Merge tag 'disintegrate-mtd-20121009' of git://git.infradead.org/users/dhowells/linux...
[linux-2.6-block.git] / drivers / mtd / nand / omap2.c
1 /*
2  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3  * Copyright © 2004 Micron Technology Inc.
4  * Copyright © 2004 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/sched.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/omap-dma.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25
26 #ifdef CONFIG_MTD_NAND_OMAP_BCH
27 #include <linux/bch.h>
28 #endif
29
30 #include <plat/dma.h>
31 #include <plat/gpmc.h>
32 #include <linux/platform_data/mtd-nand-omap2.h>
33
34 #define DRIVER_NAME     "omap2-nand"
35 #define OMAP_NAND_TIMEOUT_MS    5000
36
37 #define NAND_Ecc_P1e            (1 << 0)
38 #define NAND_Ecc_P2e            (1 << 1)
39 #define NAND_Ecc_P4e            (1 << 2)
40 #define NAND_Ecc_P8e            (1 << 3)
41 #define NAND_Ecc_P16e           (1 << 4)
42 #define NAND_Ecc_P32e           (1 << 5)
43 #define NAND_Ecc_P64e           (1 << 6)
44 #define NAND_Ecc_P128e          (1 << 7)
45 #define NAND_Ecc_P256e          (1 << 8)
46 #define NAND_Ecc_P512e          (1 << 9)
47 #define NAND_Ecc_P1024e         (1 << 10)
48 #define NAND_Ecc_P2048e         (1 << 11)
49
50 #define NAND_Ecc_P1o            (1 << 16)
51 #define NAND_Ecc_P2o            (1 << 17)
52 #define NAND_Ecc_P4o            (1 << 18)
53 #define NAND_Ecc_P8o            (1 << 19)
54 #define NAND_Ecc_P16o           (1 << 20)
55 #define NAND_Ecc_P32o           (1 << 21)
56 #define NAND_Ecc_P64o           (1 << 22)
57 #define NAND_Ecc_P128o          (1 << 23)
58 #define NAND_Ecc_P256o          (1 << 24)
59 #define NAND_Ecc_P512o          (1 << 25)
60 #define NAND_Ecc_P1024o         (1 << 26)
61 #define NAND_Ecc_P2048o         (1 << 27)
62
63 #define TF(value)       (value ? 1 : 0)
64
65 #define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
66 #define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
67 #define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
68 #define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
69 #define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
70 #define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
71 #define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
72 #define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
73
74 #define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
75 #define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
76 #define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
77 #define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
78 #define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
79 #define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
80 #define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
81 #define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
82
83 #define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
84 #define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
85 #define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
86 #define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
87 #define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
88 #define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
89 #define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
90 #define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
91
92 #define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
93 #define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
94 #define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
95 #define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
96 #define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
97 #define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
98 #define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
99 #define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
100
101 #define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
102 #define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
103
104 #define PREFETCH_CONFIG1_CS_SHIFT       24
105 #define ECC_CONFIG_CS_SHIFT             1
106 #define CS_MASK                         0x7
107 #define ENABLE_PREFETCH                 (0x1 << 7)
108 #define DMA_MPU_MODE_SHIFT              2
109 #define ECCSIZE1_SHIFT                  22
110 #define ECC1RESULTSIZE                  0x1
111 #define ECCCLEAR                        0x100
112 #define ECC1                            0x1
113
114 /* oob info generated runtime depending on ecc algorithm and layout selected */
115 static struct nand_ecclayout omap_oobinfo;
116 /* Define some generic bad / good block scan pattern which are used
117  * while scanning a device for factory marked good / bad blocks
118  */
119 static uint8_t scan_ff_pattern[] = { 0xff };
120 static struct nand_bbt_descr bb_descrip_flashbased = {
121         .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
122         .offs = 0,
123         .len = 1,
124         .pattern = scan_ff_pattern,
125 };
126
127
128 struct omap_nand_info {
129         struct nand_hw_control          controller;
130         struct omap_nand_platform_data  *pdata;
131         struct mtd_info                 mtd;
132         struct nand_chip                nand;
133         struct platform_device          *pdev;
134
135         int                             gpmc_cs;
136         unsigned long                   phys_base;
137         unsigned long                   mem_size;
138         struct completion               comp;
139         struct dma_chan                 *dma;
140         int                             gpmc_irq_fifo;
141         int                             gpmc_irq_count;
142         enum {
143                 OMAP_NAND_IO_READ = 0,  /* read */
144                 OMAP_NAND_IO_WRITE,     /* write */
145         } iomode;
146         u_char                          *buf;
147         int                                     buf_len;
148         struct gpmc_nand_regs           reg;
149
150 #ifdef CONFIG_MTD_NAND_OMAP_BCH
151         struct bch_control             *bch;
152         struct nand_ecclayout           ecclayout;
153 #endif
154 };
155
156 /**
157  * omap_prefetch_enable - configures and starts prefetch transfer
158  * @cs: cs (chip select) number
159  * @fifo_th: fifo threshold to be used for read/ write
160  * @dma_mode: dma mode enable (1) or disable (0)
161  * @u32_count: number of bytes to be transferred
162  * @is_write: prefetch read(0) or write post(1) mode
163  */
164 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
165         unsigned int u32_count, int is_write, struct omap_nand_info *info)
166 {
167         u32 val;
168
169         if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
170                 return -1;
171
172         if (readl(info->reg.gpmc_prefetch_control))
173                 return -EBUSY;
174
175         /* Set the amount of bytes to be prefetched */
176         writel(u32_count, info->reg.gpmc_prefetch_config2);
177
178         /* Set dma/mpu mode, the prefetch read / post write and
179          * enable the engine. Set which cs is has requested for.
