Revert "vfs: Delete the associated dentry when deleting a file"
[linux-2.6-block.git] / drivers / net / ethernet / cavium / thunder / nicvf_queues.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Cavium, Inc.
4  */
5
6 #include <linux/pci.h>
7 #include <linux/netdevice.h>
8 #include <linux/ip.h>
9 #include <linux/etherdevice.h>
10 #include <linux/iommu.h>
11 #include <net/ip.h>
12 #include <net/tso.h>
13 #include <uapi/linux/bpf.h>
14
15 #include "nic_reg.h"
16 #include "nic.h"
17 #include "q_struct.h"
18 #include "nicvf_queues.h"
19
20 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
21                                                int size, u64 data);
22 static void nicvf_get_page(struct nicvf *nic)
23 {
24         if (!nic->rb_pageref || !nic->rb_page)
25                 return;
26
27         page_ref_add(nic->rb_page, nic->rb_pageref);
28         nic->rb_pageref = 0;
29 }
30
31 /* Poll a register for a specific value */
32 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
33                           u64 reg, int bit_pos, int bits, int val)
34 {
35         u64 bit_mask;
36         u64 reg_val;
37         int timeout = 10;
38
39         bit_mask = (1ULL << bits) - 1;
40         bit_mask = (bit_mask << bit_pos);
41
42         while (timeout) {
43                 reg_val = nicvf_queue_reg_read(nic, reg, qidx);
44                 if (((reg_val & bit_mask) >> bit_pos) == val)
45                         return 0;
46                 usleep_range(1000, 2000);
47                 timeout--;
48         }
49         netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
50         return 1;
51 }
52
53 /* Allocate memory for a queue's descriptors */
54 static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
55                                   int q_len, int desc_size, int align_bytes)
56 {
57         dmem->q_len = q_len;
58         dmem->size = (desc_size * q_len) + align_bytes;
59         /* Save address, need it while freeing */
60         dmem->unalign_base = dma_alloc_coherent(&nic->pdev->dev, dmem->size,
61                                                 &dmem->dma, GFP_KERNEL);
62         if (!dmem->unalign_base)
63                 return -ENOMEM;
64
65         /* Align memory address for 'align_bytes' */
66         dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
67         dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
68         return 0;
69 }
70
71 /* Free queue's descriptor memory */
72 static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
73 {
74         if (!dmem)
75                 return;
76
77         dma_free_coherent(&nic->pdev->dev, dmem->size,
78                           dmem->unalign_base, dmem->dma);
79         dmem->unalign_base = NULL;
80         dmem->base = NULL;
81 }
82
83 #define XDP_PAGE_REFCNT_REFILL 256
84
85 /* Allocate a new page or recycle one if possible
86  *
87  * We cannot optimize dma mapping here, since
88  * 1. It's only one RBDR ring for 8 Rx queues.
89  * 2. CQE_RX gives address of the buffer where pkt has been DMA'ed
90  *    and not idx into RBDR ring, so can't refer to saved info.
91  * 3. There are multiple receive buffers per page
92  */
93 static inline struct pgcache *nicvf_alloc_page(struct nicvf *nic,
94                                                struct rbdr *rbdr, gfp_t gfp)
95 {
96         int ref_count;
97         struct page *page = NULL;
98         struct pgcache *pgcache, *next;
99
100         /* Check if page is already allocated */
101         pgcache = &rbdr->pgcache[rbdr->pgidx];
102         page = pgcache->page;
103         /* Check if page can be recycled */
104         if (page) {
105                 ref_count = page_ref_count(page);
106                 /* This page can be recycled if internal ref_count and page's
107                  * ref_count are equal, indicating that the page has been used
108                  * once for packet transmission. For non-XDP mode, internal
109                  * ref_count is always '1'.
110                  */
111                 if (rbdr->is_xdp) {
112                         if (ref_count == pgcache->ref_count)
113                                 pgcache->ref_count--;
114                         else
115                                 page = NULL;
116                 } else if (ref_count != 1) {
117                         page = NULL;
118                 }
119         }
120
121         if (!page) {
122                 page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 0);
123                 if (!page)
124                         return NULL;
125
126                 this_cpu_inc(nic->pnicvf->drv_stats->page_alloc);
127
128                 /* Check for space */
129                 if (rbdr->pgalloc >= rbdr->pgcnt) {
130                         /* Page can still be used */
131                         nic->rb_page = page;
132                         return NULL;
133                 }
134
135                 /* Save the page in page cache */
136                 pgcache->page = page;
137                 pgcache->dma_addr = 0;
138                 pgcache->ref_count = 0;
139                 rbdr->pgalloc++;
140         }
141
142         /* Take additional page references for recycling */
143         if (rbdr->is_xdp) {
144                 /* Since there is single RBDR (i.e single core doing
145                  * page recycling) per 8 Rx queues, in XDP mode adjusting
146                  * page references atomically is the biggest bottleneck, so
147                  * take bunch of references at a time.
148                  *
149                  * So here, below reference counts defer by '1'.
150                  */
151                 if (!pgcache->ref_count) {
152                         pgcache->ref_count = XDP_PAGE_REFCNT_REFILL;
153                         page_ref_add(page, XDP_PAGE_REFCNT_REFILL);
154                 }
155         } else {
156                 /* In non-XDP case, single 64K page is divided across multiple
157                  * receive buffers, so cost of recycling is less anyway.
158                  * So we can do with just one extra reference.
159                  */
160                 page_ref_add(page, 1);
161         }
162
163         rbdr->pgidx++;
164         rbdr->pgidx &= (rbdr->pgcnt - 1);
165
166         /* Prefetch refcount of next page in page cache */
167         next = &rbdr->pgcache[rbdr->pgidx];
168         page = next->page;
169         if (page)
170                 prefetch(&page->_refcount);
171
172         return pgcache;
173 }
174
175 /* Allocate buffer for packet reception */
176 static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
177                                          gfp_t gfp, u32 buf_len, u64 *rbuf)
178 {
179         struct pgcache *pgcache = NULL;
180
181         /* Check if request can be accomodated in previous allocated page.
182          * But in XDP mode only one buffer per page is permitted.
183          */
184         if (!rbdr->is_xdp && nic->rb_page &&
185             ((nic->rb_page_offset + buf_len) <= PAGE_SIZE)) {
186                 nic->rb_pageref++;
187                 goto ret;
188         }
189
190         nicvf_get_page(nic);
191         nic->rb_page = NULL;
192
193         /* Get new page, either recycled or new one */
194         pgcache = nicvf_alloc_page(nic, rbdr, gfp);
195         if (!pgcache && !nic->rb_page) {
196                 this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures);
197                 return -ENOMEM;
198         }
199
200         nic->rb_page_offset = 0;
201
202         /* Reserve space for header modifications by BPF program */
203         if (rbdr->is_xdp)
204                 buf_len += XDP_PACKET_HEADROOM;
205
206         /* Check if it's recycled */
207         if (pgcache)
208                 nic->rb_page = pgcache->page;
209 ret:
210         if (rbdr->is_xdp && pgcache && pgcache->dma_addr) {
211                 *rbuf = pgcache->dma_addr;
212         } else {
213                 /* HW will ensure data coherency, CPU sync not required */
214                 *rbuf = (u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page,
215                                                 nic->rb_page_offset, buf_len,
216                                                 DMA_FROM_DEVICE,
217                                                 DMA_ATTR_SKIP_CPU_SYNC);
218                 if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) {
219                         if (!nic->rb_page_offset)
220                                 __free_pages(nic->rb_page, 0);
221                         nic->rb_page = NULL;
222                         return -ENOMEM;
223                 }
224                 if (pgcache)
225                         pgcache->dma_addr = *rbuf + XDP_PACKET_HEADROOM;
226                 nic->rb_page_offset += buf_len;
227         }
228
229         return 0;
230 }
231
232 /* Build skb around receive buffer */
233 static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
234                                            u64 rb_ptr, int len)
235 {
236         void *data;
237         struct sk_buff *skb;
238
239         data = phys_to_virt(rb_ptr);
240
241         /* Now build an skb to give to stack */
242         skb = build_skb(data, RCV_FRAG_LEN);
243         if (!skb) {
244                 put_page(virt_to_page(data));
245                 return NULL;
246         }
247
248         prefetch(skb->data);
249         return skb;
250 }
251
252 /* Allocate RBDR ring and populate receive buffers */
253 static int  nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
254                             int ring_len, int buf_size)
255 {
256         int idx;
257         u64 rbuf;
258         struct rbdr_entry_t *desc;
259         int err;
260
261         err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
262                                      sizeof(struct rbdr_entry_t),
263                                      NICVF_RCV_BUF_ALIGN_BYTES);
264         if (err)
265                 return err;
266
267         rbdr->desc = rbdr->dmem.base;
268         /* Buffer size has to be in multiples of 128 bytes */
269         rbdr->dma_size = buf_size;
270         rbdr->enable = true;
271         rbdr->thresh = RBDR_THRESH;
272         rbdr->head = 0;
273         rbdr->tail = 0;
274
275         /* Initialize page recycling stuff.
