Merge tag 'tpmdd-next-6.10-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / drivers / mmc / host / sh_mmcif.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MMCIF eMMC driver.
4  *
5  * Copyright (C) 2010 Renesas Solutions Corp.
6  * Yusuke Goda <yusuke.goda.sx@renesas.com>
7  */
8
9 /*
10  * The MMCIF driver is now processing MMC requests asynchronously, according
11  * to the Linux MMC API requirement.
12  *
13  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14  * data, and optional stop. To achieve asynchronous processing each of these
15  * stages is split into two halves: a top and a bottom half. The top half
16  * initialises the hardware, installs a timeout handler to handle completion
17  * timeouts, and returns. In case of the command stage this immediately returns
18  * control to the caller, leaving all further processing to run asynchronously.
19  * All further request processing is performed by the bottom halves.
20  *
21  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22  * thread, a DMA completion callback, if DMA is used, a timeout work, and
23  * request- and stage-specific handler methods.
24  *
25  * Each bottom half run begins with either a hardware interrupt, a DMA callback
26  * invocation, or a timeout work run. In case of an error or a successful
27  * processing completion, the MMC core is informed and the request processing is
28  * finished. In case processing has to continue, i.e., if data has to be read
29  * from or written to the card, or if a stop command has to be sent, the next
30  * top half is called, which performs the necessary hardware handling and
31  * reschedules the timeout work. This returns the driver state machine into the
32  * bottom half waiting state.
33  */
34
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/dmaengine.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/core.h>
43 #include <linux/mmc/host.h>
44 #include <linux/mmc/mmc.h>
45 #include <linux/mmc/sdio.h>
46 #include <linux/mmc/slot-gpio.h>
47 #include <linux/mod_devicetable.h>
48 #include <linux/mutex.h>
49 #include <linux/pagemap.h>
50 #include <linux/platform_data/sh_mmcif.h>
51 #include <linux/platform_device.h>
52 #include <linux/pm_qos.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/sh_dma.h>
55 #include <linux/spinlock.h>
56 #include <linux/module.h>
57
58 #define DRIVER_NAME     "sh_mmcif"
59
60 /* CE_CMD_SET */
61 #define CMD_MASK                0x3f000000
62 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
63 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
64 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
65 #define CMD_SET_RBSY            (1 << 21) /* R1b */
66 #define CMD_SET_CCSEN           (1 << 20)
67 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
68 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
69 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
70 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
71 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
72 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
73 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
74 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
75 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
76 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
77 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
78 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
79 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
80 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
81 #define CMD_SET_CCSH            (1 << 5)
82 #define CMD_SET_DARS            (1 << 2) /* Dual Data Rate */
83 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
84 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
85 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
86
87 /* CE_CMD_CTRL */
88 #define CMD_CTRL_BREAK          (1 << 0)
89
90 /* CE_BLOCK_SET */
91 #define BLOCK_SIZE_MASK         0x0000ffff
92
93 /* CE_INT */
94 #define INT_CCSDE               (1 << 29)
95 #define INT_CMD12DRE            (1 << 26)
96 #define INT_CMD12RBE            (1 << 25)
97 #define INT_CMD12CRE            (1 << 24)
98 #define INT_DTRANE              (1 << 23)
99 #define INT_BUFRE               (1 << 22)
100 #define INT_BUFWEN              (1 << 21)
101 #define INT_BUFREN              (1 << 20)
102 #define INT_CCSRCV              (1 << 19)
103 #define INT_RBSYE               (1 << 17)
104 #define INT_CRSPE               (1 << 16)
105 #define INT_CMDVIO              (1 << 15)
106 #define INT_BUFVIO              (1 << 14)
107 #define INT_WDATERR             (1 << 11)
108 #define INT_RDATERR             (1 << 10)
109 #define INT_RIDXERR             (1 << 9)
110 #define INT_RSPERR              (1 << 8)
111 #define INT_CCSTO               (1 << 5)
112 #define INT_CRCSTO              (1 << 4)
113 #define INT_WDATTO              (1 << 3)
114 #define INT_RDATTO              (1 << 2)
115 #define INT_RBSYTO              (1 << 1)
116 #define INT_RSPTO               (1 << 0)
117 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
118                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
119                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
120                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
121
122 #define INT_ALL                 (INT_RBSYE | INT_CRSPE | INT_BUFREN |    \
123                                  INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
124                                  INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
125
126 #define INT_CCS                 (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
127
128 /* CE_INT_MASK */
129 #define MASK_ALL                0x00000000
130 #define MASK_MCCSDE             (1 << 29)
131 #define MASK_MCMD12DRE          (1 << 26)
132 #define MASK_MCMD12RBE          (1 << 25)
133 #define MASK_MCMD12CRE          (1 << 24)
134 #define MASK_MDTRANE            (1 << 23)
135 #define MASK_MBUFRE             (1 << 22)
136 #define MASK_MBUFWEN            (1 << 21)
137 #define MASK_MBUFREN            (1 << 20)
138 #define MASK_MCCSRCV            (1 << 19)
139 #define MASK_MRBSYE             (1 << 17)
140 #define MASK_MCRSPE             (1 << 16)
141 #define MASK_MCMDVIO            (1 << 15)
142 #define MASK_MBUFVIO            (1 << 14)
143 #define MASK_MWDATERR           (1 << 11)
144 #define MASK_MRDATERR           (1 << 10)
145 #define MASK_MRIDXERR           (1 << 9)
146 #define MASK_MRSPERR            (1 << 8)
147 #define MASK_MCCSTO             (1 << 5)
148 #define MASK_MCRCSTO            (1 << 4)
149 #define MASK_MWDATTO            (1 << 3)
150 #define MASK_MRDATTO            (1 << 2)
151 #define MASK_MRBSYTO            (1 << 1)
152 #define MASK_MRSPTO             (1 << 0)
153
154 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
155                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
156                                  MASK_MCRCSTO | MASK_MWDATTO | \
157                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
158
159 #define MASK_CLEAN              (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |      \
160                                  MASK_MBUFREN | MASK_MBUFWEN |                  \
161                                  MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |  \
162                                  MASK_MCMD12RBE | MASK_MCMD12CRE)
163
164 /* CE_HOST_STS1 */
165 #define STS1_CMDSEQ             (1 << 31)
166
167 /* CE_HOST_STS2 */
168 #define STS2_CRCSTE             (1 << 31)
169 #define STS2_CRC16E             (1 << 30)
170 #define STS2_AC12CRCE           (1 << 29)
171 #define STS2_RSPCRC7E           (1 << 28)
172 #define STS2_CRCSTEBE           (1 << 27)
173 #define STS2_RDATEBE            (1 << 26)
174 #define STS2_AC12REBE           (1 << 25)
175 #define STS2_RSPEBE             (1 << 24)
176 #define STS2_AC12IDXE           (1 << 23)
177 #define STS2_RSPIDXE            (1 << 22)
178 #define STS2_CCSTO              (1 << 15)
179 #define STS2_RDATTO             (1 << 14)
180 #define STS2_DATBSYTO           (1 << 13)
181 #define STS2_CRCSTTO            (1 << 12)
182 #define STS2_AC12BSYTO          (1 << 11)
183 #define STS2_RSPBSYTO           (1 << 10)
184 #define STS2_AC12RSPTO          (1 << 9)
185 #define STS2_RSPTO              (1 << 8)
186 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
187                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
188 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
189                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
