block: Abstract out bvec iterator
[linux-2.6-block.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102                                 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109         struct r10conf *conf = data;
110         int size = offsetof(struct r10bio, devs[conf->copies]);
111
112         /* allocate a r10bio with room for raid_disks entries in the
113          * bios array */
114         return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119         kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139         struct r10conf *conf = data;
140         struct page *page;
141         struct r10bio *r10_bio;
142         struct bio *bio;
143         int i, j;
144         int nalloc;
145
146         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147         if (!r10_bio)
148                 return NULL;
149
150         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152                 nalloc = conf->copies; /* resync */
153         else
154                 nalloc = 2; /* recovery */
155
156         /*
157          * Allocate bios.
158          */
159         for (j = nalloc ; j-- ; ) {
160                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161                 if (!bio)
162                         goto out_free_bio;
163                 r10_bio->devs[j].bio = bio;
164                 if (!conf->have_replacement)
165                         continue;
166                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167                 if (!bio)
168                         goto out_free_bio;
169                 r10_bio->devs[j].repl_bio = bio;
170         }
171         /*
172          * Allocate RESYNC_PAGES data pages and attach them
173          * where needed.
174          */
175         for (j = 0 ; j < nalloc; j++) {
176                 struct bio *rbio = r10_bio->devs[j].repl_bio;
177                 bio = r10_bio->devs[j].bio;
178                 for (i = 0; i < RESYNC_PAGES; i++) {
179                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180                                                &conf->mddev->recovery)) {
181                                 /* we can share bv_page's during recovery
182                                  * and reshape */
183                                 struct bio *rbio = r10_bio->devs[0].bio;
184                                 page = rbio->bi_io_vec[i].bv_page;
185                                 get_page(page);
186                         } else
187                                 page = alloc_page(gfp_flags);
188                         if (unlikely(!page))
189                                 goto out_free_pages;
190
191                         bio->bi_io_vec[i].bv_page = page;
192                         if (rbio)
193                                 rbio->bi_io_vec[i].bv_page = page;
194                 }
195         }
196
197         return r10_bio;
198
199 out_free_pages:
200         for ( ; i > 0 ; i--)
201                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202         while (j--)
203                 for (i = 0; i < RESYNC_PAGES ; i++)
204                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205         j = 0;
206 out_free_bio:
207         for ( ; j < nalloc; j++) {
208                 if (r10_bio->devs[j].bio)
209                         bio_put(r10_bio->devs[j].bio);
210                 if (r10_bio->devs[j].repl_bio)
211                         bio_put(r10_bio->devs[j].repl_bio);
212         }
213         r10bio_pool_free(r10_bio, conf);
214         return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219         int i;
220         struct r10conf *conf = data;
221         struct r10bio *r10bio = __r10_bio;
222         int j;
223
224         for (j=0; j < conf->copies; j++) {
225                 struct bio *bio = r10bio->devs[j].bio;
226                 if (bio) {
227                         for (i = 0; i < RESYNC_PAGES; i++) {
228                                 safe_put_page(bio->bi_io_vec[i].bv_page);
229                                 bio->bi_io_vec[i].bv_page = NULL;
230                         }
231                         bio_put(bio);
232                 }
233                 bio = r10bio->devs[j].repl_bio;
234                 if (bio)
235                         bio_put(bio);
236         }
237         r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242         int i;
243
244         for (i = 0; i < conf->copies; i++) {
245                 struct bio **bio = & r10_bio->devs[i].bio;
246                 if (!BIO_SPECIAL(*bio))
247                         bio_put(*bio);
248                 *bio = NULL;
249                 bio = &r10_bio->devs[i].repl_bio;
250                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251                         bio_put(*bio);
252                 *bio = NULL;
253         }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258         struct r10conf *conf = r10_bio->mddev->private;
259
260         put_all_bios(conf, r10_bio);
261         mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266         struct r10conf *conf = r10_bio->mddev->private;
267
268         mempool_free(r10_bio, conf->r10buf_pool);
269
270         lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275         unsigned long flags;
276         struct mddev *mddev = r10_bio->mddev;
277         struct r10conf *conf = mddev->private;
278
279         spin_lock_irqsave(&conf->device_lock, flags);
280         list_add(&r10_bio->retry_list, &conf->retry_list);
281         conf->nr_queued ++;
282         spin_unlock_irqrestore(&conf->device_lock, flags);
283
284         /* wake up frozen array... */
285         wake_up(&conf->wait_barrier);
286
287         md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297         struct bio *bio = r10_bio->master_bio;
298         int done;
299         struct r10conf *conf = r10_bio->mddev->private;
300
301         if (bio->bi_phys_segments) {
302                 unsigned long flags;
303                 spin_lock_irqsave(&conf->device_lock, flags);
304                 bio->bi_phys_segments--;
305                 done = (bio->bi_phys_segments == 0);
306                 spin_unlock_irqrestore(&conf->device_lock, flags);
307         } else
308                 done = 1;
309         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311         if (done) {
312                 bio_endio(bio, 0);
313                 /*
314                  * Wake up any possible resync thread that waits for the device
315                  * to go idle.
316                  */
317                 allow_barrier(conf);
318         }
319         free_r10bio(r10_bio);
320 }
321
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327         struct r10conf *conf = r10_bio->mddev->private;
328
329         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330                 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337                          struct bio *bio, int *slotp, int *replp)
338 {
339         int slot;
340         int repl = 0;
341
342         for (slot = 0; slot < conf->copies; slot++) {
343                 if (r10_bio->devs[slot].bio == bio)
344                         break;
345                 if (r10_bio->devs[slot].repl_bio == bio) {
346                         repl = 1;
347                         break;
348                 }
349         }
350
351         BUG_ON(slot == conf->copies);
352         update_head_pos(slot, r10_bio);
353
354         if (slotp)
355                 *slotp = slot;
356         if (replp)
357                 *replp = repl;
358         return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364         struct r10bio *r10_bio = bio->bi_private;
365         int slot, dev;
366         struct md_rdev *rdev;
367         struct r10conf *conf = r10_bio->mddev->private;
368
369
370         slot = r10_bio->read_slot;
371         dev = r10_bio->devs[slot].devnum;
372         rdev = r10_bio->devs[slot].rdev;
373         /*
374          * this branch is our 'one mirror IO has finished' event handler:
375          */
376         update_head_pos(slot, r10_bio);
377
378         if (uptodate) {
379                 /*
380                  * Set R10BIO_Uptodate in our master bio, so that
381                  * we will return a good error code to the higher
382                  * levels even if IO on some other mirrored buffer fails.
383                  *
384                  * The 'master' represents the composite IO operation to
385                  * user-side. So if something waits for IO, then it will
386                  * wait for the 'master' bio.
387                  */
388                 set_bit(R10BIO_Uptodate, &r10_bio->state);
389         } else {
390                 /* If all other devices that store this block have
391                  * failed, we want to return the error upwards rather
392                  * than fail the last device.  Here we redefine
393                  * "uptodate" to mean "Don't want to retry"
394                  */
395                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396                              rdev->raid_disk))
397                         uptodate = 1;
398         }
399         if (uptodate) {
400                 raid_end_bio_io(r10_bio);
401                 rdev_dec_pending(rdev, conf->mddev);
402         } else {
403                 /*
404                  * oops, read error - keep the refcount on the rdev
405                  */
406                 char b[BDEVNAME_SIZE];
407                 printk_ratelimited(KERN_ERR
408                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
409                                    mdname(conf->mddev),
410                                    bdevname(rdev->bdev, b),
411                                    (unsigned long long)r10_bio->sector);
412                 set_bit(R10BIO_ReadError, &r10_bio->state);
413                 reschedule_retry(r10_bio);
414         }
415 }
416
417 static void close_write(struct r10bio *r10_bio)
418 {
419         /* clear the bitmap if all writes complete successfully */
420         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421                         r10_bio->sectors,
422                         !test_bit(R10BIO_Degraded, &r10_bio->state),
423                         0);
424         md_write_end(r10_bio->mddev);
425 }
426
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429         if (atomic_dec_and_test(&r10_bio->remaining)) {
430                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431                         reschedule_retry(r10_bio);
432                 else {
433                         close_write(r10_bio);
434                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435                                 reschedule_retry(r10_bio);
436                         else
437                                 raid_end_bio_io(r10_bio);
438                 }
439         }
440 }
441
442 static void raid10_end_write_request(struct bio *bio, int error)
443 {
444         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
445         struct r10bio *r10_bio = bio->bi_private;
446         int dev;
447         int dec_rdev = 1;
448         struct r10conf *conf = r10_bio->mddev->private;
449         int slot, repl;
450         struct md_rdev *rdev = NULL;
451
452         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
453
454         if (repl)
455                 rdev = conf->mirrors[dev].replacement;
456         if (!rdev) {
457                 smp_rmb();
458                 repl = 0;
459                 rdev = conf->mirrors[dev].rdev;
460         }
461         /*
462          * this branch is our 'one mirror IO has finished' event handler:
463          */
464         if (!uptodate) {
465                 if (repl)
466                         /* Never record new bad blocks to replacement,
467                          * just fail it.
468                          */
469                         md_error(rdev->mddev, rdev);
470                 else {
471                         set_bit(WriteErrorSeen, &rdev->flags);
472                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
473                                 set_bit(MD_RECOVERY_NEEDED,
474                                         &rdev->mddev->recovery);
475                         set_bit(R10BIO_WriteError, &r10_bio->state);
476                         dec_rdev = 0;
477                 }
478         } else {
479                 /*
480                  * Set R10BIO_Uptodate in our master bio, so that
481                  * we will return a good error code for to the higher
482                  * levels even if IO on some other mirrored buffer fails.
483                  *
484                  * The 'master' represents the composite IO operation to
485                  * user-side. So if something waits for IO, then it will
486                  * wait for the 'master' bio.
487                  */
488                 sector_t first_bad;
489                 int bad_sectors;
490
491                 /*
492                  * Do not set R10BIO_Uptodate if the current device is
493                  * rebuilding or Faulty. This is because we cannot use
494                  * such device for properly reading the data back (we could
495                  * potentially use it, if the current write would have felt
496                  * before rdev->recovery_offset, but for simplicity we don't
497                  * check this here.
498                  */
499                 if (test_bit(In_sync, &rdev->flags) &&
500                     !test_bit(Faulty, &rdev->flags))
501                         set_bit(R10BIO_Uptodate, &r10_bio->state);
502
503                 /* Maybe we can clear some bad blocks. */
504                 if (is_badblock(rdev,
505                                 r10_bio->devs[slot].addr,
506                                 r10_bio->sectors,
507                                 &first_bad, &bad_sectors)) {
508                         bio_put(bio);
509                         if (repl)
510                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
511                         else
512                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
513                         dec_rdev = 0;
514                         set_bit(R10BIO_MadeGood, &r10_bio->state);
515                 }
516         }
517
518         /*
519          *
520          * Let's see if all mirrored write operations have finished
521          * already.
522          */
523         one_write_done(r10_bio);
524         if (dec_rdev)
525                 rdev_dec_pending(rdev, conf->mddev);
526 }
527
528 /*
529  * RAID10 layout manager
530  * As well as the chunksize and raid_disks count, there are two
531  * parameters: near_copies and far_copies.
532  * near_copies * far_copies must be <= raid_disks.
533  * Normally one of these will be 1.
534  * If both are 1, we get raid0.
535  * If near_copies == raid_disks, we get raid1.
536  *
537  * Chunks are laid out in raid0 style with near_copies copies of the
538  * first chunk, followed by near_copies copies of the next chunk and
539  * so on.
540  * If far_copies > 1, then after 1/far_copies of the array has been assigned
541  * as described above, we start again with a device offset of near_copies.
