x86/speculation: Fix redundant MDS mitigation message
[linux-2.6-block.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
28
29 #include "e1000.h"
30
31 #define DRV_EXTRAVERSION "-k"
32
33 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
34 char e1000e_driver_name[] = "e1000e";
35 const char e1000e_driver_version[] = DRV_VERSION;
36
37 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
38 static int debug = -1;
39 module_param(debug, int, 0);
40 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
41
42 static const struct e1000_info *e1000_info_tbl[] = {
43         [board_82571]           = &e1000_82571_info,
44         [board_82572]           = &e1000_82572_info,
45         [board_82573]           = &e1000_82573_info,
46         [board_82574]           = &e1000_82574_info,
47         [board_82583]           = &e1000_82583_info,
48         [board_80003es2lan]     = &e1000_es2_info,
49         [board_ich8lan]         = &e1000_ich8_info,
50         [board_ich9lan]         = &e1000_ich9_info,
51         [board_ich10lan]        = &e1000_ich10_info,
52         [board_pchlan]          = &e1000_pch_info,
53         [board_pch2lan]         = &e1000_pch2_info,
54         [board_pch_lpt]         = &e1000_pch_lpt_info,
55         [board_pch_spt]         = &e1000_pch_spt_info,
56         [board_pch_cnp]         = &e1000_pch_cnp_info,
57 };
58
59 struct e1000_reg_info {
60         u32 ofs;
61         char *name;
62 };
63
64 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
65         /* General Registers */
66         {E1000_CTRL, "CTRL"},
67         {E1000_STATUS, "STATUS"},
68         {E1000_CTRL_EXT, "CTRL_EXT"},
69
70         /* Interrupt Registers */
71         {E1000_ICR, "ICR"},
72
73         /* Rx Registers */
74         {E1000_RCTL, "RCTL"},
75         {E1000_RDLEN(0), "RDLEN"},
76         {E1000_RDH(0), "RDH"},
77         {E1000_RDT(0), "RDT"},
78         {E1000_RDTR, "RDTR"},
79         {E1000_RXDCTL(0), "RXDCTL"},
80         {E1000_ERT, "ERT"},
81         {E1000_RDBAL(0), "RDBAL"},
82         {E1000_RDBAH(0), "RDBAH"},
83         {E1000_RDFH, "RDFH"},
84         {E1000_RDFT, "RDFT"},
85         {E1000_RDFHS, "RDFHS"},
86         {E1000_RDFTS, "RDFTS"},
87         {E1000_RDFPC, "RDFPC"},
88
89         /* Tx Registers */
90         {E1000_TCTL, "TCTL"},
91         {E1000_TDBAL(0), "TDBAL"},
92         {E1000_TDBAH(0), "TDBAH"},
93         {E1000_TDLEN(0), "TDLEN"},
94         {E1000_TDH(0), "TDH"},
95         {E1000_TDT(0), "TDT"},
96         {E1000_TIDV, "TIDV"},
97         {E1000_TXDCTL(0), "TXDCTL"},
98         {E1000_TADV, "TADV"},
99         {E1000_TARC(0), "TARC"},
100         {E1000_TDFH, "TDFH"},
101         {E1000_TDFT, "TDFT"},
102         {E1000_TDFHS, "TDFHS"},
103         {E1000_TDFTS, "TDFTS"},
104         {E1000_TDFPC, "TDFPC"},
105
106         /* List Terminator */
107         {0, NULL}
108 };
109
110 /**
111  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
112  * @hw: pointer to the HW structure
113  *
114  * When updating the MAC CSR registers, the Manageability Engine (ME) could
115  * be accessing the registers at the same time.  Normally, this is handled in
116  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
117  * accesses later than it should which could result in the register to have
118  * an incorrect value.  Workaround this by checking the FWSM register which
119  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
120  * and try again a number of times.
121  **/
122 s32 __ew32_prepare(struct e1000_hw *hw)
123 {
124         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
125
126         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
127                 udelay(50);
128
129         return i;
130 }
131
132 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
133 {
134         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
135                 __ew32_prepare(hw);
136
137         writel(val, hw->hw_addr + reg);
138 }
139
140 /**
141  * e1000_regdump - register printout routine
142  * @hw: pointer to the HW structure
143  * @reginfo: pointer to the register info table
144  **/
145 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
146 {
147         int n = 0;
148         char rname[16];
149         u32 regs[8];
150
151         switch (reginfo->ofs) {
152         case E1000_RXDCTL(0):
153                 for (n = 0; n < 2; n++)
154                         regs[n] = __er32(hw, E1000_RXDCTL(n));
155                 break;
156         case E1000_TXDCTL(0):
157                 for (n = 0; n < 2; n++)
158                         regs[n] = __er32(hw, E1000_TXDCTL(n));
159                 break;
160         case E1000_TARC(0):
161                 for (n = 0; n < 2; n++)
162                         regs[n] = __er32(hw, E1000_TARC(n));
163                 break;
164         default:
165                 pr_info("%-15s %08x\n",
166                         reginfo->name, __er32(hw, reginfo->ofs));
167                 return;
168         }
169
170         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
171         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
172 }
173
174 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
175                                  struct e1000_buffer *bi)
176 {
177         int i;
178         struct e1000_ps_page *ps_page;
179
180         for (i = 0; i < adapter->rx_ps_pages; i++) {
181                 ps_page = &bi->ps_pages[i];
182
183                 if (ps_page->page) {
184                         pr_info("packet dump for ps_page %d:\n", i);
185                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
186                                        16, 1, page_address(ps_page->page),
187                                        PAGE_SIZE, true);
188                 }
189         }
190 }
191
192 /**
193  * e1000e_dump - Print registers, Tx-ring and Rx-ring
194  * @adapter: board private structure
195  **/
196 static void e1000e_dump(struct e1000_adapter *adapter)
197 {
198         struct net_device *netdev = adapter->netdev;
199         struct e1000_hw *hw = &adapter->hw;
200         struct e1000_reg_info *reginfo;
201         struct e1000_ring *tx_ring = adapter->tx_ring;
202         struct e1000_tx_desc *tx_desc;
203         struct my_u0 {
204                 __le64 a;
205                 __le64 b;
206         } *u0;
207         struct e1000_buffer *buffer_info;
208         struct e1000_ring *rx_ring = adapter->rx_ring;
209         union e1000_rx_desc_packet_split *rx_desc_ps;
210         union e1000_rx_desc_extended *rx_desc;
211         struct my_u1 {
212                 __le64 a;
213                 __le64 b;
214                 __le64 c;
215                 __le64 d;
216         } *u1;
217         u32 staterr;
218         int i = 0;
219
220         if (!netif_msg_hw(adapter))
221                 return;
222
223         /* Print netdevice Info */
224         if (netdev) {
225                 dev_info(&adapter->pdev->dev, "Net device Info\n");
226                 pr_info("Device Name     state            trans_start\n");
227                 pr_info("%-15s %016lX %016lX\n", netdev->name,
228                         netdev->state, dev_trans_start(netdev));
229         }
230
231         /* Print Registers */
232         dev_info(&adapter->pdev->dev, "Register Dump\n");
233         pr_info(" Register Name   Value\n");
234         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
235              reginfo->name; reginfo++) {
236                 e1000_regdump(hw, reginfo);
237         }
238
239         /* Print Tx Ring Summary */
240         if (!netdev || !netif_running(netdev))
241                 return;
242
243         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
244         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
245         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
246         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
247                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
248                 (unsigned long long)buffer_info->dma,
249                 buffer_info->length,
250                 buffer_info->next_to_watch,
251                 (unsigned long long)buffer_info->time_stamp);
252
253         /* Print Tx Ring */
254         if (!netif_msg_tx_done(adapter))
255                 goto rx_ring_summary;
256
257         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
258
259         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
260          *
261          * Legacy Transmit Descriptor
262          *   +--------------------------------------------------------------+
263          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
264          *   +--------------------------------------------------------------+
265          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
266          *   +--------------------------------------------------------------+
267          *   63       48 47        36 35    32 31     24 23    16 15        0
268          *
269          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
270          *   63      48 47    40 39       32 31             16 15    8 7      0
271          *   +----------------------------------------------------------------+
272          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
273          *   +----------------------------------------------------------------+
274          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
275          *   +----------------------------------------------------------------+
276          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
277          *
278          * Extended Data Descriptor (DTYP=0x1)
279          *   +----------------------------------------------------------------+
280          * 0 |                     Buffer Address [63:0]                      |
281          *   +----------------------------------------------------------------+
282          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
283          *   +----------------------------------------------------------------+
284          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
285          */
286         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
287         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
288         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
289         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
290                 const char *next_desc;
291                 tx_desc = E1000_TX_DESC(*tx_ring, i);
292                 buffer_info = &tx_ring->buffer_info[i];
293                 u0 = (struct my_u0 *)tx_desc;
294                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
295                         next_desc = " NTC/U";
296                 else if (i == tx_ring->next_to_use)
297                         next_desc = " NTU";
298                 else if (i == tx_ring->next_to_clean)
299                         next_desc = " NTC";
300                 else
301                         next_desc = "";
302                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
303                         (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
304                          ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
305                         i,
306                         (unsigned long long)le64_to_cpu(u0->a),
307                         (unsigned long long)le64_to_cpu(u0->b),
308                         (unsigned long long)buffer_info->dma,
309                         buffer_info->length, buffer_info->next_to_watch,
310                         (unsigned long long)buffer_info->time_stamp,
311                         buffer_info->skb, next_desc);
312
313                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
314                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
315                                        16, 1, buffer_info->skb->data,
316                                        buffer_info->skb->len, true);
317         }
318
319         /* Print Rx Ring Summary */
320 rx_ring_summary:
321         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
322         pr_info("Queue [NTU] [NTC]\n");
323         pr_info(" %5d %5X %5X\n",
324                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
325
326         /* Print Rx Ring */
327         if (!netif_msg_rx_status(adapter))
328                 return;
329
330         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
331         switch (adapter->rx_ps_pages) {
332         case 1:
333         case 2:
334         case 3:
335                 /* [Extended] Packet Split Receive Descriptor Format
336                  *
337                  *    +-----------------------------------------------------+
338                  *  0 |                Buffer Address 0 [63:0]              |
339                  *    +-----------------------------------------------------+
340                  *  8 |                Buffer Address 1 [63:0]              |
341                  *    +-----------------------------------------------------+
342                  * 16 |                Buffer Address 2 [63:0]              |
343                  *    +-----------------------------------------------------+
344                  * 24 |                Buffer Address 3 [63:0]              |
345                  *    +-----------------------------------------------------+
346                  */
347                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
348                 /* [Extended] Receive Descriptor (Write-Back) Format
349                  *
350                  *   63       48 47    32 31     13 12    8 7    4 3        0
351                  *   +------------------------------------------------------+
352                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
353                  *   | Checksum | Ident  |         | Queue |      |  Type   |
354                  *   +------------------------------------------------------+
355                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
356                  *   +------------------------------------------------------+
357                  *   63       48 47    32 31            20 19               0
358                  */
359                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
360                 for (i = 0; i < rx_ring->count; i++) {
361                         const char *next_desc;
362                         buffer_info = &rx_ring->buffer_info[i];
363                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
364                         u1 = (struct my_u1 *)rx_desc_ps;
365                         staterr =
366                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
367
368                         if (i == rx_ring->next_to_use)
369                                 next_desc = " NTU";
370                         else if (i == rx_ring->next_to_clean)
371                                 next_desc = " NTC";
372                         else
373                                 next_desc = "";
374
375                         if (staterr & E1000_RXD_STAT_DD) {
376                                 /* Descriptor Done */
377                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
378                                         "RWB", i,
379                                         (unsigned long long)le64_to_cpu(u1->a),
380                                         (unsigned long long)le64_to_cpu(u1->b),
381                                         (unsigned long long)le64_to_cpu(u1->c),
382                                         (unsigned long long)le64_to_cpu(u1->d),
383                                         buffer_info->skb, next_desc);
384                         } else {
385                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
386                                         "R  ", i,
387                                         (unsigned long long)le64_to_cpu(u1->a),
388                                         (unsigned long long)le64_to_cpu(u1->b),
389                                         (unsigned long long)le64_to_cpu(u1->c),
390                                         (unsigned long long)le64_to_cpu(u1->d),
391                                         (unsigned long long)buffer_info->dma,
392                                         buffer_info->skb, next_desc);
393
394                                 if (netif_msg_pktdata(adapter))
395                                         e1000e_dump_ps_pages(adapter,
396                                                              buffer_info);
397                         }
398                 }
399                 break;
400         default:
401         case 0:
402                 /* Extended Receive Descriptor (Read) Format
403                  *
404                  *   +-----------------------------------------------------+
405                  * 0 |                Buffer Address [63:0]                |
406                  *   +-----------------------------------------------------+
407                  * 8 |                      Reserved                       |
408                  *   +-----------------------------------------------------+
409                  */
410                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
411                 /* Extended Receive Descriptor (Write-Back) Format
412                  *
413                  *   63       48 47    32 31    24 23            4 3        0
414                  *   +------------------------------------------------------+
415                  *   |     RSS Hash      |        |               |         |
416                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
417                  *   | Packet   | IP     |        |               |  Type   |
418                  *   | Checksum | Ident  |        |               |         |
419                  *   +------------------------------------------------------+
420                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
421                  *   +------------------------------------------------------+
422                  *   63       48 47    32 31            20 19               0
423                  */
424                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
425
426                 for (i = 0; i < rx_ring->count; i++) {
427                         const char *next_desc;
428
429                         buffer_info = &rx_ring->buffer_info[i];
430                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
431                         u1 = (struct my_u1 *)rx_desc;
432                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
433
434                         if (i == rx_ring->next_to_use)
435                                 next_desc = " NTU";
436                         else if (i == rx_ring->next_to_clean)
437                                 next_desc = " NTC";
438                         else
439                                 next_desc = "";
440
441                         if (staterr & E1000_RXD_STAT_DD) {
442                                 /* Descriptor Done */
443                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
444                                         "RWB", i,
445                                         (unsigned long long)le64_to_cpu(u1->a),
446                                         (unsigned long long)le64_to_cpu(u1->b),
447                                         buffer_info->skb, next_desc);
448                         } else {
449                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
450                                         "R  ", i,
451                                         (unsigned long long)le64_to_cpu(u1->a),
452                                         (unsigned long long)le64_to_cpu(u1->b),
453                                         (unsigned long long)buffer_info->dma,
454                                         buffer_info->skb, next_desc);
455
456                                 if (netif_msg_pktdata(adapter) &&
457                                     buffer_info->skb)
458                                         print_hex_dump(KERN_INFO, "",
459                                                        DUMP_PREFIX_ADDRESS, 16,
460                                                        1,
461                                                        buffer_info->skb->data,
462                                                        adapter->rx_buffer_len,
463                                                        true);
464                         }
465                 }
466         }
467 }
468
469 /**
470  * e1000_desc_unused - calculate if we have unused descriptors
471  **/
472 static int e1000_desc_unused(struct e1000_ring *ring)
473 {
474         if (ring->next_to_clean > ring->next_to_use)
475                 return ring->next_to_clean - ring->next_to_use - 1;
476
477         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
478 }
479
480 /**
481  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
482  * @adapter: board private structure
483  * @hwtstamps: time stamp structure to update
484  * @systim: unsigned 64bit system time value.
485  *
486  * Convert the system time value stored in the RX/TXSTMP registers into a
487  * hwtstamp which can be used by the upper level time stamping functions.
488  *
489  * The 'systim_lock' spinlock is used to protect the consistency of the
490  * system time value. This is needed because reading the 64 bit time
491  * value involves reading two 32 bit registers. The first read latches the
492  * value.
493  **/
494 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
495                                       struct skb_shared_hwtstamps *hwtstamps,
496                                       u64 systim)
497 {
498         u64 ns;
499         unsigned long flags;
500
501         spin_lock_irqsave(&adapter->systim_lock, flags);
502         ns = timecounter_cyc2time(&adapter->tc, systim);
503         spin_unlock_irqrestore(&adapter->systim_lock, flags);
504
505         memset(hwtstamps, 0, sizeof(*hwtstamps));
506         hwtstamps->hwtstamp = ns_to_ktime(ns);
507 }
508
509 /**
510  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
511  * @adapter: board private structure
512  * @status: descriptor extended error and status field
513  * @skb: particular skb to include time stamp
514  *
515  * If the time stamp is valid, convert it into the timecounter ns value
516  * and store that result into the shhwtstamps structure which is passed
517  * up the network stack.
518  **/
519 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
520                                struct sk_buff *skb)
521 {
522         struct e1000_hw *hw = &adapter->hw;
523         u64 rxstmp;
524
525         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
526             !(status & E1000_RXDEXT_STATERR_TST) ||
527             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
528                 return;
529
530         /* The Rx time stamp registers contain the time stamp.  No other
531          * received packet will be time stamped until the Rx time stamp
532          * registers are read.  Because only one packet can be time stamped
533          * at a time, the register values must belong to this packet and
534          * therefore none of the other additional attributes need to be
535          * compared.
536          */
537         rxstmp = (u64)er32(RXSTMPL);
538         rxstmp |= (u64)er32(RXSTMPH) << 32;
539         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
540
541         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
542 }
543
544 /**
545  * e1000_receive_skb - helper function to handle Rx indications
546  * @adapter: board private structure
547  * @staterr: descriptor extended error and status field as written by hardware
548  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
549  * @skb: pointer to sk_buff to be indicated to stack
550  **/
551 static void e1000_receive_skb(struct e1000_adapter *adapter,
552                               struct net_device *netdev, struct sk_buff *skb,
553                               u32 staterr, __le16 vlan)
554 {
555         u16 tag = le16_to_cpu(vlan);
556
557         e1000e_rx_hwtstamp(adapter, staterr, skb);
558
559         skb->protocol = eth_type_trans(skb, netdev);
560
561         if (staterr & E1000_RXD_STAT_VP)
562                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
563
564         napi_gro_receive(&adapter->napi, skb);
565 }
566
567 /**
568  * e1000_rx_checksum - Receive Checksum Offload
569  * @adapter: board private structure
570  * @status_err: receive descriptor status and error fields
571  * @csum: receive descriptor csum field
572  * @sk_buff: socket buffer with received data
573  **/
574 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
575                               struct sk_buff *skb)
576 {
577         u16 status = (u16)status_err;
578         u8 errors = (u8)(status_err >> 24);
579
580         skb_checksum_none_assert(skb);
581
582         /* Rx checksum disabled */
583         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
584                 return;
585
586         /* Ignore Checksum bit is set */
587         if (status & E1000_RXD_STAT_IXSM)
588                 return;
589
590         /* TCP/UDP checksum error bit or IP checksum error bit is set */
591         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
592                 /* let the stack verify checksum errors */
593                 adapter->hw_csum_err++;
594                 return;
595         }
596
597         /* TCP/UDP Checksum has not been calculated */
598         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
599                 return;
600
601         /* It must be a TCP or UDP packet with a valid checksum */
602         skb->ip_summed = CHECKSUM_UNNECESSARY;
603         adapter->hw_csum_good++;
604 }
605
606 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
607 {
608         struct e1000_adapter *adapter = rx_ring->adapter;
609         struct e1000_hw *hw = &adapter->hw;
610         s32 ret_val = __ew32_prepare(hw);
611
612         writel(i, rx_ring->tail);
613
614         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
615                 u32 rctl = er32(RCTL);
616
617                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
618                 e_err("ME firmware caused invalid RDT - resetting\n");
619                 schedule_work(&adapter->reset_task);
620         }
621 }
622
623 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
624 {
625         struct e1000_adapter *adapter = tx_ring->adapter;
626         struct e1000_hw *hw = &adapter->hw;
627         s32 ret_val = __ew32_prepare(hw);
628
629         writel(i, tx_ring->tail);
630
631         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
632                 u32 tctl = er32(TCTL);
633
634                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
635                 e_err("ME firmware caused invalid TDT - resetting\n");
636                 schedule_work(&adapter->reset_task);
637         }
638 }
639
640 /**
641  * e1000_alloc_rx_buffers - Replace used receive buffers
642  * @rx_ring: Rx descriptor ring
643  **/
644 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
645                                    int cleaned_count, gfp_t gfp)
646 {
647         struct e1000_adapter *adapter = rx_ring->adapter;
648         struct net_device *netdev = adapter->netdev;
649         struct pci_dev *pdev = adapter->pdev;
650         union e1000_rx_desc_extended *rx_desc;
651         struct e1000_buffer *buffer_info;
652         struct sk_buff *skb;
653         unsigned int i;
654         unsigned int bufsz = adapter->rx_buffer_len;
655
656         i = rx_ring->next_to_use;
657         buffer_info = &rx_ring->buffer_info[i];
658
659         while (cleaned_count--) {
660                 skb = buffer_info->skb;
661                 if (skb) {
662                         skb_trim(skb, 0);
663                         goto map_skb;
664                 }
665
666                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
667                 if (!skb) {
668                         /* Better luck next round */
669                         adapter->alloc_rx_buff_failed++;
670                         break;
671                 }
672
673                 buffer_info->skb = skb;
674 map_skb:
675                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
676                                                   adapter->rx_buffer_len,
677                                                   DMA_FROM_DEVICE);
678                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
679                         dev_err(&pdev->dev, "Rx DMA map failed\n");
680                         adapter->rx_dma_failed++;
681                         break;
682                 }
683
684                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
685                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
686
687                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
688                         /* Force memory writes to complete before letting h/w
689                          * know there are new descriptors to fetch.  (Only
690                          * applicable for weak-ordered memory model archs,
691                          * such as IA-64).
692                          */
693                         wmb();
694                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
695                                 e1000e_update_rdt_wa(rx_ring, i);
696                         else
697                                 writel(i, rx_ring->tail);
698                 }
699                 i++;
700                 if (i == rx_ring->count)
701                         i = 0;
702                 buffer_info = &rx_ring->buffer_info[i];
703         }
704
705         rx_ring->next_to_use = i;
706 }
707
708 /**
709  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
710  * @rx_ring: Rx descriptor ring
711  **/
712 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
713                                       int cleaned_count, gfp_t gfp)
714 {
715         struct e1000_adapter *adapter = rx_ring->adapter;
716         struct net_device *netdev = adapter->netdev;
717         struct pci_dev *pdev = adapter->pdev;
718         union e1000_rx_desc_packet_split *rx_desc;
719         struct e1000_buffer *buffer_info;
720         struct e1000_ps_page *ps_page;
721         struct sk_buff *skb;
722         unsigned int i, j;
723
724         i = rx_ring->next_to_use;
725         buffer_info = &rx_ring->buffer_info[i];
726
727         while (cleaned_count--) {
728                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
729
730                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
731                         ps_page = &buffer_info->ps_pages[j];
732                         if (j >= adapter->rx_ps_pages) {
733                                 /* all unused desc entries get hw null ptr */
734                                 rx_desc->read.buffer_addr[j + 1] =
735                                     ~cpu_to_le64(0);
736                                 continue;
737                         }
738                         if (!ps_page->page) {
739                                 ps_page->page = alloc_page(gfp);
740                                 if (!ps_page->page) {
741                                         adapter->alloc_rx_buff_failed++;
742                                         goto no_buffers;
743                                 }
744                                 ps_page->dma = dma_map_page(&pdev->dev,
745                                                             ps_page->page,
746                                                             0, PAGE_SIZE,
747                                                             DMA_FROM_DEVICE);
748                                 if (dma_mapping_error(&pdev->dev,
749                                                       ps_page->dma)) {
750                                         dev_err(&adapter->pdev->dev,
751                                                 "Rx DMA page map failed\n");
752                                         adapter->rx_dma_failed++;
753                                         goto no_buffers;
754                                 }
755                         }
756                         /* Refresh the desc even if buffer_addrs
757                          * didn't change because each write-back
758                          * erases this info.
759                          */
760                         rx_desc->read.buffer_addr[j + 1] =
761                             cpu_to_le64(ps_page->dma);
762                 }
763
764                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
765                                                   gfp);
766
767                 if (!skb) {
768                         adapter->alloc_rx_buff_failed++;
769                         break;
770                 }
771
772                 buffer_info->skb = skb;
773                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
774                                                   adapter->rx_ps_bsize0,
775                                                   DMA_FROM_DEVICE);
776                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
777                         dev_err(&pdev->dev, "Rx DMA map failed\n");
778                         adapter->rx_dma_failed++;
779                         /* cleanup skb */
780                         dev_kfree_skb_any(skb);
781                         buffer_info->skb = NULL;
782                         break;
783                 }
784
785                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
786
787                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
788                         /* Force memory writes to complete before letting h/w
789                          * know there are new descriptors to fetch.  (Only
790                          * applicable for weak-ordered memory model archs,
791                          * such as IA-64).
792                          */
793                         wmb();
794                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
795                                 e1000e_update_rdt_wa(rx_ring, i << 1);
796                         else
797                                 writel(i << 1, rx_ring->tail);
798                 }
799
800                 i++;
801                 if (i == rx_ring->count)
802                         i = 0;
803                 buffer_info = &rx_ring->buffer_info[i];
804         }
805
806 no_buffers:
807         rx_ring->next_to_use = i;
808 }
809
810 /**
811  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
812  * @rx_ring: Rx descriptor ring
813  * @cleaned_count: number of buffers to allocate this pass
814  **/
815
816 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
817                                          int cleaned_count, gfp_t gfp)
818 {
819         struct e1000_adapter *adapter = rx_ring->adapter;
820         struct net_device *netdev = adapter->netdev;
821         struct pci_dev *pdev = adapter->pdev;
822         union e1000_rx_desc_extended *rx_desc;
823         struct e1000_buffer *buffer_info;
824         struct sk_buff *skb;
825         unsigned int i;
826         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
827
828         i = rx_ring->next_to_use;
829         buffer_info = &rx_ring->buffer_info[i];
830
831         while (cleaned_count--) {
832                 skb = buffer_info->skb;
833                 if (skb) {
834                         skb_trim(skb, 0);
835                         goto check_page;
836                 }
837
838                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
839                 if (unlikely(!skb)) {
840                         /* Better luck next round */
841                         adapter->alloc_rx_buff_failed++;
842                         break;
843                 }
844
845                 buffer_info->skb = skb;
846 check_page:
847                 /* allocate a new page if necessary */
848                 if (!buffer_info->page) {
849                         buffer_info->page = alloc_page(gfp);
850                         if (unlikely(!buffer_info->page)) {
851                                 adapter->alloc_rx_buff_failed++;
852                                 break;
853                         }
854                 }
855
856                 if (!buffer_info->dma) {
857                         buffer_info->dma = dma_map_page(&pdev->dev,
858                                                         buffer_info->page, 0,
859                                                         PAGE_SIZE,
860                                                         DMA_FROM_DEVICE);
861                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
862                                 adapter->alloc_rx_buff_failed++;
863                                 break;
864                         }
865                 }
866
867                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
868                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
869
870                 if (unlikely(++i == rx_ring->count))
871                         i = 0;
872                 buffer_info = &rx_ring->buffer_info[i];
873         }
874
875         if (likely(rx_ring->next_to_use != i)) {
876                 rx_ring->next_to_use = i;
877                 if (unlikely(i-- == 0))
878                         i = (rx_ring->count - 1);
879
880                 /* Force memory writes to complete before letting h/w
881                  * know there are new descriptors to fetch.  (Only
882                  * applicable for weak-ordered memory model archs,
883                  * such as IA-64).