276          *
277          * Can't use single buffer per page especially with 64K pages.
278          * On embedded platforms i.e 81xx/83xx available memory itself
279          * is low and minimum ring size of RBDR is 8K, that takes away
280          * lots of memory.
281          *
282          * But for XDP it has to be a single buffer per page.
283          */
284         if (!nic->pnicvf->xdp_prog) {
285                 rbdr->pgcnt = ring_len / (PAGE_SIZE / buf_size);
286                 rbdr->is_xdp = false;
287         } else {
288                 rbdr->pgcnt = ring_len;
289                 rbdr->is_xdp = true;
290         }
291         rbdr->pgcnt = roundup_pow_of_two(rbdr->pgcnt);
292         rbdr->pgcache = kcalloc(rbdr->pgcnt, sizeof(*rbdr->pgcache),
293                                 GFP_KERNEL);
294         if (!rbdr->pgcache)
295                 return -ENOMEM;
296         rbdr->pgidx = 0;
297         rbdr->pgalloc = 0;
298
299         nic->rb_page = NULL;
300         for (idx = 0; idx < ring_len; idx++) {
301                 err = nicvf_alloc_rcv_buffer(nic, rbdr, GFP_KERNEL,
302                                              RCV_FRAG_LEN, &rbuf);
303                 if (err) {
304                         /* To free already allocated and mapped ones */
305                         rbdr->tail = idx - 1;
306                         return err;
307                 }
308
309                 desc = GET_RBDR_DESC(rbdr, idx);
310                 desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
311         }
312
313         nicvf_get_page(nic);
314
315         return 0;
316 }
317
318 /* Free RBDR ring and its receive buffers */
319 static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
320 {
321         int head, tail;
322         u64 buf_addr, phys_addr;
323         struct pgcache *pgcache;
324         struct rbdr_entry_t *desc;
325
326         if (!rbdr)
327                 return;
328
329         rbdr->enable = false;
330         if (!rbdr->dmem.base)
331                 return;
332
333         head = rbdr->head;
334         tail = rbdr->tail;
335
336         /* Release page references */
337         while (head != tail) {
338                 desc = GET_RBDR_DESC(rbdr, head);
339                 buf_addr = desc->buf_addr;
340                 phys_addr = nicvf_iova_to_phys(nic, buf_addr);
341                 dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
342                                      DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
343                 if (phys_addr)
344                         put_page(virt_to_page(phys_to_virt(phys_addr)));
345                 head++;
346                 head &= (rbdr->dmem.q_len - 1);
347         }
348         /* Release buffer of tail desc */
349         desc = GET_RBDR_DESC(rbdr, tail);
350         buf_addr = desc->buf_addr;
351         phys_addr = nicvf_iova_to_phys(nic, buf_addr);
352         dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
353                              DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
354         if (phys_addr)
355                 put_page(virt_to_page(phys_to_virt(phys_addr)));
356
357         /* Sync page cache info */
358         smp_rmb();
359
360         /* Release additional page references held for recycling */
361         head = 0;
362         while (head < rbdr->pgcnt) {
363                 pgcache = &rbdr->pgcache[head];
364                 if (pgcache->page && page_ref_count(pgcache->page) != 0) {
365                         if (rbdr->is_xdp) {
366                                 page_ref_sub(pgcache->page,
367                                              pgcache->ref_count - 1);
368                         }
369                         put_page(pgcache->page);
370                 }
371                 head++;
372         }
373
374         /* Free RBDR ring */
375         nicvf_free_q_desc_mem(nic, &rbdr->dmem);
376 }
377
378 /* Refill receive buffer descriptors with new buffers.
379  */
380 static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
381 {
382         struct queue_set *qs = nic->qs;
383         int rbdr_idx = qs->rbdr_cnt;
384         int tail, qcount;
385         int refill_rb_cnt;
386         struct rbdr *rbdr;
387         struct rbdr_entry_t *desc;
388         u64 rbuf;
389         int new_rb = 0;
390
391 refill:
392         if (!rbdr_idx)
393                 return;
394         rbdr_idx--;
395         rbdr = &qs->rbdr[rbdr_idx];
396         /* Check if it's enabled */
397         if (!rbdr->enable)
398                 goto next_rbdr;
399
400         /* Get no of desc's to be refilled */
401         qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
402         qcount &= 0x7FFFF;
403         /* Doorbell can be ringed with a max of ring size minus 1 */
404         if (qcount >= (qs->rbdr_len - 1))
405                 goto next_rbdr;
406         else
407                 refill_rb_cnt = qs->rbdr_len - qcount - 1;
408
409         /* Sync page cache info */
410         smp_rmb();
411
412         /* Start filling descs from tail */
413         tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
414         while (refill_rb_cnt) {
415                 tail++;
416                 tail &= (rbdr->dmem.q_len - 1);
417
418                 if (nicvf_alloc_rcv_buffer(nic, rbdr, gfp, RCV_FRAG_LEN, &rbuf))
419                         break;
420
421                 desc = GET_RBDR_DESC(rbdr, tail);
422                 desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
423                 refill_rb_cnt--;
424                 new_rb++;
425         }
426
427         nicvf_get_page(nic);
428
429         /* make sure all memory stores are done before ringing doorbell */
430         smp_wmb();
431
432         /* Check if buffer allocation failed */
433         if (refill_rb_cnt)
434                 nic->rb_alloc_fail = true;
435         else
436                 nic->rb_alloc_fail = false;
437
438         /* Notify HW */
439         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
440                               rbdr_idx, new_rb);
441 next_rbdr:
442         /* Re-enable RBDR interrupts only if buffer allocation is success */
443         if (!nic->rb_alloc_fail && rbdr->enable &&
444             netif_running(nic->pnicvf->netdev))
445                 nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
446
447         if (rbdr_idx)
448                 goto refill;
449 }
450
451 /* Alloc rcv buffers in non-atomic mode for better success */
452 void nicvf_rbdr_work(struct work_struct *work)
453 {
454         struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
455
456         nicvf_refill_rbdr(nic, GFP_KERNEL);
457         if (nic->rb_alloc_fail)
458                 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
459         else
460                 nic->rb_work_scheduled = false;
461 }
462
463 /* In Softirq context, alloc rcv buffers in atomic mode */
464 void nicvf_rbdr_task(struct tasklet_struct *t)
465 {
466         struct nicvf *nic = from_tasklet(nic, t, rbdr_task);
467
468         nicvf_refill_rbdr(nic, GFP_ATOMIC);
469         if (nic->rb_alloc_fail) {
470                 nic->rb_work_scheduled = true;
471                 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
472         }
473 }
474
475 /* Initialize completion queue */
476 static int nicvf_init_cmp_queue(struct nicvf *nic,
477                                 struct cmp_queue *cq, int q_len)
478 {
479         int err;
480
481         err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