542  * So we effectively have another copy of the whole array further down all
543  * the drives, but with blocks on different drives.
544  * With this layout, and block is never stored twice on the one device.
545  *
546  * raid10_find_phys finds the sector offset of a given virtual sector
547  * on each device that it is on.
548  *
549  * raid10_find_virt does the reverse mapping, from a device and a
550  * sector offset to a virtual address
551  */
552
553 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
554 {
555         int n,f;
556         sector_t sector;
557         sector_t chunk;
558         sector_t stripe;
559         int dev;
560         int slot = 0;
561         int last_far_set_start, last_far_set_size;
562
563         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
564         last_far_set_start *= geo->far_set_size;
565
566         last_far_set_size = geo->far_set_size;
567         last_far_set_size += (geo->raid_disks % geo->far_set_size);
568
569         /* now calculate first sector/dev */
570         chunk = r10bio->sector >> geo->chunk_shift;
571         sector = r10bio->sector & geo->chunk_mask;
572
573         chunk *= geo->near_copies;
574         stripe = chunk;
575         dev = sector_div(stripe, geo->raid_disks);
576         if (geo->far_offset)
577                 stripe *= geo->far_copies;
578
579         sector += stripe << geo->chunk_shift;
580
581         /* and calculate all the others */
582         for (n = 0; n < geo->near_copies; n++) {
583                 int d = dev;
584                 int set;
585                 sector_t s = sector;
586                 r10bio->devs[slot].devnum = d;
587                 r10bio->devs[slot].addr = s;
588                 slot++;
589
590                 for (f = 1; f < geo->far_copies; f++) {
591                         set = d / geo->far_set_size;
592                         d += geo->near_copies;
593
594                         if ((geo->raid_disks % geo->far_set_size) &&
595                             (d > last_far_set_start)) {
596                                 d -= last_far_set_start;
597                                 d %= last_far_set_size;
598                                 d += last_far_set_start;
599                         } else {
600                                 d %= geo->far_set_size;
601                                 d += geo->far_set_size * set;
602                         }
603                         s += geo->stride;
604                         r10bio->devs[slot].devnum = d;
605                         r10bio->devs[slot].addr = s;
606                         slot++;
607                 }
608                 dev++;
609                 if (dev >= geo->raid_disks) {
610                         dev = 0;
611                         sector += (geo->chunk_mask + 1);
612                 }
613         }
614 }
615
616 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617 {
618         struct geom *geo = &conf->geo;
619
620         if (conf->reshape_progress != MaxSector &&
621             ((r10bio->sector >= conf->reshape_progress) !=
622              conf->mddev->reshape_backwards)) {
623                 set_bit(R10BIO_Previous, &r10bio->state);
624                 geo = &conf->prev;
625         } else
626                 clear_bit(R10BIO_Previous, &r10bio->state);
627
628         __raid10_find_phys(geo, r10bio);
629 }
630
631 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
632 {
633         sector_t offset, chunk, vchunk;
634         /* Never use conf->prev as this is only called during resync
635          * or recovery, so reshape isn't happening
636          */
637         struct geom *geo = &conf->geo;
638         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
639         int far_set_size = geo->far_set_size;
640         int last_far_set_start;
641
642         if (geo->raid_disks % geo->far_set_size) {
643                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
644                 last_far_set_start *= geo->far_set_size;
645
646                 if (dev >= last_far_set_start) {
647                         far_set_size = geo->far_set_size;
648                         far_set_size += (geo->raid_disks % geo->far_set_size);
649                         far_set_start = last_far_set_start;
650                 }
651         }
652
653         offset = sector & geo->chunk_mask;
654         if (geo->far_offset) {
655                 int fc;
656                 chunk = sector >> geo->chunk_shift;
657                 fc = sector_div(chunk, geo->far_copies);
658                 dev -= fc * geo->near_copies;
659                 if (dev < far_set_start)
660                         dev += far_set_size;
661         } else {
662                 while (sector >= geo->stride) {
663                         sector -= geo->stride;
664                         if (dev < (geo->near_copies + far_set_start))
665                                 dev += far_set_size - geo->near_copies;
666                         else
667                                 dev -= geo->near_copies;
668                 }
669                 chunk = sector >> geo->chunk_shift;
670         }
671         vchunk = chunk * geo->raid_disks + dev;
672         sector_div(vchunk, geo->near_copies);
673         return (vchunk << geo->chunk_shift) + offset;
674 }
675
676 /**
677  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
678  *      @q: request queue
679  *      @bvm: properties of new bio
680  *      @biovec: the request that could be merged to it.
681  *
682  *      Return amount of bytes we can accept at this offset
683  *      This requires checking for end-of-chunk if near_copies != raid_disks,
684  *      and for subordinate merge_bvec_fns if merge_check_needed.
685  */
686 static int raid10_mergeable_bvec(struct request_queue *q,
687                                  struct bvec_merge_data *bvm,
688                                  struct bio_vec *biovec)
689 {
690         struct mddev *mddev = q->queuedata;
691         struct r10conf *conf = mddev->private;
692         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
693         int max;
694         unsigned int chunk_sectors;
695         unsigned int bio_sectors = bvm->bi_size >> 9;
696         struct geom *geo = &conf->geo;
697
698         chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
699         if (conf->reshape_progress != MaxSector &&
700             ((sector >= conf->reshape_progress) !=
701              conf->mddev->reshape_backwards))
702                 geo = &conf->prev;
703
704         if (geo->near_copies < geo->raid_disks) {
705                 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
706                                         + bio_sectors)) << 9;
707                 if (max < 0)
708                         /* bio_add cannot handle a negative return */
709                         max = 0;
710                 if (max <= biovec->bv_len && bio_sectors == 0)
711                         return biovec->bv_len;
712         } else
713                 max = biovec->bv_len;
714
715         if (mddev->merge_check_needed) {
716                 struct {
717                         struct r10bio r10_bio;
718                         struct r10dev devs[conf->copies];
719                 } on_stack;
720                 struct r10bio *r10_bio = &on_stack.r10_bio;
721                 int s;
722                 if (conf->reshape_progress != MaxSector) {
723                         /* Cannot give any guidance during reshape */
724                         if (max <= biovec->bv_len && bio_sectors == 0)
725                                 return biovec->bv_len;
726                         return 0;
727                 }
728                 r10_bio->sector = sector;
729                 raid10_find_phys(conf, r10_bio);
730                 rcu_read_lock();
731                 for (s = 0; s < conf->copies; s++) {
732                         int disk = r10_bio->devs[s].devnum;
733                         struct md_rdev *rdev = rcu_dereference(
734                                 conf->mirrors[disk].rdev);
735                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
736                                 struct request_queue *q =
737                                         bdev_get_queue(rdev->bdev);
738                                 if (q->merge_bvec_fn) {
739                                         bvm->bi_sector = r10_bio->devs[s].addr
740                                                 + rdev->data_offset;
741                                         bvm->bi_bdev = rdev->bdev;
742                                         max = min(max, q->merge_bvec_fn(
743                                                           q, bvm, biovec));
744                                 }
745                         }
746                         rdev = rcu_dereference(conf->mirrors[disk].replacement);
747                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
748                                 struct request_queue *q =
749                                         bdev_get_queue(rdev->bdev);
750                                 if (q->merge_bvec_fn) {
751                                         bvm->bi_sector = r10_bio->devs[s].addr
752                                                 + rdev->data_offset;
753                                         bvm->bi_bdev = rdev->bdev;
754                                         max = min(max, q->merge_bvec_fn(
755                                                           q, bvm, biovec));
756                                 }
757                         }
758                 }
759                 rcu_read_unlock();
760         }
761         return max;
762 }
763
764 /*
765  * This routine returns the disk from which the requested read should
766  * be done. There is a per-array 'next expected sequential IO' sector
767  * number - if this matches on the next IO then we use the last disk.
768  * There is also a per-disk 'last know head position' sector that is
769  * maintained from IRQ contexts, both the normal and the resync IO
770  * completion handlers update this position correctly. If there is no
771  * perfect sequential match then we pick the disk whose head is closest.
772  *
773  * If there are 2 mirrors in the same 2 devices, performance degrades
774  * because position is mirror, not device based.
775  *
776  * The rdev for the device selected will have nr_pending incremented.
777  */
778
779 /*
780  * FIXME: possibly should rethink readbalancing and do it differently
781  * depending on near_copies / far_copies geometry.
782  */
783 static struct md_rdev *read_balance(struct r10conf *conf,
784                                     struct r10bio *r10_bio,
785                                     int *max_sectors)
786 {
787         const sector_t this_sector = r10_bio->sector;
788         int disk, slot;
789         int sectors = r10_bio->sectors;
790         int best_good_sectors;
791         sector_t new_distance, best_dist;
792         struct md_rdev *best_rdev, *rdev = NULL;
793         int do_balance;
794         int best_slot;
795         struct geom *geo = &conf->geo;
796
797         raid10_find_phys(conf, r10_bio);
798         rcu_read_lock();
799 retry:
800         sectors = r10_bio->sectors;
801         best_slot = -1;
802         best_rdev = NULL;
803         best_dist = MaxSector;
804         best_good_sectors = 0;
805         do_balance = 1;
806         /*
807          * Check if we can balance. We can balance on the whole
808          * device if no resync is going on (recovery is ok), or below
809          * the resync window. We take the first readable disk when
810          * above the resync window.
811          */
812         if (conf->mddev->recovery_cp < MaxSector
813             && (this_sector + sectors >= conf->next_resync))
814                 do_balance = 0;
815
816         for (slot = 0; slot < conf->copies ; slot++) {
817                 sector_t first_bad;
818                 int bad_sectors;
819                 sector_t dev_sector;
820
821                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
822                         continue;
823                 disk = r10_bio->devs[slot].devnum;
824                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
825                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
826                     test_bit(Unmerged, &rdev->flags) ||
827                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
828                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
829                 if (rdev == NULL ||
830                     test_bit(Faulty, &rdev->flags) ||
831                     test_bit(Unmerged, &rdev->flags))
832                         continue;
833                 if (!test_bit(In_sync, &rdev->flags) &&
834                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
835                         continue;
836
837                 dev_sector = r10_bio->devs[slot].addr;
838                 if (is_badblock(rdev, dev_sector, sectors,
839                                 &first_bad, &bad_sectors)) {
840                         if (best_dist < MaxSector)
841                                 /* Already have a better slot */
842                                 continue;
843                         if (first_bad <= dev_sector) {
844                                 /* Cannot read here.  If this is the
845                                  * 'primary' device, then we must not read
846                                  * beyond 'bad_sectors' from another device.
847                                  */
848                                 bad_sectors -= (dev_sector - first_bad);
849                                 if (!do_balance && sectors > bad_sectors)
850                                         sectors = bad_sectors;
851                                 if (best_good_sectors > sectors)
852                                         best_good_sectors = sectors;
853                         } else {
854                                 sector_t good_sectors =
855                                         first_bad - dev_sector;
856                                 if (good_sectors > best_good_sectors) {
857                                         best_good_sectors = good_sectors;
858                                         best_slot = slot;
859                                         best_rdev = rdev;
860                                 }
861                                 if (!do_balance)
862                                         /* Must read from here */
863                                         break;
864                         }
865                         continue;
866                 } else
867                         best_good_sectors = sectors;
868
869                 if (!do_balance)
870                         break;
871
872                 /* This optimisation is debatable, and completely destroys
873                  * sequential read speed for 'far copies' arrays.  So only
874                  * keep it for 'near' arrays, and review those later.