190                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
191                                  STS2_AC12RSPTO | STS2_RSPTO)
192
193 #define CLKDEV_EMMC_DATA        52000000 /* 52 MHz */
194 #define CLKDEV_MMC_DATA         20000000 /* 20 MHz */
195 #define CLKDEV_INIT             400000   /* 400 kHz */
196
197 enum sh_mmcif_state {
198         STATE_IDLE,
199         STATE_REQUEST,
200         STATE_IOS,
201         STATE_TIMEOUT,
202 };
203
204 enum sh_mmcif_wait_for {
205         MMCIF_WAIT_FOR_REQUEST,
206         MMCIF_WAIT_FOR_CMD,
207         MMCIF_WAIT_FOR_MREAD,
208         MMCIF_WAIT_FOR_MWRITE,
209         MMCIF_WAIT_FOR_READ,
210         MMCIF_WAIT_FOR_WRITE,
211         MMCIF_WAIT_FOR_READ_END,
212         MMCIF_WAIT_FOR_WRITE_END,
213         MMCIF_WAIT_FOR_STOP,
214 };
215
216 /*
217  * difference for each SoC
218  */
219 struct sh_mmcif_host {
220         struct mmc_host *mmc;
221         struct mmc_request *mrq;
222         struct platform_device *pd;
223         struct clk *clk;
224         int bus_width;
225         unsigned char timing;
226         bool sd_error;
227         bool dying;
228         long timeout;
229         void __iomem *addr;
230         spinlock_t lock;                /* protect sh_mmcif_host::state */
231         enum sh_mmcif_state state;
232         enum sh_mmcif_wait_for wait_for;
233         struct delayed_work timeout_work;
234         size_t blocksize;
235         struct sg_mapping_iter sg_miter;
236         bool power;
237         bool ccs_enable;                /* Command Completion Signal support */
238         bool clk_ctrl2_enable;
239         struct mutex thread_lock;
240         u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
241
242         /* DMA support */
243         struct dma_chan         *chan_rx;
244         struct dma_chan         *chan_tx;
245         struct completion       dma_complete;
246         bool                    dma_active;
247 };
248
249 static const struct of_device_id sh_mmcif_of_match[] = {
250         { .compatible = "renesas,sh-mmcif" },
251         { }
252 };
253 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
254
255 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
256
257 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
258                                         unsigned int reg, u32 val)
259 {
260         writel(val | readl(host->addr + reg), host->addr + reg);
261 }
262
263 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
264                                         unsigned int reg, u32 val)
265 {
266         writel(~val & readl(host->addr + reg), host->addr + reg);
267 }
268
269 static void sh_mmcif_dma_complete(void *arg)
270 {
271         struct sh_mmcif_host *host = arg;
272         struct mmc_request *mrq = host->mrq;
273         struct device *dev = sh_mmcif_host_to_dev(host);
274
275         dev_dbg(dev, "Command completed\n");
276
277         if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
278                  dev_name(dev)))
279                 return;
280
281         complete(&host->dma_complete);
282 }
283
284 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
285 {
286         struct mmc_data *data = host->mrq->data;
287         struct scatterlist *sg = data->sg;
288         struct dma_async_tx_descriptor *desc = NULL;
289         struct dma_chan *chan = host->chan_rx;
290         struct device *dev = sh_mmcif_host_to_dev(host);
291         dma_cookie_t cookie = -EINVAL;
292         int ret;
293
294         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
295                          DMA_FROM_DEVICE);
296         if (ret > 0) {
297                 host->dma_active = true;
298                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
299                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
300         }
301
302         if (desc) {
303                 desc->callback = sh_mmcif_dma_complete;
304                 desc->callback_param = host;
305                 cookie = dmaengine_submit(desc);
306                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
307                 dma_async_issue_pending(chan);
308         }
309         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
310                 __func__, data->sg_len, ret, cookie);
311
312         if (!desc) {
313                 /* DMA failed, fall back to PIO */
314                 if (ret >= 0)
315                         ret = -EIO;
316                 host->chan_rx = NULL;
317                 host->dma_active = false;
318                 dma_release_channel(chan);
319                 /* Free the Tx channel too */
320                 chan = host->chan_tx;
321                 if (chan) {
322                         host->chan_tx = NULL;
323                         dma_release_channel(chan);
324                 }
325                 dev_warn(dev,
326                          "DMA failed: %d, falling back to PIO\n", ret);
327                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
328         }
329
330         dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
331                 desc, cookie, data->sg_len);
332 }
333
334 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
335 {
336         struct mmc_data *data = host->mrq->data;
337         struct scatterlist *sg = data->sg;
338         struct dma_async_tx_descriptor *desc = NULL;
339         struct dma_chan *chan = host->chan_tx;
340         struct device *dev = sh_mmcif_host_to_dev(host);
341         dma_cookie_t cookie = -EINVAL;
342         int ret;
343
344         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
345                          DMA_TO_DEVICE);
346         if (ret > 0) {
347                 host->dma_active = true;
348                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
349                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
350         }
351
352         if (desc) {
353                 desc->callback = sh_mmcif_dma_complete;
354                 desc->callback_param = host;
355                 cookie = dmaengine_submit(desc);
356                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
357                 dma_async_issue_pending(chan);
358         }
359         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
360                 __func__, data->sg_len, ret, cookie);
361
362         if (!desc) {
363                 /* DMA failed, fall back to PIO */
364                 if (ret >= 0)
365                         ret = -EIO;
366                 host->chan_tx = NULL;
367                 host->dma_active = false;
368                 dma_release_channel(chan);
369                 /* Free the Rx channel too */
370                 chan = host->chan_rx;
371                 if (chan) {
372                         host->chan_rx = NULL;
373                         dma_release_channel(chan);
374                 }
375                 dev_warn(dev,
376                          "DMA failed: %d, falling back to PIO\n", ret);
377                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
378         }
379
380         dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
381                 desc, cookie);
382 }
383
384 static struct dma_chan *
385 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
386 {
387         dma_cap_mask_t mask;
388
389         dma_cap_zero(mask);
390         dma_cap_set(DMA_SLAVE, mask);
391         if (slave_id <= 0)
392                 return NULL;
393
394         return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
395 }
396
397 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
398                                      struct dma_chan *chan,
399                                      enum dma_transfer_direction direction)
400 {
401         struct resource *res;
402         struct dma_slave_config cfg = { 0, };
403
404         res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
405         if (!res)
406                 return -EINVAL;
407
408         cfg.direction = direction;
409
410         if (direction == DMA_DEV_TO_MEM) {
411                 cfg.src_addr = res->start + MMCIF_CE_DATA;
412                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
413         } else {
414                 cfg.dst_addr = res->start + MMCIF_CE_DATA;
415                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
416         }
417
418         return dmaengine_slave_config(chan, &cfg);
419 }
420
421 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
422 {
423         struct device *dev = sh_mmcif_host_to_dev(host);
424         host->dma_active = false;
425
