Merge tag 'tpmdd-next-6.10-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43  *      t4_wait_op_done_val - wait until an operation is completed
44  *      @adapter: the adapter performing the operation
45  *      @reg: the register to check for completion
46  *      @mask: a single-bit field within @reg that indicates completion
47  *      @polarity: the value of the field when the operation is completed
48  *      @attempts: number of check iterations
49  *      @delay: delay in usecs between iterations
50  *      @valp: where to store the value of the register at completion time
51  *
52  *      Wait until an operation is completed by checking a bit in a register
53  *      up to @attempts times.  If @valp is not NULL the value of the register
54  *      at the time it indicated completion is stored there.  Returns 0 if the
55  *      operation completes and -EAGAIN otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58                                int polarity, int attempts, int delay, u32 *valp)
59 {
60         while (1) {
61                 u32 val = t4_read_reg(adapter, reg);
62
63                 if (!!(val & mask) == polarity) {
64                         if (valp)
65                                 *valp = val;
66                         return 0;
67                 }
68                 if (--attempts == 0)
69                         return -EAGAIN;
70                 if (delay)
71                         udelay(delay);
72         }
73 }
74
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76                                   int polarity, int attempts, int delay)
77 {
78         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79                                    delay, NULL);
80 }
81
82 /**
83  *      t4_set_reg_field - set a register field to a value
84  *      @adapter: the adapter to program
85  *      @addr: the register address
86  *      @mask: specifies the portion of the register to modify
87  *      @val: the new value for the register field
88  *
89  *      Sets a register field specified by the supplied mask to the
90  *      given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93                       u32 val)
94 {
95         u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97         t4_write_reg(adapter, addr, v | val);
98         (void) t4_read_reg(adapter, addr);      /* flush */
99 }
100
101 /**
102  *      t4_read_indirect - read indirectly addressed registers
103  *      @adap: the adapter
104  *      @addr_reg: register holding the indirect address
105  *      @data_reg: register holding the value of the indirect register
106  *      @vals: where the read register values are stored
107  *      @nregs: how many indirect registers to read
108  *      @start_idx: index of first indirect register to read
109  *
110  *      Reads registers that are accessed indirectly through an address/data
111  *      register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114                              unsigned int data_reg, u32 *vals,
115                              unsigned int nregs, unsigned int start_idx)
116 {
117         while (nregs--) {
118                 t4_write_reg(adap, addr_reg, start_idx);
119                 *vals++ = t4_read_reg(adap, data_reg);
120                 start_idx++;
121         }
122 }
123
124 /**
125  *      t4_write_indirect - write indirectly addressed registers
126  *      @adap: the adapter
127  *      @addr_reg: register holding the indirect addresses
128  *      @data_reg: register holding the value for the indirect registers
129  *      @vals: values to write
130  *      @nregs: how many indirect registers to write
131  *      @start_idx: address of first indirect register to write
132  *
133  *      Writes a sequential block of registers that are accessed indirectly
134  *      through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137                        unsigned int data_reg, const u32 *vals,
138                        unsigned int nregs, unsigned int start_idx)
139 {
140         while (nregs--) {
141                 t4_write_reg(adap, addr_reg, start_idx++);
142                 t4_write_reg(adap, data_reg, *vals++);
143         }
144 }
145
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154         u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157                 req |= ENABLE_F;
158         else
159                 req |= T6_ENABLE_F;
160
161         if (is_t4(adap->params.chip))
162                 req |= LOCALCFG_F;
163
164         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165         *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167         /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168          * Configuration Space read.  (None of the other fields matter when
169          * ENABLE is 0 so a simple register write is easier than a
170          * read-modify-write via t4_set_reg_field().)
171          */
172         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185         static const char *const reason[] = {
186                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
187                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193                 "Reserved",                     /* reserved */
194         };
195         u32 pcie_fw;
196
197         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198         if (pcie_fw & PCIE_FW_ERR_F) {
199                 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200                         reason[PCIE_FW_EVAL_G(pcie_fw)]);
201                 adap->flags &= ~CXGB4_FW_OK;
202         }
203 }
204
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209                          u32 mbox_addr)
210 {
211         for ( ; nflit; nflit--, mbox_addr += 8)
212                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220         struct fw_debug_cmd asrt;
221
222         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223         dev_alert(adap->pdev_dev,
224                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225                   asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226                   be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228
229 /**
230  *      t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *      @adapter: the adapter
232  *      @cmd: the Firmware Mailbox Command or Reply
233  *      @size: command length in bytes
234  *      @access: the time (ms) needed to access the Firmware Mailbox
235  *      @execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238                            const __be64 *cmd, unsigned int size,
239                            int access, int execute)
240 {
241         struct mbox_cmd_log *log = adapter->mbox_log;
242         struct mbox_cmd *entry;
243         int i;
244
245         entry = mbox_cmd_log_entry(log, log->cursor++);
246         if (log->cursor == log->size)
247                 log->cursor = 0;
248
249         for (i = 0; i < size / 8; i++)
250                 entry->cmd[i] = be64_to_cpu(cmd[i]);
251         while (i < MBOX_LEN / 8)
252                 entry->cmd[i++] = 0;
253         entry->timestamp = jiffies;
254         entry->seqno = log->seqno++;
255         entry->access = access;
256         entry->execute = execute;
257 }
258
259 /**
260  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *      @adap: the adapter
262  *      @mbox: index of the mailbox to use
263  *      @cmd: the command to write
264  *      @size: command length in bytes
265  *      @rpl: where to optionally store the reply
266  *      @sleep_ok: if true we may sleep while awaiting command completion
267  *      @timeout: time to wait for command to finish before timing out
268  *
269  *      Sends the given command to FW through the selected mailbox and waits
270  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *      store the FW's reply to the command.  The command and its optional
272  *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *      to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *      the response.  If sleeping is allowed we use progressive backoff
275  *      otherwise we spin.
276  *
277  *      The return value is 0 on success or a negative errno on failure.  A
278  *      failure can happen either because we are not able to execute the
279  *      command or FW executes it but signals an error.  In the latter case
280  *      the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283                             int size, void *rpl, bool sleep_ok, int timeout)
284 {
285         static const int delay[] = {
286                 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287         };
288
289         struct mbox_list entry;
290         u16 access = 0;
291         u16 execute = 0;
292         u32 v;
293         u64 res;
294         int i, ms, delay_idx, ret;
295         const __be64 *p = cmd;
296         u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297         u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298         __be64 cmd_rpl[MBOX_LEN / 8];
299         u32 pcie_fw;
300
301         if ((size & 15) || size > MBOX_LEN)
302                 return -EINVAL;
303
304         /*
305          * If the device is off-line, as in EEH, commands will time out.
306          * Fail them early so we don't waste time waiting.
307          */
308         if (adap->pdev->error_state != pci_channel_io_normal)
309                 return -EIO;
310
311         /* If we have a negative timeout, that implies that we can't sleep. */
312         if (timeout < 0) {
313                 sleep_ok = false;
314                 timeout = -timeout;
315         }
316
317         /* Queue ourselves onto the mailbox access list.  When our entry is at
318          * the front of the list, we have rights to access the mailbox.  So we
319          * wait [for a while] till we're at the front [or bail out with an
320          * EBUSY] ...
321          */
322         spin_lock_bh(&adap->mbox_lock);
323         list_add_tail(&entry.list, &adap->mlist.list);
324         spin_unlock_bh(&adap->mbox_lock);
325
326         delay_idx = 0;
327         ms = delay[0];
328
329         for (i = 0; ; i += ms) {
330                 /* If we've waited too long, return a busy indication.  This
331                  * really ought to be based on our initial position in the
332                  * mailbox access list but this is a start.  We very rarely
333                  * contend on access to the mailbox ...
334                  */
335                 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336                 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337                         spin_lock_bh(&adap->mbox_lock);
338                         list_del(&entry.list);
339                         spin_unlock_bh(&adap->mbox_lock);
340                         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341                         t4_record_mbox(adap, cmd, size, access, ret);
342                         return ret;
343                 }
344
345                 /* If we're at the head, break out and start the mailbox
346                  * protocol.
347                  */
348                 if (list_first_entry(&adap->mlist.list, struct mbox_list,
349                                      list) == &entry)
350                         break;
351
352                 /* Delay for a bit before checking again ... */
353                 if (sleep_ok) {
354                         ms = delay[delay_idx];  /* last element may repeat */
355                         if (delay_idx < ARRAY_SIZE(delay) - 1)
356                                 delay_idx++;
357                         msleep(ms);
358                 } else {
359                         mdelay(ms);
360                 }
361         }
362
363         /* Loop trying to get ownership of the mailbox.  Return an error
364          * if we can't gain ownership.
365          */
366         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368                 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369         if (v != MBOX_OWNER_DRV) {
370                 spin_lock_bh(&adap->mbox_lock);
371                 list_del(&entry.list);
372                 spin_unlock_bh(&adap->mbox_lock);
373                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374                 t4_record_mbox(adap, cmd, size, access, ret);
375                 return ret;
376         }
377
378         /* Copy in the new mailbox command and send it on its way ... */
379         t4_record_mbox(adap, cmd, size, access, 0);
380         for (i = 0; i < size; i += 8)
381                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382
383         t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384         t4_read_reg(adap, ctl_reg);          /* flush write */
385
386         delay_idx = 0;
387         ms = delay[0];
388
389         for (i = 0;
390              !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391              i < timeout;
392              i += ms) {
393                 if (sleep_ok) {
394                         ms = delay[delay_idx];  /* last element may repeat */
395                         if (delay_idx < ARRAY_SIZE(delay) - 1)
396                                 delay_idx++;
397                         msleep(ms);
398                 } else
399                         mdelay(ms);
400
401                 v = t4_read_reg(adap, ctl_reg);
402                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403                         if (!(v & MBMSGVALID_F)) {
404                                 t4_write_reg(adap, ctl_reg, 0);
405                                 continue;
406                         }
407
408                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409                         res = be64_to_cpu(cmd_rpl[0]);
410
411                         if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412                                 fw_asrt(adap, data_reg);
413                                 res = FW_CMD_RETVAL_V(EIO);
414                         } else if (rpl) {
415                                 memcpy(rpl, cmd_rpl, size);
416                         }
417
418                         t4_write_reg(adap, ctl_reg, 0);
419
420                         execute = i + ms;
421                         t4_record_mbox(adap, cmd_rpl,
422                                        MBOX_LEN, access, execute);
423                         spin_lock_bh(&adap->mbox_lock);
424                         list_del(&entry.list);
425                         spin_unlock_bh(&adap->mbox_lock);
426                         return -FW_CMD_RETVAL_G((int)res);
427                 }
428         }
429
430         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431         t4_record_mbox(adap, cmd, size, access, ret);
432         dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433                 *(const u8 *)cmd, mbox);
434         t4_report_fw_error(adap);
435         spin_lock_bh(&adap->mbox_lock);
436         list_del(&entry.list);
437         spin_unlock_bh(&adap->mbox_lock);
438         t4_fatal_err(adap);
439         return ret;
440 }
441
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443                     void *rpl, bool sleep_ok)
444 {
445         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446                                        FW_CMD_MAX_TIMEOUT);
447 }
448
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451         u32 edc_ecc_err_addr_reg;
452         u32 rdata_reg;
453
454         if (is_t4(adap->params.chip)) {
455                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456                 return 0;
457         }
458         if (idx != 0 && idx != 1) {
459                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460                 return 0;
461         }
462
463         edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464         rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465
466         CH_WARN(adap,
467                 "edc%d err addr 0x%x: 0x%x.\n",
468                 idx, edc_ecc_err_addr_reg,
469                 t4_read_reg(adap, edc_ecc_err_addr_reg));
470         CH_WARN(adap,
471                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472                 rdata_reg,
473                 (unsigned long long)t4_read_reg64(adap, rdata_reg),
474                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482
483         return 0;
484 }
485
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498                       u32 *mem_base, u32 *mem_aperture)
499 {
500         u32 edc_size, mc_size, mem_reg;
501
502         /* Offset into the region of memory which is being accessed
503          * MEM_EDC0 = 0
504          * MEM_EDC1 = 1
505          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507          * MEM_HMA  = 4
508          */
509         edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510         if (mtype == MEM_HMA) {
511                 *mem_off = 2 * (edc_size * 1024 * 1024);
512         } else if (mtype != MEM_MC1) {
513                 *mem_off = (mtype * (edc_size * 1024 * 1024));
514         } else {
515                 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516                                                       MA_EXT_MEMORY0_BAR_A));
517                 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518         }
519
520         /* Each PCI-E Memory Window is programmed with a window size -- or
521          * "aperture" -- which controls the granularity of its mapping onto
522          * adapter memory.  We need to grab that aperture in order to know
523          * how to use the specified window.  The window is also programmed
524          * with the base address of the Memory Window in BAR0's address
525          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526          * the address is relative to BAR0.
527          */
528         mem_reg = t4_read_reg(adap,
529                               PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530                                                   win));
531         /* a dead adapter will return 0xffffffff for PIO reads */
532         if (mem_reg == 0xffffffff)
533                 return -ENXIO;
534
535         *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536         *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537         if (is_t4(adap->params.chip))
538                 *mem_base -= adap->t4_bar0;
539
540         return 0;
541 }
542
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553         t4_write_reg(adap,
554                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555                      addr);
556         /* Read it back to ensure that changes propagate before we
557          * attempt to use the new value.
558          */
559         t4_read_reg(adap,
560                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574                            int dir)
575 {
576         union {
577                 u32 word;
578                 char byte[4];
579         } last;
580         unsigned char *bp;
581         int i;
582
583         if (dir == T4_MEMORY_READ) {
584                 last.word = le32_to_cpu((__force __le32)
585                                         t4_read_reg(adap, addr));
586                 for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587                         bp[i] = last.byte[i];
588         } else {
589                 last.word = *buf;
590                 for (i = off; i < 4; i++)
591                         last.byte[i] = 0;
592                 t4_write_reg(adap, addr,
593                              (__force u32)cpu_to_le32(last.word));
594         }
595 }
596
597 /**
598  *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *      @adap: the adapter
600  *      @win: PCI-E Memory Window to use
601  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *      @addr: address within indicated memory type
603  *      @len: amount of memory to transfer
604  *      @hbuf: host memory buffer
605  *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *      firmware memory address and host buffer must be aligned on 32-bit
609  *      boundaries; the length may be arbitrary.  The memory is transferred as
610  *      a raw byte sequence from/to the firmware's memory.  If this memory
611  *      contains data structures which contain multi-byte integers, it's the
612  *      caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615                  u32 len, void *hbuf, int dir)
616 {
617         u32 pos, offset, resid, memoffset;
618         u32 win_pf, mem_aperture, mem_base;
619         u32 *buf;
620         int ret;
621
622         /* Argument sanity checks ...
623          */
624         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625                 return -EINVAL;
626         buf = (u32 *)hbuf;
627
628         /* It's convenient to be able to handle lengths which aren't a
629          * multiple of 32-bits because we often end up transferring files to
630          * the firmware.  So we'll handle that by normalizing the length here
631          * and then handling any residual transfer at the end.
632          */
633         resid = len & 0x3;
634         len -= resid;
635
636         ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637                                 &mem_aperture);
638         if (ret)
639                 return ret;
640
641         /* Determine the PCIE_MEM_ACCESS_OFFSET */
642         addr = addr + memoffset;
643
644         win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645
646         /* Calculate our initial PCI-E Memory Window Position and Offset into
647          * that Window.
648          */
649         pos = addr & ~(mem_aperture - 1);
650         offset = addr - pos;
651
652         /* Set up initial PCI-E Memory Window to cover the start of our
653          * transfer.
654          */
655         t4_memory_update_win(adap, win, pos | win_pf);
656
657         /* Transfer data to/from the adapter as long as there's an integral
658          * number of 32-bit transfers to complete.
659          *
660          * A note on Endianness issues:
661          *
662          * The "register" reads and writes below from/to the PCI-E Memory
663          * Window invoke the standard adapter Big-Endian to PCI-E Link
664          * Little-Endian "swizzel."  As a result, if we have the following
665          * data in adapter memory:
666          *
667          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668          *     Address:      i+0  i+1  i+2  i+3
669          *
670          * Then a read of the adapter memory via the PCI-E Memory Window
671          * will yield:
672          *
673          *     x = readl(i)
674          *         31                  0
675          *         [ b3 | b2 | b1 | b0 ]
676          *
677          * If this value is stored into local memory on a Little-Endian system
678          * it will show up correctly in local memory as:
679          *
680          *     ( ..., b0, b1, b2, b3, ... )
681          *
682          * But on a Big-Endian system, the store will show up in memory
683          * incorrectly swizzled as:
684          *
685          *     ( ..., b3, b2, b1, b0, ... )
686          *
687          * So we need to account for this in the reads and writes to the
688          * PCI-E Memory Window below by undoing the register read/write
689          * swizzels.
690          */
691         while (len > 0) {
692                 if (dir == T4_MEMORY_READ)
693                         *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694                                                 mem_base + offset));
695                 else
696                         t4_write_reg(adap, mem_base + offset,
697                                      (__force u32)cpu_to_le32(*buf++));
698                 offset += sizeof(__be32);
699                 len -= sizeof(__be32);
700
701                 /* If we've reached the end of our current window aperture,
702                  * move the PCI-E Memory Window on to the next.  Note that
703                  * doing this here after "len" may be 0 allows us to set up
704                  * the PCI-E Memory Window for a possible final residual
705                  * transfer below ...
706                  */
707                 if (offset == mem_aperture) {
708                         pos += mem_aperture;
709                         offset = 0;
710                         t4_memory_update_win(adap, win, pos | win_pf);
711                 }
712         }
713
714         /* If the original transfer had a length which wasn't a multiple of
715          * 32-bits, now's where we need to finish off the transfer of the
716          * residual amount.  The PCI-E Memory Window has already been moved
717          * above (if necessary) to cover this final transfer.
718          */
719         if (resid)
720                 t4_memory_rw_residual(adap, resid, mem_base + offset,
721                                       (u8 *)buf, dir);
722
723         return 0;
724 }
725
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733         u32 val, ldst_addrspace;
734
735         /* If fw_attach != 0, construct and send the Firmware LDST Command to
736          * retrieve the specified PCI-E Configuration Space register.
737          */
738         struct fw_ldst_cmd ldst_cmd;
739         int ret;
740
741         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743         ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744                                                FW_CMD_REQUEST_F |
745                                                FW_CMD_READ_F |
746                                                ldst_addrspace);
747         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749         ldst_cmd.u.pcie.ctrl_to_fn =
750                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751         ldst_cmd.u.pcie.r = reg;
752
753         /* If the LDST Command succeeds, return the result, otherwise
754          * fall through to reading it directly ourselves ...
755          */
756         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757                          &ldst_cmd);
758         if (ret == 0)
759                 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760         else
761                 /* Read the desired Configuration Space register via the PCI-E
762                  * Backdoor mechanism.
763                  */
764                 t4_hw_pci_read_cfg4(adap, reg, &val);
765         return val;
766 }
767
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773                          u32 memwin_base)
774 {
775         u32 ret;
776
777         if (is_t4(adap->params.chip)) {
778                 u32 bar0;
779
780                 /* Truncation intentional: we only read the bottom 32-bits of
781                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782                  * mechanism to read BAR0 instead of using
783                  * pci_resource_start() because we could be operating from
784                  * within a Virtual Machine which is trapping our accesses to
785                  * our Configuration Space and we need to set up the PCI-E
786                  * Memory Window decoders with the actual addresses which will
787                  * be coming across the PCI-E link.
788                  */
789                 bar0 = t4_read_pcie_cfg4(adap, pci_base);
790                 bar0 &= pci_mask;
791                 adap->t4_bar0 = bar0;
792
793                 ret = bar0 + memwin_base;
794         } else {
795                 /* For T5, only relative offset inside the PCIe BAR is passed */
796                 ret = memwin_base;
797         }
798         return ret;
799 }
800
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804         return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805                              PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814         t4_write_reg(adap,
815                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816                      memwin_base | BIR_V(0) |
817                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818         t4_read_reg(adap,
819                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821
822 /**
823  *      t4_get_regs_len - return the size of the chips register set
824  *      @adapter: the adapter
825  *
826  *      Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831
832         switch (chip_version) {
833         case CHELSIO_T4:
834                 return T4_REGMAP_SIZE;
835
836         case CHELSIO_T5:
837         case CHELSIO_T6:
838                 return T5_REGMAP_SIZE;
839         }
840
841         dev_err(adapter->pdev_dev,
842                 "Unsupported chip version %d\n", chip_version);
843         return 0;
844 }
845
846 /**
847  *      t4_get_regs - read chip registers into provided buffer
848  *      @adap: the adapter
849  *      @buf: register buffer
850  *      @buf_size: size (in bytes) of register buffer
851  *
852  *      If the provided register buffer isn't large enough for the chip's
853  *      full register range, the register dump will be truncated to the
854  *      register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858         static const unsigned int t4_reg_ranges[] = {
859                 0x1008, 0x1108,
860                 0x1180, 0x1184,
861                 0x1190, 0x1194,
862                 0x11a0, 0x11a4,
863                 0x11b0, 0x11b4,
864                 0x11fc, 0x123c,
865                 0x1300, 0x173c,
866                 0x1800, 0x18fc,
867                 0x3000, 0x30d8,
868                 0x30e0, 0x30e4,
869                 0x30ec, 0x5910,
870                 0x5920, 0x5924,
871                 0x5960, 0x5960,
872                 0x5968, 0x5968,
873                 0x5970, 0x5970,
874                 0x5978, 0x5978,
875                 0x5980, 0x5980,
876                 0x5988, 0x5988,
877                 0x5990, 0x5990,
878                 0x5998, 0x5998,
879                 0x59a0, 0x59d4,
880                 0x5a00, 0x5ae0,
881                 0x5ae8, 0x5ae8,
882                 0x5af0, 0x5af0,
883                 0x5af8, 0x5af8,
884                 0x6000, 0x6098,
885                 0x6100, 0x6150,
886                 0x6200, 0x6208,
887                 0x6240, 0x6248,
888                 0x6280, 0x62b0,
889                 0x62c0, 0x6338,
890                 0x6370, 0x638c,
891                 0x6400, 0x643c,
892                 0x6500, 0x6524,
893                 0x6a00, 0x6a04,
894                 0x6a14, 0x6a38,
895                 0x6a60, 0x6a70,
896                 0x6a78, 0x6a78,
897                 0x6b00, 0x6b0c,
898                 0x6b1c, 0x6b84,
899                 0x6bf0, 0x6bf8,
900                 0x6c00, 0x6c0c,
901                 0x6c1c, 0x6c84,
902                 0x6cf0, 0x6cf8,
903                 0x6d00, 0x6d0c,
904                 0x6d1c, 0x6d84,
905                 0x6df0, 0x6df8,
906                 0x6e00, 0x6e0c,
907                 0x6e1c, 0x6e84,
908                 0x6ef0, 0x6ef8,
909                 0x6f00, 0x6f0c,
910                 0x6f1c, 0x6f84,
911                 0x6ff0, 0x6ff8,
912                 0x7000, 0x700c,
913                 0x701c, 0x7084,
914                 0x70f0, 0x70f8,
915                 0x7100, 0x710c,
916                 0x711c, 0x7184,
917                 0x71f0, 0x71f8,
918                 0x7200, 0x720c,
919                 0x721c, 0x7284,
920                 0x72f0, 0x72f8,
921                 0x7300, 0x730c,
922                 0x731c, 0x7384,
923                 0x73f0, 0x73f8,
924                 0x7400, 0x7450,
925                 0x7500, 0x7530,
926                 0x7600, 0x760c,
927                 0x7614, 0x761c,
928                 0x7680, 0x76cc,
929                 0x7700, 0x7798,
930                 0x77c0, 0x77fc,
931                 0x7900, 0x79fc,
932                 0x7b00, 0x7b58,
933                 0x7b60, 0x7b84,
934                 0x7b8c, 0x7c38,
935                 0x7d00, 0x7d38,
936                 0x7d40, 0x7d80,
937                 0x7d8c, 0x7ddc,
938                 0x7de4, 0x7e04,
939                 0x7e10, 0x7e1c,
940                 0x7e24, 0x7e38,
941                 0x7e40, 0x7e44,
942                 0x7e4c, 0x7e78,
943                 0x7e80, 0x7ea4,
944                 0x7eac, 0x7edc,
945                 0x7ee8, 0x7efc,
946                 0x8dc0, 0x8e04,
947                 0x8e10, 0x8e1c,
948                 0x8e30, 0x8e78,
949                 0x8ea0, 0x8eb8,
950                 0x8ec0, 0x8f6c,
951                 0x8fc0, 0x9008,
952                 0x9010, 0x9058,
953                 0x9060, 0x9060,
954                 0x9068, 0x9074,
955                 0x90fc, 0x90fc,
956                 0x9400, 0x9408,
957                 0x9410, 0x9458,
958                 0x9600, 0x9600,
959                 0x9608, 0x9638,
960                 0x9640, 0x96bc,
961                 0x9800, 0x9808,
962                 0x9820, 0x983c,
963                 0x9850, 0x9864,
964                 0x9c00, 0x9c6c,
965                 0x9c80, 0x9cec,
966                 0x9d00, 0x9d6c,
967                 0x9d80, 0x9dec,
968                 0x9e00, 0x9e6c,
969                 0x9e80, 0x9eec,
970                 0x9f00, 0x9f6c,
971                 0x9f80, 0x9fec,
972                 0xd004, 0xd004,
973                 0xd010, 0xd03c,
974                 0xdfc0, 0xdfe0,
975                 0xe000, 0xea7c,
976                 0xf000, 0x11110,
977                 0x11118, 0x11190,
978                 0x19040, 0x1906c,
979                 0x19078, 0x19080,
980                 0x1908c, 0x190e4,
981                 0x190f0, 0x190f8,
982                 0x19100, 0x19110,
983                 0x19120, 0x19124,
984                 0x19150, 0x19194,
985                 0x1919c, 0x191b0,
986                 0x191d0, 0x191e8,
987                 0x19238, 0x1924c,
988                 0x193f8, 0x1943c,
989                 0x1944c, 0x19474,
990                 0x19490, 0x194e0,
991                 0x194f0, 0x194f8,
992                 0x19800, 0x19c08,
993                 0x19c10, 0x19c90,
994                 0x19ca0, 0x19ce4,
995                 0x19cf0, 0x19d40,
996                 0x19d50, 0x19d94,
997                 0x19da0, 0x19de8,
998                 0x19df0, 0x19e40,
999                 0x19e50, 0x19e90,
1000                 0x19ea0, 0x19f4c,
1001                 0x1a000, 0x1a004,
1002                 0x1a010, 0x1a06c,
1003                 0x1a0b0, 0x1a0e4,
1004                 0x1a0ec, 0x1a0f4,
1005                 0x1a100, 0x1a108,
1006                 0x1a114, 0x1a120,
1007                 0x1a128, 0x1a130,
1008                 0x1a138, 0x1a138,
1009                 0x1a190, 0x1a1c4,
1010                 0x1a1fc, 0x1a1fc,
1011                 0x1e040, 0x1e04c,
1012                 0x1e284, 0x1e28c,
1013                 0x1e2c0, 0x1e2c0,
1014                 0x1e2e0, 0x1e2e0,
1015                 0x1e300, 0x1e384,
1016                 0x1e3c0, 0x1e3c8,
1017                 0x1e440, 0x1e44c,
1018                 0x1e684, 0x1e68c,
1019                 0x1e6c0, 0x1e6c0,
1020                 0x1e6e0, 0x1e6e0,
1021                 0x1e700, 0x1e784,
1022                 0x1e7c0, 0x1e7c8,
1023                 0x1e840, 0x1e84c,
1024                 0x1ea84, 0x1ea8c,
1025                 0x1eac0, 0x1eac0,
1026                 0x1eae0, 0x1eae0,
1027                 0x1eb00, 0x1eb84,
1028                 0x1ebc0, 0x1ebc8,
1029                 0x1ec40, 0x1ec4c,
1030                 0x1ee84, 0x1ee8c,
1031                 0x1eec0, 0x1eec0,
1032                 0x1eee0, 0x1eee0,
1033                 0x1ef00, 0x1ef84,
1034                 0x1efc0, 0x1efc8,
1035                 0x1f040, 0x1f04c,
1036                 0x1f284, 0x1f28c,
1037                 0x1f2c0, 0x1f2c0,
1038                 0x1f2e0, 0x1f2e0,
1039                 0x1f300, 0x1f384,
1040                 0x1f3c0, 0x1f3c8,
1041                 0x1f440, 0x1f44c,
1042                 0x1f684, 0x1f68c,
1043                 0x1f6c0, 0x1f6c0,
1044                 0x1f6e0, 0x1f6e0,
1045                 0x1f700, 0x1f784,
1046                 0x1f7c0, 0x1f7c8,
1047                 0x1f840, 0x1f84c,
1048                 0x1fa84, 0x1fa8c,
1049                 0x1fac0, 0x1fac0,
1050                 0x1fae0, 0x1fae0,
1051                 0x1fb00, 0x1fb84,
1052                 0x1fbc0, 0x1fbc8,
1053                 0x1fc40, 0x1fc4c,
1054                 0x1fe84, 0x1fe8c,
1055                 0x1fec0, 0x1fec0,
1056                 0x1fee0, 0x1fee0,
1057                 0x1ff00, 0x1ff84,
1058                 0x1ffc0, 0x1ffc8,
1059                 0x20000, 0x2002c,
1060                 0x20100, 0x2013c,
1061                 0x20190, 0x201a0,
1062                 0x201a8, 0x201b8,
1063                 0x201c4, 0x201c8,
1064                 0x20200, 0x20318,
1065                 0x20400, 0x204b4,
1066                 0x204c0, 0x20528,
1067                 0x20540, 0x20614,
1068                 0x21000, 0x21040,
1069                 0x2104c, 0x21060,
1070                 0x210c0, 0x210ec,
1071                 0x21200, 0x21268,
1072                 0x21270, 0x21284,
1073                 0x212fc, 0x21388,
1074                 0x21400, 0x21404,
1075                 0x21500, 0x21500,
1076                 0x21510, 0x21518,
1077                 0x2152c, 0x21530,
1078                 0x2153c, 0x2153c,
1079                 0x21550, 0x21554,
1080                 0x21600, 0x21600,
1081                 0x21608, 0x2161c,
1082                 0x21624, 0x21628,
1083                 0x21630, 0x21634,
1084                 0x2163c, 0x2163c,
1085                 0x21700, 0x2171c,
1086                 0x21780, 0x2178c,
1087                 0x21800, 0x21818,
1088                 0x21820, 0x21828,
1089                 0x21830, 0x21848,
1090                 0x21850, 0x21854,
1091                 0x21860, 0x21868,
1092                 0x21870, 0x21870,
1093                 0x21878, 0x21898,
1094                 0x218a0, 0x218a8,
1095                 0x218b0, 0x218c8,
1096                 0x218d0, 0x218d4,
1097                 0x218e0, 0x218e8,
1098                 0x218f0, 0x218f0,
1099                 0x218f8, 0x21a18,
1100                 0x21a20, 0x21a28,
1101                 0x21a30, 0x21a48,
1102                 0x21a50, 0x21a54,
1103                 0x21a60, 0x21a68,
1104                 0x21a70, 0x21a70,
1105                 0x21a78, 0x21a98,
1106                 0x21aa0, 0x21aa8,
1107                 0x21ab0, 0x21ac8,
1108                 0x21ad0, 0x21ad4,
1109                 0x21ae0, 0x21ae8,
1110                 0x21af0, 0x21af0,
1111                 0x21af8, 0x21c18,
1112                 0x21c20, 0x21c20,
1113                 0x21c28, 0x21c30,
1114                 0x21c38, 0x21c38,
1115                 0x21c80, 0x21c98,
1116                 0x21ca0, 0x21ca8,
1117                 0x21cb0, 0x21cc8,
1118                 0x21cd0, 0x21cd4,
1119                 0x21ce0, 0x21ce8,
1120                 0x21cf0, 0x21cf0,
1121                 0x21cf8, 0x21d7c,
1122                 0x21e00, 0x21e04,
1123                 0x22000, 0x2202c,
1124                 0x22100, 0x2213c,
1125                 0x22190, 0x221a0,
1126                 0x221a8, 0x221b8,
1127                 0x221c4, 0x221c8,
1128                 0x22200, 0x22318,
1129                 0x22400, 0x224b4,
1130                 0x224c0, 0x22528,
1131                 0x22540, 0x22614,
1132                 0x23000, 0x23040,
1133                 0x2304c, 0x23060,
1134                 0x230c0, 0x230ec,
1135                 0x23200, 0x23268,
1136                 0x23270, 0x23284,
1137                 0x232fc, 0x23388,
1138                 0x23400, 0x23404,
1139                 0x23500, 0x23500,
1140                 0x23510, 0x23518,
1141                 0x2352c, 0x23530,
1142                 0x2353c, 0x2353c,
1143                 0x23550, 0x23554,
1144                 0x23600, 0x23600,
1145                 0x23608, 0x2361c,
1146                 0x23624, 0x23628,
1147                 0x23630, 0x23634,
1148                 0x2363c, 0x2363c,
1149                 0x23700, 0x2371c,
1150                 0x23780, 0x2378c,
1151                 0x23800, 0x23818,
1152                 0x23820, 0x23828,
1153                 0x23830, 0x23848,
1154                 0x23850, 0x23854,
1155                 0x23860, 0x23868,
1156                 0x23870, 0x23870,
1157                 0x23878, 0x23898,
1158                 0x238a0, 0x238a8,
1159                 0x238b0, 0x238c8,
1160                 0x238d0, 0x238d4,
1161                 0x238e0, 0x238e8,
1162                 0x238f0, 0x238f0,
1163                 0x238f8, 0x23a18,
1164                 0x23a20, 0x23a28,
1165                 0x23a30, 0x23a48,
1166                 0x23a50, 0x23a54,
1167                 0x23a60, 0x23a68,
1168                 0x23a70, 0x23a70,
1169                 0x23a78, 0x23a98,
1170                 0x23aa0, 0x23aa8,
1171                 0x23ab0, 0x23ac8,
1172                 0x23ad0, 0x23ad4,
1173                 0x23ae0, 0x23ae8,
1174                 0x23af0, 0x23af0,
1175                 0x23af8, 0x23c18,
1176                 0x23c20, 0x23c20,
1177                 0x23c28, 0x23c30,
1178                 0x23c38, 0x23c38,
1179                 0x23c80, 0x23c98,
1180                 0x23ca0, 0x23ca8,
1181                 0x23cb0, 0x23cc8,
1182                 0x23cd0, 0x23cd4,
1183                 0x23ce0, 0x23ce8,
1184                 0x23cf0, 0x23cf0,
1185                 0x23cf8, 0x23d7c,
1186                 0x23e00, 0x23e04,
1187                 0x24000, 0x2402c,
1188                 0x24100, 0x2413c,
1189                 0x24190, 0x241a0,
1190                 0x241a8, 0x241b8,
1191                 0x241c4, 0x241c8,
1192                 0x24200, 0x24318,
1193                 0x24400, 0x244b4,
1194                 0x244c0, 0x24528,
1195                 0x24540, 0x24614,
1196                 0x25000, 0x25040,
1197                 0x2504c, 0x25060,
1198                 0x250c0, 0x250ec,
1199                 0x25200, 0x25268,
1200                 0x25270, 0x25284,
1201                 0x252fc, 0x25388,
1202                 0x25400, 0x25404,
1203                 0x25500, 0x25500,
1204                 0x25510, 0x25518,
1205                 0x2552c, 0x25530,
1206                 0x2553c, 0x2553c,
1207                 0x25550, 0x25554,
1208                 0x25600, 0x25600,
1209                 0x25608, 0x2561c,
1210                 0x25624, 0x25628,
1211                 0x25630, 0x25634,
1212                 0x2563c, 0x2563c,
1213                 0x25700, 0x2571c,
1214                 0x25780, 0x2578c,
1215                 0x25800, 0x25818,
1216                 0x25820, 0x25828,
1217                 0x25830, 0x25848,
1218                 0x25850, 0x25854,
1219                 0x25860, 0x25868,
1220                 0x25870, 0x25870,
1221                 0x25878, 0x25898,
1222                 0x258a0, 0x258a8,
1223                 0x258b0, 0x258c8,
1224                 0x258d0, 0x258d4,
1225                 0x258e0, 0x258e8,
1226                 0x258f0, 0x258f0,
1227                 0x258f8, 0x25a18,
1228                 0x25a20, 0x25a28,
1229                 0x25a30, 0x25a48,
1230                 0x25a50, 0x25a54,
1231                 0x25a60, 0x25a68,
1232                 0x25a70, 0x25a70,
1233                 0x25a78, 0x25a98,
1234                 0x25aa0, 0x25aa8,
1235                 0x25ab0, 0x25ac8,
1236                 0x25ad0, 0x25ad4,
1237                 0x25ae0, 0x25ae8,
1238                 0x25af0, 0x25af0,
1239                 0x25af8, 0x25c18,
1240                 0x25c20, 0x25c20,
1241                 0x25c28, 0x25c30,
1242                 0x25c38, 0x25c38,
1243                 0x25c80, 0x25c98,
1244                 0x25ca0, 0x25ca8,
1245                 0x25cb0, 0x25cc8,
1246                 0x25cd0, 0x25cd4,
1247                 0x25ce0, 0x25ce8,
1248                 0x25cf0, 0x25cf0,
1249                 0x25cf8, 0x25d7c,
1250                 0x25e00, 0x25e04,
1251                 0x26000, 0x2602c,
1252                 0x26100, 0x2613c,
1253                 0x26190, 0x261a0,
1254                 0x261a8, 0x261b8,
1255                 0x261c4, 0x261c8,
1256                 0x26200, 0x26318,
1257                 0x26400, 0x264b4,
1258                 0x264c0, 0x26528,
1259                 0x26540, 0x26614,
1260                 0x27000, 0x27040,
1261                 0x2704c, 0x27060,
1262                 0x270c0, 0x270ec,
1263                 0x27200, 0x27268,
1264                 0x27270, 0x27284,
1265                 0x272fc, 0x27388,
1266                 0x27400, 0x27404,
1267                 0x27500, 0x27500,
1268                 0x27510, 0x27518,
1269                 0x2752c, 0x27530,
1270                 0x2753c, 0x2753c,
1271                 0x27550, 0x27554,
1272                 0x27600, 0x27600,
1273                 0x27608, 0x2761c,
1274                 0x27624, 0x27628,
1275                 0x27630, 0x27634,
1276                 0x2763c, 0x2763c,
1277                 0x27700, 0x2771c,
1278                 0x27780, 0x2778c,
1279                 0x27800, 0x27818,
1280                 0x27820, 0x27828,
1281                 0x27830, 0x27848,
1282                 0x27850, 0x27854,
1283                 0x27860, 0x27868,
1284                 0x27870, 0x27870,
1285                 0x27878, 0x27898,
1286                 0x278a0, 0x278a8,
1287                 0x278b0, 0x278c8,
1288                 0x278d0, 0x278d4,
1289                 0x278e0, 0x278e8,
1290                 0x278f0, 0x278f0,
1291                 0x278f8, 0x27a18,
1292                 0x27a20, 0x27a28,
1293                 0x27a30, 0x27a48,
1294                 0x27a50, 0x27a54,
1295                 0x27a60, 0x27a68,
1296                 0x27a70, 0x27a70,
1297                 0x27a78, 0x27a98,
1298                 0x27aa0, 0x27aa8,
1299                 0x27ab0, 0x27ac8,
1300                 0x27ad0, 0x27ad4,
1301                 0x27ae0, 0x27ae8,
1302                 0x27af0, 0x27af0,
1303                 0x27af8, 0x27c18,
1304                 0x27c20, 0x27c20,
1305                 0x27c28, 0x27c30,
1306                 0x27c38, 0x27c38,
1307                 0x27c80, 0x27c98,
1308                 0x27ca0, 0x27ca8,
1309                 0x27cb0, 0x27cc8,
1310                 0x27cd0, 0x27cd4,
1311                 0x27ce0, 0x27ce8,
1312                 0x27cf0, 0x27cf0,
1313                 0x27cf8, 0x27d7c,
1314                 0x27e00, 0x27e04,
1315         };
1316
1317         static const unsigned int t5_reg_ranges[] = {
1318                 0x1008, 0x10c0,
1319                 0x10cc, 0x10f8,
1320                 0x1100, 0x1100,
1321                 0x110c, 0x1148,
1322                 0x1180, 0x1184,
1323                 0x1190, 0x1194,
1324                 0x11a0, 0x11a4,
1325                 0x11b0, 0x11b4,
1326                 0x11fc, 0x123c,
1327                 0x1280, 0x173c,
1328                 0x1800, 0x18fc,
1329                 0x3000, 0x3028,
1330                 0x3060, 0x30b0,
1331                 0x30b8, 0x30d8,
1332                 0x30e0, 0x30fc,
1333                 0x3140, 0x357c,
1334                 0x35a8, 0x35cc,
1335                 0x35ec, 0x35ec,
1336                 0x3600, 0x5624,
1337                 0x56cc, 0x56ec,
1338                 0x56f4, 0x5720,
1339                 0x5728, 0x575c,
1340                 0x580c, 0x5814,
1341                 0x5890, 0x589c,
1342                 0x58a4, 0x58ac,
1343                 0x58b8, 0x58bc,
1344                 0x5940, 0x59c8,
1345                 0x59d0, 0x59dc,
1346                 0x59fc, 0x5a18,
1347                 0x5a60, 0x5a70,
1348                 0x5a80, 0x5a9c,
1349                 0x5b94, 0x5bfc,
1350                 0x6000, 0x6020,
1351                 0x6028, 0x6040,
1352                 0x6058, 0x609c,
1353                 0x60a8, 0x614c,
1354                 0x7700, 0x7798,
1355                 0x77c0, 0x78fc,
1356                 0x7b00, 0x7b58,
1357                 0x7b60, 0x7b84,
1358                 0x7b8c, 0x7c54,
1359                 0x7d00, 0x7d38,
1360                 0x7d40, 0x7d80,
1361                 0x7d8c, 0x7ddc,
1362                 0x7de4, 0x7e04,
1363                 0x7e10, 0x7e1c,
1364                 0x7e24, 0x7e38,
1365                 0x7e40, 0x7e44,
1366                 0x7e4c, 0x7e78,
1367                 0x7e80, 0x7edc,
1368                 0x7ee8, 0x7efc,
1369                 0x8dc0, 0x8de0,
1370                 0x8df8, 0x8e04,
1371                 0x8e10, 0x8e84,
1372                 0x8ea0, 0x8f84,
1373                 0x8fc0, 0x9058,
1374                 0x9060, 0x9060,
1375                 0x9068, 0x90f8,
1376                 0x9400, 0x9408,
