Merge tag 'pm-6.10-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-2.6-block.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22
23 #define RAID_1_10_NAME "raid10"
24 #include "raid10.h"
25 #include "raid0.h"
26 #include "md-bitmap.h"
27
28 /*
29  * RAID10 provides a combination of RAID0 and RAID1 functionality.
30  * The layout of data is defined by
31  *    chunk_size
32  *    raid_disks
33  *    near_copies (stored in low byte of layout)
34  *    far_copies (stored in second byte of layout)
35  *    far_offset (stored in bit 16 of layout )
36  *    use_far_sets (stored in bit 17 of layout )
37  *    use_far_sets_bugfixed (stored in bit 18 of layout )
38  *
39  * The data to be stored is divided into chunks using chunksize.  Each device
40  * is divided into far_copies sections.   In each section, chunks are laid out
41  * in a style similar to raid0, but near_copies copies of each chunk is stored
42  * (each on a different drive).  The starting device for each section is offset
43  * near_copies from the starting device of the previous section.  Thus there
44  * are (near_copies * far_copies) of each chunk, and each is on a different
45  * drive.  near_copies and far_copies must be at least one, and their product
46  * is at most raid_disks.
47  *
48  * If far_offset is true, then the far_copies are handled a bit differently.
49  * The copies are still in different stripes, but instead of being very far
50  * apart on disk, there are adjacent stripes.
51  *
52  * The far and offset algorithms are handled slightly differently if
53  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
54  * sets that are (near_copies * far_copies) in size.  The far copied stripes
55  * are still shifted by 'near_copies' devices, but this shifting stays confined
56  * to the set rather than the entire array.  This is done to improve the number
57  * of device combinations that can fail without causing the array to fail.
58  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
59  * on a device):
60  *    A B C D    A B C D E
61  *      ...         ...
62  *    D A B C    E A B C D
63  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
64  *    [A B] [C D]    [A B] [C D E]
65  *    |...| |...|    |...| | ... |
66  *    [B A] [D C]    [B A] [E C D]
67  */
68
69 static void allow_barrier(struct r10conf *conf);
70 static void lower_barrier(struct r10conf *conf);
71 static int _enough(struct r10conf *conf, int previous, int ignore);
72 static int enough(struct r10conf *conf, int ignore);
73 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
74                                 int *skipped);
75 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
76 static void end_reshape_write(struct bio *bio);
77 static void end_reshape(struct r10conf *conf);
78
79 #include "raid1-10.c"
80
81 #define NULL_CMD
82 #define cmd_before(conf, cmd) \
83         do { \
84                 write_sequnlock_irq(&(conf)->resync_lock); \
85                 cmd; \
86         } while (0)
87 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
88
89 #define wait_event_barrier_cmd(conf, cond, cmd) \
90         wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
91                        cmd_after(conf))
92
93 #define wait_event_barrier(conf, cond) \
94         wait_event_barrier_cmd(conf, cond, NULL_CMD)
95
96 /*
97  * for resync bio, r10bio pointer can be retrieved from the per-bio
98  * 'struct resync_pages'.
99  */
100 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
101 {
102         return get_resync_pages(bio)->raid_bio;
103 }
104
105 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
106 {
107         struct r10conf *conf = data;
108         int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
109
110         /* allocate a r10bio with room for raid_disks entries in the
111          * bios array */
112         return kzalloc(size, gfp_flags);
113 }
114
115 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
116 /* amount of memory to reserve for resync requests */
117 #define RESYNC_WINDOW (1024*1024)
118 /* maximum number of concurrent requests, memory permitting */
119 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
120 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123 /*
124  * When performing a resync, we need to read and compare, so
125  * we need as many pages are there are copies.
126  * When performing a recovery, we need 2 bios, one for read,
127  * one for write (we recover only one drive per r10buf)
128  *
129  */
130 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132         struct r10conf *conf = data;
133         struct r10bio *r10_bio;
134         struct bio *bio;
135         int j;
136         int nalloc, nalloc_rp;
137         struct resync_pages *rps;
138
139         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
140         if (!r10_bio)
141                 return NULL;
142
143         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
144             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
145                 nalloc = conf->copies; /* resync */
146         else
147                 nalloc = 2; /* recovery */
148
149         /* allocate once for all bios */
150         if (!conf->have_replacement)
151                 nalloc_rp = nalloc;
152         else
153                 nalloc_rp = nalloc * 2;
154         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
155         if (!rps)
156                 goto out_free_r10bio;
157
158         /*
159          * Allocate bios.
160          */
161         for (j = nalloc ; j-- ; ) {
162                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
163                 if (!bio)
164                         goto out_free_bio;
165                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
166                 r10_bio->devs[j].bio = bio;
167                 if (!conf->have_replacement)
168                         continue;
169                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
170                 if (!bio)
171                         goto out_free_bio;
172                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
173                 r10_bio->devs[j].repl_bio = bio;
174         }
175         /*
176          * Allocate RESYNC_PAGES data pages and attach them
177          * where needed.
178          */
179         for (j = 0; j < nalloc; j++) {
180                 struct bio *rbio = r10_bio->devs[j].repl_bio;
181                 struct resync_pages *rp, *rp_repl;
182
183                 rp = &rps[j];
184                 if (rbio)
185                         rp_repl = &rps[nalloc + j];
186
187                 bio = r10_bio->devs[j].bio;
188
189                 if (!j || test_bit(MD_RECOVERY_SYNC,
190                                    &conf->mddev->recovery)) {
191                         if (resync_alloc_pages(rp, gfp_flags))
192                                 goto out_free_pages;
193                 } else {
194                         memcpy(rp, &rps[0], sizeof(*rp));
195                         resync_get_all_pages(rp);
196                 }
197
198                 rp->raid_bio = r10_bio;
199                 bio->bi_private = rp;
200                 if (rbio) {
201                         memcpy(rp_repl, rp, sizeof(*rp));
202                         rbio->bi_private = rp_repl;
203                 }
204         }
205
206         return r10_bio;
207
208 out_free_pages:
209         while (--j >= 0)
210                 resync_free_pages(&rps[j]);
211
212         j = 0;
213 out_free_bio:
214         for ( ; j < nalloc; j++) {
215                 if (r10_bio->devs[j].bio)
216                         bio_uninit(r10_bio->devs[j].bio);
217                 kfree(r10_bio->devs[j].bio);
218                 if (r10_bio->devs[j].repl_bio)
219                         bio_uninit(r10_bio->devs[j].repl_bio);
220                 kfree(r10_bio->devs[j].repl_bio);
221         }
222         kfree(rps);
223 out_free_r10bio:
224         rbio_pool_free(r10_bio, conf);
225         return NULL;
226 }
227
228 static void r10buf_pool_free(void *__r10_bio, void *data)
229 {
230         struct r10conf *conf = data;
231         struct r10bio *r10bio = __r10_bio;
232         int j;
233         struct resync_pages *rp = NULL;
234
235         for (j = conf->copies; j--; ) {
236                 struct bio *bio = r10bio->devs[j].bio;
237
238                 if (bio) {
239                         rp = get_resync_pages(bio);
240                         resync_free_pages(rp);
241                         bio_uninit(bio);
242                         kfree(bio);
243                 }
244
245                 bio = r10bio->devs[j].repl_bio;
246                 if (bio) {
247                         bio_uninit(bio);
248                         kfree(bio);
249                 }
250         }
251
252         /* resync pages array stored in the 1st bio's .bi_private */
253         kfree(rp);
254
255         rbio_pool_free(r10bio, conf);
256 }
257
258 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
259 {
260         int i;
261
262         for (i = 0; i < conf->geo.raid_disks; i++) {
263                 struct bio **bio = & r10_bio->devs[i].bio;
264                 if (!BIO_SPECIAL(*bio))
265                         bio_put(*bio);
266                 *bio = NULL;
267                 bio = &r10_bio->devs[i].repl_bio;
268                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
269                         bio_put(*bio);
270                 *bio = NULL;
271         }
272 }
273
274 static void free_r10bio(struct r10bio *r10_bio)
275 {
276         struct r10conf *conf = r10_bio->mddev->private;
277
278         put_all_bios(conf, r10_bio);
279         mempool_free(r10_bio, &conf->r10bio_pool);
280 }
281
282 static void put_buf(struct r10bio *r10_bio)
283 {
284         struct r10conf *conf = r10_bio->mddev->private;
285
286         mempool_free(r10_bio, &conf->r10buf_pool);
287
288         lower_barrier(conf);
289 }
290
291 static void wake_up_barrier(struct r10conf *conf)
292 {
293         if (wq_has_sleeper(&conf->wait_barrier))
294                 wake_up(&conf->wait_barrier);
295 }
296
297 static void reschedule_retry(struct r10bio *r10_bio)
298 {
299         unsigned long flags;
300         struct mddev *mddev = r10_bio->mddev;
301         struct r10conf *conf = mddev->private;
302
303         spin_lock_irqsave(&conf->device_lock, flags);
304         list_add(&r10_bio->retry_list, &conf->retry_list);
305         conf->nr_queued ++;
306         spin_unlock_irqrestore(&conf->device_lock, flags);
307
308         /* wake up frozen array... */
309         wake_up(&conf->wait_barrier);
310
311         md_wakeup_thread(mddev->thread);
312 }
313
314 /*
315  * raid_end_bio_io() is called when we have finished servicing a mirrored
316  * operation and are ready to return a success/failure code to the buffer
317  * cache layer.
318  */
319 static void raid_end_bio_io(struct r10bio *r10_bio)
320 {
321         struct bio *bio = r10_bio->master_bio;
322         struct r10conf *conf = r10_bio->mddev->private;
323
324         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
325                 bio->bi_status = BLK_STS_IOERR;
326
327         bio_endio(bio);
328         /*
329          * Wake up any possible resync thread that waits for the device
330          * to go idle.
331          */
332         allow_barrier(conf);
333
334         free_r10bio(r10_bio);
335 }
336
337 /*
338  * Update disk head position estimator based on IRQ completion info.
339  */
340 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
341 {
342         struct r10conf *conf = r10_bio->mddev->private;
343
344         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
345                 r10_bio->devs[slot].addr + (r10_bio->sectors);
346 }
347
348 /*
349  * Find the disk number which triggered given bio
350  */
351 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
352                          struct bio *bio, int *slotp, int *replp)
353 {
354         int slot;
355         int repl = 0;
356
357         for (slot = 0; slot < conf->geo.raid_disks; slot++) {
358                 if (r10_bio->devs[slot].bio == bio)
359                         break;
360                 if (r10_bio->devs[slot].repl_bio == bio) {
361                         repl = 1;
362                         break;
363                 }
364         }
365
366         update_head_pos(slot, r10_bio);
367
368         if (slotp)
369                 *slotp = slot;
370         if (replp)
371                 *replp = repl;
372         return r10_bio->devs[slot].devnum;
373 }
374
375 static void raid10_end_read_request(struct bio *bio)
376 {
377         int uptodate = !bio->bi_status;
378         struct r10bio *r10_bio = bio->bi_private;
379         int slot;
380         struct md_rdev *rdev;
381         struct r10conf *conf = r10_bio->mddev->private;
382
383         slot = r10_bio->read_slot;
384         rdev = r10_bio->devs[slot].rdev;
385         /*
386          * this branch is our 'one mirror IO has finished' event handler:
387          */
388         update_head_pos(slot, r10_bio);
389
390         if (uptodate) {
391                 /*
392                  * Set R10BIO_Uptodate in our master bio, so that
393                  * we will return a good error code to the higher
394                  * levels even if IO on some other mirrored buffer fails.
395                  *
396                  * The 'master' represents the composite IO operation to
397                  * user-side. So if something waits for IO, then it will
398                  * wait for the 'master' bio.
399                  */
400                 set_bit(R10BIO_Uptodate, &r10_bio->state);
401         } else {
402                 /* If all other devices that store this block have
403                  * failed, we want to return the error upwards rather
404                  * than fail the last device.  Here we redefine
405                  * "uptodate" to mean "Don't want to retry"
406                  */
407                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
408                              rdev->raid_disk))
409                         uptodate = 1;
410         }
411         if (uptodate) {
412                 raid_end_bio_io(r10_bio);
413                 rdev_dec_pending(rdev, conf->mddev);
414         } else {
415                 /*
416                  * oops, read error - keep the refcount on the rdev
417                  */
418                 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
419                                    mdname(conf->mddev),
420                                    rdev->bdev,
421                                    (unsigned long long)r10_bio->sector);
422                 set_bit(R10BIO_ReadError, &r10_bio->state);
423                 reschedule_retry(r10_bio);
424         }
425 }
426
427 static void close_write(struct r10bio *r10_bio)
428 {
429         /* clear the bitmap if all writes complete successfully */
430         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
431                            r10_bio->sectors,
432                            !test_bit(R10BIO_Degraded, &r10_bio->state),
433                            0);
434         md_write_end(r10_bio->mddev);
435 }
436
437 static void one_write_done(struct r10bio *r10_bio)
438 {
439         if (atomic_dec_and_test(&r10_bio->remaining)) {
440                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
441                         reschedule_retry(r10_bio);
442                 else {
443                         close_write(r10_bio);
444                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
445                                 reschedule_retry(r10_bio);
446                         else
447                                 raid_end_bio_io(r10_bio);
448                 }
449         }
450 }
451
452 static void raid10_end_write_request(struct bio *bio)
453 {
454         struct r10bio *r10_bio = bio->bi_private;
455         int dev;
456         int dec_rdev = 1;
457         struct r10conf *conf = r10_bio->mddev->private;
458         int slot, repl;
459         struct md_rdev *rdev = NULL;
460         struct bio *to_put = NULL;
461         bool discard_error;
462
463         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
464
465         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
466
467         if (repl)
468                 rdev = conf->mirrors[dev].replacement;
469         if (!rdev) {
470                 smp_rmb();
471                 repl = 0;
472                 rdev = conf->mirrors[dev].rdev;
473         }
474         /*
475          * this branch is our 'one mirror IO has finished' event handler:
476          */
477         if (bio->bi_status && !discard_error) {
478                 if (repl)
479                         /* Never record new bad blocks to replacement,
480                          * just fail it.
481                          */
482                         md_error(rdev->mddev, rdev);
483                 else {
484                         set_bit(WriteErrorSeen, &rdev->flags);
485                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
486                                 set_bit(MD_RECOVERY_NEEDED,
487                                         &rdev->mddev->recovery);
488
489                         dec_rdev = 0;
490                         if (test_bit(FailFast, &rdev->flags) &&
491                             (bio->bi_opf & MD_FAILFAST)) {
492                                 md_error(rdev->mddev, rdev);
493                         }
494
495                         /*
496                          * When the device is faulty, it is not necessary to
497                          * handle write error.
498                          */
499                         if (!test_bit(Faulty, &rdev->flags))
500                                 set_bit(R10BIO_WriteError, &r10_bio->state);
501                         else {
502                                 /* Fail the request */
503                                 set_bit(R10BIO_Degraded, &r10_bio->state);
504                                 r10_bio->devs[slot].bio = NULL;
505                                 to_put = bio;
506                                 dec_rdev = 1;
507                         }
508                 }
509         } else {
510                 /*
511                  * Set R10BIO_Uptodate in our master bio, so that
512                  * we will return a good error code for to the higher
513                  * levels even if IO on some other mirrored buffer fails.
514                  *
515                  * The 'master' represents the composite IO operation to
516                  * user-side. So if something waits for IO, then it will
517                  * wait for the 'master' bio.
518                  *
519                  * Do not set R10BIO_Uptodate if the current device is
520                  * rebuilding or Faulty. This is because we cannot use
521                  * such device for properly reading the data back (we could
522                  * potentially use it, if the current write would have felt
523                  * before rdev->recovery_offset, but for simplicity we don't
524                  * check this here.
525                  */
526                 if (test_bit(In_sync, &rdev->flags) &&
527                     !test_bit(Faulty, &rdev->flags))
528                         set_bit(R10BIO_Uptodate, &r10_bio->state);
529
530                 /* Maybe we can clear some bad blocks. */
531                 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
532                                       r10_bio->sectors) &&
533                     !discard_error) {
534                         bio_put(bio);
535                         if (repl)
536                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
537                         else
538                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
539                         dec_rdev = 0;
540                         set_bit(R10BIO_MadeGood, &r10_bio->state);
541                 }
542         }
543
544         /*
545          *
546          * Let's see if all mirrored write operations have finished
547          * already.
548          */
549         one_write_done(r10_bio);
550         if (dec_rdev)
551                 rdev_dec_pending(rdev, conf->mddev);
552         if (to_put)
553                 bio_put(to_put);
554 }
555
556 /*
557  * RAID10 layout manager
558  * As well as the chunksize and raid_disks count, there are two
559  * parameters: near_copies and far_copies.
560  * near_copies * far_copies must be <= raid_disks.
561  * Normally one of these will be 1.
562  * If both are 1, we get raid0.
563  * If near_copies == raid_disks, we get raid1.
564  *
565  * Chunks are laid out in raid0 style with near_copies copies of the
566  * first chunk, followed by near_copies copies of the next chunk and
567  * so on.
568  * If far_copies > 1, then after 1/far_copies of the array has been assigned
569  * as described above, we start again with a device offset of near_copies.
570  * So we effectively have another copy of the whole array further down all
571  * the drives, but with blocks on different drives.
572  * With this layout, and block is never stored twice on the one device.
573  *
574  * raid10_find_phys finds the sector offset of a given virtual sector
575  * on each device that it is on.
576  *
577  * raid10_find_virt does the reverse mapping, from a device and a
578  * sector offset to a virtual address
579  */
580
581 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
582 {
583         int n,f;
584         sector_t sector;
585         sector_t chunk;
586         sector_t stripe;
587         int dev;
588         int slot = 0;
589         int last_far_set_start, last_far_set_size;
590
591         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
592         last_far_set_start *= geo->far_set_size;
593
594         last_far_set_size = geo->far_set_size;
595         last_far_set_size += (geo->raid_disks % geo->far_set_size);
596
597         /* now calculate first sector/dev */
598         chunk = r10bio->sector >> geo->chunk_shift;
599         sector = r10bio->sector & geo->chunk_mask;
600
601         chunk *= geo->near_copies;
602         stripe = chunk;
603         dev = sector_div(stripe, geo->raid_disks);
604         if (geo->far_offset)
605                 stripe *= geo->far_copies;
606
607         sector += stripe << geo->chunk_shift;
608
609         /* and calculate all the others */
610         for (n = 0; n < geo->near_copies; n++) {
611                 int d = dev;
612                 int set;
613                 sector_t s = sector;
614                 r10bio->devs[slot].devnum = d;
615                 r10bio->devs[slot].addr = s;
616                 slot++;
617
618                 for (f = 1; f < geo->far_copies; f++) {
619                         set = d / geo->far_set_size;
620                         d += geo->near_copies;
621
622                         if ((geo->raid_disks % geo->far_set_size) &&
623                             (d > last_far_set_start)) {
624                                 d -= last_far_set_start;
625                                 d %= last_far_set_size;
626                                 d += last_far_set_start;
627                         } else {
628                                 d %= geo->far_set_size;
629                                 d += geo->far_set_size * set;
630                         }
631                         s += geo->stride;
632                         r10bio->devs[slot].devnum = d;
633                         r10bio->devs[slot].addr = s;
634                         slot++;
635                 }
636                 dev++;
637                 if (dev >= geo->raid_disks) {
638                         dev = 0;
639                         sector += (geo->chunk_mask + 1);
640                 }
641         }
642 }
643
644 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
645 {
646         struct geom *geo = &conf->geo;
647
648         if (conf->reshape_progress != MaxSector &&
649             ((r10bio->sector >= conf->reshape_progress) !=
650              conf->mddev->reshape_backwards)) {
651                 set_bit(R10BIO_Previous, &r10bio->state);
652                 geo = &conf->prev;
653         } else
654                 clear_bit(R10BIO_Previous, &r10bio->state);
655
656         __raid10_find_phys(geo, r10bio);
657 }
658
659 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
660 {
661         sector_t offset, chunk, vchunk;
662         /* Never use conf->prev as this is only called during resync
663          * or recovery, so reshape isn't happening
664          */
665         struct geom *geo = &conf->geo;
666         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
667         int far_set_size = geo->far_set_size;
668         int last_far_set_start;
669
670         if (geo->raid_disks % geo->far_set_size) {
671                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
672                 last_far_set_start *= geo->far_set_size;
673
674                 if (dev >= last_far_set_start) {
675                         far_set_size = geo->far_set_size;
676                         far_set_size += (geo->raid_disks % geo->far_set_size);
677                         far_set_start = last_far_set_start;
678                 }
679         }
680
681         offset = sector & geo->chunk_mask;
682         if (geo->far_offset) {
683                 int fc;
684                 chunk = sector >> geo->chunk_shift;
685                 fc = sector_div(chunk, geo->far_copies);
686                 dev -= fc * geo->near_copies;
687                 if (dev < far_set_start)
688                         dev += far_set_size;
689         } else {
690                 while (sector >= geo->stride) {
691                         sector -= geo->stride;
692                         if (dev < (geo->near_copies + far_set_start))
693                                 dev += far_set_size - geo->near_copies;
694                         else
695                                 dev -= geo->near_copies;
696                 }
697                 chunk = sector >> geo->chunk_shift;
698         }
699         vchunk = chunk * geo->raid_disks + dev;
700         sector_div(vchunk, geo->near_copies);
701         return (vchunk << geo->chunk_shift) + offset;
702 }
703
704 /*
705  * This routine returns the disk from which the requested read should
706  * be done. There is a per-array 'next expected sequential IO' sector
707  * number - if this matches on the next IO then we use the last disk.