875                  */
876                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
877                         break;
878
879                 /* for far > 1 always use the lowest address */
880                 if (geo->far_copies > 1)
881                         new_distance = r10_bio->devs[slot].addr;
882                 else
883                         new_distance = abs(r10_bio->devs[slot].addr -
884                                            conf->mirrors[disk].head_position);
885                 if (new_distance < best_dist) {
886                         best_dist = new_distance;
887                         best_slot = slot;
888                         best_rdev = rdev;
889                 }
890         }
891         if (slot >= conf->copies) {
892                 slot = best_slot;
893                 rdev = best_rdev;
894         }
895
896         if (slot >= 0) {
897                 atomic_inc(&rdev->nr_pending);
898                 if (test_bit(Faulty, &rdev->flags)) {
899                         /* Cannot risk returning a device that failed
900                          * before we inc'ed nr_pending
901                          */
902                         rdev_dec_pending(rdev, conf->mddev);
903                         goto retry;
904                 }
905                 r10_bio->read_slot = slot;
906         } else
907                 rdev = NULL;
908         rcu_read_unlock();
909         *max_sectors = best_good_sectors;
910
911         return rdev;
912 }
913
914 int md_raid10_congested(struct mddev *mddev, int bits)
915 {
916         struct r10conf *conf = mddev->private;
917         int i, ret = 0;
918
919         if ((bits & (1 << BDI_async_congested)) &&
920             conf->pending_count >= max_queued_requests)
921                 return 1;
922
923         rcu_read_lock();
924         for (i = 0;
925              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
926                      && ret == 0;
927              i++) {
928                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
929                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
930                         struct request_queue *q = bdev_get_queue(rdev->bdev);
931
932                         ret |= bdi_congested(&q->backing_dev_info, bits);
933                 }
934         }
935         rcu_read_unlock();
936         return ret;
937 }
938 EXPORT_SYMBOL_GPL(md_raid10_congested);
939
940 static int raid10_congested(void *data, int bits)
941 {
942         struct mddev *mddev = data;
943
944         return mddev_congested(mddev, bits) ||
945                 md_raid10_congested(mddev, bits);
946 }
947
948 static void flush_pending_writes(struct r10conf *conf)
949 {
950         /* Any writes that have been queued but are awaiting
951          * bitmap updates get flushed here.
952          */
953         spin_lock_irq(&conf->device_lock);
954
955         if (conf->pending_bio_list.head) {
956                 struct bio *bio;
957                 bio = bio_list_get(&conf->pending_bio_list);
958                 conf->pending_count = 0;
959                 spin_unlock_irq(&conf->device_lock);
960                 /* flush any pending bitmap writes to disk
961                  * before proceeding w/ I/O */
962                 bitmap_unplug(conf->mddev->bitmap);
963                 wake_up(&conf->wait_barrier);
964
965                 while (bio) { /* submit pending writes */
966                         struct bio *next = bio->bi_next;
967                         bio->bi_next = NULL;
968                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
969                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
970                                 /* Just ignore it */
971                                 bio_endio(bio, 0);
972                         else
973                                 generic_make_request(bio);
974                         bio = next;
975                 }
976         } else
977                 spin_unlock_irq(&conf->device_lock);
978 }
979
980 /* Barriers....
981  * Sometimes we need to suspend IO while we do something else,
982  * either some resync/recovery, or reconfigure the array.
983  * To do this we raise a 'barrier'.
984  * The 'barrier' is a counter that can be raised multiple times
985  * to count how many activities are happening which preclude
986  * normal IO.
987  * We can only raise the barrier if there is no pending IO.
988  * i.e. if nr_pending == 0.
989  * We choose only to raise the barrier if no-one is waiting for the
990  * barrier to go down.  This means that as soon as an IO request
991  * is ready, no other operations which require a barrier will start
992  * until the IO request has had a chance.
993  *
994  * So: regular IO calls 'wait_barrier'.  When that returns there
995  *    is no backgroup IO happening,  It must arrange to call
996  *    allow_barrier when it has finished its IO.
997  * backgroup IO calls must call raise_barrier.  Once that returns
998  *    there is no normal IO happeing.  It must arrange to call
999  *    lower_barrier when the particular background IO completes.
1000  */
1001
1002 static void raise_barrier(struct r10conf *conf, int force)
1003 {
1004         BUG_ON(force && !conf->barrier);
1005         spin_lock_irq(&conf->resync_lock);
1006
1007         /* Wait until no block IO is waiting (unless 'force') */
1008         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1009                             conf->resync_lock);
1010
1011         /* block any new IO from starting */
1012         conf->barrier++;
1013
1014         /* Now wait for all pending IO to complete */
1015         wait_event_lock_irq(conf->wait_barrier,
1016                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1017                             conf->resync_lock);
1018
1019         spin_unlock_irq(&conf->resync_lock);
1020 }
1021
1022 static void lower_barrier(struct r10conf *conf)
1023 {
1024         unsigned long flags;
1025         spin_lock_irqsave(&conf->resync_lock, flags);
1026         conf->barrier--;
1027         spin_unlock_irqrestore(&conf->resync_lock, flags);
1028         wake_up(&conf->wait_barrier);
1029 }
1030
1031 static void wait_barrier(struct r10conf *conf)
1032 {
1033         spin_lock_irq(&conf->resync_lock);
1034         if (conf->barrier) {
1035                 conf->nr_waiting++;
1036                 /* Wait for the barrier to drop.
1037                  * However if there are already pending
1038                  * requests (preventing the barrier from
1039                  * rising completely), and the
1040                  * pre-process bio queue isn't empty,
1041                  * then don't wait, as we need to empty
1042                  * that queue to get the nr_pending
1043                  * count down.
1044                  */
1045                 wait_event_lock_irq(conf->wait_barrier,
1046                                     !conf->barrier ||
1047                                     (conf->nr_pending &&
1048                                      current->bio_list &&
1049                                      !bio_list_empty(current->bio_list)),
1050                                     conf->resync_lock);
1051                 conf->nr_waiting--;
1052         }
1053         conf->nr_pending++;
1054         spin_unlock_irq(&conf->resync_lock);
1055 }
1056
1057 static void allow_barrier(struct r10conf *conf)
1058 {
1059         unsigned long flags;
1060         spin_lock_irqsave(&conf->resync_lock, flags);
1061         conf->nr_pending--;
1062         spin_unlock_irqrestore(&conf->resync_lock, flags);
1063         wake_up(&conf->wait_barrier);
1064 }
1065
1066 static void freeze_array(struct r10conf *conf, int extra)
1067 {
1068         /* stop syncio and normal IO and wait for everything to
1069          * go quiet.
1070          * We increment barrier and nr_waiting, and then
1071          * wait until nr_pending match nr_queued+extra
1072          * This is called in the context of one normal IO request
1073          * that has failed. Thus any sync request that might be pending
1074          * will be blocked by nr_pending, and we need to wait for
1075          * pending IO requests to complete or be queued for re-try.
1076          * Thus the number queued (nr_queued) plus this request (extra)
1077          * must match the number of pending IOs (nr_pending) before
1078          * we continue.
1079          */
1080         spin_lock_irq(&conf->resync_lock);
1081         conf->barrier++;
1082         conf->nr_waiting++;
1083         wait_event_lock_irq_cmd(conf->wait_barrier,
1084                                 conf->nr_pending == conf->nr_queued+extra,
1085                                 conf->resync_lock,
1086                                 flush_pending_writes(conf));
1087
1088         spin_unlock_irq(&conf->resync_lock);
1089 }
1090
1091 static void unfreeze_array(struct r10conf *conf)
1092 {
1093         /* reverse the effect of the freeze */
1094         spin_lock_irq(&conf->resync_lock);
1095         conf->barrier--;
1096         conf->nr_waiting--;
1097         wake_up(&conf->wait_barrier);
1098         spin_unlock_irq(&conf->resync_lock);
1099 }
1100
1101 static sector_t choose_data_offset(struct r10bio *r10_bio,
1102                                    struct md_rdev *rdev)
1103 {
1104         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105             test_bit(R10BIO_Previous, &r10_bio->state))
1106                 return rdev->data_offset;
1107         else
1108                 return rdev->new_data_offset;
1109 }
1110
1111 struct raid10_plug_cb {
1112         struct blk_plug_cb      cb;
1113         struct bio_list         pending;
1114         int                     pending_cnt;
1115 };
1116
1117 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118 {
1119         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120                                                    cb);
1121         struct mddev *mddev = plug->cb.data;
1122         struct r10conf *conf = mddev->private;
1123         struct bio *bio;
1124
1125         if (from_schedule || current->bio_list) {
1126                 spin_lock_irq(&conf->device_lock);
1127                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128                 conf->pending_count += plug->pending_cnt;
1129                 spin_unlock_irq(&conf->device_lock);
1130                 wake_up(&conf->wait_barrier);
1131                 md_wakeup_thread(mddev->thread);
1132                 kfree(plug);
1133                 return;
1134         }
1135
1136         /* we aren't scheduling, so we can do the write-out directly. */
1137         bio = bio_list_get(&plug->pending);
1138         bitmap_unplug(mddev->bitmap);
1139         wake_up(&conf->wait_barrier);
1140
1141         while (bio) { /* submit pending writes */
1142                 struct bio *next = bio->bi_next;
1143                 bio->bi_next = NULL;
1144                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146                         /* Just ignore it */
1147                         bio_endio(bio, 0);
1148                 else
1149                         generic_make_request(bio);
1150                 bio = next;
1151         }
1152         kfree(plug);
1153 }
1154
1155 static void make_request(struct mddev *mddev, struct bio * bio)
1156 {
1157         struct r10conf *conf = mddev->private;
1158         struct r10bio *r10_bio;
1159         struct bio *read_bio;
1160         int i;
1161         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1162         int chunk_sects = chunk_mask + 1;
1163         const int rw = bio_data_dir(bio);
1164         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1165         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1166         const unsigned long do_discard = (bio->bi_rw
1167                                           & (REQ_DISCARD | REQ_SECURE));
1168         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1169         unsigned long flags;
1170         struct md_rdev *blocked_rdev;
1171         struct blk_plug_cb *cb;
1172         struct raid10_plug_cb *plug = NULL;
1173         int sectors_handled;
1174         int max_sectors;
1175         int sectors;
1176
1177         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1178                 md_flush_request(mddev, bio);
1179                 return;
1180         }
1181
1182         /* If this request crosses a chunk boundary, we need to
1183          * split it.  This will only happen for 1 PAGE (or less) requests.
1184          */
1185         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + bio_sectors(bio)
1186                      > chunk_sects
1187                      && (conf->geo.near_copies < conf->geo.raid_disks
1188                          || conf->prev.near_copies < conf->prev.raid_disks))) {
1189                 struct bio_pair *bp;
1190                 /* Sanity check -- queue functions should prevent this happening */
1191                 if (bio_segments(bio) > 1)
1192                         goto bad_map;
1193                 /* This is a one page bio that upper layers
1194                  * refuse to split for us, so we need to split it.
1195                  */
1196                 bp = bio_split(bio, chunk_sects -
1197                                (bio->bi_iter.bi_sector & (chunk_sects - 1)));
1198
1199                 /* Each of these 'make_request' calls will call 'wait_barrier'.
1200                  * If the first succeeds but the second blocks due to the resync
1201                  * thread raising the barrier, we will deadlock because the
1202                  * IO to the underlying device will be queued in generic_make_request
1203                  * and will never complete, so will never reduce nr_pending.
1204                  * So increment nr_waiting here so no new raise_barriers will
1205                  * succeed, and so the second wait_barrier cannot block.