1377                 0x9410, 0x9470,
1378                 0x9600, 0x9600,
1379                 0x9608, 0x9638,
1380                 0x9640, 0x96f4,
1381                 0x9800, 0x9808,
1382                 0x9810, 0x9864,
1383                 0x9c00, 0x9c6c,
1384                 0x9c80, 0x9cec,
1385                 0x9d00, 0x9d6c,
1386                 0x9d80, 0x9dec,
1387                 0x9e00, 0x9e6c,
1388                 0x9e80, 0x9eec,
1389                 0x9f00, 0x9f6c,
1390                 0x9f80, 0xa020,
1391                 0xd000, 0xd004,
1392                 0xd010, 0xd03c,
1393                 0xdfc0, 0xdfe0,
1394                 0xe000, 0x1106c,
1395                 0x11074, 0x11088,
1396                 0x1109c, 0x1117c,
1397                 0x11190, 0x11204,
1398                 0x19040, 0x1906c,
1399                 0x19078, 0x19080,
1400                 0x1908c, 0x190e8,
1401                 0x190f0, 0x190f8,
1402                 0x19100, 0x19110,
1403                 0x19120, 0x19124,
1404                 0x19150, 0x19194,
1405                 0x1919c, 0x191b0,
1406                 0x191d0, 0x191e8,
1407                 0x19238, 0x19290,
1408                 0x193f8, 0x19428,
1409                 0x19430, 0x19444,
1410                 0x1944c, 0x1946c,
1411                 0x19474, 0x19474,
1412                 0x19490, 0x194cc,
1413                 0x194f0, 0x194f8,
1414                 0x19c00, 0x19c08,
1415                 0x19c10, 0x19c60,
1416                 0x19c94, 0x19ce4,
1417                 0x19cf0, 0x19d40,
1418                 0x19d50, 0x19d94,
1419                 0x19da0, 0x19de8,
1420                 0x19df0, 0x19e10,
1421                 0x19e50, 0x19e90,
1422                 0x19ea0, 0x19f24,
1423                 0x19f34, 0x19f34,
1424                 0x19f40, 0x19f50,
1425                 0x19f90, 0x19fb4,
1426                 0x19fc4, 0x19fe4,
1427                 0x1a000, 0x1a004,
1428                 0x1a010, 0x1a06c,
1429                 0x1a0b0, 0x1a0e4,
1430                 0x1a0ec, 0x1a0f8,
1431                 0x1a100, 0x1a108,
1432                 0x1a114, 0x1a130,
1433                 0x1a138, 0x1a1c4,
1434                 0x1a1fc, 0x1a1fc,
1435                 0x1e008, 0x1e00c,
1436                 0x1e040, 0x1e044,
1437                 0x1e04c, 0x1e04c,
1438                 0x1e284, 0x1e290,
1439                 0x1e2c0, 0x1e2c0,
1440                 0x1e2e0, 0x1e2e0,
1441                 0x1e300, 0x1e384,
1442                 0x1e3c0, 0x1e3c8,
1443                 0x1e408, 0x1e40c,
1444                 0x1e440, 0x1e444,
1445                 0x1e44c, 0x1e44c,
1446                 0x1e684, 0x1e690,
1447                 0x1e6c0, 0x1e6c0,
1448                 0x1e6e0, 0x1e6e0,
1449                 0x1e700, 0x1e784,
1450                 0x1e7c0, 0x1e7c8,
1451                 0x1e808, 0x1e80c,
1452                 0x1e840, 0x1e844,
1453                 0x1e84c, 0x1e84c,
1454                 0x1ea84, 0x1ea90,
1455                 0x1eac0, 0x1eac0,
1456                 0x1eae0, 0x1eae0,
1457                 0x1eb00, 0x1eb84,
1458                 0x1ebc0, 0x1ebc8,
1459                 0x1ec08, 0x1ec0c,
1460                 0x1ec40, 0x1ec44,
1461                 0x1ec4c, 0x1ec4c,
1462                 0x1ee84, 0x1ee90,
1463                 0x1eec0, 0x1eec0,
1464                 0x1eee0, 0x1eee0,
1465                 0x1ef00, 0x1ef84,
1466                 0x1efc0, 0x1efc8,
1467                 0x1f008, 0x1f00c,
1468                 0x1f040, 0x1f044,
1469                 0x1f04c, 0x1f04c,
1470                 0x1f284, 0x1f290,
1471                 0x1f2c0, 0x1f2c0,
1472                 0x1f2e0, 0x1f2e0,
1473                 0x1f300, 0x1f384,
1474                 0x1f3c0, 0x1f3c8,
1475                 0x1f408, 0x1f40c,
1476                 0x1f440, 0x1f444,
1477                 0x1f44c, 0x1f44c,
1478                 0x1f684, 0x1f690,
1479                 0x1f6c0, 0x1f6c0,
1480                 0x1f6e0, 0x1f6e0,
1481                 0x1f700, 0x1f784,
1482                 0x1f7c0, 0x1f7c8,
1483                 0x1f808, 0x1f80c,
1484                 0x1f840, 0x1f844,
1485                 0x1f84c, 0x1f84c,
1486                 0x1fa84, 0x1fa90,
1487                 0x1fac0, 0x1fac0,
1488                 0x1fae0, 0x1fae0,
1489                 0x1fb00, 0x1fb84,
1490                 0x1fbc0, 0x1fbc8,
1491                 0x1fc08, 0x1fc0c,
1492                 0x1fc40, 0x1fc44,
1493                 0x1fc4c, 0x1fc4c,
1494                 0x1fe84, 0x1fe90,
1495                 0x1fec0, 0x1fec0,
1496                 0x1fee0, 0x1fee0,
1497                 0x1ff00, 0x1ff84,
1498                 0x1ffc0, 0x1ffc8,
1499                 0x30000, 0x30030,
1500                 0x30100, 0x30144,
1501                 0x30190, 0x301a0,
1502                 0x301a8, 0x301b8,
1503                 0x301c4, 0x301c8,
1504                 0x301d0, 0x301d0,
1505                 0x30200, 0x30318,
1506                 0x30400, 0x304b4,
1507                 0x304c0, 0x3052c,
1508                 0x30540, 0x3061c,
1509                 0x30800, 0x30828,
1510                 0x30834, 0x30834,
1511                 0x308c0, 0x30908,
1512                 0x30910, 0x309ac,
1513                 0x30a00, 0x30a14,
1514                 0x30a1c, 0x30a2c,
1515                 0x30a44, 0x30a50,
1516                 0x30a74, 0x30a74,
1517                 0x30a7c, 0x30afc,
1518                 0x30b08, 0x30c24,
1519                 0x30d00, 0x30d00,
1520                 0x30d08, 0x30d14,
1521                 0x30d1c, 0x30d20,
1522                 0x30d3c, 0x30d3c,
1523                 0x30d48, 0x30d50,
1524                 0x31200, 0x3120c,
1525                 0x31220, 0x31220,
1526                 0x31240, 0x31240,
1527                 0x31600, 0x3160c,
1528                 0x31a00, 0x31a1c,
1529                 0x31e00, 0x31e20,
1530                 0x31e38, 0x31e3c,
1531                 0x31e80, 0x31e80,
1532                 0x31e88, 0x31ea8,
1533                 0x31eb0, 0x31eb4,
1534                 0x31ec8, 0x31ed4,
1535                 0x31fb8, 0x32004,
1536                 0x32200, 0x32200,
1537                 0x32208, 0x32240,
1538                 0x32248, 0x32280,
1539                 0x32288, 0x322c0,
1540                 0x322c8, 0x322fc,
1541                 0x32600, 0x32630,
1542                 0x32a00, 0x32abc,
1543                 0x32b00, 0x32b10,
1544                 0x32b20, 0x32b30,
1545                 0x32b40, 0x32b50,
1546                 0x32b60, 0x32b70,
1547                 0x33000, 0x33028,
1548                 0x33030, 0x33048,
1549                 0x33060, 0x33068,
1550                 0x33070, 0x3309c,
1551                 0x330f0, 0x33128,
1552                 0x33130, 0x33148,
1553                 0x33160, 0x33168,
1554                 0x33170, 0x3319c,
1555                 0x331f0, 0x33238,
1556                 0x33240, 0x33240,
1557                 0x33248, 0x33250,
1558                 0x3325c, 0x33264,
1559                 0x33270, 0x332b8,
1560                 0x332c0, 0x332e4,
1561                 0x332f8, 0x33338,
1562                 0x33340, 0x33340,
1563                 0x33348, 0x33350,
1564                 0x3335c, 0x33364,
1565                 0x33370, 0x333b8,
1566                 0x333c0, 0x333e4,
1567                 0x333f8, 0x33428,
1568                 0x33430, 0x33448,
1569                 0x33460, 0x33468,
1570                 0x33470, 0x3349c,
1571                 0x334f0, 0x33528,
1572                 0x33530, 0x33548,
1573                 0x33560, 0x33568,
1574                 0x33570, 0x3359c,
1575                 0x335f0, 0x33638,
1576                 0x33640, 0x33640,
1577                 0x33648, 0x33650,
1578                 0x3365c, 0x33664,
1579                 0x33670, 0x336b8,
1580                 0x336c0, 0x336e4,
1581                 0x336f8, 0x33738,
1582                 0x33740, 0x33740,
1583                 0x33748, 0x33750,
1584                 0x3375c, 0x33764,
1585                 0x33770, 0x337b8,
1586                 0x337c0, 0x337e4,
1587                 0x337f8, 0x337fc,
1588                 0x33814, 0x33814,
1589                 0x3382c, 0x3382c,
1590                 0x33880, 0x3388c,
1591                 0x338e8, 0x338ec,
1592                 0x33900, 0x33928,
1593                 0x33930, 0x33948,
1594                 0x33960, 0x33968,
1595                 0x33970, 0x3399c,
1596                 0x339f0, 0x33a38,
1597                 0x33a40, 0x33a40,
1598                 0x33a48, 0x33a50,
1599                 0x33a5c, 0x33a64,
1600                 0x33a70, 0x33ab8,
1601                 0x33ac0, 0x33ae4,
1602                 0x33af8, 0x33b10,
1603                 0x33b28, 0x33b28,
1604                 0x33b3c, 0x33b50,
1605                 0x33bf0, 0x33c10,
1606                 0x33c28, 0x33c28,
1607                 0x33c3c, 0x33c50,
1608                 0x33cf0, 0x33cfc,
1609                 0x34000, 0x34030,
1610                 0x34100, 0x34144,
1611                 0x34190, 0x341a0,
1612                 0x341a8, 0x341b8,
1613                 0x341c4, 0x341c8,
1614                 0x341d0, 0x341d0,
1615                 0x34200, 0x34318,
1616                 0x34400, 0x344b4,
1617                 0x344c0, 0x3452c,
1618                 0x34540, 0x3461c,
1619                 0x34800, 0x34828,
1620                 0x34834, 0x34834,
1621                 0x348c0, 0x34908,
1622                 0x34910, 0x349ac,
1623                 0x34a00, 0x34a14,
1624                 0x34a1c, 0x34a2c,
1625                 0x34a44, 0x34a50,
1626                 0x34a74, 0x34a74,
1627                 0x34a7c, 0x34afc,
1628                 0x34b08, 0x34c24,
1629                 0x34d00, 0x34d00,
1630                 0x34d08, 0x34d14,
1631                 0x34d1c, 0x34d20,
1632                 0x34d3c, 0x34d3c,
1633                 0x34d48, 0x34d50,
1634                 0x35200, 0x3520c,
1635                 0x35220, 0x35220,
1636                 0x35240, 0x35240,
1637                 0x35600, 0x3560c,
1638                 0x35a00, 0x35a1c,
1639                 0x35e00, 0x35e20,
1640                 0x35e38, 0x35e3c,
1641                 0x35e80, 0x35e80,
1642                 0x35e88, 0x35ea8,
1643                 0x35eb0, 0x35eb4,
1644                 0x35ec8, 0x35ed4,
1645                 0x35fb8, 0x36004,
1646                 0x36200, 0x36200,
1647                 0x36208, 0x36240,
1648                 0x36248, 0x36280,
1649                 0x36288, 0x362c0,
1650                 0x362c8, 0x362fc,
1651                 0x36600, 0x36630,
1652                 0x36a00, 0x36abc,
1653                 0x36b00, 0x36b10,
1654                 0x36b20, 0x36b30,
1655                 0x36b40, 0x36b50,
1656                 0x36b60, 0x36b70,
1657                 0x37000, 0x37028,
1658                 0x37030, 0x37048,
1659                 0x37060, 0x37068,
1660                 0x37070, 0x3709c,
1661                 0x370f0, 0x37128,
1662                 0x37130, 0x37148,
1663                 0x37160, 0x37168,
1664                 0x37170, 0x3719c,
1665                 0x371f0, 0x37238,
1666                 0x37240, 0x37240,
1667                 0x37248, 0x37250,
1668                 0x3725c, 0x37264,
1669                 0x37270, 0x372b8,
1670                 0x372c0, 0x372e4,
1671                 0x372f8, 0x37338,
1672                 0x37340, 0x37340,
1673                 0x37348, 0x37350,
1674                 0x3735c, 0x37364,
1675                 0x37370, 0x373b8,
1676                 0x373c0, 0x373e4,
1677                 0x373f8, 0x37428,
1678                 0x37430, 0x37448,
1679                 0x37460, 0x37468,
1680                 0x37470, 0x3749c,
1681                 0x374f0, 0x37528,
1682                 0x37530, 0x37548,
1683                 0x37560, 0x37568,
1684                 0x37570, 0x3759c,
1685                 0x375f0, 0x37638,
1686                 0x37640, 0x37640,
1687                 0x37648, 0x37650,
1688                 0x3765c, 0x37664,
1689                 0x37670, 0x376b8,
1690                 0x376c0, 0x376e4,
1691                 0x376f8, 0x37738,
1692                 0x37740, 0x37740,
1693                 0x37748, 0x37750,
1694                 0x3775c, 0x37764,
1695                 0x37770, 0x377b8,
1696                 0x377c0, 0x377e4,
1697                 0x377f8, 0x377fc,
1698                 0x37814, 0x37814,
1699                 0x3782c, 0x3782c,
1700                 0x37880, 0x3788c,
1701                 0x378e8, 0x378ec,
1702                 0x37900, 0x37928,
1703                 0x37930, 0x37948,
1704                 0x37960, 0x37968,
1705                 0x37970, 0x3799c,
1706                 0x379f0, 0x37a38,
1707                 0x37a40, 0x37a40,
1708                 0x37a48, 0x37a50,
1709                 0x37a5c, 0x37a64,
1710                 0x37a70, 0x37ab8,
1711                 0x37ac0, 0x37ae4,
1712                 0x37af8, 0x37b10,
1713                 0x37b28, 0x37b28,
1714                 0x37b3c, 0x37b50,
1715                 0x37bf0, 0x37c10,
1716                 0x37c28, 0x37c28,
1717                 0x37c3c, 0x37c50,
1718                 0x37cf0, 0x37cfc,
1719                 0x38000, 0x38030,
1720                 0x38100, 0x38144,
1721                 0x38190, 0x381a0,
1722                 0x381a8, 0x381b8,
1723                 0x381c4, 0x381c8,
1724                 0x381d0, 0x381d0,
1725                 0x38200, 0x38318,
1726                 0x38400, 0x384b4,
1727                 0x384c0, 0x3852c,
1728                 0x38540, 0x3861c,
1729                 0x38800, 0x38828,
1730                 0x38834, 0x38834,
1731                 0x388c0, 0x38908,
1732                 0x38910, 0x389ac,
1733                 0x38a00, 0x38a14,
1734                 0x38a1c, 0x38a2c,
1735                 0x38a44, 0x38a50,
1736                 0x38a74, 0x38a74,
1737                 0x38a7c, 0x38afc,
1738                 0x38b08, 0x38c24,
1739                 0x38d00, 0x38d00,
1740                 0x38d08, 0x38d14,
1741                 0x38d1c, 0x38d20,
1742                 0x38d3c, 0x38d3c,
1743                 0x38d48, 0x38d50,
1744                 0x39200, 0x3920c,
1745                 0x39220, 0x39220,
1746                 0x39240, 0x39240,
1747                 0x39600, 0x3960c,
1748                 0x39a00, 0x39a1c,
1749                 0x39e00, 0x39e20,
1750                 0x39e38, 0x39e3c,
1751                 0x39e80, 0x39e80,
1752                 0x39e88, 0x39ea8,
1753                 0x39eb0, 0x39eb4,
1754                 0x39ec8, 0x39ed4,
1755                 0x39fb8, 0x3a004,
1756                 0x3a200, 0x3a200,
1757                 0x3a208, 0x3a240,
1758                 0x3a248, 0x3a280,
1759                 0x3a288, 0x3a2c0,
1760                 0x3a2c8, 0x3a2fc,
1761                 0x3a600, 0x3a630,
1762                 0x3aa00, 0x3aabc,
1763                 0x3ab00, 0x3ab10,
1764                 0x3ab20, 0x3ab30,
1765                 0x3ab40, 0x3ab50,
1766                 0x3ab60, 0x3ab70,
1767                 0x3b000, 0x3b028,
1768                 0x3b030, 0x3b048,
1769                 0x3b060, 0x3b068,
1770                 0x3b070, 0x3b09c,
1771                 0x3b0f0, 0x3b128,
1772                 0x3b130, 0x3b148,
1773                 0x3b160, 0x3b168,
1774                 0x3b170, 0x3b19c,
1775                 0x3b1f0, 0x3b238,
1776                 0x3b240, 0x3b240,
1777                 0x3b248, 0x3b250,
1778                 0x3b25c, 0x3b264,
1779                 0x3b270, 0x3b2b8,
1780                 0x3b2c0, 0x3b2e4,
1781                 0x3b2f8, 0x3b338,
1782                 0x3b340, 0x3b340,
1783                 0x3b348, 0x3b350,
1784                 0x3b35c, 0x3b364,
1785                 0x3b370, 0x3b3b8,
1786                 0x3b3c0, 0x3b3e4,
1787                 0x3b3f8, 0x3b428,
1788                 0x3b430, 0x3b448,
1789                 0x3b460, 0x3b468,
1790                 0x3b470, 0x3b49c,
1791                 0x3b4f0, 0x3b528,
1792                 0x3b530, 0x3b548,
1793                 0x3b560, 0x3b568,
1794                 0x3b570, 0x3b59c,
1795                 0x3b5f0, 0x3b638,
1796                 0x3b640, 0x3b640,
1797                 0x3b648, 0x3b650,
1798                 0x3b65c, 0x3b664,
1799                 0x3b670, 0x3b6b8,
1800                 0x3b6c0, 0x3b6e4,
1801                 0x3b6f8, 0x3b738,
1802                 0x3b740, 0x3b740,
1803                 0x3b748, 0x3b750,
1804                 0x3b75c, 0x3b764,
1805                 0x3b770, 0x3b7b8,
1806                 0x3b7c0, 0x3b7e4,
1807                 0x3b7f8, 0x3b7fc,
1808                 0x3b814, 0x3b814,
1809                 0x3b82c, 0x3b82c,
1810                 0x3b880, 0x3b88c,
1811                 0x3b8e8, 0x3b8ec,
1812                 0x3b900, 0x3b928,
1813                 0x3b930, 0x3b948,
1814                 0x3b960, 0x3b968,
1815                 0x3b970, 0x3b99c,
1816                 0x3b9f0, 0x3ba38,
1817                 0x3ba40, 0x3ba40,
1818                 0x3ba48, 0x3ba50,
1819                 0x3ba5c, 0x3ba64,
1820                 0x3ba70, 0x3bab8,
1821                 0x3bac0, 0x3bae4,
1822                 0x3baf8, 0x3bb10,
1823                 0x3bb28, 0x3bb28,
1824                 0x3bb3c, 0x3bb50,
1825                 0x3bbf0, 0x3bc10,
1826                 0x3bc28, 0x3bc28,
1827                 0x3bc3c, 0x3bc50,
1828                 0x3bcf0, 0x3bcfc,
1829                 0x3c000, 0x3c030,
1830                 0x3c100, 0x3c144,
1831                 0x3c190, 0x3c1a0,
1832                 0x3c1a8, 0x3c1b8,
1833                 0x3c1c4, 0x3c1c8,
1834                 0x3c1d0, 0x3c1d0,
1835                 0x3c200, 0x3c318,
1836                 0x3c400, 0x3c4b4,
1837                 0x3c4c0, 0x3c52c,
1838                 0x3c540, 0x3c61c,
1839                 0x3c800, 0x3c828,
1840                 0x3c834, 0x3c834,
1841                 0x3c8c0, 0x3c908,
1842                 0x3c910, 0x3c9ac,
1843                 0x3ca00, 0x3ca14,
1844                 0x3ca1c, 0x3ca2c,
1845                 0x3ca44, 0x3ca50,
1846                 0x3ca74, 0x3ca74,
1847                 0x3ca7c, 0x3cafc,
1848                 0x3cb08, 0x3cc24,
1849                 0x3cd00, 0x3cd00,
1850                 0x3cd08, 0x3cd14,
1851                 0x3cd1c, 0x3cd20,
1852                 0x3cd3c, 0x3cd3c,
1853                 0x3cd48, 0x3cd50,
1854                 0x3d200, 0x3d20c,
1855                 0x3d220, 0x3d220,
1856                 0x3d240, 0x3d240,
1857                 0x3d600, 0x3d60c,
1858                 0x3da00, 0x3da1c,
1859                 0x3de00, 0x3de20,
1860                 0x3de38, 0x3de3c,
1861                 0x3de80, 0x3de80,
1862                 0x3de88, 0x3dea8,
1863                 0x3deb0, 0x3deb4,
1864                 0x3dec8, 0x3ded4,
1865                 0x3dfb8, 0x3e004,
1866                 0x3e200, 0x3e200,
1867                 0x3e208, 0x3e240,
1868                 0x3e248, 0x3e280,
1869                 0x3e288, 0x3e2c0,
1870                 0x3e2c8, 0x3e2fc,
1871                 0x3e600, 0x3e630,
1872                 0x3ea00, 0x3eabc,
1873                 0x3eb00, 0x3eb10,
1874                 0x3eb20, 0x3eb30,
1875                 0x3eb40, 0x3eb50,
1876                 0x3eb60, 0x3eb70,
1877                 0x3f000, 0x3f028,
1878                 0x3f030, 0x3f048,
1879                 0x3f060, 0x3f068,
1880                 0x3f070, 0x3f09c,
1881                 0x3f0f0, 0x3f128,
1882                 0x3f130, 0x3f148,
1883                 0x3f160, 0x3f168,
1884                 0x3f170, 0x3f19c,
1885                 0x3f1f0, 0x3f238,
1886                 0x3f240, 0x3f240,
1887                 0x3f248, 0x3f250,
1888                 0x3f25c, 0x3f264,
1889                 0x3f270, 0x3f2b8,
1890                 0x3f2c0, 0x3f2e4,
1891                 0x3f2f8, 0x3f338,
1892                 0x3f340, 0x3f340,
1893                 0x3f348, 0x3f350,
1894                 0x3f35c, 0x3f364,
1895                 0x3f370, 0x3f3b8,
1896                 0x3f3c0, 0x3f3e4,
1897                 0x3f3f8, 0x3f428,
1898                 0x3f430, 0x3f448,
1899                 0x3f460, 0x3f468,
1900                 0x3f470, 0x3f49c,
1901                 0x3f4f0, 0x3f528,
1902                 0x3f530, 0x3f548,
1903                 0x3f560, 0x3f568,
1904                 0x3f570, 0x3f59c,
1905                 0x3f5f0, 0x3f638,
1906                 0x3f640, 0x3f640,
1907                 0x3f648, 0x3f650,
1908                 0x3f65c, 0x3f664,
1909                 0x3f670, 0x3f6b8,
1910                 0x3f6c0, 0x3f6e4,
1911                 0x3f6f8, 0x3f738,
1912                 0x3f740, 0x3f740,
1913                 0x3f748, 0x3f750,
1914                 0x3f75c, 0x3f764,
1915                 0x3f770, 0x3f7b8,
1916                 0x3f7c0, 0x3f7e4,
1917                 0x3f7f8, 0x3f7fc,
1918                 0x3f814, 0x3f814,
1919                 0x3f82c, 0x3f82c,
1920                 0x3f880, 0x3f88c,
1921                 0x3f8e8, 0x3f8ec,
1922                 0x3f900, 0x3f928,
1923                 0x3f930, 0x3f948,
1924                 0x3f960, 0x3f968,
1925                 0x3f970, 0x3f99c,
1926                 0x3f9f0, 0x3fa38,
1927                 0x3fa40, 0x3fa40,
1928                 0x3fa48, 0x3fa50,
1929                 0x3fa5c, 0x3fa64,
1930                 0x3fa70, 0x3fab8,
1931                 0x3fac0, 0x3fae4,
1932                 0x3faf8, 0x3fb10,
1933                 0x3fb28, 0x3fb28,
1934                 0x3fb3c, 0x3fb50,
1935                 0x3fbf0, 0x3fc10,
1936                 0x3fc28, 0x3fc28,
1937                 0x3fc3c, 0x3fc50,
1938                 0x3fcf0, 0x3fcfc,
1939                 0x40000, 0x4000c,
1940                 0x40040, 0x40050,
1941                 0x40060, 0x40068,
1942                 0x4007c, 0x4008c,
1943                 0x40094, 0x400b0,
1944                 0x400c0, 0x40144,
1945                 0x40180, 0x4018c,
1946                 0x40200, 0x40254,
1947                 0x40260, 0x40264,
1948                 0x40270, 0x40288,
1949                 0x40290, 0x40298,
1950                 0x402ac, 0x402c8,
1951                 0x402d0, 0x402e0,
1952                 0x402f0, 0x402f0,
1953                 0x40300, 0x4033c,
1954                 0x403f8, 0x403fc,
1955                 0x41304, 0x413c4,
1956                 0x41400, 0x4140c,
1957                 0x41414, 0x4141c,
1958                 0x41480, 0x414d0,
1959                 0x44000, 0x44054,
1960                 0x4405c, 0x44078,
1961                 0x440c0, 0x44174,
1962                 0x44180, 0x441ac,
1963                 0x441b4, 0x441b8,
1964                 0x441c0, 0x44254,
1965                 0x4425c, 0x44278,
1966                 0x442c0, 0x44374,
1967                 0x44380, 0x443ac,
1968                 0x443b4, 0x443b8,
1969                 0x443c0, 0x44454,
1970                 0x4445c, 0x44478,
1971                 0x444c0, 0x44574,
1972                 0x44580, 0x445ac,
1973                 0x445b4, 0x445b8,
1974                 0x445c0, 0x44654,
1975                 0x4465c, 0x44678,
1976                 0x446c0, 0x44774,
1977                 0x44780, 0x447ac,
1978                 0x447b4, 0x447b8,
1979                 0x447c0, 0x44854,
1980                 0x4485c, 0x44878,
1981                 0x448c0, 0x44974,
1982                 0x44980, 0x449ac,
1983                 0x449b4, 0x449b8,
1984                 0x449c0, 0x449fc,
1985                 0x45000, 0x45004,
1986                 0x45010, 0x45030,
1987                 0x45040, 0x45060,
1988                 0x45068, 0x45068,
1989                 0x45080, 0x45084,
1990                 0x450a0, 0x450b0,
1991                 0x45200, 0x45204,
1992                 0x45210, 0x45230,
1993                 0x45240, 0x45260,
1994                 0x45268, 0x45268,
1995                 0x45280, 0x45284,
1996                 0x452a0, 0x452b0,
1997                 0x460c0, 0x460e4,
1998                 0x47000, 0x4703c,
1999                 0x47044, 0x4708c,
2000                 0x47200, 0x47250,
2001                 0x47400, 0x47408,
2002                 0x47414, 0x47420,
2003                 0x47600, 0x47618,
2004                 0x47800, 0x47814,
2005                 0x48000, 0x4800c,
2006                 0x48040, 0x48050,
2007                 0x48060, 0x48068,
2008                 0x4807c, 0x4808c,
2009                 0x48094, 0x480b0,
2010                 0x480c0, 0x48144,
2011                 0x48180, 0x4818c,
2012                 0x48200, 0x48254,
2013                 0x48260, 0x48264,
2014                 0x48270, 0x48288,
2015                 0x48290, 0x48298,
2016                 0x482ac, 0x482c8,
2017                 0x482d0, 0x482e0,
2018                 0x482f0, 0x482f0,
2019                 0x48300, 0x4833c,
2020                 0x483f8, 0x483fc,
2021                 0x49304, 0x493c4,
2022                 0x49400, 0x4940c,
2023                 0x49414, 0x4941c,
2024                 0x49480, 0x494d0,
2025                 0x4c000, 0x4c054,
2026                 0x4c05c, 0x4c078,
2027                 0x4c0c0, 0x4c174,
2028                 0x4c180, 0x4c1ac,
2029                 0x4c1b4, 0x4c1b8,
2030                 0x4c1c0, 0x4c254,
2031                 0x4c25c, 0x4c278,
2032                 0x4c2c0, 0x4c374,
2033                 0x4c380, 0x4c3ac,
2034                 0x4c3b4, 0x4c3b8,
2035                 0x4c3c0, 0x4c454,
2036                 0x4c45c, 0x4c478,
2037                 0x4c4c0, 0x4c574,
2038                 0x4c580, 0x4c5ac,
2039                 0x4c5b4, 0x4c5b8,
2040                 0x4c5c0, 0x4c654,
2041                 0x4c65c, 0x4c678,
2042                 0x4c6c0, 0x4c774,
2043                 0x4c780, 0x4c7ac,
2044                 0x4c7b4, 0x4c7b8,
2045                 0x4c7c0, 0x4c854,
2046                 0x4c85c, 0x4c878,
2047                 0x4c8c0, 0x4c974,
2048                 0x4c980, 0x4c9ac,
2049                 0x4c9b4, 0x4c9b8,
2050                 0x4c9c0, 0x4c9fc,
2051                 0x4d000, 0x4d004,
2052                 0x4d010, 0x4d030,
2053                 0x4d040, 0x4d060,
2054                 0x4d068, 0x4d068,
2055                 0x4d080, 0x4d084,
2056                 0x4d0a0, 0x4d0b0,
2057                 0x4d200, 0x4d204,
2058                 0x4d210, 0x4d230,
2059                 0x4d240, 0x4d260,
2060                 0x4d268, 0x4d268,
2061                 0x4d280, 0x4d284,
2062                 0x4d2a0, 0x4d2b0,
2063                 0x4e0c0, 0x4e0e4,
2064                 0x4f000, 0x4f03c,
2065                 0x4f044, 0x4f08c,
2066                 0x4f200, 0x4f250,
2067                 0x4f400, 0x4f408,
2068                 0x4f414, 0x4f420,
2069                 0x4f600, 0x4f618,
2070                 0x4f800, 0x4f814,
2071                 0x50000, 0x50084,
2072                 0x50090, 0x500cc,
2073                 0x50400, 0x50400,
2074                 0x50800, 0x50884,
2075                 0x50890, 0x508cc,
2076                 0x50c00, 0x50c00,
2077                 0x51000, 0x5101c,
2078                 0x51300, 0x51308,
2079         };
2080
2081         static const unsigned int t6_reg_ranges[] = {
2082                 0x1008, 0x101c,
2083                 0x1024, 0x10a8,
2084                 0x10b4, 0x10f8,
2085                 0x1100, 0x1114,
2086                 0x111c, 0x112c,
2087                 0x1138, 0x113c,
2088                 0x1144, 0x114c,
2089                 0x1180, 0x1184,
2090                 0x1190, 0x1194,
2091                 0x11a0, 0x11a4,
2092                 0x11b0, 0x11b4,
2093                 0x11fc, 0x123c,
2094                 0x1254, 0x1274,
2095                 0x1280, 0x133c,
2096                 0x1800, 0x18fc,
2097                 0x3000, 0x302c,
2098                 0x3060, 0x30b0,
2099                 0x30b8, 0x30d8,
2100                 0x30e0, 0x30fc,
2101                 0x3140, 0x357c,
2102                 0x35a8, 0x35cc,
2103                 0x35ec, 0x35ec,
2104                 0x3600, 0x5624,
2105                 0x56cc, 0x56ec,
2106                 0x56f4, 0x5720,
2107                 0x5728, 0x575c,
2108                 0x580c, 0x5814,
2109                 0x5890, 0x589c,
2110                 0x58a4, 0x58ac,
2111                 0x58b8, 0x58bc,
2112                 0x5940, 0x595c,
2113                 0x5980, 0x598c,
2114                 0x59b0, 0x59c8,
2115                 0x59d0, 0x59dc,
2116                 0x59fc, 0x5a18,
2117                 0x5a60, 0x5a6c,
2118                 0x5a80, 0x5a8c,
2119                 0x5a94, 0x5a9c,
2120                 0x5b94, 0x5bfc,
2121                 0x5c10, 0x5e48,
2122                 0x5e50, 0x5e94,
2123                 0x5ea0, 0x5eb0,
2124                 0x5ec0, 0x5ec0,
2125                 0x5ec8, 0x5ed0,
2126                 0x5ee0, 0x5ee0,
2127                 0x5ef0, 0x5ef0,
2128                 0x5f00, 0x5f00,
2129                 0x6000, 0x6020,
2130                 0x6028, 0x6040,
2131                 0x6058, 0x609c,
2132                 0x60a8, 0x619c,
2133                 0x7700, 0x7798,
2134                 0x77c0, 0x7880,
2135                 0x78cc, 0x78fc,
2136                 0x7b00, 0x7b58,
2137                 0x7b60, 0x7b84,
2138                 0x7b8c, 0x7c54,
2139                 0x7d00, 0x7d38,
2140                 0x7d40, 0x7d84,
2141                 0x7d8c, 0x7ddc,
2142                 0x7de4, 0x7e04,
2143                 0x7e10, 0x7e1c,
2144                 0x7e24, 0x7e38,
2145                 0x7e40, 0x7e44,
2146                 0x7e4c, 0x7e78,
2147                 0x7e80, 0x7edc,
2148                 0x7ee8, 0x7efc,
2149                 0x8dc0, 0x8de4,
2150                 0x8df8, 0x8e04,
2151                 0x8e10, 0x8e84,
2152                 0x8ea0, 0x8f88,
2153                 0x8fb8, 0x9058,
2154                 0x9060, 0x9060,
2155                 0x9068, 0x90f8,
2156                 0x9100, 0x9124,
2157                 0x9400, 0x9470,
2158                 0x9600, 0x9600,
2159                 0x9608, 0x9638,
2160                 0x9640, 0x9704,
2161                 0x9710, 0x971c,
2162                 0x9800, 0x9808,
2163                 0x9810, 0x9864,
2164                 0x9c00, 0x9c6c,
2165                 0x9c80, 0x9cec,
2166                 0x9d00, 0x9d6c,
2167                 0x9d80, 0x9dec,
2168                 0x9e00, 0x9e6c,
2169                 0x9e80, 0x9eec,
2170                 0x9f00, 0x9f6c,
2171                 0x9f80, 0xa020,
2172                 0xd000, 0xd03c,
2173                 0xd100, 0xd118,
2174                 0xd200, 0xd214,
2175                 0xd220, 0xd234,
2176                 0xd240, 0xd254,
2177                 0xd260, 0xd274,
2178                 0xd280, 0xd294,
2179                 0xd2a0, 0xd2b4,
2180                 0xd2c0, 0xd2d4,
2181                 0xd2e0, 0xd2f4,
2182                 0xd300, 0xd31c,
2183                 0xdfc0, 0xdfe0,
2184                 0xe000, 0xf008,
2185                 0xf010, 0xf018,
2186                 0xf020, 0xf028,
2187                 0x11000, 0x11014,
2188                 0x11048, 0x1106c,
2189                 0x11074, 0x11088,
2190                 0x11098, 0x11120,
2191                 0x1112c, 0x1117c,
2192                 0x11190, 0x112e0,
2193                 0x11300, 0x1130c,
2194                 0x12000, 0x1206c,
2195                 0x19040, 0x1906c,
2196                 0x19078, 0x19080,
2197                 0x1908c, 0x190e8,
2198                 0x190f0, 0x190f8,
2199                 0x19100, 0x19110,
2200                 0x19120, 0x19124,
2201                 0x19150, 0x19194,
2202                 0x1919c, 0x191b0,
2203                 0x191d0, 0x191e8,
2204                 0x19238, 0x19290,
2205                 0x192a4, 0x192b0,
2206                 0x192bc, 0x192bc,
2207                 0x19348, 0x1934c,
2208                 0x193f8, 0x19418,
2209                 0x19420, 0x19428,
2210                 0x19430, 0x19444,
2211                 0x1944c, 0x1946c,
2212                 0x19474, 0x19474,
2213                 0x19490, 0x194cc,
2214                 0x194f0, 0x194f8,
2215                 0x19c00, 0x19c48,
2216                 0x19c50, 0x19c80,
2217                 0x19c94, 0x19c98,
2218                 0x19ca0, 0x19cbc,
2219                 0x19ce4, 0x19ce4,
2220                 0x19cf0, 0x19cf8,
2221                 0x19d00, 0x19d28,
2222                 0x19d50, 0x19d78,
2223                 0x19d94, 0x19d98,
2224                 0x19da0, 0x19dc8,
2225                 0x19df0, 0x19e10,
2226                 0x19e50, 0x19e6c,
2227                 0x19ea0, 0x19ebc,
2228                 0x19ec4, 0x19ef4,
2229                 0x19f04, 0x19f2c,
2230                 0x19f34, 0x19f34,
2231                 0x19f40, 0x19f50,
2232                 0x19f90, 0x19fac,
2233                 0x19fc4, 0x19fc8,
2234                 0x19fd0, 0x19fe4,
2235                 0x1a000, 0x1a004,
2236                 0x1a010, 0x1a06c,
2237                 0x1a0b0, 0x1a0e4,
2238                 0x1a0ec, 0x1a0f8,
2239                 0x1a100, 0x1a108,
2240                 0x1a114, 0x1a130,
2241                 0x1a138, 0x1a1c4,
2242                 0x1a1fc, 0x1a1fc,
2243                 0x1e008, 0x1e00c,
2244                 0x1e040, 0x1e044,
2245                 0x1e04c, 0x1e04c,
2246                 0x1e284, 0x1e290,
2247                 0x1e2c0, 0x1e2c0,
2248                 0x1e2e0, 0x1e2e0,
2249                 0x1e300, 0x1e384,
2250                 0x1e3c0, 0x1e3c8,
2251                 0x1e408, 0x1e40c,
2252                 0x1e440, 0x1e444,
2253                 0x1e44c, 0x1e44c,
2254                 0x1e684, 0x1e690,
2255                 0x1e6c0, 0x1e6c0,
2256                 0x1e6e0, 0x1e6e0,
2257                 0x1e700, 0x1e784,
2258                 0x1e7c0, 0x1e7c8,
2259                 0x1e808, 0x1e80c,
2260                 0x1e840, 0x1e844,
2261                 0x1e84c, 0x1e84c,
2262                 0x1ea84, 0x1ea90,
2263                 0x1eac0, 0x1eac0,
2264                 0x1eae0, 0x1eae0,
2265                 0x1eb00, 0x1eb84,
2266                 0x1ebc0, 0x1ebc8,
2267                 0x1ec08, 0x1ec0c,
2268                 0x1ec40, 0x1ec44,
2269                 0x1ec4c, 0x1ec4c,
2270                 0x1ee84, 0x1ee90,
2271                 0x1eec0, 0x1eec0,
2272                 0x1eee0, 0x1eee0,
2273                 0x1ef00, 0x1ef84,
2274                 0x1efc0, 0x1efc8,
2275                 0x1f008, 0x1f00c,
2276                 0x1f040, 0x1f044,
2277                 0x1f04c, 0x1f04c,
2278                 0x1f284, 0x1f290,
2279                 0x1f2c0, 0x1f2c0,
2280                 0x1f2e0, 0x1f2e0,
2281                 0x1f300, 0x1f384,
2282                 0x1f3c0, 0x1f3c8,
2283                 0x1f408, 0x1f40c,
2284                 0x1f440, 0x1f444,
2285                 0x1f44c, 0x1f44c,
2286                 0x1f684, 0x1f690,
2287                 0x1f6c0, 0x1f6c0,
2288                 0x1f6e0, 0x1f6e0,
2289                 0x1f700, 0x1f784,
2290                 0x1f7c0, 0x1f7c8,
2291                 0x1f808, 0x1f80c,
2292                 0x1f840, 0x1f844,
2293                 0x1f84c, 0x1f84c,
2294                 0x1fa84, 0x1fa90,
2295                 0x1fac0, 0x1fac0,
2296                 0x1fae0, 0x1fae0,
2297                 0x1fb00, 0x1fb84,
2298                 0x1fbc0, 0x1fbc8,
2299                 0x1fc08, 0x1fc0c,
2300                 0x1fc40, 0x1fc44,
2301                 0x1fc4c, 0x1fc4c,
2302                 0x1fe84, 0x1fe90,
2303                 0x1fec0, 0x1fec0,
2304                 0x1fee0, 0x1fee0,
2305                 0x1ff00, 0x1ff84,
2306                 0x1ffc0, 0x1ffc8,
2307                 0x30000, 0x30030,
2308                 0x30100, 0x30168,
2309                 0x30190, 0x301a0,
2310                 0x301a8, 0x301b8,
2311                 0x301c4, 0x301c8,
2312                 0x301d0, 0x301d0,
2313                 0x30200, 0x30320,
2314                 0x30400, 0x304b4,
2315                 0x304c0, 0x3052c,
2316                 0x30540, 0x3061c,
2317                 0x30800, 0x308a0,
2318                 0x308c0, 0x30908,
2319                 0x30910, 0x309b8,
2320                 0x30a00, 0x30a04,
2321                 0x30a0c, 0x30a14,
2322                 0x30a1c, 0x30a2c,
2323                 0x30a44, 0x30a50,
2324                 0x30a74, 0x30a74,
2325                 0x30a7c, 0x30afc,
2326                 0x30b08, 0x30c24,
2327                 0x30d00, 0x30d14,
2328                 0x30d1c, 0x30d3c,
2329                 0x30d44, 0x30d4c,
2330                 0x30d54, 0x30d74,
2331                 0x30d7c, 0x30d7c,
2332                 0x30de0, 0x30de0,
2333                 0x30e00, 0x30ed4,
2334                 0x30f00, 0x30fa4,
2335                 0x30fc0, 0x30fc4,
2336                 0x31000, 0x31004,
2337                 0x31080, 0x310fc,
2338                 0x31208, 0x31220,
2339                 0x3123c, 0x31254,
2340                 0x31300, 0x31300,
2341                 0x31308, 0x3131c,
2342                 0x31338, 0x3133c,
2343                 0x31380, 0x31380,
2344                 0x31388, 0x313a8,
2345                 0x313b4, 0x313b4,
2346                 0x31400, 0x31420,
2347                 0x31438, 0x3143c,
2348                 0x31480, 0x31480,
2349                 0x314a8, 0x314a8,
2350                 0x314b0, 0x314b4,
2351                 0x314c8, 0x314d4,
2352                 0x31a40, 0x31a4c,
2353                 0x31af0, 0x31b20,
2354                 0x31b38, 0x31b3c,
2355                 0x31b80, 0x31b80,
2356                 0x31ba8, 0x31ba8,
2357                 0x31bb0, 0x31bb4,
2358                 0x31bc8, 0x31bd4,
2359                 0x32140, 0x3218c,
2360                 0x321f0, 0x321f4,
2361                 0x32200, 0x32200,
2362                 0x32218, 0x32218,
2363                 0x32400, 0x32400,
2364                 0x32408, 0x3241c,
2365                 0x32618, 0x32620,
2366                 0x32664, 0x32664,
2367                 0x326a8, 0x326a8,
2368                 0x326ec, 0x326ec,
2369                 0x32a00, 0x32abc,
2370                 0x32b00, 0x32b18,
2371                 0x32b20, 0x32b38,
2372                 0x32b40, 0x32b58,
2373                 0x32b60, 0x32b78,
2374                 0x32c00, 0x32c00,
2375                 0x32c08, 0x32c3c,
2376                 0x33000, 0x3302c,
2377                 0x33034, 0x33050,
2378                 0x33058, 0x33058,
2379                 0x33060, 0x3308c,
2380                 0x3309c, 0x330ac,
2381                 0x330c0, 0x330c0,
2382                 0x330c8, 0x330d0,
2383                 0x330d8, 0x330e0,
2384                 0x330ec, 0x3312c,
2385                 0x33134, 0x33150,
2386                 0x33158, 0x33158,
2387                 0x33160, 0x3318c,
2388                 0x3319c, 0x331ac,
2389                 0x331c0, 0x331c0,
2390                 0x331c8, 0x331d0,
2391                 0x331d8, 0x331e0,
2392                 0x331ec, 0x33290,
2393                 0x33298, 0x332c4,
2394                 0x332e4, 0x33390,
2395                 0x33398, 0x333c4,
2396                 0x333e4, 0x3342c,
2397                 0x33434, 0x33450,
2398                 0x33458, 0x33458,
2399                 0x33460, 0x3348c,
2400                 0x3349c, 0x334ac,
2401                 0x334c0, 0x334c0,
2402                 0x334c8, 0x334d0,
2403                 0x334d8, 0x334e0,
2404                 0x334ec, 0x3352c,
2405                 0x33534, 0x33550,
2406                 0x33558, 0x33558,
2407                 0x33560, 0x3358c,
2408                 0x3359c, 0x335ac,
2409                 0x335c0, 0x335c0,
2410                 0x335c8, 0x335d0,
2411                 0x335d8, 0x335e0,
2412                 0x335ec, 0x33690,
2413                 0x33698, 0x336c4,
2414                 0x336e4, 0x33790,
2415                 0x33798, 0x337c4,
2416                 0x337e4, 0x337fc,
2417                 0x33814, 0x33814,
2418                 0x33854, 0x33868,
2419                 0x33880, 0x3388c,
2420                 0x338c0, 0x338d0,
2421                 0x338e8, 0x338ec,
2422                 0x33900, 0x3392c,
2423                 0x33934, 0x33950,
2424                 0x33958, 0x33958,
2425                 0x33960, 0x3398c,
2426                 0x3399c, 0x339ac,
2427                 0x339c0, 0x339c0,
2428                 0x339c8, 0x339d0,
2429                 0x339d8, 0x339e0,
2430                 0x339ec, 0x33a90,
2431                 0x33a98, 0x33ac4,
2432                 0x33ae4, 0x33b10,
2433                 0x33b24, 0x33b28,
2434                 0x33b38, 0x33b50,
2435                 0x33bf0, 0x33c10,
2436                 0x33c24, 0x33c28,
2437                 0x33c38, 0x33c50,
2438                 0x33cf0, 0x33cfc,
2439                 0x34000, 0x34030,
2440                 0x34100, 0x34168,
2441                 0x34190, 0x341a0,
2442                 0x341a8, 0x341b8,
2443                 0x341c4, 0x341c8,
2444                 0x341d0, 0x341d0,
2445                 0x34200, 0x34320,
2446                 0x34400, 0x344b4,
2447                 0x344c0, 0x3452c,
2448                 0x34540, 0x3461c,
2449                 0x34800, 0x348a0,
2450                 0x348c0, 0x34908,
2451                 0x34910, 0x349b8,
2452                 0x34a00, 0x34a04,
2453                 0x34a0c, 0x34a14,
2454                 0x34a1c, 0x34a2c,
2455                 0x34a44, 0x34a50,
2456                 0x34a74, 0x34a74,
2457                 0x34a7c, 0x34afc,
2458                 0x34b08, 0x34c24,
2459                 0x34d00, 0x34d14,
2460                 0x34d1c, 0x34d3c,
2461                 0x34d44, 0x34d4c,
2462                 0x34d54, 0x34d74,
2463                 0x34d7c, 0x34d7c,
2464                 0x34de0, 0x34de0,
2465                 0x34e00, 0x34ed4,
2466                 0x34f00, 0x34fa4,
2467                 0x34fc0, 0x34fc4,
2468                 0x35000, 0x35004,
2469                 0x35080, 0x350fc,
2470                 0x35208, 0x35220,
2471                 0x3523c, 0x35254,
2472                 0x35300, 0x35300,
2473                 0x35308, 0x3531c,
2474                 0x35338, 0x3533c,
2475                 0x35380, 0x35380,
2476                 0x35388, 0x353a8,
2477                 0x353b4, 0x353b4,
2478                 0x35400, 0x35420,
2479                 0x35438, 0x3543c,
2480                 0x35480, 0x35480,
2481                 0x354a8, 0x354a8,
2482                 0x354b0, 0x354b4,
2483                 0x354c8, 0x354d4,
2484                 0x35a40, 0x35a4c,
2485                 0x35af0, 0x35b20,
2486                 0x35b38, 0x35b3c,
2487                 0x35b80, 0x35b80,
2488                 0x35ba8, 0x35ba8,
2489                 0x35bb0, 0x35bb4,
2490                 0x35bc8, 0x35bd4,
2491                 0x36140, 0x3618c,
2492                 0x361f0, 0x361f4,
2493                 0x36200, 0x36200,
2494                 0x36218, 0x36218,
2495                 0x36400, 0x36400,
2496                 0x36408, 0x3641c,
2497                 0x36618, 0x36620,
2498                 0x36664, 0x36664,
2499                 0x366a8, 0x366a8,
2500                 0x366ec, 0x366ec,
2501                 0x36a00, 0x36abc,
2502                 0x36b00, 0x36b18,
2503                 0x36b20, 0x36b38,
2504                 0x36b40, 0x36b58,
2505                 0x36b60, 0x36b78,
2506                 0x36c00, 0x36c00,
2507                 0x36c08, 0x36c3c,
2508                 0x37000, 0x3702c,
2509                 0x37034, 0x37050,
2510                 0x37058, 0x37058,
2511                 0x37060, 0x3708c,
2512                 0x3709c, 0x370ac,
2513                 0x370c0, 0x370c0,
2514                 0x370c8, 0x370d0,
2515                 0x370d8, 0x370e0,
2516                 0x370ec, 0x3712c,
2517                 0x37134, 0x37150,
2518                 0x37158, 0x37158,
2519                 0x37160, 0x3718c,
2520                 0x3719c, 0x371ac,
2521                 0x371c0, 0x371c0,
2522                 0x371c8, 0x371d0,
2523                 0x371d8, 0x371e0,
2524                 0x371ec, 0x37290,
2525                 0x37298, 0x372c4,
2526                 0x372e4, 0x37390,
2527                 0x37398, 0x373c4,
2528                 0x373e4, 0x3742c,
2529                 0x37434, 0x37450,
2530                 0x37458, 0x37458,
2531                 0x37460, 0x3748c,
2532                 0x3749c, 0x374ac,
2533                 0x374c0, 0x374c0,
2534                 0x374c8, 0x374d0,
2535                 0x374d8, 0x374e0,
2536                 0x374ec, 0x3752c,
2537                 0x37534, 0x37550,
2538                 0x37558, 0x37558,
2539                 0x37560, 0x3758c,
2540                 0x3759c, 0x375ac,
2541                 0x375c0, 0x375c0,
2542                 0x375c8, 0x375d0,
2543                 0x375d8, 0x375e0,
2544                 0x375ec, 0x37690,
2545                 0x37698, 0x376c4,
2546                 0x376e4, 0x37790,
2547                 0x37798, 0x377c4,
2548                 0x377e4, 0x377fc,
2549                 0x37814, 0x37814,
2550                 0x37854, 0x37868,
2551                 0x37880, 0x3788c,
2552                 0x378c0, 0x378d0,
2553                 0x378e8, 0x378ec,
2554                 0x37900, 0x3792c,
2555                 0x37934, 0x37950,
2556                 0x37958, 0x37958,
2557                 0x37960, 0x3798c,
2558                 0x3799c, 0x379ac,
2559                 0x379c0, 0x379c0,
2560                 0x379c8, 0x379d0,
2561                 0x379d8, 0x379e0,
2562                 0x379ec, 0x37a90,
2563                 0x37a98, 0x37ac4,
2564                 0x37ae4, 0x37b10,
2565                 0x37b24, 0x37b28,
2566                 0x37b38, 0x37b50,
2567                 0x37bf0, 0x37c10,
2568                 0x37c24, 0x37c28,
2569                 0x37c38, 0x37c50,
2570                 0x37cf0, 0x37cfc,
2571                 0x40040, 0x40040,
2572                 0x40080, 0x40084,
2573                 0x40100, 0x40100,
2574                 0x40140, 0x401bc,
2575                 0x40200, 0x40214,
2576                 0x40228, 0x40228,
2577                 0x40240, 0x40258,
2578                 0x40280, 0x40280,
2579                 0x40304, 0x40304,
2580                 0x40330, 0x4033c,
2581                 0x41304, 0x413c8,
2582                 0x413d0, 0x413dc,
2583                 0x413f0, 0x413f0,
2584                 0x41400, 0x4140c,
2585                 0x41414, 0x4141c,
2586                 0x41480, 0x414d0,
2587                 0x44000, 0x4407c,
2588                 0x440c0, 0x441ac,
2589                 0x441b4, 0x4427c,
2590                 0x442c0, 0x443ac,
2591                 0x443b4, 0x4447c,
2592                 0x444c0, 0x445ac,
2593                 0x445b4, 0x4467c,
2594                 0x446c0, 0x447ac,
2595                 0x447b4, 0x4487c,
2596                 0x448c0, 0x449ac,
2597                 0x449b4, 0x44a7c,
2598                 0x44ac0, 0x44bac,
2599                 0x44bb4, 0x44c7c,
2600                 0x44cc0, 0x44dac,
2601                 0x44db4, 0x44e7c,
2602                 0x44ec0, 0x44fac,
2603                 0x44fb4, 0x4507c,
2604                 0x450c0, 0x451ac,
2605                 0x451b4, 0x451fc,
2606                 0x45800, 0x45804,
2607                 0x45810, 0x45830,
2608                 0x45840, 0x45860,
2609                 0x45868, 0x45868,
2610                 0x45880, 0x45884,
2611                 0x458a0, 0x458b0,
2612                 0x45a00, 0x45a04,
2613                 0x45a10, 0x45a30,
2614                 0x45a40, 0x45a60,
2615                 0x45a68, 0x45a68,
2616                 0x45a80, 0x45a84,
2617                 0x45aa0, 0x45ab0,
2618                 0x460c0, 0x460e4,
2619                 0x47000, 0x4703c,
2620                 0x47044, 0x4708c,
2621                 0x47200, 0x47250,
2622                 0x47400, 0x47408,
2623                 0x47414, 0x47420,
2624                 0x47600, 0x47618,
2625                 0x47800, 0x47814,
2626                 0x47820, 0x4782c,
2627                 0x50000, 0x50084,
2628                 0x50090, 0x500cc,
2629                 0x50300, 0x50384,
2630                 0x50400, 0x50400,
2631                 0x50800, 0x50884,
2632                 0x50890, 0x508cc,
2633                 0x50b00, 0x50b84,
2634                 0x50c00, 0x50c00,
2635                 0x51000, 0x51020,
2636                 0x51028, 0x510b0,
2637                 0x51300, 0x51324,
2638         };
2639
2640         u32 *buf_end = (u32 *)((char *)buf + buf_size);
2641         const unsigned int *reg_ranges;
2642         int reg_ranges_size, range;
2643         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2644
2645         /* Select the right set of register ranges to dump depending on the
2646          * adapter chip type.