180          */
181         val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
182                 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
183                 (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
184         writel(val, info->reg.gpmc_prefetch_config1);
185
186         /*  Start the prefetch engine */
187         writel(0x1, info->reg.gpmc_prefetch_control);
188
189         return 0;
190 }
191
192 /**
193  * omap_prefetch_reset - disables and stops the prefetch engine
194  */
195 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
196 {
197         u32 config1;
198
199         /* check if the same module/cs is trying to reset */
200         config1 = readl(info->reg.gpmc_prefetch_config1);
201         if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
202                 return -EINVAL;
203
204         /* Stop the PFPW engine */
205         writel(0x0, info->reg.gpmc_prefetch_control);
206
207         /* Reset/disable the PFPW engine */
208         writel(0x0, info->reg.gpmc_prefetch_config1);
209
210         return 0;
211 }
212
213 /**
214  * omap_hwcontrol - hardware specific access to control-lines
215  * @mtd: MTD device structure
216  * @cmd: command to device
217  * @ctrl:
218  * NAND_NCE: bit 0 -> don't care
219  * NAND_CLE: bit 1 -> Command Latch
220  * NAND_ALE: bit 2 -> Address Latch
221  *
222  * NOTE: boards may use different bits for these!!
223  */
224 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
225 {
226         struct omap_nand_info *info = container_of(mtd,
227                                         struct omap_nand_info, mtd);
228
229         if (cmd != NAND_CMD_NONE) {
230                 if (ctrl & NAND_CLE)
231                         writeb(cmd, info->reg.gpmc_nand_command);
232
233                 else if (ctrl & NAND_ALE)
234                         writeb(cmd, info->reg.gpmc_nand_address);
235
236                 else /* NAND_NCE */
237                         writeb(cmd, info->reg.gpmc_nand_data);
238         }
239 }
240
241 /**
242  * omap_read_buf8 - read data from NAND controller into buffer
243  * @mtd: MTD device structure
244  * @buf: buffer to store date
245  * @len: number of bytes to read
246  */
247 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
248 {
249         struct nand_chip *nand = mtd->priv;
250
251         ioread8_rep(nand->IO_ADDR_R, buf, len);
252 }
253
254 /**
255  * omap_write_buf8 - write buffer to NAND controller
256  * @mtd: MTD device structure
257  * @buf: data buffer
258  * @len: number of bytes to write
259  */
260 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
261 {
262         struct omap_nand_info *info = container_of(mtd,
263                                                 struct omap_nand_info, mtd);
264         u_char *p = (u_char *)buf;
265         u32     status = 0;
266
267         while (len--) {
268                 iowrite8(*p++, info->nand.IO_ADDR_W);
269                 /* wait until buffer is available for write */
270                 do {
271                         status = readl(info->reg.gpmc_status) &
272                                         GPMC_STATUS_BUFF_EMPTY;
273                 } while (!status);
274         }
275 }
276
277 /**
278  * omap_read_buf16 - read data from NAND controller into buffer
279  * @mtd: MTD device structure
280  * @buf: buffer to store date
281  * @len: number of bytes to read
282  */
283 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
284 {
285         struct nand_chip *nand = mtd->priv;
286
287         ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
288 }
289
290 /**
291  * omap_write_buf16 - write buffer to NAND controller
292  * @mtd: MTD device structure
293  * @buf: data buffer
294  * @len: number of bytes to write
295  */
296 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
297 {
298         struct omap_nand_info *info = container_of(mtd,
299                                                 struct omap_nand_info, mtd);
300         u16 *p = (u16 *) buf;
301         u32     status = 0;
302         /* FIXME try bursts of writesw() or DMA ... */
303         len >>= 1;
304
305         while (len--) {
306                 iowrite16(*p++, info->nand.IO_ADDR_W);
307                 /* wait until buffer is available for write */
308                 do {
309                         status = readl(info->reg.gpmc_status) &
310                                         GPMC_STATUS_BUFF_EMPTY;
311                 } while (!status);
312         }
313 }
314
315 /**
316  * omap_read_buf_pref - read data from NAND controller into buffer
317  * @mtd: MTD device structure
318  * @buf: buffer to store date
319  * @len: number of bytes to read
320  */
321 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
322 {
323         struct omap_nand_info *info = container_of(mtd,
324                                                 struct omap_nand_info, mtd);
325         uint32_t r_count = 0;
326         int ret = 0;
327         u32 *p = (u32 *)buf;
328
329         /* take care of subpage reads */
330         if (len % 4) {
331                 if (info->nand.options & NAND_BUSWIDTH_16)
332                         omap_read_buf16(mtd, buf, len % 4);
333                 else
334                         omap_read_buf8(mtd, buf, len % 4);
335                 p = (u32 *) (buf + len % 4);
336                 len -= len % 4;
337         }
338
339         /* configure and start prefetch transfer */
340         ret = omap_prefetch_enable(info->gpmc_cs,
341                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
342         if (ret) {
343                 /* PFPW engine is busy, use cpu copy method */
344                 if (info->nand.options & NAND_BUSWIDTH_16)
345                         omap_read_buf16(mtd, (u_char *)p, len);
346                 else
347                         omap_read_buf8(mtd, (u_char *)p, len);
348         } else {
349                 do {
350                         r_count = readl(info->reg.gpmc_prefetch_status);
351                         r_count = GPMC_PREFETCH_STATUS_FIFO_CNT(r_count);
352                         r_count = r_count >> 2;
353                         ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
354                         p += r_count;
355                         len -= r_count << 2;
356                 } while (len);
357                 /* disable and stop the PFPW engine */
358                 omap_prefetch_reset(info->gpmc_cs, info);
359         }
360 }
361
362 /**
363  * omap_write_buf_pref - write buffer to NAND controller
364  * @mtd: MTD device structure
365  * @buf: data buffer
366  * @len: number of bytes to write
367  */
368 static void omap_write_buf_pref(struct mtd_info *mtd,
369                                         const u_char *buf, int len)
370 {
371         struct omap_nand_info *info = container_of(mtd,