426         /* We can only either use DMA for both Tx and Rx or not use it at all */
427         if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
428                 struct sh_mmcif_plat_data *pdata = dev->platform_data;
429
430                 host->chan_tx = sh_mmcif_request_dma_pdata(host,
431                                                         pdata->slave_id_tx);
432                 host->chan_rx = sh_mmcif_request_dma_pdata(host,
433                                                         pdata->slave_id_rx);
434         } else {
435                 host->chan_tx = dma_request_chan(dev, "tx");
436                 if (IS_ERR(host->chan_tx))
437                         host->chan_tx = NULL;
438                 host->chan_rx = dma_request_chan(dev, "rx");
439                 if (IS_ERR(host->chan_rx))
440                         host->chan_rx = NULL;
441         }
442         dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
443                 host->chan_rx);
444
445         if (!host->chan_tx || !host->chan_rx ||
446             sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
447             sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
448                 goto error;
449
450         return;
451
452 error:
453         if (host->chan_tx)
454                 dma_release_channel(host->chan_tx);
455         if (host->chan_rx)
456                 dma_release_channel(host->chan_rx);
457         host->chan_tx = host->chan_rx = NULL;
458 }
459
460 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
461 {
462         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
463         /* Descriptors are freed automatically */
464         if (host->chan_tx) {
465                 struct dma_chan *chan = host->chan_tx;
466                 host->chan_tx = NULL;
467                 dma_release_channel(chan);
468         }
469         if (host->chan_rx) {
470                 struct dma_chan *chan = host->chan_rx;
471                 host->chan_rx = NULL;
472                 dma_release_channel(chan);
473         }
474
475         host->dma_active = false;
476 }
477
478 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
479 {
480         struct device *dev = sh_mmcif_host_to_dev(host);
481         struct sh_mmcif_plat_data *p = dev->platform_data;
482         bool sup_pclk = p ? p->sup_pclk : false;
483         unsigned int current_clk = clk_get_rate(host->clk);
484         unsigned int clkdiv;
485
486         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
487         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
488
489         if (!clk)
490                 return;
491
492         if (host->clkdiv_map) {
493                 unsigned int freq, best_freq, myclk, div, diff_min, diff;
494                 int i;
495
496                 clkdiv = 0;
497                 diff_min = ~0;
498                 best_freq = 0;
499                 for (i = 31; i >= 0; i--) {
500                         if (!((1 << i) & host->clkdiv_map))
501                                 continue;
502
503                         /*
504                          * clk = parent_freq / div
505                          * -> parent_freq = clk x div
506                          */
507
508                         div = 1 << (i + 1);
509                         freq = clk_round_rate(host->clk, clk * div);
510                         myclk = freq / div;
511                         diff = (myclk > clk) ? myclk - clk : clk - myclk;
512
513                         if (diff <= diff_min) {
514                                 best_freq = freq;
515                                 clkdiv = i;
516                                 diff_min = diff;
517                         }
518                 }
519
520                 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
521                         (best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv);
522
523                 clk_set_rate(host->clk, best_freq);
524                 clkdiv = clkdiv << 16;
525         } else if (sup_pclk && clk == current_clk) {
526                 clkdiv = CLK_SUP_PCLK;
527         } else {
528                 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
529         }
530
531         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
532         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
533 }
534
535 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
536 {
537         u32 tmp;
538
539         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
540
541         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
542         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
543         if (host->ccs_enable)
544                 tmp |= SCCSTO_29;
545         if (host->clk_ctrl2_enable)
546                 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
547         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
548                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
549         /* byte swap on */
550         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
551 }
552
553 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
554 {
555         struct device *dev = sh_mmcif_host_to_dev(host);
556         u32 state1, state2;
557         int ret, timeout;
558
559         host->sd_error = false;
560
561         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
562         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
563         dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
564         dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
565
566         if (state1 & STS1_CMDSEQ) {
567                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
568                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
569                 for (timeout = 10000; timeout; timeout--) {
570                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
571                               & STS1_CMDSEQ))
572                                 break;
573                         mdelay(1);
574                 }
575                 if (!timeout) {
576                         dev_err(dev,
577                                 "Forced end of command sequence timeout err\n");
578                         return -EIO;
579                 }
580                 sh_mmcif_sync_reset(host);
581                 dev_dbg(dev, "Forced end of command sequence\n");
582                 return -EIO;
583         }
584
585         if (state2 & STS2_CRC_ERR) {
586                 dev_err(dev, " CRC error: state %u, wait %u\n",
587                         host->state, host->wait_for);
588                 ret = -EIO;
589         } else if (state2 & STS2_TIMEOUT_ERR) {
590                 dev_err(dev, " Timeout: state %u, wait %u\n",
591                         host->state, host->wait_for);
592                 ret = -ETIMEDOUT;
593         } else {
594                 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
595                         host->state, host->wait_for);
596                 ret = -EIO;
597         }
598         return ret;
599 }
600
601 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
602                                  struct mmc_request *mrq)
603 {
604         struct mmc_data *data = mrq->data;
605
606         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
607                            BLOCK_SIZE_MASK) + 3;
608
609         sg_miter_start(&host->sg_miter, data->sg, data->sg_len,
610                        SG_MITER_TO_SG);
611
612         host->wait_for = MMCIF_WAIT_FOR_READ;
613
614         /* buf read enable */
615         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
616 }
617
618 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
619 {
620         struct sg_mapping_iter *sgm = &host->sg_miter;
621         struct device *dev = sh_mmcif_host_to_dev(host);
622         struct mmc_data *data = host->mrq->data;
623         u32 *p;
624         int i;
625
626         if (host->sd_error) {
627                 sg_miter_stop(sgm);
628                 data->error = sh_mmcif_error_manage(host);
629                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
630                 return false;
631         }
632
633         if (!sg_miter_next(sgm)) {
634                 /* This should not happen on single blocks */
635                 sg_miter_stop(sgm);
636                 return false;
637         }
638
639         p = sgm->addr;
640
641         for (i = 0; i < host->blocksize / 4; i++)
642                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
643
644         sg_miter_stop(&host->sg_miter);