2647          */
2648         switch (chip_version) {
2649         case CHELSIO_T4:
2650                 reg_ranges = t4_reg_ranges;
2651                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2652                 break;
2653
2654         case CHELSIO_T5:
2655                 reg_ranges = t5_reg_ranges;
2656                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2657                 break;
2658
2659         case CHELSIO_T6:
2660                 reg_ranges = t6_reg_ranges;
2661                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2662                 break;
2663
2664         default:
2665                 dev_err(adap->pdev_dev,
2666                         "Unsupported chip version %d\n", chip_version);
2667                 return;
2668         }
2669
2670         /* Clear the register buffer and insert the appropriate register
2671          * values selected by the above register ranges.
2672          */
2673         memset(buf, 0, buf_size);
2674         for (range = 0; range < reg_ranges_size; range += 2) {
2675                 unsigned int reg = reg_ranges[range];
2676                 unsigned int last_reg = reg_ranges[range + 1];
2677                 u32 *bufp = (u32 *)((char *)buf + reg);
2678
2679                 /* Iterate across the register range filling in the register
2680                  * buffer but don't write past the end of the register buffer.
2681                  */
2682                 while (reg <= last_reg && bufp < buf_end) {
2683                         *bufp++ = t4_read_reg(adap, reg);
2684                         reg += sizeof(u32);
2685                 }
2686         }
2687 }
2688
2689 #define EEPROM_STAT_ADDR   0x7bfc
2690 #define VPD_BASE           0x400
2691 #define VPD_BASE_OLD       0
2692 #define VPD_LEN            1024
2693
2694 /**
2695  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696  * @phys_addr: the physical EEPROM address
2697  * @fn: the PCI function number
2698  * @sz: size of function-specific area
2699  *
2700  * Translate a physical EEPROM address to virtual.  The first 1K is
2701  * accessed through virtual addresses starting at 31K, the rest is
2702  * accessed through virtual addresses starting at 0.
2703  *
2704  * The mapping is as follows:
2705  * [0..1K) -> [31K..32K)
2706  * [1K..1K+A) -> [31K-A..31K)
2707  * [1K+A..ES) -> [0..ES-A-1K)
2708  *
2709  * where A = @fn * @sz, and ES = EEPROM size.
2710  */
2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712 {
2713         fn *= sz;
2714         if (phys_addr < 1024)
2715                 return phys_addr + (31 << 10);
2716         if (phys_addr < 1024 + fn)
2717                 return 31744 - fn + phys_addr - 1024;
2718         if (phys_addr < EEPROMSIZE)
2719                 return phys_addr - 1024 - fn;
2720         return -EINVAL;
2721 }
2722
2723 /**
2724  *      t4_seeprom_wp - enable/disable EEPROM write protection
2725  *      @adapter: the adapter
2726  *      @enable: whether to enable or disable write protection
2727  *
2728  *      Enables or disables write protection on the serial EEPROM.
2729  */
2730 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731 {
2732         unsigned int v = enable ? 0xc : 0;
2733         int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734         return ret < 0 ? ret : 0;
2735 }
2736
2737 /**
2738  *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739  *      @adapter: adapter to read
2740  *      @p: where to store the parameters
2741  *
2742  *      Reads card parameters stored in VPD EEPROM.
2743  */
2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746         unsigned int id_len, pn_len, sn_len, na_len;
2747         int id, sn, pn, na, addr, ret = 0;
2748         u8 *vpd, base_val = 0;
2749
2750         vpd = vmalloc(VPD_LEN);
2751         if (!vpd)
2752                 return -ENOMEM;
2753
2754         /* Card information normally starts at VPD_BASE but early cards had
2755          * it at 0.
2756          */
2757         ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val);
2758         if (ret < 0)
2759                 goto out;
2760
2761         addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD;
2762
2763         ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2764         if (ret < 0)
2765                 goto out;
2766
2767         ret = pci_vpd_find_id_string(vpd, VPD_LEN, &id_len);
2768         if (ret < 0)
2769                 goto out;
2770         id = ret;
2771
2772         ret = pci_vpd_check_csum(vpd, VPD_LEN);
2773         if (ret) {
2774                 dev_err(adapter->pdev_dev, "VPD checksum incorrect or missing\n");
2775                 ret = -EINVAL;
2776                 goto out;
2777         }
2778
2779         ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN,
2780                                            PCI_VPD_RO_KEYWORD_SERIALNO, &sn_len);
2781         if (ret < 0)
2782                 goto out;
2783         sn = ret;
2784
2785         ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN,
2786                                            PCI_VPD_RO_KEYWORD_PARTNO, &pn_len);
2787         if (ret < 0)
2788                 goto out;
2789         pn = ret;
2790
2791         ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN, "NA", &na_len);
2792         if (ret < 0)
2793                 goto out;
2794         na = ret;
2795
2796         memcpy(p->id, vpd + id, min_t(unsigned int, id_len, ID_LEN));
2797         strim(p->id);
2798         memcpy(p->sn, vpd + sn, min_t(unsigned int, sn_len, SERNUM_LEN));
2799         strim(p->sn);
2800         memcpy(p->pn, vpd + pn, min_t(unsigned int, pn_len, PN_LEN));
2801         strim(p->pn);
2802         memcpy(p->na, vpd + na, min_t(unsigned int, na_len, MACADDR_LEN));
2803         strim(p->na);
2804
2805 out:
2806         vfree(vpd);
2807         if (ret < 0) {
2808                 dev_err(adapter->pdev_dev, "error reading VPD\n");
2809                 return ret;
2810         }
2811
2812         return 0;
2813 }
2814
2815 /**
2816  *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2817  *      @adapter: adapter to read
2818  *      @p: where to store the parameters
2819  *
2820  *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2821  *      Clock.  This can only be called after a connection to the firmware
2822  *      is established.
2823  */
2824 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2825 {
2826         u32 cclk_param, cclk_val;
2827         int ret;
2828
2829         /* Grab the raw VPD parameters.
2830          */
2831         ret = t4_get_raw_vpd_params(adapter, p);
2832         if (ret)
2833                 return ret;
2834
2835         /* Ask firmware for the Core Clock since it knows how to translate the
2836          * Reference Clock ('V2') VPD field into a Core Clock value ...
2837          */
2838         cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2839                       FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2840         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2841                               1, &cclk_param, &cclk_val);
2842
2843         if (ret)
2844                 return ret;
2845         p->cclk = cclk_val;
2846
2847         return 0;
2848 }
2849
2850 /**
2851  *      t4_get_pfres - retrieve VF resource limits
2852  *      @adapter: the adapter
2853  *
2854  *      Retrieves configured resource limits and capabilities for a physical
2855  *      function.  The results are stored in @adapter->pfres.
2856  */
2857 int t4_get_pfres(struct adapter *adapter)
2858 {
2859         struct pf_resources *pfres = &adapter->params.pfres;
2860         struct fw_pfvf_cmd cmd, rpl;
2861         int v;
2862         u32 word;
2863
2864         /* Execute PFVF Read command to get VF resource limits; bail out early
2865          * with error on command failure.
2866          */
2867         memset(&cmd, 0, sizeof(cmd));
2868         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2869                                     FW_CMD_REQUEST_F |
2870                                     FW_CMD_READ_F |
2871                                     FW_PFVF_CMD_PFN_V(adapter->pf) |
2872                                     FW_PFVF_CMD_VFN_V(0));
2873         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2874         v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2875         if (v != FW_SUCCESS)
2876                 return v;
2877
2878         /* Extract PF resource limits and return success.
2879          */
2880         word = be32_to_cpu(rpl.niqflint_niq);
2881         pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2882         pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2883
2884         word = be32_to_cpu(rpl.type_to_neq);
2885         pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2886         pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2887
2888         word = be32_to_cpu(rpl.tc_to_nexactf);
2889         pfres->tc = FW_PFVF_CMD_TC_G(word);
2890         pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2891         pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2892
2893         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2894         pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2895         pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2896         pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2897
2898         return 0;
2899 }
2900
2901 /* serial flash and firmware constants */
2902 enum {
2903         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2904
2905         /* flash command opcodes */
2906         SF_PROG_PAGE    = 2,          /* program page */
2907         SF_WR_DISABLE   = 4,          /* disable writes */
2908         SF_RD_STATUS    = 5,          /* read status register */
2909         SF_WR_ENABLE    = 6,          /* enable writes */
2910         SF_RD_DATA_FAST = 0xb,        /* read flash */
2911         SF_RD_ID        = 0x9f,       /* read ID */
2912         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2913 };
2914
2915 /**
2916  *      sf1_read - read data from the serial flash
2917  *      @adapter: the adapter
2918  *      @byte_cnt: number of bytes to read
2919  *      @cont: whether another operation will be chained
2920  *      @lock: whether to lock SF for PL access only
2921  *      @valp: where to store the read data
2922  *
2923  *      Reads up to 4 bytes of data from the serial flash.  The location of
2924  *      the read needs to be specified prior to calling this by issuing the
2925  *      appropriate commands to the serial flash.
2926  */
2927 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2928                     int lock, u32 *valp)
2929 {
2930         int ret;
2931
2932         if (!byte_cnt || byte_cnt > 4)
2933                 return -EINVAL;
2934         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2935                 return -EBUSY;
2936         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2937                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2938         ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2939         if (!ret)
2940                 *valp = t4_read_reg(adapter, SF_DATA_A);
2941         return ret;
2942 }
2943
2944 /**
2945  *      sf1_write - write data to the serial flash
2946  *      @adapter: the adapter
2947  *      @byte_cnt: number of bytes to write
2948  *      @cont: whether another operation will be chained
2949  *      @lock: whether to lock SF for PL access only
2950  *      @val: value to write
2951  *
2952  *      Writes up to 4 bytes of data to the serial flash.  The location of
2953  *      the write needs to be specified prior to calling this by issuing the
2954  *      appropriate commands to the serial flash.
2955  */
2956 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2957                      int lock, u32 val)
2958 {
2959         if (!byte_cnt || byte_cnt > 4)
2960                 return -EINVAL;
2961         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2962                 return -EBUSY;
2963         t4_write_reg(adapter, SF_DATA_A, val);
2964         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2965                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2966         return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2967 }
2968
2969 /**
2970  *      flash_wait_op - wait for a flash operation to complete
2971  *      @adapter: the adapter
2972  *      @attempts: max number of polls of the status register
2973  *      @delay: delay between polls in ms
2974  *
2975  *      Wait for a flash operation to complete by polling the status register.
2976  */
2977 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2978 {
2979         int ret;
2980         u32 status;
2981
2982         while (1) {
2983                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2984                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2985                         return ret;
2986                 if (!(status & 1))
2987                         return 0;
2988                 if (--attempts == 0)
2989                         return -EAGAIN;
2990                 if (delay)
2991                         msleep(delay);
2992         }
2993 }
2994
2995 /**
2996  *      t4_read_flash - read words from serial flash
2997  *      @adapter: the adapter
2998  *      @addr: the start address for the read
2999  *      @nwords: how many 32-bit words to read
3000  *      @data: where to store the read data
3001  *      @byte_oriented: whether to store data as bytes or as words
3002  *
3003  *      Read the specified number of 32-bit words from the serial flash.
3004  *      If @byte_oriented is set the read data is stored as a byte array
3005  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3006  *      natural endianness.
3007  */
3008 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3009                   unsigned int nwords, u32 *data, int byte_oriented)
3010 {
3011         int ret;
3012
3013         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3014                 return -EINVAL;
3015
3016         addr = swab32(addr) | SF_RD_DATA_FAST;
3017
3018         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3019             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3020                 return ret;
3021
3022         for ( ; nwords; nwords--, data++) {
3023                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3024                 if (nwords == 1)
3025                         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3026                 if (ret)
3027                         return ret;
3028                 if (byte_oriented)
3029                         *data = (__force __u32)(cpu_to_be32(*data));
3030         }
3031         return 0;
3032 }
3033
3034 /**
3035  *      t4_write_flash - write up to a page of data to the serial flash
3036  *      @adapter: the adapter
3037  *      @addr: the start address to write
3038  *      @n: length of data to write in bytes
3039  *      @data: the data to write
3040  *      @byte_oriented: whether to store data as bytes or as words
3041  *
3042  *      Writes up to a page of data (256 bytes) to the serial flash starting
3043  *      at the given address.  All the data must be written to the same page.
3044  *      If @byte_oriented is set the write data is stored as byte stream
3045  *      (i.e. matches what on disk), otherwise in big-endian.
3046  */
3047 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3048                           unsigned int n, const u8 *data, bool byte_oriented)
3049 {
3050         unsigned int i, c, left, val, offset = addr & 0xff;
3051         u32 buf[64];
3052         int ret;
3053
3054         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3055                 return -EINVAL;
3056
3057         val = swab32(addr) | SF_PROG_PAGE;
3058
3059         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3060             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3061                 goto unlock;
3062
3063         for (left = n; left; left -= c, data += c) {
3064                 c = min(left, 4U);
3065                 for (val = 0, i = 0; i < c; ++i) {
3066                         if (byte_oriented)
3067                                 val = (val << 8) + data[i];
3068                         else
3069                                 val = (val << 8) + data[c - i - 1];
3070                 }
3071
3072                 ret = sf1_write(adapter, c, c != left, 1, val);
3073                 if (ret)
3074                         goto unlock;
3075         }
3076         ret = flash_wait_op(adapter, 8, 1);
3077         if (ret)
3078                 goto unlock;
3079
3080         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3081
3082         /* Read the page to verify the write succeeded */
3083         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3084                             byte_oriented);
3085         if (ret)
3086                 return ret;
3087
3088         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3089                 dev_err(adapter->pdev_dev,
3090                         "failed to correctly write the flash page at %#x\n",
3091                         addr);
3092                 return -EIO;
3093         }
3094         return 0;
3095
3096 unlock:
3097         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3098         return ret;
3099 }
3100
3101 /**
3102  *      t4_get_fw_version - read the firmware version
3103  *      @adapter: the adapter
3104  *      @vers: where to place the version
3105  *
3106  *      Reads the FW version from flash.
3107  */
3108 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3109 {
3110         return t4_read_flash(adapter, FLASH_FW_START +
3111                              offsetof(struct fw_hdr, fw_ver), 1,
3112                              vers, 0);
3113 }
3114
3115 /**
3116  *      t4_get_bs_version - read the firmware bootstrap version
3117  *      @adapter: the adapter
3118  *      @vers: where to place the version
3119  *
3120  *      Reads the FW Bootstrap version from flash.
3121  */
3122 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3123 {
3124         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3125                              offsetof(struct fw_hdr, fw_ver), 1,
3126                              vers, 0);
3127 }
3128
3129 /**
3130  *      t4_get_tp_version - read the TP microcode version
3131  *      @adapter: the adapter
3132  *      @vers: where to place the version
3133  *
3134  *      Reads the TP microcode version from flash.
3135  */
3136 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3137 {
3138         return t4_read_flash(adapter, FLASH_FW_START +
3139                              offsetof(struct fw_hdr, tp_microcode_ver),
3140                              1, vers, 0);
3141 }
3142
3143 /**
3144  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3145  *      @adap: the adapter
3146  *      @vers: where to place the version
3147  *
3148  *      Reads the Expansion ROM header from FLASH and returns the version
3149  *      number (if present) through the @vers return value pointer.  We return
3150  *      this in the Firmware Version Format since it's convenient.  Return
3151  *      0 on success, -ENOENT if no Expansion ROM is present.
3152  */
3153 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3154 {
3155         struct exprom_header {
3156                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3157                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3158         } *hdr;
3159         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3160                                            sizeof(u32))];
3161         int ret;
3162
3163         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3164                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3165                             0);
3166         if (ret)
3167                 return ret;
3168
3169         hdr = (struct exprom_header *)exprom_header_buf;
3170         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3171                 return -ENOENT;
3172
3173         *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3174                  FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3175                  FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3176                  FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3177         return 0;
3178 }
3179
3180 /**
3181  *      t4_get_vpd_version - return the VPD version
3182  *      @adapter: the adapter
3183  *      @vers: where to place the version
3184  *
3185  *      Reads the VPD via the Firmware interface (thus this can only be called
3186  *      once we're ready to issue Firmware commands).  The format of the
3187  *      VPD version is adapter specific.  Returns 0 on success, an error on
3188  *      failure.
3189  *
3190  *      Note that early versions of the Firmware didn't include the ability
3191  *      to retrieve the VPD version, so we zero-out the return-value parameter
3192  *      in that case to avoid leaving it with garbage in it.
3193  *
3194  *      Also note that the Firmware will return its cached copy of the VPD
3195  *      Revision ID, not the actual Revision ID as written in the Serial
3196  *      EEPROM.  This is only an issue if a new VPD has been written and the
3197  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3198  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3199  *      if the Host Driver will be performing a full adapter initialization.
3200  */
3201 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3202 {
3203         u32 vpdrev_param;
3204         int ret;
3205
3206         vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3207                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3208         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3209                               1, &vpdrev_param, vers);
3210         if (ret)
3211                 *vers = 0;
3212         return ret;
3213 }
3214
3215 /**
3216  *      t4_get_scfg_version - return the Serial Configuration version
3217  *      @adapter: the adapter
3218  *      @vers: where to place the version
3219  *
3220  *      Reads the Serial Configuration Version via the Firmware interface
3221  *      (thus this can only be called once we're ready to issue Firmware
3222  *      commands).  The format of the Serial Configuration version is
3223  *      adapter specific.  Returns 0 on success, an error on failure.
3224  *
3225  *      Note that early versions of the Firmware didn't include the ability
3226  *      to retrieve the Serial Configuration version, so we zero-out the
3227  *      return-value parameter in that case to avoid leaving it with
3228  *      garbage in it.
3229  *
3230  *      Also note that the Firmware will return its cached copy of the Serial
3231  *      Initialization Revision ID, not the actual Revision ID as written in
3232  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3233  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3234  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3235  *      been issued if the Host Driver will be performing a full adapter
3236  *      initialization.
3237  */
3238 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3239 {
3240         u32 scfgrev_param;
3241         int ret;
3242
3243         scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3244                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3245         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3246                               1, &scfgrev_param, vers);
3247         if (ret)
3248                 *vers = 0;
3249         return ret;
3250 }
3251
3252 /**
3253  *      t4_get_version_info - extract various chip/firmware version information
3254  *      @adapter: the adapter
3255  *
3256  *      Reads various chip/firmware version numbers and stores them into the
3257  *      adapter Adapter Parameters structure.  If any of the efforts fails
3258  *      the first failure will be returned, but all of the version numbers
3259  *      will be read.
3260  */
3261 int t4_get_version_info(struct adapter *adapter)
3262 {
3263         int ret = 0;
3264
3265         #define FIRST_RET(__getvinfo) \
3266         do { \
3267                 int __ret = __getvinfo; \
3268                 if (__ret && !ret) \
3269                         ret = __ret; \
3270         } while (0)
3271
3272         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3273         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3274         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3275         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3276         FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3277         FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3278
3279         #undef FIRST_RET
3280         return ret;
3281 }
3282
3283 /**
3284  *      t4_dump_version_info - dump all of the adapter configuration IDs
3285  *      @adapter: the adapter
3286  *
3287  *      Dumps all of the various bits of adapter configuration version/revision
3288  *      IDs information.  This is typically called at some point after
3289  *      t4_get_version_info() has been called.
3290  */
3291 void t4_dump_version_info(struct adapter *adapter)
3292 {
3293         /* Device information */
3294         dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3295                  adapter->params.vpd.id,
3296                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
3297         dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3298                  adapter->params.vpd.sn, adapter->params.vpd.pn);
3299
3300         /* Firmware Version */
3301         if (!adapter->params.fw_vers)
3302                 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3303         else
3304                 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3305                          FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3306                          FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3307                          FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3308                          FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3309
3310         /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3311          * Firmware, so dev_info() is more appropriate here.)
3312          */
3313         if (!adapter->params.bs_vers)
3314                 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3315         else
3316                 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3317                          FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3318                          FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3319                          FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3320                          FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3321
3322         /* TP Microcode Version */
3323         if (!adapter->params.tp_vers)
3324                 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3325         else
3326                 dev_info(adapter->pdev_dev,
3327                          "TP Microcode version: %u.%u.%u.%u\n",
3328                          FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3329                          FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3330                          FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3331                          FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3332
3333         /* Expansion ROM version */
3334         if (!adapter->params.er_vers)
3335                 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3336         else
3337                 dev_info(adapter->pdev_dev,
3338                          "Expansion ROM version: %u.%u.%u.%u\n",
3339                          FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3340                          FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3341                          FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3342                          FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3343
3344         /* Serial Configuration version */
3345         dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3346                  adapter->params.scfg_vers);
3347
3348         /* VPD Version */
3349         dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3350                  adapter->params.vpd_vers);
3351 }
3352
3353 /**
3354  *      t4_check_fw_version - check if the FW is supported with this driver
3355  *      @adap: the adapter
3356  *
3357  *      Checks if an adapter's FW is compatible with the driver.  Returns 0
3358  *      if there's exact match, a negative error if the version could not be
3359  *      read or there's a major version mismatch
3360  */
3361 int t4_check_fw_version(struct adapter *adap)
3362 {
3363         int i, ret, major, minor, micro;
3364         int exp_major, exp_minor, exp_micro;
3365         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3366
3367         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3368         /* Try multiple times before returning error */
3369         for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3370                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3371
3372         if (ret)
3373                 return ret;
3374
3375         major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3376         minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3377         micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3378
3379         switch (chip_version) {
3380         case CHELSIO_T4:
3381                 exp_major = T4FW_MIN_VERSION_MAJOR;
3382                 exp_minor = T4FW_MIN_VERSION_MINOR;
3383                 exp_micro = T4FW_MIN_VERSION_MICRO;
3384                 break;
3385         case CHELSIO_T5:
3386                 exp_major = T5FW_MIN_VERSION_MAJOR;
3387                 exp_minor = T5FW_MIN_VERSION_MINOR;
3388                 exp_micro = T5FW_MIN_VERSION_MICRO;
3389                 break;
3390         case CHELSIO_T6:
3391                 exp_major = T6FW_MIN_VERSION_MAJOR;
3392                 exp_minor = T6FW_MIN_VERSION_MINOR;
3393                 exp_micro = T6FW_MIN_VERSION_MICRO;
3394                 break;
3395         default:
3396                 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3397                         adap->chip);
3398                 return -EINVAL;
3399         }
3400
3401         if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3402             (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3403                 dev_err(adap->pdev_dev,
3404                         "Card has firmware version %u.%u.%u, minimum "
3405                         "supported firmware is %u.%u.%u.\n", major, minor,
3406                         micro, exp_major, exp_minor, exp_micro);
3407                 return -EFAULT;
3408         }
3409         return 0;
3410 }
3411
3412 /* Is the given firmware API compatible with the one the driver was compiled
3413  * with?
3414  */
3415 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3416 {
3417
3418         /* short circuit if it's the exact same firmware version */
3419         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3420                 return 1;
3421
3422 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3423         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3424             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3425                 return 1;
3426 #undef SAME_INTF
3427
3428         return 0;
3429 }
3430
3431 /* The firmware in the filesystem is usable, but should it be installed?
3432  * This routine explains itself in detail if it indicates the filesystem
3433  * firmware should be installed.
3434  */
3435 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3436                                 int k, int c)
3437 {
3438         const char *reason;
3439
3440         if (!card_fw_usable) {
3441                 reason = "incompatible or unusable";
3442                 goto install;
3443         }
3444
3445         if (k > c) {
3446                 reason = "older than the version supported with this driver";
3447                 goto install;
3448         }
3449
3450         return 0;
3451
3452 install:
3453         dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3454                 "installing firmware %u.%u.%u.%u on card.\n",
3455                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3456                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3457                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3458                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3459
3460         return 1;
3461 }
3462
3463 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3464                const u8 *fw_data, unsigned int fw_size,
3465                struct fw_hdr *card_fw, enum dev_state state,
3466                int *reset)
3467 {
3468         int ret, card_fw_usable, fs_fw_usable;
3469         const struct fw_hdr *fs_fw;
3470         const struct fw_hdr *drv_fw;
3471
3472         drv_fw = &fw_info->fw_hdr;
3473
3474         /* Read the header of the firmware on the card */
3475         ret = t4_read_flash(adap, FLASH_FW_START,
3476                             sizeof(*card_fw) / sizeof(uint32_t),
3477                             (uint32_t *)card_fw, 1);
3478         if (ret == 0) {
3479                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3480         } else {
3481                 dev_err(adap->pdev_dev,
3482                         "Unable to read card's firmware header: %d\n", ret);
3483                 card_fw_usable = 0;
3484         }
3485
3486         if (fw_data != NULL) {
3487                 fs_fw = (const void *)fw_data;
3488                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3489         } else {
3490                 fs_fw = NULL;
3491                 fs_fw_usable = 0;
3492         }
3493
3494         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3495             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3496                 /* Common case: the firmware on the card is an exact match and
3497                  * the filesystem one is an exact match too, or the filesystem
3498                  * one is absent/incompatible.
3499                  */
3500         } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3501                    should_install_fs_fw(adap, card_fw_usable,
3502                                         be32_to_cpu(fs_fw->fw_ver),
3503                                         be32_to_cpu(card_fw->fw_ver))) {
3504                 ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3505                                     fw_size, 0);
3506                 if (ret != 0) {
3507                         dev_err(adap->pdev_dev,
3508                                 "failed to install firmware: %d\n", ret);
3509                         goto bye;
3510                 }
3511
3512                 /* Installed successfully, update the cached header too. */
3513                 *card_fw = *fs_fw;
3514                 card_fw_usable = 1;
3515                 *reset = 0;     /* already reset as part of load_fw */
3516         }
3517
3518         if (!card_fw_usable) {
3519                 uint32_t d, c, k;
3520
3521                 d = be32_to_cpu(drv_fw->fw_ver);
3522                 c = be32_to_cpu(card_fw->fw_ver);
3523                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3524
3525                 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3526                         "chip state %d, "
3527                         "driver compiled with %d.%d.%d.%d, "
3528                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3529                         state,
3530                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3531                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3532                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3533                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3534                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3535                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3536                 ret = -EINVAL;
3537                 goto bye;
3538         }
3539
3540         /* We're using whatever's on the card and it's known to be good. */
3541         adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3542         adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3543
3544 bye:
3545         return ret;
3546 }
3547
3548 /**
3549  *      t4_flash_erase_sectors - erase a range of flash sectors
3550  *      @adapter: the adapter
3551  *      @start: the first sector to erase
3552  *      @end: the last sector to erase
3553  *
3554  *      Erases the sectors in the given inclusive range.
3555  */
3556 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3557 {
3558         int ret = 0;
3559
3560         if (end >= adapter->params.sf_nsec)
3561                 return -EINVAL;
3562
3563         while (start <= end) {
3564                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3565                     (ret = sf1_write(adapter, 4, 0, 1,
3566                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3567                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3568                         dev_err(adapter->pdev_dev,
3569                                 "erase of flash sector %d failed, error %d\n",
3570                                 start, ret);
3571                         break;
3572                 }
3573                 start++;
3574         }
3575         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3576         return ret;
3577 }
3578
3579 /**
3580  *      t4_flash_cfg_addr - return the address of the flash configuration file
3581  *      @adapter: the adapter
3582  *
3583  *      Return the address within the flash where the Firmware Configuration
3584  *      File is stored.
3585  */
3586 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3587 {
3588         if (adapter->params.sf_size == 0x100000)
3589                 return FLASH_FPGA_CFG_START;
3590         else
3591                 return FLASH_CFG_START;
3592 }
3593
3594 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3595  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3596  * and emit an error message for mismatched firmware to save our caller the
3597  * effort ...
3598  */
3599 static bool t4_fw_matches_chip(const struct adapter *adap,
3600                                const struct fw_hdr *hdr)
3601 {
3602         /* The expression below will return FALSE for any unsupported adapter
3603          * which will keep us "honest" in the future ...
3604          */
3605         if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3606             (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3607             (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3608                 return true;
3609
3610         dev_err(adap->pdev_dev,
3611                 "FW image (%d) is not suitable for this adapter (%d)\n",
3612                 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3613         return false;
3614 }
3615
3616 /**
3617  *      t4_load_fw - download firmware
3618  *      @adap: the adapter
3619  *      @fw_data: the firmware image to write
3620  *      @size: image size
3621  *
3622  *      Write the supplied firmware image to the card's serial flash.
3623  */
3624 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3625 {
3626         u32 csum;
3627         int ret, addr;
3628         unsigned int i;
3629         u8 first_page[SF_PAGE_SIZE];
3630         const __be32 *p = (const __be32 *)fw_data;
3631         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3632         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3633         unsigned int fw_start_sec = FLASH_FW_START_SEC;
3634         unsigned int fw_size = FLASH_FW_MAX_SIZE;
3635         unsigned int fw_start = FLASH_FW_START;
3636
3637         if (!size) {
3638                 dev_err(adap->pdev_dev, "FW image has no data\n");
3639                 return -EINVAL;
3640         }
3641         if (size & 511) {
3642                 dev_err(adap->pdev_dev,
3643                         "FW image size not multiple of 512 bytes\n");
3644                 return -EINVAL;
3645         }
3646         if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3647                 dev_err(adap->pdev_dev,
3648                         "FW image size differs from size in FW header\n");
3649                 return -EINVAL;
3650         }
3651         if (size > fw_size) {
3652                 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3653                         fw_size);
3654                 return -EFBIG;
3655         }
3656         if (!t4_fw_matches_chip(adap, hdr))
3657                 return -EINVAL;
3658
3659         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3660                 csum += be32_to_cpu(p[i]);
3661
3662         if (csum != 0xffffffff) {
3663                 dev_err(adap->pdev_dev,
3664                         "corrupted firmware image, checksum %#x\n", csum);
3665                 return -EINVAL;
3666         }
3667
3668         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3669         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3670         if (ret)
3671                 goto out;
3672
3673         /*
3674          * We write the correct version at the end so the driver can see a bad
3675          * version if the FW write fails.  Start by writing a copy of the
3676          * first page with a bad version.
3677          */
3678         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3679         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3680         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, true);
3681         if (ret)
3682                 goto out;
3683
3684         addr = fw_start;
3685         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3686                 addr += SF_PAGE_SIZE;
3687                 fw_data += SF_PAGE_SIZE;
3688                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, true);
3689                 if (ret)
3690                         goto out;
3691         }
3692
3693         ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver),
3694                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver,
3695                              true);
3696 out:
3697         if (ret)
3698                 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3699                         ret);
3700         else
3701                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3702         return ret;
3703 }
3704
3705 /**
3706  *      t4_phy_fw_ver - return current PHY firmware version
3707  *      @adap: the adapter
3708  *      @phy_fw_ver: return value buffer for PHY firmware version
3709  *
3710  *      Returns the current version of external PHY firmware on the
3711  *      adapter.