482                                      NICVF_CQ_BASE_ALIGN_BYTES);
483         if (err)
484                 return err;
485
486         cq->desc = cq->dmem.base;
487         cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
488         nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
489
490         return 0;
491 }
492
493 static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
494 {
495         if (!cq)
496                 return;
497         if (!cq->dmem.base)
498                 return;
499
500         nicvf_free_q_desc_mem(nic, &cq->dmem);
501 }
502
503 /* Initialize transmit queue */
504 static int nicvf_init_snd_queue(struct nicvf *nic,
505                                 struct snd_queue *sq, int q_len, int qidx)
506 {
507         int err;
508
509         err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
510                                      NICVF_SQ_BASE_ALIGN_BYTES);
511         if (err)
512                 return err;
513
514         sq->desc = sq->dmem.base;
515         sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
516         if (!sq->skbuff)
517                 return -ENOMEM;
518
519         sq->head = 0;
520         sq->tail = 0;
521         sq->thresh = SND_QUEUE_THRESH;
522
523         /* Check if this SQ is a XDP TX queue */
524         if (nic->sqs_mode)
525                 qidx += ((nic->sqs_id + 1) * MAX_SND_QUEUES_PER_QS);
526         if (qidx < nic->pnicvf->xdp_tx_queues) {
527                 /* Alloc memory to save page pointers for XDP_TX */
528                 sq->xdp_page = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
529                 if (!sq->xdp_page)
530                         return -ENOMEM;
531                 sq->xdp_desc_cnt = 0;
532                 sq->xdp_free_cnt = q_len - 1;
533                 sq->is_xdp = true;
534         } else {
535                 sq->xdp_page = NULL;
536                 sq->xdp_desc_cnt = 0;
537                 sq->xdp_free_cnt = 0;
538                 sq->is_xdp = false;
539
540                 atomic_set(&sq->free_cnt, q_len - 1);
541
542                 /* Preallocate memory for TSO segment's header */
543                 sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
544                                                   q_len * TSO_HEADER_SIZE,
545                                                   &sq->tso_hdrs_phys,
546                                                   GFP_KERNEL);
547                 if (!sq->tso_hdrs)
548                         return -ENOMEM;
549         }
550
551         return 0;
552 }
553
554 void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq,
555                               int hdr_sqe, u8 subdesc_cnt)
556 {
557         u8 idx;
558         struct sq_gather_subdesc *gather;
559
560         /* Unmap DMA mapped skb data buffers */
561         for (idx = 0; idx < subdesc_cnt; idx++) {
562                 hdr_sqe++;
563                 hdr_sqe &= (sq->dmem.q_len - 1);
564                 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe);
565                 /* HW will ensure data coherency, CPU sync not required */
566                 dma_unmap_page_attrs(&nic->pdev->dev, gather->addr,
567                                      gather->size, DMA_TO_DEVICE,
568                                      DMA_ATTR_SKIP_CPU_SYNC);
569         }
570 }
571
572 static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
573 {
574         struct sk_buff *skb;
575         struct page *page;
576         struct sq_hdr_subdesc *hdr;
577         struct sq_hdr_subdesc *tso_sqe;
578
579         if (!sq)
580                 return;
581         if (!sq->dmem.base)
582                 return;
583
584         if (sq->tso_hdrs) {
585                 dma_free_coherent(&nic->pdev->dev,
586                                   sq->dmem.q_len * TSO_HEADER_SIZE,
587                                   sq->tso_hdrs, sq->tso_hdrs_phys);
588                 sq->tso_hdrs = NULL;
589         }
590
591         /* Free pending skbs in the queue */
592         smp_rmb();
593         while (sq->head != sq->tail) {
594                 skb = (struct sk_buff *)sq->skbuff[sq->head];
595                 if (!skb || !sq->xdp_page)
596                         goto next;
597
598                 page = (struct page *)sq->xdp_page[sq->head];
599                 if (!page)
600                         goto next;
601                 else
602                         put_page(page);
603
604                 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
605                 /* Check for dummy descriptor used for HW TSO offload on 88xx */
606                 if (hdr->dont_send) {
607                         /* Get actual TSO descriptors and unmap them */
608                         tso_sqe =
609                          (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
610                         nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
611                                                  tso_sqe->subdesc_cnt);
612                 } else {
613                         nicvf_unmap_sndq_buffers(nic, sq, sq->head,
614                                                  hdr->subdesc_cnt);
615                 }
616                 if (skb)
617                         dev_kfree_skb_any(skb);
618 next:
619                 sq->head++;
620                 sq->head &= (sq->dmem.q_len - 1);
621         }
622         kfree(sq->skbuff);
623         kfree(sq->xdp_page);
624         nicvf_free_q_desc_mem(nic, &sq->dmem);
625 }
626
627 static void nicvf_reclaim_snd_queue(struct nicvf *nic,
628                                     struct queue_set *qs, int qidx)
629 {
630         /* Disable send queue */
631         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
632         /* Check if SQ is stopped */
633         if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
634                 return;
635         /* Reset send queue */
636         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
637 }
638
639 static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
640                                     struct queue_set *qs, int qidx)
641 {
642         union nic_mbx mbx = {};
643
644         /* Make sure all packets in the pipeline are written back into mem */
645         mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
646         nicvf_send_msg_to_pf(nic, &mbx);
647 }
648
649 static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
650                                     struct queue_set *qs, int qidx)
651 {
652         /* Disable timer threshold (doesn't get reset upon CQ reset */
653         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
654         /* Disable completion queue */
655         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
656         /* Reset completion queue */
657         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
658 }
659
660 static void nicvf_reclaim_rbdr(struct nicvf *nic,
661                                struct rbdr *rbdr, int qidx)
662 {
663         u64 tmp, fifo_state;
664         int timeout = 10;
665
666         /* Save head and tail pointers for feeing up buffers */
667         rbdr->head = nicvf_queue_reg_read(nic,
668                                           NIC_QSET_RBDR_0_1_HEAD,
669                                           qidx) >> 3;
670         rbdr->tail = nicvf_queue_reg_read(nic,
671                                           NIC_QSET_RBDR_0_1_TAIL,
672                                           qidx) >> 3;
673
674         /* If RBDR FIFO is in 'FAIL' state then do a reset first
675          * before relaiming.
