_index, rc);
2910                                 return rc;
2911                         }
2912
2913                         txq->hw_cons_ptr =
2914                                 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
2915                         SET_FIELD(txq->tx_db.data.params,
2916                                   ETH_DB_DATA_DEST, DB_DEST_XCM);
2917                         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
2918                                   DB_AGG_CMD_SET);
2919                         SET_FIELD(txq->tx_db.data.params,
2920                                   ETH_DB_DATA_AGG_VAL_SEL,
2921                                   DQ_XCM_ETH_TX_BD_PROD_CMD);
2922
2923                         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2924                 }
2925         }
2926
2927         /* Prepare and send the vport enable */
2928         memset(&vport_update_params, 0, sizeof(vport_update_params));
2929         vport_update_params.vport_id = start.vport_id;
2930         vport_update_params.update_vport_active_flg = 1;
2931         vport_update_params.vport_active_flg = 1;
2932
2933         /* Fill struct with RSS params */
2934         if (QEDE_RSS_CNT(edev) > 1) {
2935                 vport_update_params.update_rss_flg = 1;
2936                 for (i = 0; i < 128; i++)
2937                         rss_params->rss_ind_table[i] =
2938                         ethtool_rxfh_indir_default(i, QEDE_RSS_CNT(edev));
2939                 netdev_rss_key_fill(rss_params->rss_key,
2940                                     sizeof(rss_params->rss_key));
2941         } else {
2942                 memset(rss_params, 0, sizeof(*rss_params));
2943         }
2944         memcpy(&vport_update_params.rss_params, rss_params,
2945                sizeof(*rss_params));
2946
2947         rc = edev->ops->vport_update(cdev, &vport_update_params);
2948         if (rc) {
2949                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2950                 return rc;
2951         }
2952
2953         return 0;
2954 }
2955
2956 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
2957                                  enum qed_filter_xcast_params_type opcode,
2958                                  unsigned char *mac, int num_macs)
2959 {
2960         struct qed_filter_params filter_cmd;
2961         int i;
2962
2963         memset(&filter_cmd, 0, sizeof(filter_cmd));
2964         filter_cmd.type = QED_FILTER_TYPE_MCAST;
2965         filter_cmd.filter.mcast.type = opcode;
2966         filter_cmd.filter.mcast.num = num_macs;
2967
2968         for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
2969                 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
2970
2971         return edev->ops->filter_config(edev->cdev, &filter_cmd);
2972 }
2973
2974 enum qede_unload_mode {
2975         QEDE_UNLOAD_NORMAL,
2976 };
2977
2978 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
2979 {
2980         struct qed_link_params link_params;
2981         int rc;
2982
2983         DP_INFO(edev, "Starting qede unload\n");
2984
2985         mutex_lock(&edev->qede_lock);
2986         edev->state = QEDE_STATE_CLOSED;
2987
2988         /* Close OS Tx */
2989         netif_tx_disable(edev->ndev);
2990         netif_carrier_off(edev->ndev);
2991
2992         /* Reset the link */
2993         memset(&link_params, 0, sizeof(link_params));
2994         link_params.link_up = false;
2995         edev->ops->common->set_link(edev->cdev, &link_params);
2996         rc = qede_stop_queues(edev);
2997         if (rc) {
2998                 qede_sync_free_irqs(edev);
2999                 goto out;
3000         }
3001
3002         DP_INFO(edev, "Stopped Queues\n");
3003
3004         qede_vlan_mark_nonconfigured(edev);
3005         edev->ops->fastpath_stop(edev->cdev);
3006
3007         /* Release the interrupts */
3008         qede_sync_free_irqs(edev);
3009         edev->ops->common->set_fp_int(edev->cdev, 0);
3010
3011         qede_napi_disable_remove(edev);
3012
3013         qede_free_mem_load(edev);
3014         qede_free_fp_array(edev);
3015
3016 out:
3017         mutex_unlock(&edev->qede_lock);
3018         DP_INFO(edev, "Ending qede unload\n");
3019 }
3020
3021 enum qede_load_mode {
3022         QEDE_LOAD_NORMAL,
3023 };
3024
3025 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3026 {
3027         struct qed_link_params link_params;
3028         struct qed_link_output link_output;
3029         int rc;
3030
3031         DP_INFO(edev, "Starting qede load\n");
3032
3033         rc = qede_set_num_queues(edev);
3034         if (rc)
3035                 goto err0;
3036
3037         rc = qede_alloc_fp_array(edev);
3038         if (rc)
3039                 goto err0;
3040
3041         qede_init_fp(edev);
3042
3043         rc = qede_alloc_mem_load(edev);
3044         if (rc)
3045                 goto err1;
3046         DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3047                 QEDE_RSS_CNT(edev), edev->num_tc);
3048
3049         rc = qede_set_real_num_queues(edev);
3050         if (rc)
3051                 goto err2;
3052
3053         qede_napi_add_enable(edev);
3054         DP_INFO(edev, "Napi added and enabled\n");
3055
3056         rc = qede_setup_irqs(edev);
3057         if (rc)
3058                 goto err3;