3712  */
3713 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3714 {
3715         u32 param, val;
3716         int ret;
3717
3718         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3719                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3720                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3721                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3722         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3723                               &param, &val);
3724         if (ret)
3725                 return ret;
3726         *phy_fw_ver = val;
3727         return 0;
3728 }
3729
3730 /**
3731  *      t4_load_phy_fw - download port PHY firmware
3732  *      @adap: the adapter
3733  *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3734  *      @phy_fw_version: function to check PHY firmware versions
3735  *      @phy_fw_data: the PHY firmware image to write
3736  *      @phy_fw_size: image size
3737  *
3738  *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3739  *      @phy_fw_version is supplied, then it will be used to determine if
3740  *      it's necessary to perform the transfer by comparing the version
3741  *      of any existing adapter PHY firmware with that of the passed in
3742  *      PHY firmware image.
3743  *
3744  *      A negative error number will be returned if an error occurs.  If
3745  *      version number support is available and there's no need to upgrade
3746  *      the firmware, 0 will be returned.  If firmware is successfully
3747  *      transferred to the adapter, 1 will be returned.
3748  *
3749  *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3750  *      a result, a RESET of the adapter would cause that RAM to lose its
3751  *      contents.  Thus, loading PHY firmware on such adapters must happen
3752  *      after any FW_RESET_CMDs ...
3753  */
3754 int t4_load_phy_fw(struct adapter *adap, int win,
3755                    int (*phy_fw_version)(const u8 *, size_t),
3756                    const u8 *phy_fw_data, size_t phy_fw_size)
3757 {
3758         int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3759         unsigned long mtype = 0, maddr = 0;
3760         u32 param, val;
3761         int ret;
3762
3763         /* If we have version number support, then check to see if the adapter
3764          * already has up-to-date PHY firmware loaded.
3765          */
3766         if (phy_fw_version) {
3767                 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3768                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3769                 if (ret < 0)
3770                         return ret;
3771
3772                 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3773                         CH_WARN(adap, "PHY Firmware already up-to-date, "
3774                                 "version %#x\n", cur_phy_fw_ver);
3775                         return 0;
3776                 }
3777         }
3778
3779         /* Ask the firmware where it wants us to copy the PHY firmware image.
3780          * The size of the file requires a special version of the READ command
3781          * which will pass the file size via the values field in PARAMS_CMD and
3782          * retrieve the return value from firmware and place it in the same
3783          * buffer values
3784          */
3785         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3786                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3787                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3788                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3789         val = phy_fw_size;
3790         ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3791                                  &param, &val, 1, true);
3792         if (ret < 0)
3793                 return ret;
3794         mtype = val >> 8;
3795         maddr = (val & 0xff) << 16;
3796
3797         /* Copy the supplied PHY Firmware image to the adapter memory location
3798          * allocated by the adapter firmware.
3799          */
3800         spin_lock_bh(&adap->win0_lock);
3801         ret = t4_memory_rw(adap, win, mtype, maddr,
3802                            phy_fw_size, (__be32 *)phy_fw_data,
3803                            T4_MEMORY_WRITE);
3804         spin_unlock_bh(&adap->win0_lock);
3805         if (ret)
3806                 return ret;
3807
3808         /* Tell the firmware that the PHY firmware image has been written to
3809          * RAM and it can now start copying it over to the PHYs.  The chip
3810          * firmware will RESET the affected PHYs as part of this operation
3811          * leaving them running the new PHY firmware image.
3812          */
3813         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3814                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3815                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3816                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3817         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3818                                     &param, &val, 30000);
3819         if (ret)
3820                 return ret;
3821
3822         /* If we have version number support, then check to see that the new
3823          * firmware got loaded properly.
3824          */
3825         if (phy_fw_version) {
3826                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3827                 if (ret < 0)
3828                         return ret;
3829
3830                 if (cur_phy_fw_ver != new_phy_fw_vers) {
3831                         CH_WARN(adap, "PHY Firmware did not update: "
3832                                 "version on adapter %#x, "
3833                                 "version flashed %#x\n",
3834                                 cur_phy_fw_ver, new_phy_fw_vers);
3835                         return -ENXIO;
3836                 }
3837         }
3838
3839         return 1;
3840 }
3841
3842 /**
3843  *      t4_fwcache - firmware cache operation
3844  *      @adap: the adapter
3845  *      @op  : the operation (flush or flush and invalidate)
3846  */
3847 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3848 {
3849         struct fw_params_cmd c;
3850
3851         memset(&c, 0, sizeof(c));
3852         c.op_to_vfn =
3853                 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3854                             FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3855                             FW_PARAMS_CMD_PFN_V(adap->pf) |
3856                             FW_PARAMS_CMD_VFN_V(0));
3857         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3858         c.param[0].mnem =
3859                 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3860                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3861         c.param[0].val = cpu_to_be32(op);
3862
3863         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3864 }
3865
3866 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3867                         unsigned int *pif_req_wrptr,
3868                         unsigned int *pif_rsp_wrptr)
3869 {
3870         int i, j;
3871         u32 cfg, val, req, rsp;
3872
3873         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3874         if (cfg & LADBGEN_F)
3875                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3876
3877         val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3878         req = POLADBGWRPTR_G(val);
3879         rsp = PILADBGWRPTR_G(val);
3880         if (pif_req_wrptr)
3881                 *pif_req_wrptr = req;
3882         if (pif_rsp_wrptr)
3883                 *pif_rsp_wrptr = rsp;
3884
3885         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3886                 for (j = 0; j < 6; j++) {
3887                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3888                                      PILADBGRDPTR_V(rsp));
3889                         *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3890                         *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3891                         req++;
3892                         rsp++;
3893                 }
3894                 req = (req + 2) & POLADBGRDPTR_M;
3895                 rsp = (rsp + 2) & PILADBGRDPTR_M;
3896         }
3897         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3898 }
3899
3900 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3901 {
3902         u32 cfg;
3903         int i, j, idx;
3904
3905         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3906         if (cfg & LADBGEN_F)
3907                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3908
3909         for (i = 0; i < CIM_MALA_SIZE; i++) {
3910                 for (j = 0; j < 5; j++) {
3911                         idx = 8 * i + j;
3912                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3913                                      PILADBGRDPTR_V(idx));
3914                         *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3915                         *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3916                 }
3917         }
3918         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3919 }
3920
3921 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3922 {
3923         unsigned int i, j;
3924
3925         for (i = 0; i < 8; i++) {
3926                 u32 *p = la_buf + i;
3927
3928                 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3929                 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3930                 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3931                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3932                         *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3933         }
3934 }
3935
3936 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3937  * Capabilities which we control with separate controls -- see, for instance,
3938  * Pause Frames and Forward Error Correction.  In order to determine what the
3939  * full set of Advertised Port Capabilities are, the base Advertised Port
3940  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3941  * Port Capabilities associated with those other controls.  See
3942  * t4_link_acaps() for how this is done.
3943  */
3944 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3945                      FW_PORT_CAP32_ANEG)
3946
3947 /**
3948  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3949  *      @caps16: a 16-bit Port Capabilities value
3950  *
3951  *      Returns the equivalent 32-bit Port Capabilities value.
3952  */
3953 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3954 {
3955         fw_port_cap32_t caps32 = 0;
3956
3957         #define CAP16_TO_CAP32(__cap) \
3958                 do { \
3959                         if (caps16 & FW_PORT_CAP_##__cap) \
3960                                 caps32 |= FW_PORT_CAP32_##__cap; \
3961                 } while (0)
3962
3963         CAP16_TO_CAP32(SPEED_100M);
3964         CAP16_TO_CAP32(SPEED_1G);
3965         CAP16_TO_CAP32(SPEED_25G);
3966         CAP16_TO_CAP32(SPEED_10G);
3967         CAP16_TO_CAP32(SPEED_40G);
3968         CAP16_TO_CAP32(SPEED_100G);
3969         CAP16_TO_CAP32(FC_RX);
3970         CAP16_TO_CAP32(FC_TX);
3971         CAP16_TO_CAP32(ANEG);
3972         CAP16_TO_CAP32(FORCE_PAUSE);
3973         CAP16_TO_CAP32(MDIAUTO);
3974         CAP16_TO_CAP32(MDISTRAIGHT);
3975         CAP16_TO_CAP32(FEC_RS);
3976         CAP16_TO_CAP32(FEC_BASER_RS);
3977         CAP16_TO_CAP32(802_3_PAUSE);
3978         CAP16_TO_CAP32(802_3_ASM_DIR);
3979
3980         #undef CAP16_TO_CAP32
3981
3982         return caps32;
3983 }
3984
3985 /**
3986  *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3987  *      @caps32: a 32-bit Port Capabilities value
3988  *
3989  *      Returns the equivalent 16-bit Port Capabilities value.  Note that
3990  *      not all 32-bit Port Capabilities can be represented in the 16-bit
3991  *      Port Capabilities and some fields/values may not make it.
3992  */
3993 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3994 {
3995         fw_port_cap16_t caps16 = 0;
3996
3997         #define CAP32_TO_CAP16(__cap) \
3998                 do { \
3999                         if (caps32 & FW_PORT_CAP32_##__cap) \
4000                                 caps16 |= FW_PORT_CAP_##__cap; \
4001                 } while (0)
4002
4003         CAP32_TO_CAP16(SPEED_100M);
4004         CAP32_TO_CAP16(SPEED_1G);
4005         CAP32_TO_CAP16(SPEED_10G);
4006         CAP32_TO_CAP16(SPEED_25G);
4007         CAP32_TO_CAP16(SPEED_40G);
4008         CAP32_TO_CAP16(SPEED_100G);
4009         CAP32_TO_CAP16(FC_RX);
4010         CAP32_TO_CAP16(FC_TX);
4011         CAP32_TO_CAP16(802_3_PAUSE);
4012         CAP32_TO_CAP16(802_3_ASM_DIR);
4013         CAP32_TO_CAP16(ANEG);
4014         CAP32_TO_CAP16(FORCE_PAUSE);
4015         CAP32_TO_CAP16(MDIAUTO);
4016         CAP32_TO_CAP16(MDISTRAIGHT);
4017         CAP32_TO_CAP16(FEC_RS);
4018         CAP32_TO_CAP16(FEC_BASER_RS);
4019
4020         #undef CAP32_TO_CAP16
4021
4022         return caps16;
4023 }
4024
4025 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4026 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4027 {
4028         enum cc_pause cc_pause = 0;
4029
4030         if (fw_pause & FW_PORT_CAP32_FC_RX)
4031                 cc_pause |= PAUSE_RX;
4032         if (fw_pause & FW_PORT_CAP32_FC_TX)
4033                 cc_pause |= PAUSE_TX;
4034
4035         return cc_pause;
4036 }
4037
4038 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4039 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4040 {
4041         /* Translate orthogonal RX/TX Pause Controls for L1 Configure
4042          * commands, etc.
4043          */
4044         fw_port_cap32_t fw_pause = 0;
4045
4046         if (cc_pause & PAUSE_RX)
4047                 fw_pause |= FW_PORT_CAP32_FC_RX;
4048         if (cc_pause & PAUSE_TX)
4049                 fw_pause |= FW_PORT_CAP32_FC_TX;
4050         if (!(cc_pause & PAUSE_AUTONEG))
4051                 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4052
4053         /* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4054          * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4055          * Note that these bits are ignored in L1 Configure commands.
4056          */
4057         if (cc_pause & PAUSE_RX) {
4058                 if (cc_pause & PAUSE_TX)
4059                         fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4060                 else
4061                         fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4062                                     FW_PORT_CAP32_802_3_PAUSE;
4063         } else if (cc_pause & PAUSE_TX) {
4064                 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4065         }
4066
4067         return fw_pause;
4068 }
4069
4070 /* Translate Firmware Forward Error Correction specification to Common Code */
4071 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4072 {
4073         enum cc_fec cc_fec = 0;
4074
4075         if (fw_fec & FW_PORT_CAP32_FEC_RS)
4076                 cc_fec |= FEC_RS;
4077         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4078                 cc_fec |= FEC_BASER_RS;
4079
4080         return cc_fec;
4081 }
4082
4083 /* Translate Common Code Forward Error Correction specification to Firmware */
4084 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4085 {
4086         fw_port_cap32_t fw_fec = 0;
4087
4088         if (cc_fec & FEC_RS)
4089                 fw_fec |= FW_PORT_CAP32_FEC_RS;
4090         if (cc_fec & FEC_BASER_RS)
4091                 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4092
4093         return fw_fec;
4094 }
4095
4096 /**
4097  *      t4_link_acaps - compute Link Advertised Port Capabilities
4098  *      @adapter: the adapter
4099  *      @port: the Port ID
4100  *      @lc: the Port's Link Configuration
4101  *
4102  *      Synthesize the Advertised Port Capabilities we'll be using based on
4103  *      the base Advertised Port Capabilities (which have been filtered by
4104  *      ADVERT_MASK) plus the individual controls for things like Pause
4105  *      Frames, Forward Error Correction, MDI, etc.
4106  */
4107 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4108                               struct link_config *lc)
4109 {
4110         fw_port_cap32_t fw_fc, fw_fec, acaps;
4111         unsigned int fw_mdi;
4112         char cc_fec;
4113
4114         fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4115
4116         /* Convert driver coding of Pause Frame Flow Control settings into the
4117          * Firmware's API.
4118          */
4119         fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4120
4121         /* Convert Common Code Forward Error Control settings into the
4122          * Firmware's API.  If the current Requested FEC has "Automatic"
4123          * (IEEE 802.3) specified, then we use whatever the Firmware
4124          * sent us as part of its IEEE 802.3-based interpretation of
4125          * the Transceiver Module EPROM FEC parameters.  Otherwise we
4126          * use whatever is in the current Requested FEC settings.
4127          */
4128         if (lc->requested_fec & FEC_AUTO)
4129                 cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4130         else
4131                 cc_fec = lc->requested_fec;
4132         fw_fec = cc_to_fwcap_fec(cc_fec);
4133
4134         /* Figure out what our Requested Port Capabilities are going to be.
4135          * Note parallel structure in t4_handle_get_port_info() and
4136          * init_link_config().
4137          */
4138         if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4139                 acaps = lc->acaps | fw_fc | fw_fec;
4140                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4141                 lc->fec = cc_fec;
4142         } else if (lc->autoneg == AUTONEG_DISABLE) {
4143                 acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4144                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4145                 lc->fec = cc_fec;
4146         } else {
4147                 acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4148         }
4149
4150         /* Some Requested Port Capabilities are trivially wrong if they exceed
4151          * the Physical Port Capabilities.  We can check that here and provide
4152          * moderately useful feedback in the system log.
4153          *
4154          * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4155          * we need to exclude this from this check in order to maintain
4156          * compatibility ...
4157          */
4158         if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4159                 dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4160                         acaps, lc->pcaps);
4161                 return -EINVAL;
4162         }
4163
4164         return acaps;
4165 }
4166
4167 /**
4168  *      t4_link_l1cfg_core - apply link configuration to MAC/PHY
4169  *      @adapter: the adapter
4170  *      @mbox: the Firmware Mailbox to use
4171  *      @port: the Port ID
4172  *      @lc: the Port's Link Configuration
4173  *      @sleep_ok: if true we may sleep while awaiting command completion
4174  *      @timeout: time to wait for command to finish before timing out
4175  *              (negative implies @sleep_ok=false)
4176  *
4177  *      Set up a port's MAC and PHY according to a desired link configuration.
4178  *      - If the PHY can auto-negotiate first decide what to advertise, then
4179  *        enable/disable auto-negotiation as desired, and reset.
4180  *      - If the PHY does not auto-negotiate just reset it.
4181  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4182  *        otherwise do it later based on the outcome of auto-negotiation.
4183  */
4184 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4185                        unsigned int port, struct link_config *lc,
4186                        u8 sleep_ok, int timeout)
4187 {
4188         unsigned int fw_caps = adapter->params.fw_caps_support;
4189         struct fw_port_cmd cmd;
4190         fw_port_cap32_t rcap;
4191         int ret;
4192
4193         if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4194             lc->autoneg == AUTONEG_ENABLE) {
4195                 return -EINVAL;
4196         }
4197
4198         /* Compute our Requested Port Capabilities and send that on to the
4199          * Firmware.
4200          */
4201         rcap = t4_link_acaps(adapter, port, lc);
4202         memset(&cmd, 0, sizeof(cmd));
4203         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4204                                        FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4205                                        FW_PORT_CMD_PORTID_V(port));
4206         cmd.action_to_len16 =
4207                 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4208                                                  ? FW_PORT_ACTION_L1_CFG
4209                                                  : FW_PORT_ACTION_L1_CFG32) |
4210                                                  FW_LEN16(cmd));
4211         if (fw_caps == FW_CAPS16)
4212                 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4213         else
4214                 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4215
4216         ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4217                                       sleep_ok, timeout);
4218
4219         /* Unfortunately, even if the Requested Port Capabilities "fit" within
4220          * the Physical Port Capabilities, some combinations of features may
4221          * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4222          * Error Correction.  So if the Firmware rejects the L1 Configure
4223          * request, flag that here.
4224          */
4225         if (ret) {
4226                 dev_err(adapter->pdev_dev,
4227                         "Requested Port Capabilities %#x rejected, error %d\n",
4228                         rcap, -ret);
4229                 return ret;
4230         }
4231         return 0;
4232 }
4233
4234 /**
4235  *      t4_restart_aneg - restart autonegotiation
4236  *      @adap: the adapter
4237  *      @mbox: mbox to use for the FW command
4238  *      @port: the port id
4239  *
4240  *      Restarts autonegotiation for the selected port.
4241  */
4242 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4243 {
4244         unsigned int fw_caps = adap->params.fw_caps_support;
4245         struct fw_port_cmd c;
4246
4247         memset(&c, 0, sizeof(c));
4248         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4249                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4250                                      FW_PORT_CMD_PORTID_V(port));
4251         c.action_to_len16 =
4252                 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4253                                                  ? FW_PORT_ACTION_L1_CFG
4254                                                  : FW_PORT_ACTION_L1_CFG32) |
4255                             FW_LEN16(c));
4256         if (fw_caps == FW_CAPS16)
4257                 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4258         else
4259                 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4260         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4261 }
4262
4263 typedef void (*int_handler_t)(struct adapter *adap);
4264
4265 struct intr_info {
4266         unsigned int mask;       /* bits to check in interrupt status */
4267         const char *msg;         /* message to print or NULL */
4268         short stat_idx;          /* stat counter to increment or -1 */
4269         unsigned short fatal;    /* whether the condition reported is fatal */
4270         int_handler_t int_handler; /* platform-specific int handler */
4271 };
4272
4273 /**
4274  *      t4_handle_intr_status - table driven interrupt handler
4275  *      @adapter: the adapter that generated the interrupt
4276  *      @reg: the interrupt status register to process
4277  *      @acts: table of interrupt actions
4278  *
4279  *      A table driven interrupt handler that applies a set of masks to an
4280  *      interrupt status word and performs the corresponding actions if the
4281  *      interrupts described by the mask have occurred.  The actions include
4282  *      optionally emitting a warning or alert message.  The table is terminated
4283  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
4284  *      conditions.
4285  */
4286 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4287                                  const struct intr_info *acts)
4288 {
4289         int fatal = 0;
4290         unsigned int mask = 0;
4291         unsigned int status = t4_read_reg(adapter, reg);
4292
4293         for ( ; acts->mask; ++acts) {
4294                 if (!(status & acts->mask))
4295                         continue;
4296                 if (acts->fatal) {
4297                         fatal++;
4298                         dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4299                                   status & acts->mask);
4300                 } else if (acts->msg && printk_ratelimit())
4301                         dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4302                                  status & acts->mask);
4303                 if (acts->int_handler)
4304                         acts->int_handler(adapter);
4305                 mask |= acts->mask;
4306         }
4307         status &= mask;
4308         if (status)                           /* clear processed interrupts */
4309                 t4_write_reg(adapter, reg, status);
4310         return fatal;
4311 }
4312
4313 /*
4314  * Interrupt handler for the PCIE module.
4315  */
4316 static void pcie_intr_handler(struct adapter *adapter)
4317 {
4318         static const struct intr_info sysbus_intr_info[] = {
4319                 { RNPP_F, "RXNP array parity error", -1, 1 },
4320                 { RPCP_F, "RXPC array parity error", -1, 1 },
4321                 { RCIP_F, "RXCIF array parity error", -1, 1 },
4322                 { RCCP_F, "Rx completions control array parity error", -1, 1 },
4323                 { RFTP_F, "RXFT array parity error", -1, 1 },
4324                 { 0 }
4325         };
4326         static const struct intr_info pcie_port_intr_info[] = {
4327                 { TPCP_F, "TXPC array parity error", -1, 1 },
4328                 { TNPP_F, "TXNP array parity error", -1, 1 },
4329                 { TFTP_F, "TXFT array parity error", -1, 1 },
4330                 { TCAP_F, "TXCA array parity error", -1, 1 },
4331                 { TCIP_F, "TXCIF array parity error", -1, 1 },
4332                 { RCAP_F, "RXCA array parity error", -1, 1 },
4333                 { OTDD_F, "outbound request TLP discarded", -1, 1 },
4334                 { RDPE_F, "Rx data parity error", -1, 1 },
4335                 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
4336                 { 0 }
4337         };
4338         static const struct intr_info pcie_intr_info[] = {
4339                 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4340                 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4341                 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4342                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4343                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4344                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4345                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4346                 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4347                 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4348                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4349                 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4350                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4351                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4352                 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4353                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4354                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4355                 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4356                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4357                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4358                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4359                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4360                 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4361                 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4362                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4363                 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4364                 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4365                 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4366                 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
4367                 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
4368                 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
4369                   -1, 0 },
4370                 { 0 }
4371         };
4372
4373         static struct intr_info t5_pcie_intr_info[] = {
4374                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
4375                   -1, 1 },
4376                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4377                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4378                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4379                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4380                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4381                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4382                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4383                   -1, 1 },
4384                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4385                   -1, 1 },
4386                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4387                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4388                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4389                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4390                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
4391                   -1, 1 },
4392                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4393                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4394                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4395                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4396                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4397                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4398                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4399                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4400                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4401                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4402                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4403                   -1, 1 },
4404                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4405                   -1, 1 },
4406                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4407                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4408                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4409                 { READRSPERR_F, "Outbound read error", -1, 0 },
4410                 { 0 }
4411         };
4412
4413         int fat;
4414
4415         if (is_t4(adapter->params.chip))
4416                 fat = t4_handle_intr_status(adapter,
4417                                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4418                                 sysbus_intr_info) +
4419                         t4_handle_intr_status(adapter,
4420                                         PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4421                                         pcie_port_intr_info) +
4422                         t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4423                                               pcie_intr_info);
4424         else
4425                 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4426                                             t5_pcie_intr_info);
4427
4428         if (fat)
4429                 t4_fatal_err(adapter);
4430 }
4431
4432 /*
4433  * TP interrupt handler.
4434  */
4435 static void tp_intr_handler(struct adapter *adapter)
4436 {
4437         static const struct intr_info tp_intr_info[] = {
4438                 { 0x3fffffff, "TP parity error", -1, 1 },
4439                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4440                 { 0 }
4441         };
4442
4443         if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4444                 t4_fatal_err(adapter);
4445 }
4446
4447 /*
4448  * SGE interrupt handler.
4449  */
4450 static void sge_intr_handler(struct adapter *adapter)
4451 {
4452         u32 v = 0, perr;
4453         u32 err;
4454
4455         static const struct intr_info sge_intr_info[] = {
4456                 { ERR_CPL_EXCEED_IQE_SIZE_F,
4457                   "SGE received CPL exceeding IQE size", -1, 1 },
4458                 { ERR_INVALID_CIDX_INC_F,
4459                   "SGE GTS CIDX increment too large", -1, 0 },
4460                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4461                 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4462                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4463                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
4464                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4465                   0 },
4466                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4467                   0 },
4468                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4469                   0 },
4470                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4471                   0 },
4472                 { ERR_ING_CTXT_PRIO_F,
4473                   "SGE too many priority ingress contexts", -1, 0 },
4474                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4475                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4476                 { 0 }
4477         };
4478
4479         static struct intr_info t4t5_sge_intr_info[] = {
4480                 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4481                 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4482                 { ERR_EGR_CTXT_PRIO_F,
4483                   "SGE too many priority egress contexts", -1, 0 },
4484                 { 0 }
4485         };
4486
4487         perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4488         if (perr) {
4489                 v |= perr;
4490                 dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4491                           perr);
4492         }
4493
4494         perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4495         if (perr) {
4496                 v |= perr;
4497                 dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4498                           perr);
4499         }
4500
4501         if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4502                 perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4503                 /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4504                 perr &= ~ERR_T_RXCRC_F;
4505                 if (perr) {
4506                         v |= perr;
4507                         dev_alert(adapter->pdev_dev,
4508                                   "SGE Cause5 Parity Error %#x\n", perr);
4509                 }
4510         }
4511
4512         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4513         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4514                 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4515                                            t4t5_sge_intr_info);
4516
4517         err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4518         if (err & ERROR_QID_VALID_F) {
4519                 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4520                         ERROR_QID_G(err));
4521                 if (err & UNCAPTURED_ERROR_F)
4522                         dev_err(adapter->pdev_dev,
4523                                 "SGE UNCAPTURED_ERROR set (clearing)\n");
4524                 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4525                              UNCAPTURED_ERROR_F);
4526         }
4527
4528         if (v != 0)
4529                 t4_fatal_err(adapter);
4530 }
4531
4532 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4533                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4534 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4535                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4536
4537 /*
4538  * CIM interrupt handler.
4539  */
4540 static void cim_intr_handler(struct adapter *adapter)
4541 {
4542         static const struct intr_info cim_intr_info[] = {
4543                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4544                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4545                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4546                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4547                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4548                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4549                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4550                 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4551                 { 0 }
4552         };
4553         static const struct intr_info cim_upintr_info[] = {
4554                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4555                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4556                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
4557                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
4558                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4559                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4560                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4561                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4562                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4563                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4564                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4565                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4566                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4567                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4568                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4569                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4570                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4571                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4572                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4573                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4574                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4575                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4576                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4577                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4578                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4579                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4580                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4581                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4582                 { 0 }
4583         };
4584
4585         u32 val, fw_err;
4586         int fat;
4587
4588         fw_err = t4_read_reg(adapter, PCIE_FW_A);
4589         if (fw_err & PCIE_FW_ERR_F)
4590                 t4_report_fw_error(adapter);
4591
4592         /* When the Firmware detects an internal error which normally
4593          * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4594          * in order to make sure the Host sees the Firmware Crash.  So
4595          * if we have a Timer0 interrupt and don't see a Firmware Crash,
4596          * ignore the Timer0 interrupt.
4597          */
4598
4599         val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4600         if (val & TIMER0INT_F)
4601                 if (!(fw_err & PCIE_FW_ERR_F) ||
4602                     (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4603                         t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4604                                      TIMER0INT_F);
4605
4606         fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4607                                     cim_intr_info) +
4608               t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4609                                     cim_upintr_info);
4610         if (fat)
4611                 t4_fatal_err(adapter);
4612 }
4613
4614 /*
4615  * ULP RX interrupt handler.
4616  */
4617 static void ulprx_intr_handler(struct adapter *adapter)
4618 {
4619         static const struct intr_info ulprx_intr_info[] = {
4620                 { 0x1800000, "ULPRX context error", -1, 1 },
4621                 { 0x7fffff, "ULPRX parity error", -1, 1 },
4622                 { 0 }
4623         };
4624
4625         if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4626                 t4_fatal_err(adapter);
4627 }
4628
4629 /*
4630  * ULP TX interrupt handler.
4631  */
4632 static void ulptx_intr_handler(struct adapter *adapter)
4633 {
4634         static const struct intr_info ulptx_intr_info[] = {
4635                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4636                   0 },
4637                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4638                   0 },
4639                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4640                   0 },
4641                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4642                   0 },
4643                 { 0xfffffff, "ULPTX parity error", -1, 1 },
4644                 { 0 }
4645         };
4646
4647         if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4648                 t4_fatal_err(adapter);
4649 }
4650
4651 /*
4652  * PM TX interrupt handler.
4653  */
4654 static void pmtx_intr_handler(struct adapter *adapter)
4655 {
4656         static const struct intr_info pmtx_intr_info[] = {
4657                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4658                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4659                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4660                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4661                 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4662                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4663                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4664                   -1, 1 },
4665                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4666                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4667                 { 0 }
4668         };
4669
4670         if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4671                 t4_fatal_err(adapter);
4672 }
4673
4674 /*
4675  * PM RX interrupt handler.
4676  */
4677 static void pmrx_intr_handler(struct adapter *adapter)
4678 {
4679         static const struct intr_info pmrx_intr_info[] = {
4680                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4681                 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4682                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4683                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4684                   -1, 1 },
4685                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4686                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4687                 { 0 }
4688         };
4689
4690         if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4691                 t4_fatal_err(adapter);
4692 }
4693
4694 /*
4695  * CPL switch interrupt handler.
4696  */
4697 static void cplsw_intr_handler(struct adapter *adapter)
4698 {
4699         static const struct intr_info cplsw_intr_info[] = {
4700                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4701                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4702                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4703                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4704                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4705                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4706                 { 0 }
4707         };
4708
4709         if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4710                 t4_fatal_err(adapter);
4711 }
4712
4713 /*
4714  * LE interrupt handler.
4715  */
4716 static void le_intr_handler(struct adapter *adap)
4717 {
4718         enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4719         static const struct intr_info le_intr_info[] = {
4720                 { LIPMISS_F, "LE LIP miss", -1, 0 },
4721                 { LIP0_F, "LE 0 LIP error", -1, 0 },
4722                 { PARITYERR_F, "LE parity error", -1, 1 },
4723                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4724                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4725                 { 0 }
4726         };
4727
4728         static struct intr_info t6_le_intr_info[] = {
4729                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4730                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4731                 { CMDTIDERR_F, "LE cmd tid error", -1, 1 },
4732                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4733                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4734                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4735                 { HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 },
4736                 { 0 }
4737         };
4738
4739         if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4740                                   (chip <= CHELSIO_T5) ?
4741                                   le_intr_info : t6_le_intr_info))
4742                 t4_fatal_err(adap);
4743 }
4744
4745 /*
4746  * MPS interrupt handler.
4747  */
4748 static void mps_intr_handler(struct adapter *adapter)
4749 {
4750         static const struct intr_info mps_rx_intr_info[] = {
4751                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4752                 { 0 }
4753         };
4754         static const struct intr_info mps_tx_intr_info[] = {
4755                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4756                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4757                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4758                   -1, 1 },
4759                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4760                   -1, 1 },
4761                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4762                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4763                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4764                 { 0 }
4765         };
4766         static const struct intr_info t6_mps_tx_intr_info[] = {
4767                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4768                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4769                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4770                   -1, 1 },
4771                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4772                   -1, 1 },
4773                 /* MPS Tx Bubble is normal for T6 */
4774                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4775                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4776                 { 0 }
4777         };
4778         static const struct intr_info mps_trc_intr_info[] = {
4779                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4780                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4781                   -1, 1 },
4782                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4783                 { 0 }
4784         };
4785         static const struct intr_info mps_stat_sram_intr_info[] = {
4786                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4787                 { 0 }
4788         };
4789         static const struct intr_info mps_stat_tx_intr_info[] = {
4790                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4791                 { 0 }
4792         };
4793         static const struct intr_info mps_stat_rx_intr_info[] = {
4794                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4795                 { 0 }
4796         };
4797         static const struct intr_info mps_cls_intr_info[] = {
4798                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4799                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4800                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4801                 { 0 }
4802         };
4803
4804         int fat;
4805
4806         fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4807                                     mps_rx_intr_info) +
4808               t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4809                                     is_t6(adapter->params.chip)
4810                                     ? t6_mps_tx_intr_info
4811                                     : mps_tx_intr_info) +
4812               t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4813                                     mps_trc_intr_info) +
4814               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4815                                     mps_stat_sram_intr_info) +
4816               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4817                                     mps_stat_tx_intr_info) +
4818               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4819                                     mps_stat_rx_intr_info) +
4820               t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4821                                     mps_cls_intr_info);
4822
4823         t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4824         t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4825         if (fat)
4826                 t4_fatal_err(adapter);
4827 }
4828
4829 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4830                       ECC_UE_INT_CAUSE_F)
4831
4832 /*
4833  * EDC/MC interrupt handler.
4834  */
4835 static void mem_intr_handler(struct adapter *adapter, int idx)
4836 {
4837         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4838
4839         unsigned int addr, cnt_addr, v;
4840
4841         if (idx <= MEM_EDC1) {
4842                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4843                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4844         } else if (idx == MEM_MC) {
4845                 if (is_t4(adapter->params.chip)) {
4846                         addr = MC_INT_CAUSE_A;
4847                         cnt_addr = MC_ECC_STATUS_A;
4848                 } else {
4849                         addr = MC_P_INT_CAUSE_A;
4850                         cnt_addr = MC_P_ECC_STATUS_A;
4851                 }
4852         } else {
4853                 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4854                 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4855         }
4856
4857         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4858         if (v & PERR_INT_CAUSE_F)
4859                 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4860                           name[idx]);
4861         if (v & ECC_CE_INT_CAUSE_F) {
4862                 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4863
4864                 t4_edc_err_read(adapter, idx);
4865
4866                 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4867                 if (printk_ratelimit())
4868                         dev_warn(adapter->pdev_dev,
4869                                  "%u %s correctable ECC data error%s\n",
4870                                  cnt, name[idx], cnt > 1 ? "s" : "");
4871         }
4872         if (v & ECC_UE_INT_CAUSE_F)
4873                 dev_alert(adapter->pdev_dev,
4874                           "%s uncorrectable ECC data error\n", name[idx]);
4875
4876         t4_write_reg(adapter, addr, v);
4877         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4878                 t4_fatal_err(adapter);
4879 }
4880
4881 /*
4882  * MA interrupt handler.
4883  */
4884 static void ma_intr_handler(struct adapter *adap)
4885 {
4886         u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4887
4888         if (status & MEM_PERR_INT_CAUSE_F) {
4889                 dev_alert(adap->pdev_dev,
4890                           "MA parity error, parity status %#x\n",
4891                           t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4892                 if (is_t5(adap->params.chip))
4893                         dev_alert(adap->pdev_dev,
4894                                   "MA parity error, parity status %#x\n",
4895                                   t4_read_reg(adap,
4896                                               MA_PARITY_ERROR_STATUS2_A));
4897         }
4898         if (status & MEM_WRAP_INT_CAUSE_F) {
4899                 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4900                 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4901                           "client %u to address %#x\n",
4902                           MEM_WRAP_CLIENT_NUM_G(v),
4903                           MEM_WRAP_ADDRESS_G(v) << 4);
4904         }
4905         t4_write_reg(adap, MA_INT_CAUSE_A, status);
4906         t4_fatal_err(adap);
4907 }
4908
4909 /*
4910  * SMB interrupt handler.
4911  */
4912 static void smb_intr_handler(struct adapter *adap)
4913 {
4914         static const struct intr_info smb_intr_info[] = {
4915                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4916                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4917                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4918                 { 0 }
4919         };
4920
4921         if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4922                 t4_fatal_err(adap);
4923 }
4924
4925 /*
4926  * NC-SI interrupt handler.
4927  */
4928 static void ncsi_intr_handler(struct adapter *adap)
4929 {
4930         static const struct intr_info ncsi_intr_info[] = {
4931                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4932                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4933                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4934                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4935                 { 0 }
4936         };
4937
4938         if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4939                 t4_fatal_err(adap);
4940 }
4941
4942 /*
4943  * XGMAC interrupt handler.
4944  */
4945 static void xgmac_intr_handler(struct adapter *adap, int port)
4946 {
4947         u32 v, int_cause_reg;
4948
4949         if (is_t4(adap->params.chip))
4950                 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4951         else
4952                 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4953
4954         v = t4_read_reg(adap, int_cause_reg);
4955
4956         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4957         if (!v)
4958                 return;
4959
4960         if (v & TXFIFO_PRTY_ERR_F)
4961                 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4962                           port);
4963         if (v & RXFIFO_PRTY_ERR_F)
4964                 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4965                           port);
4966         t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4967         t4_fatal_err(adap);
4968 }
4969
4970 /*
4971  * PL interrupt handler.
4972  */
4973 static void pl_intr_handler(struct adapter *adap)
4974 {
4975         static const struct intr_info pl_intr_info[] = {
4976                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4977                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4978                 { 0 }
4979         };
4980
4981         if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4982                 t4_fatal_err(adap);
4983 }
4984
4985 #define PF_INTR_MASK (PFSW_F)
4986 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4987                 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4988                 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4989
4990 /**
4991  *      t4_slow_intr_handler - control path interrupt handler
4992  *      @adapter: the adapter
4993  *
4994  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
4995  *      The designation 'slow' is because it involves register reads, while
4996  *      data interrupts typically don't involve any MMIOs.
4997  */
4998 int t4_slow_intr_handler(struct adapter *adapter)
4999 {
5000         /* There are rare cases where a PL_INT_CAUSE bit may end up getting
5001          * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5002          * easiest just to mask that case here.
5003          */
5004         u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5005         u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5006         u32 cause = raw_cause & enable;
5007
5008         if (!(cause & GLBL_INTR_MASK))
5009                 return 0;
5010         if (cause & CIM_F)
5011                 cim_intr_handler(adapter);
5012         if (cause & MPS_F)
5013                 mps_intr_handler(adapter);
5014         if (cause & NCSI_F)
5015                 ncsi_intr_handler(adapter);
5016         if (cause & PL_F)
5017                 pl_intr_handler(adapter);
5018         if (cause & SMB_F)
5019                 smb_intr_handler(adapter);
5020         if (cause & XGMAC0_F)
5021                 xgmac_intr_handler(adapter, 0);
5022         if (cause & XGMAC1_F)
5023                 xgmac_intr_handler(adapter, 1);
5024         if (cause & XGMAC_KR0_F)
5025                 xgmac_intr_handler(adapter, 2);
5026         if (cause & XGMAC_KR1_F)
5027                 xgmac_intr_handler(adapter, 3);
5028         if (cause & PCIE_F)
5029                 pcie_intr_handler(adapter);
5030         if (cause & MC_F)
5031                 mem_intr_handler(adapter, MEM_MC);
5032         if (is_t5(adapter->params.chip) && (cause & MC1_F))
5033                 mem_intr_handler(adapter, MEM_MC1);
5034         if (cause & EDC0_F)
5035                 mem_intr_handler(adapter, MEM_EDC0);
5036         if (cause & EDC1_F)
5037                 mem_intr_handler(adapter, MEM_EDC1);
5038         if (cause & LE_F)
5039                 le_intr_handler(adapter);
5040         if (cause & TP_F)
5041                 tp_intr_handler(adapter);
5042         if (cause & MA_F)
5043                 ma_intr_handler(adapter);
5044         if (cause & PM_TX_F)
5045                 pmtx_intr_handler(adapter);
5046         if (cause & PM_RX_F)
5047                 pmrx_intr_handler(adapter);
5048         if (cause & ULP_RX_F)
5049                 ulprx_intr_handler(adapter);
5050         if (cause & CPL_SWITCH_F)
5051                 cplsw_intr_handler(adapter);
5052         if (cause & SGE_F)
5053                 sge_intr_handler(adapter);
5054         if (cause & ULP_TX_F)
5055                 ulptx_intr_handler(adapter);
5056
5057         /* Clear the interrupts just processed for which we are the master. */
5058         t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5059         (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5060         return 1;
5061 }
5062
5063 /**
5064  *      t4_intr_enable - enable interrupts
5065  *      @adapter: the adapter whose interrupts should be enabled
5066  *
5067  *      Enable PF-specific interrupts for the calling function and the top-level
5068  *      interrupt concentrator for global interrupts.  Interrupts are already
5069  *      enabled at each module, here we just enable the roots of the interrupt
5070  *      hierarchies.
5071  *
5072  *      Note: this function should be called only when the driver manages
5073  *      non PF-specific interrupts from the various HW modules.  Only one PCI
5074  *      function at a time should be doing this.
5075  */
5076 void t4_intr_enable(struct adapter *adapter)
5077 {
5078         u32 val = 0;
5079         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5080         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5081                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5082
5083         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5084                 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5085         t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5086                      ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5087                      ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5088                      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5089                      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5090                      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5091                      DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5092         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5093         t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5094 }
5095
5096 /**
5097  *      t4_intr_disable - disable interrupts
5098  *      @adapter: the adapter whose interrupts should be disabled
5099  *
5100  *      Disable interrupts.  We only disable the top-level interrupt
5101  *      concentrators.  The caller must be a PCI function managing global
5102  *      interrupts.
5103  */
5104 void t4_intr_disable(struct adapter *adapter)
5105 {
5106         u32 whoami, pf;
5107
5108         if (pci_channel_offline(adapter->pdev))
5109                 return;
5110
5111         whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5112         pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5113                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5114
5115         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5116         t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5117 }
5118
5119 unsigned int t4_chip_rss_size(struct adapter *adap)
5120 {
5121         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5122                 return RSS_NENTRIES;
5123         else
5124                 return T6_RSS_NENTRIES;
5125 }
5126
5127 /**
5128  *      t4_config_rss_range - configure a portion of the RSS mapping table
5129  *      @adapter: the adapter
5130  *      @mbox: mbox to use for the FW command
5131  *      @viid: virtual interface whose RSS subtable is to be written
5132  *      @start: start entry in the table to write
5133  *      @n: how many table entries to write
5134  *      @rspq: values for the response queue lookup table
5135  *      @nrspq: number of values in @rspq
5136  *
5137  *      Programs the selected part of the VI's RSS mapping table with the
5138  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
5139  *      until the full table range is populated.
5140  *
5141  *      The caller must ensure the values in @rspq are in the range allowed for
5142  *      @viid.