676          */
677         fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
678         if (((fifo_state >> 62) & 0x03) == 0x3)
679                 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
680                                       qidx, NICVF_RBDR_RESET);
681
682         /* Disable RBDR */
683         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
684         if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
685                 return;
686         while (1) {
687                 tmp = nicvf_queue_reg_read(nic,
688                                            NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
689                                            qidx);
690                 if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
691                         break;
692                 usleep_range(1000, 2000);
693                 timeout--;
694                 if (!timeout) {
695                         netdev_err(nic->netdev,
696                                    "Failed polling on prefetch status\n");
697                         return;
698                 }
699         }
700         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
701                               qidx, NICVF_RBDR_RESET);
702
703         if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
704                 return;
705         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
706         if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
707                 return;
708 }
709
710 void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
711 {
712         u64 rq_cfg;
713         int sqs;
714
715         rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
716
717         /* Enable first VLAN stripping */
718         if (features & NETIF_F_HW_VLAN_CTAG_RX)
719                 rq_cfg |= (1ULL << 25);
720         else
721                 rq_cfg &= ~(1ULL << 25);
722         nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
723
724         /* Configure Secondary Qsets, if any */
725         for (sqs = 0; sqs < nic->sqs_count; sqs++)
726                 if (nic->snicvf[sqs])
727                         nicvf_queue_reg_write(nic->snicvf[sqs],
728                                               NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
729 }
730
731 static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
732 {
733         union nic_mbx mbx = {};
734
735         /* Reset all RQ/SQ and VF stats */
736         mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
737         mbx.reset_stat.rx_stat_mask = 0x3FFF;
738         mbx.reset_stat.tx_stat_mask = 0x1F;
739         mbx.reset_stat.rq_stat_mask = 0xFFFF;
740         mbx.reset_stat.sq_stat_mask = 0xFFFF;
741         nicvf_send_msg_to_pf(nic, &mbx);
742 }
743
744 /* Configures receive queue */
745 static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
746                                    int qidx, bool enable)
747 {
748         union nic_mbx mbx = {};
749         struct rcv_queue *rq;
750         struct rq_cfg rq_cfg;
751
752         rq = &qs->rq[qidx];
753         rq->enable = enable;
754
755         /* Disable receive queue */
756         nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
757
758         if (!rq->enable) {
759                 nicvf_reclaim_rcv_queue(nic, qs, qidx);
760                 xdp_rxq_info_unreg(&rq->xdp_rxq);
761                 return;
762         }
763
764         rq->cq_qs = qs->vnic_id;
765         rq->cq_idx = qidx;
766         rq->start_rbdr_qs = qs->vnic_id;
767         rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
768         rq->cont_rbdr_qs = qs->vnic_id;
769         rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
770         /* all writes of RBDR data to be loaded into L2 Cache as well*/
771         rq->caching = 1;
772
773         /* Driver have no proper error path for failed XDP RX-queue info reg */
774         WARN_ON(xdp_rxq_info_reg(&rq->xdp_rxq, nic->netdev, qidx, 0) < 0);
775
776         /* Send a mailbox msg to PF to config RQ */
777         mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
778         mbx.rq.qs_num = qs->vnic_id;
779         mbx.rq.rq_num = qidx;
780         mbx.rq.cfg = ((u64)rq->caching << 26) | (rq->cq_qs << 19) |
781                           (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
782                           (rq->cont_qs_rbdr_idx << 8) |
783                           (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
784         nicvf_send_msg_to_pf(nic, &mbx);
785
786         mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
787         mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
788                      (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) |
789                      (qs->vnic_id << 0);
790         nicvf_send_msg_to_pf(nic, &mbx);
791
792         /* RQ drop config
793          * Enable CQ drop to reserve sufficient CQEs for all tx packets
794          */
795         mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
796         mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
797                      (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) |
798                      (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8);
799         nicvf_send_msg_to_pf(nic, &mbx);
800
801         if (!nic->sqs_mode && (qidx == 0)) {
802                 /* Enable checking L3/L4 length and TCP/UDP checksums
803                  * Also allow IPv6 pkts with zero UDP checksum.
804                  */
805                 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
806                                       (BIT(24) | BIT(23) | BIT(21) | BIT(20)));
807                 nicvf_config_vlan_stripping(nic, nic->netdev->features);
808         }
809
810         /* Enable Receive queue */
811         memset(&rq_cfg, 0, sizeof(struct rq_cfg));
812         rq_cfg.ena = 1;
813         rq_cfg.tcp_ena = 0;
814         nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
815 }
816
817 /* Configures completion queue */
818 void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
819                             int qidx, bool enable)
820 {
821         struct cmp_queue *cq;
822         struct cq_cfg cq_cfg;
823
824         cq = &qs->cq[qidx];
825         cq->enable = enable;
826
827         if (!cq->enable) {
828                 nicvf_reclaim_cmp_queue(nic, qs, qidx);
829                 return;
830         }
831
832         /* Reset completion queue */
833         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
834
835         if (!cq->enable)
836                 return;
837
838         spin_lock_init(&cq->lock);
839         /* Set completion queue base address */
840         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
841                               qidx, (u64)(cq->dmem.phys_base));
842
843         /* Enable Completion queue */
844         memset(&cq_cfg, 0, sizeof(struct cq_cfg));
845         cq_cfg.ena = 1;
846         cq_cfg.reset = 0;
847         cq_cfg.caching = 0;
848         cq_cfg.qsize = ilog2(qs->cq_len >> 10);
849         cq_cfg.avg_con = 0;
850         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
851
852         /* Set threshold value for interrupt generation */
853         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
854         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
855                               qidx, CMP_QUEUE_TIMER_THRESH);
856 }
857
858 /* Configures transmit queue */
859 static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
860                                    int qidx, bool enable)
861 {
862         union nic_mbx mbx = {};
863         struct snd_queue *sq;
864         struct sq_cfg sq_cfg;
865
866         sq = &qs->sq[qidx];
867         sq->enable = enable;
868
869         if (!sq->enable) {
870                 nicvf_reclaim_snd_queue(nic, qs, qidx);
871                 return;
872         }
873
874         /* Reset send queue */
875         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
876
877         sq->cq_qs = qs->vnic_id;
878         sq->cq_idx = qidx;
879
880         /* Send a mailbox msg to PF to config SQ */
881         mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
882         mbx.sq.qs_num = qs->vnic_id;
883         mbx.sq.sq_num = qidx;
884         mbx.sq.sqs_mode = nic->sqs_mode;
885         mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
886         nicvf_send_msg_to_pf(nic, &mbx);
887
888         /* Set queue base address */
889         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
890                               qidx, (u64)(sq->dmem.phys_base));
891
892         /* Enable send queue  & set queue size */
893         memset(&sq_cfg, 0, sizeof(struct sq_cfg));
894         sq_cfg.ena = 1;
895         sq_cfg.reset = 0;
896         sq_cfg.ldwb = 0;
897         sq_cfg.qsize = ilog2(qs->sq_len >> 10);
898         sq_cfg.tstmp_bgx_intf = 0;
899         /* CQ's level at which HW will stop processing SQEs to avoid
900          * transmitting a pkt with no space in CQ to post CQE_TX.