645
646         /* buffer read end */
647         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
648         host->wait_for = MMCIF_WAIT_FOR_READ_END;
649
650         return true;
651 }
652
653 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
654                                 struct mmc_request *mrq)
655 {
656         struct sg_mapping_iter *sgm = &host->sg_miter;
657         struct mmc_data *data = mrq->data;
658
659         if (!data->sg_len || !data->sg->length)
660                 return;
661
662         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
663                 BLOCK_SIZE_MASK;
664
665         sg_miter_start(sgm, data->sg, data->sg_len,
666                        SG_MITER_TO_SG);
667
668         /* Advance to the first sglist entry */
669         if (!sg_miter_next(sgm)) {
670                 sg_miter_stop(sgm);
671                 return;
672         }
673
674         host->wait_for = MMCIF_WAIT_FOR_MREAD;
675
676         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
677 }
678
679 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
680 {
681         struct sg_mapping_iter *sgm = &host->sg_miter;
682         struct device *dev = sh_mmcif_host_to_dev(host);
683         struct mmc_data *data = host->mrq->data;
684         u32 *p;
685         int i;
686
687         if (host->sd_error) {
688                 sg_miter_stop(sgm);
689                 data->error = sh_mmcif_error_manage(host);
690                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
691                 return false;
692         }
693
694         p = sgm->addr;
695
696         for (i = 0; i < host->blocksize / 4; i++)
697                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
698
699         sgm->consumed = host->blocksize;
700
701         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
702
703         if (!sg_miter_next(sgm)) {
704                 sg_miter_stop(sgm);
705                 return false;
706         }
707
708         return true;
709 }
710
711 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
712                                         struct mmc_request *mrq)
713 {
714         struct mmc_data *data = mrq->data;
715
716         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
717                            BLOCK_SIZE_MASK) + 3;
718
719         sg_miter_start(&host->sg_miter, data->sg, data->sg_len,
720                        SG_MITER_FROM_SG);
721
722         host->wait_for = MMCIF_WAIT_FOR_WRITE;
723
724         /* buf write enable */
725         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
726 }
727
728 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
729 {
730         struct sg_mapping_iter *sgm = &host->sg_miter;
731         struct device *dev = sh_mmcif_host_to_dev(host);
732         struct mmc_data *data = host->mrq->data;
733         u32 *p;
734         int i;
735
736         if (host->sd_error) {
737                 sg_miter_stop(sgm);
738                 data->error = sh_mmcif_error_manage(host);
739                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
740                 return false;
741         }
742
743         if (!sg_miter_next(sgm)) {
744                 /* This should not happen on single blocks */
745                 sg_miter_stop(sgm);
746                 return false;
747         }
748
749         p = sgm->addr;
750
751         for (i = 0; i < host->blocksize / 4; i++)
752                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
753
754         sg_miter_stop(&host->sg_miter);
755
756         /* buffer write end */
757         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
758         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
759
760         return true;
761 }
762
763 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
764                                 struct mmc_request *mrq)
765 {
766         struct sg_mapping_iter *sgm = &host->sg_miter;
767         struct mmc_data *data = mrq->data;
768
769         if (!data->sg_len || !data->sg->length)
770                 return;
771
772         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
773                 BLOCK_SIZE_MASK;
774
775         sg_miter_start(sgm, data->sg, data->sg_len,
776                        SG_MITER_FROM_SG);
777
778         /* Advance to the first sglist entry */
779         if (!sg_miter_next(sgm)) {
780                 sg_miter_stop(sgm);
781                 return;
782         }
783
784         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
785
786         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
787 }
788
789 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
790 {
791         struct sg_mapping_iter *sgm = &host->sg_miter;
792         struct device *dev = sh_mmcif_host_to_dev(host);
793         struct mmc_data *data = host->mrq->data;
794         u32 *p;
795         int i;
796
797         if (host->sd_error) {
798                 sg_miter_stop(sgm);
799                 data->error = sh_mmcif_error_manage(host);
800                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
801                 return false;
802         }
803
804         p = sgm->addr;
805
806         for (i = 0; i < host->blocksize / 4; i++)
807                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
808
809         sgm->consumed = host->blocksize;
810
811         if (!sg_miter_next(sgm)) {
812                 sg_miter_stop(sgm);
813                 return false;
814         }
815
816         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
817
818         return true;
819 }
820
821 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
822                                                 struct mmc_command *cmd)
823 {
824         if (cmd->flags & MMC_RSP_136) {
825                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
826                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
827                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
828                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
829         } else
830                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
831 }
832
833 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
834                                                 struct mmc_command *cmd)
835 {
836         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
837 }
838
839 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
840                             struct mmc_request *mrq)
841 {
842         struct device *dev = sh_mmcif_host_to_dev(host);
843         struct mmc_data *data = mrq->data;
844         struct mmc_command *cmd = mrq->cmd;
845         u32 opc = cmd->opcode;
846         u32 tmp = 0;
847
848         /* Response Type check */
849         switch (mmc_resp_type(cmd)) {
850         case MMC_RSP_NONE:
851                 tmp |= CMD_SET_RTYP_NO;
852                 break;
853         case MMC_RSP_R1:
854         case MMC_RSP_R3:
855                 tmp |= CMD_SET_RTYP_6B;
856                 break;
857         case MMC_RSP_R1B:
858                 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
859                 break;
860         case MMC_RSP_R2:
861                 tmp |= CMD_SET_RTYP_17B;
862                 break;
863         default:
864                 dev_err(dev, "Unsupported response type.\n");
865                 break;
866         }
867
868         /* WDAT / DATW */
869         if (data) {
870                 tmp |= CMD_SET_WDAT;
871                 switch (host->bus_width) {
872                 case MMC_BUS_WIDTH_1:
873                         tmp |= CMD_SET_DATW_1;
874                         break;
875                 case MMC_BUS_WIDTH_4:
876                         tmp |= CMD_SET_DATW_4;
877                         break;
878                 case MMC_BUS_WIDTH_8:
879                         tmp |= CMD_SET_DATW_8;
880                         break;
881                 default:
882                         dev_err(dev, "Unsupported bus width.\n");
883                         break;
884                 }
885                 switch (host->timing) {
886                 case MMC_TIMING_MMC_DDR52:
887                         /*
888                          * MMC core will only set this timing, if the host
889                          * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
890                          * capability. MMCIF implementations with this
891                          * capability, e.g. sh73a0, will have to set it
892                          * in their platform data.