372                                                 struct omap_nand_info, mtd);
373         uint32_t w_count = 0;
374         int i = 0, ret = 0;
375         u16 *p = (u16 *)buf;
376         unsigned long tim, limit;
377         u32 val;
378
379         /* take care of subpage writes */
380         if (len % 2 != 0) {
381                 writeb(*buf, info->nand.IO_ADDR_W);
382                 p = (u16 *)(buf + 1);
383                 len--;
384         }
385
386         /*  configure and start prefetch transfer */
387         ret = omap_prefetch_enable(info->gpmc_cs,
388                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
389         if (ret) {
390                 /* PFPW engine is busy, use cpu copy method */
391                 if (info->nand.options & NAND_BUSWIDTH_16)
392                         omap_write_buf16(mtd, (u_char *)p, len);
393                 else
394                         omap_write_buf8(mtd, (u_char *)p, len);
395         } else {
396                 while (len) {
397                         w_count = readl(info->reg.gpmc_prefetch_status);
398                         w_count = GPMC_PREFETCH_STATUS_FIFO_CNT(w_count);
399                         w_count = w_count >> 1;
400                         for (i = 0; (i < w_count) && len; i++, len -= 2)
401                                 iowrite16(*p++, info->nand.IO_ADDR_W);
402                 }
403                 /* wait for data to flushed-out before reset the prefetch */
404                 tim = 0;
405                 limit = (loops_per_jiffy *
406                                         msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
407                 do {
408                         cpu_relax();
409                         val = readl(info->reg.gpmc_prefetch_status);
410                         val = GPMC_PREFETCH_STATUS_COUNT(val);
411                 } while (val && (tim++ < limit));
412
413                 /* disable and stop the PFPW engine */
414                 omap_prefetch_reset(info->gpmc_cs, info);
415         }
416 }
417
418 /*
419  * omap_nand_dma_callback: callback on the completion of dma transfer
420  * @data: pointer to completion data structure
421  */
422 static void omap_nand_dma_callback(void *data)
423 {
424         complete((struct completion *) data);
425 }
426
427 /*
428  * omap_nand_dma_transfer: configure and start dma transfer
429  * @mtd: MTD device structure
430  * @addr: virtual address in RAM of source/destination
431  * @len: number of data bytes to be transferred
432  * @is_write: flag for read/write operation
433  */
434 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
435                                         unsigned int len, int is_write)
436 {
437         struct omap_nand_info *info = container_of(mtd,
438                                         struct omap_nand_info, mtd);
439         struct dma_async_tx_descriptor *tx;
440         enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
441                                                         DMA_FROM_DEVICE;
442         struct scatterlist sg;
443         unsigned long tim, limit;
444         unsigned n;
445         int ret;
446         u32 val;
447
448         if (addr >= high_memory) {
449                 struct page *p1;
450
451                 if (((size_t)addr & PAGE_MASK) !=
452                         ((size_t)(addr + len - 1) & PAGE_MASK))
453                         goto out_copy;
454                 p1 = vmalloc_to_page(addr);
455                 if (!p1)
456                         goto out_copy;
457                 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
458         }
459
460         sg_init_one(&sg, addr, len);
461         n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
462         if (n == 0) {
463                 dev_err(&info->pdev->dev,
464                         "Couldn't DMA map a %d byte buffer\n", len);
465                 goto out_copy;
466         }
467
468         tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
469                 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
470                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
471         if (!tx)
472                 goto out_copy_unmap;
473
474         tx->callback = omap_nand_dma_callback;
475         tx->callback_param = &info->comp;
476         dmaengine_submit(tx);
477
478         /*  configure and start prefetch transfer */
479         ret = omap_prefetch_enable(info->gpmc_cs,
480                 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
481         if (ret)
482                 /* PFPW engine is busy, use cpu copy method */
483                 goto out_copy_unmap;
484
485         init_completion(&info->comp);
486         dma_async_issue_pending(info->dma);
487
488         /* setup and start DMA using dma_addr */
489         wait_for_completion(&info->comp);
490         tim = 0;
491         limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
492
493         do {
494                 cpu_relax();
495                 val = readl(info->reg.gpmc_prefetch_status);
496                 val = GPMC_PREFETCH_STATUS_COUNT(val);
497         } while (val && (tim++ < limit));
498
499         /* disable and stop the PFPW engine */
500         omap_prefetch_reset(info->gpmc_cs, info);
501
502         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
503         return 0;
504
505 out_copy_unmap:
506         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
507 out_copy:
508         if (info->nand.options & NAND_BUSWIDTH_16)
509                 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
510                         : omap_write_buf16(mtd, (u_char *) addr, len);
511         else
512                 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
513                         : omap_write_buf8(mtd, (u_char *) addr, len);
514         return 0;
515 }
516
517 /**
518  * omap_read_buf_dma_pref - read data from NAND controller into buffer
519  * @mtd: MTD device structure
520  * @buf: buffer to store date
521  * @len: number of bytes to read
522  */
523 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
524 {
525         if (len <= mtd->oobsize)
526                 omap_read_buf_pref(mtd, buf, len);
527         else
528                 /* start transfer in DMA mode */
529                 omap_nand_dma_transfer(mtd, buf, len, 0x0);
530 }
531
532 /**
533  * omap_write_buf_dma_pref - write buffer to NAND controller
534  * @mtd: MTD device structure
535  * @buf: data buffer
536  * @len: number of bytes to write
537  */
538 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
539                                         const u_char *buf, int len)
540 {
541         if (len <= mtd->oobsize)
542                 omap_write_buf_pref(mtd, buf, len);