3059         DP_INFO(edev, "Setup IRQs succeeded\n");
3060
3061         rc = qede_start_queues(edev);
3062         if (rc)
3063                 goto err4;
3064         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3065
3066         /* Add primary mac and set Rx filters */
3067         ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3068
3069         mutex_lock(&edev->qede_lock);
3070         edev->state = QEDE_STATE_OPEN;
3071         mutex_unlock(&edev->qede_lock);
3072
3073         /* Program un-configured VLANs */
3074         qede_configure_vlan_filters(edev);
3075
3076         /* Ask for link-up using current configuration */
3077         memset(&link_params, 0, sizeof(link_params));
3078         link_params.link_up = true;
3079         edev->ops->common->set_link(edev->cdev, &link_params);
3080
3081         /* Query whether link is already-up */
3082         memset(&link_output, 0, sizeof(link_output));
3083         edev->ops->common->get_link(edev->cdev, &link_output);
3084         qede_link_update(edev, &link_output);
3085
3086         DP_INFO(edev, "Ending successfully qede load\n");
3087
3088         return 0;
3089
3090 err4:
3091         qede_sync_free_irqs(edev);
3092         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3093 err3:
3094         qede_napi_disable_remove(edev);
3095 err2:
3096         qede_free_mem_load(edev);
3097 err1:
3098         edev->ops->common->set_fp_int(edev->cdev, 0);
3099         qede_free_fp_array(edev);
3100         edev->num_rss = 0;
3101 err0:
3102         return rc;
3103 }
3104
3105 void qede_reload(struct qede_dev *edev,
3106                  void (*func)(struct qede_dev *, union qede_reload_args *),
3107                  union qede_reload_args *args)
3108 {
3109         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3110         /* Call function handler to update parameters
3111          * needed for function load.
3112          */
3113         if (func)
3114                 func(edev, args);
3115
3116         qede_load(edev, QEDE_LOAD_NORMAL);
3117
3118         mutex_lock(&edev->qede_lock);
3119         qede_config_rx_mode(edev->ndev);
3120         mutex_unlock(&edev->qede_lock);
3121 }
3122
3123 /* called with rtnl_lock */
3124 static int qede_open(struct net_device *ndev)
3125 {
3126         struct qede_dev *edev = netdev_priv(ndev);
3127
3128         netif_carrier_off(ndev);
3129
3130         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3131
3132         return qede_load(edev, QEDE_LOAD_NORMAL);
3133 }
3134
3135 static int qede_close(struct net_device *ndev)
3136 {
3137         struct qede_dev *edev = netdev_priv(ndev);
3138
3139         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3140
3141         return 0;
3142 }
3143
3144 static void qede_link_update(void *dev, struct qed_link_output *link)
3145 {
3146         struct qede_dev *edev = dev;
3147
3148         if (!netif_running(edev->ndev)) {
3149                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3150                 return;
3151         }
3152
3153         if (link->link_up) {
3154                 if (!netif_carrier_ok(edev->ndev)) {
3155                         DP_NOTICE(edev, "Link is up\n");
3156                         netif_tx_start_all_queues(edev->ndev);
3157                         netif_carrier_on(edev->ndev);
3158                 }
3159         } else {
3160                 if (netif_carrier_ok(edev->ndev)) {
3161                         DP_NOTICE(edev, "Link is down\n");
3162                         netif_tx_disable(edev->ndev);
3163                         netif_carrier_off(edev->ndev);
3164                 }
3165         }
3166 }
3167
3168 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3169 {
3170         struct qede_dev *edev = netdev_priv(ndev);
3171         struct sockaddr *addr = p;
3172         int rc;
3173
3174         ASSERT_RTNL(); /* @@@TBD To be removed */
3175
3176         DP_INFO(edev, "Set_mac_addr called\n");
3177
3178         if (!is_valid_ether_addr(addr->sa_data)) {
3179                 DP_NOTICE(edev, "The MAC address is not valid\n");
3180                 return -EFAULT;
3181         }
3182
3183         ether_addr_copy(ndev->dev_addr, addr->sa_data);
3184
3185         if (!netif_running(ndev))  {
3186                 DP_NOTICE(edev, "The device is currently down\n");
3187                 return 0;
3188         }
3189
3190         /* Remove the previous primary mac */
3191         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3192                                    edev->primary_mac);
3193         if (rc)
3194                 return rc;
3195
3196         /* Add MAC filter according to the new unicast HW MAC address */
3197         ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3198         return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3199                                       edev->primary_mac);
3200 }
3201
3202 static int
3203 qede_configure_mcast_filtering(struct net_device *ndev,
3204                                enum qed_filter_rx_mode_type *accept_flags)
3205 {
3206         struct qede_dev *edev = netdev_priv(ndev);
3207         unsigned char *mc_macs, *temp;
3208         struct netdev_hw_addr *ha;
3209         int rc = 0, mc_count;
3210         size_t size;
3211
3212         size = 64 * ETH_ALEN;
3213
3214         mc_macs = kzalloc(size, GFP_KERNEL);