893                          */
894                         tmp |= CMD_SET_DARS;
895                         break;
896                 }
897         }
898         /* DWEN */
899         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
900                 tmp |= CMD_SET_DWEN;
901         /* CMLTE/CMD12EN */
902         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
903                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
904                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
905                                 data->blocks << 16);
906         }
907         /* RIDXC[1:0] check bits */
908         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
909             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
910                 tmp |= CMD_SET_RIDXC_BITS;
911         /* RCRC7C[1:0] check bits */
912         if (opc == MMC_SEND_OP_COND)
913                 tmp |= CMD_SET_CRC7C_BITS;
914         /* RCRC7C[1:0] internal CRC7 */
915         if (opc == MMC_ALL_SEND_CID ||
916                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
917                 tmp |= CMD_SET_CRC7C_INTERNAL;
918
919         return (opc << 24) | tmp;
920 }
921
922 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
923                                struct mmc_request *mrq, u32 opc)
924 {
925         struct device *dev = sh_mmcif_host_to_dev(host);
926
927         switch (opc) {
928         case MMC_READ_MULTIPLE_BLOCK:
929                 sh_mmcif_multi_read(host, mrq);
930                 return 0;
931         case MMC_WRITE_MULTIPLE_BLOCK:
932                 sh_mmcif_multi_write(host, mrq);
933                 return 0;
934         case MMC_WRITE_BLOCK:
935                 sh_mmcif_single_write(host, mrq);
936                 return 0;
937         case MMC_READ_SINGLE_BLOCK:
938         case MMC_SEND_EXT_CSD:
939                 sh_mmcif_single_read(host, mrq);
940                 return 0;
941         default:
942                 dev_err(dev, "Unsupported CMD%d\n", opc);
943                 return -EINVAL;
944         }
945 }
946
947 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
948                                struct mmc_request *mrq)
949 {
950         struct mmc_command *cmd = mrq->cmd;
951         u32 opc;
952         u32 mask = 0;
953         unsigned long flags;
954
955         if (cmd->flags & MMC_RSP_BUSY)
956                 mask = MASK_START_CMD | MASK_MRBSYE;
957         else
958                 mask = MASK_START_CMD | MASK_MCRSPE;
959
960         if (host->ccs_enable)
961                 mask |= MASK_MCCSTO;
962
963         if (mrq->data) {
964                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
965                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
966                                 mrq->data->blksz);
967         }
968         opc = sh_mmcif_set_cmd(host, mrq);
969
970         if (host->ccs_enable)
971                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
972         else
973                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
974         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
975         /* set arg */
976         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
977         /* set cmd */
978         spin_lock_irqsave(&host->lock, flags);
979         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
980
981         host->wait_for = MMCIF_WAIT_FOR_CMD;
982         schedule_delayed_work(&host->timeout_work, host->timeout);
983         spin_unlock_irqrestore(&host->lock, flags);
984 }
985
986 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
987                               struct mmc_request *mrq)
988 {
989         struct device *dev = sh_mmcif_host_to_dev(host);
990
991         switch (mrq->cmd->opcode) {
992         case MMC_READ_MULTIPLE_BLOCK:
993                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
994                 break;
995         case MMC_WRITE_MULTIPLE_BLOCK:
996                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
997                 break;
998         default:
999                 dev_err(dev, "unsupported stop cmd\n");
1000                 mrq->stop->error = sh_mmcif_error_manage(host);
1001                 return;
1002         }
1003
1004         host->wait_for = MMCIF_WAIT_FOR_STOP;
1005 }
1006
1007 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
1008 {
1009         struct sh_mmcif_host *host = mmc_priv(mmc);
1010         struct device *dev = sh_mmcif_host_to_dev(host);
1011         unsigned long flags;
1012
1013         spin_lock_irqsave(&host->lock, flags);
1014         if (host->state != STATE_IDLE) {
1015                 dev_dbg(dev, "%s() rejected, state %u\n",
1016                         __func__, host->state);
1017                 spin_unlock_irqrestore(&host->lock, flags);
1018                 mrq->cmd->error = -EAGAIN;
1019                 mmc_request_done(mmc, mrq);
1020                 return;
1021         }
1022
1023         host->state = STATE_REQUEST;
1024         spin_unlock_irqrestore(&host->lock, flags);
1025
1026         host->mrq = mrq;
1027
1028         sh_mmcif_start_cmd(host, mrq);
1029 }
1030
1031 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1032 {
1033         struct device *dev = sh_mmcif_host_to_dev(host);
1034
1035         if (host->mmc->f_max) {
1036                 unsigned int f_max, f_min = 0, f_min_old;
1037
1038                 f_max = host->mmc->f_max;
1039                 for (f_min_old = f_max; f_min_old > 2;) {
1040                         f_min = clk_round_rate(host->clk, f_min_old / 2);
1041                         if (f_min == f_min_old)
1042                                 break;
1043                         f_min_old = f_min;
1044                 }
1045
1046                 /*
1047                  * This driver assumes this SoC is R-Car Gen2 or later
1048                  */
1049                 host->clkdiv_map = 0x3ff;
1050
1051                 host->mmc->f_max = f_max >> ffs(host->clkdiv_map);
1052                 host->mmc->f_min = f_min >> fls(host->clkdiv_map);
1053         } else {
1054                 unsigned int clk = clk_get_rate(host->clk);
1055
1056                 host->mmc->f_max = clk / 2;
1057                 host->mmc->f_min = clk / 512;
1058         }
1059
1060         dev_dbg(dev, "clk max/min = %d/%d\n",
1061                 host->mmc->f_max, host->mmc->f_min);
1062 }
1063
1064 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1065 {
1066         struct sh_mmcif_host *host = mmc_priv(mmc);
1067         struct device *dev = sh_mmcif_host_to_dev(host);
1068         unsigned long flags;
1069
1070         spin_lock_irqsave(&host->lock, flags);
1071         if (host->state != STATE_IDLE) {
1072                 dev_dbg(dev, "%s() rejected, state %u\n",