543         else
544                 /* start transfer in DMA mode */
545                 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
546 }
547
548 /*
549  * omap_nand_irq - GPMC irq handler
550  * @this_irq: gpmc irq number
551  * @dev: omap_nand_info structure pointer is passed here
552  */
553 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
554 {
555         struct omap_nand_info *info = (struct omap_nand_info *) dev;
556         u32 bytes;
557
558         bytes = readl(info->reg.gpmc_prefetch_status);
559         bytes = GPMC_PREFETCH_STATUS_FIFO_CNT(bytes);
560         bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
561         if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
562                 if (this_irq == info->gpmc_irq_count)
563                         goto done;
564
565                 if (info->buf_len && (info->buf_len < bytes))
566                         bytes = info->buf_len;
567                 else if (!info->buf_len)
568                         bytes = 0;
569                 iowrite32_rep(info->nand.IO_ADDR_W,
570                                                 (u32 *)info->buf, bytes >> 2);
571                 info->buf = info->buf + bytes;
572                 info->buf_len -= bytes;
573
574         } else {
575                 ioread32_rep(info->nand.IO_ADDR_R,
576                                                 (u32 *)info->buf, bytes >> 2);
577                 info->buf = info->buf + bytes;
578
579                 if (this_irq == info->gpmc_irq_count)
580                         goto done;
581         }
582
583         return IRQ_HANDLED;
584
585 done:
586         complete(&info->comp);
587
588         disable_irq_nosync(info->gpmc_irq_fifo);
589         disable_irq_nosync(info->gpmc_irq_count);
590
591         return IRQ_HANDLED;
592 }
593
594 /*
595  * omap_read_buf_irq_pref - read data from NAND controller into buffer
596  * @mtd: MTD device structure
597  * @buf: buffer to store date
598  * @len: number of bytes to read
599  */
600 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
601 {
602         struct omap_nand_info *info = container_of(mtd,
603                                                 struct omap_nand_info, mtd);
604         int ret = 0;
605
606         if (len <= mtd->oobsize) {
607                 omap_read_buf_pref(mtd, buf, len);
608                 return;
609         }
610
611         info->iomode = OMAP_NAND_IO_READ;
612         info->buf = buf;
613         init_completion(&info->comp);
614
615         /*  configure and start prefetch transfer */
616         ret = omap_prefetch_enable(info->gpmc_cs,
617                         PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
618         if (ret)
619                 /* PFPW engine is busy, use cpu copy method */
620                 goto out_copy;
621
622         info->buf_len = len;
623
624         enable_irq(info->gpmc_irq_count);
625         enable_irq(info->gpmc_irq_fifo);
626
627         /* waiting for read to complete */
628         wait_for_completion(&info->comp);
629
630         /* disable and stop the PFPW engine */
631         omap_prefetch_reset(info->gpmc_cs, info);
632         return;
633
634 out_copy:
635         if (info->nand.options & NAND_BUSWIDTH_16)
636                 omap_read_buf16(mtd, buf, len);
637         else
638                 omap_read_buf8(mtd, buf, len);
639 }
640
641 /*
642  * omap_write_buf_irq_pref - write buffer to NAND controller
643  * @mtd: MTD device structure
644  * @buf: data buffer
645  * @len: number of bytes to write
646  */
647 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
648                                         const u_char *buf, int len)
649 {
650         struct omap_nand_info *info = container_of(mtd,
651                                                 struct omap_nand_info, mtd);
652         int ret = 0;
653         unsigned long tim, limit;
654         u32 val;
655
656         if (len <= mtd->oobsize) {
657                 omap_write_buf_pref(mtd, buf, len);
658                 return;
659         }
660
661         info->iomode = OMAP_NAND_IO_WRITE;
662         info->buf = (u_char *) buf;
663         init_completion(&info->comp);
664
665         /* configure and start prefetch transfer : size=24 */
666         ret = omap_prefetch_enable(info->gpmc_cs,
667                 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
668         if (ret)
669                 /* PFPW engine is busy, use cpu copy method */
670                 goto out_copy;
671
672         info->buf_len = len;
673
674         enable_irq(info->gpmc_irq_count);
675         enable_irq(info->gpmc_irq_fifo);
676
677         /* waiting for write to complete */
678         wait_for_completion(&info->comp);
679
680         /* wait for data to flushed-out before reset the prefetch */
681         tim = 0;
682         limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
683         do {
684                 val = readl(info->reg.gpmc_prefetch_status);
685                 val = GPMC_PREFETCH_STATUS_COUNT(val);
686                 cpu_relax();
687         } while (val && (tim++ < limit));
688
689         /* disable and stop the PFPW engine */
690         omap_prefetch_reset(info->gpmc_cs, info);
691         return;
692
693 out_copy:
694         if (info->nand.options & NAND_BUSWIDTH_16)
695                 omap_write_buf16(mtd, buf, len);
696         else
697                 omap_write_buf8(mtd, buf, len);
698 }
699
700 /**
701  * gen_true_ecc - This function will generate true ECC value
702  * @ecc_buf: buffer to store ecc code
703  *
704  * This generated true ECC value can be used when correcting
705  * data read from NAND flash memory core
706  */
707 static void gen_true_ecc(u8 *ecc_buf)
708 {
709         u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
710                 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
711
712         ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
713                         P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
714         ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
715                         P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
716         ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
717                         P1e(tmp) | P2048o(tmp) | P2048e(tmp));
718 }
719
720 /**
721  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
722  * @ecc_data1:  ecc code from nand spare area
723  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
724  * @page_data:  page data
725  *
726  * This function compares two ECC's and indicates if there is an error.
727  * If the error can be corrected it will be corrected to the buffer.
728  * If there is no error, %0 is returned. If there is an error but it
729  * was corrected, %1 is returned. Otherwise, %-1 is returned.