708  * There is also a per-disk 'last know head position' sector that is
709  * maintained from IRQ contexts, both the normal and the resync IO
710  * completion handlers update this position correctly. If there is no
711  * perfect sequential match then we pick the disk whose head is closest.
712  *
713  * If there are 2 mirrors in the same 2 devices, performance degrades
714  * because position is mirror, not device based.
715  *
716  * The rdev for the device selected will have nr_pending incremented.
717  */
718
719 /*
720  * FIXME: possibly should rethink readbalancing and do it differently
721  * depending on near_copies / far_copies geometry.
722  */
723 static struct md_rdev *read_balance(struct r10conf *conf,
724                                     struct r10bio *r10_bio,
725                                     int *max_sectors)
726 {
727         const sector_t this_sector = r10_bio->sector;
728         int disk, slot;
729         int sectors = r10_bio->sectors;
730         int best_good_sectors;
731         sector_t new_distance, best_dist;
732         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
733         int do_balance;
734         int best_dist_slot, best_pending_slot;
735         bool has_nonrot_disk = false;
736         unsigned int min_pending;
737         struct geom *geo = &conf->geo;
738
739         raid10_find_phys(conf, r10_bio);
740         best_dist_slot = -1;
741         min_pending = UINT_MAX;
742         best_dist_rdev = NULL;
743         best_pending_rdev = NULL;
744         best_dist = MaxSector;
745         best_good_sectors = 0;
746         do_balance = 1;
747         clear_bit(R10BIO_FailFast, &r10_bio->state);
748
749         if (raid1_should_read_first(conf->mddev, this_sector, sectors))
750                 do_balance = 0;
751
752         for (slot = 0; slot < conf->copies ; slot++) {
753                 sector_t first_bad;
754                 int bad_sectors;
755                 sector_t dev_sector;
756                 unsigned int pending;
757                 bool nonrot;
758
759                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
760                         continue;
761                 disk = r10_bio->devs[slot].devnum;
762                 rdev = conf->mirrors[disk].replacement;
763                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
764                     r10_bio->devs[slot].addr + sectors >
765                     rdev->recovery_offset)
766                         rdev = conf->mirrors[disk].rdev;
767                 if (rdev == NULL ||
768                     test_bit(Faulty, &rdev->flags))
769                         continue;
770                 if (!test_bit(In_sync, &rdev->flags) &&
771                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
772                         continue;
773
774                 dev_sector = r10_bio->devs[slot].addr;
775                 if (is_badblock(rdev, dev_sector, sectors,
776                                 &first_bad, &bad_sectors)) {
777                         if (best_dist < MaxSector)
778                                 /* Already have a better slot */
779                                 continue;
780                         if (first_bad <= dev_sector) {
781                                 /* Cannot read here.  If this is the
782                                  * 'primary' device, then we must not read
783                                  * beyond 'bad_sectors' from another device.
784                                  */
785                                 bad_sectors -= (dev_sector - first_bad);
786                                 if (!do_balance && sectors > bad_sectors)
787                                         sectors = bad_sectors;
788                                 if (best_good_sectors > sectors)
789                                         best_good_sectors = sectors;
790                         } else {
791                                 sector_t good_sectors =
792                                         first_bad - dev_sector;
793                                 if (good_sectors > best_good_sectors) {
794                                         best_good_sectors = good_sectors;
795                                         best_dist_slot = slot;
796                                         best_dist_rdev = rdev;
797                                 }
798                                 if (!do_balance)
799                                         /* Must read from here */
800                                         break;
801                         }
802                         continue;
803                 } else
804                         best_good_sectors = sectors;
805
806                 if (!do_balance)
807                         break;
808
809                 nonrot = bdev_nonrot(rdev->bdev);
810                 has_nonrot_disk |= nonrot;
811                 pending = atomic_read(&rdev->nr_pending);
812                 if (min_pending > pending && nonrot) {
813                         min_pending = pending;
814                         best_pending_slot = slot;
815                         best_pending_rdev = rdev;
816                 }
817
818                 if (best_dist_slot >= 0)
819                         /* At least 2 disks to choose from so failfast is OK */
820                         set_bit(R10BIO_FailFast, &r10_bio->state);
821                 /* This optimisation is debatable, and completely destroys
822                  * sequential read speed for 'far copies' arrays.  So only
823                  * keep it for 'near' arrays, and review those later.
824                  */
825                 if (geo->near_copies > 1 && !pending)
826                         new_distance = 0;
827
828                 /* for far > 1 always use the lowest address */
829                 else if (geo->far_copies > 1)
830                         new_distance = r10_bio->devs[slot].addr;
831                 else
832                         new_distance = abs(r10_bio->devs[slot].addr -
833                                            conf->mirrors[disk].head_position);
834
835                 if (new_distance < best_dist) {
836                         best_dist = new_distance;
837                         best_dist_slot = slot;
838                         best_dist_rdev = rdev;
839                 }
840         }
841         if (slot >= conf->copies) {
842                 if (has_nonrot_disk) {
843                         slot = best_pending_slot;
844                         rdev = best_pending_rdev;
845                 } else {
846                         slot = best_dist_slot;
847                         rdev = best_dist_rdev;
848                 }
849         }
850
851         if (slot >= 0) {
852                 atomic_inc(&rdev->nr_pending);
853                 r10_bio->read_slot = slot;
854         } else
855                 rdev = NULL;
856         *max_sectors = best_good_sectors;
857
858         return rdev;
859 }
860
861 static void flush_pending_writes(struct r10conf *conf)
862 {
863         /* Any writes that have been queued but are awaiting
864          * bitmap updates get flushed here.
865          */
866         spin_lock_irq(&conf->device_lock);
867
868         if (conf->pending_bio_list.head) {
869                 struct blk_plug plug;
870                 struct bio *bio;
871
872                 bio = bio_list_get(&conf->pending_bio_list);
873                 spin_unlock_irq(&conf->device_lock);
874
875                 /*
876                  * As this is called in a wait_event() loop (see freeze_array),
877                  * current->state might be TASK_UNINTERRUPTIBLE which will
878                  * cause a warning when we prepare to wait again.  As it is
879                  * rare that this path is taken, it is perfectly safe to force
880                  * us to go around the wait_event() loop again, so the warning
881                  * is a false-positive. Silence the warning by resetting
882                  * thread state
883                  */
884                 __set_current_state(TASK_RUNNING);
885
886                 blk_start_plug(&plug);
887                 raid1_prepare_flush_writes(conf->mddev->bitmap);
888                 wake_up(&conf->wait_barrier);
889
890                 while (bio) { /* submit pending writes */
891                         struct bio *next = bio->bi_next;
892
893                         raid1_submit_write(bio);
894                         bio = next;
895                         cond_resched();
896                 }
897                 blk_finish_plug(&plug);
898         } else
899                 spin_unlock_irq(&conf->device_lock);
900 }
901
902 /* Barriers....
903  * Sometimes we need to suspend IO while we do something else,
904  * either some resync/recovery, or reconfigure the array.
905  * To do this we raise a 'barrier'.
906  * The 'barrier' is a counter that can be raised multiple times
907  * to count how many activities are happening which preclude
908  * normal IO.
909  * We can only raise the barrier if there is no pending IO.
910  * i.e. if nr_pending == 0.
911  * We choose only to raise the barrier if no-one is waiting for the
912  * barrier to go down.  This means that as soon as an IO request
913  * is ready, no other operations which require a barrier will start
914  * until the IO request has had a chance.
915  *
916  * So: regular IO calls 'wait_barrier'.  When that returns there
917  *    is no backgroup IO happening,  It must arrange to call
918  *    allow_barrier when it has finished its IO.
919  * backgroup IO calls must call raise_barrier.  Once that returns
920  *    there is no normal IO happeing.  It must arrange to call
921  *    lower_barrier when the particular background IO completes.
922  */
923
924 static void raise_barrier(struct r10conf *conf, int force)
925 {
926         write_seqlock_irq(&conf->resync_lock);
927
928         if (WARN_ON_ONCE(force && !conf->barrier))
929                 force = false;
930
931         /* Wait until no block IO is waiting (unless 'force') */
932         wait_event_barrier(conf, force || !conf->nr_waiting);
933
934         /* block any new IO from starting */
935         WRITE_ONCE(conf->barrier, conf->barrier + 1);
936
937         /* Now wait for all pending IO to complete */
938         wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
939                                  conf->barrier < RESYNC_DEPTH);
940
941         write_sequnlock_irq(&conf->resync_lock);
942 }
943
944 static void lower_barrier(struct r10conf *conf)
945 {
946         unsigned long flags;
947
948         write_seqlock_irqsave(&conf->resync_lock, flags);
949         WRITE_ONCE(conf->barrier, conf->barrier - 1);
950         write_sequnlock_irqrestore(&conf->resync_lock, flags);
951         wake_up(&conf->wait_barrier);
952 }
953
954 static bool stop_waiting_barrier(struct r10conf *conf)
955 {
956         struct bio_list *bio_list = current->bio_list;
957         struct md_thread *thread;
958
959         /* barrier is dropped */
960         if (!conf->barrier)
961                 return true;
962
963         /*
964          * If there are already pending requests (preventing the barrier from
965          * rising completely), and the pre-process bio queue isn't empty, then
966          * don't wait, as we need to empty that queue to get the nr_pending
967          * count down.
968          */
969         if (atomic_read(&conf->nr_pending) && bio_list &&
970             (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
971                 return true;
972
973         /* daemon thread must exist while handling io */
974         thread = rcu_dereference_protected(conf->mddev->thread, true);
975         /*
976          * move on if io is issued from raid10d(), nr_pending is not released
977          * from original io(see handle_read_error()). All raise barrier is
978          * blocked until this io is done.
979          */
980         if (thread->tsk == current) {
981                 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
982                 return true;
983         }
984
985         return false;
986 }
987
988 static bool wait_barrier_nolock(struct r10conf *conf)
989 {
990         unsigned int seq = read_seqbegin(&conf->resync_lock);
991
992         if (READ_ONCE(conf->barrier))
993                 return false;
994
995         atomic_inc(&conf->nr_pending);
996         if (!read_seqretry(&conf->resync_lock, seq))
997                 return true;
998
999         if (atomic_dec_and_test(&conf->nr_pending))
1000                 wake_up_barrier(conf);
1001
1002         return false;
1003 }
1004
1005 static bool wait_barrier(struct r10conf *conf, bool nowait)
1006 {
1007         bool ret = true;
1008
1009         if (wait_barrier_nolock(conf))
1010                 return true;
1011
1012         write_seqlock_irq(&conf->resync_lock);
1013         if (conf->barrier) {
1014                 /* Return false when nowait flag is set */
1015                 if (nowait) {
1016                         ret = false;
1017                 } else {
1018                         conf->nr_waiting++;
1019                         mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
1020                         wait_event_barrier(conf, stop_waiting_barrier(conf));
1021                         conf->nr_waiting--;
1022                 }
1023                 if (!conf->nr_waiting)
1024                         wake_up(&conf->wait_barrier);
1025         }
1026         /* Only increment nr_pending when we wait */
1027         if (ret)
1028                 atomic_inc(&conf->nr_pending);
1029         write_sequnlock_irq(&conf->resync_lock);
1030         return ret;
1031 }
1032
1033 static void allow_barrier(struct r10conf *conf)
1034 {
1035         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1036                         (conf->array_freeze_pending))
1037                 wake_up_barrier(conf);
1038 }
1039
1040 static void freeze_array(struct r10conf *conf, int extra)
1041 {
1042         /* stop syncio and normal IO and wait for everything to
1043          * go quiet.
1044          * We increment barrier and nr_waiting, and then
1045          * wait until nr_pending match nr_queued+extra
1046          * This is called in the context of one normal IO request
1047          * that has failed. Thus any sync request that might be pending
1048          * will be blocked by nr_pending, and we need to wait for
1049          * pending IO requests to complete or be queued for re-try.
1050          * Thus the number queued (nr_queued) plus this request (extra)
1051          * must match the number of pending IOs (nr_pending) before
1052          * we continue.
1053          */
1054         write_seqlock_irq(&conf->resync_lock);
1055         conf->array_freeze_pending++;
1056         WRITE_ONCE(conf->barrier, conf->barrier + 1);
1057         conf->nr_waiting++;
1058         wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1059                         conf->nr_queued + extra, flush_pending_writes(conf));
1060         conf->array_freeze_pending--;
1061         write_sequnlock_irq(&conf->resync_lock);
1062 }
1063
1064 static void unfreeze_array(struct r10conf *conf)
1065 {
1066         /* reverse the effect of the freeze */
1067         write_seqlock_irq(&conf->resync_lock);
1068         WRITE_ONCE(conf->barrier, conf->barrier - 1);
1069         conf->nr_waiting--;
1070         wake_up(&conf->wait_barrier);
1071         write_sequnlock_irq(&conf->resync_lock);
1072 }
1073
1074 static sector_t choose_data_offset(struct r10bio *r10_bio,
1075                                    struct md_rdev *rdev)
1076 {
1077         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1078             test_bit(R10BIO_Previous, &r10_bio->state))
1079                 return rdev->data_offset;
1080         else
1081                 return rdev->new_data_offset;
1082 }
1083
1084 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1085 {
1086         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1087         struct mddev *mddev = plug->cb.data;
1088         struct r10conf *conf = mddev->private;
1089         struct bio *bio;
1090
1091         if (from_schedule) {
1092                 spin_lock_irq(&conf->device_lock);
1093                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1094                 spin_unlock_irq(&conf->device_lock);
1095                 wake_up_barrier(conf);
1096                 md_wakeup_thread(mddev->thread);
1097                 kfree(plug);
1098                 return;
1099         }
1100
1101         /* we aren't scheduling, so we can do the write-out directly. */
1102         bio = bio_list_get(&plug->pending);
1103         raid1_prepare_flush_writes(mddev->bitmap);
1104         wake_up_barrier(conf);
1105
1106         while (bio) { /* submit pending writes */
1107                 struct bio *next = bio->bi_next;
1108
1109                 raid1_submit_write(bio);
1110                 bio = next;
1111                 cond_resched();
1112         }
1113         kfree(plug);
1114 }
1115
1116 /*
1117  * 1. Register the new request and wait if the reconstruction thread has put
1118  * up a bar for new requests. Continue immediately if no resync is active
1119  * currently.
1120  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1121  */
1122 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1123                                  struct bio *bio, sector_t sectors)
1124 {
1125         /* Bail out if REQ_NOWAIT is set for the bio */
1126         if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1127                 bio_wouldblock_error(bio);
1128                 return false;
1129         }
1130         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1131             bio->bi_iter.bi_sector < conf->reshape_progress &&
1132             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1133                 allow_barrier(conf);
1134                 if (bio->bi_opf & REQ_NOWAIT) {
1135                         bio_wouldblock_error(bio);
1136                         return false;
1137                 }
1138                 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
1139                 wait_event(conf->wait_barrier,
1140                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1141                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1142                            sectors);
1143                 wait_barrier(conf, false);
1144         }
1145         return true;
1146 }
1147
1148 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1149                                 struct r10bio *r10_bio, bool io_accounting)
1150 {
1151         struct r10conf *conf = mddev->private;
1152         struct bio *read_bio;
1153         const enum req_op op = bio_op(bio);
1154         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1155         int max_sectors;
1156         struct md_rdev *rdev;
1157         char b[BDEVNAME_SIZE];
1158         int slot = r10_bio->read_slot;
1159         struct md_rdev *err_rdev = NULL;
1160         gfp_t gfp = GFP_NOIO;
1161
1162         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1163                 /*
1164                  * This is an error retry, but we cannot
1165                  * safely dereference the rdev in the r10_bio,
1166                  * we must use the one in conf.
1167                  * If it has already been disconnected (unlikely)
1168                  * we lose the device name in error messages.
1169                  */
1170                 int disk;
1171                 /*
1172                  * As we are blocking raid10, it is a little safer to
1173                  * use __GFP_HIGH.
1174                  */
1175                 gfp = GFP_NOIO | __GFP_HIGH;
1176
1177                 disk = r10_bio->devs[slot].devnum;
1178                 err_rdev = conf->mirrors[disk].rdev;
1179                 if (err_rdev)
1180                         snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1181                 else {
1182                         strcpy(b, "???");
1183                         /* This never gets dereferenced */
1184                         err_rdev = r10_bio->devs[slot].rdev;
1185                 }
1186         }
1187
1188         if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1189                 return;
1190         rdev = read_balance(conf, r10_bio, &max_sectors);
1191         if (!rdev) {
1192                 if (err_rdev) {
1193                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1194                                             mdname(mddev), b,
1195                                             (unsigned long long)r10_bio->sector);
1196                 }
1197                 raid_end_bio_io(r10_bio);
1198                 return;
1199         }
1200         if (err_rdev)
1201                 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1202                                    mdname(mddev),
1203                                    rdev->bdev,
1204                                    (unsigned long long)r10_bio->sector);
1205         if (max_sectors < bio_sectors(bio)) {
1206                 struct bio *split = bio_split(bio, max_sectors,
1207                                               gfp, &conf->bio_split);
1208                 bio_chain(split, bio);
1209                 allow_barrier(conf);
1210                 submit_bio_noacct(bio);
1211                 wait_barrier(conf, false);
1212                 bio = split;
1213                 r10_bio->master_bio = bio;
1214                 r10_bio->sectors = max_sectors;
1215         }
1216         slot = r10_bio->read_slot;
1217
1218         if (io_accounting) {
1219                 md_account_bio(mddev, &bio);
1220                 r10_bio->master_bio = bio;
1221         }
1222         read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1223
1224         r10_bio->devs[slot].bio = read_bio;
1225         r10_bio->devs[slot].rdev = rdev;
1226
1227         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1228                 choose_data_offset(r10_bio, rdev);
1229         read_bio->bi_end_io = raid10_end_read_request;
1230         read_bio->bi_opf = op | do_sync;
1231         if (test_bit(FailFast, &rdev->flags) &&
1232             test_bit(R10BIO_FailFast, &r10_bio->state))
1233                 read_bio->bi_opf |= MD_FAILFAST;
1234         read_bio->bi_private = r10_bio;
1235         mddev_trace_remap(mddev, read_bio, r10_bio->sector);
1236         submit_bio_noacct(read_bio);
1237         return;
1238 }
1239
1240 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1241                                   struct bio *bio, bool replacement,
1242                                   int n_copy)
1243 {
1244         const enum req_op op = bio_op(bio);
1245         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1246         const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1247         unsigned long flags;
1248         struct r10conf *conf = mddev->private;
1249         struct md_rdev *rdev;
1250         int devnum = r10_bio->devs[n_copy].devnum;
1251         struct bio *mbio;
1252
1253         rdev = replacement ? conf->mirrors[devnum].replacement :
1254                              conf->mirrors[devnum].rdev;
1255
1256         mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1257         if (replacement)
1258                 r10_bio->devs[n_copy].repl_bio = mbio;
1259         else
1260                 r10_bio->devs[n_copy].bio = mbio;
1261
1262         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1263                                    choose_data_offset(r10_bio, rdev));
1264         mbio->bi_end_io = raid10_end_write_request;
1265         mbio->bi_opf = op | do_sync | do_fua;
1266         if (!replacement && test_bit(FailFast,
1267                                      &conf->mirrors[devnum].rdev->flags)
1268                          && enough(conf, devnum))
1269                 mbio->bi_opf |= MD_FAILFAST;
1270         mbio->bi_private = r10_bio;
1271         mddev_trace_remap(mddev, mbio, r10_bio->sector);
1272         /* flush_pending_writes() needs access to the rdev so...*/
1273         mbio->bi_bdev = (void *)rdev;
1274
1275         atomic_inc(&r10_bio->remaining);
1276
1277         if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1278                 spin_lock_irqsave(&conf->device_lock, flags);
1279                 bio_list_add(&conf->pending_bio_list, mbio);
1280                 spin_unlock_irqrestore(&conf->device_lock, flags);
1281                 md_wakeup_thread(mddev->thread);
1282         }
1283 }
1284
1285 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1286 {
1287         int i;
1288         struct r10conf *conf = mddev->private;
1289         struct md_rdev *blocked_rdev;
1290
1291 retry_wait:
1292         blocked_rdev = NULL;
1293         for (i = 0; i < conf->copies; i++) {
1294                 struct md_rdev *rdev, *rrdev;
1295
1296                 rdev = conf->mirrors[i].rdev;
1297                 rrdev = conf->mirrors[i].replacement;
1298                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1299                         atomic_inc(&rdev->nr_pending);
1300                         blocked_rdev = rdev;
1301                         break;
1302                 }
1303                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1304                         atomic_inc(&rrdev->nr_pending);
1305                         blocked_rdev = rrdev;
1306                         break;
1307                 }
1308
1309                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1310                         sector_t dev_sector = r10_bio->devs[i].addr;
1311
1312                         /*
1313                          * Discard request doesn't care the write result
1314                          * so it doesn't need to wait blocked disk here.