884                  */
885                 wmb();
886                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
887                         e1000e_update_rdt_wa(rx_ring, i);
888                 else
889                         writel(i, rx_ring->tail);
890         }
891 }
892
893 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
894                                  struct sk_buff *skb)
895 {
896         if (netdev->features & NETIF_F_RXHASH)
897                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
898 }
899
900 /**
901  * e1000_clean_rx_irq - Send received data up the network stack
902  * @rx_ring: Rx descriptor ring
903  *
904  * the return value indicates whether actual cleaning was done, there
905  * is no guarantee that everything was cleaned
906  **/
907 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
908                                int work_to_do)
909 {
910         struct e1000_adapter *adapter = rx_ring->adapter;
911         struct net_device *netdev = adapter->netdev;
912         struct pci_dev *pdev = adapter->pdev;
913         struct e1000_hw *hw = &adapter->hw;
914         union e1000_rx_desc_extended *rx_desc, *next_rxd;
915         struct e1000_buffer *buffer_info, *next_buffer;
916         u32 length, staterr;
917         unsigned int i;
918         int cleaned_count = 0;
919         bool cleaned = false;
920         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
921
922         i = rx_ring->next_to_clean;
923         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
924         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
925         buffer_info = &rx_ring->buffer_info[i];
926
927         while (staterr & E1000_RXD_STAT_DD) {
928                 struct sk_buff *skb;
929
930                 if (*work_done >= work_to_do)
931                         break;
932                 (*work_done)++;
933                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
934
935                 skb = buffer_info->skb;
936                 buffer_info->skb = NULL;
937
938                 prefetch(skb->data - NET_IP_ALIGN);
939
940                 i++;
941                 if (i == rx_ring->count)
942                         i = 0;
943                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
944                 prefetch(next_rxd);
945
946                 next_buffer = &rx_ring->buffer_info[i];
947
948                 cleaned = true;
949                 cleaned_count++;
950                 dma_unmap_single(&pdev->dev, buffer_info->dma,
951                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
952                 buffer_info->dma = 0;
953
954                 length = le16_to_cpu(rx_desc->wb.upper.length);
955
956                 /* !EOP means multiple descriptors were used to store a single
957                  * packet, if that's the case we need to toss it.  In fact, we
958                  * need to toss every packet with the EOP bit clear and the
959                  * next frame that _does_ have the EOP bit set, as it is by
960                  * definition only a frame fragment
961                  */
962                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
963                         adapter->flags2 |= FLAG2_IS_DISCARDING;
964
965                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
966                         /* All receives must fit into a single buffer */
967                         e_dbg("Receive packet consumed multiple buffers\n");
968                         /* recycle */
969                         buffer_info->skb = skb;
970                         if (staterr & E1000_RXD_STAT_EOP)
971                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
972                         goto next_desc;
973                 }
974
975                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
976                              !(netdev->features & NETIF_F_RXALL))) {
977                         /* recycle */
978                         buffer_info->skb = skb;
979                         goto next_desc;
980                 }
981
982                 /* adjust length to remove Ethernet CRC */
983                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
984                         /* If configured to store CRC, don't subtract FCS,
985                          * but keep the FCS bytes out of the total_rx_bytes
986                          * counter
987                          */
988                         if (netdev->features & NETIF_F_RXFCS)
989                                 total_rx_bytes -= 4;
990                         else
991                                 length -= 4;
992                 }
993
994                 total_rx_bytes += length;
995                 total_rx_packets++;
996
997                 /* code added for copybreak, this should improve
998                  * performance for small packets with large amounts
999                  * of reassembly being done in the stack
1000                  */
1001                 if (length < copybreak) {
1002                         struct sk_buff *new_skb =
1003                                 napi_alloc_skb(&adapter->napi, length);
1004                         if (new_skb) {
1005                                 skb_copy_to_linear_data_offset(new_skb,
1006                                                                -NET_IP_ALIGN,
1007                                                                (skb->data -
1008                                                                 NET_IP_ALIGN),
1009                                                                (length +
1010                                                                 NET_IP_ALIGN));
1011                                 /* save the skb in buffer_info as good */
1012                                 buffer_info->skb = skb;
1013                                 skb = new_skb;
1014                         }
1015                         /* else just continue with the old one */
1016                 }
1017                 /* end copybreak code */
1018                 skb_put(skb, length);
1019
1020                 /* Receive Checksum Offload */
1021                 e1000_rx_checksum(adapter, staterr, skb);
1022
1023                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1024
1025                 e1000_receive_skb(adapter, netdev, skb, staterr,
1026                                   rx_desc->wb.upper.vlan);
1027
1028 next_desc:
1029                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1030
1031                 /* return some buffers to hardware, one at a time is too slow */
1032                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1033                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1034                                               GFP_ATOMIC);
1035                         cleaned_count = 0;
1036                 }
1037
1038                 /* use prefetched values */
1039                 rx_desc = next_rxd;
1040                 buffer_info = next_buffer;
1041
1042                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1043         }
1044         rx_ring->next_to_clean = i;
1045
1046         cleaned_count = e1000_desc_unused(rx_ring);
1047         if (cleaned_count)
1048                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1049
1050         adapter->total_rx_bytes += total_rx_bytes;
1051         adapter->total_rx_packets += total_rx_packets;
1052         return cleaned;
1053 }
1054
1055 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1056                             struct e1000_buffer *buffer_info,
1057                             bool drop)
1058 {
1059         struct e1000_adapter *adapter = tx_ring->adapter;
1060
1061         if (buffer_info->dma) {
1062                 if (buffer_info->mapped_as_page)
1063                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1064                                        buffer_info->length, DMA_TO_DEVICE);
1065                 else
1066                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1067                                          buffer_info->length, DMA_TO_DEVICE);
1068                 buffer_info->dma = 0;
1069         }
1070         if (buffer_info->skb) {
1071                 if (drop)
1072                         dev_kfree_skb_any(buffer_info->skb);
1073                 else
1074                         dev_consume_skb_any(buffer_info->skb);
1075                 buffer_info->skb = NULL;
1076         }
1077         buffer_info->time_stamp = 0;
1078 }
1079
1080 static void e1000_print_hw_hang(struct work_struct *work)
1081 {
1082         struct e1000_adapter *adapter = container_of(work,
1083                                                      struct e1000_adapter,
1084                                                      print_hang_task);
1085         struct net_device *netdev = adapter->netdev;
1086         struct e1000_ring *tx_ring = adapter->tx_ring;
1087         unsigned int i = tx_ring->next_to_clean;
1088         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1089         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1090         struct e1000_hw *hw = &adapter->hw;
1091         u16 phy_status, phy_1000t_status, phy_ext_status;
1092         u16 pci_status;
1093
1094         if (test_bit(__E1000_DOWN, &adapter->state))
1095                 return;
1096
1097         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1098                 /* May be block on write-back, flush and detect again
1099                  * flush pending descriptor writebacks to memory
1100                  */
1101                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1102                 /* execute the writes immediately */
1103                 e1e_flush();
1104                 /* Due to rare timing issues, write to TIDV again to ensure
1105                  * the write is successful
1106                  */
1107                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1108                 /* execute the writes immediately */
1109                 e1e_flush();
1110                 adapter->tx_hang_recheck = true;
1111                 return;
1112         }
1113         adapter->tx_hang_recheck = false;
1114
1115         if (er32(TDH(0)) == er32(TDT(0))) {
1116                 e_dbg("false hang detected, ignoring\n");
1117                 return;
1118         }
1119
1120         /* Real hang detected */
1121         netif_stop_queue(netdev);
1122
1123         e1e_rphy(hw, MII_BMSR, &phy_status);
1124         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1125         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1126
1127         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1128
1129         /* detected Hardware unit hang */
1130         e_err("Detected Hardware Unit Hang:\n"
1131               "  TDH                  <%x>\n"
1132               "  TDT                  <%x>\n"
1133               "  next_to_use          <%x>\n"
1134               "  next_to_clean        <%x>\n"
1135               "buffer_info[next_to_clean]:\n"
1136               "  time_stamp           <%lx>\n"
1137               "  next_to_watch        <%x>\n"
1138               "  jiffies              <%lx>\n"
1139               "  next_to_watch.status <%x>\n"
1140               "MAC Status             <%x>\n"
1141               "PHY Status             <%x>\n"
1142               "PHY 1000BASE-T Status  <%x>\n"
1143               "PHY Extended Status    <%x>\n"
1144               "PCI Status             <%x>\n",
1145               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1146               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1147               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1148               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1149
1150         e1000e_dump(adapter);
1151
1152         /* Suggest workaround for known h/w issue */
1153         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1154                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1155 }
1156
1157 /**
1158  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1159  * @work: pointer to work struct
1160  *
1161  * This work function polls the TSYNCTXCTL valid bit to determine when a
1162  * timestamp has been taken for the current stored skb.  The timestamp must
1163  * be for this skb because only one such packet is allowed in the queue.
1164  */
1165 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1166 {
1167         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1168                                                      tx_hwtstamp_work);
1169         struct e1000_hw *hw = &adapter->hw;
1170
1171         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1172                 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1173                 struct skb_shared_hwtstamps shhwtstamps;
1174                 u64 txstmp;
1175
1176                 txstmp = er32(TXSTMPL);
1177                 txstmp |= (u64)er32(TXSTMPH) << 32;
1178
1179                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1180
1181                 /* Clear the global tx_hwtstamp_skb pointer and force writes
1182                  * prior to notifying the stack of a Tx timestamp.
1183                  */
1184                 adapter->tx_hwtstamp_skb = NULL;
1185                 wmb(); /* force write prior to skb_tstamp_tx */
1186
1187                 skb_tstamp_tx(skb, &shhwtstamps);
1188                 dev_consume_skb_any(skb);
1189         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1190                               + adapter->tx_timeout_factor * HZ)) {
1191                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1192                 adapter->tx_hwtstamp_skb = NULL;
1193                 adapter->tx_hwtstamp_timeouts++;
1194                 e_warn("clearing Tx timestamp hang\n");
1195         } else {
1196                 /* reschedule to check later */
1197                 schedule_work(&adapter->tx_hwtstamp_work);
1198         }
1199 }
1200
1201 /**
1202  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1203  * @tx_ring: Tx descriptor ring
1204  *
1205  * the return value indicates whether actual cleaning was done, there
1206  * is no guarantee that everything was cleaned
1207  **/
1208 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1209 {
1210         struct e1000_adapter *adapter = tx_ring->adapter;
1211         struct net_device *netdev = adapter->netdev;
1212         struct e1000_hw *hw = &adapter->hw;
1213         struct e1000_tx_desc *tx_desc, *eop_desc;
1214         struct e1000_buffer *buffer_info;
1215         unsigned int i, eop;
1216         unsigned int count = 0;
1217         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1218         unsigned int bytes_compl = 0, pkts_compl = 0;
1219
1220         i = tx_ring->next_to_clean;
1221         eop = tx_ring->buffer_info[i].next_to_watch;
1222         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1223
1224         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1225                (count < tx_ring->count)) {
1226                 bool cleaned = false;
1227
1228                 dma_rmb();              /* read buffer_info after eop_desc */
1229                 for (; !cleaned; count++) {
1230                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1231                         buffer_info = &tx_ring->buffer_info[i];
1232                         cleaned = (i == eop);
1233
1234                         if (cleaned) {
1235                                 total_tx_packets += buffer_info->segs;
1236                                 total_tx_bytes += buffer_info->bytecount;
1237                                 if (buffer_info->skb) {
1238                                         bytes_compl += buffer_info->skb->len;
1239                                         pkts_compl++;
1240                                 }
1241                         }
1242
1243                         e1000_put_txbuf(tx_ring, buffer_info, false);
1244                         tx_desc->upper.data = 0;
1245
1246                         i++;
1247                         if (i == tx_ring->count)
1248                                 i = 0;
1249                 }
1250
1251                 if (i == tx_ring->next_to_use)
1252                         break;
1253                 eop = tx_ring->buffer_info[i].next_to_watch;
1254                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1255         }
1256
1257         tx_ring->next_to_clean = i;
1258
1259         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1260
1261 #define TX_WAKE_THRESHOLD 32
1262         if (count && netif_carrier_ok(netdev) &&
1263             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1264                 /* Make sure that anybody stopping the queue after this
1265                  * sees the new next_to_clean.
1266                  */
1267                 smp_mb();
1268
1269                 if (netif_queue_stopped(netdev) &&
1270                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1271                         netif_wake_queue(netdev);
1272                         ++adapter->restart_queue;
1273                 }
1274         }
1275
1276         if (adapter->detect_tx_hung) {
1277                 /* Detect a transmit hang in hardware, this serializes the
1278                  * check with the clearing of time_stamp and movement of i
1279                  */
1280                 adapter->detect_tx_hung = false;
1281                 if (tx_ring->buffer_info[i].time_stamp &&
1282                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1283                                + (adapter->tx_timeout_factor * HZ)) &&
1284                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1285                         schedule_work(&adapter->print_hang_task);
1286                 else
1287                         adapter->tx_hang_recheck = false;
1288         }
1289         adapter->total_tx_bytes += total_tx_bytes;
1290         adapter->total_tx_packets += total_tx_packets;
1291         return count < tx_ring->count;
1292 }
1293
1294 /**
1295  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1296  * @rx_ring: Rx descriptor ring
1297  *
1298  * the return value indicates whether actual cleaning was done, there
1299  * is no guarantee that everything was cleaned
1300  **/
1301 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1302                                   int work_to_do)
1303 {
1304         struct e1000_adapter *adapter = rx_ring->adapter;
1305         struct e1000_hw *hw = &adapter->hw;
1306         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1307         struct net_device *netdev = adapter->netdev;
1308         struct pci_dev *pdev = adapter->pdev;
1309         struct e1000_buffer *buffer_info, *next_buffer;
1310         struct e1000_ps_page *ps_page;
1311         struct sk_buff *skb;
1312         unsigned int i, j;
1313         u32 length, staterr;
1314         int cleaned_count = 0;
1315         bool cleaned = false;
1316         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1317
1318         i = rx_ring->next_to_clean;
1319         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1320         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1321         buffer_info = &rx_ring->buffer_info[i];
1322
1323         while (staterr & E1000_RXD_STAT_DD) {
1324                 if (*work_done >= work_to_do)
1325                         break;
1326                 (*work_done)++;
1327                 skb = buffer_info->skb;
1328                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1329
1330                 /* in the packet split case this is header only */
1331                 prefetch(skb->data - NET_IP_ALIGN);
1332
1333                 i++;
1334                 if (i == rx_ring->count)
1335                         i = 0;
1336                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1337                 prefetch(next_rxd);
1338
1339                 next_buffer = &rx_ring->buffer_info[i];
1340
1341                 cleaned = true;
1342                 cleaned_count++;
1343                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1344                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1345                 buffer_info->dma = 0;
1346
1347                 /* see !EOP comment in other Rx routine */
1348                 if (!(staterr & E1000_RXD_STAT_EOP))
1349                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1350
1351                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1352                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1353                         dev_kfree_skb_irq(skb);
1354                         if (staterr & E1000_RXD_STAT_EOP)
1355                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1356                         goto next_desc;
1357                 }
1358
1359                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1360                              !(netdev->features & NETIF_F_RXALL))) {
1361                         dev_kfree_skb_irq(skb);
1362                         goto next_desc;
1363                 }
1364
1365                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1366
1367                 if (!length) {
1368                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1369                         dev_kfree_skb_irq(skb);
1370                         goto next_desc;
1371                 }
1372
1373                 /* Good Receive */
1374                 skb_put(skb, length);
1375
1376                 {
1377                         /* this looks ugly, but it seems compiler issues make
1378                          * it more efficient than reusing j
1379                          */
1380                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1381
1382                         /* page alloc/put takes too long and effects small
1383                          * packet throughput, so unsplit small packets and
1384                          * save the alloc/put only valid in softirq (napi)
1385                          * context to call kmap_*
1386                          */
1387                         if (l1 && (l1 <= copybreak) &&
1388                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1389                                 u8 *vaddr;
1390
1391                                 ps_page = &buffer_info->ps_pages[0];
1392
1393                                 /* there is no documentation about how to call
1394                                  * kmap_atomic, so we can't hold the mapping
1395                                  * very long
1396                                  */
1397                                 dma_sync_single_for_cpu(&pdev->dev,
1398                                                         ps_page->dma,
1399                                                         PAGE_SIZE,
1400                                                         DMA_FROM_DEVICE);
1401                                 vaddr = kmap_atomic(ps_page->page);
1402                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1403                                 kunmap_atomic(vaddr);
1404                                 dma_sync_single_for_device(&pdev->dev,
1405                                                            ps_page->dma,
1406                                                            PAGE_SIZE,
1407                                                            DMA_FROM_DEVICE);
1408
1409                                 /* remove the CRC */
1410                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1411                                         if (!(netdev->features & NETIF_F_RXFCS))
1412                                                 l1 -= 4;
1413                                 }
1414
1415                                 skb_put(skb, l1);
1416                                 goto copydone;
1417                         }       /* if */
1418                 }
1419
1420                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1421                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1422                         if (!length)
1423                                 break;
1424
1425                         ps_page = &buffer_info->ps_pages[j];
1426                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1427                                        DMA_FROM_DEVICE);
1428                         ps_page->dma = 0;
1429                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1430                         ps_page->page = NULL;
1431                         skb->len += length;
1432                         skb->data_len += length;
1433                         skb->truesize += PAGE_SIZE;
1434                 }
1435
1436                 /* strip the ethernet crc, problem is we're using pages now so
1437                  * this whole operation can get a little cpu intensive
1438                  */
1439                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1440                         if (!(netdev->features & NETIF_F_RXFCS))
1441                                 pskb_trim(skb, skb->len - 4);
1442                 }
1443
1444 copydone:
1445                 total_rx_bytes += skb->len;
1446                 total_rx_packets++;
1447
1448                 e1000_rx_checksum(adapter, staterr, skb);
1449
1450                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1451
1452                 if (rx_desc->wb.upper.header_status &
1453                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1454                         adapter->rx_hdr_split++;
1455
1456                 e1000_receive_skb(adapter, netdev, skb, staterr,
1457                                   rx_desc->wb.middle.vlan);
1458
1459 next_desc:
1460                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1461                 buffer_info->skb = NULL;
1462
1463                 /* return some buffers to hardware, one at a time is too slow */
1464                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1465                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1466                                               GFP_ATOMIC);
1467                         cleaned_count = 0;
1468                 }
1469
1470                 /* use prefetched values */
1471                 rx_desc = next_rxd;
1472                 buffer_info = next_buffer;
1473
1474                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1475         }
1476         rx_ring->next_to_clean = i;
1477
1478         cleaned_count = e1000_desc_unused(rx_ring);
1479         if (cleaned_count)
1480                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1481
1482         adapter->total_rx_bytes += total_rx_bytes;
1483         adapter->total_rx_packets += total_rx_packets;
1484         return cleaned;
1485 }
1486
1487 /**
1488  * e1000_consume_page - helper function
1489  **/
1490 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1491                                u16 length)
1492 {
1493         bi->page = NULL;
1494         skb->len += length;
1495         skb->data_len += length;
1496         skb->truesize += PAGE_SIZE;
1497 }
1498
1499 /**
1500  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1501  * @adapter: board private structure
1502  *
1503  * the return value indicates whether actual cleaning was done, there
1504  * is no guarantee that everything was cleaned
1505  **/
1506 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507                                      int work_to_do)
1508 {
1509         struct e1000_adapter *adapter = rx_ring->adapter;
1510         struct net_device *netdev = adapter->netdev;
1511         struct pci_dev *pdev = adapter->pdev;
1512         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513         struct e1000_buffer *buffer_info, *next_buffer;
1514         u32 length, staterr;
1515         unsigned int i;
1516         int cleaned_count = 0;
1517         bool cleaned = false;
1518         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519         struct skb_shared_info *shinfo;
1520
1521         i = rx_ring->next_to_clean;
1522         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524         buffer_info = &rx_ring->buffer_info[i];
1525
1526         while (staterr & E1000_RXD_STAT_DD) {
1527                 struct sk_buff *skb;
1528
1529                 if (*work_done >= work_to_do)
1530                         break;
1531                 (*work_done)++;
1532                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1533
1534                 skb = buffer_info->skb;
1535                 buffer_info->skb = NULL;
1536
1537                 ++i;
1538                 if (i == rx_ring->count)
1539                         i = 0;
1540                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541                 prefetch(next_rxd);
1542
1543                 next_buffer = &rx_ring->buffer_info[i];
1544
1545                 cleaned = true;
1546                 cleaned_count++;
1547                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548                                DMA_FROM_DEVICE);
1549                 buffer_info->dma = 0;
1550
1551                 length = le16_to_cpu(rx_desc->wb.upper.length);
1552
1553                 /* errors is only valid for DD + EOP descriptors */
1554                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556                               !(netdev->features & NETIF_F_RXALL)))) {
1557                         /* recycle both page and skb */
1558                         buffer_info->skb = skb;
1559                         /* an error means any chain goes out the window too */
1560                         if (rx_ring->rx_skb_top)
1561                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562                         rx_ring->rx_skb_top = NULL;
1563                         goto next_desc;
1564                 }
1565 #define rxtop (rx_ring->rx_skb_top)
1566                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1567                         /* this descriptor is only the beginning (or middle) */
1568                         if (!rxtop) {
1569                                 /* this is the beginning of a chain */
1570                                 rxtop = skb;
1571                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572                                                    0, length);
1573                         } else {
1574                                 /* this is the middle of a chain */
1575                                 shinfo = skb_shinfo(rxtop);
1576                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577                                                    buffer_info->page, 0,
1578                                                    length);
1579                                 /* re-use the skb, only consumed the page */
1580                                 buffer_info->skb = skb;
1581                         }
1582                         e1000_consume_page(buffer_info, rxtop, length);
1583                         goto next_desc;
1584                 } else {
1585                         if (rxtop) {
1586                                 /* end of the chain */
1587                                 shinfo = skb_shinfo(rxtop);
1588                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589                                                    buffer_info->page, 0,
1590                                                    length);
1591                                 /* re-use the current skb, we only consumed the
1592                                  * page
1593                                  */
1594                                 buffer_info->skb = skb;
1595                                 skb = rxtop;
1596                                 rxtop = NULL;
1597                                 e1000_consume_page(buffer_info, skb, length);
1598                         } else {
1599                                 /* no chain, got EOP, this buf is the packet
1600                                  * copybreak to save the put_page/alloc_page
1601                                  */
1602                                 if (length <= copybreak &&
1603                                     skb_tailroom(skb) >= length) {
1604                                         u8 *vaddr;
1605                                         vaddr = kmap_atomic(buffer_info->page);
1606                                         memcpy(skb_tail_pointer(skb), vaddr,
1607                                                length);
1608                                         kunmap_atomic(vaddr);
1609                                         /* re-use the page, so don't erase
1610                                          * buffer_info->page
1611                                          */
1612                                         skb_put(skb, length);
1613                                 } else {
1614                                         skb_fill_page_desc(skb, 0,
1615                                                            buffer_info->page, 0,
1616                                                            length);
1617                                         e1000_consume_page(buffer_info, skb,
1618                                                            length);
1619                                 }
1620                         }
1621                 }
1622
1623                 /* Receive Checksum Offload */
1624                 e1000_rx_checksum(adapter, staterr, skb);
1625
1626                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1627
1628                 /* probably a little skewed due to removing CRC */
1629                 total_rx_bytes += skb->len;
1630                 total_rx_packets++;
1631
1632                 /* eth type trans needs skb->data to point to something */
1633                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1634                         e_err("pskb_may_pull failed.\n");
1635                         dev_kfree_skb_irq(skb);
1636                         goto next_desc;
1637                 }
1638
1639                 e1000_receive_skb(adapter, netdev, skb, staterr,
1640                                   rx_desc->wb.upper.vlan);
1641
1642 next_desc:
1643                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1644
1645                 /* return some buffers to hardware, one at a time is too slow */
1646                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1647                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1648                                               GFP_ATOMIC);
1649                         cleaned_count = 0;
1650                 }
1651
1652                 /* use prefetched values */
1653                 rx_desc = next_rxd;
1654                 buffer_info = next_buffer;
1655
1656                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1657         }
1658         rx_ring->next_to_clean = i;
1659
1660         cleaned_count = e1000_desc_unused(rx_ring);
1661         if (cleaned_count)
1662                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1663
1664         adapter->total_rx_bytes += total_rx_bytes;
1665         adapter->total_rx_packets += total_rx_packets;
1666         return cleaned;
1667 }
1668
1669 /**
1670  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1671  * @rx_ring: Rx descriptor ring
1672  **/
1673 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1674 {
1675         struct e1000_adapter *adapter = rx_ring->adapter;
1676         struct e1000_buffer *buffer_info;
1677         struct e1000_ps_page *ps_page;
1678         struct pci_dev *pdev = adapter->pdev;
1679         unsigned int i, j;
1680
1681         /* Free all the Rx ring sk_buffs */
1682         for (i = 0; i < rx_ring->count; i++) {
1683                 buffer_info = &rx_ring->buffer_info[i];
1684                 if (buffer_info->dma) {
1685                         if (adapter->clean_rx == e1000_clean_rx_irq)
1686                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1687                                                  adapter->rx_buffer_len,
1688                                                  DMA_FROM_DEVICE);
1689                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1690                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1691                                                PAGE_SIZE, DMA_FROM_DEVICE);
1692                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1693                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1694                                                  adapter->rx_ps_bsize0,
1695                                                  DMA_FROM_DEVICE);
1696                         buffer_info->dma = 0;
1697                 }
1698
1699                 if (buffer_info->page) {
1700                         put_page(buffer_info->page);
1701                         buffer_info->page = NULL;
1702                 }
1703
1704                 if (buffer_info->skb) {
1705                         dev_kfree_skb(buffer_info->skb);
1706                         buffer_info->skb = NULL;
1707                 }
1708
1709                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1710                         ps_page = &buffer_info->ps_pages[j];
1711                         if (!ps_page->page)
1712                                 break;
1713                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1714                                        DMA_FROM_DEVICE);
1715                         ps_page->dma = 0;
1716                         put_page(ps_page->page);
1717                         ps_page->page = NULL;
1718                 }
1719         }
1720
1721         /* there also may be some cached data from a chained receive */
1722         if (rx_ring->rx_skb_top) {
1723                 dev_kfree_skb(rx_ring->rx_skb_top);
1724                 rx_ring->rx_skb_top = NULL;
1725         }
1726
1727         /* Zero out the descriptor ring */
1728         memset(rx_ring->desc, 0, rx_ring->size);
1729
1730         rx_ring->next_to_clean = 0;
1731         rx_ring->next_to_use = 0;
1732         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1733 }
1734
1735 static void e1000e_downshift_workaround(struct work_struct *work)
1736 {
1737         struct e1000_adapter *adapter = container_of(work,
1738                                                      struct e1000_adapter,
1739                                                      downshift_task);
1740
1741         if (test_bit(__E1000_DOWN, &adapter->state))
1742                 return;
1743
1744         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1745 }
1746
1747 /**
1748  * e1000_intr_msi - Interrupt Handler
1749  * @irq: interrupt number
1750  * @data: pointer to a network interface device structure
1751  **/
1752 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1753 {
1754         struct net_device *netdev = data;
1755         struct e1000_adapter *adapter = netdev_priv(netdev);
1756         struct e1000_hw *hw = &adapter->hw;
1757         u32 icr = er32(ICR);
1758
1759         /* read ICR disables interrupts using IAM */
1760         if (icr & E1000_ICR_LSC) {
1761                 hw->mac.get_link_status = true;
1762                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1763                  * disconnect (LSC) before accessing any PHY registers
1764                  */
1765                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1766                     (!(er32(STATUS) & E1000_STATUS_LU)))
1767                         schedule_work(&adapter->downshift_task);
1768
1769                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1770                  * link down event; disable receives here in the ISR and reset
1771                  * adapter in watchdog
1772                  */
1773                 if (netif_carrier_ok(netdev) &&
1774                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1775                         /* disable receives */
1776                         u32 rctl = er32(RCTL);
1777
1778                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1779                         adapter->flags |= FLAG_RESTART_NOW;
1780                 }
1781                 /* guard against interrupt when we're going down */
1782                 if (!test_bit(__E1000_DOWN, &adapter->state))
1783                         mod_delayed_work(adapter->e1000_workqueue,
1784                                          &adapter->watchdog_task, HZ);
1785         }
1786
1787         /* Reset on uncorrectable ECC error */
1788         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1789                 u32 pbeccsts = er32(PBECCSTS);
1790
1791                 adapter->corr_errors +=
1792                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1793                 adapter->uncorr_errors +=
1794                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1795                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1796
1797                 /* Do the reset outside of interrupt context */
1798                 schedule_work(&adapter->reset_task);
1799
1800                 /* return immediately since reset is imminent */
1801                 return IRQ_HANDLED;
1802         }
1803
1804         if (napi_schedule_prep(&adapter->napi)) {
1805                 adapter->total_tx_bytes = 0;
1806                 adapter->total_tx_packets = 0;
1807                 adapter->total_rx_bytes = 0;
1808                 adapter->total_rx_packets = 0;
1809                 __napi_schedule(&adapter->napi);
1810         }
1811
1812         return IRQ_HANDLED;
1813 }
1814
1815 /**
1816  * e1000_intr - Interrupt Handler
1817  * @irq: interrupt number
1818  * @data: pointer to a network interface device structure
1819  **/
1820 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1821 {
1822         struct net_device *netdev = data;
1823         struct e1000_adapter *adapter = netdev_priv(netdev);
1824         struct e1000_hw *hw = &adapter->hw;
1825         u32 rctl, icr = er32(ICR);
1826
1827         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1828                 return IRQ_NONE;        /* Not our interrupt */
1829
1830         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1831          * not set, then the adapter didn't send an interrupt
1832          */
1833         if (!(icr & E1000_ICR_INT_ASSERTED))
1834                 return IRQ_NONE;
1835
1836         /* Interrupt Auto-Mask...upon reading ICR,
1837          * interrupts are masked.  No need for the
1838          * IMC write
1839          */
1840
1841         if (icr & E1000_ICR_LSC) {
1842                 hw->mac.get_link_status = true;
1843                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1844                  * disconnect (LSC) before accessing any PHY registers
1845                  */
1846                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1847                     (!(er32(STATUS) & E1000_STATUS_LU)))
1848                         schedule_work(&adapter->downshift_task);
1849
1850                 /* 80003ES2LAN workaround--
1851                  * For packet buffer work-around on link down event;
1852                  * disable receives here in the ISR and
1853                  * reset adapter in watchdog
1854                  */
1855                 if (netif_carrier_ok(netdev) &&
1856                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1857                         /* disable receives */
1858                         rctl = er32(RCTL);
1859                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1860                         adapter->flags |= FLAG_RESTART_NOW;
1861                 }
1862                 /* guard against interrupt when we're going down */
1863                 if (!test_bit(__E1000_DOWN, &adapter->state))
1864                         mod_delayed_work(adapter->e1000_workqueue,
1865                                          &adapter->watchdog_task, HZ);
1866         }
1867
1868         /* Reset on uncorrectable ECC error */
1869         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1870                 u32 pbeccsts = er32(PBECCSTS);
1871
1872                 adapter->corr_errors +=
1873                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1874                 adapter->uncorr_errors +=
1875                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1876                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1877
1878                 /* Do the reset outside of interrupt context */
1879                 schedule_work(&adapter->reset_task);
1880
1881                 /* return immediately since reset is imminent */
1882                 return IRQ_HANDLED;
1883         }
1884
1885         if (napi_schedule_prep(&adapter->napi)) {
1886                 adapter->total_tx_bytes = 0;
1887                 adapter->total_tx_packets = 0;
1888                 adapter->total_rx_bytes = 0;
1889                 adapter->total_rx_packets = 0;
1890                 __napi_schedule(&adapter->napi);
1891         }
1892
1893         return IRQ_HANDLED;
1894 }
1895
1896 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1897 {
1898         struct net_device *netdev = data;
1899         struct e1000_adapter *adapter = netdev_priv(netdev);
1900         struct e1000_hw *hw = &adapter->hw;
1901         u32 icr = er32(ICR);
1902
1903         if (icr & adapter->eiac_mask)
1904                 ew32(ICS, (icr & adapter->eiac_mask));
1905
1906         if (icr & E1000_ICR_LSC) {
1907                 hw->mac.get_link_status = true;
1908                 /* guard against interrupt when we're going down */
1909                 if (!test_bit(__E1000_DOWN, &adapter->state))
1910                         mod_delayed_work(adapter->e1000_workqueue,
1911                                          &adapter->watchdog_task, HZ);
1912         }
1913
1914         if (!test_bit(__E1000_DOWN, &adapter->state))
1915                 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1916
1917         return IRQ_HANDLED;
1918 }
1919
1920 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1921 {
1922         struct net_device *netdev = data;
1923         struct e1000_adapter *adapter = netdev_priv(netdev);
1924         struct e1000_hw *hw = &adapter->hw;
1925         struct e1000_ring *tx_ring = adapter->tx_ring;
1926
1927         adapter->total_tx_bytes = 0;
1928         adapter->total_tx_packets = 0;
1929
1930         if (!e1000_clean_tx_irq(tx_ring))
1931                 /* Ring was not completely cleaned, so fire another interrupt */
1932                 ew32(ICS, tx_ring->ims_val);
1933
1934         if (!test_bit(__E1000_DOWN, &adapter->state))
1935                 ew32(IMS, adapter->tx_ring->ims_val);
1936
1937         return IRQ_HANDLED;
1938 }
1939
1940 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1941 {
1942         struct net_device *netdev = data;
1943         struct e1000_adapter *adapter = netdev_priv(netdev);
1944         struct e1000_ring *rx_ring = adapter->rx_ring;
1945
1946         /* Write the ITR value calculated at the end of the
1947          * previous interrupt.