1206                  */
1207                 spin_lock_irq(&conf->resync_lock);
1208                 conf->nr_waiting++;
1209                 spin_unlock_irq(&conf->resync_lock);
1210
1211                 make_request(mddev, &bp->bio1);
1212                 make_request(mddev, &bp->bio2);
1213
1214                 spin_lock_irq(&conf->resync_lock);
1215                 conf->nr_waiting--;
1216                 wake_up(&conf->wait_barrier);
1217                 spin_unlock_irq(&conf->resync_lock);
1218
1219                 bio_pair_release(bp);
1220                 return;
1221         bad_map:
1222                 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1223                        " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1224                        (unsigned long long)bio->bi_iter.bi_sector,
1225                        bio_sectors(bio) / 2);
1226
1227                 bio_io_error(bio);
1228                 return;
1229         }
1230
1231         md_write_start(mddev, bio);
1232
1233         /*
1234          * Register the new request and wait if the reconstruction
1235          * thread has put up a bar for new requests.
1236          * Continue immediately if no resync is active currently.
1237          */
1238         wait_barrier(conf);
1239
1240         sectors = bio_sectors(bio);
1241         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1242             bio->bi_iter.bi_sector < conf->reshape_progress &&
1243             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1244                 /* IO spans the reshape position.  Need to wait for
1245                  * reshape to pass
1246                  */
1247                 allow_barrier(conf);
1248                 wait_event(conf->wait_barrier,
1249                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1250                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1251                            sectors);
1252                 wait_barrier(conf);
1253         }
1254         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1255             bio_data_dir(bio) == WRITE &&
1256             (mddev->reshape_backwards
1257              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1258                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1259              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1260                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1261                 /* Need to update reshape_position in metadata */
1262                 mddev->reshape_position = conf->reshape_progress;
1263                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1264                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1265                 md_wakeup_thread(mddev->thread);
1266                 wait_event(mddev->sb_wait,
1267                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1268
1269                 conf->reshape_safe = mddev->reshape_position;
1270         }
1271
1272         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1273
1274         r10_bio->master_bio = bio;
1275         r10_bio->sectors = sectors;
1276
1277         r10_bio->mddev = mddev;
1278         r10_bio->sector = bio->bi_iter.bi_sector;
1279         r10_bio->state = 0;
1280
1281         /* We might need to issue multiple reads to different
1282          * devices if there are bad blocks around, so we keep
1283          * track of the number of reads in bio->bi_phys_segments.
1284          * If this is 0, there is only one r10_bio and no locking
1285          * will be needed when the request completes.  If it is
1286          * non-zero, then it is the number of not-completed requests.
1287          */
1288         bio->bi_phys_segments = 0;
1289         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1290
1291         if (rw == READ) {
1292                 /*
1293                  * read balancing logic:
1294                  */
1295                 struct md_rdev *rdev;
1296                 int slot;
1297
1298 read_again:
1299                 rdev = read_balance(conf, r10_bio, &max_sectors);
1300                 if (!rdev) {
1301                         raid_end_bio_io(r10_bio);
1302                         return;
1303                 }
1304                 slot = r10_bio->read_slot;
1305
1306                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1307                 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1308                          max_sectors);
1309
1310                 r10_bio->devs[slot].bio = read_bio;
1311                 r10_bio->devs[slot].rdev = rdev;
1312
1313                 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1314                         choose_data_offset(r10_bio, rdev);
1315                 read_bio->bi_bdev = rdev->bdev;
1316                 read_bio->bi_end_io = raid10_end_read_request;
1317                 read_bio->bi_rw = READ | do_sync;
1318                 read_bio->bi_private = r10_bio;
1319
1320                 if (max_sectors < r10_bio->sectors) {
1321                         /* Could not read all from this device, so we will
1322                          * need another r10_bio.
1323                          */
1324                         sectors_handled = (r10_bio->sectors + max_sectors
1325                                            - bio->bi_iter.bi_sector);
1326                         r10_bio->sectors = max_sectors;
1327                         spin_lock_irq(&conf->device_lock);
1328                         if (bio->bi_phys_segments == 0)
1329                                 bio->bi_phys_segments = 2;
1330                         else
1331                                 bio->bi_phys_segments++;
1332                         spin_unlock(&conf->device_lock);
1333                         /* Cannot call generic_make_request directly
1334                          * as that will be queued in __generic_make_request
1335                          * and subsequent mempool_alloc might block
1336                          * waiting for it.  so hand bio over to raid10d.
1337                          */
1338                         reschedule_retry(r10_bio);
1339
1340                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1341
1342                         r10_bio->master_bio = bio;
1343                         r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1344                         r10_bio->state = 0;
1345                         r10_bio->mddev = mddev;
1346                         r10_bio->sector = bio->bi_iter.bi_sector +
1347                                 sectors_handled;
1348                         goto read_again;
1349                 } else
1350                         generic_make_request(read_bio);
1351                 return;
1352         }
1353
1354         /*
1355          * WRITE:
1356          */
1357         if (conf->pending_count >= max_queued_requests) {
1358                 md_wakeup_thread(mddev->thread);
1359                 wait_event(conf->wait_barrier,
1360                            conf->pending_count < max_queued_requests);
1361         }
1362         /* first select target devices under rcu_lock and
1363          * inc refcount on their rdev.  Record them by setting
1364          * bios[x] to bio
1365          * If there are known/acknowledged bad blocks on any device
1366          * on which we have seen a write error, we want to avoid
1367          * writing to those blocks.  This potentially requires several
1368          * writes to write around the bad blocks.  Each set of writes
1369          * gets its own r10_bio with a set of bios attached.  The number
1370          * of r10_bios is recored in bio->bi_phys_segments just as with
1371          * the read case.
1372          */
1373
1374         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1375         raid10_find_phys(conf, r10_bio);
1376 retry_write:
1377         blocked_rdev = NULL;
1378         rcu_read_lock();
1379         max_sectors = r10_bio->sectors;
1380
1381         for (i = 0;  i < conf->copies; i++) {
1382                 int d = r10_bio->devs[i].devnum;
1383                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1384                 struct md_rdev *rrdev = rcu_dereference(
1385                         conf->mirrors[d].replacement);
1386                 if (rdev == rrdev)
1387                         rrdev = NULL;
1388                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1389                         atomic_inc(&rdev->nr_pending);
1390                         blocked_rdev = rdev;
1391                         break;
1392                 }
1393                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1394                         atomic_inc(&rrdev->nr_pending);
1395                         blocked_rdev = rrdev;
1396                         break;
1397                 }
1398                 if (rdev && (test_bit(Faulty, &rdev->flags)
1399                              || test_bit(Unmerged, &rdev->flags)))
1400                         rdev = NULL;
1401                 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1402                               || test_bit(Unmerged, &rrdev->flags)))
1403                         rrdev = NULL;
1404
1405                 r10_bio->devs[i].bio = NULL;
1406                 r10_bio->devs[i].repl_bio = NULL;
1407
1408                 if (!rdev && !rrdev) {
1409                         set_bit(R10BIO_Degraded, &r10_bio->state);
1410                         continue;
1411                 }
1412                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1413                         sector_t first_bad;
1414                         sector_t dev_sector = r10_bio->devs[i].addr;
1415                         int bad_sectors;
1416                         int is_bad;
1417
1418                         is_bad = is_badblock(rdev, dev_sector,
1419                                              max_sectors,
1420                                              &first_bad, &bad_sectors);
1421                         if (is_bad < 0) {
1422                                 /* Mustn't write here until the bad block
1423                                  * is acknowledged
1424                                  */
1425                                 atomic_inc(&rdev->nr_pending);
1426                                 set_bit(BlockedBadBlocks, &rdev->flags);
1427                                 blocked_rdev = rdev;
1428                                 break;
1429                         }
1430                         if (is_bad && first_bad <= dev_sector) {
1431                                 /* Cannot write here at all */
1432                                 bad_sectors -= (dev_sector - first_bad);
1433                                 if (bad_sectors < max_sectors)
1434                                         /* Mustn't write more than bad_sectors
1435                                          * to other devices yet
1436                                          */
1437                                         max_sectors = bad_sectors;
1438                                 /* We don't set R10BIO_Degraded as that
1439                                  * only applies if the disk is missing,
1440                                  * so it might be re-added, and we want to
1441                                  * know to recover this chunk.
1442                                  * In this case the device is here, and the
1443                                  * fact that this chunk is not in-sync is
1444                                  * recorded in the bad block log.
1445                                  */
1446                                 continue;
1447                         }
1448                         if (is_bad) {
1449                                 int good_sectors = first_bad - dev_sector;
1450                                 if (good_sectors < max_sectors)
1451                                         max_sectors = good_sectors;
1452                         }
1453                 }
1454                 if (rdev) {
1455                         r10_bio->devs[i].bio = bio;
1456                         atomic_inc(&rdev->nr_pending);
1457                 }
1458                 if (rrdev) {
1459                         r10_bio->devs[i].repl_bio = bio;
1460                         atomic_inc(&rrdev->nr_pending);
1461                 }
1462         }
1463         rcu_read_unlock();
1464
1465         if (unlikely(blocked_rdev)) {
1466                 /* Have to wait for this device to get unblocked, then retry */
1467                 int j;
1468                 int d;
1469
1470                 for (j = 0; j < i; j++) {
1471                         if (r10_bio->devs[j].bio) {
1472                                 d = r10_bio->devs[j].devnum;
1473                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1474                         }
1475                         if (r10_bio->devs[j].repl_bio) {
1476                                 struct md_rdev *rdev;
1477                                 d = r10_bio->devs[j].devnum;
1478                                 rdev = conf->mirrors[d].replacement;
1479                                 if (!rdev) {
1480                                         /* Race with remove_disk */
1481                                         smp_mb();
1482                                         rdev = conf->mirrors[d].rdev;
1483                                 }
1484                                 rdev_dec_pending(rdev, mddev);
1485                         }
1486                 }
1487                 allow_barrier(conf);
1488                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1489                 wait_barrier(conf);
1490                 goto retry_write;
1491         }
1492
1493         if (max_sectors < r10_bio->sectors) {
1494                 /* We are splitting this into multiple parts, so
1495                  * we need to prepare for allocating another r10_bio.
1496                  */
1497                 r10_bio->sectors = max_sectors;
1498                 spin_lock_irq(&conf->device_lock);
1499                 if (bio->bi_phys_segments == 0)
1500                         bio->bi_phys_segments = 2;
1501                 else
1502                         bio->bi_phys_segments++;
1503                 spin_unlock_irq(&conf->device_lock);
1504         }
1505         sectors_handled = r10_bio->sector + max_sectors -
1506                 bio->bi_iter.bi_sector;
1507
1508         atomic_set(&r10_bio->remaining, 1);
1509         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1510
1511         for (i = 0; i < conf->copies; i++) {
1512                 struct bio *mbio;
1513                 int d = r10_bio->devs[i].devnum;
1514                 if (r10_bio->devs[i].bio) {
1515                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1516                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1517                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1518                                  max_sectors);
1519                         r10_bio->devs[i].bio = mbio;
1520
1521                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1522                                            choose_data_offset(r10_bio,
1523                                                               rdev));
1524                         mbio->bi_bdev = rdev->bdev;
1525                         mbio->bi_end_io = raid10_end_write_request;
1526                         mbio->bi_rw =
1527                                 WRITE | do_sync | do_fua | do_discard | do_same;
1528                         mbio->bi_private = r10_bio;
1529
1530                         atomic_inc(&r10_bio->remaining);
1531
1532                         cb = blk_check_plugged(raid10_unplug, mddev,
1533                                                sizeof(*plug));
1534                         if (cb)
1535                                 plug = container_of(cb, struct raid10_plug_cb,
1536                                                     cb);
1537                         else
1538                                 plug = NULL;
1539                         spin_lock_irqsave(&conf->device_lock, flags);
1540                         if (plug) {
1541                                 bio_list_add(&plug->pending, mbio);
1542                                 plug->pending_cnt++;
1543                         } else {
1544                                 bio_list_add(&conf->pending_bio_list, mbio);
1545                                 conf->pending_count++;
1546                         }
1547                         spin_unlock_irqrestore(&conf->device_lock, flags);
1548                         if (!plug)
1549                                 md_wakeup_thread(mddev->thread);
1550                 }
1551
1552                 if (r10_bio->devs[i].repl_bio) {
1553                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1554                         if (rdev == NULL) {
1555                                 /* Replacement just got moved to main 'rdev' */
1556                                 smp_mb();
1557                                 rdev = conf->mirrors[d].rdev;
1558                         }
1559                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1560                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1561                                  max_sectors);
1562                         r10_bio->devs[i].repl_bio = mbio;
1563
1564                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1565                                            choose_data_offset(
1566                                                    r10_bio, rdev));
1567                         mbio->bi_bdev = rdev->bdev;
1568                         mbio->bi_end_io = raid10_end_write_request;
1569                         mbio->bi_rw =
1570                                 WRITE | do_sync | do_fua | do_discard | do_same;
1571                         mbio->bi_private = r10_bio;
1572
1573                         atomic_inc(&r10_bio->remaining);
1574                         spin_lock_irqsave(&conf->device_lock, flags);
1575                         bio_list_add(&conf->pending_bio_list, mbio);
1576                         conf->pending_count++;
1577                         spin_unlock_irqrestore(&conf->device_lock, flags);
1578                         if (!mddev_check_plugged(mddev))
1579                                 md_wakeup_thread(mddev->thread);
1580                 }
1581         }
1582
1583         /* Don't remove the bias on 'remaining' (one_write_done) until
1584          * after checking if we need to go around again.