1315                          */
1316                         if (!r10_bio->sectors)
1317                                 continue;
1318
1319                         if (rdev_has_badblock(rdev, dev_sector,
1320                                               r10_bio->sectors) < 0) {
1321                                 /*
1322                                  * Mustn't write here until the bad block
1323                                  * is acknowledged
1324                                  */
1325                                 atomic_inc(&rdev->nr_pending);
1326                                 set_bit(BlockedBadBlocks, &rdev->flags);
1327                                 blocked_rdev = rdev;
1328                                 break;
1329                         }
1330                 }
1331         }
1332
1333         if (unlikely(blocked_rdev)) {
1334                 /* Have to wait for this device to get unblocked, then retry */
1335                 allow_barrier(conf);
1336                 mddev_add_trace_msg(conf->mddev,
1337                         "raid10 %s wait rdev %d blocked",
1338                         __func__, blocked_rdev->raid_disk);
1339                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1340                 wait_barrier(conf, false);
1341                 goto retry_wait;
1342         }
1343 }
1344
1345 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1346                                  struct r10bio *r10_bio)
1347 {
1348         struct r10conf *conf = mddev->private;
1349         int i;
1350         sector_t sectors;
1351         int max_sectors;
1352
1353         if ((mddev_is_clustered(mddev) &&
1354              md_cluster_ops->area_resyncing(mddev, WRITE,
1355                                             bio->bi_iter.bi_sector,
1356                                             bio_end_sector(bio)))) {
1357                 DEFINE_WAIT(w);
1358                 /* Bail out if REQ_NOWAIT is set for the bio */
1359                 if (bio->bi_opf & REQ_NOWAIT) {
1360                         bio_wouldblock_error(bio);
1361                         return;
1362                 }
1363                 for (;;) {
1364                         prepare_to_wait(&conf->wait_barrier,
1365                                         &w, TASK_IDLE);
1366                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1367                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1368                                 break;
1369                         schedule();
1370                 }
1371                 finish_wait(&conf->wait_barrier, &w);
1372         }
1373
1374         sectors = r10_bio->sectors;
1375         if (!regular_request_wait(mddev, conf, bio, sectors))
1376                 return;
1377         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1378             (mddev->reshape_backwards
1379              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1380                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1381              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1382                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1383                 /* Need to update reshape_position in metadata */
1384                 mddev->reshape_position = conf->reshape_progress;
1385                 set_mask_bits(&mddev->sb_flags, 0,
1386                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1387                 md_wakeup_thread(mddev->thread);
1388                 if (bio->bi_opf & REQ_NOWAIT) {
1389                         allow_barrier(conf);
1390                         bio_wouldblock_error(bio);
1391                         return;
1392                 }
1393                 mddev_add_trace_msg(conf->mddev,
1394                         "raid10 wait reshape metadata");
1395                 wait_event(mddev->sb_wait,
1396                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1397
1398                 conf->reshape_safe = mddev->reshape_position;
1399         }
1400
1401         /* first select target devices under rcu_lock and
1402          * inc refcount on their rdev.  Record them by setting
1403          * bios[x] to bio
1404          * If there are known/acknowledged bad blocks on any device
1405          * on which we have seen a write error, we want to avoid
1406          * writing to those blocks.  This potentially requires several
1407          * writes to write around the bad blocks.  Each set of writes
1408          * gets its own r10_bio with a set of bios attached.
1409          */
1410
1411         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1412         raid10_find_phys(conf, r10_bio);
1413
1414         wait_blocked_dev(mddev, r10_bio);
1415
1416         max_sectors = r10_bio->sectors;
1417
1418         for (i = 0;  i < conf->copies; i++) {
1419                 int d = r10_bio->devs[i].devnum;
1420                 struct md_rdev *rdev, *rrdev;
1421
1422                 rdev = conf->mirrors[d].rdev;
1423                 rrdev = conf->mirrors[d].replacement;
1424                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1425                         rdev = NULL;
1426                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1427                         rrdev = NULL;
1428
1429                 r10_bio->devs[i].bio = NULL;
1430                 r10_bio->devs[i].repl_bio = NULL;
1431
1432                 if (!rdev && !rrdev) {
1433                         set_bit(R10BIO_Degraded, &r10_bio->state);
1434                         continue;
1435                 }
1436                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1437                         sector_t first_bad;
1438                         sector_t dev_sector = r10_bio->devs[i].addr;
1439                         int bad_sectors;
1440                         int is_bad;
1441
1442                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1443                                              &first_bad, &bad_sectors);
1444                         if (is_bad && first_bad <= dev_sector) {
1445                                 /* Cannot write here at all */
1446                                 bad_sectors -= (dev_sector - first_bad);
1447                                 if (bad_sectors < max_sectors)
1448                                         /* Mustn't write more than bad_sectors
1449                                          * to other devices yet
1450                                          */
1451                                         max_sectors = bad_sectors;
1452                                 /* We don't set R10BIO_Degraded as that
1453                                  * only applies if the disk is missing,
1454                                  * so it might be re-added, and we want to
1455                                  * know to recover this chunk.
1456                                  * In this case the device is here, and the
1457                                  * fact that this chunk is not in-sync is
1458                                  * recorded in the bad block log.
1459                                  */
1460                                 continue;
1461                         }
1462                         if (is_bad) {
1463                                 int good_sectors = first_bad - dev_sector;
1464                                 if (good_sectors < max_sectors)
1465                                         max_sectors = good_sectors;
1466                         }
1467                 }
1468                 if (rdev) {
1469                         r10_bio->devs[i].bio = bio;
1470                         atomic_inc(&rdev->nr_pending);
1471                 }
1472                 if (rrdev) {
1473                         r10_bio->devs[i].repl_bio = bio;
1474                         atomic_inc(&rrdev->nr_pending);
1475                 }
1476         }
1477
1478         if (max_sectors < r10_bio->sectors)
1479                 r10_bio->sectors = max_sectors;
1480
1481         if (r10_bio->sectors < bio_sectors(bio)) {
1482                 struct bio *split = bio_split(bio, r10_bio->sectors,
1483                                               GFP_NOIO, &conf->bio_split);
1484                 bio_chain(split, bio);
1485                 allow_barrier(conf);
1486                 submit_bio_noacct(bio);
1487                 wait_barrier(conf, false);
1488                 bio = split;
1489                 r10_bio->master_bio = bio;
1490         }
1491
1492         md_account_bio(mddev, &bio);
1493         r10_bio->master_bio = bio;
1494         atomic_set(&r10_bio->remaining, 1);
1495         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1496
1497         for (i = 0; i < conf->copies; i++) {
1498                 if (r10_bio->devs[i].bio)
1499                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1500                 if (r10_bio->devs[i].repl_bio)
1501                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1502         }
1503         one_write_done(r10_bio);
1504 }
1505
1506 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1507 {
1508         struct r10conf *conf = mddev->private;
1509         struct r10bio *r10_bio;
1510
1511         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1512
1513         r10_bio->master_bio = bio;
1514         r10_bio->sectors = sectors;
1515
1516         r10_bio->mddev = mddev;
1517         r10_bio->sector = bio->bi_iter.bi_sector;
1518         r10_bio->state = 0;
1519         r10_bio->read_slot = -1;
1520         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1521                         conf->geo.raid_disks);
1522
1523         if (bio_data_dir(bio) == READ)
1524                 raid10_read_request(mddev, bio, r10_bio, true);
1525         else
1526                 raid10_write_request(mddev, bio, r10_bio);
1527 }
1528
1529 static void raid_end_discard_bio(struct r10bio *r10bio)
1530 {
1531         struct r10conf *conf = r10bio->mddev->private;
1532         struct r10bio *first_r10bio;
1533
1534         while (atomic_dec_and_test(&r10bio->remaining)) {
1535
1536                 allow_barrier(conf);
1537
1538                 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1539                         first_r10bio = (struct r10bio *)r10bio->master_bio;
1540                         free_r10bio(r10bio);
1541                         r10bio = first_r10bio;
1542                 } else {
1543                         md_write_end(r10bio->mddev);
1544                         bio_endio(r10bio->master_bio);
1545                         free_r10bio(r10bio);
1546                         break;
1547                 }
1548         }
1549 }
1550
1551 static void raid10_end_discard_request(struct bio *bio)
1552 {
1553         struct r10bio *r10_bio = bio->bi_private;
1554         struct r10conf *conf = r10_bio->mddev->private;
1555         struct md_rdev *rdev = NULL;
1556         int dev;
1557         int slot, repl;
1558
1559         /*
1560          * We don't care the return value of discard bio
1561          */
1562         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1563                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1564
1565         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1566         rdev = repl ? conf->mirrors[dev].replacement :
1567                       conf->mirrors[dev].rdev;
1568
1569         raid_end_discard_bio(r10_bio);
1570         rdev_dec_pending(rdev, conf->mddev);
1571 }
1572
1573 /*
1574  * There are some limitations to handle discard bio
1575  * 1st, the discard size is bigger than stripe_size*2.
1576  * 2st, if the discard bio spans reshape progress, we use the old way to
1577  * handle discard bio
1578  */
1579 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1580 {
1581         struct r10conf *conf = mddev->private;
1582         struct geom *geo = &conf->geo;
1583         int far_copies = geo->far_copies;
1584         bool first_copy = true;
1585         struct r10bio *r10_bio, *first_r10bio;
1586         struct bio *split;
1587         int disk;
1588         sector_t chunk;
1589         unsigned int stripe_size;
1590         unsigned int stripe_data_disks;
1591         sector_t split_size;
1592         sector_t bio_start, bio_end;
1593         sector_t first_stripe_index, last_stripe_index;
1594         sector_t start_disk_offset;
1595         unsigned int start_disk_index;
1596         sector_t end_disk_offset;
1597         unsigned int end_disk_index;
1598         unsigned int remainder;
1599
1600         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1601                 return -EAGAIN;
1602
1603         if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1604                 bio_wouldblock_error(bio);
1605                 return 0;
1606         }
1607         wait_barrier(conf, false);
1608
1609         /*
1610          * Check reshape again to avoid reshape happens after checking
1611          * MD_RECOVERY_RESHAPE and before wait_barrier
1612          */
1613         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1614                 goto out;
1615
1616         if (geo->near_copies)
1617                 stripe_data_disks = geo->raid_disks / geo->near_copies +
1618                                         geo->raid_disks % geo->near_copies;
1619         else
1620                 stripe_data_disks = geo->raid_disks;
1621
1622         stripe_size = stripe_data_disks << geo->chunk_shift;
1623
1624         bio_start = bio->bi_iter.bi_sector;
1625         bio_end = bio_end_sector(bio);
1626
1627         /*
1628          * Maybe one discard bio is smaller than strip size or across one
1629          * stripe and discard region is larger than one stripe size. For far
1630          * offset layout, if the discard region is not aligned with stripe
1631          * size, there is hole when we submit discard bio to member disk.
1632          * For simplicity, we only handle discard bio which discard region
1633          * is bigger than stripe_size * 2
1634          */
1635         if (bio_sectors(bio) < stripe_size*2)
1636                 goto out;
1637
1638         /*
1639          * Keep bio aligned with strip size.
1640          */
1641         div_u64_rem(bio_start, stripe_size, &remainder);
1642         if (remainder) {
1643                 split_size = stripe_size - remainder;
1644                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1645                 bio_chain(split, bio);
1646                 allow_barrier(conf);
1647                 /* Resend the fist split part */
1648                 submit_bio_noacct(split);
1649                 wait_barrier(conf, false);
1650         }
1651         div_u64_rem(bio_end, stripe_size, &remainder);
1652         if (remainder) {
1653                 split_size = bio_sectors(bio) - remainder;
1654                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1655                 bio_chain(split, bio);
1656                 allow_barrier(conf);
1657                 /* Resend the second split part */
1658                 submit_bio_noacct(bio);
1659                 bio = split;
1660                 wait_barrier(conf, false);
1661         }
1662
1663         bio_start = bio->bi_iter.bi_sector;
1664         bio_end = bio_end_sector(bio);
1665
1666         /*
1667          * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1668          * One stripe contains the chunks from all member disk (one chunk from
1669          * one disk at the same HBA address). For layout detail, see 'man md 4'
1670          */
1671         chunk = bio_start >> geo->chunk_shift;
1672         chunk *= geo->near_copies;
1673         first_stripe_index = chunk;
1674         start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1675         if (geo->far_offset)
1676                 first_stripe_index *= geo->far_copies;
1677         start_disk_offset = (bio_start & geo->chunk_mask) +
1678                                 (first_stripe_index << geo->chunk_shift);
1679
1680         chunk = bio_end >> geo->chunk_shift;
1681         chunk *= geo->near_copies;
1682         last_stripe_index = chunk;
1683         end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1684         if (geo->far_offset)
1685                 last_stripe_index *= geo->far_copies;
1686         end_disk_offset = (bio_end & geo->chunk_mask) +
1687                                 (last_stripe_index << geo->chunk_shift);
1688
1689 retry_discard:
1690         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1691         r10_bio->mddev = mddev;
1692         r10_bio->state = 0;
1693         r10_bio->sectors = 0;
1694         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1695         wait_blocked_dev(mddev, r10_bio);
1696
1697         /*
1698          * For far layout it needs more than one r10bio to cover all regions.
1699          * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1700          * to record the discard bio. Other r10bio->master_bio record the first
1701          * r10bio. The first r10bio only release after all other r10bios finish.
1702          * The discard bio returns only first r10bio finishes
1703          */
1704         if (first_copy) {
1705                 r10_bio->master_bio = bio;
1706                 set_bit(R10BIO_Discard, &r10_bio->state);
1707                 first_copy = false;
1708                 first_r10bio = r10_bio;
1709         } else
1710                 r10_bio->master_bio = (struct bio *)first_r10bio;
1711
1712         /*
1713          * first select target devices under rcu_lock and
1714          * inc refcount on their rdev.  Record them by setting
1715          * bios[x] to bio
1716          */
1717         for (disk = 0; disk < geo->raid_disks; disk++) {
1718                 struct md_rdev *rdev, *rrdev;
1719
1720                 rdev = conf->mirrors[disk].rdev;
1721                 rrdev = conf->mirrors[disk].replacement;
1722                 r10_bio->devs[disk].bio = NULL;
1723                 r10_bio->devs[disk].repl_bio = NULL;
1724
1725                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1726                         rdev = NULL;
1727                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1728                         rrdev = NULL;
1729                 if (!rdev && !rrdev)
1730                         continue;
1731
1732                 if (rdev) {
1733                         r10_bio->devs[disk].bio = bio;
1734                         atomic_inc(&rdev->nr_pending);
1735                 }
1736                 if (rrdev) {
1737                         r10_bio->devs[disk].repl_bio = bio;
1738                         atomic_inc(&rrdev->nr_pending);
1739                 }
1740         }
1741
1742         atomic_set(&r10_bio->remaining, 1);
1743         for (disk = 0; disk < geo->raid_disks; disk++) {
1744                 sector_t dev_start, dev_end;
1745                 struct bio *mbio, *rbio = NULL;
1746
1747                 /*
1748                  * Now start to calculate the start and end address for each disk.
1749                  * The space between dev_start and dev_end is the discard region.
1750                  *
1751                  * For dev_start, it needs to consider three conditions:
1752                  * 1st, the disk is before start_disk, you can imagine the disk in
1753                  * the next stripe. So the dev_start is the start address of next
1754                  * stripe.
1755                  * 2st, the disk is after start_disk, it means the disk is at the
1756                  * same stripe of first disk
1757                  * 3st, the first disk itself, we can use start_disk_offset directly
1758                  */
1759                 if (disk < start_disk_index)
1760                         dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1761                 else if (disk > start_disk_index)
1762                         dev_start = first_stripe_index * mddev->chunk_sectors;
1763                 else
1764                         dev_start = start_disk_offset;
1765
1766                 if (disk < end_disk_index)
1767                         dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1768                 else if (disk > end_disk_index)
1769                         dev_end = last_stripe_index * mddev->chunk_sectors;
1770                 else
1771                         dev_end = end_disk_offset;
1772
1773                 /*
1774                  * It only handles discard bio which size is >= stripe size, so
1775                  * dev_end > dev_start all the time.
1776                  * It doesn't need to use rcu lock to get rdev here. We already
1777                  * add rdev->nr_pending in the first loop.
1778                  */
1779                 if (r10_bio->devs[disk].bio) {
1780                         struct md_rdev *rdev = conf->mirrors[disk].rdev;
1781                         mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1782                                                &mddev->bio_set);
1783                         mbio->bi_end_io = raid10_end_discard_request;
1784                         mbio->bi_private = r10_bio;
1785                         r10_bio->devs[disk].bio = mbio;
1786                         r10_bio->devs[disk].devnum = disk;
1787                         atomic_inc(&r10_bio->remaining);
1788                         md_submit_discard_bio(mddev, rdev, mbio,
1789                                         dev_start + choose_data_offset(r10_bio, rdev),
1790                                         dev_end - dev_start);
1791                         bio_endio(mbio);
1792                 }
1793                 if (r10_bio->devs[disk].repl_bio) {
1794                         struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1795                         rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1796                                                &mddev->bio_set);
1797                         rbio->bi_end_io = raid10_end_discard_request;
1798                         rbio->bi_private = r10_bio;
1799                         r10_bio->devs[disk].repl_bio = rbio;
1800                         r10_bio->devs[disk].devnum = disk;
1801                         atomic_inc(&r10_bio->remaining);
1802                         md_submit_discard_bio(mddev, rrdev, rbio,
1803                                         dev_start + choose_data_offset(r10_bio, rrdev),
1804                                         dev_end - dev_start);
1805                         bio_endio(rbio);
1806                 }
1807         }
1808
1809         if (!geo->far_offset && --far_copies) {
1810                 first_stripe_index += geo->stride >> geo->chunk_shift;
1811                 start_disk_offset += geo->stride;
1812                 last_stripe_index += geo->stride >> geo->chunk_shift;
1813                 end_disk_offset += geo->stride;
1814                 atomic_inc(&first_r10bio->remaining);
1815                 raid_end_discard_bio(r10_bio);
1816                 wait_barrier(conf, false);
1817                 goto retry_discard;
1818         }
1819
1820         raid_end_discard_bio(r10_bio);
1821
1822         return 0;
1823 out:
1824         allow_barrier(conf);
1825         return -EAGAIN;
1826 }
1827
1828 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1829 {
1830         struct r10conf *conf = mddev->private;
1831         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1832         int chunk_sects = chunk_mask + 1;
1833         int sectors = bio_sectors(bio);
1834
1835         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1836             && md_flush_request(mddev, bio))
1837                 return true;
1838
1839         if (!md_write_start(mddev, bio))
1840                 return false;
1841
1842         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1843                 if (!raid10_handle_discard(mddev, bio))
1844                         return true;
1845
1846         /*
1847          * If this request crosses a chunk boundary, we need to split
1848          * it.
1849          */
1850         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1851                      sectors > chunk_sects
1852                      && (conf->geo.near_copies < conf->geo.raid_disks
1853                          || conf->prev.near_copies <
1854                          conf->prev.raid_disks)))
1855                 sectors = chunk_sects -
1856                         (bio->bi_iter.bi_sector &
1857                          (chunk_sects - 1));
1858         __make_request(mddev, bio, sectors);
1859
1860         /* In case raid10d snuck in to freeze_array */
1861         wake_up_barrier(conf);
1862         return true;
1863 }
1864
1865 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1866 {
1867         struct r10conf *conf = mddev->private;
1868         int i;
1869
1870         lockdep_assert_held(&mddev->lock);
1871
1872         if (conf->geo.near_copies < conf->geo.raid_disks)
1873                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1874         if (conf->geo.near_copies > 1)
1875                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1876         if (conf->geo.far_copies > 1) {
1877                 if (conf->geo.far_offset)
1878                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1879                 else
1880                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1881                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1882                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1883         }
1884         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1885                                         conf->geo.raid_disks - mddev->degraded);
1886         for (i = 0; i < conf->geo.raid_disks; i++) {
1887                 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1888
1889                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1890         }
1891         seq_printf(seq, "]");
1892 }
1893
1894 /* check if there are enough drives for
1895  * every block to appear on atleast one.
1896  * Don't consider the device numbered 'ignore'
1897  * as we might be about to remove it.
1898  */
1899 static int _enough(struct r10conf *conf, int previous, int ignore)
1900 {
1901         int first = 0;
1902         int has_enough = 0;
1903         int disks, ncopies;
1904         if (previous) {
1905                 disks = conf->prev.raid_disks;
1906                 ncopies = conf->prev.near_copies;
1907         } else {
1908                 disks = conf->geo.raid_disks;
1909                 ncopies = conf->geo.near_copies;
1910         }
1911
1912         do {
1913                 int n = conf->copies;
1914                 int cnt = 0;
1915                 int this = first;
1916                 while (n--) {
1917                         struct md_rdev *rdev;
1918                         if (this != ignore &&
1919                             (rdev = conf->mirrors[this].rdev) &&
1920                             test_bit(In_sync, &rdev->flags))
1921                                 cnt++;
1922                         this = (this+1) % disks;
1923                 }
1924                 if (cnt == 0)
1925                         goto out;
1926                 first = (first + ncopies) % disks;
1927         } while (first != 0);
1928         has_enough = 1;
1929 out:
1930         return has_enough;
1931 }
1932
1933 static int enough(struct r10conf *conf, int ignore)
1934 {
1935         /* when calling 'enough', both 'prev' and 'geo' must
1936          * be stable.
1937          * This is ensured if ->reconfig_mutex or ->device_lock
1938          * is held.
1939          */
1940         return _enough(conf, 0, ignore) &&
1941                 _enough(conf, 1, ignore);
1942 }
1943
1944 /**
1945  * raid10_error() - RAID10 error handler.
1946  * @mddev: affected md device.
1947  * @rdev: member device to fail.
1948  *
1949  * The routine acknowledges &rdev failure and determines new @mddev state.
1950  * If it failed, then:
1951  *      - &MD_BROKEN flag is set in &mddev->flags.
1952  * Otherwise, it must be degraded:
1953  *      - recovery is interrupted.
1954  *      - &mddev->degraded is bumped.
1955  *
1956  * @rdev is marked as &Faulty excluding case when array is failed and
1957  * &mddev->fail_last_dev is off.