1948          */
1949         if (rx_ring->set_itr) {
1950                 u32 itr = rx_ring->itr_val ?
1951                           1000000000 / (rx_ring->itr_val * 256) : 0;
1952
1953                 writel(itr, rx_ring->itr_register);
1954                 rx_ring->set_itr = 0;
1955         }
1956
1957         if (napi_schedule_prep(&adapter->napi)) {
1958                 adapter->total_rx_bytes = 0;
1959                 adapter->total_rx_packets = 0;
1960                 __napi_schedule(&adapter->napi);
1961         }
1962         return IRQ_HANDLED;
1963 }
1964
1965 /**
1966  * e1000_configure_msix - Configure MSI-X hardware
1967  *
1968  * e1000_configure_msix sets up the hardware to properly
1969  * generate MSI-X interrupts.
1970  **/
1971 static void e1000_configure_msix(struct e1000_adapter *adapter)
1972 {
1973         struct e1000_hw *hw = &adapter->hw;
1974         struct e1000_ring *rx_ring = adapter->rx_ring;
1975         struct e1000_ring *tx_ring = adapter->tx_ring;
1976         int vector = 0;
1977         u32 ctrl_ext, ivar = 0;
1978
1979         adapter->eiac_mask = 0;
1980
1981         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1982         if (hw->mac.type == e1000_82574) {
1983                 u32 rfctl = er32(RFCTL);
1984
1985                 rfctl |= E1000_RFCTL_ACK_DIS;
1986                 ew32(RFCTL, rfctl);
1987         }
1988
1989         /* Configure Rx vector */
1990         rx_ring->ims_val = E1000_IMS_RXQ0;
1991         adapter->eiac_mask |= rx_ring->ims_val;
1992         if (rx_ring->itr_val)
1993                 writel(1000000000 / (rx_ring->itr_val * 256),
1994                        rx_ring->itr_register);
1995         else
1996                 writel(1, rx_ring->itr_register);
1997         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1998
1999         /* Configure Tx vector */
2000         tx_ring->ims_val = E1000_IMS_TXQ0;
2001         vector++;
2002         if (tx_ring->itr_val)
2003                 writel(1000000000 / (tx_ring->itr_val * 256),
2004                        tx_ring->itr_register);
2005         else
2006                 writel(1, tx_ring->itr_register);
2007         adapter->eiac_mask |= tx_ring->ims_val;
2008         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2009
2010         /* set vector for Other Causes, e.g. link changes */
2011         vector++;
2012         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2013         if (rx_ring->itr_val)
2014                 writel(1000000000 / (rx_ring->itr_val * 256),
2015                        hw->hw_addr + E1000_EITR_82574(vector));
2016         else
2017                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2018
2019         /* Cause Tx interrupts on every write back */
2020         ivar |= BIT(31);
2021
2022         ew32(IVAR, ivar);
2023
2024         /* enable MSI-X PBA support */
2025         ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2026         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2027         ew32(CTRL_EXT, ctrl_ext);
2028         e1e_flush();
2029 }
2030
2031 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2032 {
2033         if (adapter->msix_entries) {
2034                 pci_disable_msix(adapter->pdev);
2035                 kfree(adapter->msix_entries);
2036                 adapter->msix_entries = NULL;
2037         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2038                 pci_disable_msi(adapter->pdev);
2039                 adapter->flags &= ~FLAG_MSI_ENABLED;
2040         }
2041 }
2042
2043 /**
2044  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2045  *
2046  * Attempt to configure interrupts using the best available
2047  * capabilities of the hardware and kernel.
2048  **/
2049 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2050 {
2051         int err;
2052         int i;
2053
2054         switch (adapter->int_mode) {
2055         case E1000E_INT_MODE_MSIX:
2056                 if (adapter->flags & FLAG_HAS_MSIX) {
2057                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2058                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2059                                                         sizeof(struct
2060                                                                msix_entry),
2061                                                         GFP_KERNEL);
2062                         if (adapter->msix_entries) {
2063                                 struct e1000_adapter *a = adapter;
2064
2065                                 for (i = 0; i < adapter->num_vectors; i++)
2066                                         adapter->msix_entries[i].entry = i;
2067
2068                                 err = pci_enable_msix_range(a->pdev,
2069                                                             a->msix_entries,
2070                                                             a->num_vectors,
2071                                                             a->num_vectors);
2072                                 if (err > 0)
2073                                         return;
2074                         }
2075                         /* MSI-X failed, so fall through and try MSI */
2076                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2077                         e1000e_reset_interrupt_capability(adapter);
2078                 }
2079                 adapter->int_mode = E1000E_INT_MODE_MSI;
2080                 /* Fall through */
2081         case E1000E_INT_MODE_MSI:
2082                 if (!pci_enable_msi(adapter->pdev)) {
2083                         adapter->flags |= FLAG_MSI_ENABLED;
2084                 } else {
2085                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2086                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2087                 }
2088                 /* Fall through */
2089         case E1000E_INT_MODE_LEGACY:
2090                 /* Don't do anything; this is the system default */
2091                 break;
2092         }
2093
2094         /* store the number of vectors being used */
2095         adapter->num_vectors = 1;
2096 }
2097
2098 /**
2099  * e1000_request_msix - Initialize MSI-X interrupts
2100  *
2101  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2102  * kernel.
2103  **/
2104 static int e1000_request_msix(struct e1000_adapter *adapter)
2105 {
2106         struct net_device *netdev = adapter->netdev;
2107         int err = 0, vector = 0;
2108
2109         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2110                 snprintf(adapter->rx_ring->name,
2111                          sizeof(adapter->rx_ring->name) - 1,
2112                          "%.14s-rx-0", netdev->name);
2113         else
2114                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2115         err = request_irq(adapter->msix_entries[vector].vector,
2116                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2117                           netdev);
2118         if (err)
2119                 return err;
2120         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2121             E1000_EITR_82574(vector);
2122         adapter->rx_ring->itr_val = adapter->itr;
2123         vector++;
2124
2125         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2126                 snprintf(adapter->tx_ring->name,
2127                          sizeof(adapter->tx_ring->name) - 1,
2128                          "%.14s-tx-0", netdev->name);
2129         else
2130                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2131         err = request_irq(adapter->msix_entries[vector].vector,
2132                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2133                           netdev);
2134         if (err)
2135                 return err;
2136         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2137             E1000_EITR_82574(vector);
2138         adapter->tx_ring->itr_val = adapter->itr;
2139         vector++;
2140
2141         err = request_irq(adapter->msix_entries[vector].vector,
2142                           e1000_msix_other, 0, netdev->name, netdev);
2143         if (err)
2144                 return err;
2145
2146         e1000_configure_msix(adapter);
2147
2148         return 0;
2149 }
2150
2151 /**
2152  * e1000_request_irq - initialize interrupts
2153  *
2154  * Attempts to configure interrupts using the best available
2155  * capabilities of the hardware and kernel.
2156  **/
2157 static int e1000_request_irq(struct e1000_adapter *adapter)
2158 {
2159         struct net_device *netdev = adapter->netdev;
2160         int err;
2161
2162         if (adapter->msix_entries) {
2163                 err = e1000_request_msix(adapter);
2164                 if (!err)
2165                         return err;
2166                 /* fall back to MSI */
2167                 e1000e_reset_interrupt_capability(adapter);
2168                 adapter->int_mode = E1000E_INT_MODE_MSI;
2169                 e1000e_set_interrupt_capability(adapter);
2170         }
2171         if (adapter->flags & FLAG_MSI_ENABLED) {
2172                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2173                                   netdev->name, netdev);
2174                 if (!err)
2175                         return err;
2176
2177                 /* fall back to legacy interrupt */
2178                 e1000e_reset_interrupt_capability(adapter);
2179                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2180         }
2181
2182         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2183                           netdev->name, netdev);
2184         if (err)
2185                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2186
2187         return err;
2188 }
2189
2190 static void e1000_free_irq(struct e1000_adapter *adapter)
2191 {
2192         struct net_device *netdev = adapter->netdev;
2193
2194         if (adapter->msix_entries) {
2195                 int vector = 0;
2196
2197                 free_irq(adapter->msix_entries[vector].vector, netdev);
2198                 vector++;
2199
2200                 free_irq(adapter->msix_entries[vector].vector, netdev);
2201                 vector++;
2202
2203                 /* Other Causes interrupt vector */
2204                 free_irq(adapter->msix_entries[vector].vector, netdev);
2205                 return;
2206         }
2207
2208         free_irq(adapter->pdev->irq, netdev);
2209 }
2210
2211 /**
2212  * e1000_irq_disable - Mask off interrupt generation on the NIC
2213  **/
2214 static void e1000_irq_disable(struct e1000_adapter *adapter)
2215 {
2216         struct e1000_hw *hw = &adapter->hw;
2217
2218         ew32(IMC, ~0);
2219         if (adapter->msix_entries)
2220                 ew32(EIAC_82574, 0);
2221         e1e_flush();
2222
2223         if (adapter->msix_entries) {
2224                 int i;
2225
2226                 for (i = 0; i < adapter->num_vectors; i++)
2227                         synchronize_irq(adapter->msix_entries[i].vector);
2228         } else {
2229                 synchronize_irq(adapter->pdev->irq);
2230         }
2231 }
2232
2233 /**
2234  * e1000_irq_enable - Enable default interrupt generation settings
2235  **/
2236 static void e1000_irq_enable(struct e1000_adapter *adapter)
2237 {
2238         struct e1000_hw *hw = &adapter->hw;
2239
2240         if (adapter->msix_entries) {
2241                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2242                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2243                      IMS_OTHER_MASK);
2244         } else if (hw->mac.type >= e1000_pch_lpt) {
2245                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2246         } else {
2247                 ew32(IMS, IMS_ENABLE_MASK);
2248         }
2249         e1e_flush();
2250 }
2251
2252 /**
2253  * e1000e_get_hw_control - get control of the h/w from f/w
2254  * @adapter: address of board private structure
2255  *
2256  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2257  * For ASF and Pass Through versions of f/w this means that
2258  * the driver is loaded. For AMT version (only with 82573)
2259  * of the f/w this means that the network i/f is open.
2260  **/
2261 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2262 {
2263         struct e1000_hw *hw = &adapter->hw;
2264         u32 ctrl_ext;
2265         u32 swsm;
2266
2267         /* Let firmware know the driver has taken over */
2268         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2269                 swsm = er32(SWSM);
2270                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2271         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2272                 ctrl_ext = er32(CTRL_EXT);
2273                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2274         }
2275 }
2276
2277 /**
2278  * e1000e_release_hw_control - release control of the h/w to f/w
2279  * @adapter: address of board private structure
2280  *
2281  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2282  * For ASF and Pass Through versions of f/w this means that the
2283  * driver is no longer loaded. For AMT version (only with 82573) i
2284  * of the f/w this means that the network i/f is closed.
2285  *
2286  **/
2287 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2288 {
2289         struct e1000_hw *hw = &adapter->hw;
2290         u32 ctrl_ext;
2291         u32 swsm;
2292
2293         /* Let firmware taken over control of h/w */
2294         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2295                 swsm = er32(SWSM);
2296                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2297         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2298                 ctrl_ext = er32(CTRL_EXT);
2299                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2300         }
2301 }
2302
2303 /**
2304  * e1000_alloc_ring_dma - allocate memory for a ring structure
2305  **/
2306 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2307                                 struct e1000_ring *ring)
2308 {
2309         struct pci_dev *pdev = adapter->pdev;
2310
2311         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2312                                         GFP_KERNEL);
2313         if (!ring->desc)
2314                 return -ENOMEM;
2315
2316         return 0;
2317 }
2318
2319 /**
2320  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2321  * @tx_ring: Tx descriptor ring
2322  *
2323  * Return 0 on success, negative on failure
2324  **/
2325 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2326 {
2327         struct e1000_adapter *adapter = tx_ring->adapter;
2328         int err = -ENOMEM, size;
2329
2330         size = sizeof(struct e1000_buffer) * tx_ring->count;
2331         tx_ring->buffer_info = vzalloc(size);
2332         if (!tx_ring->buffer_info)
2333                 goto err;
2334
2335         /* round up to nearest 4K */
2336         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2337         tx_ring->size = ALIGN(tx_ring->size, 4096);
2338
2339         err = e1000_alloc_ring_dma(adapter, tx_ring);
2340         if (err)
2341                 goto err;
2342
2343         tx_ring->next_to_use = 0;
2344         tx_ring->next_to_clean = 0;
2345
2346         return 0;
2347 err:
2348         vfree(tx_ring->buffer_info);
2349         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2350         return err;
2351 }
2352
2353 /**
2354  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2355  * @rx_ring: Rx descriptor ring
2356  *
2357  * Returns 0 on success, negative on failure
2358  **/
2359 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2360 {
2361         struct e1000_adapter *adapter = rx_ring->adapter;
2362         struct e1000_buffer *buffer_info;
2363         int i, size, desc_len, err = -ENOMEM;
2364
2365         size = sizeof(struct e1000_buffer) * rx_ring->count;
2366         rx_ring->buffer_info = vzalloc(size);
2367         if (!rx_ring->buffer_info)
2368                 goto err;
2369
2370         for (i = 0; i < rx_ring->count; i++) {
2371                 buffer_info = &rx_ring->buffer_info[i];
2372                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2373                                                 sizeof(struct e1000_ps_page),
2374                                                 GFP_KERNEL);
2375                 if (!buffer_info->ps_pages)
2376                         goto err_pages;
2377         }
2378
2379         desc_len = sizeof(union e1000_rx_desc_packet_split);
2380
2381         /* Round up to nearest 4K */
2382         rx_ring->size = rx_ring->count * desc_len;
2383         rx_ring->size = ALIGN(rx_ring->size, 4096);
2384
2385         err = e1000_alloc_ring_dma(adapter, rx_ring);
2386         if (err)
2387                 goto err_pages;
2388
2389         rx_ring->next_to_clean = 0;
2390         rx_ring->next_to_use = 0;
2391         rx_ring->rx_skb_top = NULL;
2392
2393         return 0;
2394
2395 err_pages:
2396         for (i = 0; i < rx_ring->count; i++) {
2397                 buffer_info = &rx_ring->buffer_info[i];
2398                 kfree(buffer_info->ps_pages);
2399         }
2400 err:
2401         vfree(rx_ring->buffer_info);
2402         e_err("Unable to allocate memory for the receive descriptor ring\n");
2403         return err;
2404 }
2405
2406 /**
2407  * e1000_clean_tx_ring - Free Tx Buffers
2408  * @tx_ring: Tx descriptor ring
2409  **/
2410 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2411 {
2412         struct e1000_adapter *adapter = tx_ring->adapter;
2413         struct e1000_buffer *buffer_info;
2414         unsigned long size;
2415         unsigned int i;
2416
2417         for (i = 0; i < tx_ring->count; i++) {
2418                 buffer_info = &tx_ring->buffer_info[i];
2419                 e1000_put_txbuf(tx_ring, buffer_info, false);
2420         }
2421
2422         netdev_reset_queue(adapter->netdev);
2423         size = sizeof(struct e1000_buffer) * tx_ring->count;
2424         memset(tx_ring->buffer_info, 0, size);
2425
2426         memset(tx_ring->desc, 0, tx_ring->size);
2427
2428         tx_ring->next_to_use = 0;
2429         tx_ring->next_to_clean = 0;
2430 }
2431
2432 /**
2433  * e1000e_free_tx_resources - Free Tx Resources per Queue
2434  * @tx_ring: Tx descriptor ring
2435  *
2436  * Free all transmit software resources
2437  **/
2438 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2439 {
2440         struct e1000_adapter *adapter = tx_ring->adapter;
2441         struct pci_dev *pdev = adapter->pdev;
2442
2443         e1000_clean_tx_ring(tx_ring);
2444
2445         vfree(tx_ring->buffer_info);
2446         tx_ring->buffer_info = NULL;
2447
2448         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2449                           tx_ring->dma);
2450         tx_ring->desc = NULL;
2451 }
2452
2453 /**
2454  * e1000e_free_rx_resources - Free Rx Resources
2455  * @rx_ring: Rx descriptor ring
2456  *
2457  * Free all receive software resources
2458  **/
2459 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2460 {
2461         struct e1000_adapter *adapter = rx_ring->adapter;
2462         struct pci_dev *pdev = adapter->pdev;
2463         int i;
2464
2465         e1000_clean_rx_ring(rx_ring);
2466
2467         for (i = 0; i < rx_ring->count; i++)
2468                 kfree(rx_ring->buffer_info[i].ps_pages);
2469
2470         vfree(rx_ring->buffer_info);
2471         rx_ring->buffer_info = NULL;
2472
2473         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2474                           rx_ring->dma);
2475         rx_ring->desc = NULL;
2476 }
2477
2478 /**
2479  * e1000_update_itr - update the dynamic ITR value based on statistics
2480  * @adapter: pointer to adapter
2481  * @itr_setting: current adapter->itr
2482  * @packets: the number of packets during this measurement interval
2483  * @bytes: the number of bytes during this measurement interval
2484  *
2485  *      Stores a new ITR value based on packets and byte
2486  *      counts during the last interrupt.  The advantage of per interrupt
2487  *      computation is faster updates and more accurate ITR for the current
2488  *      traffic pattern.  Constants in this function were computed
2489  *      based on theoretical maximum wire speed and thresholds were set based
2490  *      on testing data as well as attempting to minimize response time
2491  *      while increasing bulk throughput.  This functionality is controlled
2492  *      by the InterruptThrottleRate module parameter.
2493  **/
2494 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2495 {
2496         unsigned int retval = itr_setting;
2497
2498         if (packets == 0)
2499                 return itr_setting;
2500
2501         switch (itr_setting) {
2502         case lowest_latency:
2503                 /* handle TSO and jumbo frames */
2504                 if (bytes / packets > 8000)
2505                         retval = bulk_latency;
2506                 else if ((packets < 5) && (bytes > 512))
2507                         retval = low_latency;
2508                 break;
2509         case low_latency:       /* 50 usec aka 20000 ints/s */
2510                 if (bytes > 10000) {
2511                         /* this if handles the TSO accounting */
2512                         if (bytes / packets > 8000)
2513                                 retval = bulk_latency;
2514                         else if ((packets < 10) || ((bytes / packets) > 1200))
2515                                 retval = bulk_latency;
2516                         else if ((packets > 35))
2517                                 retval = lowest_latency;
2518                 } else if (bytes / packets > 2000) {
2519                         retval = bulk_latency;
2520                 } else if (packets <= 2 && bytes < 512) {
2521                         retval = lowest_latency;
2522                 }
2523                 break;
2524         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2525                 if (bytes > 25000) {
2526                         if (packets > 35)
2527                                 retval = low_latency;
2528                 } else if (bytes < 6000) {
2529                         retval = low_latency;
2530                 }
2531                 break;
2532         }
2533
2534         return retval;
2535 }
2536
2537 static void e1000_set_itr(struct e1000_adapter *adapter)
2538 {
2539         u16 current_itr;
2540         u32 new_itr = adapter->itr;
2541
2542         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2543         if (adapter->link_speed != SPEED_1000) {
2544                 current_itr = 0;
2545                 new_itr = 4000;
2546                 goto set_itr_now;
2547         }
2548
2549         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2550                 new_itr = 0;
2551                 goto set_itr_now;
2552         }
2553
2554         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2555                                            adapter->total_tx_packets,
2556                                            adapter->total_tx_bytes);
2557         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2558         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2559                 adapter->tx_itr = low_latency;
2560
2561         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2562                                            adapter->total_rx_packets,
2563                                            adapter->total_rx_bytes);
2564         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2565         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2566                 adapter->rx_itr = low_latency;
2567
2568         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2569
2570         /* counts and packets in update_itr are dependent on these numbers */
2571         switch (current_itr) {
2572         case lowest_latency:
2573                 new_itr = 70000;
2574                 break;
2575         case low_latency:
2576                 new_itr = 20000;        /* aka hwitr = ~200 */
2577                 break;
2578         case bulk_latency:
2579                 new_itr = 4000;
2580                 break;
2581         default:
2582                 break;
2583         }
2584
2585 set_itr_now:
2586         if (new_itr != adapter->itr) {
2587                 /* this attempts to bias the interrupt rate towards Bulk
2588                  * by adding intermediate steps when interrupt rate is
2589                  * increasing
2590                  */
2591                 new_itr = new_itr > adapter->itr ?
2592                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2593                 adapter->itr = new_itr;
2594                 adapter->rx_ring->itr_val = new_itr;
2595                 if (adapter->msix_entries)
2596                         adapter->rx_ring->set_itr = 1;
2597                 else
2598                         e1000e_write_itr(adapter, new_itr);
2599         }
2600 }
2601
2602 /**
2603  * e1000e_write_itr - write the ITR value to the appropriate registers
2604  * @adapter: address of board private structure
2605  * @itr: new ITR value to program
2606  *
2607  * e1000e_write_itr determines if the adapter is in MSI-X mode
2608  * and, if so, writes the EITR registers with the ITR value.
2609  * Otherwise, it writes the ITR value into the ITR register.
2610  **/
2611 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2612 {
2613         struct e1000_hw *hw = &adapter->hw;
2614         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2615
2616         if (adapter->msix_entries) {
2617                 int vector;
2618
2619                 for (vector = 0; vector < adapter->num_vectors; vector++)
2620                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2621         } else {
2622                 ew32(ITR, new_itr);
2623         }
2624 }
2625
2626 /**
2627  * e1000_alloc_queues - Allocate memory for all rings
2628  * @adapter: board private structure to initialize
2629  **/
2630 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2631 {
2632         int size = sizeof(struct e1000_ring);
2633
2634         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2635         if (!adapter->tx_ring)
2636                 goto err;
2637         adapter->tx_ring->count = adapter->tx_ring_count;
2638         adapter->tx_ring->adapter = adapter;
2639
2640         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2641         if (!adapter->rx_ring)
2642                 goto err;
2643         adapter->rx_ring->count = adapter->rx_ring_count;
2644         adapter->rx_ring->adapter = adapter;
2645
2646         return 0;
2647 err:
2648         e_err("Unable to allocate memory for queues\n");
2649         kfree(adapter->rx_ring);
2650         kfree(adapter->tx_ring);
2651         return -ENOMEM;
2652 }
2653
2654 /**
2655  * e1000e_poll - NAPI Rx polling callback
2656  * @napi: struct associated with this polling callback
2657  * @budget: number of packets driver is allowed to process this poll
2658  **/
2659 static int e1000e_poll(struct napi_struct *napi, int budget)
2660 {
2661         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2662                                                      napi);
2663         struct e1000_hw *hw = &adapter->hw;
2664         struct net_device *poll_dev = adapter->netdev;
2665         int tx_cleaned = 1, work_done = 0;
2666
2667         adapter = netdev_priv(poll_dev);
2668
2669         if (!adapter->msix_entries ||
2670             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2671                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2672
2673         adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2674
2675         if (!tx_cleaned || work_done == budget)
2676                 return budget;
2677
2678         /* Exit the polling mode, but don't re-enable interrupts if stack might
2679          * poll us due to busy-polling
2680          */
2681         if (likely(napi_complete_done(napi, work_done))) {
2682                 if (adapter->itr_setting & 3)
2683                         e1000_set_itr(adapter);
2684                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2685                         if (adapter->msix_entries)
2686                                 ew32(IMS, adapter->rx_ring->ims_val);
2687                         else
2688                                 e1000_irq_enable(adapter);
2689                 }
2690         }
2691
2692         return work_done;
2693 }
2694
2695 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2696                                  __always_unused __be16 proto, u16 vid)
2697 {
2698         struct e1000_adapter *adapter = netdev_priv(netdev);
2699         struct e1000_hw *hw = &adapter->hw;
2700         u32 vfta, index;
2701
2702         /* don't update vlan cookie if already programmed */
2703         if ((adapter->hw.mng_cookie.status &
2704              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2705             (vid == adapter->mng_vlan_id))
2706                 return 0;
2707
2708         /* add VID to filter table */
2709         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2710                 index = (vid >> 5) & 0x7F;
2711                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2712                 vfta |= BIT((vid & 0x1F));
2713                 hw->mac.ops.write_vfta(hw, index, vfta);
2714         }
2715
2716         set_bit(vid, adapter->active_vlans);
2717
2718         return 0;
2719 }
2720
2721 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2722                                   __always_unused __be16 proto, u16 vid)
2723 {
2724         struct e1000_adapter *adapter = netdev_priv(netdev);
2725         struct e1000_hw *hw = &adapter->hw;
2726         u32 vfta, index;
2727
2728         if ((adapter->hw.mng_cookie.status &
2729              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2730             (vid == adapter->mng_vlan_id)) {
2731                 /* release control to f/w */
2732                 e1000e_release_hw_control(adapter);
2733                 return 0;
2734         }
2735
2736         /* remove VID from filter table */
2737         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2738                 index = (vid >> 5) & 0x7F;
2739                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2740                 vfta &= ~BIT((vid & 0x1F));
2741                 hw->mac.ops.write_vfta(hw, index, vfta);
2742         }
2743
2744         clear_bit(vid, adapter->active_vlans);
2745
2746         return 0;
2747 }
2748
2749 /**
2750  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2751  * @adapter: board private structure to initialize
2752  **/
2753 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2754 {
2755         struct net_device *netdev = adapter->netdev;
2756         struct e1000_hw *hw = &adapter->hw;
2757         u32 rctl;
2758
2759         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2760                 /* disable VLAN receive filtering */
2761                 rctl = er32(RCTL);
2762                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2763                 ew32(RCTL, rctl);
2764
2765                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2766                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2767                                                adapter->mng_vlan_id);
2768                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2769                 }
2770         }
2771 }
2772
2773 /**
2774  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2775  * @adapter: board private structure to initialize
2776  **/
2777 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2778 {
2779         struct e1000_hw *hw = &adapter->hw;
2780         u32 rctl;
2781
2782         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2783                 /* enable VLAN receive filtering */
2784                 rctl = er32(RCTL);
2785                 rctl |= E1000_RCTL_VFE;
2786                 rctl &= ~E1000_RCTL_CFIEN;
2787                 ew32(RCTL, rctl);
2788         }
2789 }
2790
2791 /**
2792  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2793  * @adapter: board private structure to initialize
2794  **/
2795 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2796 {
2797         struct e1000_hw *hw = &adapter->hw;
2798         u32 ctrl;
2799
2800         /* disable VLAN tag insert/strip */
2801         ctrl = er32(CTRL);
2802         ctrl &= ~E1000_CTRL_VME;
2803         ew32(CTRL, ctrl);
2804 }
2805
2806 /**
2807  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2808  * @adapter: board private structure to initialize
2809  **/
2810 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2811 {
2812         struct e1000_hw *hw = &adapter->hw;
2813         u32 ctrl;
2814
2815         /* enable VLAN tag insert/strip */
2816         ctrl = er32(CTRL);
2817         ctrl |= E1000_CTRL_VME;
2818         ew32(CTRL, ctrl);
2819 }
2820
2821 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2822 {
2823         struct net_device *netdev = adapter->netdev;
2824         u16 vid = adapter->hw.mng_cookie.vlan_id;
2825         u16 old_vid = adapter->mng_vlan_id;
2826
2827         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2828                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2829                 adapter->mng_vlan_id = vid;
2830         }
2831
2832         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2833                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2834 }
2835
2836 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2837 {
2838         u16 vid;
2839
2840         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2841
2842         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2843             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2844 }
2845
2846 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2847 {
2848         struct e1000_hw *hw = &adapter->hw;
2849         u32 manc, manc2h, mdef, i, j;
2850
2851         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2852                 return;
2853
2854         manc = er32(MANC);
2855
2856         /* enable receiving management packets to the host. this will probably
2857          * generate destination unreachable messages from the host OS, but
2858          * the packets will be handled on SMBUS
2859          */
2860         manc |= E1000_MANC_EN_MNG2HOST;
2861         manc2h = er32(MANC2H);
2862
2863         switch (hw->mac.type) {
2864         default:
2865                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2866                 break;
2867         case e1000_82574:
2868         case e1000_82583:
2869                 /* Check if IPMI pass-through decision filter already exists;
2870                  * if so, enable it.
2871                  */
2872                 for (i = 0, j = 0; i < 8; i++) {
2873                         mdef = er32(MDEF(i));
2874
2875                         /* Ignore filters with anything other than IPMI ports */
2876                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2877                                 continue;
2878
2879                         /* Enable this decision filter in MANC2H */
2880                         if (mdef)
2881                                 manc2h |= BIT(i);
2882
2883                         j |= mdef;
2884                 }
2885
2886                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2887                         break;
2888
2889                 /* Create new decision filter in an empty filter */
2890                 for (i = 0, j = 0; i < 8; i++)
2891                         if (er32(MDEF(i)) == 0) {
2892                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2893                                                E1000_MDEF_PORT_664));
2894                                 manc2h |= BIT(1);
2895                                 j++;
2896                                 break;
2897                         }
2898
2899                 if (!j)
2900                         e_warn("Unable to create IPMI pass-through filter\n");
2901                 break;
2902         }
2903
2904         ew32(MANC2H, manc2h);
2905         ew32(MANC, manc);
2906 }
2907
2908 /**
2909  * e1000_configure_tx - Configure Transmit Unit after Reset
2910  * @adapter: board private structure
2911  *
2912  * Configure the Tx unit of the MAC after a reset.