1073                         __func__, host->state);
1074                 spin_unlock_irqrestore(&host->lock, flags);
1075                 return;
1076         }
1077
1078         host->state = STATE_IOS;
1079         spin_unlock_irqrestore(&host->lock, flags);
1080
1081         switch (ios->power_mode) {
1082         case MMC_POWER_UP:
1083                 if (!IS_ERR(mmc->supply.vmmc))
1084                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1085                 if (!host->power) {
1086                         clk_prepare_enable(host->clk);
1087                         pm_runtime_get_sync(dev);
1088                         sh_mmcif_sync_reset(host);
1089                         sh_mmcif_request_dma(host);
1090                         host->power = true;
1091                 }
1092                 break;
1093         case MMC_POWER_OFF:
1094                 if (!IS_ERR(mmc->supply.vmmc))
1095                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1096                 if (host->power) {
1097                         sh_mmcif_clock_control(host, 0);
1098                         sh_mmcif_release_dma(host);
1099                         pm_runtime_put(dev);
1100                         clk_disable_unprepare(host->clk);
1101                         host->power = false;
1102                 }
1103                 break;
1104         case MMC_POWER_ON:
1105                 sh_mmcif_clock_control(host, ios->clock);
1106                 break;
1107         }
1108
1109         host->timing = ios->timing;
1110         host->bus_width = ios->bus_width;
1111         host->state = STATE_IDLE;
1112 }
1113
1114 static const struct mmc_host_ops sh_mmcif_ops = {
1115         .request        = sh_mmcif_request,
1116         .set_ios        = sh_mmcif_set_ios,
1117         .get_cd         = mmc_gpio_get_cd,
1118 };
1119
1120 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1121 {
1122         struct mmc_command *cmd = host->mrq->cmd;
1123         struct mmc_data *data = host->mrq->data;
1124         struct device *dev = sh_mmcif_host_to_dev(host);
1125         long time;
1126
1127         if (host->sd_error) {
1128                 switch (cmd->opcode) {
1129                 case MMC_ALL_SEND_CID:
1130                 case MMC_SELECT_CARD:
1131                 case MMC_APP_CMD:
1132                         cmd->error = -ETIMEDOUT;
1133                         break;
1134                 default:
1135                         cmd->error = sh_mmcif_error_manage(host);
1136                         break;
1137                 }
1138                 dev_dbg(dev, "CMD%d error %d\n",
1139                         cmd->opcode, cmd->error);
1140                 host->sd_error = false;
1141                 return false;
1142         }
1143         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1144                 cmd->error = 0;
1145                 return false;
1146         }
1147
1148         sh_mmcif_get_response(host, cmd);
1149
1150         if (!data)
1151                 return false;
1152
1153         /*
1154          * Completion can be signalled from DMA callback and error, so, have to
1155          * reset here, before setting .dma_active
1156          */
1157         init_completion(&host->dma_complete);
1158
1159         if (data->flags & MMC_DATA_READ) {
1160                 if (host->chan_rx)
1161                         sh_mmcif_start_dma_rx(host);
1162         } else {
1163                 if (host->chan_tx)
1164                         sh_mmcif_start_dma_tx(host);
1165         }
1166
1167         if (!host->dma_active) {
1168                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1169                 return !data->error;
1170         }
1171
1172         /* Running in the IRQ thread, can sleep */
1173         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1174                                                          host->timeout);
1175
1176         if (data->flags & MMC_DATA_READ)
1177                 dma_unmap_sg(host->chan_rx->device->dev,
1178                              data->sg, data->sg_len,
1179                              DMA_FROM_DEVICE);
1180         else
1181                 dma_unmap_sg(host->chan_tx->device->dev,
1182                              data->sg, data->sg_len,
1183                              DMA_TO_DEVICE);
1184
1185         if (host->sd_error) {
1186                 dev_err(host->mmc->parent,
1187                         "Error IRQ while waiting for DMA completion!\n");
1188                 /* Woken up by an error IRQ: abort DMA */
1189                 data->error = sh_mmcif_error_manage(host);
1190         } else if (!time) {
1191                 dev_err(host->mmc->parent, "DMA timeout!\n");
1192                 data->error = -ETIMEDOUT;
1193         } else if (time < 0) {
1194                 dev_err(host->mmc->parent,
1195                         "wait_for_completion_...() error %ld!\n", time);
1196                 data->error = time;
1197         }
1198         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1199                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1200         host->dma_active = false;
1201
1202         if (data->error) {
1203                 data->bytes_xfered = 0;
1204                 /* Abort DMA */
1205                 if (data->flags & MMC_DATA_READ)
1206                         dmaengine_terminate_sync(host->chan_rx);
1207                 else
1208                         dmaengine_terminate_sync(host->chan_tx);
1209         }
1210
1211         return false;
1212 }
1213
1214 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1215 {
1216         struct sh_mmcif_host *host = dev_id;
1217         struct mmc_request *mrq;
1218         struct device *dev = sh_mmcif_host_to_dev(host);
1219         bool wait = false;
1220         unsigned long flags;
1221         int wait_work;
1222
1223         spin_lock_irqsave(&host->lock, flags);
1224         wait_work = host->wait_for;
1225         spin_unlock_irqrestore(&host->lock, flags);
1226
1227         cancel_delayed_work_sync(&host->timeout_work);
1228
1229         mutex_lock(&host->thread_lock);
1230
1231         mrq = host->mrq;
1232         if (!mrq) {
1233                 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1234                         host->state, host->wait_for);
1235                 mutex_unlock(&host->thread_lock);
1236                 return IRQ_HANDLED;
1237         }
1238
1239         /*
1240          * All handlers return true, if processing continues, and false, if the
1241          * request has to be completed - successfully or not
1242          */
1243         switch (wait_work) {
1244         case MMCIF_WAIT_FOR_REQUEST:
1245                 /* We're too late, the timeout has already kicked in */