1958  */
1959 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1960 {
1961         struct r10conf *conf = mddev->private;
1962         unsigned long flags;
1963
1964         spin_lock_irqsave(&conf->device_lock, flags);
1965
1966         if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
1967                 set_bit(MD_BROKEN, &mddev->flags);
1968
1969                 if (!mddev->fail_last_dev) {
1970                         spin_unlock_irqrestore(&conf->device_lock, flags);
1971                         return;
1972                 }
1973         }
1974         if (test_and_clear_bit(In_sync, &rdev->flags))
1975                 mddev->degraded++;
1976
1977         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1978         set_bit(Blocked, &rdev->flags);
1979         set_bit(Faulty, &rdev->flags);
1980         set_mask_bits(&mddev->sb_flags, 0,
1981                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1982         spin_unlock_irqrestore(&conf->device_lock, flags);
1983         pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
1984                 "md/raid10:%s: Operation continuing on %d devices.\n",
1985                 mdname(mddev), rdev->bdev,
1986                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1987 }
1988
1989 static void print_conf(struct r10conf *conf)
1990 {
1991         int i;
1992         struct md_rdev *rdev;
1993
1994         pr_debug("RAID10 conf printout:\n");
1995         if (!conf) {
1996                 pr_debug("(!conf)\n");
1997                 return;
1998         }
1999         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2000                  conf->geo.raid_disks);
2001
2002         lockdep_assert_held(&conf->mddev->reconfig_mutex);
2003         for (i = 0; i < conf->geo.raid_disks; i++) {
2004                 rdev = conf->mirrors[i].rdev;
2005                 if (rdev)
2006                         pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2007                                  i, !test_bit(In_sync, &rdev->flags),
2008                                  !test_bit(Faulty, &rdev->flags),
2009                                  rdev->bdev);
2010         }
2011 }
2012
2013 static void close_sync(struct r10conf *conf)
2014 {
2015         wait_barrier(conf, false);
2016         allow_barrier(conf);
2017
2018         mempool_exit(&conf->r10buf_pool);
2019 }
2020
2021 static int raid10_spare_active(struct mddev *mddev)
2022 {
2023         int i;
2024         struct r10conf *conf = mddev->private;
2025         struct raid10_info *tmp;
2026         int count = 0;
2027         unsigned long flags;
2028
2029         /*
2030          * Find all non-in_sync disks within the RAID10 configuration
2031          * and mark them in_sync
2032          */
2033         for (i = 0; i < conf->geo.raid_disks; i++) {
2034                 tmp = conf->mirrors + i;
2035                 if (tmp->replacement
2036                     && tmp->replacement->recovery_offset == MaxSector
2037                     && !test_bit(Faulty, &tmp->replacement->flags)
2038                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2039                         /* Replacement has just become active */
2040                         if (!tmp->rdev
2041                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2042                                 count++;
2043                         if (tmp->rdev) {
2044                                 /* Replaced device not technically faulty,
2045                                  * but we need to be sure it gets removed
2046                                  * and never re-added.
2047                                  */
2048                                 set_bit(Faulty, &tmp->rdev->flags);
2049                                 sysfs_notify_dirent_safe(
2050                                         tmp->rdev->sysfs_state);
2051                         }
2052                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2053                 } else if (tmp->rdev
2054                            && tmp->rdev->recovery_offset == MaxSector
2055                            && !test_bit(Faulty, &tmp->rdev->flags)
2056                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2057                         count++;
2058                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2059                 }
2060         }
2061         spin_lock_irqsave(&conf->device_lock, flags);
2062         mddev->degraded -= count;
2063         spin_unlock_irqrestore(&conf->device_lock, flags);
2064
2065         print_conf(conf);
2066         return count;
2067 }
2068
2069 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2070 {
2071         struct r10conf *conf = mddev->private;
2072         int err = -EEXIST;
2073         int mirror, repl_slot = -1;
2074         int first = 0;
2075         int last = conf->geo.raid_disks - 1;
2076         struct raid10_info *p;
2077
2078         if (mddev->recovery_cp < MaxSector)
2079                 /* only hot-add to in-sync arrays, as recovery is
2080                  * very different from resync
2081                  */
2082                 return -EBUSY;
2083         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2084                 return -EINVAL;
2085
2086         if (md_integrity_add_rdev(rdev, mddev))
2087                 return -ENXIO;
2088
2089         if (rdev->raid_disk >= 0)
2090                 first = last = rdev->raid_disk;
2091
2092         if (rdev->saved_raid_disk >= first &&
2093             rdev->saved_raid_disk < conf->geo.raid_disks &&
2094             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2095                 mirror = rdev->saved_raid_disk;
2096         else
2097                 mirror = first;
2098         for ( ; mirror <= last ; mirror++) {
2099                 p = &conf->mirrors[mirror];
2100                 if (p->recovery_disabled == mddev->recovery_disabled)
2101                         continue;
2102                 if (p->rdev) {
2103                         if (test_bit(WantReplacement, &p->rdev->flags) &&
2104                             p->replacement == NULL && repl_slot < 0)
2105                                 repl_slot = mirror;
2106                         continue;
2107                 }
2108
2109                 err = mddev_stack_new_rdev(mddev, rdev);
2110                 if (err)
2111                         return err;
2112                 p->head_position = 0;
2113                 p->recovery_disabled = mddev->recovery_disabled - 1;
2114                 rdev->raid_disk = mirror;
2115                 err = 0;
2116                 if (rdev->saved_raid_disk != mirror)
2117                         conf->fullsync = 1;
2118                 WRITE_ONCE(p->rdev, rdev);
2119                 break;
2120         }
2121
2122         if (err && repl_slot >= 0) {
2123                 p = &conf->mirrors[repl_slot];
2124                 clear_bit(In_sync, &rdev->flags);
2125                 set_bit(Replacement, &rdev->flags);
2126                 rdev->raid_disk = repl_slot;
2127                 err = mddev_stack_new_rdev(mddev, rdev);
2128                 if (err)
2129                         return err;
2130                 conf->fullsync = 1;
2131                 WRITE_ONCE(p->replacement, rdev);
2132         }
2133
2134         print_conf(conf);
2135         return err;
2136 }
2137
2138 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2139 {
2140         struct r10conf *conf = mddev->private;
2141         int err = 0;
2142         int number = rdev->raid_disk;
2143         struct md_rdev **rdevp;
2144         struct raid10_info *p;
2145
2146         print_conf(conf);
2147         if (unlikely(number >= mddev->raid_disks))
2148                 return 0;
2149         p = conf->mirrors + number;
2150         if (rdev == p->rdev)
2151                 rdevp = &p->rdev;
2152         else if (rdev == p->replacement)
2153                 rdevp = &p->replacement;
2154         else
2155                 return 0;
2156
2157         if (test_bit(In_sync, &rdev->flags) ||
2158             atomic_read(&rdev->nr_pending)) {
2159                 err = -EBUSY;
2160                 goto abort;
2161         }
2162         /* Only remove non-faulty devices if recovery
2163          * is not possible.
2164          */
2165         if (!test_bit(Faulty, &rdev->flags) &&
2166             mddev->recovery_disabled != p->recovery_disabled &&
2167             (!p->replacement || p->replacement == rdev) &&
2168             number < conf->geo.raid_disks &&
2169             enough(conf, -1)) {
2170                 err = -EBUSY;
2171                 goto abort;
2172         }
2173         WRITE_ONCE(*rdevp, NULL);
2174         if (p->replacement) {
2175                 /* We must have just cleared 'rdev' */
2176                 WRITE_ONCE(p->rdev, p->replacement);
2177                 clear_bit(Replacement, &p->replacement->flags);
2178                 WRITE_ONCE(p->replacement, NULL);
2179         }
2180
2181         clear_bit(WantReplacement, &rdev->flags);
2182         err = md_integrity_register(mddev);
2183
2184 abort:
2185
2186         print_conf(conf);
2187         return err;
2188 }
2189
2190 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2191 {
2192         struct r10conf *conf = r10_bio->mddev->private;
2193
2194         if (!bio->bi_status)
2195                 set_bit(R10BIO_Uptodate, &r10_bio->state);
2196         else
2197                 /* The write handler will notice the lack of
2198                  * R10BIO_Uptodate and record any errors etc
2199                  */
2200                 atomic_add(r10_bio->sectors,
2201                            &conf->mirrors[d].rdev->corrected_errors);
2202
2203         /* for reconstruct, we always reschedule after a read.
2204          * for resync, only after all reads
2205          */
2206         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2207         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2208             atomic_dec_and_test(&r10_bio->remaining)) {
2209                 /* we have read all the blocks,
2210                  * do the comparison in process context in raid10d
2211                  */
2212                 reschedule_retry(r10_bio);
2213         }
2214 }
2215
2216 static void end_sync_read(struct bio *bio)
2217 {
2218         struct r10bio *r10_bio = get_resync_r10bio(bio);
2219         struct r10conf *conf = r10_bio->mddev->private;
2220         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2221
2222         __end_sync_read(r10_bio, bio, d);
2223 }
2224
2225 static void end_reshape_read(struct bio *bio)
2226 {
2227         /* reshape read bio isn't allocated from r10buf_pool */
2228         struct r10bio *r10_bio = bio->bi_private;
2229
2230         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2231 }
2232
2233 static void end_sync_request(struct r10bio *r10_bio)
2234 {
2235         struct mddev *mddev = r10_bio->mddev;
2236
2237         while (atomic_dec_and_test(&r10_bio->remaining)) {
2238                 if (r10_bio->master_bio == NULL) {
2239                         /* the primary of several recovery bios */
2240                         sector_t s = r10_bio->sectors;
2241                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2242                             test_bit(R10BIO_WriteError, &r10_bio->state))
2243                                 reschedule_retry(r10_bio);
2244                         else
2245                                 put_buf(r10_bio);
2246                         md_done_sync(mddev, s, 1);
2247                         break;
2248                 } else {
2249                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2250                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2251                             test_bit(R10BIO_WriteError, &r10_bio->state))
2252                                 reschedule_retry(r10_bio);
2253                         else
2254                                 put_buf(r10_bio);
2255                         r10_bio = r10_bio2;
2256                 }
2257         }
2258 }
2259
2260 static void end_sync_write(struct bio *bio)
2261 {
2262         struct r10bio *r10_bio = get_resync_r10bio(bio);
2263         struct mddev *mddev = r10_bio->mddev;
2264         struct r10conf *conf = mddev->private;
2265         int d;
2266         int slot;
2267         int repl;
2268         struct md_rdev *rdev = NULL;
2269
2270         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2271         if (repl)
2272                 rdev = conf->mirrors[d].replacement;
2273         else
2274                 rdev = conf->mirrors[d].rdev;
2275
2276         if (bio->bi_status) {
2277                 if (repl)
2278                         md_error(mddev, rdev);
2279                 else {
2280                         set_bit(WriteErrorSeen, &rdev->flags);
2281                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2282                                 set_bit(MD_RECOVERY_NEEDED,
2283                                         &rdev->mddev->recovery);
2284                         set_bit(R10BIO_WriteError, &r10_bio->state);
2285                 }
2286         } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
2287                                      r10_bio->sectors)) {
2288                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2289         }
2290
2291         rdev_dec_pending(rdev, mddev);
2292
2293         end_sync_request(r10_bio);
2294 }
2295
2296 /*
2297  * Note: sync and recover and handled very differently for raid10
2298  * This code is for resync.
2299  * For resync, we read through virtual addresses and read all blocks.
2300  * If there is any error, we schedule a write.  The lowest numbered
2301  * drive is authoritative.
2302  * However requests come for physical address, so we need to map.
2303  * For every physical address there are raid_disks/copies virtual addresses,
2304  * which is always are least one, but is not necessarly an integer.
2305  * This means that a physical address can span multiple chunks, so we may
2306  * have to submit multiple io requests for a single sync request.
2307  */
2308 /*
2309  * We check if all blocks are in-sync and only write to blocks that
2310  * aren't in sync
2311  */
2312 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2313 {
2314         struct r10conf *conf = mddev->private;
2315         int i, first;
2316         struct bio *tbio, *fbio;
2317         int vcnt;
2318         struct page **tpages, **fpages;
2319
2320         atomic_set(&r10_bio->remaining, 1);
2321
2322         /* find the first device with a block */
2323         for (i=0; i<conf->copies; i++)
2324                 if (!r10_bio->devs[i].bio->bi_status)
2325                         break;
2326
2327         if (i == conf->copies)
2328                 goto done;
2329
2330         first = i;
2331         fbio = r10_bio->devs[i].bio;
2332         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2333         fbio->bi_iter.bi_idx = 0;
2334         fpages = get_resync_pages(fbio)->pages;
2335
2336         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2337         /* now find blocks with errors */
2338         for (i=0 ; i < conf->copies ; i++) {
2339                 int  j, d;
2340                 struct md_rdev *rdev;
2341                 struct resync_pages *rp;
2342
2343                 tbio = r10_bio->devs[i].bio;
2344
2345                 if (tbio->bi_end_io != end_sync_read)
2346                         continue;
2347                 if (i == first)
2348                         continue;
2349
2350                 tpages = get_resync_pages(tbio)->pages;
2351                 d = r10_bio->devs[i].devnum;
2352                 rdev = conf->mirrors[d].rdev;
2353                 if (!r10_bio->devs[i].bio->bi_status) {
2354                         /* We know that the bi_io_vec layout is the same for
2355                          * both 'first' and 'i', so we just compare them.
2356                          * All vec entries are PAGE_SIZE;
2357                          */
2358                         int sectors = r10_bio->sectors;
2359                         for (j = 0; j < vcnt; j++) {
2360                                 int len = PAGE_SIZE;
2361                                 if (sectors < (len / 512))
2362                                         len = sectors * 512;
2363                                 if (memcmp(page_address(fpages[j]),
2364                                            page_address(tpages[j]),
2365                                            len))
2366                                         break;
2367                                 sectors -= len/512;
2368                         }
2369                         if (j == vcnt)
2370                                 continue;
2371                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2372                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2373                                 /* Don't fix anything. */
2374                                 continue;
2375                 } else if (test_bit(FailFast, &rdev->flags)) {
2376                         /* Just give up on this device */
2377                         md_error(rdev->mddev, rdev);
2378                         continue;
2379                 }
2380                 /* Ok, we need to write this bio, either to correct an
2381                  * inconsistency or to correct an unreadable block.
2382                  * First we need to fixup bv_offset, bv_len and
2383                  * bi_vecs, as the read request might have corrupted these
2384                  */
2385                 rp = get_resync_pages(tbio);
2386                 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2387
2388                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2389
2390                 rp->raid_bio = r10_bio;
2391                 tbio->bi_private = rp;
2392                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2393                 tbio->bi_end_io = end_sync_write;
2394
2395                 bio_copy_data(tbio, fbio);
2396
2397                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2398                 atomic_inc(&r10_bio->remaining);
2399                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2400
2401                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2402                         tbio->bi_opf |= MD_FAILFAST;
2403                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2404                 submit_bio_noacct(tbio);
2405         }
2406
2407         /* Now write out to any replacement devices
2408          * that are active
2409          */
2410         for (i = 0; i < conf->copies; i++) {
2411                 int d;
2412
2413                 tbio = r10_bio->devs[i].repl_bio;
2414                 if (!tbio || !tbio->bi_end_io)
2415                         continue;
2416                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2417                     && r10_bio->devs[i].bio != fbio)
2418                         bio_copy_data(tbio, fbio);
2419                 d = r10_bio->devs[i].devnum;
2420                 atomic_inc(&r10_bio->remaining);
2421                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2422                              bio_sectors(tbio));
2423                 submit_bio_noacct(tbio);
2424         }
2425
2426 done:
2427         if (atomic_dec_and_test(&r10_bio->remaining)) {
2428                 md_done_sync(mddev, r10_bio->sectors, 1);
2429                 put_buf(r10_bio);
2430         }
2431 }
2432
2433 /*
2434  * Now for the recovery code.
2435  * Recovery happens across physical sectors.
2436  * We recover all non-is_sync drives by finding the virtual address of
2437  * each, and then choose a working drive that also has that virt address.
2438  * There is a separate r10_bio for each non-in_sync drive.
2439  * Only the first two slots are in use. The first for reading,
2440  * The second for writing.
2441  *
2442  */
2443 static void fix_recovery_read_error(struct r10bio *r10_bio)
2444 {
2445         /* We got a read error during recovery.
2446          * We repeat the read in smaller page-sized sections.
2447          * If a read succeeds, write it to the new device or record
2448          * a bad block if we cannot.
2449          * If a read fails, record a bad block on both old and
2450          * new devices.
2451          */
2452         struct mddev *mddev = r10_bio->mddev;
2453         struct r10conf *conf = mddev->private;
2454         struct bio *bio = r10_bio->devs[0].bio;
2455         sector_t sect = 0;
2456         int sectors = r10_bio->sectors;
2457         int idx = 0;
2458         int dr = r10_bio->devs[0].devnum;
2459         int dw = r10_bio->devs[1].devnum;
2460         struct page **pages = get_resync_pages(bio)->pages;
2461
2462         while (sectors) {
2463                 int s = sectors;
2464                 struct md_rdev *rdev;
2465                 sector_t addr;
2466                 int ok;
2467
2468                 if (s > (PAGE_SIZE>>9))
2469                         s = PAGE_SIZE >> 9;
2470
2471                 rdev = conf->mirrors[dr].rdev;
2472                 addr = r10_bio->devs[0].addr + sect,
2473                 ok = sync_page_io(rdev,
2474                                   addr,
2475                                   s << 9,
2476                                   pages[idx],
2477                                   REQ_OP_READ, false);
2478                 if (ok) {
2479                         rdev = conf->mirrors[dw].rdev;
2480                         addr = r10_bio->devs[1].addr + sect;
2481                         ok = sync_page_io(rdev,
2482                                           addr,
2483                                           s << 9,
2484                                           pages[idx],
2485                                           REQ_OP_WRITE, false);
2486                         if (!ok) {
2487                                 set_bit(WriteErrorSeen, &rdev->flags);
2488                                 if (!test_and_set_bit(WantReplacement,
2489                                                       &rdev->flags))
2490                                         set_bit(MD_RECOVERY_NEEDED,
2491                                                 &rdev->mddev->recovery);
2492                         }
2493                 }
2494                 if (!ok) {
2495                         /* We don't worry if we cannot set a bad block -
2496                          * it really is bad so there is no loss in not
2497                          * recording it yet
2498                          */
2499                         rdev_set_badblocks(rdev, addr, s, 0);
2500
2501                         if (rdev != conf->mirrors[dw].rdev) {
2502                                 /* need bad block on destination too */
2503                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2504                                 addr = r10_bio->devs[1].addr + sect;
2505                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2506                                 if (!ok) {
2507                                         /* just abort the recovery */
2508                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2509                                                   mdname(mddev));
2510
2511                                         conf->mirrors[dw].recovery_disabled
2512                                                 = mddev->recovery_disabled;
2513                                         set_bit(MD_RECOVERY_INTR,
2514                                                 &mddev->recovery);
2515                                         break;
2516                                 }
2517                         }
2518                 }
2519
2520                 sectors -= s;
2521                 sect += s;
2522                 idx++;
2523         }
2524 }
2525
2526 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2527 {
2528         struct r10conf *conf = mddev->private;
2529         int d;
2530         struct bio *wbio = r10_bio->devs[1].bio;
2531         struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2532
2533         /* Need to test wbio2->bi_end_io before we call
2534          * submit_bio_noacct as if the former is NULL,
2535          * the latter is free to free wbio2.
2536          */
2537         if (wbio2 && !wbio2->bi_end_io)
2538                 wbio2 = NULL;
2539
2540         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2541                 fix_recovery_read_error(r10_bio);
2542                 if (wbio->bi_end_io)
2543                         end_sync_request(r10_bio);
2544                 if (wbio2)
2545                         end_sync_request(r10_bio);
2546                 return;
2547         }
2548
2549         /*
2550          * share the pages with the first bio
2551          * and submit the write request
2552          */
2553         d = r10_bio->devs[1].devnum;
2554         if (wbio->bi_end_io) {
2555                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2556                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2557                 submit_bio_noacct(wbio);
2558         }
2559         if (wbio2) {
2560                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2561                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2562                              bio_sectors(wbio2));
2563                 submit_bio_noacct(wbio2);
2564         }
2565 }
2566
2567 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2568                             int sectors, struct page *page, enum req_op op)
2569 {
2570         if (rdev_has_badblock(rdev, sector, sectors) &&
2571             (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2572                 return -1;
2573         if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2574                 /* success */
2575                 return 1;
2576         if (op == REQ_OP_WRITE) {
2577                 set_bit(WriteErrorSeen, &rdev->flags);
2578                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2579                         set_bit(MD_RECOVERY_NEEDED,
2580                                 &rdev->mddev->recovery);
2581         }
2582         /* need to record an error - either for the block or the device */
2583         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2584                 md_error(rdev->mddev, rdev);
2585         return 0;
2586 }
2587
2588 /*
2589  * This is a kernel thread which:
2590  *
2591  *      1.      Retries failed read operations on working mirrors.
2592  *      2.      Updates the raid superblock when problems encounter.
2593  *      3.      Performs writes following reads for array synchronising.
2594  */
2595
2596 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2597 {
2598         int sect = 0; /* Offset from r10_bio->sector */
2599         int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2600         struct md_rdev *rdev;
2601         int d = r10_bio->devs[slot].devnum;
2602
2603         /* still own a reference to this rdev, so it cannot
2604          * have been cleared recently.