5143  */
5144 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5145                         int start, int n, const u16 *rspq, unsigned int nrspq)
5146 {
5147         int ret;
5148         const u16 *rsp = rspq;
5149         const u16 *rsp_end = rspq + nrspq;
5150         struct fw_rss_ind_tbl_cmd cmd;
5151
5152         memset(&cmd, 0, sizeof(cmd));
5153         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5154                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5155                                FW_RSS_IND_TBL_CMD_VIID_V(viid));
5156         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5157
5158         /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5159         while (n > 0) {
5160                 int nq = min(n, 32);
5161                 __be32 *qp = &cmd.iq0_to_iq2;
5162
5163                 cmd.niqid = cpu_to_be16(nq);
5164                 cmd.startidx = cpu_to_be16(start);
5165
5166                 start += nq;
5167                 n -= nq;
5168
5169                 while (nq > 0) {
5170                         unsigned int v;
5171
5172                         v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5173                         if (++rsp >= rsp_end)
5174                                 rsp = rspq;
5175                         v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5176                         if (++rsp >= rsp_end)
5177                                 rsp = rspq;
5178                         v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5179                         if (++rsp >= rsp_end)
5180                                 rsp = rspq;
5181
5182                         *qp++ = cpu_to_be32(v);
5183                         nq -= 3;
5184                 }
5185
5186                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5187                 if (ret)
5188                         return ret;
5189         }
5190         return 0;
5191 }
5192
5193 /**
5194  *      t4_config_glbl_rss - configure the global RSS mode
5195  *      @adapter: the adapter
5196  *      @mbox: mbox to use for the FW command
5197  *      @mode: global RSS mode
5198  *      @flags: mode-specific flags
5199  *
5200  *      Sets the global RSS mode.
5201  */
5202 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5203                        unsigned int flags)
5204 {
5205         struct fw_rss_glb_config_cmd c;
5206
5207         memset(&c, 0, sizeof(c));
5208         c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5209                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5210         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5211         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5212                 c.u.manual.mode_pkd =
5213                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5214         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5215                 c.u.basicvirtual.mode_pkd =
5216                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5217                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5218         } else
5219                 return -EINVAL;
5220         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5221 }
5222
5223 /**
5224  *      t4_config_vi_rss - configure per VI RSS settings
5225  *      @adapter: the adapter
5226  *      @mbox: mbox to use for the FW command
5227  *      @viid: the VI id
5228  *      @flags: RSS flags
5229  *      @defq: id of the default RSS queue for the VI.
5230  *
5231  *      Configures VI-specific RSS properties.
5232  */
5233 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5234                      unsigned int flags, unsigned int defq)
5235 {
5236         struct fw_rss_vi_config_cmd c;
5237
5238         memset(&c, 0, sizeof(c));
5239         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5240                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5241                                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5242         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5243         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5244                                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5245         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5246 }
5247
5248 /* Read an RSS table row */
5249 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5250 {
5251         t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5252         return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5253                                    5, 0, val);
5254 }
5255
5256 /**
5257  *      t4_read_rss - read the contents of the RSS mapping table
5258  *      @adapter: the adapter
5259  *      @map: holds the contents of the RSS mapping table
5260  *
5261  *      Reads the contents of the RSS hash->queue mapping table.
5262  */
5263 int t4_read_rss(struct adapter *adapter, u16 *map)
5264 {
5265         int i, ret, nentries;
5266         u32 val;
5267
5268         nentries = t4_chip_rss_size(adapter);
5269         for (i = 0; i < nentries / 2; ++i) {
5270                 ret = rd_rss_row(adapter, i, &val);
5271                 if (ret)
5272                         return ret;
5273                 *map++ = LKPTBLQUEUE0_G(val);
5274                 *map++ = LKPTBLQUEUE1_G(val);
5275         }
5276         return 0;
5277 }
5278
5279 static unsigned int t4_use_ldst(struct adapter *adap)
5280 {
5281         return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5282 }
5283
5284 /**
5285  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5286  * @adap: the adapter
5287  * @cmd: TP fw ldst address space type
5288  * @vals: where the indirect register values are stored/written
5289  * @nregs: how many indirect registers to read/write
5290  * @start_index: index of first indirect register to read/write
5291  * @rw: Read (1) or Write (0)
5292  * @sleep_ok: if true we may sleep while awaiting command completion
5293  *
5294  * Access TP indirect registers through LDST
5295  */
5296 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5297                             unsigned int nregs, unsigned int start_index,
5298                             unsigned int rw, bool sleep_ok)
5299 {
5300         int ret = 0;
5301         unsigned int i;
5302         struct fw_ldst_cmd c;
5303
5304         for (i = 0; i < nregs; i++) {
5305                 memset(&c, 0, sizeof(c));
5306                 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5307                                                 FW_CMD_REQUEST_F |
5308                                                 (rw ? FW_CMD_READ_F :
5309                                                       FW_CMD_WRITE_F) |
5310                                                 FW_LDST_CMD_ADDRSPACE_V(cmd));
5311                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5312
5313                 c.u.addrval.addr = cpu_to_be32(start_index + i);
5314                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5315                 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5316                                       sleep_ok);
5317                 if (ret)
5318                         return ret;
5319
5320                 if (rw)
5321                         vals[i] = be32_to_cpu(c.u.addrval.val);
5322         }
5323         return 0;
5324 }
5325
5326 /**
5327  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5328  * @adap: the adapter
5329  * @reg_addr: Address Register
5330  * @reg_data: Data register
5331  * @buff: where the indirect register values are stored/written
5332  * @nregs: how many indirect registers to read/write
5333  * @start_index: index of first indirect register to read/write
5334  * @rw: READ(1) or WRITE(0)
5335  * @sleep_ok: if true we may sleep while awaiting command completion
5336  *
5337  * Read/Write TP indirect registers through LDST if possible.
5338  * Else, use backdoor access
5339  **/
5340 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5341                               u32 *buff, u32 nregs, u32 start_index, int rw,
5342                               bool sleep_ok)
5343 {
5344         int rc = -EINVAL;
5345         int cmd;
5346
5347         switch (reg_addr) {
5348         case TP_PIO_ADDR_A:
5349                 cmd = FW_LDST_ADDRSPC_TP_PIO;
5350                 break;
5351         case TP_TM_PIO_ADDR_A:
5352                 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5353                 break;
5354         case TP_MIB_INDEX_A:
5355                 cmd = FW_LDST_ADDRSPC_TP_MIB;
5356                 break;
5357         default:
5358                 goto indirect_access;
5359         }
5360
5361         if (t4_use_ldst(adap))
5362                 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5363                                       sleep_ok);
5364
5365 indirect_access:
5366
5367         if (rc) {
5368                 if (rw)
5369                         t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5370                                          start_index);
5371                 else
5372                         t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5373                                           start_index);
5374         }
5375 }
5376
5377 /**
5378  * t4_tp_pio_read - Read TP PIO registers
5379  * @adap: the adapter
5380  * @buff: where the indirect register values are written
5381  * @nregs: how many indirect registers to read
5382  * @start_index: index of first indirect register to read
5383  * @sleep_ok: if true we may sleep while awaiting command completion
5384  *
5385  * Read TP PIO Registers
5386  **/
5387 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5388                     u32 start_index, bool sleep_ok)
5389 {
5390         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5391                           start_index, 1, sleep_ok);
5392 }
5393
5394 /**
5395  * t4_tp_pio_write - Write TP PIO registers
5396  * @adap: the adapter
5397  * @buff: where the indirect register values are stored
5398  * @nregs: how many indirect registers to write
5399  * @start_index: index of first indirect register to write
5400  * @sleep_ok: if true we may sleep while awaiting command completion
5401  *
5402  * Write TP PIO Registers
5403  **/
5404 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5405                             u32 start_index, bool sleep_ok)
5406 {
5407         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5408                           start_index, 0, sleep_ok);
5409 }
5410
5411 /**
5412  * t4_tp_tm_pio_read - Read TP TM PIO registers
5413  * @adap: the adapter
5414  * @buff: where the indirect register values are written
5415  * @nregs: how many indirect registers to read
5416  * @start_index: index of first indirect register to read
5417  * @sleep_ok: if true we may sleep while awaiting command completion
5418  *
5419  * Read TP TM PIO Registers
5420  **/
5421 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5422                        u32 start_index, bool sleep_ok)
5423 {
5424         t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5425                           nregs, start_index, 1, sleep_ok);
5426 }
5427
5428 /**
5429  * t4_tp_mib_read - Read TP MIB registers
5430  * @adap: the adapter
5431  * @buff: where the indirect register values are written
5432  * @nregs: how many indirect registers to read
5433  * @start_index: index of first indirect register to read
5434  * @sleep_ok: if true we may sleep while awaiting command completion
5435  *
5436  * Read TP MIB Registers
5437  **/
5438 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5439                     bool sleep_ok)
5440 {
5441         t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5442                           start_index, 1, sleep_ok);
5443 }
5444
5445 /**
5446  *      t4_read_rss_key - read the global RSS key
5447  *      @adap: the adapter
5448  *      @key: 10-entry array holding the 320-bit RSS key
5449  *      @sleep_ok: if true we may sleep while awaiting command completion
5450  *
5451  *      Reads the global 320-bit RSS key.
5452  */
5453 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5454 {
5455         t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5456 }
5457
5458 /**
5459  *      t4_write_rss_key - program one of the RSS keys
5460  *      @adap: the adapter
5461  *      @key: 10-entry array holding the 320-bit RSS key
5462  *      @idx: which RSS key to write
5463  *      @sleep_ok: if true we may sleep while awaiting command completion
5464  *
5465  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5466  *      0..15 the corresponding entry in the RSS key table is written,
5467  *      otherwise the global RSS key is written.
5468  */
5469 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5470                       bool sleep_ok)
5471 {
5472         u8 rss_key_addr_cnt = 16;
5473         u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5474
5475         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5476          * allows access to key addresses 16-63 by using KeyWrAddrX
5477          * as index[5:4](upper 2) into key table
5478          */
5479         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5480             (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5481                 rss_key_addr_cnt = 32;
5482
5483         t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5484
5485         if (idx >= 0 && idx < rss_key_addr_cnt) {
5486                 if (rss_key_addr_cnt > 16)
5487                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5488                                      KEYWRADDRX_V(idx >> 4) |
5489                                      T6_VFWRADDR_V(idx) | KEYWREN_F);
5490                 else
5491                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5492                                      KEYWRADDR_V(idx) | KEYWREN_F);
5493         }
5494 }
5495
5496 /**
5497  *      t4_read_rss_pf_config - read PF RSS Configuration Table
5498  *      @adapter: the adapter
5499  *      @index: the entry in the PF RSS table to read
5500  *      @valp: where to store the returned value
5501  *      @sleep_ok: if true we may sleep while awaiting command completion
5502  *
5503  *      Reads the PF RSS Configuration Table at the specified index and returns
5504  *      the value found there.
5505  */
5506 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5507                            u32 *valp, bool sleep_ok)
5508 {
5509         t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5510 }
5511
5512 /**
5513  *      t4_read_rss_vf_config - read VF RSS Configuration Table
5514  *      @adapter: the adapter
5515  *      @index: the entry in the VF RSS table to read
5516  *      @vfl: where to store the returned VFL
5517  *      @vfh: where to store the returned VFH
5518  *      @sleep_ok: if true we may sleep while awaiting command completion
5519  *
5520  *      Reads the VF RSS Configuration Table at the specified index and returns
5521  *      the (VFL, VFH) values found there.
5522  */
5523 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5524                            u32 *vfl, u32 *vfh, bool sleep_ok)
5525 {
5526         u32 vrt, mask, data;
5527
5528         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5529                 mask = VFWRADDR_V(VFWRADDR_M);
5530                 data = VFWRADDR_V(index);
5531         } else {
5532                  mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5533                  data = T6_VFWRADDR_V(index);
5534         }
5535
5536         /* Request that the index'th VF Table values be read into VFL/VFH.
5537          */
5538         vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5539         vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5540         vrt |= data | VFRDEN_F;
5541         t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5542
5543         /* Grab the VFL/VFH values ...
5544          */
5545         t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5546         t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5547 }
5548
5549 /**
5550  *      t4_read_rss_pf_map - read PF RSS Map
5551  *      @adapter: the adapter
5552  *      @sleep_ok: if true we may sleep while awaiting command completion
5553  *
5554  *      Reads the PF RSS Map register and returns its value.
5555  */
5556 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5557 {
5558         u32 pfmap;
5559
5560         t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5561         return pfmap;
5562 }
5563
5564 /**
5565  *      t4_read_rss_pf_mask - read PF RSS Mask
5566  *      @adapter: the adapter
5567  *      @sleep_ok: if true we may sleep while awaiting command completion
5568  *
5569  *      Reads the PF RSS Mask register and returns its value.
5570  */
5571 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5572 {
5573         u32 pfmask;
5574
5575         t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5576         return pfmask;
5577 }
5578
5579 /**
5580  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
5581  *      @adap: the adapter
5582  *      @v4: holds the TCP/IP counter values
5583  *      @v6: holds the TCP/IPv6 counter values
5584  *      @sleep_ok: if true we may sleep while awaiting command completion
5585  *
5586  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5587  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5588  */
5589 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5590                          struct tp_tcp_stats *v6, bool sleep_ok)
5591 {
5592         u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5593
5594 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5595 #define STAT(x)     val[STAT_IDX(x)]
5596 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5597
5598         if (v4) {
5599                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5600                                TP_MIB_TCP_OUT_RST_A, sleep_ok);
5601                 v4->tcp_out_rsts = STAT(OUT_RST);
5602                 v4->tcp_in_segs  = STAT64(IN_SEG);
5603                 v4->tcp_out_segs = STAT64(OUT_SEG);
5604                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
5605         }
5606         if (v6) {
5607                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5608                                TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5609                 v6->tcp_out_rsts = STAT(OUT_RST);
5610                 v6->tcp_in_segs  = STAT64(IN_SEG);
5611                 v6->tcp_out_segs = STAT64(OUT_SEG);
5612                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
5613         }
5614 #undef STAT64
5615 #undef STAT
5616 #undef STAT_IDX
5617 }
5618
5619 /**
5620  *      t4_tp_get_err_stats - read TP's error MIB counters
5621  *      @adap: the adapter
5622  *      @st: holds the counter values
5623  *      @sleep_ok: if true we may sleep while awaiting command completion
5624  *
5625  *      Returns the values of TP's error counters.
5626  */
5627 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5628                          bool sleep_ok)
5629 {
5630         int nchan = adap->params.arch.nchan;
5631
5632         t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5633                        sleep_ok);
5634         t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5635                        sleep_ok);
5636         t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5637                        sleep_ok);
5638         t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5639                        TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5640         t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5641                        TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5642         t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5643                        sleep_ok);
5644         t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5645                        TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5646         t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5647                        TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5648         t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5649                        sleep_ok);
5650 }
5651
5652 /**
5653  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
5654  *      @adap: the adapter
5655  *      @st: holds the counter values
5656  *      @sleep_ok: if true we may sleep while awaiting command completion
5657  *
5658  *      Returns the values of TP's CPL counters.
5659  */
5660 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5661                          bool sleep_ok)
5662 {
5663         int nchan = adap->params.arch.nchan;
5664
5665         t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5666
5667         t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5668 }
5669
5670 /**
5671  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5672  *      @adap: the adapter
5673  *      @st: holds the counter values
5674  *      @sleep_ok: if true we may sleep while awaiting command completion
5675  *
5676  *      Returns the values of TP's RDMA counters.
5677  */
5678 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5679                           bool sleep_ok)
5680 {
5681         t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5682                        sleep_ok);
5683 }
5684
5685 /**
5686  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5687  *      @adap: the adapter
5688  *      @idx: the port index
5689  *      @st: holds the counter values
5690  *      @sleep_ok: if true we may sleep while awaiting command completion
5691  *
5692  *      Returns the values of TP's FCoE counters for the selected port.
5693  */
5694 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5695                        struct tp_fcoe_stats *st, bool sleep_ok)
5696 {
5697         u32 val[2];
5698
5699         t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5700                        sleep_ok);
5701
5702         t4_tp_mib_read(adap, &st->frames_drop, 1,
5703                        TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5704
5705         t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5706                        sleep_ok);
5707
5708         st->octets_ddp = ((u64)val[0] << 32) | val[1];
5709 }
5710
5711 /**
5712  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5713  *      @adap: the adapter
5714  *      @st: holds the counter values
5715  *      @sleep_ok: if true we may sleep while awaiting command completion
5716  *
5717  *      Returns the values of TP's counters for non-TCP directly-placed packets.
5718  */
5719 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5720                       bool sleep_ok)
5721 {
5722         u32 val[4];
5723
5724         t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5725         st->frames = val[0];
5726         st->drops = val[1];
5727         st->octets = ((u64)val[2] << 32) | val[3];
5728 }
5729
5730 /**
5731  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
5732  *      @adap: the adapter
5733  *      @mtus: where to store the MTU values
5734  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
5735  *
5736  *      Reads the HW path MTU table.
5737  */
5738 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5739 {
5740         u32 v;
5741         int i;
5742
5743         for (i = 0; i < NMTUS; ++i) {
5744                 t4_write_reg(adap, TP_MTU_TABLE_A,
5745                              MTUINDEX_V(0xff) | MTUVALUE_V(i));
5746                 v = t4_read_reg(adap, TP_MTU_TABLE_A);
5747                 mtus[i] = MTUVALUE_G(v);
5748                 if (mtu_log)
5749                         mtu_log[i] = MTUWIDTH_G(v);
5750         }
5751 }
5752
5753 /**
5754  *      t4_read_cong_tbl - reads the congestion control table
5755  *      @adap: the adapter
5756  *      @incr: where to store the alpha values
5757  *
5758  *      Reads the additive increments programmed into the HW congestion
5759  *      control table.
5760  */
5761 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5762 {
5763         unsigned int mtu, w;
5764
5765         for (mtu = 0; mtu < NMTUS; ++mtu)
5766                 for (w = 0; w < NCCTRL_WIN; ++w) {
5767                         t4_write_reg(adap, TP_CCTRL_TABLE_A,
5768                                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
5769                         incr[mtu][w] = (u16)t4_read_reg(adap,
5770                                                 TP_CCTRL_TABLE_A) & 0x1fff;
5771                 }
5772 }
5773
5774 /**
5775  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5776  *      @adap: the adapter
5777  *      @addr: the indirect TP register address
5778  *      @mask: specifies the field within the register to modify
5779  *      @val: new value for the field
5780  *
5781  *      Sets a field of an indirect TP register to the given value.
5782  */
5783 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5784                             unsigned int mask, unsigned int val)
5785 {
5786         t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5787         val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5788         t4_write_reg(adap, TP_PIO_DATA_A, val);
5789 }
5790
5791 /**
5792  *      init_cong_ctrl - initialize congestion control parameters
5793  *      @a: the alpha values for congestion control
5794  *      @b: the beta values for congestion control
5795  *
5796  *      Initialize the congestion control parameters.
5797  */
5798 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5799 {
5800         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5801         a[9] = 2;
5802         a[10] = 3;
5803         a[11] = 4;
5804         a[12] = 5;
5805         a[13] = 6;
5806         a[14] = 7;
5807         a[15] = 8;
5808         a[16] = 9;
5809         a[17] = 10;
5810         a[18] = 14;
5811         a[19] = 17;
5812         a[20] = 21;
5813         a[21] = 25;
5814         a[22] = 30;
5815         a[23] = 35;
5816         a[24] = 45;
5817         a[25] = 60;
5818         a[26] = 80;
5819         a[27] = 100;
5820         a[28] = 200;
5821         a[29] = 300;
5822         a[30] = 400;
5823         a[31] = 500;
5824
5825         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5826         b[9] = b[10] = 1;
5827         b[11] = b[12] = 2;
5828         b[13] = b[14] = b[15] = b[16] = 3;
5829         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5830         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5831         b[28] = b[29] = 6;
5832         b[30] = b[31] = 7;
5833 }
5834
5835 /* The minimum additive increment value for the congestion control table */
5836 #define CC_MIN_INCR 2U
5837
5838 /**
5839  *      t4_load_mtus - write the MTU and congestion control HW tables
5840  *      @adap: the adapter
5841  *      @mtus: the values for the MTU table
5842  *      @alpha: the values for the congestion control alpha parameter
5843  *      @beta: the values for the congestion control beta parameter
5844  *
5845  *      Write the HW MTU table with the supplied MTUs and the high-speed
5846  *      congestion control table with the supplied alpha, beta, and MTUs.
5847  *      We write the two tables together because the additive increments
5848  *      depend on the MTUs.
5849  */
5850 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5851                   const unsigned short *alpha, const unsigned short *beta)
5852 {
5853         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5854                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5855                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5856                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5857         };
5858
5859         unsigned int i, w;
5860
5861         for (i = 0; i < NMTUS; ++i) {
5862                 unsigned int mtu = mtus[i];
5863                 unsigned int log2 = fls(mtu);
5864
5865                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5866                         log2--;
5867                 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5868                              MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5869
5870                 for (w = 0; w < NCCTRL_WIN; ++w) {
5871                         unsigned int inc;
5872
5873                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5874                                   CC_MIN_INCR);
5875
5876                         t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5877                                      (w << 16) | (beta[w] << 13) | inc);
5878                 }
5879         }
5880 }
5881
5882 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5883  * clocks.  The formula is
5884  *
5885  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5886  *
5887  * which is equivalent to
5888  *
5889  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5890  */
5891 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5892 {
5893         u64 v = bytes256 * adap->params.vpd.cclk;
5894
5895         return v * 62 + v / 2;
5896 }
5897
5898 /**
5899  *      t4_get_chan_txrate - get the current per channel Tx rates
5900  *      @adap: the adapter
5901  *      @nic_rate: rates for NIC traffic
5902  *      @ofld_rate: rates for offloaded traffic
5903  *
5904  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5905  *      for each channel.
5906  */
5907 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5908 {
5909         u32 v;
5910
5911         v = t4_read_reg(adap, TP_TX_TRATE_A);
5912         nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5913         nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5914         if (adap->params.arch.nchan == NCHAN) {
5915                 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5916                 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5917         }
5918
5919         v = t4_read_reg(adap, TP_TX_ORATE_A);
5920         ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5921         ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5922         if (adap->params.arch.nchan == NCHAN) {
5923                 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5924                 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5925         }
5926 }
5927
5928 /**
5929  *      t4_set_trace_filter - configure one of the tracing filters
5930  *      @adap: the adapter
5931  *      @tp: the desired trace filter parameters
5932  *      @idx: which filter to configure
5933  *      @enable: whether to enable or disable the filter
5934  *
5935  *      Configures one of the tracing filters available in HW.  If @enable is
5936  *      %0 @tp is not examined and may be %NULL. The user is responsible to
5937  *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5938  */
5939 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5940                         int idx, int enable)
5941 {
5942         int i, ofst = idx * 4;
5943         u32 data_reg, mask_reg, cfg;
5944
5945         if (!enable) {
5946                 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5947                 return 0;
5948         }
5949
5950         cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5951         if (cfg & TRCMULTIFILTER_F) {
5952                 /* If multiple tracers are enabled, then maximum
5953                  * capture size is 2.5KB (FIFO size of a single channel)
5954                  * minus 2 flits for CPL_TRACE_PKT header.
5955                  */
5956                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5957                         return -EINVAL;
5958         } else {
5959                 /* If multiple tracers are disabled, to avoid deadlocks
5960                  * maximum packet capture size of 9600 bytes is recommended.
5961                  * Also in this mode, only trace0 can be enabled and running.
5962                  */
5963                 if (tp->snap_len > 9600 || idx)
5964                         return -EINVAL;
5965         }
5966
5967         if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5968             tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5969             tp->min_len > TFMINPKTSIZE_M)
5970                 return -EINVAL;
5971
5972         /* stop the tracer we'll be changing */
5973         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5974
5975         idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5976         data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5977         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5978
5979         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5980                 t4_write_reg(adap, data_reg, tp->data[i]);
5981                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5982         }
5983         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5984                      TFCAPTUREMAX_V(tp->snap_len) |
5985                      TFMINPKTSIZE_V(tp->min_len));
5986         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5987                      TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5988                      (is_t4(adap->params.chip) ?
5989                      TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5990                      T5_TFPORT_V(tp->port) | T5_TFEN_F |
5991                      T5_TFINVERTMATCH_V(tp->invert)));
5992
5993         return 0;
5994 }
5995
5996 /**
5997  *      t4_get_trace_filter - query one of the tracing filters
5998  *      @adap: the adapter
5999  *      @tp: the current trace filter parameters
6000  *      @idx: which trace filter to query
6001  *      @enabled: non-zero if the filter is enabled
6002  *
6003  *      Returns the current settings of one of the HW tracing filters.
6004  */
6005 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6006                          int *enabled)
6007 {
6008         u32 ctla, ctlb;
6009         int i, ofst = idx * 4;
6010         u32 data_reg, mask_reg;
6011
6012         ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6013         ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6014
6015         if (is_t4(adap->params.chip)) {
6016                 *enabled = !!(ctla & TFEN_F);
6017                 tp->port =  TFPORT_G(ctla);
6018                 tp->invert = !!(ctla & TFINVERTMATCH_F);
6019         } else {
6020                 *enabled = !!(ctla & T5_TFEN_F);
6021                 tp->port = T5_TFPORT_G(ctla);
6022                 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6023         }
6024         tp->snap_len = TFCAPTUREMAX_G(ctlb);
6025         tp->min_len = TFMINPKTSIZE_G(ctlb);
6026         tp->skip_ofst = TFOFFSET_G(ctla);
6027         tp->skip_len = TFLENGTH_G(ctla);
6028
6029         ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6030         data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6031         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6032
6033         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6034                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6035                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6036         }
6037 }
6038
6039 /**
6040  *      t4_pmtx_get_stats - returns the HW stats from PMTX
6041  *      @adap: the adapter
6042  *      @cnt: where to store the count statistics
6043  *      @cycles: where to store the cycle statistics
6044  *
6045  *      Returns performance statistics from PMTX.
6046  */
6047 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6048 {
6049         int i;
6050         u32 data[2];
6051
6052         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6053                 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6054                 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6055                 if (is_t4(adap->params.chip)) {
6056                         cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6057                 } else {
6058                         t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6059                                          PM_TX_DBG_DATA_A, data, 2,
6060                                          PM_TX_DBG_STAT_MSB_A);
6061                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6062                 }
6063         }
6064 }
6065
6066 /**
6067  *      t4_pmrx_get_stats - returns the HW stats from PMRX
6068  *      @adap: the adapter
6069  *      @cnt: where to store the count statistics
6070  *      @cycles: where to store the cycle statistics
6071  *
6072  *      Returns performance statistics from PMRX.
6073  */
6074 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6075 {
6076         int i;
6077         u32 data[2];
6078
6079         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6080                 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6081                 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6082                 if (is_t4(adap->params.chip)) {
6083                         cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6084                 } else {
6085                         t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6086                                          PM_RX_DBG_DATA_A, data, 2,
6087                                          PM_RX_DBG_STAT_MSB_A);
6088                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6089                 }
6090         }
6091 }
6092
6093 /**
6094  *      compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6095  *      @adapter: the adapter
6096  *      @pidx: the port index
6097  *
6098  *      Computes and returns a bitmap indicating which MPS buffer groups are
6099  *      associated with the given Port.  Bit i is set if buffer group i is
6100  *      used by the Port.
6101  */
6102 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6103                                               int pidx)
6104 {
6105         unsigned int chip_version, nports;
6106
6107         chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6108         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6109
6110         switch (chip_version) {
6111         case CHELSIO_T4:
6112         case CHELSIO_T5:
6113                 switch (nports) {
6114                 case 1: return 0xf;
6115                 case 2: return 3 << (2 * pidx);
6116                 case 4: return 1 << pidx;
6117                 }
6118                 break;
6119
6120         case CHELSIO_T6:
6121                 switch (nports) {
6122                 case 2: return 1 << (2 * pidx);
6123                 }
6124                 break;
6125         }
6126
6127         dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6128                 chip_version, nports);
6129
6130         return 0;
6131 }
6132
6133 /**
6134  *      t4_get_mps_bg_map - return the buffer groups associated with a port
6135  *      @adapter: the adapter
6136  *      @pidx: the port index
6137  *
6138  *      Returns a bitmap indicating which MPS buffer groups are associated
6139  *      with the given Port.  Bit i is set if buffer group i is used by the
6140  *      Port.
6141  */
6142 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6143 {
6144         u8 *mps_bg_map;
6145         unsigned int nports;
6146
6147         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6148         if (pidx >= nports) {
6149                 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6150                         pidx, nports);
6151                 return 0;
6152         }
6153
6154         /* If we've already retrieved/computed this, just return the result.
6155          */
6156         mps_bg_map = adapter->params.mps_bg_map;
6157         if (mps_bg_map[pidx])
6158                 return mps_bg_map[pidx];
6159
6160         /* Newer Firmware can tell us what the MPS Buffer Group Map is.
6161          * If we're talking to such Firmware, let it tell us.  If the new
6162          * API isn't supported, revert back to old hardcoded way.  The value
6163          * obtained from Firmware is encoded in below format:
6164          *
6165          * val = (( MPSBGMAP[Port 3] << 24 ) |
6166          *        ( MPSBGMAP[Port 2] << 16 ) |
6167          *        ( MPSBGMAP[Port 1] <<  8 ) |
6168          *        ( MPSBGMAP[Port 0] <<  0 ))
6169          */
6170         if (adapter->flags & CXGB4_FW_OK) {
6171                 u32 param, val;
6172                 int ret;
6173
6174                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6175                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6176                 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6177                                          0, 1, &param, &val);
6178                 if (!ret) {
6179                         int p;
6180
6181                         /* Store the BG Map for all of the Ports in order to
6182                          * avoid more calls to the Firmware in the future.
6183                          */
6184                         for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6185                                 mps_bg_map[p] = val & 0xff;
6186
6187                         return mps_bg_map[pidx];
6188                 }
6189         }
6190
6191         /* Either we're not talking to the Firmware or we're dealing with
6192          * older Firmware which doesn't support the new API to get the MPS
6193          * Buffer Group Map.  Fall back to computing it ourselves.
6194          */
6195         mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6196         return mps_bg_map[pidx];
6197 }
6198
6199 /**
6200  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6201  *      @adapter: the adapter
6202  *      @pidx: the port index
6203  */
6204 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6205 {
6206         unsigned int nports;
6207         u32 param, val = 0;
6208         int ret;
6209
6210         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6211         if (pidx >= nports) {
6212                 CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6213                         pidx, nports);
6214                 return 0;
6215         }
6216
6217         /* FW version >= 1.16.44.0 can determine E2C channel map using
6218          * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6219          */
6220         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6221                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6222         ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6223                                  0, 1, &param, &val);
6224         if (!ret)
6225                 return (val >> (8 * pidx)) & 0xff;
6226
6227         return 0;
6228 }
6229
6230 /**
6231  *      t4_get_tp_ch_map - return TP ingress channels associated with a port
6232  *      @adap: the adapter
6233  *      @pidx: the port index
6234  *
6235  *      Returns a bitmap indicating which TP Ingress Channels are associated
6236  *      with a given Port.  Bit i is set if TP Ingress Channel i is used by
6237  *      the Port.
6238  */
6239 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6240 {
6241         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6242         unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6243
6244         if (pidx >= nports) {
6245                 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6246                          pidx, nports);
6247                 return 0;
6248         }
6249
6250         switch (chip_version) {
6251         case CHELSIO_T4:
6252         case CHELSIO_T5:
6253                 /* Note that this happens to be the same values as the MPS
6254                  * Buffer Group Map for these Chips.  But we replicate the code
6255                  * here because they're really separate concepts.
6256                  */
6257                 switch (nports) {
6258                 case 1: return 0xf;
6259                 case 2: return 3 << (2 * pidx);
6260                 case 4: return 1 << pidx;
6261                 }
6262                 break;
6263
6264         case CHELSIO_T6:
6265                 switch (nports) {
6266                 case 1:
6267                 case 2: return 1 << pidx;
6268                 }
6269                 break;
6270         }
6271
6272         dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6273                 chip_version, nports);
6274         return 0;
6275 }
6276
6277 /**
6278  *      t4_get_port_type_description - return Port Type string description
6279  *      @port_type: firmware Port Type enumeration
6280  */
6281 const char *t4_get_port_type_description(enum fw_port_type port_type)
6282 {
6283         static const char *const port_type_description[] = {
6284                 "Fiber_XFI",
6285                 "Fiber_XAUI",
6286                 "BT_SGMII",
6287                 "BT_XFI",
6288                 "BT_XAUI",
6289                 "KX4",
6290                 "CX4",
6291                 "KX",
6292                 "KR",
6293                 "SFP",
6294                 "BP_AP",
6295                 "BP4_AP",
6296                 "QSFP_10G",
6297                 "QSA",
6298                 "QSFP",
6299                 "BP40_BA",
6300                 "KR4_100G",
6301                 "CR4_QSFP",
6302                 "CR_QSFP",
6303                 "CR2_QSFP",
6304                 "SFP28",
6305                 "KR_SFP28",
6306                 "KR_XLAUI"
6307         };
6308
6309         if (port_type < ARRAY_SIZE(port_type_description))
6310                 return port_type_description[port_type];
6311         return "UNKNOWN";
6312 }
6313
6314 /**
6315  *      t4_get_port_stats_offset - collect port stats relative to a previous
6316  *                                 snapshot
6317  *      @adap: The adapter
6318  *      @idx: The port
6319  *      @stats: Current stats to fill
6320  *      @offset: Previous stats snapshot
6321  */
6322 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6323                               struct port_stats *stats,
6324                               struct port_stats *offset)
6325 {
6326         u64 *s, *o;
6327         int i;
6328
6329         t4_get_port_stats(adap, idx, stats);
6330         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6331                         i < (sizeof(struct port_stats) / sizeof(u64));
6332                         i++, s++, o++)
6333                 *s -= *o;
6334 }
6335
6336 /**
6337  *      t4_get_port_stats - collect port statistics
6338  *      @adap: the adapter
6339  *      @idx: the port index
6340  *      @p: the stats structure to fill
6341  *
6342  *      Collect statistics related to the given port from HW.
6343  */
6344 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6345 {
6346         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6347         u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6348
6349 #define GET_STAT(name) \
6350         t4_read_reg64(adap, \
6351         (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6352         T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6353 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6354
6355         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6356         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6357         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6358         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6359         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6360         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6361         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6362         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6363         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6364         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6365         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6366         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6367         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6368         p->tx_drop             = GET_STAT(TX_PORT_DROP);
6369         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6370         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6371         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6372         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6373         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6374         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6375         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6376         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6377         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6378
6379         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6380                 if (stat_ctl & COUNTPAUSESTATTX_F)
6381                         p->tx_frames_64 -= p->tx_pause;
6382                 if (stat_ctl & COUNTPAUSEMCTX_F)
6383                         p->tx_mcast_frames -= p->tx_pause;
6384         }
6385         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6386         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6387         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6388         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6389         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6390         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6391         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6392         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6393         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6394         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6395         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6396         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6397         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6398         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6399         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6400         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6401         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6402         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6403         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6404         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6405         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6406         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6407         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6408         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6409         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6410         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6411         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6412
6413         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6414                 if (stat_ctl & COUNTPAUSESTATRX_F)
6415                         p->rx_frames_64 -= p->rx_pause;
6416                 if (stat_ctl & COUNTPAUSEMCRX_F)
6417                         p->rx_mcast_frames -= p->rx_pause;
6418         }
6419
6420         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6421         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6422         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6423         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6424         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6425         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6426         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6427         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6428
6429 #undef GET_STAT
6430 #undef GET_STAT_COM
6431 }
6432
6433 /**
6434  *      t4_get_lb_stats - collect loopback port statistics
6435  *      @adap: the adapter
6436  *      @idx: the loopback port index
6437  *      @p: the stats structure to fill
6438  *
6439  *      Return HW statistics for the given loopback port.
6440  */
6441 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6442 {
6443         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6444
6445 #define GET_STAT(name) \
6446         t4_read_reg64(adap, \
6447         (is_t4(adap->params.chip) ? \
6448         PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6449         T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6450 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6451
6452         p->octets           = GET_STAT(BYTES);
6453         p->frames           = GET_STAT(FRAMES);
6454         p->bcast_frames     = GET_STAT(BCAST);
6455         p->mcast_frames     = GET_STAT(MCAST);
6456         p->ucast_frames     = GET_STAT(UCAST);
6457         p->error_frames     = GET_STAT(ERROR);
6458
6459         p->frames_64        = GET_STAT(64B);
6460         p->frames_65_127    = GET_STAT(65B_127B);
6461         p->frames_128_255   = GET_STAT(128B_255B);
6462         p->frames_256_511   = GET_STAT(256B_511B);
6463         p->frames_512_1023  = GET_STAT(512B_1023B);
6464         p->frames_1024_1518 = GET_STAT(1024B_1518B);
6465         p->frames_1519_max  = GET_STAT(1519B_MAX);
6466         p->drop             = GET_STAT(DROP_FRAMES);
6467
6468         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6469         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6470         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6471         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6472         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6473         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6474         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6475         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6476
6477 #undef GET_STAT
6478 #undef GET_STAT_COM
6479 }
6480
6481 /*     t4_mk_filtdelwr - create a delete filter WR
6482  *     @ftid: the filter ID
6483  *     @wr: the filter work request to populate
6484  *     @qid: ingress queue to receive the delete notification
6485  *
6486  *     Creates a filter work request to delete the supplied filter.  If @qid is
6487  *     negative the delete notification is suppressed.
6488  */
6489 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6490 {
6491         memset(wr, 0, sizeof(*wr));
6492         wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6493         wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6494         wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6495                                     FW_FILTER_WR_NOREPLY_V(qid < 0));
6496         wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6497         if (qid >= 0)
6498                 wr->rx_chan_rx_rpl_iq =
6499                         cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6500 }
6501
6502 #define INIT_CMD(var, cmd, rd_wr) do { \
6503         (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6504                                         FW_CMD_REQUEST_F | \
6505                                         FW_CMD_##rd_wr##_F); \
6506         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6507 } while (0)
6508
6509 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6510                           u32 addr, u32 val)
6511 {
6512         u32 ldst_addrspace;
6513         struct fw_ldst_cmd c;
6514
6515         memset(&c, 0, sizeof(c));
6516         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6517         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6518                                         FW_CMD_REQUEST_F |
6519                                         FW_CMD_WRITE_F |
6520                                         ldst_addrspace);
6521         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6522         c.u.addrval.addr = cpu_to_be32(addr);
6523         c.u.addrval.val = cpu_to_be32(val);
6524
6525         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6526 }
6527
6528 /**
6529  *      t4_mdio_rd - read a PHY register through MDIO
6530  *      @adap: the adapter
6531  *      @mbox: mailbox to use for the FW command
6532  *      @phy_addr: the PHY address
6533  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6534  *      @reg: the register to read
6535  *      @valp: where to store the value
6536  *
6537  *      Issues a FW command through the given mailbox to read a PHY register.
6538  */
6539 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6540                unsigned int mmd, unsigned int reg, u16 *valp)
6541 {
6542         int ret;
6543         u32 ldst_addrspace;
6544         struct fw_ldst_cmd c;
6545
6546         memset(&c, 0, sizeof(c));
6547         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6548         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6549                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6550                                         ldst_addrspace);
6551         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6552         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6553                                          FW_LDST_CMD_MMD_V(mmd));
6554         c.u.mdio.raddr = cpu_to_be16(reg);
6555
6556         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6557         if (ret == 0)
6558                 *valp = be16_to_cpu(c.u.mdio.rval);
6559         return ret;
6560 }
6561
6562 /**
6563  *      t4_mdio_wr - write a PHY register through MDIO
6564  *      @adap: the adapter
6565  *      @mbox: mailbox to use for the FW command
6566  *      @phy_addr: the PHY address
6567  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6568  *      @reg: the register to write
6569  *      @val: value to write
6570  *
6571  *      Issues a FW command through the given mailbox to write a PHY register.
6572  */
6573 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6574                unsigned int mmd, unsigned int reg, u16 val)
6575 {
6576         u32 ldst_addrspace;
6577         struct fw_ldst_cmd c;
6578
6579         memset(&c, 0, sizeof(c));
6580         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6581         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6582                                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6583                                         ldst_addrspace);
6584         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6585         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6586                                          FW_LDST_CMD_MMD_V(mmd));
6587         c.u.mdio.raddr = cpu_to_be16(reg);
6588         c.u.mdio.rval = cpu_to_be16(val);
6589
6590         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6591 }
6592
6593 /**
6594  *      t4_sge_decode_idma_state - decode the idma state
6595  *      @adapter: the adapter
6596  *      @state: the state idma is stuck in
6597  */
6598 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6599 {
6600         static const char * const t4_decode[] = {
6601                 "IDMA_IDLE",
6602                 "IDMA_PUSH_MORE_CPL_FIFO",
6603                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6604                 "Not used",
6605                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6606                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6607                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6608                 "IDMA_SEND_FIFO_TO_IMSG",
6609                 "IDMA_FL_REQ_DATA_FL_PREP",
6610                 "IDMA_FL_REQ_DATA_FL",
6611                 "IDMA_FL_DROP",
6612                 "IDMA_FL_H_REQ_HEADER_FL",
6613                 "IDMA_FL_H_SEND_PCIEHDR",
6614                 "IDMA_FL_H_PUSH_CPL_FIFO",
6615                 "IDMA_FL_H_SEND_CPL",
6616                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6617                 "IDMA_FL_H_SEND_IP_HDR",
6618                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6619                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6620                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6621                 "IDMA_FL_D_SEND_PCIEHDR",
6622                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6623                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6624                 "IDMA_FL_SEND_PCIEHDR",
6625                 "IDMA_FL_PUSH_CPL_FIFO",
6626                 "IDMA_FL_SEND_CPL",
6627                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6628                 "IDMA_FL_SEND_PAYLOAD",
6629                 "IDMA_FL_REQ_NEXT_DATA_FL",
6630                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6631                 "IDMA_FL_SEND_PADDING",
6632                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6633                 "IDMA_FL_SEND_FIFO_TO_IMSG",
6634                 "IDMA_FL_REQ_DATAFL_DONE",
6635                 "IDMA_FL_REQ_HEADERFL_DONE",
6636         };
6637         static const char * const t5_decode[] = {
6638                 "IDMA_IDLE",
6639                 "IDMA_ALMOST_IDLE",
6640                 "IDMA_PUSH_MORE_CPL_FIFO",
6641                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6642                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6643                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6644                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6645                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6646                 "IDMA_SEND_FIFO_TO_IMSG",
6647                 "IDMA_FL_REQ_DATA_FL",
6648                 "IDMA_FL_DROP",
6649                 "IDMA_FL_DROP_SEND_INC",
6650                 "IDMA_FL_H_REQ_HEADER_FL",
6651                 "IDMA_FL_H_SEND_PCIEHDR",
6652                 "IDMA_FL_H_PUSH_CPL_FIFO",
6653                 "IDMA_FL_H_SEND_CPL",
6654                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6655                 "IDMA_FL_H_SEND_IP_HDR",
6656                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6657                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6658                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6659                 "IDMA_FL_D_SEND_PCIEHDR",
6660                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6661                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6662                 "IDMA_FL_SEND_PCIEHDR",
6663                 "IDMA_FL_PUSH_CPL_FIFO",
6664                 "IDMA_FL_SEND_CPL",
6665                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6666                 "IDMA_FL_SEND_PAYLOAD",
6667                 "IDMA_FL_REQ_NEXT_DATA_FL",
6668                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6669                 "IDMA_FL_SEND_PADDING",
6670                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6671         };
6672         static const char * const t6_decode[] = {
6673                 "IDMA_IDLE",
6674                 "IDMA_PUSH_MORE_CPL_FIFO",
6675                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6676                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6677                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6678                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6679                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6680                 "IDMA_FL_REQ_DATA_FL",
6681                 "IDMA_FL_DROP",
6682                 "IDMA_FL_DROP_SEND_INC",
6683                 "IDMA_FL_H_REQ_HEADER_FL",
6684                 "IDMA_FL_H_SEND_PCIEHDR",
6685                 "IDMA_FL_H_PUSH_CPL_FIFO",
6686                 "IDMA_FL_H_SEND_CPL",
6687                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6688                 "IDMA_FL_H_SEND_IP_HDR",
6689                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6690                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6691                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6692                 "IDMA_FL_D_SEND_PCIEHDR",
6693                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6694                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6695                 "IDMA_FL_SEND_PCIEHDR",
6696                 "IDMA_FL_PUSH_CPL_FIFO",
6697                 "IDMA_FL_SEND_CPL",
6698                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6699                 "IDMA_FL_SEND_PAYLOAD",
6700                 "IDMA_FL_REQ_NEXT_DATA_FL",
6701                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6702                 "IDMA_FL_SEND_PADDING",
6703                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6704         };
6705         static const u32 sge_regs[] = {
6706                 SGE_DEBUG_DATA_LOW_INDEX_2_A,
6707                 SGE_DEBUG_DATA_LOW_INDEX_3_A,
6708                 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6709         };
6710         const char **sge_idma_decode;
6711         int sge_idma_decode_nstates;
6712         int i;
6713         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6714
6715         /* Select the right set of decode strings to dump depending on the
6716          * adapter chip type.