901          */
902         sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len;
903         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
904
905         /* Set threshold value for interrupt generation */
906         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
907
908         /* Set queue:cpu affinity for better load distribution */
909         if (cpu_online(qidx)) {
910                 cpumask_set_cpu(qidx, &sq->affinity_mask);
911                 netif_set_xps_queue(nic->netdev,
912                                     &sq->affinity_mask, qidx);
913         }
914 }
915
916 /* Configures receive buffer descriptor ring */
917 static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
918                               int qidx, bool enable)
919 {
920         struct rbdr *rbdr;
921         struct rbdr_cfg rbdr_cfg;
922
923         rbdr = &qs->rbdr[qidx];
924         nicvf_reclaim_rbdr(nic, rbdr, qidx);
925         if (!enable)
926                 return;
927
928         /* Set descriptor base address */
929         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
930                               qidx, (u64)(rbdr->dmem.phys_base));
931
932         /* Enable RBDR  & set queue size */
933         /* Buffer size should be in multiples of 128 bytes */
934         memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
935         rbdr_cfg.ena = 1;
936         rbdr_cfg.reset = 0;
937         rbdr_cfg.ldwb = 0;
938         rbdr_cfg.qsize = RBDR_SIZE;
939         rbdr_cfg.avg_con = 0;
940         rbdr_cfg.lines = rbdr->dma_size / 128;
941         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
942                               qidx, *(u64 *)&rbdr_cfg);
943
944         /* Notify HW */
945         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
946                               qidx, qs->rbdr_len - 1);
947
948         /* Set threshold value for interrupt generation */
949         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
950                               qidx, rbdr->thresh - 1);
951 }
952
953 /* Requests PF to assign and enable Qset */
954 void nicvf_qset_config(struct nicvf *nic, bool enable)
955 {
956         union nic_mbx mbx = {};
957         struct queue_set *qs = nic->qs;
958         struct qs_cfg *qs_cfg;
959
960         if (!qs) {
961                 netdev_warn(nic->netdev,
962                             "Qset is still not allocated, don't init queues\n");
963                 return;
964         }
965
966         qs->enable = enable;
967         qs->vnic_id = nic->vf_id;
968
969         /* Send a mailbox msg to PF to config Qset */
970         mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
971         mbx.qs.num = qs->vnic_id;
972         mbx.qs.sqs_count = nic->sqs_count;
973
974         mbx.qs.cfg = 0;
975         qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
976         if (qs->enable) {
977                 qs_cfg->ena = 1;
978 #ifdef __BIG_ENDIAN
979                 qs_cfg->be = 1;
980 #endif
981                 qs_cfg->vnic = qs->vnic_id;
982                 /* Enable Tx timestamping capability */
983                 if (nic->ptp_clock)
984                         qs_cfg->send_tstmp_ena = 1;
985         }
986         nicvf_send_msg_to_pf(nic, &mbx);
987 }
988
989 static void nicvf_free_resources(struct nicvf *nic)
990 {
991         int qidx;
992         struct queue_set *qs = nic->qs;
993
994         /* Free receive buffer descriptor ring */
995         for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
996                 nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
997
998         /* Free completion queue */
999         for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1000                 nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1001
1002         /* Free send queue */
1003         for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1004                 nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1005 }
1006
1007 static int nicvf_alloc_resources(struct nicvf *nic)
1008 {
1009         int qidx;
1010         struct queue_set *qs = nic->qs;
1011
1012         /* Alloc receive buffer descriptor ring */
1013         for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1014                 if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1015                                     DMA_BUFFER_LEN))
1016                         goto alloc_fail;
1017         }
1018
1019         /* Alloc send queue */
1020         for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1021                 if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1022                         goto alloc_fail;
1023         }
1024
1025         /* Alloc completion queue */
1026         for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1027                 if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
1028                         goto alloc_fail;
1029         }
1030
1031         return 0;
1032 alloc_fail:
1033         nicvf_free_resources(nic);
1034         return -ENOMEM;
1035 }
1036
1037 int nicvf_set_qset_resources(struct nicvf *nic)
1038 {
1039         struct queue_set *qs;
1040
1041         qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
1042         if (!qs)
1043                 return -ENOMEM;
1044         nic->qs = qs;
1045
1046         /* Set count of each queue */
1047         qs->rbdr_cnt = DEFAULT_RBDR_CNT;
1048         qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
1049         qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
1050         qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
1051
1052         /* Set queue lengths */
1053         qs->rbdr_len = RCV_BUF_COUNT;
1054         qs->sq_len = SND_QUEUE_LEN;
1055         qs->cq_len = CMP_QUEUE_LEN;
1056
1057         nic->rx_queues = qs->rq_cnt;
1058         nic->tx_queues = qs->sq_cnt;
1059         nic->xdp_tx_queues = 0;
1060
1061         return 0;
1062 }
1063
1064 int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
1065 {
1066         bool disable = false;
1067         struct queue_set *qs = nic->qs;
1068         struct queue_set *pqs = nic->pnicvf->qs;
1069         int qidx;
1070
1071         if (!qs)
1072                 return 0;
1073
1074         /* Take primary VF's queue lengths.
1075          * This is needed to take queue lengths set from ethtool
1076          * into consideration.
1077          */
1078         if (nic->sqs_mode && pqs) {
1079                 qs->cq_len = pqs->cq_len;
1080                 qs->sq_len = pqs->sq_len;
1081         }
1082
1083         if (enable) {
1084                 if (nicvf_alloc_resources(nic))
1085                         return -ENOMEM;
1086
1087                 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1088                         nicvf_snd_queue_config(nic, qs, qidx, enable);
1089                 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1090                         nicvf_cmp_queue_config(nic, qs, qidx, enable);
1091                 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1092                         nicvf_rbdr_config(nic, qs, qidx, enable);
1093                 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1094                         nicvf_rcv_queue_config(nic, qs, qidx, enable);
1095         } else {
1096                 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1097                         nicvf_rcv_queue_config(nic, qs, qidx, disable);
1098                 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1099                         nicvf_rbdr_config(nic, qs, qidx, disable);
1100                 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1101                         nicvf_snd_queue_config(nic, qs, qidx, disable);
1102                 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1103                         nicvf_cmp_queue_config(nic, qs, qidx, disable);
1104
1105                 nicvf_free_resources(nic);
1106         }
1107
1108         /* Reset RXQ's stats.
1109          * SQ's stats will get reset automatically once SQ is reset.
1110          */
1111         nicvf_reset_rcv_queue_stats(nic);
1112
1113         return 0;
1114 }
1115
1116 /* Get a free desc from SQ
1117  * returns descriptor ponter & descriptor number
1118  */
1119 static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1120 {
1121         int qentry;
1122
1123         qentry = sq->tail;
1124         if (!sq->is_xdp)
1125                 atomic_sub(desc_cnt, &sq->free_cnt);
1126         else
1127                 sq->xdp_free_cnt -= desc_cnt;
1128         sq->tail += desc_cnt;
1129         sq->tail &= (sq->dmem.q_len - 1);
1130
1131         return qentry;
1132 }
1133
1134 /* Rollback to previous tail pointer when descriptors not used */
1135 static inline void nicvf_rollback_sq_desc(struct snd_queue *sq,
1136                                           int qentry, int desc_cnt)
1137 {
1138         sq->tail = qentry;
1139         atomic_add(desc_cnt, &sq->free_cnt);
1140 }
1141
1142 /* Free descriptor back to SQ for future use */
1143 void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1144 {
1145         if (!sq->is_xdp)
1146                 atomic_add(desc_cnt, &sq->free_cnt);
1147         else
1148                 sq->xdp_free_cnt += desc_cnt;
1149         sq->head += desc_cnt;
1150         sq->head &= (sq->dmem.q_len - 1);
1151 }
1152
1153 static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1154 {
1155         qentry++;
1156         qentry &= (sq->dmem.q_len - 1);
1157         return qentry;
1158 }
1159
1160 void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1161 {
1162         u64 sq_cfg;
1163
1164         sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1165         sq_cfg |= NICVF_SQ_EN;
1166         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1167         /* Ring doorbell so that H/W restarts processing SQEs */
1168         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1169 }
1170
1171 void nicvf_sq_disable(struct nicvf *nic, int qidx)
1172 {
1173         u64 sq_cfg;
1174
1175         sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1176         sq_cfg &= ~NICVF_SQ_EN;
1177         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1178 }
1179
1180 void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
1181                               int qidx)
1182 {
1183         u64 head;
1184         struct sk_buff *skb;
1185         struct nicvf *nic = netdev_priv(netdev);
1186         struct sq_hdr_subdesc *hdr;
1187
1188         head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1189         while (sq->head != head) {
1190                 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1191                 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1192                         nicvf_put_sq_desc(sq, 1);
1193                         continue;
1194                 }
1195                 skb = (struct sk_buff *)sq->skbuff[sq->head];
1196                 if (skb)
1197                         dev_kfree_skb_any(skb);
1198                 atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
1199                 atomic64_add(hdr->tot_len,
1200                              (atomic64_t *)&netdev->stats.tx_bytes);
1201                 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1202         }
1203 }
1204
1205 /* XDP Transmit APIs */
1206 void nicvf_xdp_sq_doorbell(struct nicvf *nic,
1207                            struct snd_queue *sq, int sq_num)
1208 {
1209         if (!sq->xdp_desc_cnt)
1210                 return;
1211
1212         /* make sure all memory stores are done before ringing doorbell */
1213         wmb();
1214
1215         /* Inform HW to xmit all TSO segments */
1216         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1217                               sq_num, sq->xdp_desc_cnt);
1218         sq->xdp_desc_cnt = 0;
1219 }
1220
1221 static inline void
1222 nicvf_xdp_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1223                              int subdesc_cnt, u64 data, int len)
1224 {
1225         struct sq_hdr_subdesc *hdr;
1226
1227         hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1228         memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1229         hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1230         hdr->subdesc_cnt = subdesc_cnt;
1231         hdr->tot_len = len;
1232         hdr->post_cqe = 1;
1233         sq->xdp_page[qentry] = (u64)virt_to_page((void *)data);
1234 }
1235
1236 int nicvf_xdp_sq_append_pkt(struct nicvf *nic, struct snd_queue *sq,
1237                             u64 bufaddr, u64 dma_addr, u16 len)
1238 {
1239         int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1240         int qentry;
1241
1242         if (subdesc_cnt > sq->xdp_free_cnt)
1243                 return 0;
1244
1245         qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1246
1247         nicvf_xdp_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, bufaddr, len);
1248
1249         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1250         nicvf_sq_add_gather_subdesc(sq, qentry, len, dma_addr);
1251
1252         sq->xdp_desc_cnt += subdesc_cnt;
1253
1254         return 1;
1255 }
1256
1257 /* Calculate no of SQ subdescriptors needed to transmit all
1258  * segments of this TSO packet.