730  */
731 static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
732                             u8 *ecc_data2,      /* read from register */
733                             u8 *page_data)
734 {
735         uint    i;
736         u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
737         u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
738         u8      ecc_bit[24];
739         u8      ecc_sum = 0;
740         u8      find_bit = 0;
741         uint    find_byte = 0;
742         int     isEccFF;
743
744         isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
745
746         gen_true_ecc(ecc_data1);
747         gen_true_ecc(ecc_data2);
748
749         for (i = 0; i <= 2; i++) {
750                 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
751                 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
752         }
753
754         for (i = 0; i < 8; i++) {
755                 tmp0_bit[i]     = *ecc_data1 % 2;
756                 *ecc_data1      = *ecc_data1 / 2;
757         }
758
759         for (i = 0; i < 8; i++) {
760                 tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
761                 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
762         }
763
764         for (i = 0; i < 8; i++) {
765                 tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
766                 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
767         }
768
769         for (i = 0; i < 8; i++) {
770                 comp0_bit[i]     = *ecc_data2 % 2;
771                 *ecc_data2       = *ecc_data2 / 2;
772         }
773
774         for (i = 0; i < 8; i++) {
775                 comp1_bit[i]     = *(ecc_data2 + 1) % 2;
776                 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
777         }
778
779         for (i = 0; i < 8; i++) {
780                 comp2_bit[i]     = *(ecc_data2 + 2) % 2;
781                 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
782         }
783
784         for (i = 0; i < 6; i++)
785                 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
786
787         for (i = 0; i < 8; i++)
788                 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
789
790         for (i = 0; i < 8; i++)
791                 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
792
793         ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
794         ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
795
796         for (i = 0; i < 24; i++)
797                 ecc_sum += ecc_bit[i];
798
799         switch (ecc_sum) {
800         case 0:
801                 /* Not reached because this function is not called if
802                  *  ECC values are equal
803                  */
804                 return 0;
805
806         case 1:
807                 /* Uncorrectable error */
808                 pr_debug("ECC UNCORRECTED_ERROR 1\n");
809                 return -1;
810
811         case 11:
812                 /* UN-Correctable error */
813                 pr_debug("ECC UNCORRECTED_ERROR B\n");
814                 return -1;
815
816         case 12:
817                 /* Correctable error */
818                 find_byte = (ecc_bit[23] << 8) +
819                             (ecc_bit[21] << 7) +
820                             (ecc_bit[19] << 6) +
821                             (ecc_bit[17] << 5) +
822                             (ecc_bit[15] << 4) +
823                             (ecc_bit[13] << 3) +
824                             (ecc_bit[11] << 2) +
825                             (ecc_bit[9]  << 1) +
826                             ecc_bit[7];
827
828                 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
829
830                 pr_debug("Correcting single bit ECC error at offset: "
831                                 "%d, bit: %d\n", find_byte, find_bit);
832
833                 page_data[find_byte] ^= (1 << find_bit);
834
835                 return 1;
836         default:
837                 if (isEccFF) {
838                         if (ecc_data2[0] == 0 &&
839                             ecc_data2[1] == 0 &&
840                             ecc_data2[2] == 0)
841                                 return 0;
842                 }
843                 pr_debug("UNCORRECTED_ERROR default\n");
844                 return -1;
845         }
846 }
847
848 /**
849  * omap_correct_data - Compares the ECC read with HW generated ECC
850  * @mtd: MTD device structure
851  * @dat: page data
852  * @read_ecc: ecc read from nand flash
853  * @calc_ecc: ecc read from HW ECC registers
854  *
855  * Compares the ecc read from nand spare area with ECC registers values
856  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
857  * detection and correction. If there are no errors, %0 is returned. If
858  * there were errors and all of the errors were corrected, the number of
859  * corrected errors is returned. If uncorrectable errors exist, %-1 is
860  * returned.
861  */
862 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
863                                 u_char *read_ecc, u_char *calc_ecc)
864 {
865         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
866                                                         mtd);
867         int blockCnt = 0, i = 0, ret = 0;
868         int stat = 0;
869
870         /* Ex NAND_ECC_HW12_2048 */
871         if ((info->nand.ecc.mode == NAND_ECC_HW) &&
872                         (info->nand.ecc.size  == 2048))
873                 blockCnt = 4;
874         else
875                 blockCnt = 1;
876
877         for (i = 0; i < blockCnt; i++) {
878                 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
879                         ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
880                         if (ret < 0)
881                                 return ret;
882                         /* keep track of the number of corrected errors */
883                         stat += ret;
884                 }
885                 read_ecc += 3;
886                 calc_ecc += 3;
887                 dat      += 512;
888         }
889         return stat;
890 }
891
892 /**
893  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
894  * @mtd: MTD device structure
895  * @dat: The pointer to data on which ecc is computed
896  * @ecc_code: The ecc_code buffer
897  *
898  * Using noninverted ECC can be considered ugly since writing a blank
899  * page ie. padding will clear the ECC bytes. This is no problem as long
900  * nobody is trying to write data on the seemingly unused page. Reading
901  * an erased page will produce an ECC mismatch between generated and read
902  * ECC bytes that has to be dealt with separately.
903  */
904 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
905                                 u_char *ecc_code)
906 {
907         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
908                                                         mtd);
909         u32 val;
910
911         val = readl(info->reg.gpmc_ecc_config);
912         if (((val >> ECC_CONFIG_CS_SHIFT)  & ~CS_MASK) != info->gpmc_cs)
913                 return -EINVAL;
914
915         /* read ecc result */
916         val = readl(info->reg.gpmc_ecc1_result);
917         *ecc_code++ = val;          /* P128e, ..., P1e */
918         *ecc_code++ = val >> 16;    /* P128o, ..., P1o */
919         /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
920         *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
921
922         return 0;
923 }
924
925 /**
926  * omap_enable_hwecc - This function enables the hardware ecc functionality
927  * @mtd: MTD device structure
928  * @mode: Read/Write mode
929  */
930 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
931 {
932         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
933                                                         mtd);
934         struct nand_chip *chip = mtd->priv;
935         unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
936         u32 val;
937
938         /* clear ecc and enable bits */
939         val = ECCCLEAR | ECC1;
940         writel(val, info->reg.gpmc_ecc_control);
941
942         /* program ecc and result sizes */
943         val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
944                          ECC1RESULTSIZE);
945         writel(val, info->reg.gpmc_ecc_size_config);
946
947         switch (mode) {
948         case NAND_ECC_READ:
949         case NAND_ECC_WRITE:
950                 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
951                 break;
952         case NAND_ECC_READSYN:
953                 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
954                 break;
955         default:
956                 dev_info(&info->pdev->dev,
957                         "error: unrecognized Mode[%d]!\n", mode);
958                 break;
959         }
960
961         /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
962         val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
963         writel(val, info->reg.gpmc_ecc_config);
964 }
965
966 /**
967  * omap_wait - wait until the command is done
968  * @mtd: MTD device structure
969  * @chip: NAND Chip structure
970  *
971  * Wait function is called during Program and erase operations and
972  * the way it is called from MTD layer, we should wait till the NAND
973  * chip is ready after the programming/erase operation has completed.