2605          */
2606         rdev = conf->mirrors[d].rdev;
2607
2608         if (test_bit(Faulty, &rdev->flags))
2609                 /* drive has already been failed, just ignore any
2610                    more fix_read_error() attempts */
2611                 return;
2612
2613         if (exceed_read_errors(mddev, rdev)) {
2614                 r10_bio->devs[slot].bio = IO_BLOCKED;
2615                 return;
2616         }
2617
2618         while(sectors) {
2619                 int s = sectors;
2620                 int sl = slot;
2621                 int success = 0;
2622                 int start;
2623
2624                 if (s > (PAGE_SIZE>>9))
2625                         s = PAGE_SIZE >> 9;
2626
2627                 do {
2628                         d = r10_bio->devs[sl].devnum;
2629                         rdev = conf->mirrors[d].rdev;
2630                         if (rdev &&
2631                             test_bit(In_sync, &rdev->flags) &&
2632                             !test_bit(Faulty, &rdev->flags) &&
2633                             rdev_has_badblock(rdev,
2634                                               r10_bio->devs[sl].addr + sect,
2635                                               s) == 0) {
2636                                 atomic_inc(&rdev->nr_pending);
2637                                 success = sync_page_io(rdev,
2638                                                        r10_bio->devs[sl].addr +
2639                                                        sect,
2640                                                        s<<9,
2641                                                        conf->tmppage,
2642                                                        REQ_OP_READ, false);
2643                                 rdev_dec_pending(rdev, mddev);
2644                                 if (success)
2645                                         break;
2646                         }
2647                         sl++;
2648                         if (sl == conf->copies)
2649                                 sl = 0;
2650                 } while (sl != slot);
2651
2652                 if (!success) {
2653                         /* Cannot read from anywhere, just mark the block
2654                          * as bad on the first device to discourage future
2655                          * reads.
2656                          */
2657                         int dn = r10_bio->devs[slot].devnum;
2658                         rdev = conf->mirrors[dn].rdev;
2659
2660                         if (!rdev_set_badblocks(
2661                                     rdev,
2662                                     r10_bio->devs[slot].addr
2663                                     + sect,
2664                                     s, 0)) {
2665                                 md_error(mddev, rdev);
2666                                 r10_bio->devs[slot].bio
2667                                         = IO_BLOCKED;
2668                         }
2669                         break;
2670                 }
2671
2672                 start = sl;
2673                 /* write it back and re-read */
2674                 while (sl != slot) {
2675                         if (sl==0)
2676                                 sl = conf->copies;
2677                         sl--;
2678                         d = r10_bio->devs[sl].devnum;
2679                         rdev = conf->mirrors[d].rdev;
2680                         if (!rdev ||
2681                             test_bit(Faulty, &rdev->flags) ||
2682                             !test_bit(In_sync, &rdev->flags))
2683                                 continue;
2684
2685                         atomic_inc(&rdev->nr_pending);
2686                         if (r10_sync_page_io(rdev,
2687                                              r10_bio->devs[sl].addr +
2688                                              sect,
2689                                              s, conf->tmppage, REQ_OP_WRITE)
2690                             == 0) {
2691                                 /* Well, this device is dead */
2692                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2693                                           mdname(mddev), s,
2694                                           (unsigned long long)(
2695                                                   sect +
2696                                                   choose_data_offset(r10_bio,
2697                                                                      rdev)),
2698                                           rdev->bdev);
2699                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2700                                           mdname(mddev),
2701                                           rdev->bdev);
2702                         }
2703                         rdev_dec_pending(rdev, mddev);
2704                 }
2705                 sl = start;
2706                 while (sl != slot) {
2707                         if (sl==0)
2708                                 sl = conf->copies;
2709                         sl--;
2710                         d = r10_bio->devs[sl].devnum;
2711                         rdev = conf->mirrors[d].rdev;
2712                         if (!rdev ||
2713                             test_bit(Faulty, &rdev->flags) ||
2714                             !test_bit(In_sync, &rdev->flags))
2715                                 continue;
2716
2717                         atomic_inc(&rdev->nr_pending);
2718                         switch (r10_sync_page_io(rdev,
2719                                              r10_bio->devs[sl].addr +
2720                                              sect,
2721                                              s, conf->tmppage, REQ_OP_READ)) {
2722                         case 0:
2723                                 /* Well, this device is dead */
2724                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2725                                        mdname(mddev), s,
2726                                        (unsigned long long)(
2727                                                sect +
2728                                                choose_data_offset(r10_bio, rdev)),
2729                                        rdev->bdev);
2730                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2731                                        mdname(mddev),
2732                                        rdev->bdev);
2733                                 break;
2734                         case 1:
2735                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2736                                        mdname(mddev), s,
2737                                        (unsigned long long)(
2738                                                sect +
2739                                                choose_data_offset(r10_bio, rdev)),
2740                                        rdev->bdev);
2741                                 atomic_add(s, &rdev->corrected_errors);
2742                         }
2743
2744                         rdev_dec_pending(rdev, mddev);
2745                 }
2746
2747                 sectors -= s;
2748                 sect += s;
2749         }
2750 }
2751
2752 static int narrow_write_error(struct r10bio *r10_bio, int i)
2753 {
2754         struct bio *bio = r10_bio->master_bio;
2755         struct mddev *mddev = r10_bio->mddev;
2756         struct r10conf *conf = mddev->private;
2757         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2758         /* bio has the data to be written to slot 'i' where
2759          * we just recently had a write error.
2760          * We repeatedly clone the bio and trim down to one block,
2761          * then try the write.  Where the write fails we record
2762          * a bad block.
2763          * It is conceivable that the bio doesn't exactly align with
2764          * blocks.  We must handle this.
2765          *
2766          * We currently own a reference to the rdev.
2767          */
2768
2769         int block_sectors;
2770         sector_t sector;
2771         int sectors;
2772         int sect_to_write = r10_bio->sectors;
2773         int ok = 1;
2774
2775         if (rdev->badblocks.shift < 0)
2776                 return 0;
2777
2778         block_sectors = roundup(1 << rdev->badblocks.shift,
2779                                 bdev_logical_block_size(rdev->bdev) >> 9);
2780         sector = r10_bio->sector;
2781         sectors = ((r10_bio->sector + block_sectors)
2782                    & ~(sector_t)(block_sectors - 1))
2783                 - sector;
2784
2785         while (sect_to_write) {
2786                 struct bio *wbio;
2787                 sector_t wsector;
2788                 if (sectors > sect_to_write)
2789                         sectors = sect_to_write;
2790                 /* Write at 'sector' for 'sectors' */
2791                 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2792                                        &mddev->bio_set);
2793                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2794                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2795                 wbio->bi_iter.bi_sector = wsector +
2796                                    choose_data_offset(r10_bio, rdev);
2797                 wbio->bi_opf = REQ_OP_WRITE;
2798
2799                 if (submit_bio_wait(wbio) < 0)
2800                         /* Failure! */
2801                         ok = rdev_set_badblocks(rdev, wsector,
2802                                                 sectors, 0)
2803                                 && ok;
2804
2805                 bio_put(wbio);
2806                 sect_to_write -= sectors;
2807                 sector += sectors;
2808                 sectors = block_sectors;
2809         }
2810         return ok;
2811 }
2812
2813 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2814 {
2815         int slot = r10_bio->read_slot;
2816         struct bio *bio;
2817         struct r10conf *conf = mddev->private;
2818         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2819
2820         /* we got a read error. Maybe the drive is bad.  Maybe just
2821          * the block and we can fix it.
2822          * We freeze all other IO, and try reading the block from
2823          * other devices.  When we find one, we re-write
2824          * and check it that fixes the read error.
2825          * This is all done synchronously while the array is
2826          * frozen.
2827          */
2828         bio = r10_bio->devs[slot].bio;
2829         bio_put(bio);
2830         r10_bio->devs[slot].bio = NULL;
2831
2832         if (mddev->ro)
2833                 r10_bio->devs[slot].bio = IO_BLOCKED;
2834         else if (!test_bit(FailFast, &rdev->flags)) {
2835                 freeze_array(conf, 1);
2836                 fix_read_error(conf, mddev, r10_bio);
2837                 unfreeze_array(conf);
2838         } else
2839                 md_error(mddev, rdev);
2840
2841         rdev_dec_pending(rdev, mddev);
2842         r10_bio->state = 0;
2843         raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2844         /*
2845          * allow_barrier after re-submit to ensure no sync io
2846          * can be issued while regular io pending.
2847          */
2848         allow_barrier(conf);
2849 }
2850
2851 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2852 {
2853         /* Some sort of write request has finished and it
2854          * succeeded in writing where we thought there was a
2855          * bad block.  So forget the bad block.
2856          * Or possibly if failed and we need to record
2857          * a bad block.
2858          */
2859         int m;
2860         struct md_rdev *rdev;
2861
2862         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2863             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2864                 for (m = 0; m < conf->copies; m++) {
2865                         int dev = r10_bio->devs[m].devnum;
2866                         rdev = conf->mirrors[dev].rdev;
2867                         if (r10_bio->devs[m].bio == NULL ||
2868                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2869                                 continue;
2870                         if (!r10_bio->devs[m].bio->bi_status) {
2871                                 rdev_clear_badblocks(
2872                                         rdev,
2873                                         r10_bio->devs[m].addr,
2874                                         r10_bio->sectors, 0);
2875                         } else {
2876                                 if (!rdev_set_badblocks(
2877                                             rdev,
2878                                             r10_bio->devs[m].addr,
2879                                             r10_bio->sectors, 0))
2880                                         md_error(conf->mddev, rdev);
2881                         }
2882                         rdev = conf->mirrors[dev].replacement;
2883                         if (r10_bio->devs[m].repl_bio == NULL ||
2884                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2885                                 continue;
2886
2887                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2888                                 rdev_clear_badblocks(
2889                                         rdev,
2890                                         r10_bio->devs[m].addr,
2891                                         r10_bio->sectors, 0);
2892                         } else {
2893                                 if (!rdev_set_badblocks(
2894                                             rdev,
2895                                             r10_bio->devs[m].addr,
2896                                             r10_bio->sectors, 0))
2897                                         md_error(conf->mddev, rdev);
2898                         }
2899                 }
2900                 put_buf(r10_bio);
2901         } else {
2902                 bool fail = false;
2903                 for (m = 0; m < conf->copies; m++) {
2904                         int dev = r10_bio->devs[m].devnum;
2905                         struct bio *bio = r10_bio->devs[m].bio;
2906                         rdev = conf->mirrors[dev].rdev;
2907                         if (bio == IO_MADE_GOOD) {
2908                                 rdev_clear_badblocks(
2909                                         rdev,
2910                                         r10_bio->devs[m].addr,
2911                                         r10_bio->sectors, 0);
2912                                 rdev_dec_pending(rdev, conf->mddev);
2913                         } else if (bio != NULL && bio->bi_status) {
2914                                 fail = true;
2915                                 if (!narrow_write_error(r10_bio, m)) {
2916                                         md_error(conf->mddev, rdev);
2917                                         set_bit(R10BIO_Degraded,
2918                                                 &r10_bio->state);
2919                                 }
2920                                 rdev_dec_pending(rdev, conf->mddev);
2921                         }
2922                         bio = r10_bio->devs[m].repl_bio;
2923                         rdev = conf->mirrors[dev].replacement;
2924                         if (rdev && bio == IO_MADE_GOOD) {
2925                                 rdev_clear_badblocks(
2926                                         rdev,
2927                                         r10_bio->devs[m].addr,
2928                                         r10_bio->sectors, 0);
2929                                 rdev_dec_pending(rdev, conf->mddev);
2930                         }
2931                 }
2932                 if (fail) {
2933                         spin_lock_irq(&conf->device_lock);
2934                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2935                         conf->nr_queued++;
2936                         spin_unlock_irq(&conf->device_lock);
2937                         /*
2938                          * In case freeze_array() is waiting for condition
2939                          * nr_pending == nr_queued + extra to be true.
2940                          */
2941                         wake_up(&conf->wait_barrier);
2942                         md_wakeup_thread(conf->mddev->thread);
2943                 } else {
2944                         if (test_bit(R10BIO_WriteError,
2945                                      &r10_bio->state))
2946                                 close_write(r10_bio);
2947                         raid_end_bio_io(r10_bio);
2948                 }
2949         }
2950 }
2951
2952 static void raid10d(struct md_thread *thread)
2953 {
2954         struct mddev *mddev = thread->mddev;
2955         struct r10bio *r10_bio;
2956         unsigned long flags;
2957         struct r10conf *conf = mddev->private;
2958         struct list_head *head = &conf->retry_list;
2959         struct blk_plug plug;
2960
2961         md_check_recovery(mddev);
2962
2963         if (!list_empty_careful(&conf->bio_end_io_list) &&
2964             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2965                 LIST_HEAD(tmp);
2966                 spin_lock_irqsave(&conf->device_lock, flags);
2967                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2968                         while (!list_empty(&conf->bio_end_io_list)) {
2969                                 list_move(conf->bio_end_io_list.prev, &tmp);
2970                                 conf->nr_queued--;
2971                         }
2972                 }
2973                 spin_unlock_irqrestore(&conf->device_lock, flags);
2974                 while (!list_empty(&tmp)) {
2975                         r10_bio = list_first_entry(&tmp, struct r10bio,
2976                                                    retry_list);
2977                         list_del(&r10_bio->retry_list);
2978                         if (mddev->degraded)
2979                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2980
2981                         if (test_bit(R10BIO_WriteError,
2982                                      &r10_bio->state))
2983                                 close_write(r10_bio);
2984                         raid_end_bio_io(r10_bio);
2985                 }
2986         }
2987
2988         blk_start_plug(&plug);
2989         for (;;) {
2990
2991                 flush_pending_writes(conf);
2992
2993                 spin_lock_irqsave(&conf->device_lock, flags);
2994                 if (list_empty(head)) {
2995                         spin_unlock_irqrestore(&conf->device_lock, flags);
2996                         break;
2997                 }
2998                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2999                 list_del(head->prev);
3000                 conf->nr_queued--;
3001                 spin_unlock_irqrestore(&conf->device_lock, flags);
3002
3003                 mddev = r10_bio->mddev;
3004                 conf = mddev->private;
3005                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3006                     test_bit(R10BIO_WriteError, &r10_bio->state))
3007                         handle_write_completed(conf, r10_bio);
3008                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3009                         reshape_request_write(mddev, r10_bio);
3010                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3011                         sync_request_write(mddev, r10_bio);
3012                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3013                         recovery_request_write(mddev, r10_bio);
3014                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3015                         handle_read_error(mddev, r10_bio);
3016                 else
3017                         WARN_ON_ONCE(1);
3018
3019                 cond_resched();
3020                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3021                         md_check_recovery(mddev);
3022         }
3023         blk_finish_plug(&plug);
3024 }
3025
3026 static int init_resync(struct r10conf *conf)
3027 {
3028         int ret, buffs, i;
3029
3030         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3031         BUG_ON(mempool_initialized(&conf->r10buf_pool));
3032         conf->have_replacement = 0;
3033         for (i = 0; i < conf->geo.raid_disks; i++)
3034                 if (conf->mirrors[i].replacement)
3035                         conf->have_replacement = 1;
3036         ret = mempool_init(&conf->r10buf_pool, buffs,
3037                            r10buf_pool_alloc, r10buf_pool_free, conf);
3038         if (ret)
3039                 return ret;
3040         conf->next_resync = 0;
3041         return 0;
3042 }
3043
3044 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3045 {
3046         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3047         struct rsync_pages *rp;
3048         struct bio *bio;
3049         int nalloc;
3050         int i;
3051
3052         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3053             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3054                 nalloc = conf->copies; /* resync */
3055         else
3056                 nalloc = 2; /* recovery */
3057
3058         for (i = 0; i < nalloc; i++) {
3059                 bio = r10bio->devs[i].bio;
3060                 rp = bio->bi_private;
3061                 bio_reset(bio, NULL, 0);
3062                 bio->bi_private = rp;
3063                 bio = r10bio->devs[i].repl_bio;
3064                 if (bio) {
3065                         rp = bio->bi_private;
3066                         bio_reset(bio, NULL, 0);
3067                         bio->bi_private = rp;
3068                 }
3069         }
3070         return r10bio;
3071 }
3072
3073 /*
3074  * Set cluster_sync_high since we need other nodes to add the
3075  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3076  */
3077 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3078 {
3079         sector_t window_size;
3080         int extra_chunk, chunks;
3081
3082         /*
3083          * First, here we define "stripe" as a unit which across
3084          * all member devices one time, so we get chunks by use
3085          * raid_disks / near_copies. Otherwise, if near_copies is
3086          * close to raid_disks, then resync window could increases
3087          * linearly with the increase of raid_disks, which means
3088          * we will suspend a really large IO window while it is not
3089          * necessary. If raid_disks is not divisible by near_copies,
3090          * an extra chunk is needed to ensure the whole "stripe" is
3091          * covered.
3092          */
3093
3094         chunks = conf->geo.raid_disks / conf->geo.near_copies;
3095         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3096                 extra_chunk = 0;
3097         else
3098                 extra_chunk = 1;
3099         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3100
3101         /*
3102          * At least use a 32M window to align with raid1's resync window
3103          */
3104         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3105                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3106
3107         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3108 }
3109
3110 /*
3111  * perform a "sync" on one "block"
3112  *
3113  * We need to make sure that no normal I/O request - particularly write
3114  * requests - conflict with active sync requests.
3115  *
3116  * This is achieved by tracking pending requests and a 'barrier' concept
3117  * that can be installed to exclude normal IO requests.
3118  *
3119  * Resync and recovery are handled very differently.
3120  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3121  *
3122  * For resync, we iterate over virtual addresses, read all copies,
3123  * and update if there are differences.  If only one copy is live,
3124  * skip it.
3125  * For recovery, we iterate over physical addresses, read a good
3126  * value for each non-in_sync drive, and over-write.
3127  *
3128  * So, for recovery we may have several outstanding complex requests for a
3129  * given address, one for each out-of-sync device.  We model this by allocating
3130  * a number of r10_bio structures, one for each out-of-sync device.
3131  * As we setup these structures, we collect all bio's together into a list
3132  * which we then process collectively to add pages, and then process again
3133  * to pass to submit_bio_noacct.
3134  *
3135  * The r10_bio structures are linked using a borrowed master_bio pointer.
3136  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3137  * has its remaining count decremented to 0, the whole complex operation
3138  * is complete.
3139  *
3140  */
3141
3142 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3143                              int *skipped)
3144 {
3145         struct r10conf *conf = mddev->private;
3146         struct r10bio *r10_bio;
3147         struct bio *biolist = NULL, *bio;
3148         sector_t max_sector, nr_sectors;
3149         int i;
3150         int max_sync;
3151         sector_t sync_blocks;
3152         sector_t sectors_skipped = 0;
3153         int chunks_skipped = 0;
3154         sector_t chunk_mask = conf->geo.chunk_mask;
3155         int page_idx = 0;
3156         int error_disk = -1;
3157
3158         /*
3159          * Allow skipping a full rebuild for incremental assembly
3160          * of a clean array, like RAID1 does.
3161          */
3162         if (mddev->bitmap == NULL &&
3163             mddev->recovery_cp == MaxSector &&
3164             mddev->reshape_position == MaxSector &&
3165             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3166             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3167             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3168             conf->fullsync == 0) {
3169                 *skipped = 1;
3170                 return mddev->dev_sectors - sector_nr;
3171         }
3172
3173         if (!mempool_initialized(&conf->r10buf_pool))
3174                 if (init_resync(conf))
3175                         return 0;
3176
3177  skipped:
3178         max_sector = mddev->dev_sectors;
3179         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3180             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3181                 max_sector = mddev->resync_max_sectors;
3182         if (sector_nr >= max_sector) {
3183                 conf->cluster_sync_low = 0;
3184                 conf->cluster_sync_high = 0;
3185
3186                 /* If we aborted, we need to abort the
3187                  * sync on the 'current' bitmap chucks (there can
3188                  * be several when recovering multiple devices).
3189                  * as we may have started syncing it but not finished.
3190                  * We can find the current address in
3191                  * mddev->curr_resync, but for recovery,
3192                  * we need to convert that to several
3193                  * virtual addresses.
3194                  */
3195                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3196                         end_reshape(conf);
3197                         close_sync(conf);
3198                         return 0;
3199                 }
3200
3201                 if (mddev->curr_resync < max_sector) { /* aborted */
3202                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3203                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3204                                                    &sync_blocks, 1);
3205                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3206                                 sector_t sect =
3207                                         raid10_find_virt(conf, mddev->curr_resync, i);
3208                                 md_bitmap_end_sync(mddev->bitmap, sect,
3209                                                    &sync_blocks, 1);
3210                         }
3211                 } else {
3212                         /* completed sync */
3213                         if ((!mddev->bitmap || conf->fullsync)
3214                             && conf->have_replacement
3215                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3216                                 /* Completed a full sync so the replacements
3217                                  * are now fully recovered.
3218                                  */
3219                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3220                                         struct md_rdev *rdev =
3221                                                 conf->mirrors[i].replacement;
3222
3223                                         if (rdev)
3224                                                 rdev->recovery_offset = MaxSector;
3225                                 }
3226                         }
3227                         conf->fullsync = 0;
3228                 }
3229                 md_bitmap_close_sync(mddev->bitmap);
3230                 close_sync(conf);
3231                 *skipped = 1;
3232                 return sectors_skipped;
3233         }
3234
3235         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3236                 return reshape_request(mddev, sector_nr, skipped);
3237
3238         if (chunks_skipped >= conf->geo.raid_disks) {
3239                 pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3240                         test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?  "resync" : "recovery");
3241                 if (error_disk >= 0 &&
3242                     !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3243                         /*
3244                          * recovery fails, set mirrors.recovery_disabled,
3245                          * device shouldn't be added to there.
3246                          */
3247                         conf->mirrors[error_disk].recovery_disabled =
3248                                                 mddev->recovery_disabled;
3249                         return 0;
3250                 }
3251                 /*
3252                  * if there has been nothing to do on any drive,
3253                  * then there is nothing to do at all.