1259  * Taken from 'Tilera network driver' with a minor modification.
1260  */
1261 static int nicvf_tso_count_subdescs(struct sk_buff *skb)
1262 {
1263         struct skb_shared_info *sh = skb_shinfo(skb);
1264         unsigned int sh_len = skb_tcp_all_headers(skb);
1265         unsigned int data_len = skb->len - sh_len;
1266         unsigned int p_len = sh->gso_size;
1267         long f_id = -1;    /* id of the current fragment */
1268         long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1269         long f_used = 0;  /* bytes used from the current fragment */
1270         long n;            /* size of the current piece of payload */
1271         int num_edescs = 0;
1272         int segment;
1273
1274         for (segment = 0; segment < sh->gso_segs; segment++) {
1275                 unsigned int p_used = 0;
1276
1277                 /* One edesc for header and for each piece of the payload. */
1278                 for (num_edescs++; p_used < p_len; num_edescs++) {
1279                         /* Advance as needed. */
1280                         while (f_used >= f_size) {
1281                                 f_id++;
1282                                 f_size = skb_frag_size(&sh->frags[f_id]);
1283                                 f_used = 0;
1284                         }
1285
1286                         /* Use bytes from the current fragment. */
1287                         n = p_len - p_used;
1288                         if (n > f_size - f_used)
1289                                 n = f_size - f_used;
1290                         f_used += n;
1291                         p_used += n;
1292                 }
1293
1294                 /* The last segment may be less than gso_size. */
1295                 data_len -= p_len;
1296                 if (data_len < p_len)
1297                         p_len = data_len;
1298         }
1299
1300         /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
1301         return num_edescs + sh->gso_segs;
1302 }
1303
1304 #define POST_CQE_DESC_COUNT 2
1305
1306 /* Get the number of SQ descriptors needed to xmit this skb */
1307 static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
1308 {
1309         int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1310
1311         if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
1312                 subdesc_cnt = nicvf_tso_count_subdescs(skb);
1313                 return subdesc_cnt;
1314         }
1315
1316         /* Dummy descriptors to get TSO pkt completion notification */
1317         if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
1318                 subdesc_cnt += POST_CQE_DESC_COUNT;
1319
1320         if (skb_shinfo(skb)->nr_frags)
1321                 subdesc_cnt += skb_shinfo(skb)->nr_frags;
1322
1323         return subdesc_cnt;
1324 }
1325
1326 /* Add SQ HEADER subdescriptor.
1327  * First subdescriptor for every send descriptor.
1328  */
1329 static inline void
1330 nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
1331                          int subdesc_cnt, struct sk_buff *skb, int len)
1332 {
1333         int proto;
1334         struct sq_hdr_subdesc *hdr;
1335         union {
1336                 struct iphdr *v4;
1337                 struct ipv6hdr *v6;
1338                 unsigned char *hdr;
1339         } ip;
1340
1341         ip.hdr = skb_network_header(skb);
1342         hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1343         memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1344         hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1345
1346         if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
1347                 /* post_cqe = 0, to avoid HW posting a CQE for every TSO
1348                  * segment transmitted on 88xx.
1349                  */
1350                 hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
1351         } else {
1352                 sq->skbuff[qentry] = (u64)skb;
1353                 /* Enable notification via CQE after processing SQE */
1354                 hdr->post_cqe = 1;
1355                 /* No of subdescriptors following this */
1356                 hdr->subdesc_cnt = subdesc_cnt;
1357         }
1358         hdr->tot_len = len;
1359
1360         /* Offload checksum calculation to HW */
1361         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1362                 if (ip.v4->version == 4)
1363                         hdr->csum_l3 = 1; /* Enable IP csum calculation */
1364                 hdr->l3_offset = skb_network_offset(skb);
1365                 hdr->l4_offset = skb_transport_offset(skb);
1366
1367                 proto = (ip.v4->version == 4) ? ip.v4->protocol :
1368                         ip.v6->nexthdr;
1369
1370                 switch (proto) {
1371                 case IPPROTO_TCP:
1372                         hdr->csum_l4 = SEND_L4_CSUM_TCP;
1373                         break;
1374                 case IPPROTO_UDP:
1375                         hdr->csum_l4 = SEND_L4_CSUM_UDP;
1376                         break;
1377                 case IPPROTO_SCTP:
1378                         hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1379                         break;
1380                 }
1381         }
1382
1383         if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
1384                 hdr->tso = 1;
1385                 hdr->tso_start = skb_tcp_all_headers(skb);
1386                 hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
1387                 /* For non-tunneled pkts, point this to L2 ethertype */
1388                 hdr->inner_l3_offset = skb_network_offset(skb) - 2;
1389                 this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1390         }
1391
1392         /* Check if timestamp is requested */
1393         if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1394                 skb_tx_timestamp(skb);
1395                 return;
1396         }
1397
1398         /* Tx timestamping not supported along with TSO, so ignore request */
1399         if (skb_shinfo(skb)->gso_size)
1400                 return;
1401
1402         /* HW supports only a single outstanding packet to timestamp */
1403         if (!atomic_add_unless(&nic->pnicvf->tx_ptp_skbs, 1, 1))
1404                 return;
1405
1406         /* Mark the SKB for later reference */
1407         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1408
1409         /* Finally enable timestamp generation
1410          * Since 'post_cqe' is also set, two CQEs will be posted
1411          * for this packet i.e CQE_TYPE_SEND and CQE_TYPE_SEND_PTP.
1412          */
1413         hdr->tstmp = 1;
1414 }
1415
1416 /* SQ GATHER subdescriptor
1417  * Must follow HDR descriptor
1418  */
1419 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1420                                                int size, u64 data)
1421 {
1422         struct sq_gather_subdesc *gather;
1423
1424         qentry &= (sq->dmem.q_len - 1);
1425         gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1426
1427         memset(gather, 0, SND_QUEUE_DESC_SIZE);
1428         gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1429         gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1430         gather->size = size;
1431         gather->addr = data;
1432 }
1433
1434 /* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
1435  * packet so that a CQE is posted as a notifation for transmission of
1436  * TSO packet.