6717          */
6718         switch (chip_version) {
6719         case CHELSIO_T4:
6720                 sge_idma_decode = (const char **)t4_decode;
6721                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6722                 break;
6723
6724         case CHELSIO_T5:
6725                 sge_idma_decode = (const char **)t5_decode;
6726                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6727                 break;
6728
6729         case CHELSIO_T6:
6730                 sge_idma_decode = (const char **)t6_decode;
6731                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6732                 break;
6733
6734         default:
6735                 dev_err(adapter->pdev_dev,
6736                         "Unsupported chip version %d\n", chip_version);
6737                 return;
6738         }
6739
6740         if (is_t4(adapter->params.chip)) {
6741                 sge_idma_decode = (const char **)t4_decode;
6742                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6743         } else {
6744                 sge_idma_decode = (const char **)t5_decode;
6745                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6746         }
6747
6748         if (state < sge_idma_decode_nstates)
6749                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6750         else
6751                 CH_WARN(adapter, "idma state %d unknown\n", state);
6752
6753         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6754                 CH_WARN(adapter, "SGE register %#x value %#x\n",
6755                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6756 }
6757
6758 /**
6759  *      t4_sge_ctxt_flush - flush the SGE context cache
6760  *      @adap: the adapter
6761  *      @mbox: mailbox to use for the FW command
6762  *      @ctxt_type: Egress or Ingress
6763  *
6764  *      Issues a FW command through the given mailbox to flush the
6765  *      SGE context cache.
6766  */
6767 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6768 {
6769         int ret;
6770         u32 ldst_addrspace;
6771         struct fw_ldst_cmd c;
6772
6773         memset(&c, 0, sizeof(c));
6774         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6775                                                  FW_LDST_ADDRSPC_SGE_EGRC :
6776                                                  FW_LDST_ADDRSPC_SGE_INGC);
6777         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6778                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6779                                         ldst_addrspace);
6780         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6781         c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6782
6783         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6784         return ret;
6785 }
6786
6787 /**
6788  *      t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6789  *      @adap: the adapter
6790  *      @ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6791  *      @dbqtimers: SGE Doorbell Queue Timer table
6792  *
6793  *      Reads the SGE Doorbell Queue Timer values into the provided table.
6794  *      Returns 0 on success (Firmware and Hardware support this feature),
6795  *      an error on failure.
6796  */
6797 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6798                           u16 *dbqtimers)
6799 {
6800         int ret, dbqtimerix;
6801
6802         ret = 0;
6803         dbqtimerix = 0;
6804         while (dbqtimerix < ndbqtimers) {
6805                 int nparams, param;
6806                 u32 params[7], vals[7];
6807
6808                 nparams = ndbqtimers - dbqtimerix;
6809                 if (nparams > ARRAY_SIZE(params))
6810                         nparams = ARRAY_SIZE(params);
6811
6812                 for (param = 0; param < nparams; param++)
6813                         params[param] =
6814                           (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6815                            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6816                            FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6817                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6818                                       nparams, params, vals);
6819                 if (ret)
6820                         break;
6821
6822                 for (param = 0; param < nparams; param++)
6823                         dbqtimers[dbqtimerix++] = vals[param];
6824         }
6825         return ret;
6826 }
6827
6828 /**
6829  *      t4_fw_hello - establish communication with FW
6830  *      @adap: the adapter
6831  *      @mbox: mailbox to use for the FW command
6832  *      @evt_mbox: mailbox to receive async FW events
6833  *      @master: specifies the caller's willingness to be the device master
6834  *      @state: returns the current device state (if non-NULL)
6835  *
6836  *      Issues a command to establish communication with FW.  Returns either
6837  *      an error (negative integer) or the mailbox of the Master PF.
6838  */
6839 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6840                 enum dev_master master, enum dev_state *state)
6841 {
6842         int ret;
6843         struct fw_hello_cmd c;
6844         u32 v;
6845         unsigned int master_mbox;
6846         int retries = FW_CMD_HELLO_RETRIES;
6847
6848 retry:
6849         memset(&c, 0, sizeof(c));
6850         INIT_CMD(c, HELLO, WRITE);
6851         c.err_to_clearinit = cpu_to_be32(
6852                 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6853                 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6854                 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6855                                         mbox : FW_HELLO_CMD_MBMASTER_M) |
6856                 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6857                 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6858                 FW_HELLO_CMD_CLEARINIT_F);
6859
6860         /*
6861          * Issue the HELLO command to the firmware.  If it's not successful
6862          * but indicates that we got a "busy" or "timeout" condition, retry
6863          * the HELLO until we exhaust our retry limit.  If we do exceed our
6864          * retry limit, check to see if the firmware left us any error
6865          * information and report that if so.
6866          */
6867         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6868         if (ret < 0) {
6869                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6870                         goto retry;
6871                 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6872                         t4_report_fw_error(adap);
6873                 return ret;
6874         }
6875
6876         v = be32_to_cpu(c.err_to_clearinit);
6877         master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6878         if (state) {
6879                 if (v & FW_HELLO_CMD_ERR_F)
6880                         *state = DEV_STATE_ERR;
6881                 else if (v & FW_HELLO_CMD_INIT_F)
6882                         *state = DEV_STATE_INIT;
6883                 else
6884                         *state = DEV_STATE_UNINIT;
6885         }
6886
6887         /*
6888          * If we're not the Master PF then we need to wait around for the
6889          * Master PF Driver to finish setting up the adapter.
6890          *
6891          * Note that we also do this wait if we're a non-Master-capable PF and
6892          * there is no current Master PF; a Master PF may show up momentarily
6893          * and we wouldn't want to fail pointlessly.  (This can happen when an
6894          * OS loads lots of different drivers rapidly at the same time).  In
6895          * this case, the Master PF returned by the firmware will be
6896          * PCIE_FW_MASTER_M so the test below will work ...
6897          */
6898         if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6899             master_mbox != mbox) {
6900                 int waiting = FW_CMD_HELLO_TIMEOUT;
6901
6902                 /*
6903                  * Wait for the firmware to either indicate an error or
6904                  * initialized state.  If we see either of these we bail out
6905                  * and report the issue to the caller.  If we exhaust the
6906                  * "hello timeout" and we haven't exhausted our retries, try
6907                  * again.  Otherwise bail with a timeout error.
6908                  */
6909                 for (;;) {
6910                         u32 pcie_fw;
6911
6912                         msleep(50);
6913                         waiting -= 50;
6914
6915                         /*
6916                          * If neither Error nor Initialized are indicated
6917                          * by the firmware keep waiting till we exhaust our
6918                          * timeout ... and then retry if we haven't exhausted
6919                          * our retries ...
6920                          */
6921                         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6922                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6923                                 if (waiting <= 0) {
6924                                         if (retries-- > 0)
6925                                                 goto retry;
6926
6927                                         return -ETIMEDOUT;
6928                                 }
6929                                 continue;
6930                         }
6931
6932                         /*
6933                          * We either have an Error or Initialized condition
6934                          * report errors preferentially.
6935                          */
6936                         if (state) {
6937                                 if (pcie_fw & PCIE_FW_ERR_F)
6938                                         *state = DEV_STATE_ERR;
6939                                 else if (pcie_fw & PCIE_FW_INIT_F)
6940                                         *state = DEV_STATE_INIT;
6941                         }
6942
6943                         /*
6944                          * If we arrived before a Master PF was selected and
6945                          * there's not a valid Master PF, grab its identity
6946                          * for our caller.
6947                          */
6948                         if (master_mbox == PCIE_FW_MASTER_M &&
6949                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
6950                                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6951                         break;
6952                 }
6953         }
6954
6955         return master_mbox;
6956 }
6957
6958 /**
6959  *      t4_fw_bye - end communication with FW
6960  *      @adap: the adapter
6961  *      @mbox: mailbox to use for the FW command
6962  *
6963  *      Issues a command to terminate communication with FW.
6964  */
6965 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6966 {
6967         struct fw_bye_cmd c;
6968
6969         memset(&c, 0, sizeof(c));
6970         INIT_CMD(c, BYE, WRITE);
6971         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6972 }
6973
6974 /**
6975  *      t4_early_init - ask FW to initialize the device
6976  *      @adap: the adapter
6977  *      @mbox: mailbox to use for the FW command
6978  *
6979  *      Issues a command to FW to partially initialize the device.  This
6980  *      performs initialization that generally doesn't depend on user input.
6981  */
6982 int t4_early_init(struct adapter *adap, unsigned int mbox)
6983 {
6984         struct fw_initialize_cmd c;
6985
6986         memset(&c, 0, sizeof(c));
6987         INIT_CMD(c, INITIALIZE, WRITE);
6988         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6989 }
6990
6991 /**
6992  *      t4_fw_reset - issue a reset to FW
6993  *      @adap: the adapter
6994  *      @mbox: mailbox to use for the FW command
6995  *      @reset: specifies the type of reset to perform
6996  *
6997  *      Issues a reset command of the specified type to FW.
6998  */
6999 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7000 {
7001         struct fw_reset_cmd c;
7002
7003         memset(&c, 0, sizeof(c));
7004         INIT_CMD(c, RESET, WRITE);
7005         c.val = cpu_to_be32(reset);
7006         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7007 }
7008
7009 /**
7010  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7011  *      @adap: the adapter
7012  *      @mbox: mailbox to use for the FW RESET command (if desired)
7013  *      @force: force uP into RESET even if FW RESET command fails
7014  *
7015  *      Issues a RESET command to firmware (if desired) with a HALT indication
7016  *      and then puts the microprocessor into RESET state.  The RESET command
7017  *      will only be issued if a legitimate mailbox is provided (mbox <=
7018  *      PCIE_FW_MASTER_M).
7019  *
7020  *      This is generally used in order for the host to safely manipulate the
7021  *      adapter without fear of conflicting with whatever the firmware might
7022  *      be doing.  The only way out of this state is to RESTART the firmware
7023  *      ...
7024  */
7025 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7026 {
7027         int ret = 0;
7028
7029         /*
7030          * If a legitimate mailbox is provided, issue a RESET command
7031          * with a HALT indication.
7032          */
7033         if (mbox <= PCIE_FW_MASTER_M) {
7034                 struct fw_reset_cmd c;
7035
7036                 memset(&c, 0, sizeof(c));
7037                 INIT_CMD(c, RESET, WRITE);
7038                 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7039                 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7040                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7041         }
7042
7043         /*
7044          * Normally we won't complete the operation if the firmware RESET
7045          * command fails but if our caller insists we'll go ahead and put the
7046          * uP into RESET.  This can be useful if the firmware is hung or even
7047          * missing ...  We'll have to take the risk of putting the uP into
7048          * RESET without the cooperation of firmware in that case.
7049          *
7050          * We also force the firmware's HALT flag to be on in case we bypassed
7051          * the firmware RESET command above or we're dealing with old firmware
7052          * which doesn't have the HALT capability.  This will serve as a flag
7053          * for the incoming firmware to know that it's coming out of a HALT
7054          * rather than a RESET ... if it's new enough to understand that ...
7055          */
7056         if (ret == 0 || force) {
7057                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7058                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7059                                  PCIE_FW_HALT_F);
7060         }
7061
7062         /*
7063          * And we always return the result of the firmware RESET command
7064          * even when we force the uP into RESET ...
7065          */
7066         return ret;
7067 }
7068
7069 /**
7070  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
7071  *      @adap: the adapter
7072  *      @mbox: mailbox to use for the FW command
7073  *      @reset: if we want to do a RESET to restart things
7074  *
7075  *      Restart firmware previously halted by t4_fw_halt().  On successful
7076  *      return the previous PF Master remains as the new PF Master and there
7077  *      is no need to issue a new HELLO command, etc.
7078  *
7079  *      We do this in two ways:
7080  *
7081  *       1. If we're dealing with newer firmware we'll simply want to take
7082  *          the chip's microprocessor out of RESET.  This will cause the
7083  *          firmware to start up from its start vector.  And then we'll loop
7084  *          until the firmware indicates it's started again (PCIE_FW.HALT
7085  *          reset to 0) or we timeout.
7086  *
7087  *       2. If we're dealing with older firmware then we'll need to RESET
7088  *          the chip since older firmware won't recognize the PCIE_FW.HALT
7089  *          flag and automatically RESET itself on startup.
7090  */
7091 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7092 {
7093         if (reset) {
7094                 /*
7095                  * Since we're directing the RESET instead of the firmware
7096                  * doing it automatically, we need to clear the PCIE_FW.HALT
7097                  * bit.
7098                  */
7099                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7100
7101                 /*
7102                  * If we've been given a valid mailbox, first try to get the
7103                  * firmware to do the RESET.  If that works, great and we can
7104                  * return success.  Otherwise, if we haven't been given a
7105                  * valid mailbox or the RESET command failed, fall back to
7106                  * hitting the chip with a hammer.
7107                  */
7108                 if (mbox <= PCIE_FW_MASTER_M) {
7109                         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7110                         msleep(100);
7111                         if (t4_fw_reset(adap, mbox,
7112                                         PIORST_F | PIORSTMODE_F) == 0)
7113                                 return 0;
7114                 }
7115
7116                 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7117                 msleep(2000);
7118         } else {
7119                 int ms;
7120
7121                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7122                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7123                         if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7124                                 return 0;
7125                         msleep(100);
7126                         ms += 100;
7127                 }
7128                 return -ETIMEDOUT;
7129         }
7130         return 0;
7131 }
7132
7133 /**
7134  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7135  *      @adap: the adapter
7136  *      @mbox: mailbox to use for the FW RESET command (if desired)
7137  *      @fw_data: the firmware image to write
7138  *      @size: image size
7139  *      @force: force upgrade even if firmware doesn't cooperate
7140  *
7141  *      Perform all of the steps necessary for upgrading an adapter's
7142  *      firmware image.  Normally this requires the cooperation of the
7143  *      existing firmware in order to halt all existing activities
7144  *      but if an invalid mailbox token is passed in we skip that step
7145  *      (though we'll still put the adapter microprocessor into RESET in
7146  *      that case).
7147  *
7148  *      On successful return the new firmware will have been loaded and
7149  *      the adapter will have been fully RESET losing all previous setup
7150  *      state.  On unsuccessful return the adapter may be completely hosed ...
7151  *      positive errno indicates that the adapter is ~probably~ intact, a
7152  *      negative errno indicates that things are looking bad ...
7153  */
7154 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7155                   const u8 *fw_data, unsigned int size, int force)
7156 {
7157         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7158         int reset, ret;
7159
7160         if (!t4_fw_matches_chip(adap, fw_hdr))
7161                 return -EINVAL;
7162
7163         /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7164          * set wont be sent when we are flashing FW.
7165          */
7166         adap->flags &= ~CXGB4_FW_OK;
7167
7168         ret = t4_fw_halt(adap, mbox, force);
7169         if (ret < 0 && !force)
7170                 goto out;
7171
7172         ret = t4_load_fw(adap, fw_data, size);
7173         if (ret < 0)
7174                 goto out;
7175
7176         /*
7177          * If there was a Firmware Configuration File stored in FLASH,
7178          * there's a good chance that it won't be compatible with the new
7179          * Firmware.  In order to prevent difficult to diagnose adapter
7180          * initialization issues, we clear out the Firmware Configuration File
7181          * portion of the FLASH .  The user will need to re-FLASH a new
7182          * Firmware Configuration File which is compatible with the new
7183          * Firmware if that's desired.
7184          */
7185         (void)t4_load_cfg(adap, NULL, 0);
7186
7187         /*
7188          * Older versions of the firmware don't understand the new
7189          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7190          * restart.  So for newly loaded older firmware we'll have to do the
7191          * RESET for it so it starts up on a clean slate.  We can tell if
7192          * the newly loaded firmware will handle this right by checking
7193          * its header flags to see if it advertises the capability.
7194          */
7195         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7196         ret = t4_fw_restart(adap, mbox, reset);
7197
7198         /* Grab potentially new Firmware Device Log parameters so we can see
7199          * how healthy the new Firmware is.  It's okay to contact the new
7200          * Firmware for these parameters even though, as far as it's
7201          * concerned, we've never said "HELLO" to it ...
7202          */
7203         (void)t4_init_devlog_params(adap);
7204 out:
7205         adap->flags |= CXGB4_FW_OK;
7206         return ret;
7207 }
7208
7209 /**
7210  *      t4_fl_pkt_align - return the fl packet alignment
7211  *      @adap: the adapter
7212  *
7213  *      T4 has a single field to specify the packing and padding boundary.
7214  *      T5 onwards has separate fields for this and hence the alignment for
7215  *      next packet offset is maximum of these two.
7216  *
7217  */
7218 int t4_fl_pkt_align(struct adapter *adap)
7219 {
7220         u32 sge_control, sge_control2;
7221         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7222
7223         sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7224
7225         /* T4 uses a single control field to specify both the PCIe Padding and
7226          * Packing Boundary.  T5 introduced the ability to specify these
7227          * separately.  The actual Ingress Packet Data alignment boundary
7228          * within Packed Buffer Mode is the maximum of these two
7229          * specifications.  (Note that it makes no real practical sense to
7230          * have the Padding Boundary be larger than the Packing Boundary but you
7231          * could set the chip up that way and, in fact, legacy T4 code would
7232          * end doing this because it would initialize the Padding Boundary and
7233          * leave the Packing Boundary initialized to 0 (16 bytes).)
7234          * Padding Boundary values in T6 starts from 8B,
7235          * where as it is 32B for T4 and T5.
7236          */
7237         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7238                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7239         else
7240                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7241
7242         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7243
7244         fl_align = ingpadboundary;
7245         if (!is_t4(adap->params.chip)) {
7246                 /* T5 has a weird interpretation of one of the PCIe Packing
7247                  * Boundary values.  No idea why ...
7248                  */
7249                 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7250                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7251                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7252                         ingpackboundary = 16;
7253                 else
7254                         ingpackboundary = 1 << (ingpackboundary +
7255                                                 INGPACKBOUNDARY_SHIFT_X);
7256
7257                 fl_align = max(ingpadboundary, ingpackboundary);
7258         }
7259         return fl_align;
7260 }
7261
7262 /**
7263  *      t4_fixup_host_params - fix up host-dependent parameters
7264  *      @adap: the adapter
7265  *      @page_size: the host's Base Page Size
7266  *      @cache_line_size: the host's Cache Line Size
7267  *
7268  *      Various registers in T4 contain values which are dependent on the
7269  *      host's Base Page and Cache Line Sizes.  This function will fix all of
7270  *      those registers with the appropriate values as passed in ...
7271  */
7272 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7273                          unsigned int cache_line_size)
7274 {
7275         unsigned int page_shift = fls(page_size) - 1;
7276         unsigned int sge_hps = page_shift - 10;
7277         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7278         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7279         unsigned int fl_align_log = fls(fl_align) - 1;
7280
7281         t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7282                      HOSTPAGESIZEPF0_V(sge_hps) |
7283                      HOSTPAGESIZEPF1_V(sge_hps) |
7284                      HOSTPAGESIZEPF2_V(sge_hps) |
7285                      HOSTPAGESIZEPF3_V(sge_hps) |
7286                      HOSTPAGESIZEPF4_V(sge_hps) |
7287                      HOSTPAGESIZEPF5_V(sge_hps) |
7288                      HOSTPAGESIZEPF6_V(sge_hps) |
7289                      HOSTPAGESIZEPF7_V(sge_hps));
7290
7291         if (is_t4(adap->params.chip)) {
7292                 t4_set_reg_field(adap, SGE_CONTROL_A,
7293                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7294                                  EGRSTATUSPAGESIZE_F,
7295                                  INGPADBOUNDARY_V(fl_align_log -
7296                                                   INGPADBOUNDARY_SHIFT_X) |
7297                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7298         } else {
7299                 unsigned int pack_align;
7300                 unsigned int ingpad, ingpack;
7301
7302                 /* T5 introduced the separation of the Free List Padding and
7303                  * Packing Boundaries.  Thus, we can select a smaller Padding
7304                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
7305                  * Bandwidth, and use a Packing Boundary which is large enough
7306                  * to avoid false sharing between CPUs, etc.
7307                  *
7308                  * For the PCI Link, the smaller the Padding Boundary the
7309                  * better.  For the Memory Controller, a smaller Padding
7310                  * Boundary is better until we cross under the Memory Line
7311                  * Size (the minimum unit of transfer to/from Memory).  If we
7312                  * have a Padding Boundary which is smaller than the Memory
7313                  * Line Size, that'll involve a Read-Modify-Write cycle on the
7314                  * Memory Controller which is never good.
7315                  */
7316
7317                 /* We want the Packing Boundary to be based on the Cache Line
7318                  * Size in order to help avoid False Sharing performance
7319                  * issues between CPUs, etc.  We also want the Packing
7320                  * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7321                  * get best performance when the Packing Boundary is a
7322                  * multiple of the Maximum Payload Size.
7323                  */
7324                 pack_align = fl_align;
7325                 if (pci_is_pcie(adap->pdev)) {
7326                         unsigned int mps, mps_log;
7327                         u16 devctl;
7328
7329                         /* The PCIe Device Control Maximum Payload Size field
7330                          * [bits 7:5] encodes sizes as powers of 2 starting at
7331                          * 128 bytes.
7332                          */
7333                         pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7334                                                   &devctl);
7335                         mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7336                         mps = 1 << mps_log;
7337                         if (mps > pack_align)
7338                                 pack_align = mps;
7339                 }
7340
7341                 /* N.B. T5/T6 have a crazy special interpretation of the "0"
7342                  * value for the Packing Boundary.  This corresponds to 16
7343                  * bytes instead of the expected 32 bytes.  So if we want 32
7344                  * bytes, the best we can really do is 64 bytes ...
7345                  */
7346                 if (pack_align <= 16) {
7347                         ingpack = INGPACKBOUNDARY_16B_X;
7348                         fl_align = 16;
7349                 } else if (pack_align == 32) {
7350                         ingpack = INGPACKBOUNDARY_64B_X;
7351                         fl_align = 64;
7352                 } else {
7353                         unsigned int pack_align_log = fls(pack_align) - 1;
7354
7355                         ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7356                         fl_align = pack_align;
7357                 }
7358
7359                 /* Use the smallest Ingress Padding which isn't smaller than
7360                  * the Memory Controller Read/Write Size.  We'll take that as
7361                  * being 8 bytes since we don't know of any system with a
7362                  * wider Memory Controller Bus Width.
7363                  */
7364                 if (is_t5(adap->params.chip))
7365                         ingpad = INGPADBOUNDARY_32B_X;
7366                 else
7367                         ingpad = T6_INGPADBOUNDARY_8B_X;
7368
7369                 t4_set_reg_field(adap, SGE_CONTROL_A,
7370                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7371                                  EGRSTATUSPAGESIZE_F,
7372                                  INGPADBOUNDARY_V(ingpad) |
7373                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7374                 t4_set_reg_field(adap, SGE_CONTROL2_A,
7375                                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7376                                  INGPACKBOUNDARY_V(ingpack));
7377         }
7378         /*
7379          * Adjust various SGE Free List Host Buffer Sizes.
7380          *
7381          * This is something of a crock since we're using fixed indices into
7382          * the array which are also known by the sge.c code and the T4
7383          * Firmware Configuration File.  We need to come up with a much better
7384          * approach to managing this array.  For now, the first four entries
7385          * are:
7386          *
7387          *   0: Host Page Size
7388          *   1: 64KB
7389          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7390          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7391          *
7392          * For the single-MTU buffers in unpacked mode we need to include
7393          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7394          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7395          * Padding boundary.  All of these are accommodated in the Factory
7396          * Default Firmware Configuration File but we need to adjust it for
7397          * this host's cache line size.
7398          */
7399         t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7400         t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7401                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7402                      & ~(fl_align-1));
7403         t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7404                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7405                      & ~(fl_align-1));
7406
7407         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7408
7409         return 0;
7410 }
7411
7412 /**
7413  *      t4_fw_initialize - ask FW to initialize the device
7414  *      @adap: the adapter
7415  *      @mbox: mailbox to use for the FW command
7416  *
7417  *      Issues a command to FW to partially initialize the device.  This
7418  *      performs initialization that generally doesn't depend on user input.
7419  */
7420 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7421 {
7422         struct fw_initialize_cmd c;
7423
7424         memset(&c, 0, sizeof(c));
7425         INIT_CMD(c, INITIALIZE, WRITE);
7426         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7427 }
7428
7429 /**
7430  *      t4_query_params_rw - query FW or device parameters
7431  *      @adap: the adapter
7432  *      @mbox: mailbox to use for the FW command
7433  *      @pf: the PF
7434  *      @vf: the VF
7435  *      @nparams: the number of parameters
7436  *      @params: the parameter names
7437  *      @val: the parameter values
7438  *      @rw: Write and read flag
7439  *      @sleep_ok: if true, we may sleep awaiting mbox cmd completion
7440  *
7441  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7442  *      queried at once.
7443  */
7444 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7445                        unsigned int vf, unsigned int nparams, const u32 *params,
7446                        u32 *val, int rw, bool sleep_ok)
7447 {
7448         int i, ret;
7449         struct fw_params_cmd c;
7450         __be32 *p = &c.param[0].mnem;
7451
7452         if (nparams > 7)
7453                 return -EINVAL;
7454
7455         memset(&c, 0, sizeof(c));
7456         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7457                                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
7458                                   FW_PARAMS_CMD_PFN_V(pf) |
7459                                   FW_PARAMS_CMD_VFN_V(vf));
7460         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7461
7462         for (i = 0; i < nparams; i++) {
7463                 *p++ = cpu_to_be32(*params++);
7464                 if (rw)
7465                         *p = cpu_to_be32(*(val + i));
7466                 p++;
7467         }
7468
7469         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7470         if (ret == 0)
7471                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7472                         *val++ = be32_to_cpu(*p);
7473         return ret;
7474 }
7475
7476 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7477                     unsigned int vf, unsigned int nparams, const u32 *params,
7478                     u32 *val)
7479 {
7480         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7481                                   true);
7482 }
7483
7484 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7485                        unsigned int vf, unsigned int nparams, const u32 *params,
7486                        u32 *val)
7487 {
7488         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7489                                   false);
7490 }
7491
7492 /**
7493  *      t4_set_params_timeout - sets FW or device parameters
7494  *      @adap: the adapter
7495  *      @mbox: mailbox to use for the FW command
7496  *      @pf: the PF
7497  *      @vf: the VF
7498  *      @nparams: the number of parameters
7499  *      @params: the parameter names
7500  *      @val: the parameter values
7501  *      @timeout: the timeout time
7502  *
7503  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7504  *      specified at once.
7505  */
7506 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7507                           unsigned int pf, unsigned int vf,
7508                           unsigned int nparams, const u32 *params,
7509                           const u32 *val, int timeout)
7510 {
7511         struct fw_params_cmd c;
7512         __be32 *p = &c.param[0].mnem;
7513
7514         if (nparams > 7)
7515                 return -EINVAL;
7516
7517         memset(&c, 0, sizeof(c));
7518         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7519                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7520                                   FW_PARAMS_CMD_PFN_V(pf) |
7521                                   FW_PARAMS_CMD_VFN_V(vf));
7522         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7523
7524         while (nparams--) {
7525                 *p++ = cpu_to_be32(*params++);
7526                 *p++ = cpu_to_be32(*val++);
7527         }
7528
7529         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7530 }
7531
7532 /**
7533  *      t4_set_params - sets FW or device parameters
7534  *      @adap: the adapter
7535  *      @mbox: mailbox to use for the FW command
7536  *      @pf: the PF
7537  *      @vf: the VF
7538  *      @nparams: the number of parameters
7539  *      @params: the parameter names
7540  *      @val: the parameter values
7541  *
7542  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7543  *      specified at once.
7544  */
7545 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7546                   unsigned int vf, unsigned int nparams, const u32 *params,
7547                   const u32 *val)
7548 {
7549         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7550                                      FW_CMD_MAX_TIMEOUT);
7551 }
7552
7553 /**
7554  *      t4_cfg_pfvf - configure PF/VF resource limits
7555  *      @adap: the adapter
7556  *      @mbox: mailbox to use for the FW command
7557  *      @pf: the PF being configured
7558  *      @vf: the VF being configured
7559  *      @txq: the max number of egress queues
7560  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7561  *      @rxqi: the max number of interrupt-capable ingress queues
7562  *      @rxq: the max number of interruptless ingress queues
7563  *      @tc: the PCI traffic class
7564  *      @vi: the max number of virtual interfaces
7565  *      @cmask: the channel access rights mask for the PF/VF
7566  *      @pmask: the port access rights mask for the PF/VF
7567  *      @nexact: the maximum number of exact MPS filters
7568  *      @rcaps: read capabilities
7569  *      @wxcaps: write/execute capabilities
7570  *
7571  *      Configures resource limits and capabilities for a physical or virtual
7572  *      function.
7573  */
7574 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7575                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7576                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7577                 unsigned int vi, unsigned int cmask, unsigned int pmask,
7578                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7579 {
7580         struct fw_pfvf_cmd c;
7581
7582         memset(&c, 0, sizeof(c));
7583         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7584                                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7585                                   FW_PFVF_CMD_VFN_V(vf));
7586         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7587         c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7588                                      FW_PFVF_CMD_NIQ_V(rxq));
7589         c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7590                                     FW_PFVF_CMD_PMASK_V(pmask) |
7591                                     FW_PFVF_CMD_NEQ_V(txq));
7592         c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7593                                       FW_PFVF_CMD_NVI_V(vi) |
7594                                       FW_PFVF_CMD_NEXACTF_V(nexact));
7595         c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7596                                         FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7597                                         FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7598         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7599 }
7600
7601 /**
7602  *      t4_alloc_vi - allocate a virtual interface
7603  *      @adap: the adapter
7604  *      @mbox: mailbox to use for the FW command
7605  *      @port: physical port associated with the VI
7606  *      @pf: the PF owning the VI
7607  *      @vf: the VF owning the VI
7608  *      @nmac: number of MAC addresses needed (1 to 5)
7609  *      @mac: the MAC addresses of the VI
7610  *      @rss_size: size of RSS table slice associated with this VI
7611  *      @vivld: the destination to store the VI Valid value.
7612  *      @vin: the destination to store the VIN value.
7613  *
7614  *      Allocates a virtual interface for the given physical port.  If @mac is
7615  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7616  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7617  *      stored consecutively so the space needed is @nmac * 6 bytes.
7618  *      Returns a negative error number or the non-negative VI id.
7619  */
7620 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7621                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7622                 unsigned int *rss_size, u8 *vivld, u8 *vin)
7623 {
7624         int ret;
7625         struct fw_vi_cmd c;
7626
7627         memset(&c, 0, sizeof(c));
7628         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7629                                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7630                                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7631         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7632         c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7633         c.nmac = nmac - 1;
7634
7635         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7636         if (ret)
7637                 return ret;
7638
7639         if (mac) {
7640                 memcpy(mac, c.mac, sizeof(c.mac));
7641                 switch (nmac) {
7642                 case 5:
7643                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7644                         fallthrough;
7645                 case 4:
7646                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7647                         fallthrough;
7648                 case 3:
7649                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7650                         fallthrough;
7651                 case 2:
7652                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7653                 }
7654         }
7655         if (rss_size)
7656                 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7657
7658         if (vivld)
7659                 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7660
7661         if (vin)
7662                 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7663
7664         return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7665 }
7666
7667 /**
7668  *      t4_free_vi - free a virtual interface
7669  *      @adap: the adapter
7670  *      @mbox: mailbox to use for the FW command
7671  *      @pf: the PF owning the VI
7672  *      @vf: the VF owning the VI
7673  *      @viid: virtual interface identifiler
7674  *
7675  *      Free a previously allocated virtual interface.
7676  */
7677 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7678                unsigned int vf, unsigned int viid)
7679 {
7680         struct fw_vi_cmd c;
7681
7682         memset(&c, 0, sizeof(c));
7683         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7684                                   FW_CMD_REQUEST_F |
7685                                   FW_CMD_EXEC_F |
7686                                   FW_VI_CMD_PFN_V(pf) |
7687                                   FW_VI_CMD_VFN_V(vf));
7688         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7689         c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7690
7691         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7692 }
7693
7694 /**
7695  *      t4_set_rxmode - set Rx properties of a virtual interface
7696  *      @adap: the adapter
7697  *      @mbox: mailbox to use for the FW command
7698  *      @viid: the VI id
7699  *      @viid_mirror: the mirror VI id
7700  *      @mtu: the new MTU or -1
7701  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7702  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7703  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7704  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7705  *      @sleep_ok: if true we may sleep while awaiting command completion
7706  *
7707  *      Sets Rx properties of a virtual interface.
7708  */
7709 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7710                   unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7711                   int bcast, int vlanex, bool sleep_ok)
7712 {
7713         struct fw_vi_rxmode_cmd c, c_mirror;
7714         int ret;
7715
7716         /* convert to FW values */
7717         if (mtu < 0)
7718                 mtu = FW_RXMODE_MTU_NO_CHG;
7719         if (promisc < 0)
7720                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7721         if (all_multi < 0)
7722                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7723         if (bcast < 0)
7724                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7725         if (vlanex < 0)
7726                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7727
7728         memset(&c, 0, sizeof(c));
7729         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7730                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7731                                    FW_VI_RXMODE_CMD_VIID_V(viid));
7732         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7733         c.mtu_to_vlanexen =
7734                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7735                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7736                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7737                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7738                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7739
7740         if (viid_mirror) {
7741                 memcpy(&c_mirror, &c, sizeof(c_mirror));
7742                 c_mirror.op_to_viid =
7743                         cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7744                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7745                                     FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7746         }
7747
7748         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7749         if (ret)
7750                 return ret;
7751
7752         if (viid_mirror)
7753                 ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7754                                       NULL, sleep_ok);
7755
7756         return ret;
7757 }
7758
7759 /**
7760  *      t4_free_encap_mac_filt - frees MPS entry at given index
7761  *      @adap: the adapter
7762  *      @viid: the VI id
7763  *      @idx: index of MPS entry to be freed
7764  *      @sleep_ok: call is allowed to sleep
7765  *
7766  *      Frees the MPS entry at supplied index
7767  *
7768  *      Returns a negative error number or zero on success
7769  */
7770 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7771                            int idx, bool sleep_ok)
7772 {
7773         struct fw_vi_mac_exact *p;
7774         struct fw_vi_mac_cmd c;
7775         int ret = 0;
7776         u32 exact;
7777
7778         memset(&c, 0, sizeof(c));
7779         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7780                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7781                                    FW_CMD_EXEC_V(0) |
7782                                    FW_VI_MAC_CMD_VIID_V(viid));
7783         exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7784         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7785                                           exact |
7786                                           FW_CMD_LEN16_V(1));
7787         p = c.u.exact;
7788         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7789                                       FW_VI_MAC_CMD_IDX_V(idx));
7790         eth_zero_addr(p->macaddr);
7791         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7792         return ret;
7793 }
7794
7795 /**
7796  *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7797  *      @adap: the adapter
7798  *      @viid: the VI id
7799  *      @addr: the MAC address
7800  *      @mask: the mask
7801  *      @idx: index of the entry in mps tcam
7802  *      @lookup_type: MAC address for inner (1) or outer (0) header
7803  *      @port_id: the port index
7804  *      @sleep_ok: call is allowed to sleep
7805  *
7806  *      Removes the mac entry at the specified index using raw mac interface.
7807  *
7808  *      Returns a negative error number on failure.
7809  */
7810 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7811                          const u8 *addr, const u8 *mask, unsigned int idx,
7812                          u8 lookup_type, u8 port_id, bool sleep_ok)
7813 {
7814         struct fw_vi_mac_cmd c;
7815         struct fw_vi_mac_raw *p = &c.u.raw;
7816         u32 val;
7817
7818         memset(&c, 0, sizeof(c));
7819         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7820                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7821                                    FW_CMD_EXEC_V(0) |
7822                                    FW_VI_MAC_CMD_VIID_V(viid));
7823         val = FW_CMD_LEN16_V(1) |
7824               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7825         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7826                                           FW_CMD_LEN16_V(val));
7827
7828         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7829                                      FW_VI_MAC_ID_BASED_FREE);
7830
7831         /* Lookup Type. Outer header: 0, Inner header: 1 */
7832         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7833                                    DATAPORTNUM_V(port_id));
7834         /* Lookup mask and port mask */
7835         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7836                                     DATAPORTNUM_V(DATAPORTNUM_M));
7837
7838         /* Copy the address and the mask */
7839         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7840         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7841
7842         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7843 }
7844
7845 /**
7846  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7847  *      @adap: the adapter
7848  *      @viid: the VI id
7849  *      @addr: the MAC address
7850  *      @mask: the mask
7851  *      @vni: the VNI id for the tunnel protocol
7852  *      @vni_mask: mask for the VNI id
7853  *      @dip_hit: to enable DIP match for the MPS entry
7854  *      @lookup_type: MAC address for inner (1) or outer (0) header
7855  *      @sleep_ok: call is allowed to sleep
7856  *
7857  *      Allocates an MPS entry with specified MAC address and VNI value.
7858  *
7859  *      Returns a negative error number or the allocated index for this mac.
7860  */
7861 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7862                             const u8 *addr, const u8 *mask, unsigned int vni,
7863                             unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7864                             bool sleep_ok)
7865 {
7866         struct fw_vi_mac_cmd c;
7867         struct fw_vi_mac_vni *p = c.u.exact_vni;
7868         int ret = 0;
7869         u32 val;
7870
7871         memset(&c, 0, sizeof(c));
7872         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7873                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7874                                    FW_VI_MAC_CMD_VIID_V(viid));
7875         val = FW_CMD_LEN16_V(1) |
7876               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7877         c.freemacs_to_len16 = cpu_to_be32(val);
7878         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7879                                       FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7880         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7881         memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7882
7883         p->lookup_type_to_vni =
7884                 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7885                             FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7886                             FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7887         p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7888         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7889         if (ret == 0)
7890                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7891         return ret;
7892 }
7893
7894 /**
7895  *      t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7896  *      @adap: the adapter
7897  *      @viid: the VI id
7898  *      @addr: the MAC address
7899  *      @mask: the mask
7900  *      @idx: index at which to add this entry
7901  *      @lookup_type: MAC address for inner (1) or outer (0) header
7902  *      @port_id: the port index
7903  *      @sleep_ok: call is allowed to sleep
7904  *
7905  *      Adds the mac entry at the specified index using raw mac interface.
7906  *
7907  *      Returns a negative error number or the allocated index for this mac.
7908  */
7909 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7910                           const u8 *addr, const u8 *mask, unsigned int idx,
7911                           u8 lookup_type, u8 port_id, bool sleep_ok)
7912 {
7913         int ret = 0;
7914         struct fw_vi_mac_cmd c;
7915         struct fw_vi_mac_raw *p = &c.u.raw;
7916         u32 val;
7917
7918         memset(&c, 0, sizeof(c));
7919         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7920                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7921                                    FW_VI_MAC_CMD_VIID_V(viid));
7922         val = FW_CMD_LEN16_V(1) |
7923               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7924         c.freemacs_to_len16 = cpu_to_be32(val);
7925
7926         /* Specify that this is an inner mac address */
7927         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7928
7929         /* Lookup Type. Outer header: 0, Inner header: 1 */
7930         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7931                                    DATAPORTNUM_V(port_id));
7932         /* Lookup mask and port mask */
7933         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7934                                     DATAPORTNUM_V(DATAPORTNUM_M));
7935
7936         /* Copy the address and the mask */
7937         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7938         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7939
7940         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7941         if (ret == 0) {
7942                 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7943                 if (ret != idx)
7944                         ret = -ENOMEM;
7945         }
7946
7947         return ret;
7948 }
7949
7950 /**
7951  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7952  *      @adap: the adapter
7953  *      @mbox: mailbox to use for the FW command
7954  *      @viid: the VI id
7955  *      @free: if true any existing filters for this VI id are first removed
7956  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7957  *      @addr: the MAC address(es)
7958  *      @idx: where to store the index of each allocated filter
7959  *      @hash: pointer to hash address filter bitmap
7960  *      @sleep_ok: call is allowed to sleep
7961  *
7962  *      Allocates an exact-match filter for each of the supplied addresses and
7963  *      sets it to the corresponding address.  If @idx is not %NULL it should
7964  *      have at least @naddr entries, each of which will be set to the index of
7965  *      the filter allocated for the corresponding MAC address.  If a filter
7966  *      could not be allocated for an address its index is set to 0xffff.
7967  *      If @hash is not %NULL addresses that fail to allocate an exact filter
7968  *      are hashed and update the hash filter bitmap pointed at by @hash.
7969  *
7970  *      Returns a negative error number or the number of filters allocated.
7971  */
7972 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7973                       unsigned int viid, bool free, unsigned int naddr,
7974                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7975 {
7976         int offset, ret = 0;
7977         struct fw_vi_mac_cmd c;
7978         unsigned int nfilters = 0;
7979         unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7980         unsigned int rem = naddr;
7981
7982         if (naddr > max_naddr)
7983                 return -EINVAL;
7984
7985         for (offset = 0; offset < naddr ; /**/) {
7986                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7987                                          rem : ARRAY_SIZE(c.u.exact));
7988                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7989                                                      u.exact[fw_naddr]), 16);
7990                 struct fw_vi_mac_exact *p;
7991                 int i;
7992
7993                 memset(&c, 0, sizeof(c));
7994                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7995                                            FW_CMD_REQUEST_F |
7996                                            FW_CMD_WRITE_F |
7997                                            FW_CMD_EXEC_V(free) |
7998                                            FW_VI_MAC_CMD_VIID_V(viid));
7999                 c.freemacs_to_len16 =
8000                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
8001                                     FW_CMD_LEN16_V(len16));
8002
8003                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8004                         p->valid_to_idx =
8005                                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8006                                             FW_VI_MAC_CMD_IDX_V(
8007                                                     FW_VI_MAC_ADD_MAC));
8008                         memcpy(p->macaddr, addr[offset + i],
8009                                sizeof(p->macaddr));
8010                 }
8011
8012                 /* It's okay if we run out of space in our MAC address arena.