3254                  */
3255                 *skipped = 1;
3256                 return (max_sector - sector_nr) + sectors_skipped;
3257         }
3258
3259         if (max_sector > mddev->resync_max)
3260                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3261
3262         /* make sure whole request will fit in a chunk - if chunks
3263          * are meaningful
3264          */
3265         if (conf->geo.near_copies < conf->geo.raid_disks &&
3266             max_sector > (sector_nr | chunk_mask))
3267                 max_sector = (sector_nr | chunk_mask) + 1;
3268
3269         /*
3270          * If there is non-resync activity waiting for a turn, then let it
3271          * though before starting on this new sync request.
3272          */
3273         if (conf->nr_waiting)
3274                 schedule_timeout_uninterruptible(1);
3275
3276         /* Again, very different code for resync and recovery.
3277          * Both must result in an r10bio with a list of bios that
3278          * have bi_end_io, bi_sector, bi_bdev set,
3279          * and bi_private set to the r10bio.
3280          * For recovery, we may actually create several r10bios
3281          * with 2 bios in each, that correspond to the bios in the main one.
3282          * In this case, the subordinate r10bios link back through a
3283          * borrowed master_bio pointer, and the counter in the master
3284          * includes a ref from each subordinate.
3285          */
3286         /* First, we decide what to do and set ->bi_end_io
3287          * To end_sync_read if we want to read, and
3288          * end_sync_write if we will want to write.
3289          */
3290
3291         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3292         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3293                 /* recovery... the complicated one */
3294                 int j;
3295                 r10_bio = NULL;
3296
3297                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3298                         int still_degraded;
3299                         struct r10bio *rb2;
3300                         sector_t sect;
3301                         int must_sync;
3302                         int any_working;
3303                         struct raid10_info *mirror = &conf->mirrors[i];
3304                         struct md_rdev *mrdev, *mreplace;
3305
3306                         mrdev = mirror->rdev;
3307                         mreplace = mirror->replacement;
3308
3309                         if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3310                             test_bit(In_sync, &mrdev->flags)))
3311                                 mrdev = NULL;
3312                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3313                                 mreplace = NULL;
3314
3315                         if (!mrdev && !mreplace)
3316                                 continue;
3317
3318                         still_degraded = 0;
3319                         /* want to reconstruct this device */
3320                         rb2 = r10_bio;
3321                         sect = raid10_find_virt(conf, sector_nr, i);
3322                         if (sect >= mddev->resync_max_sectors)
3323                                 /* last stripe is not complete - don't
3324                                  * try to recover this sector.
3325                                  */
3326                                 continue;
3327                         /* Unless we are doing a full sync, or a replacement
3328                          * we only need to recover the block if it is set in
3329                          * the bitmap
3330                          */
3331                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3332                                                          &sync_blocks, 1);
3333                         if (sync_blocks < max_sync)
3334                                 max_sync = sync_blocks;
3335                         if (!must_sync &&
3336                             mreplace == NULL &&
3337                             !conf->fullsync) {
3338                                 /* yep, skip the sync_blocks here, but don't assume
3339                                  * that there will never be anything to do here
3340                                  */
3341                                 chunks_skipped = -1;
3342                                 continue;
3343                         }
3344                         if (mrdev)
3345                                 atomic_inc(&mrdev->nr_pending);
3346                         if (mreplace)
3347                                 atomic_inc(&mreplace->nr_pending);
3348
3349                         r10_bio = raid10_alloc_init_r10buf(conf);
3350                         r10_bio->state = 0;
3351                         raise_barrier(conf, rb2 != NULL);
3352                         atomic_set(&r10_bio->remaining, 0);
3353
3354                         r10_bio->master_bio = (struct bio*)rb2;
3355                         if (rb2)
3356                                 atomic_inc(&rb2->remaining);
3357                         r10_bio->mddev = mddev;
3358                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3359                         r10_bio->sector = sect;
3360
3361                         raid10_find_phys(conf, r10_bio);
3362
3363                         /* Need to check if the array will still be
3364                          * degraded
3365                          */
3366                         for (j = 0; j < conf->geo.raid_disks; j++) {
3367                                 struct md_rdev *rdev = conf->mirrors[j].rdev;
3368
3369                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3370                                         still_degraded = 1;
3371                                         break;
3372                                 }
3373                         }
3374
3375                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3376                                                          &sync_blocks, still_degraded);
3377
3378                         any_working = 0;
3379                         for (j=0; j<conf->copies;j++) {
3380                                 int k;
3381                                 int d = r10_bio->devs[j].devnum;
3382                                 sector_t from_addr, to_addr;
3383                                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3384                                 sector_t sector, first_bad;
3385                                 int bad_sectors;
3386                                 if (!rdev ||
3387                                     !test_bit(In_sync, &rdev->flags))
3388                                         continue;
3389                                 /* This is where we read from */
3390                                 any_working = 1;
3391                                 sector = r10_bio->devs[j].addr;
3392
3393                                 if (is_badblock(rdev, sector, max_sync,
3394                                                 &first_bad, &bad_sectors)) {
3395                                         if (first_bad > sector)
3396                                                 max_sync = first_bad - sector;
3397                                         else {
3398                                                 bad_sectors -= (sector
3399                                                                 - first_bad);
3400                                                 if (max_sync > bad_sectors)
3401                                                         max_sync = bad_sectors;
3402                                                 continue;
3403                                         }
3404                                 }
3405                                 bio = r10_bio->devs[0].bio;
3406                                 bio->bi_next = biolist;
3407                                 biolist = bio;
3408                                 bio->bi_end_io = end_sync_read;
3409                                 bio->bi_opf = REQ_OP_READ;
3410                                 if (test_bit(FailFast, &rdev->flags))
3411                                         bio->bi_opf |= MD_FAILFAST;
3412                                 from_addr = r10_bio->devs[j].addr;
3413                                 bio->bi_iter.bi_sector = from_addr +
3414                                         rdev->data_offset;
3415                                 bio_set_dev(bio, rdev->bdev);
3416                                 atomic_inc(&rdev->nr_pending);
3417                                 /* and we write to 'i' (if not in_sync) */
3418
3419                                 for (k=0; k<conf->copies; k++)
3420                                         if (r10_bio->devs[k].devnum == i)
3421                                                 break;
3422                                 BUG_ON(k == conf->copies);
3423                                 to_addr = r10_bio->devs[k].addr;
3424                                 r10_bio->devs[0].devnum = d;
3425                                 r10_bio->devs[0].addr = from_addr;
3426                                 r10_bio->devs[1].devnum = i;
3427                                 r10_bio->devs[1].addr = to_addr;
3428
3429                                 if (mrdev) {
3430                                         bio = r10_bio->devs[1].bio;
3431                                         bio->bi_next = biolist;
3432                                         biolist = bio;
3433                                         bio->bi_end_io = end_sync_write;
3434                                         bio->bi_opf = REQ_OP_WRITE;
3435                                         bio->bi_iter.bi_sector = to_addr
3436                                                 + mrdev->data_offset;
3437                                         bio_set_dev(bio, mrdev->bdev);
3438                                         atomic_inc(&r10_bio->remaining);
3439                                 } else
3440                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3441
3442                                 /* and maybe write to replacement */
3443                                 bio = r10_bio->devs[1].repl_bio;
3444                                 if (bio)
3445                                         bio->bi_end_io = NULL;
3446                                 /* Note: if replace is not NULL, then bio
3447                                  * cannot be NULL as r10buf_pool_alloc will
3448                                  * have allocated it.
3449                                  */
3450                                 if (!mreplace)
3451                                         break;
3452                                 bio->bi_next = biolist;
3453                                 biolist = bio;
3454                                 bio->bi_end_io = end_sync_write;
3455                                 bio->bi_opf = REQ_OP_WRITE;
3456                                 bio->bi_iter.bi_sector = to_addr +
3457                                         mreplace->data_offset;
3458                                 bio_set_dev(bio, mreplace->bdev);
3459                                 atomic_inc(&r10_bio->remaining);
3460                                 break;
3461                         }
3462                         if (j == conf->copies) {
3463                                 /* Cannot recover, so abort the recovery or
3464                                  * record a bad block */
3465                                 if (any_working) {
3466                                         /* problem is that there are bad blocks
3467                                          * on other device(s)
3468                                          */
3469                                         int k;
3470                                         for (k = 0; k < conf->copies; k++)
3471                                                 if (r10_bio->devs[k].devnum == i)
3472                                                         break;
3473                                         if (mrdev && !test_bit(In_sync,
3474                                                       &mrdev->flags)
3475                                             && !rdev_set_badblocks(
3476                                                     mrdev,
3477                                                     r10_bio->devs[k].addr,
3478                                                     max_sync, 0))
3479                                                 any_working = 0;
3480                                         if (mreplace &&
3481                                             !rdev_set_badblocks(
3482                                                     mreplace,
3483                                                     r10_bio->devs[k].addr,
3484                                                     max_sync, 0))
3485                                                 any_working = 0;
3486                                 }
3487                                 if (!any_working)  {
3488                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3489                                                               &mddev->recovery))
3490                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3491                                                        mdname(mddev));
3492                                         mirror->recovery_disabled
3493                                                 = mddev->recovery_disabled;
3494                                 } else {
3495                                         error_disk = i;
3496                                 }
3497                                 put_buf(r10_bio);
3498                                 if (rb2)
3499                                         atomic_dec(&rb2->remaining);
3500                                 r10_bio = rb2;
3501                                 if (mrdev)
3502                                         rdev_dec_pending(mrdev, mddev);
3503                                 if (mreplace)
3504                                         rdev_dec_pending(mreplace, mddev);
3505                                 break;
3506                         }
3507                         if (mrdev)
3508                                 rdev_dec_pending(mrdev, mddev);
3509                         if (mreplace)
3510                                 rdev_dec_pending(mreplace, mddev);
3511                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3512                                 /* Only want this if there is elsewhere to
3513                                  * read from. 'j' is currently the first
3514                                  * readable copy.
3515                                  */
3516                                 int targets = 1;
3517                                 for (; j < conf->copies; j++) {
3518                                         int d = r10_bio->devs[j].devnum;
3519                                         if (conf->mirrors[d].rdev &&
3520                                             test_bit(In_sync,
3521                                                       &conf->mirrors[d].rdev->flags))
3522                                                 targets++;
3523                                 }
3524                                 if (targets == 1)
3525                                         r10_bio->devs[0].bio->bi_opf
3526                                                 &= ~MD_FAILFAST;
3527                         }
3528                 }
3529                 if (biolist == NULL) {
3530                         while (r10_bio) {
3531                                 struct r10bio *rb2 = r10_bio;
3532                                 r10_bio = (struct r10bio*) rb2->master_bio;
3533                                 rb2->master_bio = NULL;
3534                                 put_buf(rb2);
3535                         }
3536                         goto giveup;
3537                 }
3538         } else {
3539                 /* resync. Schedule a read for every block at this virt offset */
3540                 int count = 0;
3541
3542                 /*
3543                  * Since curr_resync_completed could probably not update in
3544                  * time, and we will set cluster_sync_low based on it.
3545                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3546                  * safety reason, which ensures curr_resync_completed is
3547                  * updated in bitmap_cond_end_sync.
3548                  */
3549                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3550                                         mddev_is_clustered(mddev) &&
3551                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3552
3553                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3554                                           &sync_blocks, mddev->degraded) &&
3555                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3556                                                  &mddev->recovery)) {
3557                         /* We can skip this block */
3558                         *skipped = 1;
3559                         return sync_blocks + sectors_skipped;
3560                 }
3561                 if (sync_blocks < max_sync)
3562                         max_sync = sync_blocks;
3563                 r10_bio = raid10_alloc_init_r10buf(conf);
3564                 r10_bio->state = 0;
3565
3566                 r10_bio->mddev = mddev;
3567                 atomic_set(&r10_bio->remaining, 0);
3568                 raise_barrier(conf, 0);
3569                 conf->next_resync = sector_nr;
3570
3571                 r10_bio->master_bio = NULL;
3572                 r10_bio->sector = sector_nr;
3573                 set_bit(R10BIO_IsSync, &r10_bio->state);
3574                 raid10_find_phys(conf, r10_bio);
3575                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3576
3577                 for (i = 0; i < conf->copies; i++) {
3578                         int d = r10_bio->devs[i].devnum;
3579                         sector_t first_bad, sector;
3580                         int bad_sectors;
3581                         struct md_rdev *rdev;
3582
3583                         if (r10_bio->devs[i].repl_bio)
3584                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3585
3586                         bio = r10_bio->devs[i].bio;
3587                         bio->bi_status = BLK_STS_IOERR;
3588                         rdev = conf->mirrors[d].rdev;
3589                         if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3590                                 continue;
3591
3592                         sector = r10_bio->devs[i].addr;
3593                         if (is_badblock(rdev, sector, max_sync,
3594                                         &first_bad, &bad_sectors)) {
3595                                 if (first_bad > sector)
3596                                         max_sync = first_bad - sector;
3597                                 else {
3598                                         bad_sectors -= (sector - first_bad);
3599                                         if (max_sync > bad_sectors)
3600                                                 max_sync = bad_sectors;
3601                                         continue;
3602                                 }
3603                         }
3604                         atomic_inc(&rdev->nr_pending);
3605                         atomic_inc(&r10_bio->remaining);
3606                         bio->bi_next = biolist;
3607                         biolist = bio;
3608                         bio->bi_end_io = end_sync_read;
3609                         bio->bi_opf = REQ_OP_READ;
3610                         if (test_bit(FailFast, &rdev->flags))
3611                                 bio->bi_opf |= MD_FAILFAST;
3612                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3613                         bio_set_dev(bio, rdev->bdev);
3614                         count++;
3615
3616                         rdev = conf->mirrors[d].replacement;
3617                         if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3618                                 continue;
3619
3620                         atomic_inc(&rdev->nr_pending);
3621
3622                         /* Need to set up for writing to the replacement */
3623                         bio = r10_bio->devs[i].repl_bio;
3624                         bio->bi_status = BLK_STS_IOERR;
3625
3626                         sector = r10_bio->devs[i].addr;
3627                         bio->bi_next = biolist;
3628                         biolist = bio;
3629                         bio->bi_end_io = end_sync_write;
3630                         bio->bi_opf = REQ_OP_WRITE;
3631                         if (test_bit(FailFast, &rdev->flags))
3632                                 bio->bi_opf |= MD_FAILFAST;
3633                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3634                         bio_set_dev(bio, rdev->bdev);
3635                         count++;
3636                 }
3637
3638                 if (count < 2) {
3639                         for (i=0; i<conf->copies; i++) {
3640                                 int d = r10_bio->devs[i].devnum;
3641                                 if (r10_bio->devs[i].bio->bi_end_io)
3642                                         rdev_dec_pending(conf->mirrors[d].rdev,
3643                                                          mddev);
3644                                 if (r10_bio->devs[i].repl_bio &&
3645                                     r10_bio->devs[i].repl_bio->bi_end_io)
3646                                         rdev_dec_pending(
3647                                                 conf->mirrors[d].replacement,
3648                                                 mddev);
3649                         }
3650                         put_buf(r10_bio);
3651                         biolist = NULL;
3652                         goto giveup;
3653                 }
3654         }
3655
3656         nr_sectors = 0;
3657         if (sector_nr + max_sync < max_sector)
3658                 max_sector = sector_nr + max_sync;
3659         do {
3660                 struct page *page;
3661                 int len = PAGE_SIZE;
3662                 if (sector_nr + (len>>9) > max_sector)
3663                         len = (max_sector - sector_nr) << 9;
3664                 if (len == 0)
3665                         break;
3666                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3667                         struct resync_pages *rp = get_resync_pages(bio);
3668                         page = resync_fetch_page(rp, page_idx);
3669                         if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3670                                 bio->bi_status = BLK_STS_RESOURCE;
3671                                 bio_endio(bio);
3672                                 goto giveup;
3673                         }
3674                 }
3675                 nr_sectors += len>>9;
3676                 sector_nr += len>>9;
3677         } while (++page_idx < RESYNC_PAGES);
3678         r10_bio->sectors = nr_sectors;
3679
3680         if (mddev_is_clustered(mddev) &&
3681             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3682                 /* It is resync not recovery */
3683                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3684                         conf->cluster_sync_low = mddev->curr_resync_completed;
3685                         raid10_set_cluster_sync_high(conf);
3686                         /* Send resync message */
3687                         md_cluster_ops->resync_info_update(mddev,
3688                                                 conf->cluster_sync_low,
3689                                                 conf->cluster_sync_high);
3690                 }
3691         } else if (mddev_is_clustered(mddev)) {
3692                 /* This is recovery not resync */
3693                 sector_t sect_va1, sect_va2;
3694                 bool broadcast_msg = false;
3695
3696                 for (i = 0; i < conf->geo.raid_disks; i++) {
3697                         /*
3698                          * sector_nr is a device address for recovery, so we
3699                          * need translate it to array address before compare
3700                          * with cluster_sync_high.
3701                          */
3702                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3703
3704                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3705                                 broadcast_msg = true;
3706                                 /*
3707                                  * curr_resync_completed is similar as
3708                                  * sector_nr, so make the translation too.
3709                                  */
3710                                 sect_va2 = raid10_find_virt(conf,
3711                                         mddev->curr_resync_completed, i);
3712
3713                                 if (conf->cluster_sync_low == 0 ||
3714                                     conf->cluster_sync_low > sect_va2)
3715                                         conf->cluster_sync_low = sect_va2;
3716                         }
3717                 }
3718                 if (broadcast_msg) {
3719                         raid10_set_cluster_sync_high(conf);
3720                         md_cluster_ops->resync_info_update(mddev,
3721                                                 conf->cluster_sync_low,
3722                                                 conf->cluster_sync_high);
3723                 }
3724         }
3725
3726         while (biolist) {
3727                 bio = biolist;
3728                 biolist = biolist->bi_next;
3729
3730                 bio->bi_next = NULL;
3731                 r10_bio = get_resync_r10bio(bio);
3732                 r10_bio->sectors = nr_sectors;
3733
3734                 if (bio->bi_end_io == end_sync_read) {
3735                         md_sync_acct_bio(bio, nr_sectors);
3736                         bio->bi_status = 0;
3737                         submit_bio_noacct(bio);
3738                 }
3739         }
3740
3741         if (sectors_skipped)
3742                 /* pretend they weren't skipped, it makes
3743                  * no important difference in this case
3744                  */
3745                 md_done_sync(mddev, sectors_skipped, 1);
3746
3747         return sectors_skipped + nr_sectors;
3748  giveup:
3749         /* There is nowhere to write, so all non-sync
3750          * drives must be failed or in resync, all drives
3751          * have a bad block, so try the next chunk...
3752          */
3753         if (sector_nr + max_sync < max_sector)
3754                 max_sector = sector_nr + max_sync;
3755
3756         sectors_skipped += (max_sector - sector_nr);
3757         chunks_skipped ++;
3758         sector_nr = max_sector;
3759         goto skipped;
3760 }
3761
3762 static sector_t
3763 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3764 {
3765         sector_t size;
3766         struct r10conf *conf = mddev->private;
3767
3768         if (!raid_disks)
3769                 raid_disks = min(conf->geo.raid_disks,
3770                                  conf->prev.raid_disks);
3771         if (!sectors)
3772                 sectors = conf->dev_sectors;
3773
3774         size = sectors >> conf->geo.chunk_shift;
3775         sector_div(size, conf->geo.far_copies);
3776         size = size * raid_disks;
3777         sector_div(size, conf->geo.near_copies);
3778
3779         return size << conf->geo.chunk_shift;
3780 }
3781
3782 static void calc_sectors(struct r10conf *conf, sector_t size)
3783 {
3784         /* Calculate the number of sectors-per-device that will
3785          * actually be used, and set conf->dev_sectors and
3786          * conf->stride
3787          */
3788
3789         size = size >> conf->geo.chunk_shift;
3790         sector_div(size, conf->geo.far_copies);
3791         size = size * conf->geo.raid_disks;
3792         sector_div(size, conf->geo.near_copies);
3793         /* 'size' is now the number of chunks in the array */
3794         /* calculate "used chunks per device" */
3795         size = size * conf->copies;
3796
3797         /* We need to round up when dividing by raid_disks to
3798          * get the stride size.