3215         if (!mc_macs) {
3216                 DP_NOTICE(edev,
3217                           "Failed to allocate memory for multicast MACs\n");
3218                 rc = -ENOMEM;
3219                 goto exit;
3220         }
3221
3222         temp = mc_macs;
3223
3224         /* Remove all previously configured MAC filters */
3225         rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3226                                    mc_macs, 1);
3227         if (rc)
3228                 goto exit;
3229
3230         netif_addr_lock_bh(ndev);
3231
3232         mc_count = netdev_mc_count(ndev);
3233         if (mc_count < 64) {
3234                 netdev_for_each_mc_addr(ha, ndev) {
3235                         ether_addr_copy(temp, ha->addr);
3236                         temp += ETH_ALEN;
3237                 }
3238         }
3239
3240         netif_addr_unlock_bh(ndev);
3241
3242         /* Check for all multicast @@@TBD resource allocation */
3243         if ((ndev->flags & IFF_ALLMULTI) ||
3244             (mc_count > 64)) {
3245                 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3246                         *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3247         } else {
3248                 /* Add all multicast MAC filters */
3249                 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3250                                            mc_macs, mc_count);
3251         }
3252
3253 exit:
3254         kfree(mc_macs);
3255         return rc;
3256 }
3257
3258 static void qede_set_rx_mode(struct net_device *ndev)
3259 {
3260         struct qede_dev *edev = netdev_priv(ndev);
3261
3262         DP_INFO(edev, "qede_set_rx_mode called\n");
3263
3264         if (edev->state != QEDE_STATE_OPEN) {
3265                 DP_INFO(edev,
3266                         "qede_set_rx_mode called while interface is down\n");
3267         } else {
3268                 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3269                 schedule_delayed_work(&edev->sp_task, 0);
3270         }
3271 }
3272
3273 /* Must be called with qede_lock held */
3274 static void qede_config_rx_mode(struct net_device *ndev)
3275 {
3276         enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3277         struct qede_dev *edev = netdev_priv(ndev);
3278         struct qed_filter_params rx_mode;
3279         unsigned char *uc_macs, *temp;
3280         struct netdev_hw_addr *ha;
3281         int rc, uc_count;
3282         size_t size;
3283
3284         netif_addr_lock_bh(ndev);
3285
3286         uc_count = netdev_uc_count(ndev);
3287         size = uc_count * ETH_ALEN;
3288
3289         uc_macs = kzalloc(size, GFP_ATOMIC);
3290         if (!uc_macs) {
3291                 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3292                 netif_addr_unlock_bh(ndev);
3293                 return;
3294         }
3295
3296         temp = uc_macs;
3297         netdev_for_each_uc_addr(ha, ndev) {
3298                 ether_addr_copy(temp, ha->addr);
3299                 temp += ETH_ALEN;
3300         }
3301
3302         netif_addr_unlock_bh(ndev);
3303
3304         /* Configure the struct for the Rx mode */
3305         memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3306         rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3307
3308         /* Remove all previous unicast secondary macs and multicast macs
3309          * (configrue / leave the primary mac)
3310          */
3311         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3312                                    edev->primary_mac);
3313         if (rc)
3314                 goto out;
3315
3316         /* Check for promiscuous */
3317         if ((ndev->flags & IFF_PROMISC) ||
3318             (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3319                 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3320         } else {
3321                 /* Add MAC filters according to the unicast secondary macs */
3322                 int i;
3323
3324                 temp = uc_macs;
3325                 for (i = 0; i < uc_count; i++) {
3326                         rc = qede_set_ucast_rx_mac(edev,
3327                                                    QED_FILTER_XCAST_TYPE_ADD,
3328                                                    temp);
3329                         if (rc)
3330                                 goto out;
3331
3332                         temp += ETH_ALEN;
3333                 }
3334
3335                 rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3336                 if (rc)
3337                         goto out;
3338         }
3339
3340         /* take care of VLAN mode */
3341         if (ndev->flags & IFF_PROMISC) {
3342                 qede_config_accept_any_vlan(edev, true);
3343         } else if (!edev->non_configured_vlans) {
3344                 /* It's possible that accept_any_vlan mode is set due to a
3345                  * previous setting of IFF_PROMISC. If vlan credits are
3346                  * sufficient, disable accept_any_vlan.
3347                  */
3348                 qede_config_accept_any_vlan(edev, false);
3349         }
3350
3351         rx_mode.filter.accept_flags = accept_flags;
3352         edev->ops->filter_config(edev->cdev, &rx_mode);
3353 out:
3354         kfree(uc_macs);
3355 }