1246                 mutex_unlock(&host->thread_lock);
1247                 return IRQ_HANDLED;
1248         case MMCIF_WAIT_FOR_CMD:
1249                 /* Wait for data? */
1250                 wait = sh_mmcif_end_cmd(host);
1251                 break;
1252         case MMCIF_WAIT_FOR_MREAD:
1253                 /* Wait for more data? */
1254                 wait = sh_mmcif_mread_block(host);
1255                 break;
1256         case MMCIF_WAIT_FOR_READ:
1257                 /* Wait for data end? */
1258                 wait = sh_mmcif_read_block(host);
1259                 break;
1260         case MMCIF_WAIT_FOR_MWRITE:
1261                 /* Wait data to write? */
1262                 wait = sh_mmcif_mwrite_block(host);
1263                 break;
1264         case MMCIF_WAIT_FOR_WRITE:
1265                 /* Wait for data end? */
1266                 wait = sh_mmcif_write_block(host);
1267                 break;
1268         case MMCIF_WAIT_FOR_STOP:
1269                 if (host->sd_error) {
1270                         mrq->stop->error = sh_mmcif_error_manage(host);
1271                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1272                         break;
1273                 }
1274                 sh_mmcif_get_cmd12response(host, mrq->stop);
1275                 mrq->stop->error = 0;
1276                 break;
1277         case MMCIF_WAIT_FOR_READ_END:
1278         case MMCIF_WAIT_FOR_WRITE_END:
1279                 if (host->sd_error) {
1280                         mrq->data->error = sh_mmcif_error_manage(host);
1281                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1282                 }
1283                 break;
1284         default:
1285                 BUG();
1286         }
1287
1288         if (wait) {
1289                 schedule_delayed_work(&host->timeout_work, host->timeout);
1290                 /* Wait for more data */
1291                 mutex_unlock(&host->thread_lock);
1292                 return IRQ_HANDLED;
1293         }
1294
1295         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1296                 struct mmc_data *data = mrq->data;
1297                 if (!mrq->cmd->error && data && !data->error)
1298                         data->bytes_xfered =
1299                                 data->blocks * data->blksz;
1300
1301                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1302                         sh_mmcif_stop_cmd(host, mrq);
1303                         if (!mrq->stop->error) {
1304                                 schedule_delayed_work(&host->timeout_work, host->timeout);
1305                                 mutex_unlock(&host->thread_lock);
1306                                 return IRQ_HANDLED;
1307                         }
1308                 }
1309         }
1310
1311         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1312         host->state = STATE_IDLE;
1313         host->mrq = NULL;
1314         mmc_request_done(host->mmc, mrq);
1315
1316         mutex_unlock(&host->thread_lock);
1317
1318         return IRQ_HANDLED;
1319 }
1320
1321 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1322 {
1323         struct sh_mmcif_host *host = dev_id;
1324         struct device *dev = sh_mmcif_host_to_dev(host);
1325         u32 state, mask;
1326
1327         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1328         mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1329         if (host->ccs_enable)
1330                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1331         else
1332                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1333         sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1334
1335         if (state & ~MASK_CLEAN)
1336                 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1337                         state);
1338
1339         if (state & INT_ERR_STS || state & ~INT_ALL) {
1340                 host->sd_error = true;
1341                 dev_dbg(dev, "int err state = 0x%08x\n", state);
1342         }
1343         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1344                 if (!host->mrq)
1345                         dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1346                 if (!host->dma_active)
1347                         return IRQ_WAKE_THREAD;
1348                 else if (host->sd_error)
1349                         sh_mmcif_dma_complete(host);
1350         } else {
1351                 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1352         }
1353
1354         return IRQ_HANDLED;
1355 }
1356
1357 static void sh_mmcif_timeout_work(struct work_struct *work)
1358 {
1359         struct delayed_work *d = to_delayed_work(work);
1360         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1361         struct mmc_request *mrq = host->mrq;
1362         struct device *dev = sh_mmcif_host_to_dev(host);
1363         unsigned long flags;
1364
1365         if (host->dying)
1366                 /* Don't run after mmc_remove_host() */
1367                 return;
1368
1369         spin_lock_irqsave(&host->lock, flags);
1370         if (host->state == STATE_IDLE) {
1371                 spin_unlock_irqrestore(&host->lock, flags);
1372                 return;
1373         }
1374
1375         dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1376                 host->wait_for, mrq->cmd->opcode);
1377
1378         host->state = STATE_TIMEOUT;
1379         spin_unlock_irqrestore(&host->lock, flags);
1380
1381         /*
1382          * Handle races with cancel_delayed_work(), unless
1383          * cancel_delayed_work_sync() is used
1384          */
1385         switch (host->wait_for) {
1386         case MMCIF_WAIT_FOR_CMD:
1387                 mrq->cmd->error = sh_mmcif_error_manage(host);
1388                 break;
1389         case MMCIF_WAIT_FOR_STOP:
1390                 mrq->stop->error = sh_mmcif_error_manage(host);
1391                 break;
1392         case MMCIF_WAIT_FOR_MREAD:
1393         case MMCIF_WAIT_FOR_MWRITE:
1394         case MMCIF_WAIT_FOR_READ:
1395         case MMCIF_WAIT_FOR_WRITE:
1396         case MMCIF_WAIT_FOR_READ_END:
1397         case MMCIF_WAIT_FOR_WRITE_END:
1398                 mrq->data->error = sh_mmcif_error_manage(host);
1399                 break;
1400         default:
1401                 BUG();
1402         }
1403
1404         host->state = STATE_IDLE;
1405         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1406         host->mrq = NULL;
1407         mmc_request_done(host->mmc, mrq);
1408 }
1409
1410 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1411 {
1412         struct device *dev = sh_mmcif_host_to_dev(host);
1413         struct sh_mmcif_plat_data *pd = dev->platform_data;