1585          */
1586
1587         if (sectors_handled < bio_sectors(bio)) {
1588                 one_write_done(r10_bio);
1589                 /* We need another r10_bio.  It has already been counted
1590                  * in bio->bi_phys_segments.
1591                  */
1592                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1593
1594                 r10_bio->master_bio = bio;
1595                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1596
1597                 r10_bio->mddev = mddev;
1598                 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1599                 r10_bio->state = 0;
1600                 goto retry_write;
1601         }
1602         one_write_done(r10_bio);
1603
1604         /* In case raid10d snuck in to freeze_array */
1605         wake_up(&conf->wait_barrier);
1606 }
1607
1608 static void status(struct seq_file *seq, struct mddev *mddev)
1609 {
1610         struct r10conf *conf = mddev->private;
1611         int i;
1612
1613         if (conf->geo.near_copies < conf->geo.raid_disks)
1614                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1615         if (conf->geo.near_copies > 1)
1616                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1617         if (conf->geo.far_copies > 1) {
1618                 if (conf->geo.far_offset)
1619                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1620                 else
1621                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1622         }
1623         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1624                                         conf->geo.raid_disks - mddev->degraded);
1625         for (i = 0; i < conf->geo.raid_disks; i++)
1626                 seq_printf(seq, "%s",
1627                               conf->mirrors[i].rdev &&
1628                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1629         seq_printf(seq, "]");
1630 }
1631
1632 /* check if there are enough drives for
1633  * every block to appear on atleast one.
1634  * Don't consider the device numbered 'ignore'
1635  * as we might be about to remove it.
1636  */
1637 static int _enough(struct r10conf *conf, int previous, int ignore)
1638 {
1639         int first = 0;
1640         int has_enough = 0;
1641         int disks, ncopies;
1642         if (previous) {
1643                 disks = conf->prev.raid_disks;
1644                 ncopies = conf->prev.near_copies;
1645         } else {
1646                 disks = conf->geo.raid_disks;
1647                 ncopies = conf->geo.near_copies;
1648         }
1649
1650         rcu_read_lock();
1651         do {
1652                 int n = conf->copies;
1653                 int cnt = 0;
1654                 int this = first;
1655                 while (n--) {
1656                         struct md_rdev *rdev;
1657                         if (this != ignore &&
1658                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1659                             test_bit(In_sync, &rdev->flags))
1660                                 cnt++;
1661                         this = (this+1) % disks;
1662                 }
1663                 if (cnt == 0)
1664                         goto out;
1665                 first = (first + ncopies) % disks;
1666         } while (first != 0);
1667         has_enough = 1;
1668 out:
1669         rcu_read_unlock();
1670         return has_enough;
1671 }
1672
1673 static int enough(struct r10conf *conf, int ignore)
1674 {
1675         /* when calling 'enough', both 'prev' and 'geo' must
1676          * be stable.
1677          * This is ensured if ->reconfig_mutex or ->device_lock
1678          * is held.
1679          */
1680         return _enough(conf, 0, ignore) &&
1681                 _enough(conf, 1, ignore);
1682 }
1683
1684 static void error(struct mddev *mddev, struct md_rdev *rdev)
1685 {
1686         char b[BDEVNAME_SIZE];
1687         struct r10conf *conf = mddev->private;
1688         unsigned long flags;
1689
1690         /*
1691          * If it is not operational, then we have already marked it as dead
1692          * else if it is the last working disks, ignore the error, let the
1693          * next level up know.
1694          * else mark the drive as failed
1695          */
1696         spin_lock_irqsave(&conf->device_lock, flags);
1697         if (test_bit(In_sync, &rdev->flags)
1698             && !enough(conf, rdev->raid_disk)) {
1699                 /*
1700                  * Don't fail the drive, just return an IO error.
1701                  */
1702                 spin_unlock_irqrestore(&conf->device_lock, flags);
1703                 return;
1704         }
1705         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1706                 mddev->degraded++;
1707                         /*
1708                  * if recovery is running, make sure it aborts.
1709                  */
1710                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1711         }
1712         set_bit(Blocked, &rdev->flags);
1713         set_bit(Faulty, &rdev->flags);
1714         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1715         spin_unlock_irqrestore(&conf->device_lock, flags);
1716         printk(KERN_ALERT
1717                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1718                "md/raid10:%s: Operation continuing on %d devices.\n",
1719                mdname(mddev), bdevname(rdev->bdev, b),
1720                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1721 }
1722
1723 static void print_conf(struct r10conf *conf)
1724 {
1725         int i;
1726         struct raid10_info *tmp;
1727
1728         printk(KERN_DEBUG "RAID10 conf printout:\n");
1729         if (!conf) {
1730                 printk(KERN_DEBUG "(!conf)\n");
1731                 return;
1732         }
1733         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1734                 conf->geo.raid_disks);
1735
1736         for (i = 0; i < conf->geo.raid_disks; i++) {
1737                 char b[BDEVNAME_SIZE];
1738                 tmp = conf->mirrors + i;
1739                 if (tmp->rdev)
1740                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1741                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1742                                 !test_bit(Faulty, &tmp->rdev->flags),
1743                                 bdevname(tmp->rdev->bdev,b));
1744         }
1745 }
1746
1747 static void close_sync(struct r10conf *conf)
1748 {
1749         wait_barrier(conf);
1750         allow_barrier(conf);
1751
1752         mempool_destroy(conf->r10buf_pool);
1753         conf->r10buf_pool = NULL;
1754 }
1755
1756 static int raid10_spare_active(struct mddev *mddev)
1757 {
1758         int i;
1759         struct r10conf *conf = mddev->private;
1760         struct raid10_info *tmp;
1761         int count = 0;
1762         unsigned long flags;
1763
1764         /*
1765          * Find all non-in_sync disks within the RAID10 configuration
1766          * and mark them in_sync
1767          */
1768         for (i = 0; i < conf->geo.raid_disks; i++) {
1769                 tmp = conf->mirrors + i;
1770                 if (tmp->replacement
1771                     && tmp->replacement->recovery_offset == MaxSector
1772                     && !test_bit(Faulty, &tmp->replacement->flags)
1773                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1774                         /* Replacement has just become active */
1775                         if (!tmp->rdev
1776                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1777                                 count++;
1778                         if (tmp->rdev) {
1779                                 /* Replaced device not technically faulty,
1780                                  * but we need to be sure it gets removed
1781                                  * and never re-added.
1782                                  */
1783                                 set_bit(Faulty, &tmp->rdev->flags);
1784                                 sysfs_notify_dirent_safe(
1785                                         tmp->rdev->sysfs_state);
1786                         }
1787                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1788                 } else if (tmp->rdev
1789                            && tmp->rdev->recovery_offset == MaxSector
1790                            && !test_bit(Faulty, &tmp->rdev->flags)
1791                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1792                         count++;
1793                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1794                 }
1795         }
1796         spin_lock_irqsave(&conf->device_lock, flags);
1797         mddev->degraded -= count;
1798         spin_unlock_irqrestore(&conf->device_lock, flags);
1799
1800         print_conf(conf);
1801         return count;
1802 }
1803
1804
1805 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1806 {
1807         struct r10conf *conf = mddev->private;
1808         int err = -EEXIST;
1809         int mirror;
1810         int first = 0;
1811         int last = conf->geo.raid_disks - 1;
1812         struct request_queue *q = bdev_get_queue(rdev->bdev);
1813
1814         if (mddev->recovery_cp < MaxSector)
1815                 /* only hot-add to in-sync arrays, as recovery is
1816                  * very different from resync
1817                  */
1818                 return -EBUSY;
1819         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1820                 return -EINVAL;
1821
1822         if (rdev->raid_disk >= 0)
1823                 first = last = rdev->raid_disk;
1824
1825         if (q->merge_bvec_fn) {
1826                 set_bit(Unmerged, &rdev->flags);
1827                 mddev->merge_check_needed = 1;
1828         }
1829
1830         if (rdev->saved_raid_disk >= first &&
1831             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1832                 mirror = rdev->saved_raid_disk;
1833         else
1834                 mirror = first;
1835         for ( ; mirror <= last ; mirror++) {
1836                 struct raid10_info *p = &conf->mirrors[mirror];
1837                 if (p->recovery_disabled == mddev->recovery_disabled)
1838                         continue;
1839                 if (p->rdev) {
1840                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1841                             p->replacement != NULL)
1842                                 continue;
1843                         clear_bit(In_sync, &rdev->flags);
1844                         set_bit(Replacement, &rdev->flags);
1845                         rdev->raid_disk = mirror;
1846                         err = 0;
1847                         if (mddev->gendisk)
1848                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1849                                                   rdev->data_offset << 9);
1850                         conf->fullsync = 1;
1851                         rcu_assign_pointer(p->replacement, rdev);
1852                         break;
1853                 }
1854
1855                 if (mddev->gendisk)
1856                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1857                                           rdev->data_offset << 9);
1858
1859                 p->head_position = 0;
1860                 p->recovery_disabled = mddev->recovery_disabled - 1;
1861                 rdev->raid_disk = mirror;
1862                 err = 0;
1863                 if (rdev->saved_raid_disk != mirror)
1864                         conf->fullsync = 1;
1865                 rcu_assign_pointer(p->rdev, rdev);
1866                 break;
1867         }
1868         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1869                 /* Some requests might not have seen this new
1870                  * merge_bvec_fn.  We must wait for them to complete
1871                  * before merging the device fully.
1872                  * First we make sure any code which has tested
1873                  * our function has submitted the request, then
1874                  * we wait for all outstanding requests to complete.