3799          */
3800         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3801
3802         conf->dev_sectors = size << conf->geo.chunk_shift;
3803
3804         if (conf->geo.far_offset)
3805                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3806         else {
3807                 sector_div(size, conf->geo.far_copies);
3808                 conf->geo.stride = size << conf->geo.chunk_shift;
3809         }
3810 }
3811
3812 enum geo_type {geo_new, geo_old, geo_start};
3813 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3814 {
3815         int nc, fc, fo;
3816         int layout, chunk, disks;
3817         switch (new) {
3818         case geo_old:
3819                 layout = mddev->layout;
3820                 chunk = mddev->chunk_sectors;
3821                 disks = mddev->raid_disks - mddev->delta_disks;
3822                 break;
3823         case geo_new:
3824                 layout = mddev->new_layout;
3825                 chunk = mddev->new_chunk_sectors;
3826                 disks = mddev->raid_disks;
3827                 break;
3828         default: /* avoid 'may be unused' warnings */
3829         case geo_start: /* new when starting reshape - raid_disks not
3830                          * updated yet. */
3831                 layout = mddev->new_layout;
3832                 chunk = mddev->new_chunk_sectors;
3833                 disks = mddev->raid_disks + mddev->delta_disks;
3834                 break;
3835         }
3836         if (layout >> 19)
3837                 return -1;
3838         if (chunk < (PAGE_SIZE >> 9) ||
3839             !is_power_of_2(chunk))
3840                 return -2;
3841         nc = layout & 255;
3842         fc = (layout >> 8) & 255;
3843         fo = layout & (1<<16);
3844         geo->raid_disks = disks;
3845         geo->near_copies = nc;
3846         geo->far_copies = fc;
3847         geo->far_offset = fo;
3848         switch (layout >> 17) {
3849         case 0: /* original layout.  simple but not always optimal */
3850                 geo->far_set_size = disks;
3851                 break;
3852         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3853                  * actually using this, but leave code here just in case.*/
3854                 geo->far_set_size = disks/fc;
3855                 WARN(geo->far_set_size < fc,
3856                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3857                 break;
3858         case 2: /* "improved" layout fixed to match documentation */
3859                 geo->far_set_size = fc * nc;
3860                 break;
3861         default: /* Not a valid layout */
3862                 return -1;
3863         }
3864         geo->chunk_mask = chunk - 1;
3865         geo->chunk_shift = ffz(~chunk);
3866         return nc*fc;
3867 }
3868
3869 static void raid10_free_conf(struct r10conf *conf)
3870 {
3871         if (!conf)
3872                 return;
3873
3874         mempool_exit(&conf->r10bio_pool);
3875         kfree(conf->mirrors);
3876         kfree(conf->mirrors_old);
3877         kfree(conf->mirrors_new);
3878         safe_put_page(conf->tmppage);
3879         bioset_exit(&conf->bio_split);
3880         kfree(conf);
3881 }
3882
3883 static struct r10conf *setup_conf(struct mddev *mddev)
3884 {
3885         struct r10conf *conf = NULL;
3886         int err = -EINVAL;
3887         struct geom geo;
3888         int copies;
3889
3890         copies = setup_geo(&geo, mddev, geo_new);
3891
3892         if (copies == -2) {
3893                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3894                         mdname(mddev), PAGE_SIZE);
3895                 goto out;
3896         }
3897
3898         if (copies < 2 || copies > mddev->raid_disks) {
3899                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3900                         mdname(mddev), mddev->new_layout);
3901                 goto out;
3902         }
3903
3904         err = -ENOMEM;
3905         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3906         if (!conf)
3907                 goto out;
3908
3909         /* FIXME calc properly */
3910         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3911                                 sizeof(struct raid10_info),
3912                                 GFP_KERNEL);
3913         if (!conf->mirrors)
3914                 goto out;
3915
3916         conf->tmppage = alloc_page(GFP_KERNEL);
3917         if (!conf->tmppage)
3918                 goto out;
3919
3920         conf->geo = geo;
3921         conf->copies = copies;
3922         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3923                            rbio_pool_free, conf);
3924         if (err)
3925                 goto out;
3926
3927         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3928         if (err)
3929                 goto out;
3930
3931         calc_sectors(conf, mddev->dev_sectors);
3932         if (mddev->reshape_position == MaxSector) {
3933                 conf->prev = conf->geo;
3934                 conf->reshape_progress = MaxSector;
3935         } else {
3936                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3937                         err = -EINVAL;
3938                         goto out;
3939                 }
3940                 conf->reshape_progress = mddev->reshape_position;
3941                 if (conf->prev.far_offset)
3942                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3943                 else
3944                         /* far_copies must be 1 */
3945                         conf->prev.stride = conf->dev_sectors;
3946         }
3947         conf->reshape_safe = conf->reshape_progress;
3948         spin_lock_init(&conf->device_lock);
3949         INIT_LIST_HEAD(&conf->retry_list);
3950         INIT_LIST_HEAD(&conf->bio_end_io_list);
3951
3952         seqlock_init(&conf->resync_lock);
3953         init_waitqueue_head(&conf->wait_barrier);
3954         atomic_set(&conf->nr_pending, 0);
3955
3956         err = -ENOMEM;
3957         rcu_assign_pointer(conf->thread,
3958                            md_register_thread(raid10d, mddev, "raid10"));
3959         if (!conf->thread)
3960                 goto out;
3961
3962         conf->mddev = mddev;
3963         return conf;
3964
3965  out:
3966         raid10_free_conf(conf);
3967         return ERR_PTR(err);
3968 }
3969
3970 static unsigned int raid10_nr_stripes(struct r10conf *conf)
3971 {
3972         unsigned int raid_disks = conf->geo.raid_disks;
3973
3974         if (conf->geo.raid_disks % conf->geo.near_copies)
3975                 return raid_disks;
3976         return raid_disks / conf->geo.near_copies;
3977 }
3978
3979 static int raid10_set_queue_limits(struct mddev *mddev)
3980 {
3981         struct r10conf *conf = mddev->private;
3982         struct queue_limits lim;
3983
3984         blk_set_stacking_limits(&lim);
3985         lim.max_write_zeroes_sectors = 0;
3986         lim.io_min = mddev->chunk_sectors << 9;
3987         lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
3988         mddev_stack_rdev_limits(mddev, &lim);
3989         return queue_limits_set(mddev->gendisk->queue, &lim);
3990 }
3991
3992 static int raid10_run(struct mddev *mddev)
3993 {
3994         struct r10conf *conf;
3995         int i, disk_idx;
3996         struct raid10_info *disk;
3997         struct md_rdev *rdev;
3998         sector_t size;
3999         sector_t min_offset_diff = 0;
4000         int first = 1;
4001         int ret = -EIO;
4002
4003         if (mddev->private == NULL) {
4004                 conf = setup_conf(mddev);
4005                 if (IS_ERR(conf))
4006                         return PTR_ERR(conf);
4007                 mddev->private = conf;
4008         }
4009         conf = mddev->private;
4010         if (!conf)
4011                 goto out;
4012
4013         rcu_assign_pointer(mddev->thread, conf->thread);
4014         rcu_assign_pointer(conf->thread, NULL);
4015
4016         if (mddev_is_clustered(conf->mddev)) {
4017                 int fc, fo;
4018
4019                 fc = (mddev->layout >> 8) & 255;
4020                 fo = mddev->layout & (1<<16);
4021                 if (fc > 1 || fo > 0) {
4022                         pr_err("only near layout is supported by clustered"
4023                                 " raid10\n");
4024                         goto out_free_conf;
4025                 }
4026         }
4027
4028         rdev_for_each(rdev, mddev) {
4029                 long long diff;
4030
4031                 disk_idx = rdev->raid_disk;
4032                 if (disk_idx < 0)
4033                         continue;
4034                 if (disk_idx >= conf->geo.raid_disks &&
4035                     disk_idx >= conf->prev.raid_disks)
4036                         continue;
4037                 disk = conf->mirrors + disk_idx;
4038
4039                 if (test_bit(Replacement, &rdev->flags)) {
4040                         if (disk->replacement)
4041                                 goto out_free_conf;
4042                         disk->replacement = rdev;
4043                 } else {
4044                         if (disk->rdev)
4045                                 goto out_free_conf;
4046                         disk->rdev = rdev;
4047                 }
4048                 diff = (rdev->new_data_offset - rdev->data_offset);
4049                 if (!mddev->reshape_backwards)
4050                         diff = -diff;
4051                 if (diff < 0)
4052                         diff = 0;
4053                 if (first || diff < min_offset_diff)
4054                         min_offset_diff = diff;
4055
4056                 disk->head_position = 0;
4057                 first = 0;
4058         }
4059
4060         if (!mddev_is_dm(conf->mddev)) {
4061                 ret = raid10_set_queue_limits(mddev);
4062                 if (ret)
4063                         goto out_free_conf;
4064         }
4065
4066         /* need to check that every block has at least one working mirror */
4067         if (!enough(conf, -1)) {
4068                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4069                        mdname(mddev));
4070                 goto out_free_conf;
4071         }
4072
4073         if (conf->reshape_progress != MaxSector) {
4074                 /* must ensure that shape change is supported */
4075                 if (conf->geo.far_copies != 1 &&
4076                     conf->geo.far_offset == 0)
4077                         goto out_free_conf;
4078                 if (conf->prev.far_copies != 1 &&
4079                     conf->prev.far_offset == 0)
4080                         goto out_free_conf;
4081         }
4082
4083         mddev->degraded = 0;
4084         for (i = 0;
4085              i < conf->geo.raid_disks
4086                      || i < conf->prev.raid_disks;
4087              i++) {
4088
4089                 disk = conf->mirrors + i;
4090
4091                 if (!disk->rdev && disk->replacement) {
4092                         /* The replacement is all we have - use it */
4093                         disk->rdev = disk->replacement;
4094                         disk->replacement = NULL;
4095                         clear_bit(Replacement, &disk->rdev->flags);
4096                 }
4097
4098                 if (!disk->rdev ||
4099                     !test_bit(In_sync, &disk->rdev->flags)) {
4100                         disk->head_position = 0;
4101                         mddev->degraded++;
4102                         if (disk->rdev &&
4103                             disk->rdev->saved_raid_disk < 0)
4104                                 conf->fullsync = 1;
4105                 }
4106
4107                 if (disk->replacement &&
4108                     !test_bit(In_sync, &disk->replacement->flags) &&
4109                     disk->replacement->saved_raid_disk < 0) {
4110                         conf->fullsync = 1;
4111                 }
4112
4113                 disk->recovery_disabled = mddev->recovery_disabled - 1;
4114         }
4115
4116         if (mddev->recovery_cp != MaxSector)
4117                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4118                           mdname(mddev));
4119         pr_info("md/raid10:%s: active with %d out of %d devices\n",
4120                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4121                 conf->geo.raid_disks);
4122         /*
4123          * Ok, everything is just fine now
4124          */
4125         mddev->dev_sectors = conf->dev_sectors;
4126         size = raid10_size(mddev, 0, 0);
4127         md_set_array_sectors(mddev, size);
4128         mddev->resync_max_sectors = size;
4129         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4130
4131         if (md_integrity_register(mddev))
4132                 goto out_free_conf;
4133
4134         if (conf->reshape_progress != MaxSector) {
4135                 unsigned long before_length, after_length;
4136
4137                 before_length = ((1 << conf->prev.chunk_shift) *
4138                                  conf->prev.far_copies);
4139                 after_length = ((1 << conf->geo.chunk_shift) *
4140                                 conf->geo.far_copies);
4141
4142                 if (max(before_length, after_length) > min_offset_diff) {
4143                         /* This cannot work */
4144                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4145                         goto out_free_conf;
4146                 }
4147                 conf->offset_diff = min_offset_diff;
4148
4149                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4150                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4151                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4152                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4153         }
4154
4155         return 0;
4156
4157 out_free_conf:
4158         md_unregister_thread(mddev, &mddev->thread);
4159         raid10_free_conf(conf);
4160         mddev->private = NULL;
4161 out:
4162         return ret;
4163 }
4164
4165 static void raid10_free(struct mddev *mddev, void *priv)
4166 {
4167         raid10_free_conf(priv);
4168 }
4169
4170 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4171 {
4172         struct r10conf *conf = mddev->private;
4173
4174         if (quiesce)
4175                 raise_barrier(conf, 0);
4176         else
4177                 lower_barrier(conf);
4178 }
4179
4180 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4181 {
4182         /* Resize of 'far' arrays is not supported.
4183          * For 'near' and 'offset' arrays we can set the
4184          * number of sectors used to be an appropriate multiple
4185          * of the chunk size.
4186          * For 'offset', this is far_copies*chunksize.
4187          * For 'near' the multiplier is the LCM of
4188          * near_copies and raid_disks.
4189          * So if far_copies > 1 && !far_offset, fail.
4190          * Else find LCM(raid_disks, near_copy)*far_copies and
4191          * multiply by chunk_size.  Then round to this number.
4192          * This is mostly done by raid10_size()
4193          */
4194         struct r10conf *conf = mddev->private;
4195         sector_t oldsize, size;
4196
4197         if (mddev->reshape_position != MaxSector)
4198                 return -EBUSY;
4199
4200         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4201                 return -EINVAL;
4202
4203         oldsize = raid10_size(mddev, 0, 0);
4204         size = raid10_size(mddev, sectors, 0);
4205         if (mddev->external_size &&
4206             mddev->array_sectors > size)
4207                 return -EINVAL;
4208         if (mddev->bitmap) {
4209                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4210                 if (ret)
4211                         return ret;
4212         }
4213         md_set_array_sectors(mddev, size);
4214         if (sectors > mddev->dev_sectors &&
4215             mddev->recovery_cp > oldsize) {
4216                 mddev->recovery_cp = oldsize;
4217                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4218         }
4219         calc_sectors(conf, sectors);
4220         mddev->dev_sectors = conf->dev_sectors;
4221         mddev->resync_max_sectors = size;
4222         return 0;
4223 }
4224
4225 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4226 {
4227         struct md_rdev *rdev;
4228         struct r10conf *conf;
4229
4230         if (mddev->degraded > 0) {
4231                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4232                         mdname(mddev));
4233                 return ERR_PTR(-EINVAL);
4234         }
4235         sector_div(size, devs);
4236
4237         /* Set new parameters */
4238         mddev->new_level = 10;
4239         /* new layout: far_copies = 1, near_copies = 2 */
4240         mddev->new_layout = (1<<8) + 2;
4241         mddev->new_chunk_sectors = mddev->chunk_sectors;
4242         mddev->delta_disks = mddev->raid_disks;
4243         mddev->raid_disks *= 2;
4244         /* make sure it will be not marked as dirty */
4245         mddev->recovery_cp = MaxSector;
4246         mddev->dev_sectors = size;
4247
4248         conf = setup_conf(mddev);
4249         if (!IS_ERR(conf)) {
4250                 rdev_for_each(rdev, mddev)
4251                         if (rdev->raid_disk >= 0) {
4252                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4253                                 rdev->sectors = size;
4254                         }
4255         }
4256
4257         return conf;
4258 }
4259
4260 static void *raid10_takeover(struct mddev *mddev)
4261 {
4262         struct r0conf *raid0_conf;
4263
4264         /* raid10 can take over:
4265          *  raid0 - providing it has only two drives
4266          */
4267         if (mddev->level == 0) {
4268                 /* for raid0 takeover only one zone is supported */
4269                 raid0_conf = mddev->private;
4270                 if (raid0_conf->nr_strip_zones > 1) {
4271                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4272                                 mdname(mddev));
4273                         return ERR_PTR(-EINVAL);
4274                 }
4275                 return raid10_takeover_raid0(mddev,
4276                         raid0_conf->strip_zone->zone_end,
4277                         raid0_conf->strip_zone->nb_dev);
4278         }
4279         return ERR_PTR(-EINVAL);
4280 }
4281
4282 static int raid10_check_reshape(struct mddev *mddev)
4283 {
4284         /* Called when there is a request to change
4285          * - layout (to ->new_layout)
4286          * - chunk size (to ->new_chunk_sectors)
4287          * - raid_disks (by delta_disks)
4288          * or when trying to restart a reshape that was ongoing.
4289          *
4290          * We need to validate the request and possibly allocate
4291          * space if that might be an issue later.
4292          *
4293          * Currently we reject any reshape of a 'far' mode array,
4294          * allow chunk size to change if new is generally acceptable,
4295          * allow raid_disks to increase, and allow
4296          * a switch between 'near' mode and 'offset' mode.
4297          */
4298         struct r10conf *conf = mddev->private;
4299         struct geom geo;
4300
4301         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4302                 return -EINVAL;
4303
4304         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4305                 /* mustn't change number of copies */
4306                 return -EINVAL;
4307         if (geo.far_copies > 1 && !geo.far_offset)
4308                 /* Cannot switch to 'far' mode */
4309                 return -EINVAL;
4310
4311         if (mddev->array_sectors & geo.chunk_mask)
4312                         /* not factor of array size */
4313                         return -EINVAL;
4314
4315         if (!enough(conf, -1))
4316                 return -EINVAL;
4317
4318         kfree(conf->mirrors_new);
4319         conf->mirrors_new = NULL;
4320         if (mddev->delta_disks > 0) {
4321                 /* allocate new 'mirrors' list */
4322                 conf->mirrors_new =
4323                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4324                                 sizeof(struct raid10_info),
4325                                 GFP_KERNEL);
4326                 if (!conf->mirrors_new)
4327                         return -ENOMEM;
4328         }
4329         return 0;
4330 }
4331
4332 /*
4333  * Need to check if array has failed when deciding whether to:
4334  *  - start an array
4335  *  - remove non-faulty devices
4336  *  - add a spare
4337  *  - allow a reshape
4338  * This determination is simple when no reshape is happening.
4339  * However if there is a reshape, we need to carefully check
4340  * both the before and after sections.
4341  * This is because some failed devices may only affect one
4342  * of the two sections, and some non-in_sync devices may
4343  * be insync in the section most affected by failed devices.
4344  */
4345 static int calc_degraded(struct r10conf *conf)
4346 {
4347         int degraded, degraded2;
4348         int i;
4349
4350         degraded = 0;
4351         /* 'prev' section first */
4352         for (i = 0; i < conf->prev.raid_disks; i++) {
4353                 struct md_rdev *rdev = conf->mirrors[i].rdev;
4354
4355                 if (!rdev || test_bit(Faulty, &rdev->flags))
4356                         degraded++;
4357                 else if (!test_bit(In_sync, &rdev->flags))
4358                         /* When we can reduce the number of devices in
4359                          * an array, this might not contribute to
4360                          * 'degraded'.  It does now.
4361                          */
4362                         degraded++;
4363         }
4364         if (conf->geo.raid_disks == conf->prev.raid_disks)
4365                 return degraded;
4366         degraded2 = 0;
4367         for (i = 0; i < conf->geo.raid_disks; i++) {
4368                 struct md_rdev *rdev = conf->mirrors[i].rdev;
4369
4370                 if (!rdev || test_bit(Faulty, &rdev->flags))
4371                         degraded2++;
4372                 else if (!test_bit(In_sync, &rdev->flags)) {
4373                         /* If reshape is increasing the number of devices,
4374                          * this section has already been recovered, so
4375                          * it doesn't contribute to degraded.
4376                          * else it does.
4377                          */
4378                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4379                                 degraded2++;
4380                 }
4381         }
4382         if (degraded2 > degraded)
4383                 return degraded2;
4384         return degraded;
4385 }
4386
4387 static int raid10_start_reshape(struct mddev *mddev)
4388 {
4389         /* A 'reshape' has been requested. This commits
4390          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4391          * This also checks if there are enough spares and adds them
4392          * to the array.
4393          * We currently require enough spares to make the final
4394          * array non-degraded.  We also require that the difference
4395          * between old and new data_offset - on each device - is
4396          * enough that we never risk over-writing.
4397          */
4398
4399         unsigned long before_length, after_length;
4400         sector_t min_offset_diff = 0;
4401         int first = 1;
4402         struct geom new;
4403         struct r10conf *conf = mddev->private;
4404         struct md_rdev *rdev;
4405         int spares = 0;
4406         int ret;
4407
4408         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4409                 return -EBUSY;
4410
4411         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4412                 return -EINVAL;
4413
4414         before_length = ((1 << conf->prev.chunk_shift) *
4415                          conf->prev.far_copies);
4416         after_length = ((1 << conf->geo.chunk_shift) *
4417                         conf->geo.far_copies);
4418
4419         rdev_for_each(rdev, mddev) {
4420                 if (!test_bit(In_sync, &rdev->flags)
4421                     && !test_bit(Faulty, &rdev->flags))
4422                         spares++;
4423                 if (rdev->raid_disk >= 0) {
4424                         long long diff = (rdev->new_data_offset
4425                                           - rdev->data_offset);
4426                         if (!mddev->reshape_backwards)
4427                                 diff = -diff;
4428                         if (diff < 0)
4429                                 diff = 0;
4430                         if (first || diff < min_offset_diff)
4431                                 min_offset_diff = diff;
4432                         first = 0;
4433                 }
4434         }
4435
4436         if (max(before_length, after_length) > min_offset_diff)
4437                 return -EINVAL;
4438
4439         if (spares < mddev->delta_disks)
4440                 return -EINVAL;
4441
4442         conf->offset_diff = min_offset_diff;
4443         spin_lock_irq(&conf->device_lock);
4444         if (conf->mirrors_new) {
4445                 memcpy(conf->mirrors_new, conf->mirrors,
4446                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4447                 smp_mb();
4448                 kfree(conf->mirrors_old);
4449                 conf->mirrors_old = conf->mirrors;
4450                 conf->mirrors = conf->mirrors_new;
4451                 conf->mirrors_new = NULL;
4452         }
4453         setup_geo(&conf->geo, mddev, geo_start);
4454         smp_mb();
4455         if (mddev->reshape_backwards) {
4456                 sector_t size = raid10_size(mddev, 0, 0);
4457                 if (size < mddev->array_sectors) {
4458                         spin_unlock_irq(&conf->device_lock);
4459                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4460                                 mdname(mddev));
4461                         return -EINVAL;
4462                 }
4463                 mddev->resync_max_sectors = size;
4464                 conf->reshape_progress = size;
4465         } else
4466                 conf->reshape_progress = 0;
4467         conf->reshape_safe = conf->reshape_progress;
4468         spin_unlock_irq(&conf->device_lock);
4469
4470         if (mddev->delta_disks && mddev->bitmap) {
4471                 struct mdp_superblock_1 *sb = NULL;
4472                 sector_t oldsize, newsize;
4473
4474                 oldsize = raid10_size(mddev, 0, 0);
4475                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4476
4477                 if (!mddev_is_clustered(mddev)) {
4478                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4479                         if (ret)
4480                                 goto abort;
4481                         else
4482                                 goto out;
4483                 }
4484
4485                 rdev_for_each(rdev, mddev) {
4486                         if (rdev->raid_disk > -1 &&
4487                             !test_bit(Faulty, &rdev->flags))
4488                                 sb = page_address(rdev->sb_page);
4489                 }
4490
4491                 /*
4492                  * some node is already performing reshape, and no need to
4493                  * call md_bitmap_resize again since it should be called when
4494                  * receiving BITMAP_RESIZE msg
4495                  */
4496                 if ((sb && (le32_to_cpu(sb->feature_map) &
4497                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4498                         goto out;
4499
4500                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4501                 if (ret)
4502                         goto abort;
4503
4504                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4505                 if (ret) {
4506                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4507                         goto abort;
4508                 }
4509         }
4510 out:
4511         if (mddev->delta_disks > 0) {
4512                 rdev_for_each(rdev, mddev)
4513                         if (rdev->raid_disk < 0 &&
4514                             !test_bit(Faulty, &rdev->flags)) {
4515                                 if (raid10_add_disk(mddev, rdev) == 0) {
4516                                         if (rdev->raid_disk >=
4517                                             conf->prev.raid_disks)
4518                                                 set_bit(In_sync, &rdev->flags);
4519                                         else
4520                                                 rdev->recovery_offset = 0;
4521
4522                                         /* Failure here is OK */
4523                                         sysfs_link_rdev(mddev, rdev);
4524                                 }
4525                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4526                                    && !test_bit(Faulty, &rdev->flags)) {
4527                                 /* This is a spare that was manually added */
4528                                 set_bit(In_sync, &rdev->flags);
4529                         }
4530         }
4531         /* When a reshape changes the number of devices,
4532          * ->degraded is measured against the larger of the
4533          * pre and  post numbers.