2913  **/
2914 static void e1000_configure_tx(struct e1000_adapter *adapter)
2915 {
2916         struct e1000_hw *hw = &adapter->hw;
2917         struct e1000_ring *tx_ring = adapter->tx_ring;
2918         u64 tdba;
2919         u32 tdlen, tctl, tarc;
2920
2921         /* Setup the HW Tx Head and Tail descriptor pointers */
2922         tdba = tx_ring->dma;
2923         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2924         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2925         ew32(TDBAH(0), (tdba >> 32));
2926         ew32(TDLEN(0), tdlen);
2927         ew32(TDH(0), 0);
2928         ew32(TDT(0), 0);
2929         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2930         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2931
2932         writel(0, tx_ring->head);
2933         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2934                 e1000e_update_tdt_wa(tx_ring, 0);
2935         else
2936                 writel(0, tx_ring->tail);
2937
2938         /* Set the Tx Interrupt Delay register */
2939         ew32(TIDV, adapter->tx_int_delay);
2940         /* Tx irq moderation */
2941         ew32(TADV, adapter->tx_abs_int_delay);
2942
2943         if (adapter->flags2 & FLAG2_DMA_BURST) {
2944                 u32 txdctl = er32(TXDCTL(0));
2945
2946                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2947                             E1000_TXDCTL_WTHRESH);
2948                 /* set up some performance related parameters to encourage the
2949                  * hardware to use the bus more efficiently in bursts, depends
2950                  * on the tx_int_delay to be enabled,
2951                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2952                  * hthresh = 1 ==> prefetch when one or more available
2953                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2954                  * BEWARE: this seems to work but should be considered first if
2955                  * there are Tx hangs or other Tx related bugs
2956                  */
2957                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2958                 ew32(TXDCTL(0), txdctl);
2959         }
2960         /* erratum work around: set txdctl the same for both queues */
2961         ew32(TXDCTL(1), er32(TXDCTL(0)));
2962
2963         /* Program the Transmit Control Register */
2964         tctl = er32(TCTL);
2965         tctl &= ~E1000_TCTL_CT;
2966         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2967                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2968
2969         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2970                 tarc = er32(TARC(0));
2971                 /* set the speed mode bit, we'll clear it if we're not at
2972                  * gigabit link later
2973                  */
2974 #define SPEED_MODE_BIT BIT(21)
2975                 tarc |= SPEED_MODE_BIT;
2976                 ew32(TARC(0), tarc);
2977         }
2978
2979         /* errata: program both queues to unweighted RR */
2980         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2981                 tarc = er32(TARC(0));
2982                 tarc |= 1;
2983                 ew32(TARC(0), tarc);
2984                 tarc = er32(TARC(1));
2985                 tarc |= 1;
2986                 ew32(TARC(1), tarc);
2987         }
2988
2989         /* Setup Transmit Descriptor Settings for eop descriptor */
2990         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2991
2992         /* only set IDE if we are delaying interrupts using the timers */
2993         if (adapter->tx_int_delay)
2994                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2995
2996         /* enable Report Status bit */
2997         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2998
2999         ew32(TCTL, tctl);
3000
3001         hw->mac.ops.config_collision_dist(hw);
3002
3003         /* SPT and KBL Si errata workaround to avoid data corruption */
3004         if (hw->mac.type == e1000_pch_spt) {
3005                 u32 reg_val;
3006
3007                 reg_val = er32(IOSFPC);
3008                 reg_val |= E1000_RCTL_RDMTS_HEX;
3009                 ew32(IOSFPC, reg_val);
3010
3011                 reg_val = er32(TARC(0));
3012                 /* SPT and KBL Si errata workaround to avoid Tx hang.
3013                  * Dropping the number of outstanding requests from
3014                  * 3 to 2 in order to avoid a buffer overrun.
3015                  */
3016                 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3017                 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3018                 ew32(TARC(0), reg_val);
3019         }
3020 }
3021
3022 /**
3023  * e1000_setup_rctl - configure the receive control registers
3024  * @adapter: Board private structure
3025  **/
3026 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3027                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3028 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3029 {
3030         struct e1000_hw *hw = &adapter->hw;
3031         u32 rctl, rfctl;
3032         u32 pages = 0;
3033
3034         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3035          * If jumbo frames not set, program related MAC/PHY registers
3036          * to h/w defaults
3037          */
3038         if (hw->mac.type >= e1000_pch2lan) {
3039                 s32 ret_val;
3040
3041                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3042                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3043                 else
3044                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3045
3046                 if (ret_val)
3047                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3048         }
3049
3050         /* Program MC offset vector base */
3051         rctl = er32(RCTL);
3052         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3053         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3054             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3055             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3056
3057         /* Do not Store bad packets */
3058         rctl &= ~E1000_RCTL_SBP;
3059
3060         /* Enable Long Packet receive */
3061         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3062                 rctl &= ~E1000_RCTL_LPE;
3063         else
3064                 rctl |= E1000_RCTL_LPE;
3065
3066         /* Some systems expect that the CRC is included in SMBUS traffic. The
3067          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3068          * host memory when this is enabled
3069          */
3070         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3071                 rctl |= E1000_RCTL_SECRC;
3072
3073         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3074         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3075                 u16 phy_data;
3076
3077                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3078                 phy_data &= 0xfff8;
3079                 phy_data |= BIT(2);
3080                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3081
3082                 e1e_rphy(hw, 22, &phy_data);
3083                 phy_data &= 0x0fff;
3084                 phy_data |= BIT(14);
3085                 e1e_wphy(hw, 0x10, 0x2823);
3086                 e1e_wphy(hw, 0x11, 0x0003);
3087                 e1e_wphy(hw, 22, phy_data);
3088         }
3089
3090         /* Setup buffer sizes */
3091         rctl &= ~E1000_RCTL_SZ_4096;
3092         rctl |= E1000_RCTL_BSEX;
3093         switch (adapter->rx_buffer_len) {
3094         case 2048:
3095         default:
3096                 rctl |= E1000_RCTL_SZ_2048;
3097                 rctl &= ~E1000_RCTL_BSEX;
3098                 break;
3099         case 4096:
3100                 rctl |= E1000_RCTL_SZ_4096;
3101                 break;
3102         case 8192:
3103                 rctl |= E1000_RCTL_SZ_8192;
3104                 break;
3105         case 16384:
3106                 rctl |= E1000_RCTL_SZ_16384;
3107                 break;
3108         }
3109
3110         /* Enable Extended Status in all Receive Descriptors */
3111         rfctl = er32(RFCTL);
3112         rfctl |= E1000_RFCTL_EXTEN;
3113         ew32(RFCTL, rfctl);
3114
3115         /* 82571 and greater support packet-split where the protocol
3116          * header is placed in skb->data and the packet data is
3117          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3118          * In the case of a non-split, skb->data is linearly filled,
3119          * followed by the page buffers.  Therefore, skb->data is
3120          * sized to hold the largest protocol header.
3121          *
3122          * allocations using alloc_page take too long for regular MTU
3123          * so only enable packet split for jumbo frames
3124          *
3125          * Using pages when the page size is greater than 16k wastes
3126          * a lot of memory, since we allocate 3 pages at all times
3127          * per packet.
3128          */
3129         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3130         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3131                 adapter->rx_ps_pages = pages;
3132         else
3133                 adapter->rx_ps_pages = 0;
3134
3135         if (adapter->rx_ps_pages) {
3136                 u32 psrctl = 0;
3137
3138                 /* Enable Packet split descriptors */
3139                 rctl |= E1000_RCTL_DTYP_PS;
3140
3141                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3142
3143                 switch (adapter->rx_ps_pages) {
3144                 case 3:
3145                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3146                         /* fall-through */
3147                 case 2:
3148                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3149                         /* fall-through */
3150                 case 1:
3151                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3152                         break;
3153                 }
3154
3155                 ew32(PSRCTL, psrctl);
3156         }
3157
3158         /* This is useful for sniffing bad packets. */
3159         if (adapter->netdev->features & NETIF_F_RXALL) {
3160                 /* UPE and MPE will be handled by normal PROMISC logic
3161                  * in e1000e_set_rx_mode
3162                  */
3163                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3164                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3165                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3166
3167                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3168                           E1000_RCTL_DPF |      /* Allow filtered pause */
3169                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3170                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3171                  * and that breaks VLANs.
3172                  */
3173         }
3174
3175         ew32(RCTL, rctl);
3176         /* just started the receive unit, no need to restart */
3177         adapter->flags &= ~FLAG_RESTART_NOW;
3178 }
3179
3180 /**
3181  * e1000_configure_rx - Configure Receive Unit after Reset
3182  * @adapter: board private structure
3183  *
3184  * Configure the Rx unit of the MAC after a reset.
3185  **/
3186 static void e1000_configure_rx(struct e1000_adapter *adapter)
3187 {
3188         struct e1000_hw *hw = &adapter->hw;
3189         struct e1000_ring *rx_ring = adapter->rx_ring;
3190         u64 rdba;
3191         u32 rdlen, rctl, rxcsum, ctrl_ext;
3192
3193         if (adapter->rx_ps_pages) {
3194                 /* this is a 32 byte descriptor */
3195                 rdlen = rx_ring->count *
3196                     sizeof(union e1000_rx_desc_packet_split);
3197                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3198                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3199         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3200                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3201                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3202                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3203         } else {
3204                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3205                 adapter->clean_rx = e1000_clean_rx_irq;
3206                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3207         }
3208
3209         /* disable receives while setting up the descriptors */
3210         rctl = er32(RCTL);
3211         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3212                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3213         e1e_flush();
3214         usleep_range(10000, 11000);
3215
3216         if (adapter->flags2 & FLAG2_DMA_BURST) {
3217                 /* set the writeback threshold (only takes effect if the RDTR
3218                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3219                  * enable prefetching of 0x20 Rx descriptors
3220                  * granularity = 01
3221                  * wthresh = 04,
3222                  * hthresh = 04,
3223                  * pthresh = 0x20
3224                  */
3225                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3226                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3227         }
3228
3229         /* set the Receive Delay Timer Register */
3230         ew32(RDTR, adapter->rx_int_delay);
3231
3232         /* irq moderation */
3233         ew32(RADV, adapter->rx_abs_int_delay);
3234         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3235                 e1000e_write_itr(adapter, adapter->itr);
3236
3237         ctrl_ext = er32(CTRL_EXT);
3238         /* Auto-Mask interrupts upon ICR access */
3239         ctrl_ext |= E1000_CTRL_EXT_IAME;
3240         ew32(IAM, 0xffffffff);
3241         ew32(CTRL_EXT, ctrl_ext);
3242         e1e_flush();
3243
3244         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3245          * the Base and Length of the Rx Descriptor Ring
3246          */
3247         rdba = rx_ring->dma;
3248         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3249         ew32(RDBAH(0), (rdba >> 32));
3250         ew32(RDLEN(0), rdlen);
3251         ew32(RDH(0), 0);
3252         ew32(RDT(0), 0);
3253         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3254         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3255
3256         writel(0, rx_ring->head);
3257         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3258                 e1000e_update_rdt_wa(rx_ring, 0);
3259         else
3260                 writel(0, rx_ring->tail);
3261
3262         /* Enable Receive Checksum Offload for TCP and UDP */
3263         rxcsum = er32(RXCSUM);
3264         if (adapter->netdev->features & NETIF_F_RXCSUM)
3265                 rxcsum |= E1000_RXCSUM_TUOFL;
3266         else
3267                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3268         ew32(RXCSUM, rxcsum);
3269
3270         /* With jumbo frames, excessive C-state transition latencies result
3271          * in dropped transactions.
3272          */
3273         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3274                 u32 lat =
3275                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3276                      adapter->max_frame_size) * 8 / 1000;
3277
3278                 if (adapter->flags & FLAG_IS_ICH) {
3279                         u32 rxdctl = er32(RXDCTL(0));
3280
3281                         ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3282                 }
3283
3284                 dev_info(&adapter->pdev->dev,
3285                          "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3286                 pm_qos_update_request(&adapter->pm_qos_req, lat);
3287         } else {
3288                 pm_qos_update_request(&adapter->pm_qos_req,
3289                                       PM_QOS_DEFAULT_VALUE);
3290         }
3291
3292         /* Enable Receives */
3293         ew32(RCTL, rctl);
3294 }
3295
3296 /**
3297  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3298  * @netdev: network interface device structure
3299  *
3300  * Writes multicast address list to the MTA hash table.
3301  * Returns: -ENOMEM on failure
3302  *                0 on no addresses written
3303  *                X on writing X addresses to MTA
3304  */
3305 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3306 {
3307         struct e1000_adapter *adapter = netdev_priv(netdev);
3308         struct e1000_hw *hw = &adapter->hw;
3309         struct netdev_hw_addr *ha;
3310         u8 *mta_list;
3311         int i;
3312
3313         if (netdev_mc_empty(netdev)) {
3314                 /* nothing to program, so clear mc list */
3315                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3316                 return 0;
3317         }
3318
3319         mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3320         if (!mta_list)
3321                 return -ENOMEM;
3322
3323         /* update_mc_addr_list expects a packed array of only addresses. */
3324         i = 0;
3325         netdev_for_each_mc_addr(ha, netdev)
3326             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3327
3328         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3329         kfree(mta_list);
3330
3331         return netdev_mc_count(netdev);
3332 }
3333
3334 /**
3335  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3336  * @netdev: network interface device structure
3337  *
3338  * Writes unicast address list to the RAR table.
3339  * Returns: -ENOMEM on failure/insufficient address space
3340  *                0 on no addresses written
3341  *                X on writing X addresses to the RAR table
3342  **/
3343 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3344 {
3345         struct e1000_adapter *adapter = netdev_priv(netdev);
3346         struct e1000_hw *hw = &adapter->hw;
3347         unsigned int rar_entries;
3348         int count = 0;
3349
3350         rar_entries = hw->mac.ops.rar_get_count(hw);
3351
3352         /* save a rar entry for our hardware address */
3353         rar_entries--;
3354
3355         /* save a rar entry for the LAA workaround */
3356         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3357                 rar_entries--;
3358
3359         /* return ENOMEM indicating insufficient memory for addresses */
3360         if (netdev_uc_count(netdev) > rar_entries)
3361                 return -ENOMEM;
3362
3363         if (!netdev_uc_empty(netdev) && rar_entries) {
3364                 struct netdev_hw_addr *ha;
3365
3366                 /* write the addresses in reverse order to avoid write
3367                  * combining
3368                  */
3369                 netdev_for_each_uc_addr(ha, netdev) {
3370                         int ret_val;
3371
3372                         if (!rar_entries)
3373                                 break;
3374                         ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3375                         if (ret_val < 0)
3376                                 return -ENOMEM;
3377                         count++;
3378                 }
3379         }
3380
3381         /* zero out the remaining RAR entries not used above */
3382         for (; rar_entries > 0; rar_entries--) {
3383                 ew32(RAH(rar_entries), 0);
3384                 ew32(RAL(rar_entries), 0);
3385         }
3386         e1e_flush();
3387
3388         return count;
3389 }
3390
3391 /**
3392  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3393  * @netdev: network interface device structure
3394  *
3395  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3396  * address list or the network interface flags are updated.  This routine is
3397  * responsible for configuring the hardware for proper unicast, multicast,
3398  * promiscuous mode, and all-multi behavior.
3399  **/
3400 static void e1000e_set_rx_mode(struct net_device *netdev)
3401 {
3402         struct e1000_adapter *adapter = netdev_priv(netdev);
3403         struct e1000_hw *hw = &adapter->hw;
3404         u32 rctl;
3405
3406         if (pm_runtime_suspended(netdev->dev.parent))
3407                 return;
3408
3409         /* Check for Promiscuous and All Multicast modes */
3410         rctl = er32(RCTL);
3411
3412         /* clear the affected bits */
3413         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3414
3415         if (netdev->flags & IFF_PROMISC) {
3416                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3417                 /* Do not hardware filter VLANs in promisc mode */
3418                 e1000e_vlan_filter_disable(adapter);
3419         } else {
3420                 int count;
3421
3422                 if (netdev->flags & IFF_ALLMULTI) {
3423                         rctl |= E1000_RCTL_MPE;
3424                 } else {
3425                         /* Write addresses to the MTA, if the attempt fails
3426                          * then we should just turn on promiscuous mode so
3427                          * that we can at least receive multicast traffic
3428                          */
3429                         count = e1000e_write_mc_addr_list(netdev);
3430                         if (count < 0)
3431                                 rctl |= E1000_RCTL_MPE;
3432                 }
3433                 e1000e_vlan_filter_enable(adapter);
3434                 /* Write addresses to available RAR registers, if there is not
3435                  * sufficient space to store all the addresses then enable
3436                  * unicast promiscuous mode
3437                  */
3438                 count = e1000e_write_uc_addr_list(netdev);
3439                 if (count < 0)
3440                         rctl |= E1000_RCTL_UPE;
3441         }
3442
3443         ew32(RCTL, rctl);
3444
3445         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3446                 e1000e_vlan_strip_enable(adapter);
3447         else
3448                 e1000e_vlan_strip_disable(adapter);
3449 }
3450
3451 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3452 {
3453         struct e1000_hw *hw = &adapter->hw;
3454         u32 mrqc, rxcsum;
3455         u32 rss_key[10];
3456         int i;
3457
3458         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3459         for (i = 0; i < 10; i++)
3460                 ew32(RSSRK(i), rss_key[i]);
3461
3462         /* Direct all traffic to queue 0 */
3463         for (i = 0; i < 32; i++)
3464                 ew32(RETA(i), 0);
3465
3466         /* Disable raw packet checksumming so that RSS hash is placed in
3467          * descriptor on writeback.
3468          */
3469         rxcsum = er32(RXCSUM);
3470         rxcsum |= E1000_RXCSUM_PCSD;
3471
3472         ew32(RXCSUM, rxcsum);
3473
3474         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3475                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3476                 E1000_MRQC_RSS_FIELD_IPV6 |
3477                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3478                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3479
3480         ew32(MRQC, mrqc);
3481 }
3482
3483 /**
3484  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3485  * @adapter: board private structure
3486  * @timinca: pointer to returned time increment attributes
3487  *
3488  * Get attributes for incrementing the System Time Register SYSTIML/H at
3489  * the default base frequency, and set the cyclecounter shift value.
3490  **/
3491 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3492 {
3493         struct e1000_hw *hw = &adapter->hw;
3494         u32 incvalue, incperiod, shift;
3495
3496         /* Make sure clock is enabled on I217/I218/I219  before checking
3497          * the frequency
3498          */
3499         if ((hw->mac.type >= e1000_pch_lpt) &&
3500             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3501             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3502                 u32 fextnvm7 = er32(FEXTNVM7);
3503
3504                 if (!(fextnvm7 & BIT(0))) {
3505                         ew32(FEXTNVM7, fextnvm7 | BIT(0));
3506                         e1e_flush();
3507                 }
3508         }
3509
3510         switch (hw->mac.type) {
3511         case e1000_pch2lan:
3512                 /* Stable 96MHz frequency */
3513                 incperiod = INCPERIOD_96MHZ;
3514                 incvalue = INCVALUE_96MHZ;
3515                 shift = INCVALUE_SHIFT_96MHZ;
3516                 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3517                 break;
3518         case e1000_pch_lpt:
3519                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3520                         /* Stable 96MHz frequency */
3521                         incperiod = INCPERIOD_96MHZ;
3522                         incvalue = INCVALUE_96MHZ;
3523                         shift = INCVALUE_SHIFT_96MHZ;
3524                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3525                 } else {
3526                         /* Stable 25MHz frequency */
3527                         incperiod = INCPERIOD_25MHZ;
3528                         incvalue = INCVALUE_25MHZ;
3529                         shift = INCVALUE_SHIFT_25MHZ;
3530                         adapter->cc.shift = shift;
3531                 }
3532                 break;
3533         case e1000_pch_spt:
3534                 /* Stable 24MHz frequency */
3535                 incperiod = INCPERIOD_24MHZ;
3536                 incvalue = INCVALUE_24MHZ;
3537                 shift = INCVALUE_SHIFT_24MHZ;
3538                 adapter->cc.shift = shift;
3539                 break;
3540         case e1000_pch_cnp:
3541                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3542                         /* Stable 24MHz frequency */
3543                         incperiod = INCPERIOD_24MHZ;
3544                         incvalue = INCVALUE_24MHZ;
3545                         shift = INCVALUE_SHIFT_24MHZ;
3546                         adapter->cc.shift = shift;
3547                 } else {
3548                         /* Stable 38400KHz frequency */
3549                         incperiod = INCPERIOD_38400KHZ;
3550                         incvalue = INCVALUE_38400KHZ;
3551                         shift = INCVALUE_SHIFT_38400KHZ;
3552                         adapter->cc.shift = shift;
3553                 }
3554                 break;
3555         case e1000_82574:
3556         case e1000_82583:
3557                 /* Stable 25MHz frequency */
3558                 incperiod = INCPERIOD_25MHZ;
3559                 incvalue = INCVALUE_25MHZ;
3560                 shift = INCVALUE_SHIFT_25MHZ;
3561                 adapter->cc.shift = shift;
3562                 break;
3563         default:
3564                 return -EINVAL;
3565         }
3566
3567         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3568                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3569
3570         return 0;
3571 }
3572
3573 /**
3574  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3575  * @adapter: board private structure
3576  *
3577  * Outgoing time stamping can be enabled and disabled. Play nice and
3578  * disable it when requested, although it shouldn't cause any overhead
3579  * when no packet needs it. At most one packet in the queue may be
3580  * marked for time stamping, otherwise it would be impossible to tell
3581  * for sure to which packet the hardware time stamp belongs.
3582  *
3583  * Incoming time stamping has to be configured via the hardware filters.
3584  * Not all combinations are supported, in particular event type has to be
3585  * specified. Matching the kind of event packet is not supported, with the
3586  * exception of "all V2 events regardless of level 2 or 4".
3587  **/
3588 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3589                                   struct hwtstamp_config *config)
3590 {
3591         struct e1000_hw *hw = &adapter->hw;
3592         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3593         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3594         u32 rxmtrl = 0;
3595         u16 rxudp = 0;
3596         bool is_l4 = false;
3597         bool is_l2 = false;
3598         u32 regval;
3599
3600         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3601                 return -EINVAL;
3602
3603         /* flags reserved for future extensions - must be zero */
3604         if (config->flags)
3605                 return -EINVAL;
3606
3607         switch (config->tx_type) {
3608         case HWTSTAMP_TX_OFF:
3609                 tsync_tx_ctl = 0;
3610                 break;
3611         case HWTSTAMP_TX_ON:
3612                 break;
3613         default:
3614                 return -ERANGE;
3615         }
3616
3617         switch (config->rx_filter) {
3618         case HWTSTAMP_FILTER_NONE:
3619                 tsync_rx_ctl = 0;
3620                 break;
3621         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3622                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3623                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3624                 is_l4 = true;
3625                 break;
3626         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3627                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3628                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3629                 is_l4 = true;
3630                 break;
3631         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3632                 /* Also time stamps V2 L2 Path Delay Request/Response */
3633                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3634                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3635                 is_l2 = true;
3636                 break;
3637         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3638                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3639                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3640                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3641                 is_l2 = true;
3642                 break;
3643         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3644                 /* Hardware cannot filter just V2 L4 Sync messages;
3645                  * fall-through to V2 (both L2 and L4) Sync.
3646                  */
3647         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3648                 /* Also time stamps V2 Path Delay Request/Response. */
3649                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3650                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3651                 is_l2 = true;
3652                 is_l4 = true;
3653                 break;
3654         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3655                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3656                  * fall-through to V2 (both L2 and L4) Delay Request.
3657                  */
3658         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3659                 /* Also time stamps V2 Path Delay Request/Response. */
3660                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3661                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3662                 is_l2 = true;
3663                 is_l4 = true;
3664                 break;
3665         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3666         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3667                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3668                  * fall-through to all V2 (both L2 and L4) Events.
3669                  */
3670         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3671                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3672                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3673                 is_l2 = true;
3674                 is_l4 = true;
3675                 break;
3676         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3677                 /* For V1, the hardware can only filter Sync messages or
3678                  * Delay Request messages but not both so fall-through to
3679                  * time stamp all packets.
3680                  */
3681         case HWTSTAMP_FILTER_NTP_ALL:
3682         case HWTSTAMP_FILTER_ALL:
3683                 is_l2 = true;
3684                 is_l4 = true;
3685                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3686                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3687                 break;
3688         default:
3689                 return -ERANGE;
3690         }
3691
3692         adapter->hwtstamp_config = *config;
3693
3694         /* enable/disable Tx h/w time stamping */
3695         regval = er32(TSYNCTXCTL);
3696         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3697         regval |= tsync_tx_ctl;
3698         ew32(TSYNCTXCTL, regval);
3699         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3700             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3701                 e_err("Timesync Tx Control register not set as expected\n");
3702                 return -EAGAIN;
3703         }
3704
3705         /* enable/disable Rx h/w time stamping */
3706         regval = er32(TSYNCRXCTL);
3707         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3708         regval |= tsync_rx_ctl;
3709         ew32(TSYNCRXCTL, regval);
3710         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3711                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3712             (regval & (E1000_TSYNCRXCTL_ENABLED |
3713                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3714                 e_err("Timesync Rx Control register not set as expected\n");
3715                 return -EAGAIN;
3716         }
3717
3718         /* L2: define ethertype filter for time stamped packets */
3719         if (is_l2)
3720                 rxmtrl |= ETH_P_1588;
3721
3722         /* define which PTP packets get time stamped */
3723         ew32(RXMTRL, rxmtrl);
3724
3725         /* Filter by destination port */
3726         if (is_l4) {
3727                 rxudp = PTP_EV_PORT;
3728                 cpu_to_be16s(&rxudp);
3729         }
3730         ew32(RXUDP, rxudp);
3731
3732         e1e_flush();
3733
3734         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3735         er32(RXSTMPH);
3736         er32(TXSTMPH);
3737
3738         return 0;
3739 }
3740
3741 /**
3742  * e1000_configure - configure the hardware for Rx and Tx
3743  * @adapter: private board structure
3744  **/
3745 static void e1000_configure(struct e1000_adapter *adapter)
3746 {
3747         struct e1000_ring *rx_ring = adapter->rx_ring;
3748
3749         e1000e_set_rx_mode(adapter->netdev);
3750
3751         e1000_restore_vlan(adapter);
3752         e1000_init_manageability_pt(adapter);
3753
3754         e1000_configure_tx(adapter);
3755
3756         if (adapter->netdev->features & NETIF_F_RXHASH)
3757                 e1000e_setup_rss_hash(adapter);
3758         e1000_setup_rctl(adapter);
3759         e1000_configure_rx(adapter);
3760         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3761 }
3762
3763 /**
3764  * e1000e_power_up_phy - restore link in case the phy was powered down
3765  * @adapter: address of board private structure
3766  *
3767  * The phy may be powered down to save power and turn off link when the
3768  * driver is unloaded and wake on lan is not enabled (among others)
3769  * *** this routine MUST be followed by a call to e1000e_reset ***
3770  **/
3771 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3772 {
3773         if (adapter->hw.phy.ops.power_up)
3774                 adapter->hw.phy.ops.power_up(&adapter->hw);
3775
3776         adapter->hw.mac.ops.setup_link(&adapter->hw);
3777 }
3778
3779 /**
3780  * e1000_power_down_phy - Power down the PHY
3781  *
3782  * Power down the PHY so no link is implied when interface is down.
3783  * The PHY cannot be powered down if management or WoL is active.
3784  */
3785 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3786 {
3787         if (adapter->hw.phy.ops.power_down)
3788                 adapter->hw.phy.ops.power_down(&adapter->hw);
3789 }
3790
3791 /**
3792  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3793  *
3794  * We want to clear all pending descriptors from the TX ring.
3795  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3796  * the data of the next descriptor. We don't care about the data we are about
3797  * to reset the HW.
3798  */
3799 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3800 {
3801         struct e1000_hw *hw = &adapter->hw;
3802         struct e1000_ring *tx_ring = adapter->tx_ring;
3803         struct e1000_tx_desc *tx_desc = NULL;
3804         u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3805         u16 size = 512;
3806
3807         tctl = er32(TCTL);
3808         ew32(TCTL, tctl | E1000_TCTL_EN);
3809         tdt = er32(TDT(0));
3810         BUG_ON(tdt != tx_ring->next_to_use);
3811         tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3812         tx_desc->buffer_addr = tx_ring->dma;
3813
3814         tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3815         tx_desc->upper.data = 0;
3816         /* flush descriptors to memory before notifying the HW */
3817         wmb();
3818         tx_ring->next_to_use++;
3819         if (tx_ring->next_to_use == tx_ring->count)
3820                 tx_ring->next_to_use = 0;
3821         ew32(TDT(0), tx_ring->next_to_use);
3822         usleep_range(200, 250);
3823 }
3824
3825 /**
3826  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3827  *
3828  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3829  */
3830 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3831 {
3832         u32 rctl, rxdctl;
3833         struct e1000_hw *hw = &adapter->hw;
3834
3835         rctl = er32(RCTL);
3836         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3837         e1e_flush();
3838         usleep_range(100, 150);
3839
3840         rxdctl = er32(RXDCTL(0));
3841         /* zero the lower 14 bits (prefetch and host thresholds) */
3842         rxdctl &= 0xffffc000;
3843
3844         /* update thresholds: prefetch threshold to 31, host threshold to 1
3845          * and make sure the granularity is "descriptors" and not "cache lines"
3846          */
3847         rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3848
3849         ew32(RXDCTL(0), rxdctl);
3850         /* momentarily enable the RX ring for the changes to take effect */
3851         ew32(RCTL, rctl | E1000_RCTL_EN);
3852         e1e_flush();
3853         usleep_range(100, 150);
3854         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3855 }
3856
3857 /**
3858  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3859  *
3860  * In i219, the descriptor rings must be emptied before resetting the HW
3861  * or before changing the device state to D3 during runtime (runtime PM).