1437  */
1438 static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
1439                                             int tso_sqe, struct sk_buff *skb)
1440 {
1441         struct sq_imm_subdesc *imm;
1442         struct sq_hdr_subdesc *hdr;
1443
1444         sq->skbuff[qentry] = (u64)skb;
1445
1446         hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1447         memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1448         hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1449         /* Enable notification via CQE after processing SQE */
1450         hdr->post_cqe = 1;
1451         /* There is no packet to transmit here */
1452         hdr->dont_send = 1;
1453         hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
1454         hdr->tot_len = 1;
1455         /* Actual TSO header SQE index, needed for cleanup */
1456         hdr->rsvd2 = tso_sqe;
1457
1458         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1459         imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
1460         memset(imm, 0, SND_QUEUE_DESC_SIZE);
1461         imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
1462         imm->len = 1;
1463 }
1464
1465 static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
1466                                      int sq_num, int desc_cnt)
1467 {
1468         struct netdev_queue *txq;
1469
1470         txq = netdev_get_tx_queue(nic->pnicvf->netdev,
1471                                   skb_get_queue_mapping(skb));
1472
1473         netdev_tx_sent_queue(txq, skb->len);
1474
1475         /* make sure all memory stores are done before ringing doorbell */
1476         smp_wmb();
1477
1478         /* Inform HW to xmit all TSO segments */
1479         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1480                               sq_num, desc_cnt);
1481 }
1482
1483 /* Segment a TSO packet into 'gso_size' segments and append
1484  * them to SQ for transfer
1485  */
1486 static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1487                                int sq_num, int qentry, struct sk_buff *skb)
1488 {
1489         struct tso_t tso;
1490         int seg_subdescs = 0, desc_cnt = 0;
1491         int seg_len, total_len, data_left;
1492         int hdr_qentry = qentry;
1493         int hdr_len;
1494
1495         hdr_len = tso_start(skb, &tso);
1496
1497         total_len = skb->len - hdr_len;
1498         while (total_len > 0) {
1499                 char *hdr;
1500
1501                 /* Save Qentry for adding HDR_SUBDESC at the end */
1502                 hdr_qentry = qentry;
1503
1504                 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1505                 total_len -= data_left;
1506
1507                 /* Add segment's header */
1508                 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1509                 hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1510                 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1511                 nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1512                                             sq->tso_hdrs_phys +
1513                                             qentry * TSO_HEADER_SIZE);
1514                 /* HDR_SUDESC + GATHER */
1515                 seg_subdescs = 2;
1516                 seg_len = hdr_len;
1517
1518                 /* Add segment's payload fragments */
1519                 while (data_left > 0) {
1520                         int size;
1521
1522                         size = min_t(int, tso.size, data_left);
1523
1524                         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1525                         nicvf_sq_add_gather_subdesc(sq, qentry, size,
1526                                                     virt_to_phys(tso.data));
1527                         seg_subdescs++;
1528                         seg_len += size;
1529
1530                         data_left -= size;
1531                         tso_build_data(skb, &tso, size);
1532                 }
1533                 nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
1534                                          seg_subdescs - 1, skb, seg_len);
1535                 sq->skbuff[hdr_qentry] = (u64)NULL;
1536                 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1537
1538                 desc_cnt += seg_subdescs;
1539         }
1540         /* Save SKB in the last segment for freeing */
1541         sq->skbuff[hdr_qentry] = (u64)skb;
1542
1543         nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
1544
1545         this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1546         return 1;
1547 }
1548
1549 /* Append an skb to a SQ for packet transfer. */
1550 int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq,
1551                         struct sk_buff *skb, u8 sq_num)
1552 {
1553         int i, size;
1554         int subdesc_cnt, hdr_sqe = 0;
1555         int qentry;
1556         u64 dma_addr;
1557
1558         subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1559         if (subdesc_cnt > atomic_read(&sq->free_cnt))
1560                 goto append_fail;
1561
1562         qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1563
1564         /* Check if its a TSO packet */
1565         if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
1566                 return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
1567
1568         /* Add SQ header subdesc */
1569         nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
1570                                  skb, skb->len);
1571         hdr_sqe = qentry;
1572
1573         /* Add SQ gather subdescs */
1574         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1575         size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1576         /* HW will ensure data coherency, CPU sync not required */
1577         dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data),
1578                                       offset_in_page(skb->data), size,
1579                                       DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1580         if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1581                 nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1582                 return 0;
1583         }
1584
1585         nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1586
1587         /* Check for scattered buffer */
1588         if (!skb_is_nonlinear(skb))
1589                 goto doorbell;
1590
1591         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1592                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1593
1594                 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1595                 size = skb_frag_size(frag);
1596                 dma_addr = dma_map_page_attrs(&nic->pdev->dev,
1597                                               skb_frag_page(frag),
1598                                               skb_frag_off(frag), size,
1599                                               DMA_TO_DEVICE,
1600                                               DMA_ATTR_SKIP_CPU_SYNC);
1601                 if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1602                         /* Free entire chain of mapped buffers
1603                          * here 'i' = frags mapped + above mapped skb->data
1604                          */
1605                         nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i);
1606                         nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1607                         return 0;
1608                 }
1609                 nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1610         }
1611
1612 doorbell:
1613         if (nic->t88 && skb_shinfo(skb)->gso_size) {
1614                 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1615                 nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb);
1616         }
1617
1618         nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
1619
1620         return 1;
1621
1622 append_fail:
1623         /* Use original PCI dev for debug log */
1624         nic = nic->pnicvf;
1625         netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1626         return 0;
1627 }
1628
1629 static inline unsigned frag_num(unsigned i)
1630 {
1631 #ifdef __BIG_ENDIAN
1632         return (i & ~3) + 3 - (i & 3);
1633 #else
1634         return i;
1635 #endif
1636 }
1637
1638 static void nicvf_unmap_rcv_buffer(struct nicvf *nic, u64 dma_addr,
1639                                    u64 buf_addr, bool xdp)
1640 {
1641         struct page *page = NULL;
1642         int len = RCV_FRAG_LEN;
1643
1644         if (xdp) {
1645                 page = virt_to_page(phys_to_virt(buf_addr));
1646                 /* Check if it's a recycled page, if not
1647                  * unmap the DMA mapping.
1648                  *
1649                  * Recycled page holds an extra reference.
1650                  */
1651                 if (page_ref_count(page) != 1)
1652                         return;
1653
1654                 len += XDP_PACKET_HEADROOM;
1655                 /* Receive buffers in XDP mode are mapped from page start */
1656                 dma_addr &= PAGE_MASK;
1657         }
1658         dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, len,
1659                              DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1660 }
1661
1662 /* Returns SKB for a received packet */
1663 struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic,
1664                                   struct cqe_rx_t *cqe_rx, bool xdp)
1665 {
1666         int frag;
1667         int payload_len = 0;
1668         struct sk_buff *skb = NULL;
1669         struct page *page;
1670         int offset;
1671         u16 *rb_lens = NULL;
1672         u64 *rb_ptrs = NULL;
1673         u64 phys_addr;
1674
1675         rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1676         /* Except 88xx pass1 on all other chips CQE_RX2_S is added to
1677          * CQE_RX at word6, hence buffer pointers move by word
1678          *
1679          * Use existing 'hw_tso' flag which will be set for all chips
1680          * except 88xx pass1 instead of a additional cache line
1681          * access (or miss) by using pci dev's revision.