1414         struct mmc_host *mmc = host->mmc;
1415
1416         mmc_regulator_get_supply(mmc);
1417
1418         if (!pd)
1419                 return;
1420
1421         if (!mmc->ocr_avail)
1422                 mmc->ocr_avail = pd->ocr;
1423         else if (pd->ocr)
1424                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1425 }
1426
1427 static int sh_mmcif_probe(struct platform_device *pdev)
1428 {
1429         int ret = 0, irq[2];
1430         struct mmc_host *mmc;
1431         struct sh_mmcif_host *host;
1432         struct device *dev = &pdev->dev;
1433         struct sh_mmcif_plat_data *pd = dev->platform_data;
1434         void __iomem *reg;
1435         const char *name;
1436
1437         irq[0] = platform_get_irq(pdev, 0);
1438         irq[1] = platform_get_irq_optional(pdev, 1);
1439         if (irq[0] < 0)
1440                 return irq[0];
1441
1442         reg = devm_platform_ioremap_resource(pdev, 0);
1443         if (IS_ERR(reg))
1444                 return PTR_ERR(reg);
1445
1446         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1447         if (!mmc)
1448                 return -ENOMEM;
1449
1450         ret = mmc_of_parse(mmc);
1451         if (ret < 0)
1452                 goto err_host;
1453
1454         host            = mmc_priv(mmc);
1455         host->mmc       = mmc;
1456         host->addr      = reg;
1457         host->timeout   = msecs_to_jiffies(10000);
1458         host->ccs_enable = true;
1459         host->clk_ctrl2_enable = false;
1460
1461         host->pd = pdev;
1462
1463         spin_lock_init(&host->lock);
1464
1465         mmc->ops = &sh_mmcif_ops;
1466         sh_mmcif_init_ocr(host);
1467
1468         mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1469         mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1470         mmc->max_busy_timeout = 10000;
1471
1472         if (pd && pd->caps)
1473                 mmc->caps |= pd->caps;
1474         mmc->max_segs = 32;
1475         mmc->max_blk_size = 512;
1476         mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1477         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1478         mmc->max_seg_size = mmc->max_req_size;
1479
1480         platform_set_drvdata(pdev, host);
1481
1482         host->clk = devm_clk_get(dev, NULL);
1483         if (IS_ERR(host->clk)) {
1484                 ret = PTR_ERR(host->clk);
1485                 dev_err(dev, "cannot get clock: %d\n", ret);
1486                 goto err_host;
1487         }
1488
1489         ret = clk_prepare_enable(host->clk);
1490         if (ret < 0)
1491                 goto err_host;
1492
1493         sh_mmcif_clk_setup(host);
1494
1495         pm_runtime_enable(dev);
1496         host->power = false;
1497
1498         ret = pm_runtime_get_sync(dev);
1499         if (ret < 0)
1500                 goto err_clk;
1501
1502         INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1503
1504         sh_mmcif_sync_reset(host);
1505         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1506
1507         name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1508         ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1509                                         sh_mmcif_irqt, 0, name, host);
1510         if (ret) {
1511                 dev_err(dev, "request_irq error (%s)\n", name);
1512                 goto err_clk;
1513         }
1514         if (irq[1] >= 0) {
1515                 ret = devm_request_threaded_irq(dev, irq[1],
1516                                                 sh_mmcif_intr, sh_mmcif_irqt,
1517                                                 0, "sh_mmc:int", host);
1518                 if (ret) {
1519                         dev_err(dev, "request_irq error (sh_mmc:int)\n");
1520                         goto err_clk;
1521                 }
1522         }
1523
1524         mutex_init(&host->thread_lock);
1525
1526         ret = mmc_add_host(mmc);
1527         if (ret < 0)
1528                 goto err_clk;
1529
1530         dev_pm_qos_expose_latency_limit(dev, 100);
1531
1532         dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1533                  sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1534                  clk_get_rate(host->clk) / 1000000UL);
1535
1536         pm_runtime_put(dev);
1537         clk_disable_unprepare(host->clk);
1538         return ret;
1539
1540 err_clk:
1541         clk_disable_unprepare(host->clk);
1542         pm_runtime_put_sync(dev);
1543         pm_runtime_disable(dev);
1544 err_host:
1545         mmc_free_host(mmc);
1546         return ret;
1547 }
1548
1549 static void sh_mmcif_remove(struct platform_device *pdev)
1550 {
1551         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1552
1553         host->dying = true;
1554         clk_prepare_enable(host->clk);
1555         pm_runtime_get_sync(&pdev->dev);
1556
1557         dev_pm_qos_hide_latency_limit(&pdev->dev);
1558
1559         mmc_remove_host(host->mmc);
1560         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1561
1562         /*
1563          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1564          * mmc_remove_host() call above. But swapping order doesn't help either
1565          * (a query on the linux-mmc mailing list didn't bring any replies).
1566          */
1567         cancel_delayed_work_sync(&host->timeout_work);
1568
1569         clk_disable_unprepare(host->clk);
1570         mmc_free_host(host->mmc);
1571         pm_runtime_put_sync(&pdev->dev);
1572         pm_runtime_disable(&pdev->dev);
1573 }
1574
1575 #ifdef CONFIG_PM_SLEEP
1576 static int sh_mmcif_suspend(struct device *dev)
1577 {
1578         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1579
1580         pm_runtime_get_sync(dev);
1581         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1582         pm_runtime_put(dev);
1583
1584         return 0;
1585 }
1586
1587 static int sh_mmcif_resume(struct device *dev)
1588 {
1589         return 0;
1590 }
1591 #endif
1592
1593 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1594         SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1595 };
1596
1597 static struct platform_driver sh_mmcif_driver = {
1598         .probe          = sh_mmcif_probe,
1599         .remove_new     = sh_mmcif_remove,
1600         .driver         = {
1601                 .name   = DRIVER_NAME,
1602                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1603                 .pm     = &sh_mmcif_dev_pm_ops,
1604                 .of_match_table = sh_mmcif_of_match,
1605         },
1606 };
1607
1608 module_platform_driver(sh_mmcif_driver);
1609
1610 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1611 MODULE_LICENSE("GPL v2");
1612 MODULE_ALIAS("platform:" DRIVER_NAME);
1613 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");