1875                  */
1876                 synchronize_sched();
1877                 freeze_array(conf, 0);
1878                 unfreeze_array(conf);
1879                 clear_bit(Unmerged, &rdev->flags);
1880         }
1881         md_integrity_add_rdev(rdev, mddev);
1882         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1883                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1884
1885         print_conf(conf);
1886         return err;
1887 }
1888
1889 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1890 {
1891         struct r10conf *conf = mddev->private;
1892         int err = 0;
1893         int number = rdev->raid_disk;
1894         struct md_rdev **rdevp;
1895         struct raid10_info *p = conf->mirrors + number;
1896
1897         print_conf(conf);
1898         if (rdev == p->rdev)
1899                 rdevp = &p->rdev;
1900         else if (rdev == p->replacement)
1901                 rdevp = &p->replacement;
1902         else
1903                 return 0;
1904
1905         if (test_bit(In_sync, &rdev->flags) ||
1906             atomic_read(&rdev->nr_pending)) {
1907                 err = -EBUSY;
1908                 goto abort;
1909         }
1910         /* Only remove faulty devices if recovery
1911          * is not possible.
1912          */
1913         if (!test_bit(Faulty, &rdev->flags) &&
1914             mddev->recovery_disabled != p->recovery_disabled &&
1915             (!p->replacement || p->replacement == rdev) &&
1916             number < conf->geo.raid_disks &&
1917             enough(conf, -1)) {
1918                 err = -EBUSY;
1919                 goto abort;
1920         }
1921         *rdevp = NULL;
1922         synchronize_rcu();
1923         if (atomic_read(&rdev->nr_pending)) {
1924                 /* lost the race, try later */
1925                 err = -EBUSY;
1926                 *rdevp = rdev;
1927                 goto abort;
1928         } else if (p->replacement) {
1929                 /* We must have just cleared 'rdev' */
1930                 p->rdev = p->replacement;
1931                 clear_bit(Replacement, &p->replacement->flags);
1932                 smp_mb(); /* Make sure other CPUs may see both as identical
1933                            * but will never see neither -- if they are careful.
1934                            */
1935                 p->replacement = NULL;
1936                 clear_bit(WantReplacement, &rdev->flags);
1937         } else
1938                 /* We might have just remove the Replacement as faulty
1939                  * Clear the flag just in case
1940                  */
1941                 clear_bit(WantReplacement, &rdev->flags);
1942
1943         err = md_integrity_register(mddev);
1944
1945 abort:
1946
1947         print_conf(conf);
1948         return err;
1949 }
1950
1951
1952 static void end_sync_read(struct bio *bio, int error)
1953 {
1954         struct r10bio *r10_bio = bio->bi_private;
1955         struct r10conf *conf = r10_bio->mddev->private;
1956         int d;
1957
1958         if (bio == r10_bio->master_bio) {
1959                 /* this is a reshape read */
1960                 d = r10_bio->read_slot; /* really the read dev */
1961         } else
1962                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1963
1964         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1965                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1966         else
1967                 /* The write handler will notice the lack of
1968                  * R10BIO_Uptodate and record any errors etc
1969                  */
1970                 atomic_add(r10_bio->sectors,
1971                            &conf->mirrors[d].rdev->corrected_errors);
1972
1973         /* for reconstruct, we always reschedule after a read.
1974          * for resync, only after all reads
1975          */
1976         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1977         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1978             atomic_dec_and_test(&r10_bio->remaining)) {
1979                 /* we have read all the blocks,
1980                  * do the comparison in process context in raid10d
1981                  */
1982                 reschedule_retry(r10_bio);
1983         }
1984 }
1985
1986 static void end_sync_request(struct r10bio *r10_bio)
1987 {
1988         struct mddev *mddev = r10_bio->mddev;
1989
1990         while (atomic_dec_and_test(&r10_bio->remaining)) {
1991                 if (r10_bio->master_bio == NULL) {
1992                         /* the primary of several recovery bios */
1993                         sector_t s = r10_bio->sectors;
1994                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1995                             test_bit(R10BIO_WriteError, &r10_bio->state))
1996                                 reschedule_retry(r10_bio);
1997                         else
1998                                 put_buf(r10_bio);
1999                         md_done_sync(mddev, s, 1);
2000                         break;
2001                 } else {
2002                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2003                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2004                             test_bit(R10BIO_WriteError, &r10_bio->state))
2005                                 reschedule_retry(r10_bio);
2006                         else
2007                                 put_buf(r10_bio);
2008                         r10_bio = r10_bio2;
2009                 }
2010         }
2011 }
2012
2013 static void end_sync_write(struct bio *bio, int error)
2014 {
2015         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2016         struct r10bio *r10_bio = bio->bi_private;
2017         struct mddev *mddev = r10_bio->mddev;
2018         struct r10conf *conf = mddev->private;
2019         int d;
2020         sector_t first_bad;
2021         int bad_sectors;
2022         int slot;
2023         int repl;
2024         struct md_rdev *rdev = NULL;
2025
2026         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2027         if (repl)
2028                 rdev = conf->mirrors[d].replacement;
2029         else
2030                 rdev = conf->mirrors[d].rdev;
2031
2032         if (!uptodate) {
2033                 if (repl)
2034                         md_error(mddev, rdev);
2035                 else {
2036                         set_bit(WriteErrorSeen, &rdev->flags);
2037                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2038                                 set_bit(MD_RECOVERY_NEEDED,
2039                                         &rdev->mddev->recovery);
2040                         set_bit(R10BIO_WriteError, &r10_bio->state);
2041                 }
2042         } else if (is_badblock(rdev,
2043                              r10_bio->devs[slot].addr,
2044                              r10_bio->sectors,
2045                              &first_bad, &bad_sectors))
2046                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2047
2048         rdev_dec_pending(rdev, mddev);
2049
2050         end_sync_request(r10_bio);
2051 }
2052
2053 /*
2054  * Note: sync and recover and handled very differently for raid10
2055  * This code is for resync.
2056  * For resync, we read through virtual addresses and read all blocks.
2057  * If there is any error, we schedule a write.  The lowest numbered
2058  * drive is authoritative.
2059  * However requests come for physical address, so we need to map.
2060  * For every physical address there are raid_disks/copies virtual addresses,
2061  * which is always are least one, but is not necessarly an integer.
2062  * This means that a physical address can span multiple chunks, so we may
2063  * have to submit multiple io requests for a single sync request.
2064  */
2065 /*
2066  * We check if all blocks are in-sync and only write to blocks that
2067  * aren't in sync
2068  */
2069 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2070 {
2071         struct r10conf *conf = mddev->private;
2072         int i, first;
2073         struct bio *tbio, *fbio;
2074         int vcnt;
2075
2076         atomic_set(&r10_bio->remaining, 1);
2077
2078         /* find the first device with a block */
2079         for (i=0; i<conf->copies; i++)
2080                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2081                         break;
2082
2083         if (i == conf->copies)
2084                 goto done;
2085
2086         first = i;
2087         fbio = r10_bio->devs[i].bio;
2088
2089         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2090         /* now find blocks with errors */
2091         for (i=0 ; i < conf->copies ; i++) {
2092                 int  j, d;
2093
2094                 tbio = r10_bio->devs[i].bio;
2095
2096                 if (tbio->bi_end_io != end_sync_read)
2097                         continue;
2098                 if (i == first)
2099                         continue;
2100                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2101                         /* We know that the bi_io_vec layout is the same for
2102                          * both 'first' and 'i', so we just compare them.
2103                          * All vec entries are PAGE_SIZE;
2104                          */
2105                         int sectors = r10_bio->sectors;
2106                         for (j = 0; j < vcnt; j++) {
2107                                 int len = PAGE_SIZE;
2108                                 if (sectors < (len / 512))
2109                                         len = sectors * 512;
2110                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2111                                            page_address(tbio->bi_io_vec[j].bv_page),
2112                                            len))
2113                                         break;
2114                                 sectors -= len/512;
2115                         }
2116                         if (j == vcnt)
2117                                 continue;
2118                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2119                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2120                                 /* Don't fix anything. */
2121                                 continue;
2122                 }
2123                 /* Ok, we need to write this bio, either to correct an
2124                  * inconsistency or to correct an unreadable block.
2125                  * First we need to fixup bv_offset, bv_len and
2126                  * bi_vecs, as the read request might have corrupted these
2127                  */
2128                 bio_reset(tbio);
2129
2130                 tbio->bi_vcnt = vcnt;
2131                 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2132                 tbio->bi_rw = WRITE;
2133                 tbio->bi_private = r10_bio;
2134                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2135
2136                 for (j=0; j < vcnt ; j++) {
2137                         tbio->bi_io_vec[j].bv_offset = 0;
2138                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2139
2140                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2141                                page_address(fbio->bi_io_vec[j].bv_page),
2142                                PAGE_SIZE);
2143                 }
2144                 tbio->bi_end_io = end_sync_write;
2145
2146                 d = r10_bio->devs[i].devnum;
2147                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2148                 atomic_inc(&r10_bio->remaining);
2149                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2150
2151                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2152                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2153                 generic_make_request(tbio);
2154         }
2155
2156         /* Now write out to any replacement devices
2157          * that are active
2158          */
2159         for (i = 0; i < conf->copies; i++) {
2160                 int j, d;
2161
2162                 tbio = r10_bio->devs[i].repl_bio;
2163                 if (!tbio || !tbio->bi_end_io)
2164                         continue;
2165                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2166                     && r10_bio->devs[i].bio != fbio)
2167                         for (j = 0; j < vcnt; j++)
2168                                 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2169                                        page_address(fbio->bi_io_vec[j].bv_page),
2170                                        PAGE_SIZE);
2171                 d = r10_bio->devs[i].devnum;
2172                 atomic_inc(&r10_bio->remaining);
2173                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2174                              bio_sectors(tbio));
2175                 generic_make_request(tbio);
2176         }
2177
2178 done:
2179         if (atomic_dec_and_test(&r10_bio->remaining)) {
2180                 md_done_sync(mddev, r10_bio->sectors, 1);
2181                 put_buf(r10_bio);
2182         }
2183 }
2184
2185 /*
2186  * Now for the recovery code.
2187  * Recovery happens across physical sectors.
2188  * We recover all non-is_sync drives by finding the virtual address of
2189  * each, and then choose a working drive that also has that virt address.
2190  * There is a separate r10_bio for each non-in_sync drive.
2191  * Only the first two slots are in use. The first for reading,
2192  * The second for writing.
2193  *
2194  */
2195 static void fix_recovery_read_error(struct r10bio *r10_bio)
2196 {
2197         /* We got a read error during recovery.
2198          * We repeat the read in smaller page-sized sections.
2199          * If a read succeeds, write it to the new device or record
2200          * a bad block if we cannot.
2201          * If a read fails, record a bad block on both old and
2202          * new devices.