1682          */
1683         if (!nic->hw_tso)
1684                 rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1685         else
1686                 rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
1687
1688         for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1689                 payload_len = rb_lens[frag_num(frag)];
1690                 phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs);
1691                 if (!phys_addr) {
1692                         if (skb)
1693                                 dev_kfree_skb_any(skb);
1694                         return NULL;
1695                 }
1696
1697                 if (!frag) {
1698                         /* First fragment */
1699                         nicvf_unmap_rcv_buffer(nic,
1700                                                *rb_ptrs - cqe_rx->align_pad,
1701                                                phys_addr, xdp);
1702                         skb = nicvf_rb_ptr_to_skb(nic,
1703                                                   phys_addr - cqe_rx->align_pad,
1704                                                   payload_len);
1705                         if (!skb)
1706                                 return NULL;
1707                         skb_reserve(skb, cqe_rx->align_pad);
1708                         skb_put(skb, payload_len);
1709                 } else {
1710                         /* Add fragments */
1711                         nicvf_unmap_rcv_buffer(nic, *rb_ptrs, phys_addr, xdp);
1712                         page = virt_to_page(phys_to_virt(phys_addr));
1713                         offset = phys_to_virt(phys_addr) - page_address(page);
1714                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1715                                         offset, payload_len, RCV_FRAG_LEN);
1716                 }
1717                 /* Next buffer pointer */
1718                 rb_ptrs++;
1719         }
1720         return skb;
1721 }
1722
1723 static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
1724 {
1725         u64 reg_val;
1726
1727         switch (int_type) {
1728         case NICVF_INTR_CQ:
1729                 reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1730                 break;
1731         case NICVF_INTR_SQ:
1732                 reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1733                 break;
1734         case NICVF_INTR_RBDR:
1735                 reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1736                 break;
1737         case NICVF_INTR_PKT_DROP:
1738                 reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1739                 break;
1740         case NICVF_INTR_TCP_TIMER:
1741                 reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1742                 break;
1743         case NICVF_INTR_MBOX:
1744                 reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1745                 break;
1746         case NICVF_INTR_QS_ERR:
1747                 reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1748                 break;
1749         default:
1750                 reg_val = 0;
1751         }
1752
1753         return reg_val;
1754 }
1755
1756 /* Enable interrupt */
1757 void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1758 {
1759         u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1760
1761         if (!mask) {
1762                 netdev_dbg(nic->netdev,
1763                            "Failed to enable interrupt: unknown type\n");
1764                 return;
1765         }
1766         nicvf_reg_write(nic, NIC_VF_ENA_W1S,
1767                         nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
1768 }
1769
1770 /* Disable interrupt */
1771 void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1772 {
1773         u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1774
1775         if (!mask) {
1776                 netdev_dbg(nic->netdev,
1777                            "Failed to disable interrupt: unknown type\n");
1778                 return;
1779         }
1780
1781         nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
1782 }
1783
1784 /* Clear interrupt */
1785 void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1786 {
1787         u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1788
1789         if (!mask) {
1790                 netdev_dbg(nic->netdev,
1791                            "Failed to clear interrupt: unknown type\n");
1792                 return;
1793         }
1794
1795         nicvf_reg_write(nic, NIC_VF_INT, mask);
1796 }
1797
1798 /* Check if interrupt is enabled */
1799 int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1800 {
1801         u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1802         /* If interrupt type is unknown, we treat it disabled. */
1803         if (!mask) {
1804                 netdev_dbg(nic->netdev,
1805                            "Failed to check interrupt enable: unknown type\n");
1806                 return 0;
1807         }
1808
1809         return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1810 }
1811
1812 void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1813 {
1814         struct rcv_queue *rq;
1815
1816 #define GET_RQ_STATS(reg) \
1817         nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1818                             (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1819
1820         rq = &nic->qs->rq[rq_idx];
1821         rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1822         rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1823 }
1824
1825 void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1826 {
1827         struct snd_queue *sq;
1828
1829 #define GET_SQ_STATS(reg) \
1830         nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1831                             (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1832
1833         sq = &nic->qs->sq[sq_idx];
1834         sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1835         sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1836 }
1837
1838 /* Check for errors in the receive cmp.queue entry */
1839 int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1840 {
1841         netif_err(nic, rx_err, nic->netdev,
1842                   "RX error CQE err_level 0x%x err_opcode 0x%x\n",
1843                   cqe_rx->err_level, cqe_rx->err_opcode);
1844
1845         switch (cqe_rx->err_opcode) {
1846         case CQ_RX_ERROP_RE_PARTIAL:
1847                 this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
1848                 break;
1849         case CQ_RX_ERROP_RE_JABBER:
1850                 this_cpu_inc(nic->drv_stats->rx_jabber_errs);
1851                 break;
1852         case CQ_RX_ERROP_RE_FCS:
1853                 this_cpu_inc(nic->drv_stats->rx_fcs_errs);
1854                 break;
1855         case CQ_RX_ERROP_RE_RX_CTL:
1856                 this_cpu_inc(nic->drv_stats->rx_bgx_errs);
1857                 break;
1858         case CQ_RX_ERROP_PREL2_ERR:
1859                 this_cpu_inc(nic->drv_stats->rx_prel2_errs);
1860                 break;
1861         case CQ_RX_ERROP_L2_MAL:
1862                 this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
1863                 break;
1864         case CQ_RX_ERROP_L2_OVERSIZE:
1865                 this_cpu_inc(nic->drv_stats->rx_oversize);
1866                 break;
1867         case CQ_RX_ERROP_L2_UNDERSIZE:
1868                 this_cpu_inc(nic->drv_stats->rx_undersize);
1869                 break;
1870         case CQ_RX_ERROP_L2_LENMISM:
1871                 this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
1872                 break;
1873         case CQ_RX_ERROP_L2_PCLP:
1874                 this_cpu_inc(nic->drv_stats->rx_l2_pclp);
1875                 break;
1876         case CQ_RX_ERROP_IP_NOT:
1877                 this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
1878                 break;
1879         case CQ_RX_ERROP_IP_CSUM_ERR:
1880                 this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
1881                 break;
1882         case CQ_RX_ERROP_IP_MAL:
1883                 this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
1884                 break;
1885         case CQ_RX_ERROP_IP_MALD:
1886                 this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
1887                 break;
1888         case CQ_RX_ERROP_IP_HOP:
1889                 this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
1890                 break;
1891         case CQ_RX_ERROP_L3_PCLP:
1892                 this_cpu_inc(nic->drv_stats->rx_l3_pclp);
1893                 break;
1894         case CQ_RX_ERROP_L4_MAL:
1895                 this_cpu_inc(nic->drv_stats->rx_l4_malformed);
1896                 break;
1897         case CQ_RX_ERROP_L4_CHK:
1898                 this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
1899                 break;
1900         case CQ_RX_ERROP_UDP_LEN:
1901                 this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
1902                 break;
1903         case CQ_RX_ERROP_L4_PORT:
1904                 this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
1905                 break;
1906         case CQ_RX_ERROP_TCP_FLAG:
1907                 this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
1908                 break;
1909         case CQ_RX_ERROP_TCP_OFFSET:
1910                 this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
1911                 break;
1912         case CQ_RX_ERROP_L4_PCLP:
1913                 this_cpu_inc(nic->drv_stats->rx_l4_pclp);
1914                 break;
1915         case CQ_RX_ERROP_RBDR_TRUNC:
1916                 this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
1917                 break;
1918         }
1919
1920         return 1;
1921 }
1922
1923 /* Check for errors in the send cmp.queue entry */
1924 int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
1925 {
1926         switch (cqe_tx->send_status) {
1927         case CQ_TX_ERROP_DESC_FAULT:
1928                 this_cpu_inc(nic->drv_stats->tx_desc_fault);
1929                 break;
1930         case CQ_TX_ERROP_HDR_CONS_ERR:
1931                 this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
1932                 break;
1933         case CQ_TX_ERROP_SUBDC_ERR:
1934                 this_cpu_inc(nic->drv_stats->tx_subdesc_err);
1935                 break;
1936         case CQ_TX_ERROP_MAX_SIZE_VIOL:
1937                 this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
1938                 break;
1939         case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1940                 this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
1941                 break;
1942         case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1943                 this_cpu_inc(nic->drv_stats->tx_data_seq_err);
1944                 break;
1945         case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1946                 this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
1947                 break;
1948         case CQ_TX_ERROP_LOCK_VIOL:
1949                 this_cpu_inc(nic->drv_stats->tx_lock_viol);
1950                 break;
1951         case CQ_TX_ERROP_DATA_FAULT:
1952                 this_cpu_inc(nic->drv_stats->tx_data_fault);
1953                 break;
1954         case CQ_TX_ERROP_TSTMP_CONFLICT:
1955                 this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
1956                 break;
1957         case CQ_TX_ERROP_TSTMP_TIMEOUT:
1958                 this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
1959                 break;
1960         case CQ_TX_ERROP_MEM_FAULT:
1961                 this_cpu_inc(nic->drv_stats->tx_mem_fault);
1962                 break;
1963         case CQ_TX_ERROP_CK_OVERLAP:
1964                 this_cpu_inc(nic->drv_stats->tx_csum_overlap);
1965                 break;
1966         case CQ_TX_ERROP_CK_OFLOW:
1967                 this_cpu_inc(nic->drv_stats->tx_csum_overflow);
1968                 break;
1969         }
1970
1971         return 1;
1972 }