8013                  * Some of the addresses we submit may get stored so we need
8014                  * to run through the reply to see what the results were ...
8015                  */
8016                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8017                 if (ret && ret != -FW_ENOMEM)
8018                         break;
8019
8020                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8021                         u16 index = FW_VI_MAC_CMD_IDX_G(
8022                                         be16_to_cpu(p->valid_to_idx));
8023
8024                         if (idx)
8025                                 idx[offset + i] = (index >= max_naddr ?
8026                                                    0xffff : index);
8027                         if (index < max_naddr)
8028                                 nfilters++;
8029                         else if (hash)
8030                                 *hash |= (1ULL <<
8031                                           hash_mac_addr(addr[offset + i]));
8032                 }
8033
8034                 free = false;
8035                 offset += fw_naddr;
8036                 rem -= fw_naddr;
8037         }
8038
8039         if (ret == 0 || ret == -FW_ENOMEM)
8040                 ret = nfilters;
8041         return ret;
8042 }
8043
8044 /**
8045  *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
8046  *      @adap: the adapter
8047  *      @mbox: mailbox to use for the FW command
8048  *      @viid: the VI id
8049  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
8050  *      @addr: the MAC address(es)
8051  *      @sleep_ok: call is allowed to sleep
8052  *
8053  *      Frees the exact-match filter for each of the supplied addresses
8054  *
8055  *      Returns a negative error number or the number of filters freed.
8056  */
8057 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8058                      unsigned int viid, unsigned int naddr,
8059                      const u8 **addr, bool sleep_ok)
8060 {
8061         int offset, ret = 0;
8062         struct fw_vi_mac_cmd c;
8063         unsigned int nfilters = 0;
8064         unsigned int max_naddr = is_t4(adap->params.chip) ?
8065                                        NUM_MPS_CLS_SRAM_L_INSTANCES :
8066                                        NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8067         unsigned int rem = naddr;
8068
8069         if (naddr > max_naddr)
8070                 return -EINVAL;
8071
8072         for (offset = 0; offset < (int)naddr ; /**/) {
8073                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8074                                          ? rem
8075                                          : ARRAY_SIZE(c.u.exact));
8076                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8077                                                      u.exact[fw_naddr]), 16);
8078                 struct fw_vi_mac_exact *p;
8079                 int i;
8080
8081                 memset(&c, 0, sizeof(c));
8082                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8083                                      FW_CMD_REQUEST_F |
8084                                      FW_CMD_WRITE_F |
8085                                      FW_CMD_EXEC_V(0) |
8086                                      FW_VI_MAC_CMD_VIID_V(viid));
8087                 c.freemacs_to_len16 =
8088                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8089                                             FW_CMD_LEN16_V(len16));
8090
8091                 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8092                         p->valid_to_idx = cpu_to_be16(
8093                                 FW_VI_MAC_CMD_VALID_F |
8094                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8095                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8096                 }
8097
8098                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8099                 if (ret)
8100                         break;
8101
8102                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8103                         u16 index = FW_VI_MAC_CMD_IDX_G(
8104                                                 be16_to_cpu(p->valid_to_idx));
8105
8106                         if (index < max_naddr)
8107                                 nfilters++;
8108                 }
8109
8110                 offset += fw_naddr;
8111                 rem -= fw_naddr;
8112         }
8113
8114         if (ret == 0)
8115                 ret = nfilters;
8116         return ret;
8117 }
8118
8119 /**
8120  *      t4_change_mac - modifies the exact-match filter for a MAC address
8121  *      @adap: the adapter
8122  *      @mbox: mailbox to use for the FW command
8123  *      @viid: the VI id
8124  *      @idx: index of existing filter for old value of MAC address, or -1
8125  *      @addr: the new MAC address value
8126  *      @persist: whether a new MAC allocation should be persistent
8127  *      @smt_idx: the destination to store the new SMT index.
8128  *
8129  *      Modifies an exact-match filter and sets it to the new MAC address.
8130  *      Note that in general it is not possible to modify the value of a given
8131  *      filter so the generic way to modify an address filter is to free the one
8132  *      being used by the old address value and allocate a new filter for the
8133  *      new address value.  @idx can be -1 if the address is a new addition.
8134  *
8135  *      Returns a negative error number or the index of the filter with the new
8136  *      MAC value.
8137  */
8138 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8139                   int idx, const u8 *addr, bool persist, u8 *smt_idx)
8140 {
8141         int ret, mode;
8142         struct fw_vi_mac_cmd c;
8143         struct fw_vi_mac_exact *p = c.u.exact;
8144         unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8145
8146         if (idx < 0)                             /* new allocation */
8147                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8148         mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8149
8150         memset(&c, 0, sizeof(c));
8151         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8152                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8153                                    FW_VI_MAC_CMD_VIID_V(viid));
8154         c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8155         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8156                                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8157                                       FW_VI_MAC_CMD_IDX_V(idx));
8158         memcpy(p->macaddr, addr, sizeof(p->macaddr));
8159
8160         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8161         if (ret == 0) {
8162                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8163                 if (ret >= max_mac_addr)
8164                         ret = -ENOMEM;
8165                 if (smt_idx) {
8166                         if (adap->params.viid_smt_extn_support) {
8167                                 *smt_idx = FW_VI_MAC_CMD_SMTID_G
8168                                                     (be32_to_cpu(c.op_to_viid));
8169                         } else {
8170                                 /* In T4/T5, SMT contains 256 SMAC entries
8171                                  * organized in 128 rows of 2 entries each.
8172                                  * In T6, SMT contains 256 SMAC entries in
8173                                  * 256 rows.
8174                                  */
8175                                 if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8176                                                                      CHELSIO_T5)
8177                                         *smt_idx = (viid & FW_VIID_VIN_M) << 1;
8178                                 else
8179                                         *smt_idx = (viid & FW_VIID_VIN_M);
8180                         }
8181                 }
8182         }
8183         return ret;
8184 }
8185
8186 /**
8187  *      t4_set_addr_hash - program the MAC inexact-match hash filter
8188  *      @adap: the adapter
8189  *      @mbox: mailbox to use for the FW command
8190  *      @viid: the VI id
8191  *      @ucast: whether the hash filter should also match unicast addresses
8192  *      @vec: the value to be written to the hash filter
8193  *      @sleep_ok: call is allowed to sleep
8194  *
8195  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
8196  */
8197 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8198                      bool ucast, u64 vec, bool sleep_ok)
8199 {
8200         struct fw_vi_mac_cmd c;
8201
8202         memset(&c, 0, sizeof(c));
8203         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8204                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8205                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8206         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8207                                           FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8208                                           FW_CMD_LEN16_V(1));
8209         c.u.hash.hashvec = cpu_to_be64(vec);
8210         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8211 }
8212
8213 /**
8214  *      t4_enable_vi_params - enable/disable a virtual interface
8215  *      @adap: the adapter
8216  *      @mbox: mailbox to use for the FW command
8217  *      @viid: the VI id
8218  *      @rx_en: 1=enable Rx, 0=disable Rx
8219  *      @tx_en: 1=enable Tx, 0=disable Tx
8220  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8221  *
8222  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8223  *      only makes sense when enabling a Virtual Interface ...
8224  */
8225 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8226                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8227 {
8228         struct fw_vi_enable_cmd c;
8229
8230         memset(&c, 0, sizeof(c));
8231         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8232                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8233                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8234         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8235                                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8236                                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8237                                      FW_LEN16(c));
8238         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8239 }
8240
8241 /**
8242  *      t4_enable_vi - enable/disable a virtual interface
8243  *      @adap: the adapter
8244  *      @mbox: mailbox to use for the FW command
8245  *      @viid: the VI id
8246  *      @rx_en: 1=enable Rx, 0=disable Rx
8247  *      @tx_en: 1=enable Tx, 0=disable Tx
8248  *
8249  *      Enables/disables a virtual interface.
8250  */
8251 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8252                  bool rx_en, bool tx_en)
8253 {
8254         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8255 }
8256
8257 /**
8258  *      t4_enable_pi_params - enable/disable a Port's Virtual Interface
8259  *      @adap: the adapter
8260  *      @mbox: mailbox to use for the FW command
8261  *      @pi: the Port Information structure
8262  *      @rx_en: 1=enable Rx, 0=disable Rx
8263  *      @tx_en: 1=enable Tx, 0=disable Tx
8264  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8265  *
8266  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8267  *      Enable only makes sense when enabling a Virtual Interface ...
8268  *      If the Virtual Interface enable/disable operation is successful,
8269  *      we notify the OS-specific code of a potential Link Status change
8270  *      via the OS Contract API t4_os_link_changed().
8271  */
8272 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8273                         struct port_info *pi,
8274                         bool rx_en, bool tx_en, bool dcb_en)
8275 {
8276         int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8277                                       rx_en, tx_en, dcb_en);
8278         if (ret)
8279                 return ret;
8280         t4_os_link_changed(adap, pi->port_id,
8281                            rx_en && tx_en && pi->link_cfg.link_ok);
8282         return 0;
8283 }
8284
8285 /**
8286  *      t4_identify_port - identify a VI's port by blinking its LED
8287  *      @adap: the adapter
8288  *      @mbox: mailbox to use for the FW command
8289  *      @viid: the VI id
8290  *      @nblinks: how many times to blink LED at 2.5 Hz
8291  *
8292  *      Identifies a VI's port by blinking its LED.
8293  */
8294 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8295                      unsigned int nblinks)
8296 {
8297         struct fw_vi_enable_cmd c;
8298
8299         memset(&c, 0, sizeof(c));
8300         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8301                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8302                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8303         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8304         c.blinkdur = cpu_to_be16(nblinks);
8305         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8306 }
8307
8308 /**
8309  *      t4_iq_stop - stop an ingress queue and its FLs
8310  *      @adap: the adapter
8311  *      @mbox: mailbox to use for the FW command
8312  *      @pf: the PF owning the queues
8313  *      @vf: the VF owning the queues
8314  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8315  *      @iqid: ingress queue id
8316  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8317  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8318  *
8319  *      Stops an ingress queue and its associated FLs, if any.  This causes
8320  *      any current or future data/messages destined for these queues to be
8321  *      tossed.
8322  */
8323 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8324                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8325                unsigned int fl0id, unsigned int fl1id)
8326 {
8327         struct fw_iq_cmd c;
8328
8329         memset(&c, 0, sizeof(c));
8330         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8331                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8332                                   FW_IQ_CMD_VFN_V(vf));
8333         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8334         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8335         c.iqid = cpu_to_be16(iqid);
8336         c.fl0id = cpu_to_be16(fl0id);
8337         c.fl1id = cpu_to_be16(fl1id);
8338         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8339 }
8340
8341 /**
8342  *      t4_iq_free - free an ingress queue and its FLs
8343  *      @adap: the adapter
8344  *      @mbox: mailbox to use for the FW command
8345  *      @pf: the PF owning the queues
8346  *      @vf: the VF owning the queues
8347  *      @iqtype: the ingress queue type
8348  *      @iqid: ingress queue id
8349  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8350  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8351  *
8352  *      Frees an ingress queue and its associated FLs, if any.
8353  */
8354 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8355                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8356                unsigned int fl0id, unsigned int fl1id)
8357 {
8358         struct fw_iq_cmd c;
8359
8360         memset(&c, 0, sizeof(c));
8361         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8362                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8363                                   FW_IQ_CMD_VFN_V(vf));
8364         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8365         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8366         c.iqid = cpu_to_be16(iqid);
8367         c.fl0id = cpu_to_be16(fl0id);
8368         c.fl1id = cpu_to_be16(fl1id);
8369         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8370 }
8371
8372 /**
8373  *      t4_eth_eq_free - free an Ethernet egress queue
8374  *      @adap: the adapter
8375  *      @mbox: mailbox to use for the FW command
8376  *      @pf: the PF owning the queue
8377  *      @vf: the VF owning the queue
8378  *      @eqid: egress queue id
8379  *
8380  *      Frees an Ethernet egress queue.
8381  */
8382 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8383                    unsigned int vf, unsigned int eqid)
8384 {
8385         struct fw_eq_eth_cmd c;
8386
8387         memset(&c, 0, sizeof(c));
8388         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8389                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8390                                   FW_EQ_ETH_CMD_PFN_V(pf) |
8391                                   FW_EQ_ETH_CMD_VFN_V(vf));
8392         c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8393         c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8394         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8395 }
8396
8397 /**
8398  *      t4_ctrl_eq_free - free a control egress queue
8399  *      @adap: the adapter
8400  *      @mbox: mailbox to use for the FW command
8401  *      @pf: the PF owning the queue
8402  *      @vf: the VF owning the queue
8403  *      @eqid: egress queue id
8404  *
8405  *      Frees a control egress queue.
8406  */
8407 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8408                     unsigned int vf, unsigned int eqid)
8409 {
8410         struct fw_eq_ctrl_cmd c;
8411
8412         memset(&c, 0, sizeof(c));
8413         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8414                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8415                                   FW_EQ_CTRL_CMD_PFN_V(pf) |
8416                                   FW_EQ_CTRL_CMD_VFN_V(vf));
8417         c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8418         c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8419         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8420 }
8421
8422 /**
8423  *      t4_ofld_eq_free - free an offload egress queue
8424  *      @adap: the adapter
8425  *      @mbox: mailbox to use for the FW command
8426  *      @pf: the PF owning the queue
8427  *      @vf: the VF owning the queue
8428  *      @eqid: egress queue id
8429  *
8430  *      Frees a control egress queue.
8431  */
8432 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8433                     unsigned int vf, unsigned int eqid)
8434 {
8435         struct fw_eq_ofld_cmd c;
8436
8437         memset(&c, 0, sizeof(c));
8438         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8439                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8440                                   FW_EQ_OFLD_CMD_PFN_V(pf) |
8441                                   FW_EQ_OFLD_CMD_VFN_V(vf));
8442         c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8443         c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8444         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8445 }
8446
8447 /**
8448  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
8449  *      @link_down_rc: Link Down Reason Code
8450  *
8451  *      Returns a string representation of the Link Down Reason Code.
8452  */
8453 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8454 {
8455         static const char * const reason[] = {
8456                 "Link Down",
8457                 "Remote Fault",
8458                 "Auto-negotiation Failure",
8459                 "Reserved",
8460                 "Insufficient Airflow",
8461                 "Unable To Determine Reason",
8462                 "No RX Signal Detected",
8463                 "Reserved",
8464         };
8465
8466         if (link_down_rc >= ARRAY_SIZE(reason))
8467                 return "Bad Reason Code";
8468
8469         return reason[link_down_rc];
8470 }
8471
8472 /* Return the highest speed set in the port capabilities, in Mb/s. */
8473 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8474 {
8475         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8476                 do { \
8477                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8478                                 return __speed; \
8479                 } while (0)
8480
8481         TEST_SPEED_RETURN(400G, 400000);
8482         TEST_SPEED_RETURN(200G, 200000);
8483         TEST_SPEED_RETURN(100G, 100000);
8484         TEST_SPEED_RETURN(50G,   50000);
8485         TEST_SPEED_RETURN(40G,   40000);
8486         TEST_SPEED_RETURN(25G,   25000);
8487         TEST_SPEED_RETURN(10G,   10000);
8488         TEST_SPEED_RETURN(1G,     1000);
8489         TEST_SPEED_RETURN(100M,    100);
8490
8491         #undef TEST_SPEED_RETURN
8492
8493         return 0;
8494 }
8495
8496 /**
8497  *      fwcap_to_fwspeed - return highest speed in Port Capabilities
8498  *      @acaps: advertised Port Capabilities
8499  *
8500  *      Get the highest speed for the port from the advertised Port
8501  *      Capabilities.  It will be either the highest speed from the list of
8502  *      speeds or whatever user has set using ethtool.
8503  */
8504 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8505 {
8506         #define TEST_SPEED_RETURN(__caps_speed) \
8507                 do { \
8508                         if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8509                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8510                 } while (0)
8511
8512         TEST_SPEED_RETURN(400G);
8513         TEST_SPEED_RETURN(200G);
8514         TEST_SPEED_RETURN(100G);
8515         TEST_SPEED_RETURN(50G);
8516         TEST_SPEED_RETURN(40G);
8517         TEST_SPEED_RETURN(25G);
8518         TEST_SPEED_RETURN(10G);
8519         TEST_SPEED_RETURN(1G);
8520         TEST_SPEED_RETURN(100M);
8521
8522         #undef TEST_SPEED_RETURN
8523
8524         return 0;
8525 }
8526
8527 /**
8528  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8529  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8530  *
8531  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8532  *      32-bit Port Capabilities value.
8533  */
8534 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8535 {
8536         fw_port_cap32_t linkattr = 0;
8537
8538         /* Unfortunately the format of the Link Status in the old
8539          * 16-bit Port Information message isn't the same as the
8540          * 16-bit Port Capabilities bitfield used everywhere else ...
8541          */
8542         if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8543                 linkattr |= FW_PORT_CAP32_FC_RX;
8544         if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8545                 linkattr |= FW_PORT_CAP32_FC_TX;
8546         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8547                 linkattr |= FW_PORT_CAP32_SPEED_100M;
8548         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8549                 linkattr |= FW_PORT_CAP32_SPEED_1G;
8550         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8551                 linkattr |= FW_PORT_CAP32_SPEED_10G;
8552         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8553                 linkattr |= FW_PORT_CAP32_SPEED_25G;
8554         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8555                 linkattr |= FW_PORT_CAP32_SPEED_40G;
8556         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8557                 linkattr |= FW_PORT_CAP32_SPEED_100G;
8558
8559         return linkattr;
8560 }
8561
8562 /**
8563  *      t4_handle_get_port_info - process a FW reply message
8564  *      @pi: the port info
8565  *      @rpl: start of the FW message
8566  *
8567  *      Processes a GET_PORT_INFO FW reply message.
8568  */
8569 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8570 {
8571         const struct fw_port_cmd *cmd = (const void *)rpl;
8572         fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8573         struct link_config *lc = &pi->link_cfg;
8574         struct adapter *adapter = pi->adapter;
8575         unsigned int speed, fc, fec, adv_fc;
8576         enum fw_port_module_type mod_type;
8577         int action, link_ok, linkdnrc;
8578         enum fw_port_type port_type;
8579
8580         /* Extract the various fields from the Port Information message.
8581          */
8582         action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8583         switch (action) {
8584         case FW_PORT_ACTION_GET_PORT_INFO: {
8585                 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8586
8587                 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8588                 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8589                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8590                 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8591                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8592                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8593                 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8594                 linkattr = lstatus_to_fwcap(lstatus);
8595                 break;
8596         }
8597
8598         case FW_PORT_ACTION_GET_PORT_INFO32: {
8599                 u32 lstatus32;
8600
8601                 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8602                 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8603                 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8604                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8605                 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8606                 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8607                 acaps = be32_to_cpu(cmd->u.info32.acaps32);
8608                 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8609                 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8610                 break;
8611         }
8612
8613         default:
8614                 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8615                         be32_to_cpu(cmd->action_to_len16));
8616                 return;
8617         }
8618
8619         fec = fwcap_to_cc_fec(acaps);
8620         adv_fc = fwcap_to_cc_pause(acaps);
8621         fc = fwcap_to_cc_pause(linkattr);
8622         speed = fwcap_to_speed(linkattr);
8623
8624         /* Reset state for communicating new Transceiver Module status and
8625          * whether the OS-dependent layer wants us to redo the current
8626          * "sticky" L1 Configure Link Parameters.
8627          */
8628         lc->new_module = false;
8629         lc->redo_l1cfg = false;
8630
8631         if (mod_type != pi->mod_type) {
8632                 /* With the newer SFP28 and QSFP28 Transceiver Module Types,
8633                  * various fundamental Port Capabilities which used to be
8634                  * immutable can now change radically.  We can now have
8635                  * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8636                  * all change based on what Transceiver Module is inserted.
8637                  * So we need to record the Physical "Port" Capabilities on
8638                  * every Transceiver Module change.
8639                  */
8640                 lc->pcaps = pcaps;
8641
8642                 /* When a new Transceiver Module is inserted, the Firmware
8643                  * will examine its i2c EPROM to determine its type and
8644                  * general operating parameters including things like Forward
8645                  * Error Control, etc.  Various IEEE 802.3 standards dictate
8646                  * how to interpret these i2c values to determine default
8647                  * "sutomatic" settings.  We record these for future use when
8648                  * the user explicitly requests these standards-based values.
8649                  */
8650                 lc->def_acaps = acaps;
8651
8652                 /* Some versions of the early T6 Firmware "cheated" when
8653                  * handling different Transceiver Modules by changing the
8654                  * underlaying Port Type reported to the Host Drivers.  As
8655                  * such we need to capture whatever Port Type the Firmware
8656                  * sends us and record it in case it's different from what we
8657                  * were told earlier.  Unfortunately, since Firmware is
8658                  * forever, we'll need to keep this code here forever, but in
8659                  * later T6 Firmware it should just be an assignment of the
8660                  * same value already recorded.
8661                  */
8662                 pi->port_type = port_type;
8663
8664                 /* Record new Module Type information.
8665                  */
8666                 pi->mod_type = mod_type;
8667
8668                 /* Let the OS-dependent layer know if we have a new
8669                  * Transceiver Module inserted.
8670                  */
8671                 lc->new_module = t4_is_inserted_mod_type(mod_type);
8672
8673                 t4_os_portmod_changed(adapter, pi->port_id);
8674         }
8675
8676         if (link_ok != lc->link_ok || speed != lc->speed ||
8677             fc != lc->fc || adv_fc != lc->advertised_fc ||
8678             fec != lc->fec) {
8679                 /* something changed */
8680                 if (!link_ok && lc->link_ok) {
8681                         lc->link_down_rc = linkdnrc;
8682                         dev_warn_ratelimited(adapter->pdev_dev,
8683                                              "Port %d link down, reason: %s\n",
8684                                              pi->tx_chan,
8685                                              t4_link_down_rc_str(linkdnrc));
8686                 }
8687                 lc->link_ok = link_ok;
8688                 lc->speed = speed;
8689                 lc->advertised_fc = adv_fc;
8690                 lc->fc = fc;
8691                 lc->fec = fec;
8692
8693                 lc->lpacaps = lpacaps;
8694                 lc->acaps = acaps & ADVERT_MASK;
8695
8696                 /* If we're not physically capable of Auto-Negotiation, note
8697                  * this as Auto-Negotiation disabled.  Otherwise, we track
8698                  * what Auto-Negotiation settings we have.  Note parallel
8699                  * structure in t4_link_l1cfg_core() and init_link_config().
8700                  */
8701                 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8702                         lc->autoneg = AUTONEG_DISABLE;
8703                 } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8704                         lc->autoneg = AUTONEG_ENABLE;
8705                 } else {
8706                         /* When Autoneg is disabled, user needs to set
8707                          * single speed.
8708                          * Similar to cxgb4_ethtool.c: set_link_ksettings
8709                          */
8710                         lc->acaps = 0;
8711                         lc->speed_caps = fwcap_to_fwspeed(acaps);
8712                         lc->autoneg = AUTONEG_DISABLE;
8713                 }
8714
8715                 t4_os_link_changed(adapter, pi->port_id, link_ok);
8716         }
8717
8718         /* If we have a new Transceiver Module and the OS-dependent code has
8719          * told us that it wants us to redo whatever "sticky" L1 Configuration
8720          * Link Parameters are set, do that now.
8721          */
8722         if (lc->new_module && lc->redo_l1cfg) {
8723                 struct link_config old_lc;
8724                 int ret;
8725
8726                 /* Save the current L1 Configuration and restore it if an
8727                  * error occurs.  We probably should fix the l1_cfg*()
8728                  * routines not to change the link_config when an error
8729                  * occurs ...
8730                  */
8731                 old_lc = *lc;
8732                 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8733                 if (ret) {
8734                         *lc = old_lc;
8735                         dev_warn(adapter->pdev_dev,
8736                                  "Attempt to update new Transceiver Module settings failed\n");
8737                 }
8738         }
8739         lc->new_module = false;
8740         lc->redo_l1cfg = false;
8741 }
8742
8743 /**
8744  *      t4_update_port_info - retrieve and update port information if changed
8745  *      @pi: the port_info
8746  *
8747  *      We issue a Get Port Information Command to the Firmware and, if
8748  *      successful, we check to see if anything is different from what we
8749  *      last recorded and update things accordingly.
8750  */
8751 int t4_update_port_info(struct port_info *pi)
8752 {
8753         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8754         struct fw_port_cmd port_cmd;
8755         int ret;
8756
8757         memset(&port_cmd, 0, sizeof(port_cmd));
8758         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8759                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8760                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8761         port_cmd.action_to_len16 = cpu_to_be32(
8762                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8763                                      ? FW_PORT_ACTION_GET_PORT_INFO
8764                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
8765                 FW_LEN16(port_cmd));
8766         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8767                          &port_cmd, sizeof(port_cmd), &port_cmd);
8768         if (ret)
8769                 return ret;
8770
8771         t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8772         return 0;
8773 }
8774
8775 /**
8776  *      t4_get_link_params - retrieve basic link parameters for given port
8777  *      @pi: the port
8778  *      @link_okp: value return pointer for link up/down
8779  *      @speedp: value return pointer for speed (Mb/s)
8780  *      @mtup: value return pointer for mtu
8781  *
8782  *      Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8783  *      and MTU for a specified port.  A negative error is returned on
8784  *      failure; 0 on success.
8785  */
8786 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8787                        unsigned int *speedp, unsigned int *mtup)
8788 {
8789         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8790         unsigned int action, link_ok, mtu;
8791         struct fw_port_cmd port_cmd;
8792         fw_port_cap32_t linkattr;
8793         int ret;
8794
8795         memset(&port_cmd, 0, sizeof(port_cmd));
8796         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8797                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8798                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8799         action = (fw_caps == FW_CAPS16
8800                   ? FW_PORT_ACTION_GET_PORT_INFO
8801                   : FW_PORT_ACTION_GET_PORT_INFO32);
8802         port_cmd.action_to_len16 = cpu_to_be32(
8803                 FW_PORT_CMD_ACTION_V(action) |
8804                 FW_LEN16(port_cmd));
8805         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8806                          &port_cmd, sizeof(port_cmd), &port_cmd);
8807         if (ret)
8808                 return ret;
8809
8810         if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8811                 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8812
8813                 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8814                 linkattr = lstatus_to_fwcap(lstatus);
8815                 mtu = be16_to_cpu(port_cmd.u.info.mtu);
8816         } else {
8817                 u32 lstatus32 =
8818                            be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8819
8820                 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8821                 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8822                 mtu = FW_PORT_CMD_MTU32_G(
8823                         be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8824         }
8825
8826         if (link_okp)
8827                 *link_okp = link_ok;
8828         if (speedp)
8829                 *speedp = fwcap_to_speed(linkattr);
8830         if (mtup)
8831                 *mtup = mtu;
8832
8833         return 0;
8834 }
8835
8836 /**
8837  *      t4_handle_fw_rpl - process a FW reply message
8838  *      @adap: the adapter
8839  *      @rpl: start of the FW message
8840  *
8841  *      Processes a FW message, such as link state change messages.
8842  */
8843 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8844 {
8845         u8 opcode = *(const u8 *)rpl;
8846
8847         /* This might be a port command ... this simplifies the following
8848          * conditionals ...  We can get away with pre-dereferencing
8849          * action_to_len16 because it's in the first 16 bytes and all messages
8850          * will be at least that long.
8851          */
8852         const struct fw_port_cmd *p = (const void *)rpl;
8853         unsigned int action =
8854                 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8855
8856         if (opcode == FW_PORT_CMD &&
8857             (action == FW_PORT_ACTION_GET_PORT_INFO ||
8858              action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8859                 int i;
8860                 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8861                 struct port_info *pi = NULL;
8862
8863                 for_each_port(adap, i) {
8864                         pi = adap2pinfo(adap, i);
8865                         if (pi->tx_chan == chan)
8866                                 break;
8867                 }
8868
8869                 t4_handle_get_port_info(pi, rpl);
8870         } else {
8871                 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8872                          opcode);
8873                 return -EINVAL;
8874         }
8875         return 0;
8876 }
8877
8878 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8879 {
8880         u16 val;
8881
8882         if (pci_is_pcie(adapter->pdev)) {
8883                 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8884                 p->speed = val & PCI_EXP_LNKSTA_CLS;
8885                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8886         }
8887 }
8888
8889 /**
8890  *      init_link_config - initialize a link's SW state
8891  *      @lc: pointer to structure holding the link state
8892  *      @pcaps: link Port Capabilities
8893  *      @acaps: link current Advertised Port Capabilities
8894  *
8895  *      Initializes the SW state maintained for each link, including the link's
8896  *      capabilities and default speed/flow-control/autonegotiation settings.
8897  */
8898 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8899                              fw_port_cap32_t acaps)
8900 {
8901         lc->pcaps = pcaps;
8902         lc->def_acaps = acaps;
8903         lc->lpacaps = 0;
8904         lc->speed_caps = 0;
8905         lc->speed = 0;
8906         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8907
8908         /* For Forward Error Control, we default to whatever the Firmware
8909          * tells us the Link is currently advertising.
8910          */
8911         lc->requested_fec = FEC_AUTO;
8912         lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8913
8914         /* If the Port is capable of Auto-Negtotiation, initialize it as
8915          * "enabled" and copy over all of the Physical Port Capabilities
8916          * to the Advertised Port Capabilities.  Otherwise mark it as
8917          * Auto-Negotiate disabled and select the highest supported speed
8918          * for the link.  Note parallel structure in t4_link_l1cfg_core()
8919          * and t4_handle_get_port_info().
8920          */
8921         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8922                 lc->acaps = lc->pcaps & ADVERT_MASK;
8923                 lc->autoneg = AUTONEG_ENABLE;
8924                 lc->requested_fc |= PAUSE_AUTONEG;
8925         } else {
8926                 lc->acaps = 0;
8927                 lc->autoneg = AUTONEG_DISABLE;
8928                 lc->speed_caps = fwcap_to_fwspeed(acaps);
8929         }
8930 }
8931
8932 #define CIM_PF_NOACCESS 0xeeeeeeee
8933
8934 int t4_wait_dev_ready(void __iomem *regs)
8935 {
8936         u32 whoami;
8937
8938         whoami = readl(regs + PL_WHOAMI_A);
8939         if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8940                 return 0;
8941
8942         msleep(500);
8943         whoami = readl(regs + PL_WHOAMI_A);
8944         return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8945 }
8946
8947 struct flash_desc {
8948         u32 vendor_and_model_id;
8949         u32 size_mb;
8950 };
8951
8952 static int t4_get_flash_params(struct adapter *adap)
8953 {
8954         /* Table for non-Numonix supported flash parts.  Numonix parts are left
8955          * to the preexisting code.  All flash parts have 64KB sectors.
8956          */
8957         static struct flash_desc supported_flash[] = {
8958                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8959         };
8960
8961         unsigned int part, manufacturer;
8962         unsigned int density, size = 0;
8963         u32 flashid = 0;
8964         int ret;
8965
8966         /* Issue a Read ID Command to the Flash part.  We decode supported
8967          * Flash parts and their sizes from this.  There's a newer Query
8968          * Command which can retrieve detailed geometry information but many
8969          * Flash parts don't support it.
8970          */
8971
8972         ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8973         if (!ret)
8974                 ret = sf1_read(adap, 3, 0, 1, &flashid);
8975         t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8976         if (ret)
8977                 return ret;
8978
8979         /* Check to see if it's one of our non-standard supported Flash parts.
8980          */
8981         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8982                 if (supported_flash[part].vendor_and_model_id == flashid) {
8983                         adap->params.sf_size = supported_flash[part].size_mb;
8984                         adap->params.sf_nsec =
8985                                 adap->params.sf_size / SF_SEC_SIZE;
8986                         goto found;
8987                 }
8988
8989         /* Decode Flash part size.  The code below looks repetitive with
8990          * common encodings, but that's not guaranteed in the JEDEC
8991          * specification for the Read JEDEC ID command.  The only thing that
8992          * we're guaranteed by the JEDEC specification is where the
8993          * Manufacturer ID is in the returned result.  After that each
8994          * Manufacturer ~could~ encode things completely differently.
8995          * Note, all Flash parts must have 64KB sectors.
8996          */
8997         manufacturer = flashid & 0xff;
8998         switch (manufacturer) {
8999         case 0x20: { /* Micron/Numonix */
9000                 /* This Density -> Size decoding table is taken from Micron
9001                  * Data Sheets.
9002                  */
9003                 density = (flashid >> 16) & 0xff;
9004                 switch (density) {
9005                 case 0x14: /* 1MB */
9006                         size = 1 << 20;
9007                         break;
9008                 case 0x15: /* 2MB */
9009                         size = 1 << 21;
9010                         break;
9011                 case 0x16: /* 4MB */
9012                         size = 1 << 22;
9013                         break;
9014                 case 0x17: /* 8MB */
9015                         size = 1 << 23;
9016                         break;
9017                 case 0x18: /* 16MB */
9018                         size = 1 << 24;
9019                         break;
9020                 case 0x19: /* 32MB */
9021                         size = 1 << 25;
9022                         break;
9023                 case 0x20: /* 64MB */
9024                         size = 1 << 26;
9025                         break;
9026                 case 0x21: /* 128MB */
9027                         size = 1 << 27;
9028                         break;
9029                 case 0x22: /* 256MB */
9030                         size = 1 << 28;
9031                         break;
9032                 }
9033                 break;
9034         }
9035         case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9036                 /* This Density -> Size decoding table is taken from ISSI
9037                  * Data Sheets.
9038                  */
9039                 density = (flashid >> 16) & 0xff;
9040                 switch (density) {
9041                 case 0x16: /* 32 MB */
9042                         size = 1 << 25;
9043                         break;
9044                 case 0x17: /* 64MB */
9045                         size = 1 << 26;
9046                         break;
9047                 }
9048                 break;
9049         }
9050         case 0xc2: { /* Macronix */
9051                 /* This Density -> Size decoding table is taken from Macronix
9052                  * Data Sheets.
9053                  */
9054                 density = (flashid >> 16) & 0xff;
9055                 switch (density) {
9056                 case 0x17: /* 8MB */
9057                         size = 1 << 23;
9058                         break;
9059                 case 0x18: /* 16MB */
9060                         size = 1 << 24;
9061                         break;
9062                 }
9063                 break;
9064         }
9065         case 0xef: { /* Winbond */
9066                 /* This Density -> Size decoding table is taken from Winbond
9067                  * Data Sheets.
9068                  */
9069                 density = (flashid >> 16) & 0xff;
9070                 switch (density) {
9071                 case 0x17: /* 8MB */
9072                         size = 1 << 23;
9073                         break;
9074                 case 0x18: /* 16MB */
9075                         size = 1 << 24;
9076                         break;
9077                 }
9078                 break;
9079         }
9080         }
9081
9082         /* If we didn't recognize the FLASH part, that's no real issue: the
9083          * Hardware/Software contract says that Hardware will _*ALWAYS*_
9084          * use a FLASH part which is at least 4MB in size and has 64KB
9085          * sectors.  The unrecognized FLASH part is likely to be much larger
9086          * than 4MB, but that's all we really need.
9087          */
9088         if (size == 0) {
9089                 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9090                          flashid);
9091                 size = 1 << 22;
9092         }
9093
9094         /* Store decoded Flash size and fall through into vetting code. */
9095         adap->params.sf_size = size;
9096         adap->params.sf_nsec = size / SF_SEC_SIZE;
9097
9098 found:
9099         if (adap->params.sf_size < FLASH_MIN_SIZE)
9100                 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9101                          flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9102         return 0;
9103 }
9104
9105 /**
9106  *      t4_prep_adapter - prepare SW and HW for operation
9107  *      @adapter: the adapter
9108  *
9109  *      Initialize adapter SW state for the various HW modules, set initial
9110  *      values for some adapter tunables, take PHYs out of reset, and
9111  *      initialize the MDIO interface.
9112  */
9113 int t4_prep_adapter(struct adapter *adapter)
9114 {
9115         int ret, ver;
9116         uint16_t device_id;
9117         u32 pl_rev;
9118
9119         get_pci_mode(adapter, &adapter->params.pci);
9120         pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9121
9122         ret = t4_get_flash_params(adapter);
9123         if (ret < 0) {
9124                 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9125                 return ret;
9126         }
9127
9128         /* Retrieve adapter's device ID
9129          */
9130         pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9131         ver = device_id >> 12;
9132         adapter->params.chip = 0;
9133         switch (ver) {
9134         case CHELSIO_T4:
9135                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9136                 adapter->params.arch.sge_fl_db = DBPRIO_F;
9137                 adapter->params.arch.mps_tcam_size =
9138                                  NUM_MPS_CLS_SRAM_L_INSTANCES;
9139                 adapter->params.arch.mps_rplc_size = 128;
9140                 adapter->params.arch.nchan = NCHAN;
9141                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9142                 adapter->params.arch.vfcount = 128;
9143                 /* Congestion map is for 4 channels so that
9144                  * MPS can have 4 priority per port.
9145                  */
9146                 adapter->params.arch.cng_ch_bits_log = 2;
9147                 break;
9148         case CHELSIO_T5:
9149                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9150                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9151                 adapter->params.arch.mps_tcam_size =
9152                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9153                 adapter->params.arch.mps_rplc_size = 128;
9154                 adapter->params.arch.nchan = NCHAN;
9155                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9156                 adapter->params.arch.vfcount = 128;
9157                 adapter->params.arch.cng_ch_bits_log = 2;
9158                 break;
9159         case CHELSIO_T6:
9160                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9161                 adapter->params.arch.sge_fl_db = 0;
9162                 adapter->params.arch.mps_tcam_size =
9163                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9164                 adapter->params.arch.mps_rplc_size = 256;
9165                 adapter->params.arch.nchan = 2;
9166                 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9167                 adapter->params.arch.vfcount = 256;
9168                 /* Congestion map will be for 2 channels so that
9169                  * MPS can have 8 priority per port.
9170                  */
9171                 adapter->params.arch.cng_ch_bits_log = 3;
9172                 break;
9173         default:
9174                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9175                         device_id);
9176                 return -EINVAL;
9177         }
9178
9179         adapter->params.cim_la_size = CIMLA_SIZE;
9180         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9181
9182         /*
9183          * Default port for debugging in case we can't reach FW.
9184          */
9185         adapter->params.nports = 1;
9186         adapter->params.portvec = 1;
9187         adapter->params.vpd.cclk = 50000;
9188
9189         /* Set PCIe completion timeout to 4 seconds. */
9190         pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9191                                            PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9192         return 0;
9193 }
9194
9195 /**
9196  *      t4_shutdown_adapter - shut down adapter, host & wire
9197  *      @adapter: the adapter
9198  *
9199  *      Perform an emergency shutdown of the adapter and stop it from
9200  *      continuing any further communication on the ports or DMA to the
9201  *      host.  This is typically used when the adapter and/or firmware
9202  *      have crashed and we want to prevent any further accidental
9203  *      communication with the rest of the world.  This will also force
9204  *      the port Link Status to go down -- if register writes work --
9205  *      which should help our peers figure out that we're down.
9206  */
9207 int t4_shutdown_adapter(struct adapter *adapter)
9208 {
9209         int port;
9210
9211         t4_intr_disable(adapter);
9212         t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9213         for_each_port(adapter, port) {
9214                 u32 a_port_cfg = is_t4(adapter->params.chip) ?
9215                                        PORT_REG(port, XGMAC_PORT_CFG_A) :
9216                                        T5_PORT_REG(port, MAC_PORT_CFG_A);
9217
9218                 t4_write_reg(adapter, a_port_cfg,
9219                              t4_read_reg(adapter, a_port_cfg)
9220                              & ~SIGNAL_DET_V(1));
9221         }
9222         t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9223
9224         return 0;
9225 }
9226
9227 /**
9228  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9229  *      @adapter: the adapter
9230  *      @qid: the Queue ID
9231  *      @qtype: the Ingress or Egress type for @qid
9232  *      @user: true if this request is for a user mode queue
9233  *      @pbar2_qoffset: BAR2 Queue Offset
9234  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9235  *
9236  *      Returns the BAR2 SGE Queue Registers information associated with the
9237  *      indicated Absolute Queue ID.  These are passed back in return value
9238  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9239  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9240  *
9241  *      This may return an error which indicates that BAR2 SGE Queue
9242  *      registers aren't available.  If an error is not returned, then the
9243  *      following values are returned:
9244  *
9245  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9246  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9247  *
9248  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9249  *      require the "Inferred Queue ID" ability may be used.  E.g. the
9250  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9251  *      then these "Inferred Queue ID" register may not be used.
9252  */
9253 int t4_bar2_sge_qregs(struct adapter *adapter,
9254                       unsigned int qid,
9255                       enum t4_bar2_qtype qtype,
9256                       int user,
9257                       u64 *pbar2_qoffset,
9258                       unsigned int *pbar2_qid)
9259 {
9260         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9261         u64 bar2_page_offset, bar2_qoffset;
9262         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9263
9264         /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9265         if (!user && is_t4(adapter->params.chip))
9266                 return -EINVAL;
9267
9268         /* Get our SGE Page Size parameters.
9269          */
9270         page_shift = adapter->params.sge.hps + 10;
9271         page_size = 1 << page_shift;
9272
9273         /* Get the right Queues per Page parameters for our Queue.
9274          */
9275         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9276                      ? adapter->params.sge.eq_qpp
9277                      : adapter->params.sge.iq_qpp);
9278         qpp_mask = (1 << qpp_shift) - 1;
9279
9280         /*  Calculate the basics of the BAR2 SGE Queue register area:
9281          *  o The BAR2 page the Queue registers will be in.
9282          *  o The BAR2 Queue ID.
9283          *  o The BAR2 Queue ID Offset into the BAR2 page.
9284          */
9285         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9286         bar2_qid = qid & qpp_mask;
9287         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9288
9289         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9290          * hardware will infer the Absolute Queue ID simply from the writes to
9291          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9292          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9293          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9294          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9295          * from the BAR2 Page and BAR2 Queue ID.
9296          *
9297          * One important censequence of this is that some BAR2 SGE registers
9298          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9299          * there.  But other registers synthesize the SGE Queue ID purely
9300          * from the writes to the registers -- the Write Combined Doorbell
9301          * Buffer is a good example.  These BAR2 SGE Registers are only
9302          * available for those BAR2 SGE Register areas where the SGE Absolute
9303          * Queue ID can be inferred from simple writes.