2203          */
2204         struct mddev *mddev = r10_bio->mddev;
2205         struct r10conf *conf = mddev->private;
2206         struct bio *bio = r10_bio->devs[0].bio;
2207         sector_t sect = 0;
2208         int sectors = r10_bio->sectors;
2209         int idx = 0;
2210         int dr = r10_bio->devs[0].devnum;
2211         int dw = r10_bio->devs[1].devnum;
2212
2213         while (sectors) {
2214                 int s = sectors;
2215                 struct md_rdev *rdev;
2216                 sector_t addr;
2217                 int ok;
2218
2219                 if (s > (PAGE_SIZE>>9))
2220                         s = PAGE_SIZE >> 9;
2221
2222                 rdev = conf->mirrors[dr].rdev;
2223                 addr = r10_bio->devs[0].addr + sect,
2224                 ok = sync_page_io(rdev,
2225                                   addr,
2226                                   s << 9,
2227                                   bio->bi_io_vec[idx].bv_page,
2228                                   READ, false);
2229                 if (ok) {
2230                         rdev = conf->mirrors[dw].rdev;
2231                         addr = r10_bio->devs[1].addr + sect;
2232                         ok = sync_page_io(rdev,
2233                                           addr,
2234                                           s << 9,
2235                                           bio->bi_io_vec[idx].bv_page,
2236                                           WRITE, false);
2237                         if (!ok) {
2238                                 set_bit(WriteErrorSeen, &rdev->flags);
2239                                 if (!test_and_set_bit(WantReplacement,
2240                                                       &rdev->flags))
2241                                         set_bit(MD_RECOVERY_NEEDED,
2242                                                 &rdev->mddev->recovery);
2243                         }
2244                 }
2245                 if (!ok) {
2246                         /* We don't worry if we cannot set a bad block -
2247                          * it really is bad so there is no loss in not
2248                          * recording it yet
2249                          */
2250                         rdev_set_badblocks(rdev, addr, s, 0);
2251
2252                         if (rdev != conf->mirrors[dw].rdev) {
2253                                 /* need bad block on destination too */
2254                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2255                                 addr = r10_bio->devs[1].addr + sect;
2256                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2257                                 if (!ok) {
2258                                         /* just abort the recovery */
2259                                         printk(KERN_NOTICE
2260                                                "md/raid10:%s: recovery aborted"
2261                                                " due to read error\n",
2262                                                mdname(mddev));
2263
2264                                         conf->mirrors[dw].recovery_disabled
2265                                                 = mddev->recovery_disabled;
2266                                         set_bit(MD_RECOVERY_INTR,
2267                                                 &mddev->recovery);
2268                                         break;
2269                                 }
2270                         }
2271                 }
2272
2273                 sectors -= s;
2274                 sect += s;
2275                 idx++;
2276         }
2277 }
2278
2279 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2280 {
2281         struct r10conf *conf = mddev->private;
2282         int d;
2283         struct bio *wbio, *wbio2;
2284
2285         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2286                 fix_recovery_read_error(r10_bio);
2287                 end_sync_request(r10_bio);
2288                 return;
2289         }
2290
2291         /*
2292          * share the pages with the first bio
2293          * and submit the write request
2294          */
2295         d = r10_bio->devs[1].devnum;
2296         wbio = r10_bio->devs[1].bio;
2297         wbio2 = r10_bio->devs[1].repl_bio;
2298         /* Need to test wbio2->bi_end_io before we call
2299          * generic_make_request as if the former is NULL,
2300          * the latter is free to free wbio2.
2301          */
2302         if (wbio2 && !wbio2->bi_end_io)
2303                 wbio2 = NULL;
2304         if (wbio->bi_end_io) {
2305                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2306                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2307                 generic_make_request(wbio);
2308         }
2309         if (wbio2) {
2310                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2311                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2312                              bio_sectors(wbio2));
2313                 generic_make_request(wbio2);
2314         }
2315 }
2316
2317
2318 /*
2319  * Used by fix_read_error() to decay the per rdev read_errors.
2320  * We halve the read error count for every hour that has elapsed
2321  * since the last recorded read error.
2322  *
2323  */
2324 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2325 {
2326         struct timespec cur_time_mon;
2327         unsigned long hours_since_last;
2328         unsigned int read_errors = atomic_read(&rdev->read_errors);
2329
2330         ktime_get_ts(&cur_time_mon);
2331
2332         if (rdev->last_read_error.tv_sec == 0 &&
2333             rdev->last_read_error.tv_nsec == 0) {
2334                 /* first time we've seen a read error */
2335                 rdev->last_read_error = cur_time_mon;
2336                 return;
2337         }
2338
2339         hours_since_last = (cur_time_mon.tv_sec -
2340                             rdev->last_read_error.tv_sec) / 3600;
2341
2342         rdev->last_read_error = cur_time_mon;
2343
2344         /*
2345          * if hours_since_last is > the number of bits in read_errors
2346          * just set read errors to 0. We do this to avoid
2347          * overflowing the shift of read_errors by hours_since_last.
2348          */
2349         if (hours_since_last >= 8 * sizeof(read_errors))
2350                 atomic_set(&rdev->read_errors, 0);
2351         else
2352                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2353 }
2354
2355 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2356                             int sectors, struct page *page, int rw)
2357 {
2358         sector_t first_bad;
2359         int bad_sectors;
2360
2361         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2362             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2363                 return -1;
2364         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2365                 /* success */
2366                 return 1;
2367         if (rw == WRITE) {
2368                 set_bit(WriteErrorSeen, &rdev->flags);
2369                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2370                         set_bit(MD_RECOVERY_NEEDED,
2371                                 &rdev->mddev->recovery);
2372         }
2373         /* need to record an error - either for the block or the device */
2374         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2375                 md_error(rdev->mddev, rdev);
2376         return 0;
2377 }
2378
2379 /*
2380  * This is a kernel thread which:
2381  *
2382  *      1.      Retries failed read operations on working mirrors.
2383  *      2.      Updates the raid superblock when problems encounter.
2384  *      3.      Performs writes following reads for array synchronising.
2385  */
2386
2387 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2388 {
2389         int sect = 0; /* Offset from r10_bio->sector */
2390         int sectors = r10_bio->sectors;
2391         struct md_rdev*rdev;
2392         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2393         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2394
2395         /* still own a reference to this rdev, so it cannot
2396          * have been cleared recently.
2397          */
2398         rdev = conf->mirrors[d].rdev;
2399
2400         if (test_bit(Faulty, &rdev->flags))
2401                 /* drive has already been failed, just ignore any
2402                    more fix_read_error() attempts */
2403                 return;
2404
2405         check_decay_read_errors(mddev, rdev);
2406         atomic_inc(&rdev->read_errors);
2407         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2408                 char b[BDEVNAME_SIZE];
2409                 bdevname(rdev->bdev, b);
2410
2411                 printk(KERN_NOTICE
2412                        "md/raid10:%s: %s: Raid device exceeded "
2413                        "read_error threshold [cur %d:max %d]\n",
2414                        mdname(mddev), b,
2415                        atomic_read(&rdev->read_errors), max_read_errors);
2416                 printk(KERN_NOTICE
2417                        "md/raid10:%s: %s: Failing raid device\n",
2418                        mdname(mddev), b);
2419                 md_error(mddev, conf->mirrors[d].rdev);
2420                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2421                 return;
2422         }
2423
2424         while(sectors) {
2425                 int s = sectors;
2426                 int sl = r10_bio->read_slot;
2427                 int success = 0;
2428                 int start;
2429
2430                 if (s > (PAGE_SIZE>>9))
2431                         s = PAGE_SIZE >> 9;
2432
2433                 rcu_read_lock();
2434                 do {
2435                         sector_t first_bad;
2436                         int bad_sectors;
2437
2438                         d = r10_bio->devs[sl].devnum;
2439                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2440                         if (rdev &&
2441                             !test_bit(Unmerged, &rdev->flags) &&
2442                             test_bit(In_sync, &rdev->flags) &&
2443                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2444                                         &first_bad, &bad_sectors) == 0) {
2445                                 atomic_inc(&rdev->nr_pending);
2446                                 rcu_read_unlock();
2447                                 success = sync_page_io(rdev,
2448                                                        r10_bio->devs[sl].addr +
2449                                                        sect,
2450                                                        s<<9,
2451                                                        conf->tmppage, READ, false);
2452                                 rdev_dec_pending(rdev, mddev);
2453                                 rcu_read_lock();
2454                                 if (success)
2455                                         break;
2456                         }
2457                         sl++;
2458                         if (sl == conf->copies)
2459                                 sl = 0;
2460                 } while (!success && sl != r10_bio->read_slot);
2461                 rcu_read_unlock();
2462
2463                 if (!success) {
2464                         /* Cannot read from anywhere, just mark the block
2465                          * as bad on the first device to discourage future
2466                          * reads.
2467                          */
2468                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2469                         rdev = conf->mirrors[dn].rdev;
2470
2471                         if (!rdev_set_badblocks(
2472                                     rdev,
2473                                     r10_bio->devs[r10_bio->read_slot].addr
2474                                     + sect,
2475                                     s, 0)) {
2476                                 md_error(mddev, rdev);
2477                                 r10_bio->devs[r10_bio->read_slot].bio
2478                                         = IO_BLOCKED;
2479                         }
2480                         break;
2481                 }
2482
2483                 start = sl;
2484                 /* write it back and re-read */
2485                 rcu_read_lock();
2486                 while (sl != r10_bio->read_slot) {
2487                         char b[BDEVNAME_SIZE];
2488
2489                         if (sl==0)
2490                                 sl = conf->copies;
2491                         sl--;
2492                         d = r10_bio->devs[sl].devnum;
2493                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2494                         if (!rdev ||
2495                             test_bit(Unmerged, &rdev->flags) ||
2496                             !test_bit(In_sync, &rdev->flags))
2497                                 continue;
2498
2499                         atomic_inc(&rdev->nr_pending);
2500                         rcu_read_unlock();
2501                         if (r10_sync_page_io(rdev,
2502                                              r10_bio->devs[sl].addr +
2503                                              sect,
2504                                              s, conf->tmppage, WRITE)
2505                             == 0) {
2506                                 /* Well, this device is dead */
2507                                 printk(KERN_NOTICE
2508                                        "md/raid10:%s: read correction "
2509                                        "write failed"
2510                                        " (%d sectors at %llu on %s)\n",
2511                                        mdname(mddev), s,
2512                                        (unsigned long long)(
2513                                                sect +
2514                                                choose_data_offset(r10_bio,
2515                                                                   rdev)),
2516                                        bdevname(rdev->bdev, b));
2517                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2518                                        "drive\n",
2519                                        mdname(mddev),
2520                                        bdevname(rdev->bdev, b));
2521                         }
2522                         rdev_dec_pending(rdev, mddev);
2523                         rcu_read_lock();
2524                 }
2525                 sl = start;
2526                 while (sl != r10_bio->read_slot) {
2527                         char b[BDEVNAME_SIZE];
2528
2529                         if (sl==0)
2530                                 sl = conf->copies;
2531                         sl--;
2532                         d = r10_bio->devs[sl].devnum;
2533                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2534                         if (!rdev ||
2535                             !test_bit(In_sync, &rdev->flags))
2536                                 continue;
2537
2538                         atomic_inc(&rdev->nr_pending);
2539                         rcu_read_unlock();
2540                         switch (r10_sync_page_io(rdev,
2541                                              r10_bio->devs[sl].addr +
2542                                              sect,
2543                                              s, conf->tmppage,
2544                                                  READ)) {
2545                         case 0:
2546                                 /* Well, this device is dead */
2547                                 printk(KERN_NOTICE
2548                                        "md/raid10:%s: unable to read back "
2549                                        "corrected sectors"
2550                                        " (%d sectors at %llu on %s)\n",
2551                                        mdname(mddev), s,
2552                                        (unsigned long long)(
2553                                                sect +
2554                                                choose_data_offset(r10_bio, rdev)),
2555                                        bdevname(rdev->bdev, b));
2556                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2557                                        "drive\n",
2558                                        mdname(mddev),
2559                                        bdevname(rdev->bdev, b));
2560                                 break;
2561                         case 1:
2562                                 printk(KERN_INFO
2563                                        "md/raid10:%s: read error corrected"
2564                                        " (%d sectors at %llu on %s)\n",
2565                                        mdname(mddev), s,
2566                                        (unsigned long long)(
2567                                                sect +
2568                                                choose_data_offset(r10_bio, rdev)),
2569                                        bdevname(rdev->bdev, b));
2570                                 atomic_add(s, &rdev->corrected_errors);
2571                         }
2572
2573                         rdev_dec_pending(rdev, mddev);
2574                         rcu_read_lock();
2575                 }
2576                 rcu_read_unlock();
2577
2578                 sectors -= s;
2579                 sect += s;
2580         }
2581 }
2582
2583 static int narrow_write_error(struct r10bio *r10_bio, int i)
2584 {
2585         struct bio *bio = r10_bio->master_bio;
2586         struct mddev *mddev = r10_bio->mddev;
2587         struct r10conf *conf = mddev->private;
2588         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2589         /* bio has the data to be written to slot 'i' where
2590          * we just recently had a write error.