3862  *
3863  * Failure to do this will cause the HW to enter a unit hang state which can
3864  * only be released by PCI reset on the device
3865  *
3866  */
3867
3868 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3869 {
3870         u16 hang_state;
3871         u32 fext_nvm11, tdlen;
3872         struct e1000_hw *hw = &adapter->hw;
3873
3874         /* First, disable MULR fix in FEXTNVM11 */
3875         fext_nvm11 = er32(FEXTNVM11);
3876         fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3877         ew32(FEXTNVM11, fext_nvm11);
3878         /* do nothing if we're not in faulty state, or if the queue is empty */
3879         tdlen = er32(TDLEN(0));
3880         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3881                              &hang_state);
3882         if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3883                 return;
3884         e1000_flush_tx_ring(adapter);
3885         /* recheck, maybe the fault is caused by the rx ring */
3886         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3887                              &hang_state);
3888         if (hang_state & FLUSH_DESC_REQUIRED)
3889                 e1000_flush_rx_ring(adapter);
3890 }
3891
3892 /**
3893  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3894  * @adapter: board private structure
3895  *
3896  * When the MAC is reset, all hardware bits for timesync will be reset to the
3897  * default values. This function will restore the settings last in place.
3898  * Since the clock SYSTIME registers are reset, we will simply restore the
3899  * cyclecounter to the kernel real clock time.
3900  **/
3901 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3902 {
3903         struct ptp_clock_info *info = &adapter->ptp_clock_info;
3904         struct e1000_hw *hw = &adapter->hw;
3905         unsigned long flags;
3906         u32 timinca;
3907         s32 ret_val;
3908
3909         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3910                 return;
3911
3912         if (info->adjfreq) {
3913                 /* restore the previous ptp frequency delta */
3914                 ret_val = info->adjfreq(info, adapter->ptp_delta);
3915         } else {
3916                 /* set the default base frequency if no adjustment possible */
3917                 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3918                 if (!ret_val)
3919                         ew32(TIMINCA, timinca);
3920         }
3921
3922         if (ret_val) {
3923                 dev_warn(&adapter->pdev->dev,
3924                          "Failed to restore TIMINCA clock rate delta: %d\n",
3925                          ret_val);
3926                 return;
3927         }
3928
3929         /* reset the systim ns time counter */
3930         spin_lock_irqsave(&adapter->systim_lock, flags);
3931         timecounter_init(&adapter->tc, &adapter->cc,
3932                          ktime_to_ns(ktime_get_real()));
3933         spin_unlock_irqrestore(&adapter->systim_lock, flags);
3934
3935         /* restore the previous hwtstamp configuration settings */
3936         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3937 }
3938
3939 /**
3940  * e1000e_reset - bring the hardware into a known good state
3941  *
3942  * This function boots the hardware and enables some settings that
3943  * require a configuration cycle of the hardware - those cannot be
3944  * set/changed during runtime. After reset the device needs to be
3945  * properly configured for Rx, Tx etc.
3946  */
3947 void e1000e_reset(struct e1000_adapter *adapter)
3948 {
3949         struct e1000_mac_info *mac = &adapter->hw.mac;
3950         struct e1000_fc_info *fc = &adapter->hw.fc;
3951         struct e1000_hw *hw = &adapter->hw;
3952         u32 tx_space, min_tx_space, min_rx_space;
3953         u32 pba = adapter->pba;
3954         u16 hwm;
3955
3956         /* reset Packet Buffer Allocation to default */
3957         ew32(PBA, pba);
3958
3959         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3960                 /* To maintain wire speed transmits, the Tx FIFO should be
3961                  * large enough to accommodate two full transmit packets,
3962                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3963                  * the Rx FIFO should be large enough to accommodate at least
3964                  * one full receive packet and is similarly rounded up and
3965                  * expressed in KB.
3966                  */
3967                 pba = er32(PBA);
3968                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3969                 tx_space = pba >> 16;
3970                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3971                 pba &= 0xffff;
3972                 /* the Tx fifo also stores 16 bytes of information about the Tx
3973                  * but don't include ethernet FCS because hardware appends it
3974                  */
3975                 min_tx_space = (adapter->max_frame_size +
3976                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3977                 min_tx_space = ALIGN(min_tx_space, 1024);
3978                 min_tx_space >>= 10;
3979                 /* software strips receive CRC, so leave room for it */
3980                 min_rx_space = adapter->max_frame_size;
3981                 min_rx_space = ALIGN(min_rx_space, 1024);
3982                 min_rx_space >>= 10;
3983
3984                 /* If current Tx allocation is less than the min Tx FIFO size,
3985                  * and the min Tx FIFO size is less than the current Rx FIFO
3986                  * allocation, take space away from current Rx allocation
3987                  */
3988                 if ((tx_space < min_tx_space) &&
3989                     ((min_tx_space - tx_space) < pba)) {
3990                         pba -= min_tx_space - tx_space;
3991
3992                         /* if short on Rx space, Rx wins and must trump Tx
3993                          * adjustment
3994                          */
3995                         if (pba < min_rx_space)
3996                                 pba = min_rx_space;
3997                 }
3998
3999                 ew32(PBA, pba);
4000         }
4001
4002         /* flow control settings
4003          *
4004          * The high water mark must be low enough to fit one full frame
4005          * (or the size used for early receive) above it in the Rx FIFO.
4006          * Set it to the lower of:
4007          * - 90% of the Rx FIFO size, and
4008          * - the full Rx FIFO size minus one full frame
4009          */
4010         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4011                 fc->pause_time = 0xFFFF;
4012         else
4013                 fc->pause_time = E1000_FC_PAUSE_TIME;
4014         fc->send_xon = true;
4015         fc->current_mode = fc->requested_mode;
4016
4017         switch (hw->mac.type) {
4018         case e1000_ich9lan:
4019         case e1000_ich10lan:
4020                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4021                         pba = 14;
4022                         ew32(PBA, pba);
4023                         fc->high_water = 0x2800;
4024                         fc->low_water = fc->high_water - 8;
4025                         break;
4026                 }
4027                 /* fall-through */
4028         default:
4029                 hwm = min(((pba << 10) * 9 / 10),
4030                           ((pba << 10) - adapter->max_frame_size));
4031
4032                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4033                 fc->low_water = fc->high_water - 8;
4034                 break;
4035         case e1000_pchlan:
4036                 /* Workaround PCH LOM adapter hangs with certain network
4037                  * loads.  If hangs persist, try disabling Tx flow control.
4038                  */
4039                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4040                         fc->high_water = 0x3500;
4041                         fc->low_water = 0x1500;
4042                 } else {
4043                         fc->high_water = 0x5000;
4044                         fc->low_water = 0x3000;
4045                 }
4046                 fc->refresh_time = 0x1000;
4047                 break;
4048         case e1000_pch2lan:
4049         case e1000_pch_lpt:
4050         case e1000_pch_spt:
4051         case e1000_pch_cnp:
4052                 fc->refresh_time = 0xFFFF;
4053                 fc->pause_time = 0xFFFF;
4054
4055                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4056                         fc->high_water = 0x05C20;
4057                         fc->low_water = 0x05048;
4058                         break;
4059                 }
4060
4061                 pba = 14;
4062                 ew32(PBA, pba);
4063                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4064                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4065                 break;
4066         }
4067
4068         /* Alignment of Tx data is on an arbitrary byte boundary with the
4069          * maximum size per Tx descriptor limited only to the transmit
4070          * allocation of the packet buffer minus 96 bytes with an upper
4071          * limit of 24KB due to receive synchronization limitations.
4072          */
4073         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4074                                        24 << 10);
4075
4076         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4077          * fit in receive buffer.
4078          */
4079         if (adapter->itr_setting & 0x3) {
4080                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4081                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4082                                 dev_info(&adapter->pdev->dev,
4083                                          "Interrupt Throttle Rate off\n");
4084                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
4085                                 e1000e_write_itr(adapter, 0);
4086                         }
4087                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4088                         dev_info(&adapter->pdev->dev,
4089                                  "Interrupt Throttle Rate on\n");
4090                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4091                         adapter->itr = 20000;
4092                         e1000e_write_itr(adapter, adapter->itr);
4093                 }
4094         }
4095
4096         if (hw->mac.type >= e1000_pch_spt)
4097                 e1000_flush_desc_rings(adapter);
4098         /* Allow time for pending master requests to run */
4099         mac->ops.reset_hw(hw);
4100
4101         /* For parts with AMT enabled, let the firmware know
4102          * that the network interface is in control
4103          */
4104         if (adapter->flags & FLAG_HAS_AMT)
4105                 e1000e_get_hw_control(adapter);
4106
4107         ew32(WUC, 0);
4108
4109         if (mac->ops.init_hw(hw))
4110                 e_err("Hardware Error\n");
4111
4112         e1000_update_mng_vlan(adapter);
4113
4114         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4115         ew32(VET, ETH_P_8021Q);
4116
4117         e1000e_reset_adaptive(hw);
4118
4119         /* restore systim and hwtstamp settings */
4120         e1000e_systim_reset(adapter);
4121
4122         /* Set EEE advertisement as appropriate */
4123         if (adapter->flags2 & FLAG2_HAS_EEE) {
4124                 s32 ret_val;
4125                 u16 adv_addr;
4126
4127                 switch (hw->phy.type) {
4128                 case e1000_phy_82579:
4129                         adv_addr = I82579_EEE_ADVERTISEMENT;
4130                         break;
4131                 case e1000_phy_i217:
4132                         adv_addr = I217_EEE_ADVERTISEMENT;
4133                         break;
4134                 default:
4135                         dev_err(&adapter->pdev->dev,
4136                                 "Invalid PHY type setting EEE advertisement\n");
4137                         return;
4138                 }
4139
4140                 ret_val = hw->phy.ops.acquire(hw);
4141                 if (ret_val) {
4142                         dev_err(&adapter->pdev->dev,
4143                                 "EEE advertisement - unable to acquire PHY\n");
4144                         return;
4145                 }
4146
4147                 e1000_write_emi_reg_locked(hw, adv_addr,
4148                                            hw->dev_spec.ich8lan.eee_disable ?
4149                                            0 : adapter->eee_advert);
4150
4151                 hw->phy.ops.release(hw);
4152         }
4153
4154         if (!netif_running(adapter->netdev) &&
4155             !test_bit(__E1000_TESTING, &adapter->state))
4156                 e1000_power_down_phy(adapter);
4157
4158         e1000_get_phy_info(hw);
4159
4160         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4161             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4162                 u16 phy_data = 0;
4163                 /* speed up time to link by disabling smart power down, ignore
4164                  * the return value of this function because there is nothing
4165                  * different we would do if it failed
4166                  */
4167                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4168                 phy_data &= ~IGP02E1000_PM_SPD;
4169                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4170         }
4171         if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4172                 u32 reg;
4173
4174                 /* Fextnvm7 @ 0xe4[2] = 1 */
4175                 reg = er32(FEXTNVM7);
4176                 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4177                 ew32(FEXTNVM7, reg);
4178                 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4179                 reg = er32(FEXTNVM9);
4180                 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4181                        E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4182                 ew32(FEXTNVM9, reg);
4183         }
4184
4185 }
4186
4187 /**
4188  * e1000e_trigger_lsc - trigger an LSC interrupt
4189  * @adapter: 
4190  *
4191  * Fire a link status change interrupt to start the watchdog.
4192  **/
4193 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4194 {
4195         struct e1000_hw *hw = &adapter->hw;
4196
4197         if (adapter->msix_entries)
4198                 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4199         else
4200                 ew32(ICS, E1000_ICS_LSC);
4201 }
4202
4203 void e1000e_up(struct e1000_adapter *adapter)
4204 {
4205         /* hardware has been reset, we need to reload some things */
4206         e1000_configure(adapter);
4207
4208         clear_bit(__E1000_DOWN, &adapter->state);
4209
4210         if (adapter->msix_entries)
4211                 e1000_configure_msix(adapter);
4212         e1000_irq_enable(adapter);
4213
4214         /* Tx queue started by watchdog timer when link is up */
4215
4216         e1000e_trigger_lsc(adapter);
4217 }
4218
4219 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4220 {
4221         struct e1000_hw *hw = &adapter->hw;
4222
4223         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4224                 return;
4225
4226         /* flush pending descriptor writebacks to memory */
4227         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4228         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4229
4230         /* execute the writes immediately */
4231         e1e_flush();
4232
4233         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4234          * write is successful
4235          */
4236         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4237         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4238
4239         /* execute the writes immediately */
4240         e1e_flush();
4241 }
4242
4243 static void e1000e_update_stats(struct e1000_adapter *adapter);
4244
4245 /**
4246  * e1000e_down - quiesce the device and optionally reset the hardware
4247  * @adapter: board private structure
4248  * @reset: boolean flag to reset the hardware or not
4249  */
4250 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4251 {
4252         struct net_device *netdev = adapter->netdev;
4253         struct e1000_hw *hw = &adapter->hw;
4254         u32 tctl, rctl;
4255
4256         /* signal that we're down so the interrupt handler does not
4257          * reschedule our watchdog timer
4258          */
4259         set_bit(__E1000_DOWN, &adapter->state);
4260
4261         netif_carrier_off(netdev);
4262
4263         /* disable receives in the hardware */
4264         rctl = er32(RCTL);
4265         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4266                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4267         /* flush and sleep below */
4268
4269         netif_stop_queue(netdev);
4270
4271         /* disable transmits in the hardware */
4272         tctl = er32(TCTL);
4273         tctl &= ~E1000_TCTL_EN;
4274         ew32(TCTL, tctl);
4275
4276         /* flush both disables and wait for them to finish */
4277         e1e_flush();
4278         usleep_range(10000, 11000);
4279
4280         e1000_irq_disable(adapter);
4281
4282         napi_synchronize(&adapter->napi);
4283
4284         del_timer_sync(&adapter->phy_info_timer);
4285
4286         spin_lock(&adapter->stats64_lock);
4287         e1000e_update_stats(adapter);
4288         spin_unlock(&adapter->stats64_lock);
4289
4290         e1000e_flush_descriptors(adapter);
4291
4292         adapter->link_speed = 0;
4293         adapter->link_duplex = 0;
4294
4295         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4296         if ((hw->mac.type >= e1000_pch2lan) &&
4297             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4298             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4299                 e_dbg("failed to disable jumbo frame workaround mode\n");
4300
4301         if (!pci_channel_offline(adapter->pdev)) {
4302                 if (reset)
4303                         e1000e_reset(adapter);
4304                 else if (hw->mac.type >= e1000_pch_spt)
4305                         e1000_flush_desc_rings(adapter);
4306         }
4307         e1000_clean_tx_ring(adapter->tx_ring);
4308         e1000_clean_rx_ring(adapter->rx_ring);
4309 }
4310
4311 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4312 {
4313         might_sleep();
4314         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4315                 usleep_range(1000, 1100);
4316         e1000e_down(adapter, true);
4317         e1000e_up(adapter);
4318         clear_bit(__E1000_RESETTING, &adapter->state);
4319 }
4320
4321 /**
4322  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4323  * @hw: pointer to the HW structure
4324  * @systim: PHC time value read, sanitized and returned
4325  * @sts: structure to hold system time before and after reading SYSTIML,
4326  * may be NULL
4327  *
4328  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4329  * check to see that the time is incrementing at a reasonable
4330  * rate and is a multiple of incvalue.
4331  **/
4332 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4333                                   struct ptp_system_timestamp *sts)
4334 {
4335         u64 time_delta, rem, temp;
4336         u64 systim_next;
4337         u32 incvalue;
4338         int i;
4339
4340         incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4341         for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4342                 /* latch SYSTIMH on read of SYSTIML */
4343                 ptp_read_system_prets(sts);
4344                 systim_next = (u64)er32(SYSTIML);
4345                 ptp_read_system_postts(sts);
4346                 systim_next |= (u64)er32(SYSTIMH) << 32;
4347
4348                 time_delta = systim_next - systim;
4349                 temp = time_delta;
4350                 /* VMWare users have seen incvalue of zero, don't div / 0 */
4351                 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4352
4353                 systim = systim_next;
4354
4355                 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4356                         break;
4357         }
4358
4359         return systim;
4360 }
4361
4362 /**
4363  * e1000e_read_systim - read SYSTIM register
4364  * @adapter: board private structure
4365  * @sts: structure which will contain system time before and after reading
4366  * SYSTIML, may be NULL
4367  **/
4368 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4369                        struct ptp_system_timestamp *sts)
4370 {
4371         struct e1000_hw *hw = &adapter->hw;
4372         u32 systimel, systimel_2, systimeh;
4373         u64 systim;
4374         /* SYSTIMH latching upon SYSTIML read does not work well.
4375          * This means that if SYSTIML overflows after we read it but before
4376          * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4377          * will experience a huge non linear increment in the systime value
4378          * to fix that we test for overflow and if true, we re-read systime.
4379          */
4380         ptp_read_system_prets(sts);
4381         systimel = er32(SYSTIML);
4382         ptp_read_system_postts(sts);
4383         systimeh = er32(SYSTIMH);
4384         /* Is systimel is so large that overflow is possible? */
4385         if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4386                 ptp_read_system_prets(sts);
4387                 systimel_2 = er32(SYSTIML);
4388                 ptp_read_system_postts(sts);
4389                 if (systimel > systimel_2) {
4390                         /* There was an overflow, read again SYSTIMH, and use
4391                          * systimel_2
4392                          */
4393                         systimeh = er32(SYSTIMH);
4394                         systimel = systimel_2;
4395                 }
4396         }
4397         systim = (u64)systimel;
4398         systim |= (u64)systimeh << 32;
4399
4400         if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4401                 systim = e1000e_sanitize_systim(hw, systim, sts);
4402
4403         return systim;
4404 }
4405
4406 /**
4407  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4408  * @cc: cyclecounter structure
4409  **/
4410 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4411 {
4412         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4413                                                      cc);
4414
4415         return e1000e_read_systim(adapter, NULL);
4416 }
4417
4418 /**
4419  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4420  * @adapter: board private structure to initialize
4421  *
4422  * e1000_sw_init initializes the Adapter private data structure.
4423  * Fields are initialized based on PCI device information and
4424  * OS network device settings (MTU size).
4425  **/
4426 static int e1000_sw_init(struct e1000_adapter *adapter)
4427 {
4428         struct net_device *netdev = adapter->netdev;
4429
4430         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4431         adapter->rx_ps_bsize0 = 128;
4432         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4433         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4434         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4435         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4436
4437         spin_lock_init(&adapter->stats64_lock);
4438
4439         e1000e_set_interrupt_capability(adapter);
4440
4441         if (e1000_alloc_queues(adapter))
4442                 return -ENOMEM;
4443
4444         /* Setup hardware time stamping cyclecounter */
4445         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4446                 adapter->cc.read = e1000e_cyclecounter_read;
4447                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4448                 adapter->cc.mult = 1;
4449                 /* cc.shift set in e1000e_get_base_tininca() */
4450
4451                 spin_lock_init(&adapter->systim_lock);
4452                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4453         }
4454
4455         /* Explicitly disable IRQ since the NIC can be in any state. */
4456         e1000_irq_disable(adapter);
4457
4458         set_bit(__E1000_DOWN, &adapter->state);
4459         return 0;
4460 }
4461
4462 /**
4463  * e1000_intr_msi_test - Interrupt Handler
4464  * @irq: interrupt number
4465  * @data: pointer to a network interface device structure
4466  **/
4467 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4468 {
4469         struct net_device *netdev = data;
4470         struct e1000_adapter *adapter = netdev_priv(netdev);
4471         struct e1000_hw *hw = &adapter->hw;
4472         u32 icr = er32(ICR);
4473
4474         e_dbg("icr is %08X\n", icr);
4475         if (icr & E1000_ICR_RXSEQ) {
4476                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4477                 /* Force memory writes to complete before acknowledging the
4478                  * interrupt is handled.
4479                  */
4480                 wmb();
4481         }
4482
4483         return IRQ_HANDLED;
4484 }
4485
4486 /**
4487  * e1000_test_msi_interrupt - Returns 0 for successful test
4488  * @adapter: board private struct
4489  *
4490  * code flow taken from tg3.c
4491  **/
4492 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4493 {
4494         struct net_device *netdev = adapter->netdev;
4495         struct e1000_hw *hw = &adapter->hw;
4496         int err;
4497
4498         /* poll_enable hasn't been called yet, so don't need disable */
4499         /* clear any pending events */
4500         er32(ICR);
4501
4502         /* free the real vector and request a test handler */
4503         e1000_free_irq(adapter);
4504         e1000e_reset_interrupt_capability(adapter);
4505
4506         /* Assume that the test fails, if it succeeds then the test
4507          * MSI irq handler will unset this flag
4508          */
4509         adapter->flags |= FLAG_MSI_TEST_FAILED;
4510
4511         err = pci_enable_msi(adapter->pdev);
4512         if (err)
4513                 goto msi_test_failed;
4514
4515         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4516                           netdev->name, netdev);
4517         if (err) {
4518                 pci_disable_msi(adapter->pdev);
4519                 goto msi_test_failed;
4520         }
4521
4522         /* Force memory writes to complete before enabling and firing an
4523          * interrupt.
4524          */
4525         wmb();
4526
4527         e1000_irq_enable(adapter);
4528
4529         /* fire an unusual interrupt on the test handler */
4530         ew32(ICS, E1000_ICS_RXSEQ);
4531         e1e_flush();
4532         msleep(100);
4533
4534         e1000_irq_disable(adapter);
4535
4536         rmb();                  /* read flags after interrupt has been fired */
4537
4538         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4539                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4540                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4541         } else {
4542                 e_dbg("MSI interrupt test succeeded!\n");
4543         }
4544
4545         free_irq(adapter->pdev->irq, netdev);
4546         pci_disable_msi(adapter->pdev);
4547
4548 msi_test_failed:
4549         e1000e_set_interrupt_capability(adapter);
4550         return e1000_request_irq(adapter);
4551 }
4552
4553 /**
4554  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4555  * @adapter: board private struct
4556  *
4557  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4558  **/
4559 static int e1000_test_msi(struct e1000_adapter *adapter)
4560 {
4561         int err;
4562         u16 pci_cmd;
4563
4564         if (!(adapter->flags & FLAG_MSI_ENABLED))
4565                 return 0;
4566
4567         /* disable SERR in case the MSI write causes a master abort */
4568         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4569         if (pci_cmd & PCI_COMMAND_SERR)
4570                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4571                                       pci_cmd & ~PCI_COMMAND_SERR);
4572
4573         err = e1000_test_msi_interrupt(adapter);
4574
4575         /* re-enable SERR */
4576         if (pci_cmd & PCI_COMMAND_SERR) {
4577                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4578                 pci_cmd |= PCI_COMMAND_SERR;
4579                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4580         }
4581
4582         return err;
4583 }
4584
4585 /**
4586  * e1000e_open - Called when a network interface is made active
4587  * @netdev: network interface device structure
4588  *
4589  * Returns 0 on success, negative value on failure
4590  *
4591  * The open entry point is called when a network interface is made
4592  * active by the system (IFF_UP).  At this point all resources needed
4593  * for transmit and receive operations are allocated, the interrupt
4594  * handler is registered with the OS, the watchdog timer is started,
4595  * and the stack is notified that the interface is ready.
4596  **/
4597 int e1000e_open(struct net_device *netdev)
4598 {
4599         struct e1000_adapter *adapter = netdev_priv(netdev);
4600         struct e1000_hw *hw = &adapter->hw;
4601         struct pci_dev *pdev = adapter->pdev;
4602         int err;
4603
4604         /* disallow open during test */
4605         if (test_bit(__E1000_TESTING, &adapter->state))
4606                 return -EBUSY;
4607
4608         pm_runtime_get_sync(&pdev->dev);
4609
4610         netif_carrier_off(netdev);
4611         netif_stop_queue(netdev);
4612
4613         /* allocate transmit descriptors */
4614         err = e1000e_setup_tx_resources(adapter->tx_ring);
4615         if (err)
4616                 goto err_setup_tx;
4617
4618         /* allocate receive descriptors */
4619         err = e1000e_setup_rx_resources(adapter->rx_ring);
4620         if (err)
4621                 goto err_setup_rx;
4622
4623         /* If AMT is enabled, let the firmware know that the network
4624          * interface is now open and reset the part to a known state.
4625          */
4626         if (adapter->flags & FLAG_HAS_AMT) {
4627                 e1000e_get_hw_control(adapter);
4628                 e1000e_reset(adapter);
4629         }
4630
4631         e1000e_power_up_phy(adapter);
4632
4633         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4634         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4635                 e1000_update_mng_vlan(adapter);
4636
4637         /* DMA latency requirement to workaround jumbo issue */
4638         pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4639                            PM_QOS_DEFAULT_VALUE);
4640
4641         /* before we allocate an interrupt, we must be ready to handle it.
4642          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4643          * as soon as we call pci_request_irq, so we have to setup our
4644          * clean_rx handler before we do so.
4645          */
4646         e1000_configure(adapter);
4647
4648         err = e1000_request_irq(adapter);
4649         if (err)
4650                 goto err_req_irq;
4651
4652         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4653          * ignore e1000e MSI messages, which means we need to test our MSI
4654          * interrupt now
4655          */
4656         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4657                 err = e1000_test_msi(adapter);
4658                 if (err) {
4659                         e_err("Interrupt allocation failed\n");
4660                         goto err_req_irq;
4661                 }
4662         }
4663
4664         /* From here on the code is the same as e1000e_up() */
4665         clear_bit(__E1000_DOWN, &adapter->state);
4666
4667         napi_enable(&adapter->napi);
4668
4669         e1000_irq_enable(adapter);
4670
4671         adapter->tx_hang_recheck = false;
4672
4673         hw->mac.get_link_status = true;
4674         pm_runtime_put(&pdev->dev);
4675
4676         e1000e_trigger_lsc(adapter);
4677
4678         return 0;
4679
4680 err_req_irq:
4681         pm_qos_remove_request(&adapter->pm_qos_req);
4682         e1000e_release_hw_control(adapter);
4683         e1000_power_down_phy(adapter);
4684         e1000e_free_rx_resources(adapter->rx_ring);
4685 err_setup_rx:
4686         e1000e_free_tx_resources(adapter->tx_ring);
4687 err_setup_tx:
4688         e1000e_reset(adapter);
4689         pm_runtime_put_sync(&pdev->dev);
4690
4691         return err;
4692 }
4693
4694 /**
4695  * e1000e_close - Disables a network interface
4696  * @netdev: network interface device structure
4697  *
4698  * Returns 0, this is not allowed to fail
4699  *
4700  * The close entry point is called when an interface is de-activated
4701  * by the OS.  The hardware is still under the drivers control, but
4702  * needs to be disabled.  A global MAC reset is issued to stop the
4703  * hardware, and all transmit and receive resources are freed.
4704  **/
4705 int e1000e_close(struct net_device *netdev)
4706 {
4707         struct e1000_adapter *adapter = netdev_priv(netdev);
4708         struct pci_dev *pdev = adapter->pdev;
4709         int count = E1000_CHECK_RESET_COUNT;
4710
4711         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4712                 usleep_range(10000, 11000);
4713
4714         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4715
4716         pm_runtime_get_sync(&pdev->dev);
4717
4718         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4719                 e1000e_down(adapter, true);
4720                 e1000_free_irq(adapter);
4721
4722                 /* Link status message must follow this format */
4723                 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4724         }
4725
4726         napi_disable(&adapter->napi);
4727
4728         e1000e_free_tx_resources(adapter->tx_ring);
4729         e1000e_free_rx_resources(adapter->rx_ring);
4730
4731         /* kill manageability vlan ID if supported, but not if a vlan with
4732          * the same ID is registered on the host OS (let 8021q kill it)
4733          */
4734         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4735                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4736                                        adapter->mng_vlan_id);
4737
4738         /* If AMT is enabled, let the firmware know that the network
4739          * interface is now closed
4740          */
4741         if ((adapter->flags & FLAG_HAS_AMT) &&
4742             !test_bit(__E1000_TESTING, &adapter->state))
4743                 e1000e_release_hw_control(adapter);
4744
4745         pm_qos_remove_request(&adapter->pm_qos_req);
4746
4747         pm_runtime_put_sync(&pdev->dev);
4748
4749         return 0;
4750 }
4751
4752 /**
4753  * e1000_set_mac - Change the Ethernet Address of the NIC
4754  * @netdev: network interface device structure
4755  * @p: pointer to an address structure
4756  *
4757  * Returns 0 on success, negative on failure
4758  **/
4759 static int e1000_set_mac(struct net_device *netdev, void *p)
4760 {
4761         struct e1000_adapter *adapter = netdev_priv(netdev);
4762         struct e1000_hw *hw = &adapter->hw;
4763         struct sockaddr *addr = p;
4764
4765         if (!is_valid_ether_addr(addr->sa_data))
4766                 return -EADDRNOTAVAIL;
4767
4768         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4769         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4770
4771         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4772
4773         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4774                 /* activate the work around */
4775                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4776
4777                 /* Hold a copy of the LAA in RAR[14] This is done so that
4778                  * between the time RAR[0] gets clobbered  and the time it
4779                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4780                  * of the RARs and no incoming packets directed to this port
4781                  * are dropped. Eventually the LAA will be in RAR[0] and
4782                  * RAR[14]
4783                  */
4784                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4785                                     adapter->hw.mac.rar_entry_count - 1);
4786         }
4787
4788         return 0;
4789 }
4790
4791 /**
4792  * e1000e_update_phy_task - work thread to update phy
4793  * @work: pointer to our work struct
4794  *
4795  * this worker thread exists because we must acquire a
4796  * semaphore to read the phy, which we could msleep while
4797  * waiting for it, and we can't msleep in a timer.