974  *
975  * Erase can take up to 400ms and program up to 20ms according to
976  * general NAND and SmartMedia specs
977  */
978 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
979 {
980         struct nand_chip *this = mtd->priv;
981         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
982                                                         mtd);
983         unsigned long timeo = jiffies;
984         int status, state = this->state;
985
986         if (state == FL_ERASING)
987                 timeo += (HZ * 400) / 1000;
988         else
989                 timeo += (HZ * 20) / 1000;
990
991         writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
992         while (time_before(jiffies, timeo)) {
993                 status = readb(info->reg.gpmc_nand_data);
994                 if (status & NAND_STATUS_READY)
995                         break;
996                 cond_resched();
997         }
998
999         status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
1000         return status;
1001 }
1002
1003 /**
1004  * omap_dev_ready - calls the platform specific dev_ready function
1005  * @mtd: MTD device structure
1006  */
1007 static int omap_dev_ready(struct mtd_info *mtd)
1008 {
1009         unsigned int val = 0;
1010         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1011                                                         mtd);
1012
1013         val = readl(info->reg.gpmc_status);
1014
1015         if ((val & 0x100) == 0x100) {
1016                 return 1;
1017         } else {
1018                 return 0;
1019         }
1020 }
1021
1022 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1023
1024 /**
1025  * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
1026  * @mtd: MTD device structure
1027  * @mode: Read/Write mode
1028  */
1029 static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1030 {
1031         int nerrors;
1032         unsigned int dev_width;
1033         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1034                                                    mtd);
1035         struct nand_chip *chip = mtd->priv;
1036
1037         nerrors = (info->nand.ecc.bytes == 13) ? 8 : 4;
1038         dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1039         /*
1040          * Program GPMC to perform correction on one 512-byte sector at a time.
1041          * Using 4 sectors at a time (i.e. ecc.size = 2048) is also possible and
1042          * gives a slight (5%) performance gain (but requires additional code).
1043          */
1044         (void)gpmc_enable_hwecc_bch(info->gpmc_cs, mode, dev_width, 1, nerrors);
1045 }
1046
1047 /**
1048  * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
1049  * @mtd: MTD device structure
1050  * @dat: The pointer to data on which ecc is computed
1051  * @ecc_code: The ecc_code buffer
1052  */
1053 static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
1054                                     u_char *ecc_code)
1055 {
1056         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1057                                                    mtd);
1058         return gpmc_calculate_ecc_bch4(info->gpmc_cs, dat, ecc_code);
1059 }
1060
1061 /**
1062  * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
1063  * @mtd: MTD device structure
1064  * @dat: The pointer to data on which ecc is computed
1065  * @ecc_code: The ecc_code buffer
1066  */
1067 static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
1068                                     u_char *ecc_code)
1069 {
1070         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1071                                                    mtd);
1072         return gpmc_calculate_ecc_bch8(info->gpmc_cs, dat, ecc_code);
1073 }
1074
1075 /**
1076  * omap3_correct_data_bch - Decode received data and correct errors
1077  * @mtd: MTD device structure
1078  * @data: page data
1079  * @read_ecc: ecc read from nand flash
1080  * @calc_ecc: ecc read from HW ECC registers
1081  */
1082 static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data,
1083                                   u_char *read_ecc, u_char *calc_ecc)
1084 {
1085         int i, count;
1086         /* cannot correct more than 8 errors */
1087         unsigned int errloc[8];
1088         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1089                                                    mtd);
1090
1091         count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL,
1092                            errloc);
1093         if (count > 0) {
1094                 /* correct errors */
1095                 for (i = 0; i < count; i++) {
1096                         /* correct data only, not ecc bytes */
1097                         if (errloc[i] < 8*512)
1098                                 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
1099                         pr_debug("corrected bitflip %u\n", errloc[i]);
1100                 }
1101         } else if (count < 0) {
1102                 pr_err("ecc unrecoverable error\n");
1103         }
1104         return count;
1105 }
1106
1107 /**
1108  * omap3_free_bch - Release BCH ecc resources
1109  * @mtd: MTD device structure
1110  */
1111 static void omap3_free_bch(struct mtd_info *mtd)
1112 {
1113         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1114                                                    mtd);
1115         if (info->bch) {
1116                 free_bch(info->bch);
1117                 info->bch = NULL;
1118         }
1119 }
1120
1121 /**
1122  * omap3_init_bch - Initialize BCH ECC
1123  * @mtd: MTD device structure
1124  * @ecc_opt: OMAP ECC mode (OMAP_ECC_BCH4_CODE_HW or OMAP_ECC_BCH8_CODE_HW)
1125  */
1126 static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1127 {
1128         int ret, max_errors;
1129         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1130                                                    mtd);
1131 #ifdef CONFIG_MTD_NAND_OMAP_BCH8
1132         const int hw_errors = 8;
1133 #else
1134         const int hw_errors = 4;
1135 #endif
1136         info->bch = NULL;
1137
1138         max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ? 8 : 4;
1139         if (max_errors != hw_errors) {
1140                 pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported",
1141                        max_errors, hw_errors);
1142                 goto fail;
1143         }
1144
1145         /* initialize GPMC BCH engine */
1146         ret = gpmc_init_hwecc_bch(info->gpmc_cs, 1, max_errors);
1147         if (ret)
1148                 goto fail;
1149
1150         /* software bch library is only used to detect and locate errors */
1151         info->bch = init_bch(13, max_errors, 0x201b /* hw polynomial */);
1152         if (!info->bch)
1153                 goto fail;
1154
1155         info->nand.ecc.size    = 512;
1156         info->nand.ecc.hwctl   = omap3_enable_hwecc_bch;
1157         info->nand.ecc.correct = omap3_correct_data_bch;
1158         info->nand.ecc.mode    = NAND_ECC_HW;
1159
1160         /*
1161          * The number of corrected errors in an ecc block that will trigger
1162          * block scrubbing defaults to the ecc strength (4 or 8).
1163          * Set mtd->bitflip_threshold here to define a custom threshold.
1164          */
1165
1166         if (max_errors == 8) {
1167                 info->nand.ecc.strength  = 8;
1168                 info->nand.ecc.bytes     = 13;
1169                 info->nand.ecc.calculate = omap3_calculate_ecc_bch8;
1170         } else {
1171                 info->nand.ecc.strength  = 4;
1172                 info->nand.ecc.bytes     = 7;
1173                 info->nand.ecc.calculate = omap3_calculate_ecc_bch4;
1174         }
1175
1176         pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors);
1177         return 0;
1178 fail:
1179         omap3_free_bch(mtd);
1180         return -1;
1181 }
1182
1183 /**
1184  * omap3_init_bch_tail - Build an oob layout for BCH ECC correction.