9304          */
9305         bar2_qoffset = bar2_page_offset;
9306         bar2_qinferred = (bar2_qid_offset < page_size);
9307         if (bar2_qinferred) {
9308                 bar2_qoffset += bar2_qid_offset;
9309                 bar2_qid = 0;
9310         }
9311
9312         *pbar2_qoffset = bar2_qoffset;
9313         *pbar2_qid = bar2_qid;
9314         return 0;
9315 }
9316
9317 /**
9318  *      t4_init_devlog_params - initialize adapter->params.devlog
9319  *      @adap: the adapter
9320  *
9321  *      Initialize various fields of the adapter's Firmware Device Log
9322  *      Parameters structure.
9323  */
9324 int t4_init_devlog_params(struct adapter *adap)
9325 {
9326         struct devlog_params *dparams = &adap->params.devlog;
9327         u32 pf_dparams;
9328         unsigned int devlog_meminfo;
9329         struct fw_devlog_cmd devlog_cmd;
9330         int ret;
9331
9332         /* If we're dealing with newer firmware, the Device Log Parameters
9333          * are stored in a designated register which allows us to access the
9334          * Device Log even if we can't talk to the firmware.
9335          */
9336         pf_dparams =
9337                 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9338         if (pf_dparams) {
9339                 unsigned int nentries, nentries128;
9340
9341                 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9342                 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9343
9344                 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9345                 nentries = (nentries128 + 1) * 128;
9346                 dparams->size = nentries * sizeof(struct fw_devlog_e);
9347
9348                 return 0;
9349         }
9350
9351         /* Otherwise, ask the firmware for it's Device Log Parameters.
9352          */
9353         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9354         devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9355                                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
9356         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9357         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9358                          &devlog_cmd);
9359         if (ret)
9360                 return ret;
9361
9362         devlog_meminfo =
9363                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9364         dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9365         dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9366         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9367
9368         return 0;
9369 }
9370
9371 /**
9372  *      t4_init_sge_params - initialize adap->params.sge
9373  *      @adapter: the adapter
9374  *
9375  *      Initialize various fields of the adapter's SGE Parameters structure.
9376  */
9377 int t4_init_sge_params(struct adapter *adapter)
9378 {
9379         struct sge_params *sge_params = &adapter->params.sge;
9380         u32 hps, qpp;
9381         unsigned int s_hps, s_qpp;
9382
9383         /* Extract the SGE Page Size for our PF.
9384          */
9385         hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9386         s_hps = (HOSTPAGESIZEPF0_S +
9387                  (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9388         sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9389
9390         /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9391          */
9392         s_qpp = (QUEUESPERPAGEPF0_S +
9393                 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9394         qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9395         sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9396         qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9397         sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9398
9399         return 0;
9400 }
9401
9402 /**
9403  *      t4_init_tp_params - initialize adap->params.tp
9404  *      @adap: the adapter
9405  *      @sleep_ok: if true we may sleep while awaiting command completion
9406  *
9407  *      Initialize various fields of the adapter's TP Parameters structure.
9408  */
9409 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9410 {
9411         u32 param, val, v;
9412         int chan, ret;
9413
9414
9415         v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9416         adap->params.tp.tre = TIMERRESOLUTION_G(v);
9417         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9418
9419         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9420         for (chan = 0; chan < NCHAN; chan++)
9421                 adap->params.tp.tx_modq[chan] = chan;
9422
9423         /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9424          * Configuration.
9425          */
9426         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9427                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9428                  FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9429
9430         /* Read current value */
9431         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9432                               &param, &val);
9433         if (ret == 0) {
9434                 dev_info(adap->pdev_dev,
9435                          "Current filter mode/mask 0x%x:0x%x\n",
9436                          FW_PARAMS_PARAM_FILTER_MODE_G(val),
9437                          FW_PARAMS_PARAM_FILTER_MASK_G(val));
9438                 adap->params.tp.vlan_pri_map =
9439                         FW_PARAMS_PARAM_FILTER_MODE_G(val);
9440                 adap->params.tp.filter_mask =
9441                         FW_PARAMS_PARAM_FILTER_MASK_G(val);
9442         } else {
9443                 dev_info(adap->pdev_dev,
9444                          "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9445
9446                 /* Incase of older-fw (which doesn't expose the api
9447                  * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9448                  * the fw api) combination, fall-back to older method of reading
9449                  * the filter mode from indirect-register
9450                  */
9451                 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9452                                TP_VLAN_PRI_MAP_A, sleep_ok);
9453
9454                 /* With the older-fw and newer-driver combination we might run
9455                  * into an issue when user wants to use hash filter region but
9456                  * the filter_mask is zero, in this case filter_mask validation
9457                  * is tough. To avoid that we set the filter_mask same as filter
9458                  * mode, which will behave exactly as the older way of ignoring
9459                  * the filter mask validation.
9460                  */
9461                 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9462         }
9463
9464         t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9465                        TP_INGRESS_CONFIG_A, sleep_ok);
9466
9467         /* For T6, cache the adapter's compressed error vector
9468          * and passing outer header info for encapsulated packets.
9469          */
9470         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9471                 v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9472                 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9473         }
9474
9475         /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9476          * shift positions of several elements of the Compressed Filter Tuple
9477          * for this adapter which we need frequently ...
9478          */
9479         adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9480         adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9481         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9482         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9483         adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9484         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9485                                                                PROTOCOL_F);
9486         adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9487                                                                 ETHERTYPE_F);
9488         adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9489                                                                MACMATCH_F);
9490         adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9491                                                                 MPSHITTYPE_F);
9492         adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9493                                                            FRAGMENTATION_F);
9494
9495         /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9496          * represents the presence of an Outer VLAN instead of a VNIC ID.
9497          */
9498         if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9499                 adap->params.tp.vnic_shift = -1;
9500
9501         v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9502         adap->params.tp.hash_filter_mask = v;
9503         v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9504         adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9505         return 0;
9506 }
9507
9508 /**
9509  *      t4_filter_field_shift - calculate filter field shift
9510  *      @adap: the adapter
9511  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9512  *
9513  *      Return the shift position of a filter field within the Compressed
9514  *      Filter Tuple.  The filter field is specified via its selection bit
9515  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9516  */
9517 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9518 {
9519         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9520         unsigned int sel;
9521         int field_shift;
9522
9523         if ((filter_mode & filter_sel) == 0)
9524                 return -1;
9525
9526         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9527                 switch (filter_mode & sel) {
9528                 case FCOE_F:
9529                         field_shift += FT_FCOE_W;
9530                         break;
9531                 case PORT_F:
9532                         field_shift += FT_PORT_W;
9533                         break;
9534                 case VNIC_ID_F:
9535                         field_shift += FT_VNIC_ID_W;
9536                         break;
9537                 case VLAN_F:
9538                         field_shift += FT_VLAN_W;
9539                         break;
9540                 case TOS_F:
9541                         field_shift += FT_TOS_W;
9542                         break;
9543                 case PROTOCOL_F:
9544                         field_shift += FT_PROTOCOL_W;
9545                         break;
9546                 case ETHERTYPE_F:
9547                         field_shift += FT_ETHERTYPE_W;
9548                         break;
9549                 case MACMATCH_F:
9550                         field_shift += FT_MACMATCH_W;
9551                         break;
9552                 case MPSHITTYPE_F:
9553                         field_shift += FT_MPSHITTYPE_W;
9554                         break;
9555                 case FRAGMENTATION_F:
9556                         field_shift += FT_FRAGMENTATION_W;
9557                         break;
9558                 }
9559         }
9560         return field_shift;
9561 }
9562
9563 int t4_init_rss_mode(struct adapter *adap, int mbox)
9564 {
9565         int i, ret;
9566         struct fw_rss_vi_config_cmd rvc;
9567
9568         memset(&rvc, 0, sizeof(rvc));
9569
9570         for_each_port(adap, i) {
9571                 struct port_info *p = adap2pinfo(adap, i);
9572
9573                 rvc.op_to_viid =
9574                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9575                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
9576                                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9577                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9578                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9579                 if (ret)
9580                         return ret;
9581                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9582         }
9583         return 0;
9584 }
9585
9586 /**
9587  *      t4_init_portinfo - allocate a virtual interface and initialize port_info
9588  *      @pi: the port_info
9589  *      @mbox: mailbox to use for the FW command
9590  *      @port: physical port associated with the VI
9591  *      @pf: the PF owning the VI
9592  *      @vf: the VF owning the VI
9593  *      @mac: the MAC address of the VI
9594  *
9595  *      Allocates a virtual interface for the given physical port.  If @mac is
9596  *      not %NULL it contains the MAC address of the VI as assigned by FW.
9597  *      @mac should be large enough to hold an Ethernet address.
9598  *      Returns < 0 on error.
9599  */
9600 int t4_init_portinfo(struct port_info *pi, int mbox,
9601                      int port, int pf, int vf, u8 mac[])
9602 {
9603         struct adapter *adapter = pi->adapter;
9604         unsigned int fw_caps = adapter->params.fw_caps_support;
9605         struct fw_port_cmd cmd;
9606         unsigned int rss_size;
9607         enum fw_port_type port_type;
9608         int mdio_addr;
9609         fw_port_cap32_t pcaps, acaps;
9610         u8 vivld = 0, vin = 0;
9611         int ret;
9612
9613         /* If we haven't yet determined whether we're talking to Firmware
9614          * which knows the new 32-bit Port Capabilities, it's time to find
9615          * out now.  This will also tell new Firmware to send us Port Status
9616          * Updates using the new 32-bit Port Capabilities version of the
9617          * Port Information message.
9618          */
9619         if (fw_caps == FW_CAPS_UNKNOWN) {
9620                 u32 param, val;
9621
9622                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9623                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9624                 val = 1;
9625                 ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9626                 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9627                 adapter->params.fw_caps_support = fw_caps;
9628         }
9629
9630         memset(&cmd, 0, sizeof(cmd));
9631         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9632                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
9633                                        FW_PORT_CMD_PORTID_V(port));
9634         cmd.action_to_len16 = cpu_to_be32(
9635                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9636                                      ? FW_PORT_ACTION_GET_PORT_INFO
9637                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
9638                 FW_LEN16(cmd));
9639         ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9640         if (ret)
9641                 return ret;
9642
9643         /* Extract the various fields from the Port Information message.
9644          */
9645         if (fw_caps == FW_CAPS16) {
9646                 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9647
9648                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9649                 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9650                              ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9651                              : -1);
9652                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9653                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9654         } else {
9655                 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9656
9657                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9658                 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9659                              ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9660                              : -1);
9661                 pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9662                 acaps = be32_to_cpu(cmd.u.info32.acaps32);
9663         }
9664
9665         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9666                           &vivld, &vin);
9667         if (ret < 0)
9668                 return ret;
9669
9670         pi->viid = ret;
9671         pi->tx_chan = port;
9672         pi->lport = port;
9673         pi->rss_size = rss_size;
9674         pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9675
9676         /* If fw supports returning the VIN as part of FW_VI_CMD,
9677          * save the returned values.
9678          */
9679         if (adapter->params.viid_smt_extn_support) {
9680                 pi->vivld = vivld;
9681                 pi->vin = vin;
9682         } else {
9683                 /* Retrieve the values from VIID */
9684                 pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9685                 pi->vin =  FW_VIID_VIN_G(pi->viid);
9686         }
9687
9688         pi->port_type = port_type;
9689         pi->mdio_addr = mdio_addr;
9690         pi->mod_type = FW_PORT_MOD_TYPE_NA;
9691
9692         init_link_config(&pi->link_cfg, pcaps, acaps);
9693         return 0;
9694 }
9695
9696 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9697 {
9698         u8 addr[6];
9699         int ret, i, j = 0;
9700
9701         for_each_port(adap, i) {
9702                 struct port_info *pi = adap2pinfo(adap, i);
9703
9704                 while ((adap->params.portvec & (1 << j)) == 0)
9705                         j++;
9706
9707                 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9708                 if (ret)
9709                         return ret;
9710
9711                 eth_hw_addr_set(adap->port[i], addr);
9712                 j++;
9713         }
9714         return 0;
9715 }
9716
9717 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9718                         u16 *mirror_viid)
9719 {
9720         int ret;
9721
9722         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9723                           NULL, NULL);
9724         if (ret < 0)
9725                 return ret;
9726
9727         if (mirror_viid)
9728                 *mirror_viid = ret;
9729
9730         return 0;
9731 }
9732
9733 /**
9734  *      t4_read_cimq_cfg - read CIM queue configuration
9735  *      @adap: the adapter
9736  *      @base: holds the queue base addresses in bytes
9737  *      @size: holds the queue sizes in bytes
9738  *      @thres: holds the queue full thresholds in bytes
9739  *
9740  *      Returns the current configuration of the CIM queues, starting with
9741  *      the IBQs, then the OBQs.
9742  */
9743 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9744 {
9745         unsigned int i, v;
9746         int cim_num_obq = is_t4(adap->params.chip) ?
9747                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9748
9749         for (i = 0; i < CIM_NUM_IBQ; i++) {
9750                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9751                              QUENUMSELECT_V(i));
9752                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9753                 /* value is in 256-byte units */
9754                 *base++ = CIMQBASE_G(v) * 256;
9755                 *size++ = CIMQSIZE_G(v) * 256;
9756                 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9757         }
9758         for (i = 0; i < cim_num_obq; i++) {
9759                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9760                              QUENUMSELECT_V(i));
9761                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9762                 /* value is in 256-byte units */
9763                 *base++ = CIMQBASE_G(v) * 256;
9764                 *size++ = CIMQSIZE_G(v) * 256;
9765         }
9766 }
9767
9768 /**
9769  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
9770  *      @adap: the adapter
9771  *      @qid: the queue index
9772  *      @data: where to store the queue contents
9773  *      @n: capacity of @data in 32-bit words
9774  *
9775  *      Reads the contents of the selected CIM queue starting at address 0 up
9776  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9777  *      error and the number of 32-bit words actually read on success.
9778  */
9779 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9780 {
9781         int i, err, attempts;
9782         unsigned int addr;
9783         const unsigned int nwords = CIM_IBQ_SIZE * 4;
9784
9785         if (qid > 5 || (n & 3))
9786                 return -EINVAL;
9787
9788         addr = qid * nwords;
9789         if (n > nwords)
9790                 n = nwords;
9791
9792         /* It might take 3-10ms before the IBQ debug read access is allowed.
9793          * Wait for 1 Sec with a delay of 1 usec.
9794          */
9795         attempts = 1000000;
9796
9797         for (i = 0; i < n; i++, addr++) {
9798                 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9799                              IBQDBGEN_F);
9800                 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9801                                       attempts, 1);
9802                 if (err)
9803                         return err;
9804                 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9805         }
9806         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9807         return i;
9808 }
9809
9810 /**
9811  *      t4_read_cim_obq - read the contents of a CIM outbound queue
9812  *      @adap: the adapter
9813  *      @qid: the queue index
9814  *      @data: where to store the queue contents
9815  *      @n: capacity of @data in 32-bit words
9816  *
9817  *      Reads the contents of the selected CIM queue starting at address 0 up
9818  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9819  *      error and the number of 32-bit words actually read on success.
9820  */
9821 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9822 {
9823         int i, err;
9824         unsigned int addr, v, nwords;
9825         int cim_num_obq = is_t4(adap->params.chip) ?
9826                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9827
9828         if ((qid > (cim_num_obq - 1)) || (n & 3))
9829                 return -EINVAL;
9830
9831         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9832                      QUENUMSELECT_V(qid));
9833         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9834
9835         addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9836         nwords = CIMQSIZE_G(v) * 64;  /* same */
9837         if (n > nwords)
9838                 n = nwords;
9839
9840         for (i = 0; i < n; i++, addr++) {
9841                 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9842                              OBQDBGEN_F);
9843                 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9844                                       2, 1);
9845                 if (err)
9846                         return err;
9847                 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9848         }
9849         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9850         return i;
9851 }
9852
9853 /**
9854  *      t4_cim_read - read a block from CIM internal address space
9855  *      @adap: the adapter
9856  *      @addr: the start address within the CIM address space
9857  *      @n: number of words to read
9858  *      @valp: where to store the result
9859  *
9860  *      Reads a block of 4-byte words from the CIM intenal address space.
9861  */
9862 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9863                 unsigned int *valp)
9864 {
9865         int ret = 0;
9866
9867         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9868                 return -EBUSY;
9869
9870         for ( ; !ret && n--; addr += 4) {
9871                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9872                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9873                                       0, 5, 2);
9874                 if (!ret)
9875                         *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9876         }
9877         return ret;
9878 }
9879
9880 /**
9881  *      t4_cim_write - write a block into CIM internal address space
9882  *      @adap: the adapter
9883  *      @addr: the start address within the CIM address space
9884  *      @n: number of words to write
9885  *      @valp: set of values to write
9886  *
9887  *      Writes a block of 4-byte words into the CIM intenal address space.
9888  */
9889 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9890                  const unsigned int *valp)
9891 {
9892         int ret = 0;
9893
9894         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9895                 return -EBUSY;
9896
9897         for ( ; !ret && n--; addr += 4) {
9898                 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9899                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9900                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9901                                       0, 5, 2);
9902         }
9903         return ret;
9904 }
9905
9906 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9907                          unsigned int val)
9908 {
9909         return t4_cim_write(adap, addr, 1, &val);
9910 }
9911
9912 /**
9913  *      t4_cim_read_la - read CIM LA capture buffer
9914  *      @adap: the adapter
9915  *      @la_buf: where to store the LA data
9916  *      @wrptr: the HW write pointer within the capture buffer
9917  *
9918  *      Reads the contents of the CIM LA buffer with the most recent entry at
9919  *      the end of the returned data and with the entry at @wrptr first.
9920  *      We try to leave the LA in the running state we find it in.
9921  */
9922 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9923 {
9924         int i, ret;
9925         unsigned int cfg, val, idx;
9926
9927         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9928         if (ret)
9929                 return ret;
9930
9931         if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
9932                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9933                 if (ret)
9934                         return ret;
9935         }
9936
9937         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9938         if (ret)
9939                 goto restart;
9940
9941         idx = UPDBGLAWRPTR_G(val);
9942         if (wrptr)
9943                 *wrptr = idx;
9944
9945         for (i = 0; i < adap->params.cim_la_size; i++) {
9946                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9947                                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9948                 if (ret)
9949                         break;
9950                 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9951                 if (ret)
9952                         break;
9953                 if (val & UPDBGLARDEN_F) {
9954                         ret = -ETIMEDOUT;
9955                         break;
9956                 }
9957                 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9958                 if (ret)
9959                         break;
9960
9961                 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9962                  * identify the 32-bit portion of the full 312-bit data
9963                  */
9964                 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9965                         idx = (idx & 0xff0) + 0x10;
9966                 else
9967                         idx++;
9968                 /* address can't exceed 0xfff */
9969                 idx &= UPDBGLARDPTR_M;
9970         }
9971 restart:
9972         if (cfg & UPDBGLAEN_F) {
9973                 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9974                                       cfg & ~UPDBGLARDEN_F);
9975                 if (!ret)
9976                         ret = r;
9977         }
9978         return ret;
9979 }
9980
9981 /**
9982  *      t4_tp_read_la - read TP LA capture buffer
9983  *      @adap: the adapter
9984  *      @la_buf: where to store the LA data
9985  *      @wrptr: the HW write pointer within the capture buffer
9986  *
9987  *      Reads the contents of the TP LA buffer with the most recent entry at
9988  *      the end of the returned data and with the entry at @wrptr first.
9989  *      We leave the LA in the running state we find it in.
9990  */
9991 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9992 {
9993         bool last_incomplete;
9994         unsigned int i, cfg, val, idx;
9995
9996         cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9997         if (cfg & DBGLAENABLE_F)                        /* freeze LA */
9998                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9999                              adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
10000
10001         val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10002         idx = DBGLAWPTR_G(val);
10003         last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10004         if (last_incomplete)
10005                 idx = (idx + 1) & DBGLARPTR_M;
10006         if (wrptr)
10007                 *wrptr = idx;
10008
10009         val &= 0xffff;
10010         val &= ~DBGLARPTR_V(DBGLARPTR_M);
10011         val |= adap->params.tp.la_mask;
10012
10013         for (i = 0; i < TPLA_SIZE; i++) {
10014                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10015                 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10016                 idx = (idx + 1) & DBGLARPTR_M;
10017         }
10018
10019         /* Wipe out last entry if it isn't valid */
10020         if (last_incomplete)
10021                 la_buf[TPLA_SIZE - 1] = ~0ULL;
10022
10023         if (cfg & DBGLAENABLE_F)                    /* restore running state */
10024                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10025                              cfg | adap->params.tp.la_mask);
10026 }
10027
10028 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10029  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10030  * state for more than the Warning Threshold then we'll issue a warning about
10031  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10032  * appears to be hung every Warning Repeat second till the situation clears.
10033  * If the situation clears, we'll note that as well.
10034  */
10035 #define SGE_IDMA_WARN_THRESH 1
10036 #define SGE_IDMA_WARN_REPEAT 300
10037
10038 /**
10039  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10040  *      @adapter: the adapter
10041  *      @idma: the adapter IDMA Monitor state
10042  *
10043  *      Initialize the state of an SGE Ingress DMA Monitor.
10044  */
10045 void t4_idma_monitor_init(struct adapter *adapter,
10046                           struct sge_idma_monitor_state *idma)
10047 {
10048         /* Initialize the state variables for detecting an SGE Ingress DMA
10049          * hang.  The SGE has internal counters which count up on each clock
10050          * tick whenever the SGE finds its Ingress DMA State Engines in the
10051          * same state they were on the previous clock tick.  The clock used is
10052          * the Core Clock so we have a limit on the maximum "time" they can
10053          * record; typically a very small number of seconds.  For instance,
10054          * with a 600MHz Core Clock, we can only count up to a bit more than
10055          * 7s.  So we'll synthesize a larger counter in order to not run the
10056          * risk of having the "timers" overflow and give us the flexibility to
10057          * maintain a Hung SGE State Machine of our own which operates across
10058          * a longer time frame.
10059          */
10060         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10061         idma->idma_stalled[0] = 0;
10062         idma->idma_stalled[1] = 0;
10063 }
10064
10065 /**
10066  *      t4_idma_monitor - monitor SGE Ingress DMA state
10067  *      @adapter: the adapter
10068  *      @idma: the adapter IDMA Monitor state
10069  *      @hz: number of ticks/second
10070  *      @ticks: number of ticks since the last IDMA Monitor call
10071  */
10072 void t4_idma_monitor(struct adapter *adapter,
10073                      struct sge_idma_monitor_state *idma,
10074                      int hz, int ticks)
10075 {
10076         int i, idma_same_state_cnt[2];
10077
10078          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10079           * are counters inside the SGE which count up on each clock when the
10080           * SGE finds its Ingress DMA State Engines in the same states they
10081           * were in the previous clock.  The counters will peg out at
10082           * 0xffffffff without wrapping around so once they pass the 1s
10083           * threshold they'll stay above that till the IDMA state changes.
10084           */
10085         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10086         idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10087         idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10088
10089         for (i = 0; i < 2; i++) {
10090                 u32 debug0, debug11;
10091
10092                 /* If the Ingress DMA Same State Counter ("timer") is less
10093                  * than 1s, then we can reset our synthesized Stall Timer and
10094                  * continue.  If we have previously emitted warnings about a
10095                  * potential stalled Ingress Queue, issue a note indicating
10096                  * that the Ingress Queue has resumed forward progress.
10097                  */
10098                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10099                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10100                                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10101                                          "resumed after %d seconds\n",
10102                                          i, idma->idma_qid[i],
10103                                          idma->idma_stalled[i] / hz);
10104                         idma->idma_stalled[i] = 0;
10105                         continue;
10106                 }
10107
10108                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10109                  * domain.  The first time we get here it'll be because we
10110                  * passed the 1s Threshold; each additional time it'll be
10111                  * because the RX Timer Callback is being fired on its regular
10112                  * schedule.
10113                  *
10114                  * If the stall is below our Potential Hung Ingress Queue
10115                  * Warning Threshold, continue.
10116                  */
10117                 if (idma->idma_stalled[i] == 0) {
10118                         idma->idma_stalled[i] = hz;
10119                         idma->idma_warn[i] = 0;
10120                 } else {
10121                         idma->idma_stalled[i] += ticks;
10122                         idma->idma_warn[i] -= ticks;
10123                 }
10124
10125                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10126                         continue;
10127
10128                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10129                  */
10130                 if (idma->idma_warn[i] > 0)
10131                         continue;
10132                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10133
10134                 /* Read and save the SGE IDMA State and Queue ID information.
10135                  * We do this every time in case it changes across time ...
10136                  * can't be too careful ...
10137                  */
10138                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10139                 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10140                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10141
10142                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10143                 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10144                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10145
10146                 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10147                          "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10148                          i, idma->idma_qid[i], idma->idma_state[i],
10149                          idma->idma_stalled[i] / hz,
10150                          debug0, debug11);
10151                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10152         }
10153 }
10154
10155 /**
10156  *      t4_load_cfg - download config file
10157  *      @adap: the adapter
10158  *      @cfg_data: the cfg text file to write
10159  *      @size: text file size
10160  *
10161  *      Write the supplied config text file to the card's serial flash.
10162  */
10163 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10164 {
10165         int ret, i, n, cfg_addr;
10166         unsigned int addr;
10167         unsigned int flash_cfg_start_sec;
10168         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10169
10170         cfg_addr = t4_flash_cfg_addr(adap);
10171         if (cfg_addr < 0)
10172                 return cfg_addr;
10173
10174         addr = cfg_addr;
10175         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10176
10177         if (size > FLASH_CFG_MAX_SIZE) {
10178                 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10179                         FLASH_CFG_MAX_SIZE);
10180                 return -EFBIG;
10181         }
10182
10183         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
10184                          sf_sec_size);
10185         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10186                                      flash_cfg_start_sec + i - 1);
10187         /* If size == 0 then we're simply erasing the FLASH sectors associated
10188          * with the on-adapter Firmware Configuration File.
10189          */
10190         if (ret || size == 0)
10191                 goto out;
10192
10193         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10194         for (i = 0; i < size; i += SF_PAGE_SIZE) {
10195                 if ((size - i) <  SF_PAGE_SIZE)
10196                         n = size - i;
10197                 else
10198                         n = SF_PAGE_SIZE;
10199                 ret = t4_write_flash(adap, addr, n, cfg_data, true);
10200                 if (ret)
10201                         goto out;
10202
10203                 addr += SF_PAGE_SIZE;
10204                 cfg_data += SF_PAGE_SIZE;
10205         }
10206
10207 out:
10208         if (ret)
10209                 dev_err(adap->pdev_dev, "config file %s failed %d\n",
10210                         (size == 0 ? "clear" : "download"), ret);
10211         return ret;
10212 }
10213
10214 /**
10215  *      t4_set_vf_mac_acl - Set MAC address for the specified VF
10216  *      @adapter: The adapter
10217  *      @vf: one of the VFs instantiated by the specified PF
10218  *      @naddr: the number of MAC addresses
10219  *      @addr: the MAC address(es) to be set to the specified VF
10220  */
10221 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10222                       unsigned int naddr, u8 *addr)
10223 {
10224         struct fw_acl_mac_cmd cmd;
10225
10226         memset(&cmd, 0, sizeof(cmd));
10227         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10228                                     FW_CMD_REQUEST_F |
10229                                     FW_CMD_WRITE_F |
10230                                     FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10231                                     FW_ACL_MAC_CMD_VFN_V(vf));
10232
10233         /* Note: Do not enable the ACL */
10234         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10235         cmd.nmac = naddr;
10236
10237         switch (adapter->pf) {
10238         case 3:
10239                 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10240                 break;
10241         case 2:
10242                 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10243                 break;
10244         case 1:
10245                 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10246                 break;
10247         case 0:
10248                 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10249                 break;
10250         }
10251
10252         return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10253 }
10254
10255 /**
10256  * t4_read_pace_tbl - read the pace table
10257  * @adap: the adapter
10258  * @pace_vals: holds the returned values
10259  *
10260  * Returns the values of TP's pace table in microseconds.
10261  */
10262 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10263 {
10264         unsigned int i, v;
10265
10266         for (i = 0; i < NTX_SCHED; i++) {
10267                 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10268                 v = t4_read_reg(adap, TP_PACE_TABLE_A);
10269                 pace_vals[i] = dack_ticks_to_usec(adap, v);
10270         }
10271 }
10272
10273 /**
10274  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10275  * @adap: the adapter
10276  * @sched: the scheduler index
10277  * @kbps: the byte rate in Kbps
10278  * @ipg: the interpacket delay in tenths of nanoseconds
10279  * @sleep_ok: if true we may sleep while awaiting command completion
10280  *
10281  * Return the current configuration of a HW Tx scheduler.
10282  */
10283 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10284                      unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10285 {
10286         unsigned int v, addr, bpt, cpt;
10287
10288         if (kbps) {
10289                 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10290                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10291                 if (sched & 1)
10292                         v >>= 16;
10293                 bpt = (v >> 8) & 0xff;
10294                 cpt = v & 0xff;
10295                 if (!cpt) {
10296                         *kbps = 0;      /* scheduler disabled */
10297                 } else {
10298                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10299                         *kbps = (v * bpt) / 125;
10300                 }
10301         }
10302         if (ipg) {
10303                 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10304                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10305                 if (sched & 1)
10306                         v >>= 16;
10307                 v &= 0xffff;
10308                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
10309         }
10310 }
10311
10312 /* t4_sge_ctxt_rd - read an SGE context through FW
10313  * @adap: the adapter
10314  * @mbox: mailbox to use for the FW command
10315  * @cid: the context id
10316  * @ctype: the context type
10317  * @data: where to store the context data
10318  *
10319  * Issues a FW command through the given mailbox to read an SGE context.
10320  */
10321 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10322                    enum ctxt_type ctype, u32 *data)
10323 {
10324         struct fw_ldst_cmd c;
10325         int ret;
10326
10327         if (ctype == CTXT_FLM)
10328                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
10329         else
10330                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
10331
10332         memset(&c, 0, sizeof(c));
10333         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10334                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
10335                                         FW_LDST_CMD_ADDRSPACE_V(ret));
10336         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10337         c.u.idctxt.physid = cpu_to_be32(cid);
10338
10339         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10340         if (ret == 0) {
10341                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10342                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10343                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10344                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10345                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10346                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10347         }
10348         return ret;
10349 }
10350
10351 /**
10352  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10353  * @adap: the adapter
10354  * @cid: the context id
10355  * @ctype: the context type
10356  * @data: where to store the context data
10357  *
10358  * Reads an SGE context directly, bypassing FW.  This is only for
10359  * debugging when FW is unavailable.
10360  */
10361 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10362                       enum ctxt_type ctype, u32 *data)
10363 {
10364         int i, ret;
10365
10366         t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10367         ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10368         if (!ret)
10369                 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10370                         *data++ = t4_read_reg(adap, i);
10371         return ret;
10372 }
10373
10374 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10375                     u8 rateunit, u8 ratemode, u8 channel, u8 class,
10376                     u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10377                     u16 burstsize)
10378 {
10379         struct fw_sched_cmd cmd;
10380
10381         memset(&cmd, 0, sizeof(cmd));
10382         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10383                                       FW_CMD_REQUEST_F |
10384                                       FW_CMD_WRITE_F);
10385         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10386
10387         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10388         cmd.u.params.type = type;
10389         cmd.u.params.level = level;
10390         cmd.u.params.mode = mode;
10391         cmd.u.params.ch = channel;
10392         cmd.u.params.cl = class;
10393         cmd.u.params.unit = rateunit;
10394         cmd.u.params.rate = ratemode;
10395         cmd.u.params.min = cpu_to_be32(minrate);
10396         cmd.u.params.max = cpu_to_be32(maxrate);
10397         cmd.u.params.weight = cpu_to_be16(weight);
10398         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10399         cmd.u.params.burstsize = cpu_to_be16(burstsize);
10400
10401         return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10402                                NULL, 1);
10403 }
10404
10405 /**
10406  *      t4_i2c_rd - read I2C data from adapter
10407  *      @adap: the adapter
10408  *      @mbox: mailbox to use for the FW command
10409  *      @port: Port number if per-port device; <0 if not
10410  *      @devid: per-port device ID or absolute device ID
10411  *      @offset: byte offset into device I2C space
10412  *      @len: byte length of I2C space data
10413  *      @buf: buffer in which to return I2C data
10414  *
10415  *      Reads the I2C data from the indicated device and location.
10416  */
10417 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10418               unsigned int devid, unsigned int offset,
10419               unsigned int len, u8 *buf)
10420 {
10421         struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10422         unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10423         int ret = 0;
10424
10425         if (len > I2C_PAGE_SIZE)
10426                 return -EINVAL;
10427
10428         /* Dont allow reads that spans multiple pages */
10429         if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10430                 return -EINVAL;
10431
10432         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10433         ldst_cmd.op_to_addrspace =
10434                 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10435                             FW_CMD_REQUEST_F |
10436                             FW_CMD_READ_F |
10437                             FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10438         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10439         ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10440         ldst_cmd.u.i2c.did = devid;
10441
10442         while (len > 0) {
10443                 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10444
10445                 ldst_cmd.u.i2c.boffset = offset;
10446                 ldst_cmd.u.i2c.blen = i2c_len;
10447
10448                 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10449                                  &ldst_rpl);
10450                 if (ret)
10451                         break;
10452
10453                 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10454                 offset += i2c_len;
10455                 buf += i2c_len;
10456                 len -= i2c_len;
10457         }
10458
10459         return ret;
10460 }
10461
10462 /**
10463  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10464  *      @adap: the adapter
10465  *      @mbox: mailbox to use for the FW command
10466  *      @vf: one of the VFs instantiated by the specified PF
10467  *      @vlan: The vlanid to be set
10468  */
10469 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10470                     u16 vlan)
10471 {
10472         struct fw_acl_vlan_cmd vlan_cmd;
10473         unsigned int enable;
10474
10475         enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10476         memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10477         vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10478                                          FW_CMD_REQUEST_F |
10479                                          FW_CMD_WRITE_F |
10480                                          FW_CMD_EXEC_F |
10481                                          FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10482                                          FW_ACL_VLAN_CMD_VFN_V(vf));
10483         vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10484         /* Drop all packets that donot match vlan id */
10485         vlan_cmd.dropnovlan_fm = (enable
10486                                   ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10487                                      FW_ACL_VLAN_CMD_FM_F) : 0);
10488         if (enable != 0) {
10489                 vlan_cmd.nvlan = 1;
10490                 vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10491         }
10492
10493         return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10494 }
10495
10496 /**
10497  *      modify_device_id - Modifies the device ID of the Boot BIOS image
10498  *      @device_id: the device ID to write.
10499  *      @boot_data: the boot image to modify.
10500  *
10501  *      Write the supplied device ID to the boot BIOS image.
10502  */
10503 static void modify_device_id(int device_id, u8 *boot_data)
10504 {
10505         struct cxgb4_pcir_data *pcir_header;
10506         struct legacy_pci_rom_hdr *header;
10507         u8 *cur_header = boot_data;
10508         u16 pcir_offset;
10509
10510          /* Loop through all chained images and change the device ID's */
10511         do {
10512                 header = (struct legacy_pci_rom_hdr *)cur_header;
10513                 pcir_offset = le16_to_cpu(header->pcir_offset);
10514                 pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10515                               pcir_offset);
10516
10517                 /**
10518                  * Only modify the Device ID if code type is Legacy or HP.
10519                  * 0x00: Okay to modify
10520                  * 0x01: FCODE. Do not modify
10521                  * 0x03: Okay to modify
10522                  * 0x04-0xFF: Do not modify
10523                  */
10524                 if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10525                         u8 csum = 0;
10526                         int i;
10527
10528                         /**
10529                          * Modify Device ID to match current adatper
10530                          */
10531                         pcir_header->device_id = cpu_to_le16(device_id);
10532
10533                         /**
10534                          * Set checksum temporarily to 0.
10535                          * We will recalculate it later.
10536                          */
10537                         header->cksum = 0x0;
10538
10539                         /**
10540                          * Calculate and update checksum
10541                          */
10542                         for (i = 0; i < (header->size512 * 512); i++)
10543                                 csum += cur_header[i];
10544
10545                         /**
10546                          * Invert summed value to create the checksum
10547                          * Writing new checksum value directly to the boot data
10548                          */
10549                         cur_header[7] = -csum;
10550
10551                 } else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10552                         /**
10553                          * Modify Device ID to match current adatper
10554                          */
10555                         pcir_header->device_id = cpu_to_le16(device_id);
10556                 }
10557
10558                 /**
10559                  * Move header pointer up to the next image in the ROM.
10560                  */
10561                 cur_header += header->size512 * 512;
10562         } while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10563 }
10564
10565 /**
10566  *      t4_load_boot - download boot flash
10567  *      @adap: the adapter
10568  *      @boot_data: the boot image to write
10569  *      @boot_addr: offset in flash to write boot_data
10570  *      @size: image size
10571  *
10572  *      Write the supplied boot image to the card's serial flash.
10573  *      The boot image has the following sections: a 28-byte header and the
10574  *      boot image.
10575  */
10576 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10577                  unsigned int boot_addr, unsigned int size)
10578 {
10579         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10580         unsigned int boot_sector = (boot_addr * 1024);
10581         struct cxgb4_pci_exp_rom_header *header;
10582         struct cxgb4_pcir_data *pcir_header;
10583         int pcir_offset;
10584         unsigned int i;
10585         u16 device_id;
10586         int ret, addr;
10587
10588         /**
10589          * Make sure the boot image does not encroach on the firmware region
10590          */
10591         if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10592                 dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10593                 return -EFBIG;
10594         }
10595
10596         /* Get boot header */
10597         header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10598         pcir_offset = le16_to_cpu(header->pcir_offset);
10599         /* PCIR Data Structure */
10600         pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10601
10602         /**
10603          * Perform some primitive sanity testing to avoid accidentally
10604          * writing garbage over the boot sectors.  We ought to check for
10605          * more but it's not worth it for now ...
10606          */
10607         if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10608                 dev_err(adap->pdev_dev, "boot image too small/large\n");
10609                 return -EFBIG;
10610         }
10611
10612         if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10613                 dev_err(adap->pdev_dev, "Boot image missing signature\n");
10614                 return -EINVAL;
10615         }
10616
10617         /* Check PCI header signature */
10618         if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10619                 dev_err(adap->pdev_dev, "PCI header missing signature\n");
10620                 return -EINVAL;
10621         }
10622
10623         /* Check Vendor ID matches Chelsio ID*/
10624         if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10625                 dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10626                 return -EINVAL;
10627         }
10628
10629         /**
10630          * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10631          * and Boot configuration data sections. These 3 boot sections span
10632          * sectors 0 to 7 in flash and live right before the FW image location.
10633          */
10634         i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10635         ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10636                                      (boot_sector >> 16) + i - 1);
10637
10638         /**
10639          * If size == 0 then we're simply erasing the FLASH sectors associated
10640          * with the on-adapter option ROM file
10641          */
10642         if (ret || size == 0)
10643                 goto out;
10644         /* Retrieve adapter's device ID */
10645         pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10646        /* Want to deal with PF 0 so I strip off PF 4 indicator */
10647         device_id = device_id & 0xf0ff;
10648
10649          /* Check PCIE Device ID */
10650         if (le16_to_cpu(pcir_header->device_id) != device_id) {
10651                 /**
10652                  * Change the device ID in the Boot BIOS image to match
10653                  * the Device ID of the current adapter.
10654                  */
10655                 modify_device_id(device_id, boot_data);
10656         }
10657
10658         /**
10659          * Skip over the first SF_PAGE_SIZE worth of data and write it after
10660          * we finish copying the rest of the boot image. This will ensure
10661          * that the BIOS boot header will only be written if the boot image
10662          * was written in full.
10663          */
10664         addr = boot_sector;
10665         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10666                 addr += SF_PAGE_SIZE;
10667                 boot_data += SF_PAGE_SIZE;
10668                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data,
10669                                      false);
10670                 if (ret)
10671                         goto out;
10672         }
10673
10674         ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10675                              (const u8 *)header, false);
10676
10677 out:
10678         if (ret)
10679                 dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10680                         ret);
10681         return ret;
10682 }
10683
10684 /**
10685  *      t4_flash_bootcfg_addr - return the address of the flash
10686  *      optionrom configuration
10687  *      @adapter: the adapter
10688  *
10689  *      Return the address within the flash where the OptionROM Configuration
10690  *      is stored, or an error if the device FLASH is too small to contain
10691  *      a OptionROM Configuration.
10692  */
10693 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10694 {
10695         /**
10696          * If the device FLASH isn't large enough to hold a Firmware
10697          * Configuration File, return an error.
10698          */
10699         if (adapter->params.sf_size <
10700             FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10701                 return -ENOSPC;
10702
10703         return FLASH_BOOTCFG_START;
10704 }
10705
10706 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10707 {
10708         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10709         struct cxgb4_bootcfg_data *header;
10710         unsigned int flash_cfg_start_sec;
10711         unsigned int addr, npad;
10712         int ret, i, n, cfg_addr;
10713
10714         cfg_addr = t4_flash_bootcfg_addr(adap);
10715         if (cfg_addr < 0)
10716                 return cfg_addr;
10717
10718         addr = cfg_addr;
10719         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10720
10721         if (size > FLASH_BOOTCFG_MAX_SIZE) {
10722                 dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10723                         FLASH_BOOTCFG_MAX_SIZE);
10724                 return -EFBIG;
10725         }
10726
10727         header = (struct cxgb4_bootcfg_data *)cfg_data;
10728         if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10729                 dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10730                 ret = -EINVAL;
10731                 goto out;
10732         }
10733
10734         i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10735                          sf_sec_size);
10736         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10737                                      flash_cfg_start_sec + i - 1);
10738
10739         /**
10740          * If size == 0 then we're simply erasing the FLASH sectors associated
10741          * with the on-adapter OptionROM Configuration File.
10742          */
10743         if (ret || size == 0)
10744                 goto out;
10745
10746         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10747         for (i = 0; i < size; i += SF_PAGE_SIZE) {
10748                 n = min_t(u32, size - i, SF_PAGE_SIZE);
10749
10750                 ret = t4_write_flash(adap, addr, n, cfg_data, false);
10751                 if (ret)
10752                         goto out;
10753
10754                 addr += SF_PAGE_SIZE;
10755                 cfg_data += SF_PAGE_SIZE;
10756         }
10757
10758         npad = ((size + 4 - 1) & ~3) - size;
10759         for (i = 0; i < npad; i++) {
10760                 u8 data = 0;
10761
10762                 ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data,
10763                                      false);
10764                 if (ret)
10765                         goto out;
10766         }
10767
10768 out:
10769         if (ret)
10770                 dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10771                         (size == 0 ? "clear" : "download"), ret);
10772         return ret;
10773 }