4798  **/
4799 static void e1000e_update_phy_task(struct work_struct *work)
4800 {
4801         struct e1000_adapter *adapter = container_of(work,
4802                                                      struct e1000_adapter,
4803                                                      update_phy_task);
4804         struct e1000_hw *hw = &adapter->hw;
4805
4806         if (test_bit(__E1000_DOWN, &adapter->state))
4807                 return;
4808
4809         e1000_get_phy_info(hw);
4810
4811         /* Enable EEE on 82579 after link up */
4812         if (hw->phy.type >= e1000_phy_82579)
4813                 e1000_set_eee_pchlan(hw);
4814 }
4815
4816 /**
4817  * e1000_update_phy_info - timre call-back to update PHY info
4818  * @data: pointer to adapter cast into an unsigned long
4819  *
4820  * Need to wait a few seconds after link up to get diagnostic information from
4821  * the phy
4822  **/
4823 static void e1000_update_phy_info(struct timer_list *t)
4824 {
4825         struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4826
4827         if (test_bit(__E1000_DOWN, &adapter->state))
4828                 return;
4829
4830         schedule_work(&adapter->update_phy_task);
4831 }
4832
4833 /**
4834  * e1000e_update_phy_stats - Update the PHY statistics counters
4835  * @adapter: board private structure
4836  *
4837  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4838  **/
4839 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4840 {
4841         struct e1000_hw *hw = &adapter->hw;
4842         s32 ret_val;
4843         u16 phy_data;
4844
4845         ret_val = hw->phy.ops.acquire(hw);
4846         if (ret_val)
4847                 return;
4848
4849         /* A page set is expensive so check if already on desired page.
4850          * If not, set to the page with the PHY status registers.
4851          */
4852         hw->phy.addr = 1;
4853         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4854                                            &phy_data);
4855         if (ret_val)
4856                 goto release;
4857         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4858                 ret_val = hw->phy.ops.set_page(hw,
4859                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4860                 if (ret_val)
4861                         goto release;
4862         }
4863
4864         /* Single Collision Count */
4865         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4866         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4867         if (!ret_val)
4868                 adapter->stats.scc += phy_data;
4869
4870         /* Excessive Collision Count */
4871         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4872         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4873         if (!ret_val)
4874                 adapter->stats.ecol += phy_data;
4875
4876         /* Multiple Collision Count */
4877         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4878         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4879         if (!ret_val)
4880                 adapter->stats.mcc += phy_data;
4881
4882         /* Late Collision Count */
4883         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4884         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4885         if (!ret_val)
4886                 adapter->stats.latecol += phy_data;
4887
4888         /* Collision Count - also used for adaptive IFS */
4889         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4890         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4891         if (!ret_val)
4892                 hw->mac.collision_delta = phy_data;
4893
4894         /* Defer Count */
4895         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4896         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4897         if (!ret_val)
4898                 adapter->stats.dc += phy_data;
4899
4900         /* Transmit with no CRS */
4901         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4902         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4903         if (!ret_val)
4904                 adapter->stats.tncrs += phy_data;
4905
4906 release:
4907         hw->phy.ops.release(hw);
4908 }
4909
4910 /**
4911  * e1000e_update_stats - Update the board statistics counters
4912  * @adapter: board private structure
4913  **/
4914 static void e1000e_update_stats(struct e1000_adapter *adapter)
4915 {
4916         struct net_device *netdev = adapter->netdev;
4917         struct e1000_hw *hw = &adapter->hw;
4918         struct pci_dev *pdev = adapter->pdev;
4919
4920         /* Prevent stats update while adapter is being reset, or if the pci
4921          * connection is down.
4922          */
4923         if (adapter->link_speed == 0)
4924                 return;
4925         if (pci_channel_offline(pdev))
4926                 return;
4927
4928         adapter->stats.crcerrs += er32(CRCERRS);
4929         adapter->stats.gprc += er32(GPRC);
4930         adapter->stats.gorc += er32(GORCL);
4931         er32(GORCH);            /* Clear gorc */
4932         adapter->stats.bprc += er32(BPRC);
4933         adapter->stats.mprc += er32(MPRC);
4934         adapter->stats.roc += er32(ROC);
4935
4936         adapter->stats.mpc += er32(MPC);
4937
4938         /* Half-duplex statistics */
4939         if (adapter->link_duplex == HALF_DUPLEX) {
4940                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4941                         e1000e_update_phy_stats(adapter);
4942                 } else {
4943                         adapter->stats.scc += er32(SCC);
4944                         adapter->stats.ecol += er32(ECOL);
4945                         adapter->stats.mcc += er32(MCC);
4946                         adapter->stats.latecol += er32(LATECOL);
4947                         adapter->stats.dc += er32(DC);
4948
4949                         hw->mac.collision_delta = er32(COLC);
4950
4951                         if ((hw->mac.type != e1000_82574) &&
4952                             (hw->mac.type != e1000_82583))
4953                                 adapter->stats.tncrs += er32(TNCRS);
4954                 }
4955                 adapter->stats.colc += hw->mac.collision_delta;
4956         }
4957
4958         adapter->stats.xonrxc += er32(XONRXC);
4959         adapter->stats.xontxc += er32(XONTXC);
4960         adapter->stats.xoffrxc += er32(XOFFRXC);
4961         adapter->stats.xofftxc += er32(XOFFTXC);
4962         adapter->stats.gptc += er32(GPTC);
4963         adapter->stats.gotc += er32(GOTCL);
4964         er32(GOTCH);            /* Clear gotc */
4965         adapter->stats.rnbc += er32(RNBC);
4966         adapter->stats.ruc += er32(RUC);
4967
4968         adapter->stats.mptc += er32(MPTC);
4969         adapter->stats.bptc += er32(BPTC);
4970
4971         /* used for adaptive IFS */
4972
4973         hw->mac.tx_packet_delta = er32(TPT);
4974         adapter->stats.tpt += hw->mac.tx_packet_delta;
4975
4976         adapter->stats.algnerrc += er32(ALGNERRC);
4977         adapter->stats.rxerrc += er32(RXERRC);
4978         adapter->stats.cexterr += er32(CEXTERR);
4979         adapter->stats.tsctc += er32(TSCTC);
4980         adapter->stats.tsctfc += er32(TSCTFC);
4981
4982         /* Fill out the OS statistics structure */
4983         netdev->stats.multicast = adapter->stats.mprc;
4984         netdev->stats.collisions = adapter->stats.colc;
4985
4986         /* Rx Errors */
4987
4988         /* RLEC on some newer hardware can be incorrect so build
4989          * our own version based on RUC and ROC
4990          */
4991         netdev->stats.rx_errors = adapter->stats.rxerrc +
4992             adapter->stats.crcerrs + adapter->stats.algnerrc +
4993             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4994         netdev->stats.rx_length_errors = adapter->stats.ruc +
4995             adapter->stats.roc;
4996         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4997         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4998         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4999
5000         /* Tx Errors */
5001         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5002         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5003         netdev->stats.tx_window_errors = adapter->stats.latecol;
5004         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5005
5006         /* Tx Dropped needs to be maintained elsewhere */
5007
5008         /* Management Stats */
5009         adapter->stats.mgptc += er32(MGTPTC);
5010         adapter->stats.mgprc += er32(MGTPRC);
5011         adapter->stats.mgpdc += er32(MGTPDC);
5012
5013         /* Correctable ECC Errors */
5014         if (hw->mac.type >= e1000_pch_lpt) {
5015                 u32 pbeccsts = er32(PBECCSTS);
5016
5017                 adapter->corr_errors +=
5018                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5019                 adapter->uncorr_errors +=
5020                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5021                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5022         }
5023 }
5024
5025 /**
5026  * e1000_phy_read_status - Update the PHY register status snapshot
5027  * @adapter: board private structure
5028  **/
5029 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5030 {
5031         struct e1000_hw *hw = &adapter->hw;
5032         struct e1000_phy_regs *phy = &adapter->phy_regs;
5033
5034         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5035             (er32(STATUS) & E1000_STATUS_LU) &&
5036             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5037                 int ret_val;
5038
5039                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5040                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5041                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5042                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5043                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5044                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5045                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5046                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5047                 if (ret_val)
5048                         e_warn("Error reading PHY register\n");
5049         } else {
5050                 /* Do not read PHY registers if link is not up
5051                  * Set values to typical power-on defaults
5052                  */
5053                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5054                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5055                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5056                              BMSR_ERCAP);
5057                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5058                                   ADVERTISE_ALL | ADVERTISE_CSMA);
5059                 phy->lpa = 0;
5060                 phy->expansion = EXPANSION_ENABLENPAGE;
5061                 phy->ctrl1000 = ADVERTISE_1000FULL;
5062                 phy->stat1000 = 0;
5063                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5064         }
5065 }
5066
5067 static void e1000_print_link_info(struct e1000_adapter *adapter)
5068 {
5069         struct e1000_hw *hw = &adapter->hw;
5070         u32 ctrl = er32(CTRL);
5071
5072         /* Link status message must follow this format for user tools */
5073         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5074                 adapter->netdev->name, adapter->link_speed,
5075                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5076                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5077                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5078                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5079 }
5080
5081 static bool e1000e_has_link(struct e1000_adapter *adapter)
5082 {
5083         struct e1000_hw *hw = &adapter->hw;
5084         bool link_active = false;
5085         s32 ret_val = 0;
5086
5087         /* get_link_status is set on LSC (link status) interrupt or
5088          * Rx sequence error interrupt.  get_link_status will stay
5089          * true until the check_for_link establishes link
5090          * for copper adapters ONLY
5091          */
5092         switch (hw->phy.media_type) {
5093         case e1000_media_type_copper:
5094                 if (hw->mac.get_link_status) {
5095                         ret_val = hw->mac.ops.check_for_link(hw);
5096                         link_active = !hw->mac.get_link_status;
5097                 } else {
5098                         link_active = true;
5099                 }
5100                 break;
5101         case e1000_media_type_fiber:
5102                 ret_val = hw->mac.ops.check_for_link(hw);
5103                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5104                 break;
5105         case e1000_media_type_internal_serdes:
5106                 ret_val = hw->mac.ops.check_for_link(hw);
5107                 link_active = hw->mac.serdes_has_link;
5108                 break;
5109         default:
5110         case e1000_media_type_unknown:
5111                 break;
5112         }
5113
5114         if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5115             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5116                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5117                 e_info("Gigabit has been disabled, downgrading speed\n");
5118         }
5119
5120         return link_active;
5121 }
5122
5123 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5124 {
5125         /* make sure the receive unit is started */
5126         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5127             (adapter->flags & FLAG_RESTART_NOW)) {
5128                 struct e1000_hw *hw = &adapter->hw;
5129                 u32 rctl = er32(RCTL);
5130
5131                 ew32(RCTL, rctl | E1000_RCTL_EN);
5132                 adapter->flags &= ~FLAG_RESTART_NOW;
5133         }
5134 }
5135
5136 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5137 {
5138         struct e1000_hw *hw = &adapter->hw;
5139
5140         /* With 82574 controllers, PHY needs to be checked periodically
5141          * for hung state and reset, if two calls return true
5142          */
5143         if (e1000_check_phy_82574(hw))
5144                 adapter->phy_hang_count++;
5145         else
5146                 adapter->phy_hang_count = 0;
5147
5148         if (adapter->phy_hang_count > 1) {
5149                 adapter->phy_hang_count = 0;
5150                 e_dbg("PHY appears hung - resetting\n");
5151                 schedule_work(&adapter->reset_task);
5152         }
5153 }
5154
5155 static void e1000_watchdog_task(struct work_struct *work)
5156 {
5157         struct e1000_adapter *adapter = container_of(work,
5158                                                      struct e1000_adapter,
5159                                                      watchdog_task.work);
5160         struct net_device *netdev = adapter->netdev;
5161         struct e1000_mac_info *mac = &adapter->hw.mac;
5162         struct e1000_phy_info *phy = &adapter->hw.phy;
5163         struct e1000_ring *tx_ring = adapter->tx_ring;
5164         u32 dmoff_exit_timeout = 100, tries = 0;
5165         struct e1000_hw *hw = &adapter->hw;
5166         u32 link, tctl, pcim_state;
5167
5168         if (test_bit(__E1000_DOWN, &adapter->state))
5169                 return;
5170
5171         link = e1000e_has_link(adapter);
5172         if ((netif_carrier_ok(netdev)) && link) {
5173                 /* Cancel scheduled suspend requests. */
5174                 pm_runtime_resume(netdev->dev.parent);
5175
5176                 e1000e_enable_receives(adapter);
5177                 goto link_up;
5178         }
5179
5180         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5181             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5182                 e1000_update_mng_vlan(adapter);
5183
5184         if (link) {
5185                 if (!netif_carrier_ok(netdev)) {
5186                         bool txb2b = true;
5187
5188                         /* Cancel scheduled suspend requests. */
5189                         pm_runtime_resume(netdev->dev.parent);
5190
5191                         /* Checking if MAC is in DMoff state*/
5192                         pcim_state = er32(STATUS);
5193                         while (pcim_state & E1000_STATUS_PCIM_STATE) {
5194                                 if (tries++ == dmoff_exit_timeout) {
5195                                         e_dbg("Error in exiting dmoff\n");
5196                                         break;
5197                                 }
5198                                 usleep_range(10000, 20000);
5199                                 pcim_state = er32(STATUS);
5200
5201                                 /* Checking if MAC exited DMoff state */
5202                                 if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5203                                         e1000_phy_hw_reset(&adapter->hw);
5204                         }
5205
5206                         /* update snapshot of PHY registers on LSC */
5207                         e1000_phy_read_status(adapter);
5208                         mac->ops.get_link_up_info(&adapter->hw,
5209                                                   &adapter->link_speed,
5210                                                   &adapter->link_duplex);
5211                         e1000_print_link_info(adapter);
5212
5213                         /* check if SmartSpeed worked */
5214                         e1000e_check_downshift(hw);
5215                         if (phy->speed_downgraded)
5216                                 netdev_warn(netdev,
5217                                             "Link Speed was downgraded by SmartSpeed\n");
5218
5219                         /* On supported PHYs, check for duplex mismatch only
5220                          * if link has autonegotiated at 10/100 half
5221                          */
5222                         if ((hw->phy.type == e1000_phy_igp_3 ||
5223                              hw->phy.type == e1000_phy_bm) &&
5224                             hw->mac.autoneg &&
5225                             (adapter->link_speed == SPEED_10 ||
5226                              adapter->link_speed == SPEED_100) &&
5227                             (adapter->link_duplex == HALF_DUPLEX)) {
5228                                 u16 autoneg_exp;
5229
5230                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5231
5232                                 if (!(autoneg_exp & EXPANSION_NWAY))
5233                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5234                         }
5235
5236                         /* adjust timeout factor according to speed/duplex */
5237                         adapter->tx_timeout_factor = 1;
5238                         switch (adapter->link_speed) {
5239                         case SPEED_10:
5240                                 txb2b = false;
5241                                 adapter->tx_timeout_factor = 16;
5242                                 break;
5243                         case SPEED_100:
5244                                 txb2b = false;
5245                                 adapter->tx_timeout_factor = 10;
5246                                 break;
5247                         }
5248
5249                         /* workaround: re-program speed mode bit after
5250                          * link-up event
5251                          */
5252                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5253                             !txb2b) {
5254                                 u32 tarc0;
5255
5256                                 tarc0 = er32(TARC(0));
5257                                 tarc0 &= ~SPEED_MODE_BIT;
5258                                 ew32(TARC(0), tarc0);
5259                         }
5260
5261                         /* disable TSO for pcie and 10/100 speeds, to avoid
5262                          * some hardware issues
5263                          */
5264                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
5265                                 switch (adapter->link_speed) {
5266                                 case SPEED_10:
5267                                 case SPEED_100:
5268                                         e_info("10/100 speed: disabling TSO\n");
5269                                         netdev->features &= ~NETIF_F_TSO;
5270                                         netdev->features &= ~NETIF_F_TSO6;
5271                                         break;
5272                                 case SPEED_1000:
5273                                         netdev->features |= NETIF_F_TSO;
5274                                         netdev->features |= NETIF_F_TSO6;
5275                                         break;
5276                                 default:
5277                                         /* oops */
5278                                         break;
5279                                 }
5280                         }
5281
5282                         /* enable transmits in the hardware, need to do this
5283                          * after setting TARC(0)
5284                          */
5285                         tctl = er32(TCTL);
5286                         tctl |= E1000_TCTL_EN;
5287                         ew32(TCTL, tctl);
5288
5289                         /* Perform any post-link-up configuration before
5290                          * reporting link up.
5291                          */
5292                         if (phy->ops.cfg_on_link_up)
5293                                 phy->ops.cfg_on_link_up(hw);
5294
5295                         netif_wake_queue(netdev);
5296                         netif_carrier_on(netdev);
5297
5298                         if (!test_bit(__E1000_DOWN, &adapter->state))
5299                                 mod_timer(&adapter->phy_info_timer,
5300                                           round_jiffies(jiffies + 2 * HZ));
5301                 }
5302         } else {
5303                 if (netif_carrier_ok(netdev)) {
5304                         adapter->link_speed = 0;
5305                         adapter->link_duplex = 0;
5306                         /* Link status message must follow this format */
5307                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5308                         netif_carrier_off(netdev);
5309                         netif_stop_queue(netdev);
5310                         if (!test_bit(__E1000_DOWN, &adapter->state))
5311                                 mod_timer(&adapter->phy_info_timer,
5312                                           round_jiffies(jiffies + 2 * HZ));
5313
5314                         /* 8000ES2LAN requires a Rx packet buffer work-around
5315                          * on link down event; reset the controller to flush
5316                          * the Rx packet buffer.
5317                          */
5318                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5319                                 adapter->flags |= FLAG_RESTART_NOW;
5320                         else
5321                                 pm_schedule_suspend(netdev->dev.parent,
5322                                                     LINK_TIMEOUT);
5323                 }
5324         }
5325
5326 link_up:
5327         spin_lock(&adapter->stats64_lock);
5328         e1000e_update_stats(adapter);
5329
5330         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5331         adapter->tpt_old = adapter->stats.tpt;
5332         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5333         adapter->colc_old = adapter->stats.colc;
5334
5335         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5336         adapter->gorc_old = adapter->stats.gorc;
5337         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5338         adapter->gotc_old = adapter->stats.gotc;
5339         spin_unlock(&adapter->stats64_lock);
5340
5341         /* If the link is lost the controller stops DMA, but
5342          * if there is queued Tx work it cannot be done.  So
5343          * reset the controller to flush the Tx packet buffers.
5344          */
5345         if (!netif_carrier_ok(netdev) &&
5346             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5347                 adapter->flags |= FLAG_RESTART_NOW;
5348
5349         /* If reset is necessary, do it outside of interrupt context. */
5350         if (adapter->flags & FLAG_RESTART_NOW) {
5351                 schedule_work(&adapter->reset_task);
5352                 /* return immediately since reset is imminent */
5353                 return;
5354         }
5355
5356         e1000e_update_adaptive(&adapter->hw);
5357
5358         /* Simple mode for Interrupt Throttle Rate (ITR) */
5359         if (adapter->itr_setting == 4) {
5360                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5361                  * Total asymmetrical Tx or Rx gets ITR=8000;
5362                  * everyone else is between 2000-8000.
5363                  */
5364                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5365                 u32 dif = (adapter->gotc > adapter->gorc ?
5366                            adapter->gotc - adapter->gorc :
5367                            adapter->gorc - adapter->gotc) / 10000;
5368                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5369
5370                 e1000e_write_itr(adapter, itr);
5371         }
5372
5373         /* Cause software interrupt to ensure Rx ring is cleaned */
5374         if (adapter->msix_entries)
5375                 ew32(ICS, adapter->rx_ring->ims_val);
5376         else
5377                 ew32(ICS, E1000_ICS_RXDMT0);
5378
5379         /* flush pending descriptors to memory before detecting Tx hang */
5380         e1000e_flush_descriptors(adapter);
5381
5382         /* Force detection of hung controller every watchdog period */
5383         adapter->detect_tx_hung = true;
5384
5385         /* With 82571 controllers, LAA may be overwritten due to controller
5386          * reset from the other port. Set the appropriate LAA in RAR[0]
5387          */
5388         if (e1000e_get_laa_state_82571(hw))
5389                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5390
5391         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5392                 e1000e_check_82574_phy_workaround(adapter);
5393
5394         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5395         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5396                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5397                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5398                         er32(RXSTMPH);
5399                         adapter->rx_hwtstamp_cleared++;
5400                 } else {
5401                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5402                 }
5403         }
5404
5405         /* Reset the timer */
5406         if (!test_bit(__E1000_DOWN, &adapter->state))
5407                 queue_delayed_work(adapter->e1000_workqueue,
5408                                    &adapter->watchdog_task,
5409                                    round_jiffies(2 * HZ));
5410 }
5411
5412 #define E1000_TX_FLAGS_CSUM             0x00000001
5413 #define E1000_TX_FLAGS_VLAN             0x00000002
5414 #define E1000_TX_FLAGS_TSO              0x00000004
5415 #define E1000_TX_FLAGS_IPV4             0x00000008
5416 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5417 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5418 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5419 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5420
5421 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5422                      __be16 protocol)
5423 {
5424         struct e1000_context_desc *context_desc;
5425         struct e1000_buffer *buffer_info;
5426         unsigned int i;
5427         u32 cmd_length = 0;
5428         u16 ipcse = 0, mss;
5429         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5430         int err;
5431
5432         if (!skb_is_gso(skb))
5433                 return 0;
5434
5435         err = skb_cow_head(skb, 0);
5436         if (err < 0)
5437                 return err;
5438
5439         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5440         mss = skb_shinfo(skb)->gso_size;
5441         if (protocol == htons(ETH_P_IP)) {
5442                 struct iphdr *iph = ip_hdr(skb);
5443                 iph->tot_len = 0;
5444                 iph->check = 0;
5445                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5446                                                          0, IPPROTO_TCP, 0);
5447                 cmd_length = E1000_TXD_CMD_IP;
5448                 ipcse = skb_transport_offset(skb) - 1;
5449         } else if (skb_is_gso_v6(skb)) {
5450                 ipv6_hdr(skb)->payload_len = 0;
5451                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5452                                                        &ipv6_hdr(skb)->daddr,
5453                                                        0, IPPROTO_TCP, 0);
5454                 ipcse = 0;
5455         }
5456         ipcss = skb_network_offset(skb);
5457         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5458         tucss = skb_transport_offset(skb);
5459         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5460
5461         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5462                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5463
5464         i = tx_ring->next_to_use;
5465         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5466         buffer_info = &tx_ring->buffer_info[i];
5467
5468         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5469         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5470         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5471         context_desc->upper_setup.tcp_fields.tucss = tucss;
5472         context_desc->upper_setup.tcp_fields.tucso = tucso;
5473         context_desc->upper_setup.tcp_fields.tucse = 0;
5474         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5475         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5476         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5477
5478         buffer_info->time_stamp = jiffies;
5479         buffer_info->next_to_watch = i;
5480
5481         i++;
5482         if (i == tx_ring->count)
5483                 i = 0;
5484         tx_ring->next_to_use = i;
5485
5486         return 1;
5487 }
5488
5489 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5490                           __be16 protocol)
5491 {
5492         struct e1000_adapter *adapter = tx_ring->adapter;
5493         struct e1000_context_desc *context_desc;
5494         struct e1000_buffer *buffer_info;
5495         unsigned int i;
5496         u8 css;
5497         u32 cmd_len = E1000_TXD_CMD_DEXT;
5498
5499         if (skb->ip_summed != CHECKSUM_PARTIAL)
5500                 return false;
5501
5502         switch (protocol) {
5503         case cpu_to_be16(ETH_P_IP):
5504                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5505                         cmd_len |= E1000_TXD_CMD_TCP;
5506                 break;
5507         case cpu_to_be16(ETH_P_IPV6):
5508                 /* XXX not handling all IPV6 headers */
5509                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5510                         cmd_len |= E1000_TXD_CMD_TCP;
5511                 break;
5512         default:
5513                 if (unlikely(net_ratelimit()))
5514                         e_warn("checksum_partial proto=%x!\n",
5515                                be16_to_cpu(protocol));
5516                 break;
5517         }
5518
5519         css = skb_checksum_start_offset(skb);
5520
5521         i = tx_ring->next_to_use;
5522         buffer_info = &tx_ring->buffer_info[i];
5523         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5524
5525         context_desc->lower_setup.ip_config = 0;
5526         context_desc->upper_setup.tcp_fields.tucss = css;
5527         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5528         context_desc->upper_setup.tcp_fields.tucse = 0;
5529         context_desc->tcp_seg_setup.data = 0;
5530         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5531
5532         buffer_info->time_stamp = jiffies;
5533         buffer_info->next_to_watch = i;
5534
5535         i++;
5536         if (i == tx_ring->count)
5537                 i = 0;
5538         tx_ring->next_to_use = i;
5539
5540         return true;
5541 }
5542
5543 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5544                         unsigned int first, unsigned int max_per_txd,
5545                         unsigned int nr_frags)
5546 {
5547         struct e1000_adapter *adapter = tx_ring->adapter;
5548         struct pci_dev *pdev = adapter->pdev;
5549         struct e1000_buffer *buffer_info;
5550         unsigned int len = skb_headlen(skb);
5551         unsigned int offset = 0, size, count = 0, i;
5552         unsigned int f, bytecount, segs;
5553
5554         i = tx_ring->next_to_use;
5555
5556         while (len) {
5557                 buffer_info = &tx_ring->buffer_info[i];
5558                 size = min(len, max_per_txd);
5559
5560                 buffer_info->length = size;
5561                 buffer_info->time_stamp = jiffies;
5562                 buffer_info->next_to_watch = i;
5563                 buffer_info->dma = dma_map_single(&pdev->dev,
5564                                                   skb->data + offset,
5565                                                   size, DMA_TO_DEVICE);
5566                 buffer_info->mapped_as_page = false;
5567                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5568                         goto dma_error;
5569
5570                 len -= size;
5571                 offset += size;
5572                 count++;
5573
5574                 if (len) {
5575                         i++;
5576                         if (i == tx_ring->count)
5577                                 i = 0;
5578                 }
5579         }
5580
5581         for (f = 0; f < nr_frags; f++) {
5582                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5583
5584                 len = skb_frag_size(frag);
5585                 offset = 0;
5586
5587                 while (len) {
5588                         i++;
5589                         if (i == tx_ring->count)
5590                                 i = 0;
5591
5592                         buffer_info = &tx_ring->buffer_info[i];
5593                         size = min(len, max_per_txd);
5594
5595                         buffer_info->length = size;
5596                         buffer_info->time_stamp = jiffies;
5597                         buffer_info->next_to_watch = i;
5598                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5599                                                             offset, size,
5600                                                             DMA_TO_DEVICE);
5601                         buffer_info->mapped_as_page = true;
5602                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5603                                 goto dma_error;
5604
5605                         len -= size;
5606                         offset += size;
5607                         count++;
5608                 }
5609         }
5610
5611         segs = skb_shinfo(skb)->gso_segs ? : 1;
5612         /* multiply data chunks by size of headers */
5613         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5614
5615         tx_ring->buffer_info[i].skb = skb;
5616         tx_ring->buffer_info[i].segs = segs;
5617         tx_ring->buffer_info[i].bytecount = bytecount;
5618         tx_ring->buffer_info[first].next_to_watch = i;
5619
5620         return count;
5621
5622 dma_error:
5623         dev_err(&pdev->dev, "Tx DMA map failed\n");
5624         buffer_info->dma = 0;
5625         if (count)
5626                 count--;
5627
5628         while (count--) {
5629                 if (i == 0)
5630                         i += tx_ring->count;
5631                 i--;
5632                 buffer_info = &tx_ring->buffer_info[i];
5633                 e1000_put_txbuf(tx_ring, buffer_info, true);
5634         }
5635
5636         return 0;
5637 }
5638
5639 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5640 {
5641         struct e1000_adapter *adapter = tx_ring->adapter;
5642         struct e1000_tx_desc *tx_desc = NULL;
5643         struct e1000_buffer *buffer_info;
5644         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5645         unsigned int i;
5646
5647         if (tx_flags & E1000_TX_FLAGS_TSO) {
5648                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5649                     E1000_TXD_CMD_TSE;
5650                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5651
5652                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5653                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5654         }
5655
5656         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5657                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5658                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5659         }
5660
5661         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5662                 txd_lower |= E1000_TXD_CMD_VLE;
5663                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5664         }
5665
5666         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5667                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5668
5669         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5670                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5671                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5672         }
5673
5674         i = tx_ring->next_to_use;
5675
5676         do {
5677                 buffer_info = &tx_ring->buffer_info[i];
5678                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5679                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5680                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5681                                                   buffer_info->length);
5682                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5683
5684                 i++;
5685                 if (i == tx_ring->count)
5686                         i = 0;
5687         } while (--count > 0);
5688
5689         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5690
5691         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5692         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5693                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5694
5695         /* Force memory writes to complete before letting h/w
5696          * know there are new descriptors to fetch.  (Only
5697          * applicable for weak-ordered memory model archs,
5698          * such as IA-64).
5699          */
5700         wmb();
5701
5702         tx_ring->next_to_use = i;
5703 }
5704
5705 #define MINIMUM_DHCP_PACKET_SIZE 282
5706 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5707                                     struct sk_buff *skb)
5708 {
5709         struct e1000_hw *hw = &adapter->hw;
5710         u16 length, offset;
5711
5712         if (skb_vlan_tag_present(skb) &&
5713             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5714               (adapter->hw.mng_cookie.status &
5715                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5716                 return 0;
5717
5718         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5719                 return 0;
5720
5721         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5722                 return 0;
5723
5724         {
5725                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5726                 struct udphdr *udp;
5727
5728                 if (ip->protocol != IPPROTO_UDP)
5729                         return 0;
5730
5731                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5732                 if (ntohs(udp->dest) != 67)
5733                         return 0;
5734
5735                 offset = (u8 *)udp + 8 - skb->data;
5736                 length = skb->len - offset;
5737                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5738         }
5739
5740         return 0;
5741 }
5742
5743 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5744 {
5745         struct e1000_adapter *adapter = tx_ring->adapter;
5746
5747         netif_stop_queue(adapter->netdev);
5748         /* Herbert's original patch had:
5749          *  smp_mb__after_netif_stop_queue();
5750          * but since that doesn't exist yet, just open code it.