1185  * @mtd: MTD device structure
1186  */
1187 static int omap3_init_bch_tail(struct mtd_info *mtd)
1188 {
1189         int i, steps;
1190         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1191                                                    mtd);
1192         struct nand_ecclayout *layout = &info->ecclayout;
1193
1194         /* build oob layout */
1195         steps = mtd->writesize/info->nand.ecc.size;
1196         layout->eccbytes = steps*info->nand.ecc.bytes;
1197
1198         /* do not bother creating special oob layouts for small page devices */
1199         if (mtd->oobsize < 64) {
1200                 pr_err("BCH ecc is not supported on small page devices\n");
1201                 goto fail;
1202         }
1203
1204         /* reserve 2 bytes for bad block marker */
1205         if (layout->eccbytes+2 > mtd->oobsize) {
1206                 pr_err("no oob layout available for oobsize %d eccbytes %u\n",
1207                        mtd->oobsize, layout->eccbytes);
1208                 goto fail;
1209         }
1210
1211         /* put ecc bytes at oob tail */
1212         for (i = 0; i < layout->eccbytes; i++)
1213                 layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i;
1214
1215         layout->oobfree[0].offset = 2;
1216         layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
1217         info->nand.ecc.layout = layout;
1218
1219         if (!(info->nand.options & NAND_BUSWIDTH_16))
1220                 info->nand.badblock_pattern = &bb_descrip_flashbased;
1221         return 0;
1222 fail:
1223         omap3_free_bch(mtd);
1224         return -1;
1225 }
1226
1227 #else
1228 static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1229 {
1230         pr_err("CONFIG_MTD_NAND_OMAP_BCH is not enabled\n");
1231         return -1;
1232 }
1233 static int omap3_init_bch_tail(struct mtd_info *mtd)
1234 {
1235         return -1;
1236 }
1237 static void omap3_free_bch(struct mtd_info *mtd)
1238 {
1239 }
1240 #endif /* CONFIG_MTD_NAND_OMAP_BCH */
1241
1242 static int __devinit omap_nand_probe(struct platform_device *pdev)
1243 {
1244         struct omap_nand_info           *info;
1245         struct omap_nand_platform_data  *pdata;
1246         int                             err;
1247         int                             i, offset;
1248         dma_cap_mask_t mask;
1249         unsigned sig;
1250         struct resource                 *res;
1251
1252         pdata = pdev->dev.platform_data;
1253         if (pdata == NULL) {
1254                 dev_err(&pdev->dev, "platform data missing\n");
1255                 return -ENODEV;
1256         }
1257
1258         info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
1259         if (!info)
1260                 return -ENOMEM;
1261
1262         platform_set_drvdata(pdev, info);
1263
1264         spin_lock_init(&info->controller.lock);
1265         init_waitqueue_head(&info->controller.wq);
1266
1267         info->pdev = pdev;
1268
1269         info->gpmc_cs           = pdata->cs;
1270         info->reg               = pdata->reg;
1271
1272         info->mtd.priv          = &info->nand;
1273         info->mtd.name          = dev_name(&pdev->dev);
1274         info->mtd.owner         = THIS_MODULE;
1275
1276         info->nand.options      = pdata->devsize;
1277         info->nand.options      |= NAND_SKIP_BBTSCAN;
1278
1279         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1280         if (res == NULL) {
1281                 err = -EINVAL;
1282                 dev_err(&pdev->dev, "error getting memory resource\n");
1283                 goto out_free_info;
1284         }
1285
1286         info->phys_base = res->start;
1287         info->mem_size = resource_size(res);
1288
1289         if (!request_mem_region(info->phys_base, info->mem_size,
1290                                 pdev->dev.driver->name)) {
1291                 err = -EBUSY;
1292                 goto out_free_info;
1293         }
1294
1295         info->nand.IO_ADDR_R = ioremap(info->phys_base, info->mem_size);
1296         if (!info->nand.IO_ADDR_R) {
1297                 err = -ENOMEM;
1298                 goto out_release_mem_region;
1299         }
1300
1301         info->nand.controller = &info->controller;
1302
1303         info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
1304         info->nand.cmd_ctrl  = omap_hwcontrol;
1305
1306         /*
1307          * If RDY/BSY line is connected to OMAP then use the omap ready
1308          * function and the generic nand_wait function which reads the status
1309          * register after monitoring the RDY/BSY line. Otherwise use a standard
1310          * chip delay which is slightly more than tR (AC Timing) of the NAND
1311          * device and read status register until you get a failure or success
1312          */
1313         if (pdata->dev_ready) {
1314                 info->nand.dev_ready = omap_dev_ready;
1315                 info->nand.chip_delay = 0;
1316         } else {
1317                 info->nand.waitfunc = omap_wait;
1318                 info->nand.chip_delay = 50;
1319         }
1320
1321         switch (pdata->xfer_type) {
1322         case NAND_OMAP_PREFETCH_POLLED:
1323                 info->nand.read_buf   = omap_read_buf_pref;
1324                 info->nand.write_buf  = omap_write_buf_pref;
1325                 break;
1326
1327         case NAND_OMAP_POLLED:
1328                 if (info->nand.options & NAND_BUSWIDTH_16) {
1329                         info->nand.read_buf   = omap_read_buf16;
1330                         info->nand.write_buf  = omap_write_buf16;
1331                 } else {
1332                         info->nand.read_buf   = omap_read_buf8;
1333                         info->nand.write_buf  = omap_write_buf8;
1334                 }
1335                 break;
1336
1337         case NAND_OMAP_PREFETCH_DMA:
1338                 dma_cap_zero(mask);
1339                 dma_cap_set(DMA_SLAVE, mask);
1340                 sig = OMAP24XX_DMA_GPMC;
1341                 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1342                 if (!info->dma) {
1343                         dev_err(&pdev->dev, "DMA engine request failed\n");
1344                         err = -ENXIO;
1345                         goto out_release_mem_region;
1346                 } else {
1347                         struct dma_slave_config cfg;
1348
1349                         memset(&cfg, 0, sizeof(cfg));
1350                         cfg.src_addr = info->phys_base;
1351                         cfg.dst_addr = info->phys_base;
1352                         cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1353                         cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1354                         cfg.src_maxburst = 16;
1355                         cfg.dst_maxburst = 16;
1356                         err = dmaengine_slave_config(info->dma, &cfg);
1357                         if (err) {
1358                                 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1359                                         err);
1360                                 goto out_release_mem_region;
1361                         }
1362                         info->nand.read_buf   = omap_read_buf_dma_pref;
1363                         info->nand.write_buf  = omap_write_buf_dma_pref;
1364                 }
1365                 break;
1366