4534          */
4535         spin_lock_irq(&conf->device_lock);
4536         mddev->degraded = calc_degraded(conf);
4537         spin_unlock_irq(&conf->device_lock);
4538         mddev->raid_disks = conf->geo.raid_disks;
4539         mddev->reshape_position = conf->reshape_progress;
4540         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4541
4542         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4543         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4544         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4545         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4546         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4547         conf->reshape_checkpoint = jiffies;
4548         md_new_event();
4549         return 0;
4550
4551 abort:
4552         mddev->recovery = 0;
4553         spin_lock_irq(&conf->device_lock);
4554         conf->geo = conf->prev;
4555         mddev->raid_disks = conf->geo.raid_disks;
4556         rdev_for_each(rdev, mddev)
4557                 rdev->new_data_offset = rdev->data_offset;
4558         smp_wmb();
4559         conf->reshape_progress = MaxSector;
4560         conf->reshape_safe = MaxSector;
4561         mddev->reshape_position = MaxSector;
4562         spin_unlock_irq(&conf->device_lock);
4563         return ret;
4564 }
4565
4566 /* Calculate the last device-address that could contain
4567  * any block from the chunk that includes the array-address 's'
4568  * and report the next address.
4569  * i.e. the address returned will be chunk-aligned and after
4570  * any data that is in the chunk containing 's'.
4571  */
4572 static sector_t last_dev_address(sector_t s, struct geom *geo)
4573 {
4574         s = (s | geo->chunk_mask) + 1;
4575         s >>= geo->chunk_shift;
4576         s *= geo->near_copies;
4577         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4578         s *= geo->far_copies;
4579         s <<= geo->chunk_shift;
4580         return s;
4581 }
4582
4583 /* Calculate the first device-address that could contain
4584  * any block from the chunk that includes the array-address 's'.
4585  * This too will be the start of a chunk
4586  */
4587 static sector_t first_dev_address(sector_t s, struct geom *geo)
4588 {
4589         s >>= geo->chunk_shift;
4590         s *= geo->near_copies;
4591         sector_div(s, geo->raid_disks);
4592         s *= geo->far_copies;
4593         s <<= geo->chunk_shift;
4594         return s;
4595 }
4596
4597 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4598                                 int *skipped)
4599 {
4600         /* We simply copy at most one chunk (smallest of old and new)
4601          * at a time, possibly less if that exceeds RESYNC_PAGES,
4602          * or we hit a bad block or something.
4603          * This might mean we pause for normal IO in the middle of
4604          * a chunk, but that is not a problem as mddev->reshape_position
4605          * can record any location.
4606          *
4607          * If we will want to write to a location that isn't
4608          * yet recorded as 'safe' (i.e. in metadata on disk) then
4609          * we need to flush all reshape requests and update the metadata.
4610          *
4611          * When reshaping forwards (e.g. to more devices), we interpret
4612          * 'safe' as the earliest block which might not have been copied
4613          * down yet.  We divide this by previous stripe size and multiply
4614          * by previous stripe length to get lowest device offset that we
4615          * cannot write to yet.
4616          * We interpret 'sector_nr' as an address that we want to write to.
4617          * From this we use last_device_address() to find where we might
4618          * write to, and first_device_address on the  'safe' position.
4619          * If this 'next' write position is after the 'safe' position,
4620          * we must update the metadata to increase the 'safe' position.
4621          *
4622          * When reshaping backwards, we round in the opposite direction
4623          * and perform the reverse test:  next write position must not be
4624          * less than current safe position.
4625          *
4626          * In all this the minimum difference in data offsets
4627          * (conf->offset_diff - always positive) allows a bit of slack,
4628          * so next can be after 'safe', but not by more than offset_diff
4629          *
4630          * We need to prepare all the bios here before we start any IO
4631          * to ensure the size we choose is acceptable to all devices.
4632          * The means one for each copy for write-out and an extra one for
4633          * read-in.
4634          * We store the read-in bio in ->master_bio and the others in
4635          * ->devs[x].bio and ->devs[x].repl_bio.
4636          */
4637         struct r10conf *conf = mddev->private;
4638         struct r10bio *r10_bio;
4639         sector_t next, safe, last;
4640         int max_sectors;
4641         int nr_sectors;
4642         int s;
4643         struct md_rdev *rdev;
4644         int need_flush = 0;
4645         struct bio *blist;
4646         struct bio *bio, *read_bio;
4647         int sectors_done = 0;
4648         struct page **pages;
4649
4650         if (sector_nr == 0) {
4651                 /* If restarting in the middle, skip the initial sectors */
4652                 if (mddev->reshape_backwards &&
4653                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4654                         sector_nr = (raid10_size(mddev, 0, 0)
4655                                      - conf->reshape_progress);
4656                 } else if (!mddev->reshape_backwards &&
4657                            conf->reshape_progress > 0)
4658                         sector_nr = conf->reshape_progress;
4659                 if (sector_nr) {
4660                         mddev->curr_resync_completed = sector_nr;
4661                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4662                         *skipped = 1;
4663                         return sector_nr;
4664                 }
4665         }
4666
4667         /* We don't use sector_nr to track where we are up to
4668          * as that doesn't work well for ->reshape_backwards.
4669          * So just use ->reshape_progress.
4670          */
4671         if (mddev->reshape_backwards) {
4672                 /* 'next' is the earliest device address that we might
4673                  * write to for this chunk in the new layout
4674                  */
4675                 next = first_dev_address(conf->reshape_progress - 1,
4676                                          &conf->geo);
4677
4678                 /* 'safe' is the last device address that we might read from
4679                  * in the old layout after a restart
4680                  */
4681                 safe = last_dev_address(conf->reshape_safe - 1,
4682                                         &conf->prev);
4683
4684                 if (next + conf->offset_diff < safe)
4685                         need_flush = 1;
4686
4687                 last = conf->reshape_progress - 1;
4688                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4689                                                & conf->prev.chunk_mask);
4690                 if (sector_nr + RESYNC_SECTORS < last)
4691                         sector_nr = last + 1 - RESYNC_SECTORS;
4692         } else {
4693                 /* 'next' is after the last device address that we
4694                  * might write to for this chunk in the new layout
4695                  */
4696                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4697
4698                 /* 'safe' is the earliest device address that we might
4699                  * read from in the old layout after a restart
4700                  */
4701                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4702
4703                 /* Need to update metadata if 'next' might be beyond 'safe'
4704                  * as that would possibly corrupt data
4705                  */
4706                 if (next > safe + conf->offset_diff)
4707                         need_flush = 1;
4708
4709                 sector_nr = conf->reshape_progress;
4710                 last  = sector_nr | (conf->geo.chunk_mask
4711                                      & conf->prev.chunk_mask);
4712
4713                 if (sector_nr + RESYNC_SECTORS <= last)
4714                         last = sector_nr + RESYNC_SECTORS - 1;
4715         }
4716
4717         if (need_flush ||
4718             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4719                 /* Need to update reshape_position in metadata */
4720                 wait_barrier(conf, false);
4721                 mddev->reshape_position = conf->reshape_progress;
4722                 if (mddev->reshape_backwards)
4723                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4724                                 - conf->reshape_progress;
4725                 else
4726                         mddev->curr_resync_completed = conf->reshape_progress;
4727                 conf->reshape_checkpoint = jiffies;
4728                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4729                 md_wakeup_thread(mddev->thread);
4730                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4731                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4732                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4733                         allow_barrier(conf);
4734                         return sectors_done;
4735                 }
4736                 conf->reshape_safe = mddev->reshape_position;
4737                 allow_barrier(conf);
4738         }
4739
4740         raise_barrier(conf, 0);
4741 read_more:
4742         /* Now schedule reads for blocks from sector_nr to last */
4743         r10_bio = raid10_alloc_init_r10buf(conf);
4744         r10_bio->state = 0;
4745         raise_barrier(conf, 1);
4746         atomic_set(&r10_bio->remaining, 0);
4747         r10_bio->mddev = mddev;
4748         r10_bio->sector = sector_nr;
4749         set_bit(R10BIO_IsReshape, &r10_bio->state);
4750         r10_bio->sectors = last - sector_nr + 1;
4751         rdev = read_balance(conf, r10_bio, &max_sectors);
4752         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4753
4754         if (!rdev) {
4755                 /* Cannot read from here, so need to record bad blocks
4756                  * on all the target devices.
4757                  */
4758                 // FIXME
4759                 mempool_free(r10_bio, &conf->r10buf_pool);
4760                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4761                 return sectors_done;
4762         }
4763
4764         read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4765                                     GFP_KERNEL, &mddev->bio_set);
4766         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4767                                + rdev->data_offset);
4768         read_bio->bi_private = r10_bio;
4769         read_bio->bi_end_io = end_reshape_read;
4770         r10_bio->master_bio = read_bio;
4771         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4772
4773         /*
4774          * Broadcast RESYNC message to other nodes, so all nodes would not
4775          * write to the region to avoid conflict.
4776         */
4777         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4778                 struct mdp_superblock_1 *sb = NULL;
4779                 int sb_reshape_pos = 0;
4780
4781                 conf->cluster_sync_low = sector_nr;
4782                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4783                 sb = page_address(rdev->sb_page);
4784                 if (sb) {
4785                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4786                         /*
4787                          * Set cluster_sync_low again if next address for array
4788                          * reshape is less than cluster_sync_low. Since we can't
4789                          * update cluster_sync_low until it has finished reshape.
4790                          */
4791                         if (sb_reshape_pos < conf->cluster_sync_low)
4792                                 conf->cluster_sync_low = sb_reshape_pos;
4793                 }
4794
4795                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4796                                                           conf->cluster_sync_high);
4797         }
4798
4799         /* Now find the locations in the new layout */
4800         __raid10_find_phys(&conf->geo, r10_bio);
4801
4802         blist = read_bio;
4803         read_bio->bi_next = NULL;
4804
4805         for (s = 0; s < conf->copies*2; s++) {
4806                 struct bio *b;
4807                 int d = r10_bio->devs[s/2].devnum;
4808                 struct md_rdev *rdev2;
4809                 if (s&1) {
4810                         rdev2 = conf->mirrors[d].replacement;
4811                         b = r10_bio->devs[s/2].repl_bio;
4812                 } else {
4813                         rdev2 = conf->mirrors[d].rdev;
4814                         b = r10_bio->devs[s/2].bio;
4815                 }
4816                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4817                         continue;
4818
4819                 bio_set_dev(b, rdev2->bdev);
4820                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4821                         rdev2->new_data_offset;
4822                 b->bi_end_io = end_reshape_write;
4823                 b->bi_opf = REQ_OP_WRITE;
4824                 b->bi_next = blist;
4825                 blist = b;
4826         }
4827
4828         /* Now add as many pages as possible to all of these bios. */
4829
4830         nr_sectors = 0;
4831         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4832         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4833                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4834                 int len = (max_sectors - s) << 9;
4835                 if (len > PAGE_SIZE)
4836                         len = PAGE_SIZE;
4837                 for (bio = blist; bio ; bio = bio->bi_next) {
4838                         if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4839                                 bio->bi_status = BLK_STS_RESOURCE;
4840                                 bio_endio(bio);
4841                                 return sectors_done;
4842                         }
4843                 }
4844                 sector_nr += len >> 9;
4845                 nr_sectors += len >> 9;
4846         }
4847         r10_bio->sectors = nr_sectors;
4848
4849         /* Now submit the read */
4850         md_sync_acct_bio(read_bio, r10_bio->sectors);
4851         atomic_inc(&r10_bio->remaining);
4852         read_bio->bi_next = NULL;
4853         submit_bio_noacct(read_bio);
4854         sectors_done += nr_sectors;
4855         if (sector_nr <= last)
4856                 goto read_more;
4857
4858         lower_barrier(conf);
4859
4860         /* Now that we have done the whole section we can
4861          * update reshape_progress
4862          */
4863         if (mddev->reshape_backwards)
4864                 conf->reshape_progress -= sectors_done;
4865         else
4866                 conf->reshape_progress += sectors_done;
4867
4868         return sectors_done;
4869 }
4870
4871 static void end_reshape_request(struct r10bio *r10_bio);
4872 static int handle_reshape_read_error(struct mddev *mddev,
4873                                      struct r10bio *r10_bio);
4874 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4875 {
4876         /* Reshape read completed.  Hopefully we have a block
4877          * to write out.
4878          * If we got a read error then we do sync 1-page reads from
4879          * elsewhere until we find the data - or give up.
4880          */
4881         struct r10conf *conf = mddev->private;
4882         int s;
4883
4884         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4885                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4886                         /* Reshape has been aborted */
4887                         md_done_sync(mddev, r10_bio->sectors, 0);
4888                         return;
4889                 }
4890
4891         /* We definitely have the data in the pages, schedule the
4892          * writes.
4893          */
4894         atomic_set(&r10_bio->remaining, 1);
4895         for (s = 0; s < conf->copies*2; s++) {
4896                 struct bio *b;
4897                 int d = r10_bio->devs[s/2].devnum;
4898                 struct md_rdev *rdev;
4899                 if (s&1) {
4900                         rdev = conf->mirrors[d].replacement;
4901                         b = r10_bio->devs[s/2].repl_bio;
4902                 } else {
4903                         rdev = conf->mirrors[d].rdev;
4904                         b = r10_bio->devs[s/2].bio;
4905                 }
4906                 if (!rdev || test_bit(Faulty, &rdev->flags))
4907                         continue;
4908
4909                 atomic_inc(&rdev->nr_pending);
4910                 md_sync_acct_bio(b, r10_bio->sectors);
4911                 atomic_inc(&r10_bio->remaining);
4912                 b->bi_next = NULL;
4913                 submit_bio_noacct(b);
4914         }
4915         end_reshape_request(r10_bio);
4916 }
4917
4918 static void end_reshape(struct r10conf *conf)
4919 {
4920         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4921                 return;
4922
4923         spin_lock_irq(&conf->device_lock);
4924         conf->prev = conf->geo;
4925         md_finish_reshape(conf->mddev);
4926         smp_wmb();
4927         conf->reshape_progress = MaxSector;
4928         conf->reshape_safe = MaxSector;
4929         spin_unlock_irq(&conf->device_lock);
4930
4931         mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
4932         conf->fullsync = 0;
4933 }
4934
4935 static void raid10_update_reshape_pos(struct mddev *mddev)
4936 {
4937         struct r10conf *conf = mddev->private;
4938         sector_t lo, hi;
4939
4940         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4941         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4942             || mddev->reshape_position == MaxSector)
4943                 conf->reshape_progress = mddev->reshape_position;
4944         else
4945                 WARN_ON_ONCE(1);
4946 }
4947
4948 static int handle_reshape_read_error(struct mddev *mddev,
4949                                      struct r10bio *r10_bio)
4950 {
4951         /* Use sync reads to get the blocks from somewhere else */
4952         int sectors = r10_bio->sectors;
4953         struct r10conf *conf = mddev->private;
4954         struct r10bio *r10b;
4955         int slot = 0;
4956         int idx = 0;
4957         struct page **pages;
4958
4959         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4960         if (!r10b) {
4961                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4962                 return -ENOMEM;
4963         }
4964
4965         /* reshape IOs share pages from .devs[0].bio */
4966         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4967
4968         r10b->sector = r10_bio->sector;
4969         __raid10_find_phys(&conf->prev, r10b);
4970
4971         while (sectors) {
4972                 int s = sectors;
4973                 int success = 0;
4974                 int first_slot = slot;
4975
4976                 if (s > (PAGE_SIZE >> 9))
4977                         s = PAGE_SIZE >> 9;
4978
4979                 while (!success) {
4980                         int d = r10b->devs[slot].devnum;
4981                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4982                         sector_t addr;
4983                         if (rdev == NULL ||
4984                             test_bit(Faulty, &rdev->flags) ||
4985                             !test_bit(In_sync, &rdev->flags))
4986                                 goto failed;
4987
4988                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4989                         atomic_inc(&rdev->nr_pending);
4990                         success = sync_page_io(rdev,
4991                                                addr,
4992                                                s << 9,
4993                                                pages[idx],
4994                                                REQ_OP_READ, false);
4995                         rdev_dec_pending(rdev, mddev);
4996                         if (success)
4997                                 break;
4998                 failed:
4999                         slot++;
5000                         if (slot >= conf->copies)
5001                                 slot = 0;
5002                         if (slot == first_slot)
5003                                 break;
5004                 }
5005                 if (!success) {
5006                         /* couldn't read this block, must give up */
5007                         set_bit(MD_RECOVERY_INTR,
5008                                 &mddev->recovery);
5009                         kfree(r10b);
5010                         return -EIO;
5011                 }
5012                 sectors -= s;
5013                 idx++;
5014         }
5015         kfree(r10b);
5016         return 0;
5017 }
5018
5019 static void end_reshape_write(struct bio *bio)
5020 {
5021         struct r10bio *r10_bio = get_resync_r10bio(bio);
5022         struct mddev *mddev = r10_bio->mddev;
5023         struct r10conf *conf = mddev->private;
5024         int d;
5025         int slot;
5026         int repl;
5027         struct md_rdev *rdev = NULL;
5028
5029         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5030         rdev = repl ? conf->mirrors[d].replacement :
5031                       conf->mirrors[d].rdev;
5032
5033         if (bio->bi_status) {
5034                 /* FIXME should record badblock */
5035                 md_error(mddev, rdev);
5036         }
5037
5038         rdev_dec_pending(rdev, mddev);
5039         end_reshape_request(r10_bio);
5040 }
5041
5042 static void end_reshape_request(struct r10bio *r10_bio)
5043 {
5044         if (!atomic_dec_and_test(&r10_bio->remaining))
5045                 return;
5046         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5047         bio_put(r10_bio->master_bio);
5048         put_buf(r10_bio);
5049 }
5050
5051 static void raid10_finish_reshape(struct mddev *mddev)
5052 {
5053         struct r10conf *conf = mddev->private;
5054
5055         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5056                 return;
5057
5058         if (mddev->delta_disks > 0) {
5059                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5060                         mddev->recovery_cp = mddev->resync_max_sectors;
5061                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5062                 }
5063                 mddev->resync_max_sectors = mddev->array_sectors;
5064         } else {
5065                 int d;
5066                 for (d = conf->geo.raid_disks ;
5067                      d < conf->geo.raid_disks - mddev->delta_disks;
5068                      d++) {
5069                         struct md_rdev *rdev = conf->mirrors[d].rdev;
5070                         if (rdev)
5071                                 clear_bit(In_sync, &rdev->flags);
5072                         rdev = conf->mirrors[d].replacement;
5073                         if (rdev)
5074                                 clear_bit(In_sync, &rdev->flags);
5075                 }
5076         }
5077         mddev->layout = mddev->new_layout;
5078         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5079         mddev->reshape_position = MaxSector;
5080         mddev->delta_disks = 0;
5081         mddev->reshape_backwards = 0;
5082 }
5083
5084 static struct md_personality raid10_personality =
5085 {
5086         .name           = "raid10",
5087         .level          = 10,
5088         .owner          = THIS_MODULE,
5089         .make_request   = raid10_make_request,
5090         .run            = raid10_run,
5091         .free           = raid10_free,
5092         .status         = raid10_status,
5093         .error_handler  = raid10_error,
5094         .hot_add_disk   = raid10_add_disk,
5095         .hot_remove_disk= raid10_remove_disk,
5096         .spare_active   = raid10_spare_active,
5097         .sync_request   = raid10_sync_request,
5098         .quiesce        = raid10_quiesce,
5099         .size           = raid10_size,
5100         .resize         = raid10_resize,
5101         .takeover       = raid10_takeover,
5102         .check_reshape  = raid10_check_reshape,
5103         .start_reshape  = raid10_start_reshape,
5104         .finish_reshape = raid10_finish_reshape,
5105         .update_reshape_pos = raid10_update_reshape_pos,
5106 };
5107
5108 static int __init raid_init(void)
5109 {
5110         return register_md_personality(&raid10_personality);
5111 }
5112
5113 static void raid_exit(void)
5114 {
5115         unregister_md_personality(&raid10_personality);
5116 }
5117
5118 module_init(raid_init);
5119 module_exit(raid_exit);
5120 MODULE_LICENSE("GPL");
5121 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5122 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5123 MODULE_ALIAS("md-raid10");
5124 MODULE_ALIAS("md-level-10");