5751          */
5752         smp_mb();
5753
5754         /* We need to check again in a case another CPU has just
5755          * made room available.
5756          */
5757         if (e1000_desc_unused(tx_ring) < size)
5758                 return -EBUSY;
5759
5760         /* A reprieve! */
5761         netif_start_queue(adapter->netdev);
5762         ++adapter->restart_queue;
5763         return 0;
5764 }
5765
5766 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5767 {
5768         BUG_ON(size > tx_ring->count);
5769
5770         if (e1000_desc_unused(tx_ring) >= size)
5771                 return 0;
5772         return __e1000_maybe_stop_tx(tx_ring, size);
5773 }
5774
5775 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5776                                     struct net_device *netdev)
5777 {
5778         struct e1000_adapter *adapter = netdev_priv(netdev);
5779         struct e1000_ring *tx_ring = adapter->tx_ring;
5780         unsigned int first;
5781         unsigned int tx_flags = 0;
5782         unsigned int len = skb_headlen(skb);
5783         unsigned int nr_frags;
5784         unsigned int mss;
5785         int count = 0;
5786         int tso;
5787         unsigned int f;
5788         __be16 protocol = vlan_get_protocol(skb);
5789
5790         if (test_bit(__E1000_DOWN, &adapter->state)) {
5791                 dev_kfree_skb_any(skb);
5792                 return NETDEV_TX_OK;
5793         }
5794
5795         if (skb->len <= 0) {
5796                 dev_kfree_skb_any(skb);
5797                 return NETDEV_TX_OK;
5798         }
5799
5800         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5801          * pad skb in order to meet this minimum size requirement
5802          */
5803         if (skb_put_padto(skb, 17))
5804                 return NETDEV_TX_OK;
5805
5806         mss = skb_shinfo(skb)->gso_size;
5807         if (mss) {
5808                 u8 hdr_len;
5809
5810                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5811                  * points to just header, pull a few bytes of payload from
5812                  * frags into skb->data
5813                  */
5814                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5815                 /* we do this workaround for ES2LAN, but it is un-necessary,
5816                  * avoiding it could save a lot of cycles
5817                  */
5818                 if (skb->data_len && (hdr_len == len)) {
5819                         unsigned int pull_size;
5820
5821                         pull_size = min_t(unsigned int, 4, skb->data_len);
5822                         if (!__pskb_pull_tail(skb, pull_size)) {
5823                                 e_err("__pskb_pull_tail failed.\n");
5824                                 dev_kfree_skb_any(skb);
5825                                 return NETDEV_TX_OK;
5826                         }
5827                         len = skb_headlen(skb);
5828                 }
5829         }
5830
5831         /* reserve a descriptor for the offload context */
5832         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5833                 count++;
5834         count++;
5835
5836         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5837
5838         nr_frags = skb_shinfo(skb)->nr_frags;
5839         for (f = 0; f < nr_frags; f++)
5840                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5841                                       adapter->tx_fifo_limit);
5842
5843         if (adapter->hw.mac.tx_pkt_filtering)
5844                 e1000_transfer_dhcp_info(adapter, skb);
5845
5846         /* need: count + 2 desc gap to keep tail from touching
5847          * head, otherwise try next time
5848          */
5849         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5850                 return NETDEV_TX_BUSY;
5851
5852         if (skb_vlan_tag_present(skb)) {
5853                 tx_flags |= E1000_TX_FLAGS_VLAN;
5854                 tx_flags |= (skb_vlan_tag_get(skb) <<
5855                              E1000_TX_FLAGS_VLAN_SHIFT);
5856         }
5857
5858         first = tx_ring->next_to_use;
5859
5860         tso = e1000_tso(tx_ring, skb, protocol);
5861         if (tso < 0) {
5862                 dev_kfree_skb_any(skb);
5863                 return NETDEV_TX_OK;
5864         }
5865
5866         if (tso)
5867                 tx_flags |= E1000_TX_FLAGS_TSO;
5868         else if (e1000_tx_csum(tx_ring, skb, protocol))
5869                 tx_flags |= E1000_TX_FLAGS_CSUM;
5870
5871         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5872          * 82571 hardware supports TSO capabilities for IPv6 as well...
5873          * no longer assume, we must.
5874          */
5875         if (protocol == htons(ETH_P_IP))
5876                 tx_flags |= E1000_TX_FLAGS_IPV4;
5877
5878         if (unlikely(skb->no_fcs))
5879                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5880
5881         /* if count is 0 then mapping error has occurred */
5882         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5883                              nr_frags);
5884         if (count) {
5885                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5886                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5887                         if (!adapter->tx_hwtstamp_skb) {
5888                                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5889                                 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5890                                 adapter->tx_hwtstamp_skb = skb_get(skb);
5891                                 adapter->tx_hwtstamp_start = jiffies;
5892                                 schedule_work(&adapter->tx_hwtstamp_work);
5893                         } else {
5894                                 adapter->tx_hwtstamp_skipped++;
5895                         }
5896                 }
5897
5898                 skb_tx_timestamp(skb);
5899
5900                 netdev_sent_queue(netdev, skb->len);
5901                 e1000_tx_queue(tx_ring, tx_flags, count);
5902                 /* Make sure there is space in the ring for the next send. */
5903                 e1000_maybe_stop_tx(tx_ring,
5904                                     (MAX_SKB_FRAGS *
5905                                      DIV_ROUND_UP(PAGE_SIZE,
5906                                                   adapter->tx_fifo_limit) + 2));
5907
5908                 if (!netdev_xmit_more() ||
5909                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5910                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5911                                 e1000e_update_tdt_wa(tx_ring,
5912                                                      tx_ring->next_to_use);
5913                         else
5914                                 writel(tx_ring->next_to_use, tx_ring->tail);
5915                 }
5916         } else {
5917                 dev_kfree_skb_any(skb);
5918                 tx_ring->buffer_info[first].time_stamp = 0;
5919                 tx_ring->next_to_use = first;
5920         }
5921
5922         return NETDEV_TX_OK;
5923 }
5924
5925 /**
5926  * e1000_tx_timeout - Respond to a Tx Hang
5927  * @netdev: network interface device structure
5928  **/
5929 static void e1000_tx_timeout(struct net_device *netdev)
5930 {
5931         struct e1000_adapter *adapter = netdev_priv(netdev);
5932
5933         /* Do the reset outside of interrupt context */
5934         adapter->tx_timeout_count++;
5935         schedule_work(&adapter->reset_task);
5936 }
5937
5938 static void e1000_reset_task(struct work_struct *work)
5939 {
5940         struct e1000_adapter *adapter;
5941         adapter = container_of(work, struct e1000_adapter, reset_task);
5942
5943         /* don't run the task if already down */
5944         if (test_bit(__E1000_DOWN, &adapter->state))
5945                 return;
5946
5947         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5948                 e1000e_dump(adapter);
5949                 e_err("Reset adapter unexpectedly\n");
5950         }
5951         e1000e_reinit_locked(adapter);
5952 }
5953
5954 /**
5955  * e1000_get_stats64 - Get System Network Statistics
5956  * @netdev: network interface device structure
5957  * @stats: rtnl_link_stats64 pointer
5958  *
5959  * Returns the address of the device statistics structure.
5960  **/
5961 void e1000e_get_stats64(struct net_device *netdev,
5962                         struct rtnl_link_stats64 *stats)
5963 {
5964         struct e1000_adapter *adapter = netdev_priv(netdev);
5965
5966         spin_lock(&adapter->stats64_lock);
5967         e1000e_update_stats(adapter);
5968         /* Fill out the OS statistics structure */
5969         stats->rx_bytes = adapter->stats.gorc;
5970         stats->rx_packets = adapter->stats.gprc;
5971         stats->tx_bytes = adapter->stats.gotc;
5972         stats->tx_packets = adapter->stats.gptc;
5973         stats->multicast = adapter->stats.mprc;
5974         stats->collisions = adapter->stats.colc;
5975
5976         /* Rx Errors */
5977
5978         /* RLEC on some newer hardware can be incorrect so build
5979          * our own version based on RUC and ROC
5980          */
5981         stats->rx_errors = adapter->stats.rxerrc +
5982             adapter->stats.crcerrs + adapter->stats.algnerrc +
5983             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5984         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5985         stats->rx_crc_errors = adapter->stats.crcerrs;
5986         stats->rx_frame_errors = adapter->stats.algnerrc;
5987         stats->rx_missed_errors = adapter->stats.mpc;
5988
5989         /* Tx Errors */
5990         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5991         stats->tx_aborted_errors = adapter->stats.ecol;
5992         stats->tx_window_errors = adapter->stats.latecol;
5993         stats->tx_carrier_errors = adapter->stats.tncrs;
5994
5995         /* Tx Dropped needs to be maintained elsewhere */
5996
5997         spin_unlock(&adapter->stats64_lock);
5998 }
5999
6000 /**
6001  * e1000_change_mtu - Change the Maximum Transfer Unit
6002  * @netdev: network interface device structure
6003  * @new_mtu: new value for maximum frame size
6004  *
6005  * Returns 0 on success, negative on failure
6006  **/
6007 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6008 {
6009         struct e1000_adapter *adapter = netdev_priv(netdev);
6010         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6011
6012         /* Jumbo frame support */
6013         if ((new_mtu > ETH_DATA_LEN) &&
6014             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6015                 e_err("Jumbo Frames not supported.\n");
6016                 return -EINVAL;
6017         }
6018
6019         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6020         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6021             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6022             (new_mtu > ETH_DATA_LEN)) {
6023                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6024                 return -EINVAL;
6025         }
6026
6027         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6028                 usleep_range(1000, 1100);
6029         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6030         adapter->max_frame_size = max_frame;
6031         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6032         netdev->mtu = new_mtu;
6033
6034         pm_runtime_get_sync(netdev->dev.parent);
6035
6036         if (netif_running(netdev))
6037                 e1000e_down(adapter, true);
6038
6039         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6040          * means we reserve 2 more, this pushes us to allocate from the next
6041          * larger slab size.
6042          * i.e. RXBUFFER_2048 --> size-4096 slab
6043          * However with the new *_jumbo_rx* routines, jumbo receives will use
6044          * fragmented skbs
6045          */
6046
6047         if (max_frame <= 2048)
6048                 adapter->rx_buffer_len = 2048;
6049         else
6050                 adapter->rx_buffer_len = 4096;
6051
6052         /* adjust allocation if LPE protects us, and we aren't using SBP */
6053         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6054                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6055
6056         if (netif_running(netdev))
6057                 e1000e_up(adapter);
6058         else
6059                 e1000e_reset(adapter);
6060
6061         pm_runtime_put_sync(netdev->dev.parent);
6062
6063         clear_bit(__E1000_RESETTING, &adapter->state);
6064
6065         return 0;
6066 }
6067
6068 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6069                            int cmd)
6070 {
6071         struct e1000_adapter *adapter = netdev_priv(netdev);
6072         struct mii_ioctl_data *data = if_mii(ifr);
6073
6074         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6075                 return -EOPNOTSUPP;
6076
6077         switch (cmd) {
6078         case SIOCGMIIPHY:
6079                 data->phy_id = adapter->hw.phy.addr;
6080                 break;
6081         case SIOCGMIIREG:
6082                 e1000_phy_read_status(adapter);
6083
6084                 switch (data->reg_num & 0x1F) {
6085                 case MII_BMCR:
6086                         data->val_out = adapter->phy_regs.bmcr;
6087                         break;
6088                 case MII_BMSR:
6089                         data->val_out = adapter->phy_regs.bmsr;
6090                         break;
6091                 case MII_PHYSID1:
6092                         data->val_out = (adapter->hw.phy.id >> 16);
6093                         break;
6094                 case MII_PHYSID2:
6095                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
6096                         break;
6097                 case MII_ADVERTISE:
6098                         data->val_out = adapter->phy_regs.advertise;
6099                         break;
6100                 case MII_LPA:
6101                         data->val_out = adapter->phy_regs.lpa;
6102                         break;
6103                 case MII_EXPANSION:
6104                         data->val_out = adapter->phy_regs.expansion;
6105                         break;
6106                 case MII_CTRL1000:
6107                         data->val_out = adapter->phy_regs.ctrl1000;
6108                         break;
6109                 case MII_STAT1000:
6110                         data->val_out = adapter->phy_regs.stat1000;
6111                         break;
6112                 case MII_ESTATUS:
6113                         data->val_out = adapter->phy_regs.estatus;
6114                         break;
6115                 default:
6116                         return -EIO;
6117                 }
6118                 break;
6119         case SIOCSMIIREG:
6120         default:
6121                 return -EOPNOTSUPP;
6122         }
6123         return 0;
6124 }
6125
6126 /**
6127  * e1000e_hwtstamp_ioctl - control hardware time stamping
6128  * @netdev: network interface device structure
6129  * @ifreq: interface request
6130  *
6131  * Outgoing time stamping can be enabled and disabled. Play nice and
6132  * disable it when requested, although it shouldn't cause any overhead
6133  * when no packet needs it. At most one packet in the queue may be
6134  * marked for time stamping, otherwise it would be impossible to tell
6135  * for sure to which packet the hardware time stamp belongs.
6136  *
6137  * Incoming time stamping has to be configured via the hardware filters.
6138  * Not all combinations are supported, in particular event type has to be
6139  * specified. Matching the kind of event packet is not supported, with the
6140  * exception of "all V2 events regardless of level 2 or 4".
6141  **/
6142 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6143 {
6144         struct e1000_adapter *adapter = netdev_priv(netdev);
6145         struct hwtstamp_config config;
6146         int ret_val;
6147
6148         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6149                 return -EFAULT;
6150
6151         ret_val = e1000e_config_hwtstamp(adapter, &config);
6152         if (ret_val)
6153                 return ret_val;
6154
6155         switch (config.rx_filter) {
6156         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6157         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6158         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6159         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6160         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6161         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6162                 /* With V2 type filters which specify a Sync or Delay Request,
6163                  * Path Delay Request/Response messages are also time stamped
6164                  * by hardware so notify the caller the requested packets plus
6165                  * some others are time stamped.
6166                  */
6167                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6168                 break;
6169         default:
6170                 break;
6171         }
6172
6173         return copy_to_user(ifr->ifr_data, &config,
6174                             sizeof(config)) ? -EFAULT : 0;
6175 }
6176
6177 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6178 {
6179         struct e1000_adapter *adapter = netdev_priv(netdev);
6180
6181         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6182                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6183 }
6184
6185 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6186 {
6187         switch (cmd) {
6188         case SIOCGMIIPHY:
6189         case SIOCGMIIREG:
6190         case SIOCSMIIREG:
6191                 return e1000_mii_ioctl(netdev, ifr, cmd);
6192         case SIOCSHWTSTAMP:
6193                 return e1000e_hwtstamp_set(netdev, ifr);
6194         case SIOCGHWTSTAMP:
6195                 return e1000e_hwtstamp_get(netdev, ifr);
6196         default:
6197                 return -EOPNOTSUPP;
6198         }
6199 }
6200
6201 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6202 {
6203         struct e1000_hw *hw = &adapter->hw;
6204         u32 i, mac_reg, wuc;
6205         u16 phy_reg, wuc_enable;
6206         int retval;
6207
6208         /* copy MAC RARs to PHY RARs */
6209         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6210
6211         retval = hw->phy.ops.acquire(hw);
6212         if (retval) {
6213                 e_err("Could not acquire PHY\n");
6214                 return retval;
6215         }
6216
6217         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6218         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6219         if (retval)
6220                 goto release;
6221
6222         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6223         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6224                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6225                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6226                                            (u16)(mac_reg & 0xFFFF));
6227                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6228                                            (u16)((mac_reg >> 16) & 0xFFFF));
6229         }
6230
6231         /* configure PHY Rx Control register */
6232         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6233         mac_reg = er32(RCTL);
6234         if (mac_reg & E1000_RCTL_UPE)
6235                 phy_reg |= BM_RCTL_UPE;
6236         if (mac_reg & E1000_RCTL_MPE)
6237                 phy_reg |= BM_RCTL_MPE;
6238         phy_reg &= ~(BM_RCTL_MO_MASK);
6239         if (mac_reg & E1000_RCTL_MO_3)
6240                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6241                             << BM_RCTL_MO_SHIFT);
6242         if (mac_reg & E1000_RCTL_BAM)
6243                 phy_reg |= BM_RCTL_BAM;
6244         if (mac_reg & E1000_RCTL_PMCF)
6245                 phy_reg |= BM_RCTL_PMCF;
6246         mac_reg = er32(CTRL);
6247         if (mac_reg & E1000_CTRL_RFCE)
6248                 phy_reg |= BM_RCTL_RFCE;
6249         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6250
6251         wuc = E1000_WUC_PME_EN;
6252         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6253                 wuc |= E1000_WUC_APME;
6254
6255         /* enable PHY wakeup in MAC register */
6256         ew32(WUFC, wufc);
6257         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6258                    E1000_WUC_PME_STATUS | wuc));
6259
6260         /* configure and enable PHY wakeup in PHY registers */
6261         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6262         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6263
6264         /* activate PHY wakeup */
6265         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6266         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6267         if (retval)
6268                 e_err("Could not set PHY Host Wakeup bit\n");
6269 release:
6270         hw->phy.ops.release(hw);
6271
6272         return retval;
6273 }
6274
6275 static void e1000e_flush_lpic(struct pci_dev *pdev)
6276 {
6277         struct net_device *netdev = pci_get_drvdata(pdev);
6278         struct e1000_adapter *adapter = netdev_priv(netdev);
6279         struct e1000_hw *hw = &adapter->hw;
6280         u32 ret_val;
6281
6282         pm_runtime_get_sync(netdev->dev.parent);
6283
6284         ret_val = hw->phy.ops.acquire(hw);
6285         if (ret_val)
6286                 goto fl_out;
6287
6288         pr_info("EEE TX LPI TIMER: %08X\n",
6289                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6290
6291         hw->phy.ops.release(hw);
6292
6293 fl_out:
6294         pm_runtime_put_sync(netdev->dev.parent);
6295 }
6296
6297 static int e1000e_pm_freeze(struct device *dev)
6298 {
6299         struct net_device *netdev = dev_get_drvdata(dev);
6300         struct e1000_adapter *adapter = netdev_priv(netdev);
6301
6302         netif_device_detach(netdev);
6303
6304         if (netif_running(netdev)) {
6305                 int count = E1000_CHECK_RESET_COUNT;
6306
6307                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6308                         usleep_range(10000, 11000);
6309
6310                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6311
6312                 /* Quiesce the device without resetting the hardware */
6313                 e1000e_down(adapter, false);
6314                 e1000_free_irq(adapter);
6315         }
6316         e1000e_reset_interrupt_capability(adapter);
6317
6318         /* Allow time for pending master requests to run */
6319         e1000e_disable_pcie_master(&adapter->hw);
6320
6321         return 0;
6322 }
6323
6324 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6325 {
6326         struct net_device *netdev = pci_get_drvdata(pdev);
6327         struct e1000_adapter *adapter = netdev_priv(netdev);
6328         struct e1000_hw *hw = &adapter->hw;
6329         u32 ctrl, ctrl_ext, rctl, status;
6330         /* Runtime suspend should only enable wakeup for link changes */
6331         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6332         int retval = 0;
6333
6334         status = er32(STATUS);
6335         if (status & E1000_STATUS_LU)
6336                 wufc &= ~E1000_WUFC_LNKC;
6337
6338         if (wufc) {
6339                 e1000_setup_rctl(adapter);
6340                 e1000e_set_rx_mode(netdev);
6341
6342                 /* turn on all-multi mode if wake on multicast is enabled */
6343                 if (wufc & E1000_WUFC_MC) {
6344                         rctl = er32(RCTL);
6345                         rctl |= E1000_RCTL_MPE;
6346                         ew32(RCTL, rctl);
6347                 }
6348
6349                 ctrl = er32(CTRL);
6350                 ctrl |= E1000_CTRL_ADVD3WUC;
6351                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6352                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6353                 ew32(CTRL, ctrl);
6354
6355                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6356                     adapter->hw.phy.media_type ==
6357                     e1000_media_type_internal_serdes) {
6358                         /* keep the laser running in D3 */
6359                         ctrl_ext = er32(CTRL_EXT);
6360                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6361                         ew32(CTRL_EXT, ctrl_ext);
6362                 }
6363
6364                 if (!runtime)
6365                         e1000e_power_up_phy(adapter);
6366
6367                 if (adapter->flags & FLAG_IS_ICH)
6368                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6369
6370                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6371                         /* enable wakeup by the PHY */
6372                         retval = e1000_init_phy_wakeup(adapter, wufc);
6373                         if (retval)
6374                                 return retval;
6375                 } else {
6376                         /* enable wakeup by the MAC */
6377                         ew32(WUFC, wufc);
6378                         ew32(WUC, E1000_WUC_PME_EN);
6379                 }
6380         } else {
6381                 ew32(WUC, 0);
6382                 ew32(WUFC, 0);
6383
6384                 e1000_power_down_phy(adapter);
6385         }
6386
6387         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6388                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6389         } else if (hw->mac.type >= e1000_pch_lpt) {
6390                 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6391                         /* ULP does not support wake from unicast, multicast
6392                          * or broadcast.
6393                          */
6394                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6395
6396                 if (retval)
6397                         return retval;
6398         }
6399
6400         /* Ensure that the appropriate bits are set in LPI_CTRL
6401          * for EEE in Sx
6402          */
6403         if ((hw->phy.type >= e1000_phy_i217) &&
6404             adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6405                 u16 lpi_ctrl = 0;
6406
6407                 retval = hw->phy.ops.acquire(hw);
6408                 if (!retval) {
6409                         retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6410                                                  &lpi_ctrl);
6411                         if (!retval) {
6412                                 if (adapter->eee_advert &
6413                                     hw->dev_spec.ich8lan.eee_lp_ability &
6414                                     I82579_EEE_100_SUPPORTED)
6415                                         lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6416                                 if (adapter->eee_advert &
6417                                     hw->dev_spec.ich8lan.eee_lp_ability &
6418                                     I82579_EEE_1000_SUPPORTED)
6419                                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6420
6421                                 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6422                                                          lpi_ctrl);
6423                         }
6424                 }
6425                 hw->phy.ops.release(hw);
6426         }
6427
6428         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6429          * would have already happened in close and is redundant.
6430          */
6431         e1000e_release_hw_control(adapter);
6432
6433         pci_clear_master(pdev);
6434
6435         /* The pci-e switch on some quad port adapters will report a
6436          * correctable error when the MAC transitions from D0 to D3.  To
6437          * prevent this we need to mask off the correctable errors on the
6438          * downstream port of the pci-e switch.
6439          *
6440          * We don't have the associated upstream bridge while assigning
6441          * the PCI device into guest. For example, the KVM on power is
6442          * one of the cases.
6443          */
6444         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6445                 struct pci_dev *us_dev = pdev->bus->self;
6446                 u16 devctl;
6447
6448                 if (!us_dev)
6449                         return 0;
6450
6451                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6452                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6453                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6454
6455                 pci_save_state(pdev);
6456                 pci_prepare_to_sleep(pdev);
6457
6458                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6459         }
6460
6461         return 0;
6462 }
6463
6464 /**
6465  * __e1000e_disable_aspm - Disable ASPM states
6466  * @pdev: pointer to PCI device struct
6467  * @state: bit-mask of ASPM states to disable
6468  * @locked: indication if this context holds pci_bus_sem locked.
6469  *
6470  * Some devices *must* have certain ASPM states disabled per hardware errata.
6471  **/
6472 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6473 {
6474         struct pci_dev *parent = pdev->bus->self;
6475         u16 aspm_dis_mask = 0;
6476         u16 pdev_aspmc, parent_aspmc;
6477
6478         switch (state) {
6479         case PCIE_LINK_STATE_L0S:
6480         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6481                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6482                 /* fall-through - can't have L1 without L0s */
6483         case PCIE_LINK_STATE_L1:
6484                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6485                 break;
6486         default:
6487                 return;
6488         }
6489
6490         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6491         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6492
6493         if (parent) {
6494                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6495                                           &parent_aspmc);
6496                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6497         }
6498
6499         /* Nothing to do if the ASPM states to be disabled already are */
6500         if (!(pdev_aspmc & aspm_dis_mask) &&
6501             (!parent || !(parent_aspmc & aspm_dis_mask)))
6502                 return;
6503
6504         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6505                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6506                  "L0s" : "",
6507                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6508                  "L1" : "");
6509
6510 #ifdef CONFIG_PCIEASPM
6511         if (locked)
6512                 pci_disable_link_state_locked(pdev, state);
6513         else
6514                 pci_disable_link_state(pdev, state);
6515
6516         /* Double-check ASPM control.  If not disabled by the above, the
6517          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6518          * not enabled); override by writing PCI config space directly.
6519          */
6520         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6521         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6522
6523         if (!(aspm_dis_mask & pdev_aspmc))
6524                 return;
6525 #endif
6526
6527         /* Both device and parent should have the same ASPM setting.
6528          * Disable ASPM in downstream component first and then upstream.
6529          */
6530         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6531
6532         if (parent)
6533                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6534                                            aspm_dis_mask);
6535 }
6536
6537 /**
6538  * e1000e_disable_aspm - Disable ASPM states.
6539  * @pdev: pointer to PCI device struct
6540  * @state: bit-mask of ASPM states to disable
6541  *
6542  * This function acquires the pci_bus_sem!
6543  * Some devices *must* have certain ASPM states disabled per hardware errata.
6544  **/
6545 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6546 {
6547         __e1000e_disable_aspm(pdev, state, 0);
6548 }
6549
6550 /**
6551  * e1000e_disable_aspm_locked   Disable ASPM states.
6552  * @pdev: pointer to PCI device struct
6553  * @state: bit-mask of ASPM states to disable
6554  *
6555  * This function must be called with pci_bus_sem acquired!
6556  * Some devices *must* have certain ASPM states disabled per hardware errata.
6557  **/
6558 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6559 {
6560         __e1000e_disable_aspm(pdev, state, 1);
6561 }
6562
6563 #ifdef CONFIG_PM
6564 static int __e1000_resume(struct pci_dev *pdev)
6565 {
6566         struct net_device *netdev = pci_get_drvdata(pdev);
6567         struct e1000_adapter *adapter = netdev_priv(netdev);
6568         struct e1000_hw *hw = &adapter->hw;
6569         u16 aspm_disable_flag = 0;
6570
6571         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6572                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6573         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6574                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6575         if (aspm_disable_flag)
6576                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6577
6578         pci_set_master(pdev);
6579
6580         if (hw->mac.type >= e1000_pch2lan)
6581                 e1000_resume_workarounds_pchlan(&adapter->hw);
6582
6583         e1000e_power_up_phy(adapter);
6584
6585         /* report the system wakeup cause from S3/S4 */
6586         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6587                 u16 phy_data;
6588
6589                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6590                 if (phy_data) {
6591                         e_info("PHY Wakeup cause - %s\n",
6592                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6593                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6594                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6595                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6596                                phy_data & E1000_WUS_LNKC ?
6597                                "Link Status Change" : "other");
6598                 }
6599                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6600         } else {
6601                 u32 wus = er32(WUS);
6602
6603                 if (wus) {
6604                         e_info("MAC Wakeup cause - %s\n",
6605                                wus & E1000_WUS_EX ? "Unicast Packet" :
6606                                wus & E1000_WUS_MC ? "Multicast Packet" :
6607                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6608                                wus & E1000_WUS_MAG ? "Magic Packet" :
6609                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6610                                "other");
6611                 }
6612                 ew32(WUS, ~0);
6613         }
6614
6615         e1000e_reset(adapter);
6616
6617         e1000_init_manageability_pt(adapter);
6618
6619         /* If the controller has AMT, do not set DRV_LOAD until the interface
6620          * is up.  For all other cases, let the f/w know that the h/w is now
6621          * under the control of the driver.