1367         case NAND_OMAP_PREFETCH_IRQ:
1368                 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1369                 if (info->gpmc_irq_fifo <= 0) {
1370                         dev_err(&pdev->dev, "error getting fifo irq\n");
1371                         err = -ENODEV;
1372                         goto out_release_mem_region;
1373                 }
1374                 err = request_irq(info->gpmc_irq_fifo,  omap_nand_irq,
1375                                         IRQF_SHARED, "gpmc-nand-fifo", info);
1376                 if (err) {
1377                         dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1378                                                 info->gpmc_irq_fifo, err);
1379                         info->gpmc_irq_fifo = 0;
1380                         goto out_release_mem_region;
1381                 }
1382
1383                 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1384                 if (info->gpmc_irq_count <= 0) {
1385                         dev_err(&pdev->dev, "error getting count irq\n");
1386                         err = -ENODEV;
1387                         goto out_release_mem_region;
1388                 }
1389                 err = request_irq(info->gpmc_irq_count, omap_nand_irq,
1390                                         IRQF_SHARED, "gpmc-nand-count", info);
1391                 if (err) {
1392                         dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1393                                                 info->gpmc_irq_count, err);
1394                         info->gpmc_irq_count = 0;
1395                         goto out_release_mem_region;
1396                 }
1397
1398                 info->nand.read_buf  = omap_read_buf_irq_pref;
1399                 info->nand.write_buf = omap_write_buf_irq_pref;
1400
1401                 break;
1402
1403         default:
1404                 dev_err(&pdev->dev,
1405                         "xfer_type(%d) not supported!\n", pdata->xfer_type);
1406                 err = -EINVAL;
1407                 goto out_release_mem_region;
1408         }
1409
1410         /* select the ecc type */
1411         if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1412                 info->nand.ecc.mode = NAND_ECC_SOFT;
1413         else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1414                 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1415                 info->nand.ecc.bytes            = 3;
1416                 info->nand.ecc.size             = 512;
1417                 info->nand.ecc.strength         = 1;
1418                 info->nand.ecc.calculate        = omap_calculate_ecc;
1419                 info->nand.ecc.hwctl            = omap_enable_hwecc;
1420                 info->nand.ecc.correct          = omap_correct_data;
1421                 info->nand.ecc.mode             = NAND_ECC_HW;
1422         } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1423                    (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1424                 err = omap3_init_bch(&info->mtd, pdata->ecc_opt);
1425                 if (err) {
1426                         err = -EINVAL;
1427                         goto out_release_mem_region;
1428                 }
1429         }
1430
1431         /* DIP switches on some boards change between 8 and 16 bit
1432          * bus widths for flash.  Try the other width if the first try fails.
1433          */
1434         if (nand_scan_ident(&info->mtd, 1, NULL)) {
1435                 info->nand.options ^= NAND_BUSWIDTH_16;
1436                 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1437                         err = -ENXIO;
1438                         goto out_release_mem_region;
1439                 }
1440         }
1441
1442         /* rom code layout */
1443         if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1444
1445                 if (info->nand.options & NAND_BUSWIDTH_16)
1446                         offset = 2;
1447                 else {
1448                         offset = 1;
1449                         info->nand.badblock_pattern = &bb_descrip_flashbased;
1450                 }
1451                 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1452                 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1453                         omap_oobinfo.eccpos[i] = i+offset;
1454
1455                 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1456                 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1457                                         (offset + omap_oobinfo.eccbytes);
1458
1459                 info->nand.ecc.layout = &omap_oobinfo;
1460         } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1461                    (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1462                 /* build OOB layout for BCH ECC correction */
1463                 err = omap3_init_bch_tail(&info->mtd);
1464                 if (err) {
1465                         err = -EINVAL;
1466                         goto out_release_mem_region;
1467                 }
1468         }
1469
1470         /* second phase scan */
1471         if (nand_scan_tail(&info->mtd)) {
1472                 err = -ENXIO;
1473                 goto out_release_mem_region;
1474         }
1475
1476         mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts,
1477                                   pdata->nr_parts);
1478
1479         platform_set_drvdata(pdev, &info->mtd);
1480
1481         return 0;
1482
1483 out_release_mem_region:
1484         if (info->dma)
1485                 dma_release_channel(info->dma);
1486         if (info->gpmc_irq_count > 0)
1487                 free_irq(info->gpmc_irq_count, info);
1488         if (info->gpmc_irq_fifo > 0)
1489                 free_irq(info->gpmc_irq_fifo, info);
1490         release_mem_region(info->phys_base, info->mem_size);
1491 out_free_info:
1492         kfree(info);
1493
1494         return err;
1495 }
1496
1497 static int omap_nand_remove(struct platform_device *pdev)
1498 {
1499         struct mtd_info *mtd = platform_get_drvdata(pdev);
1500         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1501                                                         mtd);
1502         omap3_free_bch(&info->mtd);
1503
1504         platform_set_drvdata(pdev, NULL);
1505         if (info->dma)
1506                 dma_release_channel(info->dma);
1507
1508         if (info->gpmc_irq_count > 0)
1509                 free_irq(info->gpmc_irq_count, info);
1510         if (info->gpmc_irq_fifo > 0)
1511                 free_irq(info->gpmc_irq_fifo, info);
1512
1513         /* Release NAND device, its internal structures and partitions */
1514         nand_release(&info->mtd);
1515         iounmap(info->nand.IO_ADDR_R);
1516         release_mem_region(info->phys_base, NAND_IO_SIZE);
1517         kfree(info);
1518         return 0;
1519 }
1520
1521 static struct platform_driver omap_nand_driver = {
1522         .probe          = omap_nand_probe,
1523         .remove         = omap_nand_remove,
1524         .driver         = {
1525                 .name   = DRIVER_NAME,
1526                 .owner  = THIS_MODULE,
1527         },
1528 };
1529
1530 module_platform_driver(omap_nand_driver);
1531
1532 MODULE_ALIAS("platform:" DRIVER_NAME);
1533 MODULE_LICENSE("GPL");
1534 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");