6622          */
6623         if (!(adapter->flags & FLAG_HAS_AMT))
6624                 e1000e_get_hw_control(adapter);
6625
6626         return 0;
6627 }
6628
6629 #ifdef CONFIG_PM_SLEEP
6630 static int e1000e_pm_thaw(struct device *dev)
6631 {
6632         struct net_device *netdev = dev_get_drvdata(dev);
6633         struct e1000_adapter *adapter = netdev_priv(netdev);
6634
6635         e1000e_set_interrupt_capability(adapter);
6636         if (netif_running(netdev)) {
6637                 u32 err = e1000_request_irq(adapter);
6638
6639                 if (err)
6640                         return err;
6641
6642                 e1000e_up(adapter);
6643         }
6644
6645         netif_device_attach(netdev);
6646
6647         return 0;
6648 }
6649
6650 static int e1000e_pm_suspend(struct device *dev)
6651 {
6652         struct pci_dev *pdev = to_pci_dev(dev);
6653         int rc;
6654
6655         e1000e_flush_lpic(pdev);
6656
6657         e1000e_pm_freeze(dev);
6658
6659         rc = __e1000_shutdown(pdev, false);
6660         if (rc)
6661                 e1000e_pm_thaw(dev);
6662
6663         return rc;
6664 }
6665
6666 static int e1000e_pm_resume(struct device *dev)
6667 {
6668         struct pci_dev *pdev = to_pci_dev(dev);
6669         int rc;
6670
6671         rc = __e1000_resume(pdev);
6672         if (rc)
6673                 return rc;
6674
6675         return e1000e_pm_thaw(dev);
6676 }
6677 #endif /* CONFIG_PM_SLEEP */
6678
6679 static int e1000e_pm_runtime_idle(struct device *dev)
6680 {
6681         struct net_device *netdev = dev_get_drvdata(dev);
6682         struct e1000_adapter *adapter = netdev_priv(netdev);
6683         u16 eee_lp;
6684
6685         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6686
6687         if (!e1000e_has_link(adapter)) {
6688                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6689                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6690         }
6691
6692         return -EBUSY;
6693 }
6694
6695 static int e1000e_pm_runtime_resume(struct device *dev)
6696 {
6697         struct pci_dev *pdev = to_pci_dev(dev);
6698         struct net_device *netdev = pci_get_drvdata(pdev);
6699         struct e1000_adapter *adapter = netdev_priv(netdev);
6700         int rc;
6701
6702         rc = __e1000_resume(pdev);
6703         if (rc)
6704                 return rc;
6705
6706         if (netdev->flags & IFF_UP)
6707                 e1000e_up(adapter);
6708
6709         return rc;
6710 }
6711
6712 static int e1000e_pm_runtime_suspend(struct device *dev)
6713 {
6714         struct pci_dev *pdev = to_pci_dev(dev);
6715         struct net_device *netdev = pci_get_drvdata(pdev);
6716         struct e1000_adapter *adapter = netdev_priv(netdev);
6717
6718         if (netdev->flags & IFF_UP) {
6719                 int count = E1000_CHECK_RESET_COUNT;
6720
6721                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6722                         usleep_range(10000, 11000);
6723
6724                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6725
6726                 /* Down the device without resetting the hardware */
6727                 e1000e_down(adapter, false);
6728         }
6729
6730         if (__e1000_shutdown(pdev, true)) {
6731                 e1000e_pm_runtime_resume(dev);
6732                 return -EBUSY;
6733         }
6734
6735         return 0;
6736 }
6737 #endif /* CONFIG_PM */
6738
6739 static void e1000_shutdown(struct pci_dev *pdev)
6740 {
6741         e1000e_flush_lpic(pdev);
6742
6743         e1000e_pm_freeze(&pdev->dev);
6744
6745         __e1000_shutdown(pdev, false);
6746 }
6747
6748 #ifdef CONFIG_NET_POLL_CONTROLLER
6749
6750 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6751 {
6752         struct net_device *netdev = data;
6753         struct e1000_adapter *adapter = netdev_priv(netdev);
6754
6755         if (adapter->msix_entries) {
6756                 int vector, msix_irq;
6757
6758                 vector = 0;
6759                 msix_irq = adapter->msix_entries[vector].vector;
6760                 if (disable_hardirq(msix_irq))
6761                         e1000_intr_msix_rx(msix_irq, netdev);
6762                 enable_irq(msix_irq);
6763
6764                 vector++;
6765                 msix_irq = adapter->msix_entries[vector].vector;
6766                 if (disable_hardirq(msix_irq))
6767                         e1000_intr_msix_tx(msix_irq, netdev);
6768                 enable_irq(msix_irq);
6769
6770                 vector++;
6771                 msix_irq = adapter->msix_entries[vector].vector;
6772                 if (disable_hardirq(msix_irq))
6773                         e1000_msix_other(msix_irq, netdev);
6774                 enable_irq(msix_irq);
6775         }
6776
6777         return IRQ_HANDLED;
6778 }
6779
6780 /**
6781  * e1000_netpoll
6782  * @netdev: network interface device structure
6783  *
6784  * Polling 'interrupt' - used by things like netconsole to send skbs
6785  * without having to re-enable interrupts. It's not called while
6786  * the interrupt routine is executing.
6787  */
6788 static void e1000_netpoll(struct net_device *netdev)
6789 {
6790         struct e1000_adapter *adapter = netdev_priv(netdev);
6791
6792         switch (adapter->int_mode) {
6793         case E1000E_INT_MODE_MSIX:
6794                 e1000_intr_msix(adapter->pdev->irq, netdev);
6795                 break;
6796         case E1000E_INT_MODE_MSI:
6797                 if (disable_hardirq(adapter->pdev->irq))
6798                         e1000_intr_msi(adapter->pdev->irq, netdev);
6799                 enable_irq(adapter->pdev->irq);
6800                 break;
6801         default:                /* E1000E_INT_MODE_LEGACY */
6802                 if (disable_hardirq(adapter->pdev->irq))
6803                         e1000_intr(adapter->pdev->irq, netdev);
6804                 enable_irq(adapter->pdev->irq);
6805                 break;
6806         }
6807 }
6808 #endif
6809
6810 /**
6811  * e1000_io_error_detected - called when PCI error is detected
6812  * @pdev: Pointer to PCI device
6813  * @state: The current pci connection state
6814  *
6815  * This function is called after a PCI bus error affecting
6816  * this device has been detected.
6817  */
6818 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6819                                                 pci_channel_state_t state)
6820 {
6821         struct net_device *netdev = pci_get_drvdata(pdev);
6822         struct e1000_adapter *adapter = netdev_priv(netdev);
6823
6824         netif_device_detach(netdev);
6825
6826         if (state == pci_channel_io_perm_failure)
6827                 return PCI_ERS_RESULT_DISCONNECT;
6828
6829         if (netif_running(netdev))
6830                 e1000e_down(adapter, true);
6831         pci_disable_device(pdev);
6832
6833         /* Request a slot slot reset. */
6834         return PCI_ERS_RESULT_NEED_RESET;
6835 }
6836
6837 /**
6838  * e1000_io_slot_reset - called after the pci bus has been reset.
6839  * @pdev: Pointer to PCI device
6840  *
6841  * Restart the card from scratch, as if from a cold-boot. Implementation
6842  * resembles the first-half of the e1000e_pm_resume routine.
6843  */
6844 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6845 {
6846         struct net_device *netdev = pci_get_drvdata(pdev);
6847         struct e1000_adapter *adapter = netdev_priv(netdev);
6848         struct e1000_hw *hw = &adapter->hw;
6849         u16 aspm_disable_flag = 0;
6850         int err;
6851         pci_ers_result_t result;
6852
6853         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6854                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6855         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6856                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6857         if (aspm_disable_flag)
6858                 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6859
6860         err = pci_enable_device_mem(pdev);
6861         if (err) {
6862                 dev_err(&pdev->dev,
6863                         "Cannot re-enable PCI device after reset.\n");
6864                 result = PCI_ERS_RESULT_DISCONNECT;
6865         } else {
6866                 pdev->state_saved = true;
6867                 pci_restore_state(pdev);
6868                 pci_set_master(pdev);
6869
6870                 pci_enable_wake(pdev, PCI_D3hot, 0);
6871                 pci_enable_wake(pdev, PCI_D3cold, 0);
6872
6873                 e1000e_reset(adapter);
6874                 ew32(WUS, ~0);
6875                 result = PCI_ERS_RESULT_RECOVERED;
6876         }
6877
6878         return result;
6879 }
6880
6881 /**
6882  * e1000_io_resume - called when traffic can start flowing again.
6883  * @pdev: Pointer to PCI device
6884  *
6885  * This callback is called when the error recovery driver tells us that
6886  * its OK to resume normal operation. Implementation resembles the
6887  * second-half of the e1000e_pm_resume routine.
6888  */
6889 static void e1000_io_resume(struct pci_dev *pdev)
6890 {
6891         struct net_device *netdev = pci_get_drvdata(pdev);
6892         struct e1000_adapter *adapter = netdev_priv(netdev);
6893
6894         e1000_init_manageability_pt(adapter);
6895
6896         if (netif_running(netdev))
6897                 e1000e_up(adapter);
6898
6899         netif_device_attach(netdev);
6900
6901         /* If the controller has AMT, do not set DRV_LOAD until the interface
6902          * is up.  For all other cases, let the f/w know that the h/w is now
6903          * under the control of the driver.
6904          */
6905         if (!(adapter->flags & FLAG_HAS_AMT))
6906                 e1000e_get_hw_control(adapter);
6907 }
6908
6909 static void e1000_print_device_info(struct e1000_adapter *adapter)
6910 {
6911         struct e1000_hw *hw = &adapter->hw;
6912         struct net_device *netdev = adapter->netdev;
6913         u32 ret_val;
6914         u8 pba_str[E1000_PBANUM_LENGTH];
6915
6916         /* print bus type/speed/width info */
6917         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6918                /* bus width */
6919                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6920                 "Width x1"),
6921                /* MAC address */
6922                netdev->dev_addr);
6923         e_info("Intel(R) PRO/%s Network Connection\n",
6924                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6925         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6926                                                 E1000_PBANUM_LENGTH);
6927         if (ret_val)
6928                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6929         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6930                hw->mac.type, hw->phy.type, pba_str);
6931 }
6932
6933 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6934 {
6935         struct e1000_hw *hw = &adapter->hw;
6936         int ret_val;
6937         u16 buf = 0;
6938
6939         if (hw->mac.type != e1000_82573)
6940                 return;
6941
6942         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6943         le16_to_cpus(&buf);
6944         if (!ret_val && (!(buf & BIT(0)))) {
6945                 /* Deep Smart Power Down (DSPD) */
6946                 dev_warn(&adapter->pdev->dev,
6947                          "Warning: detected DSPD enabled in EEPROM\n");
6948         }
6949 }
6950
6951 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6952                                             netdev_features_t features)
6953 {
6954         struct e1000_adapter *adapter = netdev_priv(netdev);
6955         struct e1000_hw *hw = &adapter->hw;
6956
6957         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6958         if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6959                 features &= ~NETIF_F_RXFCS;
6960
6961         /* Since there is no support for separate Rx/Tx vlan accel
6962          * enable/disable make sure Tx flag is always in same state as Rx.
6963          */
6964         if (features & NETIF_F_HW_VLAN_CTAG_RX)
6965                 features |= NETIF_F_HW_VLAN_CTAG_TX;
6966         else
6967                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6968
6969         return features;
6970 }
6971
6972 static int e1000_set_features(struct net_device *netdev,
6973                               netdev_features_t features)
6974 {
6975         struct e1000_adapter *adapter = netdev_priv(netdev);
6976         netdev_features_t changed = features ^ netdev->features;
6977
6978         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6979                 adapter->flags |= FLAG_TSO_FORCE;
6980
6981         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6982                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6983                          NETIF_F_RXALL)))
6984                 return 0;
6985
6986         if (changed & NETIF_F_RXFCS) {
6987                 if (features & NETIF_F_RXFCS) {
6988                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6989                 } else {
6990                         /* We need to take it back to defaults, which might mean
6991                          * stripping is still disabled at the adapter level.
6992                          */
6993                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6994                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6995                         else
6996                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6997                 }
6998         }
6999
7000         netdev->features = features;
7001
7002         if (netif_running(netdev))
7003                 e1000e_reinit_locked(adapter);
7004         else
7005                 e1000e_reset(adapter);
7006
7007         return 1;
7008 }
7009
7010 static const struct net_device_ops e1000e_netdev_ops = {
7011         .ndo_open               = e1000e_open,
7012         .ndo_stop               = e1000e_close,
7013         .ndo_start_xmit         = e1000_xmit_frame,
7014         .ndo_get_stats64        = e1000e_get_stats64,
7015         .ndo_set_rx_mode        = e1000e_set_rx_mode,
7016         .ndo_set_mac_address    = e1000_set_mac,
7017         .ndo_change_mtu         = e1000_change_mtu,
7018         .ndo_do_ioctl           = e1000_ioctl,
7019         .ndo_tx_timeout         = e1000_tx_timeout,
7020         .ndo_validate_addr      = eth_validate_addr,
7021
7022         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
7023         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
7024 #ifdef CONFIG_NET_POLL_CONTROLLER
7025         .ndo_poll_controller    = e1000_netpoll,
7026 #endif
7027         .ndo_set_features = e1000_set_features,
7028         .ndo_fix_features = e1000_fix_features,
7029         .ndo_features_check     = passthru_features_check,
7030 };
7031
7032 /**
7033  * e1000_probe - Device Initialization Routine
7034  * @pdev: PCI device information struct
7035  * @ent: entry in e1000_pci_tbl
7036  *
7037  * Returns 0 on success, negative on failure
7038  *
7039  * e1000_probe initializes an adapter identified by a pci_dev structure.
7040  * The OS initialization, configuring of the adapter private structure,
7041  * and a hardware reset occur.
7042  **/
7043 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7044 {
7045         struct net_device *netdev;
7046         struct e1000_adapter *adapter;
7047         struct e1000_hw *hw;
7048         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7049         resource_size_t mmio_start, mmio_len;
7050         resource_size_t flash_start, flash_len;
7051         static int cards_found;
7052         u16 aspm_disable_flag = 0;
7053         int bars, i, err, pci_using_dac;
7054         u16 eeprom_data = 0;
7055         u16 eeprom_apme_mask = E1000_EEPROM_APME;
7056         s32 ret_val = 0;
7057
7058         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7059                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7060         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7061                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7062         if (aspm_disable_flag)
7063                 e1000e_disable_aspm(pdev, aspm_disable_flag);
7064
7065         err = pci_enable_device_mem(pdev);
7066         if (err)
7067                 return err;
7068
7069         pci_using_dac = 0;
7070         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7071         if (!err) {
7072                 pci_using_dac = 1;
7073         } else {
7074                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7075                 if (err) {
7076                         dev_err(&pdev->dev,
7077                                 "No usable DMA configuration, aborting\n");
7078                         goto err_dma;
7079                 }
7080         }
7081
7082         bars = pci_select_bars(pdev, IORESOURCE_MEM);
7083         err = pci_request_selected_regions_exclusive(pdev, bars,
7084                                                      e1000e_driver_name);
7085         if (err)
7086                 goto err_pci_reg;
7087
7088         /* AER (Advanced Error Reporting) hooks */
7089         pci_enable_pcie_error_reporting(pdev);
7090
7091         pci_set_master(pdev);
7092         /* PCI config space info */
7093         err = pci_save_state(pdev);
7094         if (err)
7095                 goto err_alloc_etherdev;
7096
7097         err = -ENOMEM;
7098         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7099         if (!netdev)
7100                 goto err_alloc_etherdev;
7101
7102         SET_NETDEV_DEV(netdev, &pdev->dev);
7103
7104         netdev->irq = pdev->irq;
7105
7106         pci_set_drvdata(pdev, netdev);
7107         adapter = netdev_priv(netdev);
7108         hw = &adapter->hw;
7109         adapter->netdev = netdev;
7110         adapter->pdev = pdev;
7111         adapter->ei = ei;
7112         adapter->pba = ei->pba;
7113         adapter->flags = ei->flags;
7114         adapter->flags2 = ei->flags2;
7115         adapter->hw.adapter = adapter;
7116         adapter->hw.mac.type = ei->mac;
7117         adapter->max_hw_frame_size = ei->max_hw_frame_size;
7118         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7119
7120         mmio_start = pci_resource_start(pdev, 0);
7121         mmio_len = pci_resource_len(pdev, 0);
7122
7123         err = -EIO;
7124         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7125         if (!adapter->hw.hw_addr)
7126                 goto err_ioremap;
7127
7128         if ((adapter->flags & FLAG_HAS_FLASH) &&
7129             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7130             (hw->mac.type < e1000_pch_spt)) {
7131                 flash_start = pci_resource_start(pdev, 1);
7132                 flash_len = pci_resource_len(pdev, 1);
7133                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7134                 if (!adapter->hw.flash_address)
7135                         goto err_flashmap;
7136         }
7137
7138         /* Set default EEE advertisement */
7139         if (adapter->flags2 & FLAG2_HAS_EEE)
7140                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7141
7142         /* construct the net_device struct */
7143         netdev->netdev_ops = &e1000e_netdev_ops;
7144         e1000e_set_ethtool_ops(netdev);
7145         netdev->watchdog_timeo = 5 * HZ;
7146         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7147         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7148
7149         netdev->mem_start = mmio_start;
7150         netdev->mem_end = mmio_start + mmio_len;
7151
7152         adapter->bd_number = cards_found++;
7153
7154         e1000e_check_options(adapter);
7155
7156         /* setup adapter struct */
7157         err = e1000_sw_init(adapter);
7158         if (err)
7159                 goto err_sw_init;
7160
7161         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7162         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7163         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7164
7165         err = ei->get_variants(adapter);
7166         if (err)
7167                 goto err_hw_init;
7168
7169         if ((adapter->flags & FLAG_IS_ICH) &&
7170             (adapter->flags & FLAG_READ_ONLY_NVM) &&
7171             (hw->mac.type < e1000_pch_spt))
7172                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7173
7174         hw->mac.ops.get_bus_info(&adapter->hw);
7175
7176         adapter->hw.phy.autoneg_wait_to_complete = 0;
7177
7178         /* Copper options */
7179         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7180                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7181                 adapter->hw.phy.disable_polarity_correction = 0;
7182                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7183         }
7184
7185         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7186                 dev_info(&pdev->dev,
7187                          "PHY reset is blocked due to SOL/IDER session.\n");
7188
7189         /* Set initial default active device features */
7190         netdev->features = (NETIF_F_SG |
7191                             NETIF_F_HW_VLAN_CTAG_RX |
7192                             NETIF_F_HW_VLAN_CTAG_TX |
7193                             NETIF_F_TSO |
7194                             NETIF_F_TSO6 |
7195                             NETIF_F_RXHASH |
7196                             NETIF_F_RXCSUM |
7197                             NETIF_F_HW_CSUM);
7198
7199         /* Set user-changeable features (subset of all device features) */
7200         netdev->hw_features = netdev->features;
7201         netdev->hw_features |= NETIF_F_RXFCS;
7202         netdev->priv_flags |= IFF_SUPP_NOFCS;
7203         netdev->hw_features |= NETIF_F_RXALL;
7204
7205         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7206                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7207
7208         netdev->vlan_features |= (NETIF_F_SG |
7209                                   NETIF_F_TSO |
7210                                   NETIF_F_TSO6 |
7211                                   NETIF_F_HW_CSUM);
7212
7213         netdev->priv_flags |= IFF_UNICAST_FLT;
7214
7215         if (pci_using_dac) {
7216                 netdev->features |= NETIF_F_HIGHDMA;
7217                 netdev->vlan_features |= NETIF_F_HIGHDMA;
7218         }
7219
7220         /* MTU range: 68 - max_hw_frame_size */
7221         netdev->min_mtu = ETH_MIN_MTU;
7222         netdev->max_mtu = adapter->max_hw_frame_size -
7223                           (VLAN_ETH_HLEN + ETH_FCS_LEN);
7224
7225         if (e1000e_enable_mng_pass_thru(&adapter->hw))
7226                 adapter->flags |= FLAG_MNG_PT_ENABLED;
7227
7228         /* before reading the NVM, reset the controller to
7229          * put the device in a known good starting state
7230          */
7231         adapter->hw.mac.ops.reset_hw(&adapter->hw);
7232
7233         /* systems with ASPM and others may see the checksum fail on the first
7234          * attempt. Let's give it a few tries
7235          */
7236         for (i = 0;; i++) {
7237                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7238                         break;
7239                 if (i == 2) {
7240                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7241                         err = -EIO;
7242                         goto err_eeprom;
7243                 }
7244         }
7245
7246         e1000_eeprom_checks(adapter);
7247
7248         /* copy the MAC address */
7249         if (e1000e_read_mac_addr(&adapter->hw))
7250                 dev_err(&pdev->dev,
7251                         "NVM Read Error while reading MAC address\n");
7252
7253         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7254
7255         if (!is_valid_ether_addr(netdev->dev_addr)) {
7256                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7257                         netdev->dev_addr);
7258                 err = -EIO;
7259                 goto err_eeprom;
7260         }
7261
7262         adapter->e1000_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
7263                                                    e1000e_driver_name);
7264
7265         if (!adapter->e1000_workqueue) {
7266                 err = -ENOMEM;
7267                 goto err_workqueue;
7268         }
7269
7270         INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7271         queue_delayed_work(adapter->e1000_workqueue, &adapter->watchdog_task,
7272                            0);
7273
7274         timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7275
7276         INIT_WORK(&adapter->reset_task, e1000_reset_task);
7277         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7278         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7279         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7280
7281         /* Initialize link parameters. User can change them with ethtool */
7282         adapter->hw.mac.autoneg = 1;
7283         adapter->fc_autoneg = true;
7284         adapter->hw.fc.requested_mode = e1000_fc_default;
7285         adapter->hw.fc.current_mode = e1000_fc_default;
7286         adapter->hw.phy.autoneg_advertised = 0x2f;
7287
7288         /* Initial Wake on LAN setting - If APM wake is enabled in
7289          * the EEPROM, enable the ACPI Magic Packet filter
7290          */
7291         if (adapter->flags & FLAG_APME_IN_WUC) {
7292                 /* APME bit in EEPROM is mapped to WUC.APME */
7293                 eeprom_data = er32(WUC);
7294                 eeprom_apme_mask = E1000_WUC_APME;
7295                 if ((hw->mac.type > e1000_ich10lan) &&
7296                     (eeprom_data & E1000_WUC_PHY_WAKE))
7297                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7298         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7299                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7300                     (adapter->hw.bus.func == 1))
7301                         ret_val = e1000_read_nvm(&adapter->hw,
7302                                               NVM_INIT_CONTROL3_PORT_B,
7303                                               1, &eeprom_data);
7304                 else
7305                         ret_val = e1000_read_nvm(&adapter->hw,
7306                                               NVM_INIT_CONTROL3_PORT_A,
7307                                               1, &eeprom_data);
7308         }
7309
7310         /* fetch WoL from EEPROM */
7311         if (ret_val)
7312                 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7313         else if (eeprom_data & eeprom_apme_mask)
7314                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7315
7316         /* now that we have the eeprom settings, apply the special cases
7317          * where the eeprom may be wrong or the board simply won't support
7318          * wake on lan on a particular port
7319          */
7320         if (!(adapter->flags & FLAG_HAS_WOL))
7321                 adapter->eeprom_wol = 0;
7322
7323         /* initialize the wol settings based on the eeprom settings */
7324         adapter->wol = adapter->eeprom_wol;
7325
7326         /* make sure adapter isn't asleep if manageability is enabled */
7327         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7328             (hw->mac.ops.check_mng_mode(hw)))
7329                 device_wakeup_enable(&pdev->dev);
7330
7331         /* save off EEPROM version number */
7332         ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7333
7334         if (ret_val) {
7335                 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7336                 adapter->eeprom_vers = 0;
7337         }
7338
7339         /* init PTP hardware clock */
7340         e1000e_ptp_init(adapter);
7341
7342         /* reset the hardware with the new settings */
7343         e1000e_reset(adapter);
7344
7345         /* If the controller has AMT, do not set DRV_LOAD until the interface
7346          * is up.  For all other cases, let the f/w know that the h/w is now
7347          * under the control of the driver.
7348          */
7349         if (!(adapter->flags & FLAG_HAS_AMT))
7350                 e1000e_get_hw_control(adapter);
7351
7352         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7353         err = register_netdev(netdev);
7354         if (err)
7355                 goto err_register;
7356
7357         /* carrier off reporting is important to ethtool even BEFORE open */
7358         netif_carrier_off(netdev);
7359
7360         e1000_print_device_info(adapter);
7361
7362         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
7363
7364         if (pci_dev_run_wake(pdev) && hw->mac.type < e1000_pch_cnp)
7365                 pm_runtime_put_noidle(&pdev->dev);
7366
7367         return 0;
7368
7369 err_register:
7370         flush_workqueue(adapter->e1000_workqueue);
7371         destroy_workqueue(adapter->e1000_workqueue);
7372 err_workqueue:
7373         if (!(adapter->flags & FLAG_HAS_AMT))
7374                 e1000e_release_hw_control(adapter);
7375 err_eeprom:
7376         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7377                 e1000_phy_hw_reset(&adapter->hw);
7378 err_hw_init:
7379         kfree(adapter->tx_ring);
7380         kfree(adapter->rx_ring);
7381 err_sw_init:
7382         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7383                 iounmap(adapter->hw.flash_address);
7384         e1000e_reset_interrupt_capability(adapter);
7385 err_flashmap:
7386         iounmap(adapter->hw.hw_addr);
7387 err_ioremap:
7388         free_netdev(netdev);
7389 err_alloc_etherdev:
7390         pci_release_mem_regions(pdev);
7391 err_pci_reg:
7392 err_dma:
7393         pci_disable_device(pdev);
7394         return err;
7395 }
7396
7397 /**
7398  * e1000_remove - Device Removal Routine
7399  * @pdev: PCI device information struct
7400  *
7401  * e1000_remove is called by the PCI subsystem to alert the driver
7402  * that it should release a PCI device.  The could be caused by a
7403  * Hot-Plug event, or because the driver is going to be removed from
7404  * memory.
7405  **/
7406 static void e1000_remove(struct pci_dev *pdev)
7407 {
7408         struct net_device *netdev = pci_get_drvdata(pdev);
7409         struct e1000_adapter *adapter = netdev_priv(netdev);
7410         bool down = test_bit(__E1000_DOWN, &adapter->state);
7411
7412         e1000e_ptp_remove(adapter);
7413
7414         /* The timers may be rescheduled, so explicitly disable them
7415          * from being rescheduled.
7416          */
7417         if (!down)
7418                 set_bit(__E1000_DOWN, &adapter->state);
7419         del_timer_sync(&adapter->phy_info_timer);
7420
7421         cancel_work_sync(&adapter->reset_task);
7422         cancel_work_sync(&adapter->downshift_task);
7423         cancel_work_sync(&adapter->update_phy_task);
7424         cancel_work_sync(&adapter->print_hang_task);
7425
7426         cancel_delayed_work(&adapter->watchdog_task);
7427         flush_workqueue(adapter->e1000_workqueue);
7428         destroy_workqueue(adapter->e1000_workqueue);
7429
7430         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7431                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7432                 if (adapter->tx_hwtstamp_skb) {
7433                         dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7434                         adapter->tx_hwtstamp_skb = NULL;
7435                 }
7436         }
7437
7438         /* Don't lie to e1000_close() down the road. */
7439         if (!down)
7440                 clear_bit(__E1000_DOWN, &adapter->state);
7441         unregister_netdev(netdev);
7442
7443         if (pci_dev_run_wake(pdev))
7444                 pm_runtime_get_noresume(&pdev->dev);
7445
7446         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7447          * would have already happened in close and is redundant.
7448          */
7449         e1000e_release_hw_control(adapter);
7450
7451         e1000e_reset_interrupt_capability(adapter);
7452         kfree(adapter->tx_ring);
7453         kfree(adapter->rx_ring);
7454
7455         iounmap(adapter->hw.hw_addr);
7456         if ((adapter->hw.flash_address) &&
7457             (adapter->hw.mac.type < e1000_pch_spt))
7458                 iounmap(adapter->hw.flash_address);
7459         pci_release_mem_regions(pdev);
7460
7461         free_netdev(netdev);
7462
7463         /* AER disable */
7464         pci_disable_pcie_error_reporting(pdev);
7465
7466         pci_disable_device(pdev);
7467 }
7468
7469 /* PCI Error Recovery (ERS) */
7470 static const struct pci_error_handlers e1000_err_handler = {
7471         .error_detected = e1000_io_error_detected,
7472         .slot_reset = e1000_io_slot_reset,
7473         .resume = e1000_io_resume,
7474 };
7475
7476 static const struct pci_device_id e1000_pci_tbl[] = {
7477         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7478         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7479         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7480         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7481           board_82571 },
7482         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7483         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7484         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7485         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7486         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7487
7488         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7489         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7490         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7491         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7492
7493         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7494         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7495         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7496
7497         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7498         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7499         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7500
7501         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7502           board_80003es2lan },
7503         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7504           board_80003es2lan },
7505         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7506           board_80003es2lan },
7507         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7508           board_80003es2lan },
7509
7510         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7511         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7512         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7513         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7514         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7515         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7516         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7517         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7518
7519         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7520         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7521         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7522         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7523         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7524         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7525         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7526         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7527         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7528
7529         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7530         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7531         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7532
7533         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7534         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7535         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7536
7537         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7538         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7539         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7540         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7541
7542         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7543         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7544
7545         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7546         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7547         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7548         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7549         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7550         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7551         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7552         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7553         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7554         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7555         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7556         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7557         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7558         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7559         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7560         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7561         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7562         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7563         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7564         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7565         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7566         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7567         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7568         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7569         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7570
7571         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7572 };
7573 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7574
7575 static const struct dev_pm_ops e1000_pm_ops = {
7576 #ifdef CONFIG_PM_SLEEP
7577         .suspend        = e1000e_pm_suspend,
7578         .resume         = e1000e_pm_resume,
7579         .freeze         = e1000e_pm_freeze,
7580         .thaw           = e1000e_pm_thaw,
7581         .poweroff       = e1000e_pm_suspend,
7582         .restore        = e1000e_pm_resume,
7583 #endif
7584         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7585                            e1000e_pm_runtime_idle)
7586 };
7587
7588 /* PCI Device API Driver */
7589 static struct pci_driver e1000_driver = {
7590         .name     = e1000e_driver_name,
7591         .id_table = e1000_pci_tbl,
7592         .probe    = e1000_probe,
7593         .remove   = e1000_remove,
7594         .driver   = {
7595                 .pm = &e1000_pm_ops,
7596         },
7597         .shutdown = e1000_shutdown,
7598         .err_handler = &e1000_err_handler
7599 };
7600
7601 /**
7602  * e1000_init_module - Driver Registration Routine
7603  *
7604  * e1000_init_module is the first routine called when the driver is
7605  * loaded. All it does is register with the PCI subsystem.
7606  **/
7607 static int __init e1000_init_module(void)
7608 {
7609         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7610                 e1000e_driver_version);
7611         pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7612
7613         return pci_register_driver(&e1000_driver);
7614 }
7615 module_init(e1000_init_module);
7616
7617 /**
7618  * e1000_exit_module - Driver Exit Cleanup Routine
7619  *
7620  * e1000_exit_module is called just before the driver is removed
7621  * from memory.
7622  **/
7623 static void __exit e1000_exit_module(void)
7624 {
7625         pci_unregister_driver(&e1000_driver);
7626 }
7627 module_exit(e1000_exit_module);
7628
7629 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7630 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7631 MODULE_LICENSE("GPL v2");
7632 MODULE_VERSION(DRV_VERSION);
7633
7634 /* netdev.c */