2591          * We repeatedly clone the bio and trim down to one block,
2592          * then try the write.  Where the write fails we record
2593          * a bad block.
2594          * It is conceivable that the bio doesn't exactly align with
2595          * blocks.  We must handle this.
2596          *
2597          * We currently own a reference to the rdev.
2598          */
2599
2600         int block_sectors;
2601         sector_t sector;
2602         int sectors;
2603         int sect_to_write = r10_bio->sectors;
2604         int ok = 1;
2605
2606         if (rdev->badblocks.shift < 0)
2607                 return 0;
2608
2609         block_sectors = 1 << rdev->badblocks.shift;
2610         sector = r10_bio->sector;
2611         sectors = ((r10_bio->sector + block_sectors)
2612                    & ~(sector_t)(block_sectors - 1))
2613                 - sector;
2614
2615         while (sect_to_write) {
2616                 struct bio *wbio;
2617                 if (sectors > sect_to_write)
2618                         sectors = sect_to_write;
2619                 /* Write at 'sector' for 'sectors' */
2620                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2621                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2622                 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2623                                    choose_data_offset(r10_bio, rdev) +
2624                                    (sector - r10_bio->sector));
2625                 wbio->bi_bdev = rdev->bdev;
2626                 if (submit_bio_wait(WRITE, wbio) == 0)
2627                         /* Failure! */
2628                         ok = rdev_set_badblocks(rdev, sector,
2629                                                 sectors, 0)
2630                                 && ok;
2631
2632                 bio_put(wbio);
2633                 sect_to_write -= sectors;
2634                 sector += sectors;
2635                 sectors = block_sectors;
2636         }
2637         return ok;
2638 }
2639
2640 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2641 {
2642         int slot = r10_bio->read_slot;
2643         struct bio *bio;
2644         struct r10conf *conf = mddev->private;
2645         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2646         char b[BDEVNAME_SIZE];
2647         unsigned long do_sync;
2648         int max_sectors;
2649
2650         /* we got a read error. Maybe the drive is bad.  Maybe just
2651          * the block and we can fix it.
2652          * We freeze all other IO, and try reading the block from
2653          * other devices.  When we find one, we re-write
2654          * and check it that fixes the read error.
2655          * This is all done synchronously while the array is
2656          * frozen.
2657          */
2658         bio = r10_bio->devs[slot].bio;
2659         bdevname(bio->bi_bdev, b);
2660         bio_put(bio);
2661         r10_bio->devs[slot].bio = NULL;
2662
2663         if (mddev->ro == 0) {
2664                 freeze_array(conf, 1);
2665                 fix_read_error(conf, mddev, r10_bio);
2666                 unfreeze_array(conf);
2667         } else
2668                 r10_bio->devs[slot].bio = IO_BLOCKED;
2669
2670         rdev_dec_pending(rdev, mddev);
2671
2672 read_more:
2673         rdev = read_balance(conf, r10_bio, &max_sectors);
2674         if (rdev == NULL) {
2675                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2676                        " read error for block %llu\n",
2677                        mdname(mddev), b,
2678                        (unsigned long long)r10_bio->sector);
2679                 raid_end_bio_io(r10_bio);
2680                 return;
2681         }
2682
2683         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2684         slot = r10_bio->read_slot;
2685         printk_ratelimited(
2686                 KERN_ERR
2687                 "md/raid10:%s: %s: redirecting "
2688                 "sector %llu to another mirror\n",
2689                 mdname(mddev),
2690                 bdevname(rdev->bdev, b),
2691                 (unsigned long long)r10_bio->sector);
2692         bio = bio_clone_mddev(r10_bio->master_bio,
2693                               GFP_NOIO, mddev);
2694         bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2695         r10_bio->devs[slot].bio = bio;
2696         r10_bio->devs[slot].rdev = rdev;
2697         bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2698                 + choose_data_offset(r10_bio, rdev);
2699         bio->bi_bdev = rdev->bdev;
2700         bio->bi_rw = READ | do_sync;
2701         bio->bi_private = r10_bio;
2702         bio->bi_end_io = raid10_end_read_request;
2703         if (max_sectors < r10_bio->sectors) {
2704                 /* Drat - have to split this up more */
2705                 struct bio *mbio = r10_bio->master_bio;
2706                 int sectors_handled =
2707                         r10_bio->sector + max_sectors
2708                         - mbio->bi_iter.bi_sector;
2709                 r10_bio->sectors = max_sectors;
2710                 spin_lock_irq(&conf->device_lock);
2711                 if (mbio->bi_phys_segments == 0)
2712                         mbio->bi_phys_segments = 2;
2713                 else
2714                         mbio->bi_phys_segments++;
2715                 spin_unlock_irq(&conf->device_lock);
2716                 generic_make_request(bio);
2717
2718                 r10_bio = mempool_alloc(conf->r10bio_pool,
2719                                         GFP_NOIO);
2720                 r10_bio->master_bio = mbio;
2721                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2722                 r10_bio->state = 0;
2723                 set_bit(R10BIO_ReadError,
2724                         &r10_bio->state);
2725                 r10_bio->mddev = mddev;
2726                 r10_bio->sector = mbio->bi_iter.bi_sector
2727                         + sectors_handled;
2728
2729                 goto read_more;
2730         } else
2731                 generic_make_request(bio);
2732 }
2733
2734 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2735 {
2736         /* Some sort of write request has finished and it
2737          * succeeded in writing where we thought there was a
2738          * bad block.  So forget the bad block.
2739          * Or possibly if failed and we need to record
2740          * a bad block.
2741          */
2742         int m;
2743         struct md_rdev *rdev;
2744
2745         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2746             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2747                 for (m = 0; m < conf->copies; m++) {
2748                         int dev = r10_bio->devs[m].devnum;
2749                         rdev = conf->mirrors[dev].rdev;
2750                         if (r10_bio->devs[m].bio == NULL)
2751                                 continue;
2752                         if (test_bit(BIO_UPTODATE,
2753                                      &r10_bio->devs[m].bio->bi_flags)) {
2754                                 rdev_clear_badblocks(
2755                                         rdev,
2756                                         r10_bio->devs[m].addr,
2757                                         r10_bio->sectors, 0);
2758                         } else {
2759                                 if (!rdev_set_badblocks(
2760                                             rdev,
2761                                             r10_bio->devs[m].addr,
2762                                             r10_bio->sectors, 0))
2763                                         md_error(conf->mddev, rdev);
2764                         }
2765                         rdev = conf->mirrors[dev].replacement;
2766                         if (r10_bio->devs[m].repl_bio == NULL)
2767                                 continue;
2768                         if (test_bit(BIO_UPTODATE,
2769                                      &r10_bio->devs[m].repl_bio->bi_flags)) {
2770                                 rdev_clear_badblocks(
2771                                         rdev,
2772                                         r10_bio->devs[m].addr,
2773                                         r10_bio->sectors, 0);
2774                         } else {
2775                                 if (!rdev_set_badblocks(
2776                                             rdev,
2777                                             r10_bio->devs[m].addr,
2778                                             r10_bio->sectors, 0))
2779                                         md_error(conf->mddev, rdev);
2780                         }
2781                 }
2782                 put_buf(r10_bio);
2783         } else {
2784                 for (m = 0; m < conf->copies; m++) {
2785                         int dev = r10_bio->devs[m].devnum;
2786                         struct bio *bio = r10_bio->devs[m].bio;
2787                         rdev = conf->mirrors[dev].rdev;
2788                         if (bio == IO_MADE_GOOD) {
2789                                 rdev_clear_badblocks(
2790                                         rdev,
2791                                         r10_bio->devs[m].addr,
2792                                         r10_bio->sectors, 0);
2793                                 rdev_dec_pending(rdev, conf->mddev);
2794                         } else if (bio != NULL &&
2795                                    !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2796                                 if (!narrow_write_error(r10_bio, m)) {
2797                                         md_error(conf->mddev, rdev);
2798                                         set_bit(R10BIO_Degraded,
2799                                                 &r10_bio->state);
2800                                 }
2801                                 rdev_dec_pending(rdev, conf->mddev);
2802                         }
2803                         bio = r10_bio->devs[m].repl_bio;
2804                         rdev = conf->mirrors[dev].replacement;
2805                         if (rdev && bio == IO_MADE_GOOD) {
2806                                 rdev_clear_badblocks(
2807                                         rdev,
2808                                         r10_bio->devs[m].addr,
2809                                         r10_bio->sectors, 0);
2810                                 rdev_dec_pending(rdev, conf->mddev);
2811                         }
2812                 }
2813                 if (test_bit(R10BIO_WriteError,
2814                              &r10_bio->state))
2815                         close_write(r10_bio);
2816                 raid_end_bio_io(r10_bio);
2817         }
2818 }
2819
2820 static void raid10d(struct md_thread *thread)
2821 {
2822         struct mddev *mddev = thread->mddev;
2823         struct r10bio *r10_bio;
2824         unsigned long flags;
2825         struct r10conf *conf = mddev->private;
2826         struct list_head *head = &conf->retry_list;
2827         struct blk_plug plug;
2828
2829         md_check_recovery(mddev);
2830
2831         blk_start_plug(&plug);
2832         for (;;) {
2833
2834                 flush_pending_writes(conf);
2835
2836                 spin_lock_irqsave(&conf->device_lock, flags);
2837                 if (list_empty(head)) {
2838                         spin_unlock_irqrestore(&conf->device_lock, flags);
2839                         break;
2840                 }
2841                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2842                 list_del(head->prev);
2843                 conf->nr_queued--;
2844                 spin_unlock_irqrestore(&conf->device_lock, flags);
2845
2846                 mddev = r10_bio->mddev;
2847                 conf = mddev->private;
2848                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2849                     test_bit(R10BIO_WriteError, &r10_bio->state))
2850                         handle_write_completed(conf, r10_bio);
2851                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2852                         reshape_request_write(mddev, r10_bio);
2853                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2854                         sync_request_write(mddev, r10_bio);
2855                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2856                         recovery_request_write(mddev, r10_bio);
2857                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2858                         handle_read_error(mddev, r10_bio);
2859                 else {
2860                         /* just a partial read to be scheduled from a
2861                          * separate context
2862                          */
2863                         int slot = r10_bio->read_slot;
2864                         generic_make_request(r10_bio->devs[slot].bio);
2865                 }
2866
2867                 cond_resched();
2868                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2869                         md_check_recovery(mddev);
2870         }
2871         blk_finish_plug(&plug);
2872 }
2873
2874
2875 static int init_resync(struct r10conf *conf)
2876 {
2877         int buffs;
2878         int i;
2879
2880         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2881         BUG_ON(conf->r10buf_pool);
2882         conf->have_replacement = 0;
2883         for (i = 0; i < conf->geo.raid_disks; i++)
2884                 if (conf->mirrors[i].replacement)
2885                         conf->have_replacement = 1;
2886         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2887         if (!conf->r10buf_pool)
2888                 return -ENOMEM;
2889         conf->next_resync = 0;
2890         return 0;
2891 }
2892
2893 /*
2894  * perform a "sync" on one "block"
2895  *
2896  * We need to make sure that no normal I/O request - particularly write
2897  * requests - conflict with active sync requests.
2898  *
2899  * This is achieved by tracking pending requests and a 'barrier' concept
2900  * that can be installed to exclude normal IO requests.
2901  *
2902  * Resync and recovery are handled very differently.
2903  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2904  *
2905  * For resync, we iterate over virtual addresses, read all copies,
2906  * and update if there are differences.  If only one copy is live,
2907  * skip it.
2908  * For recovery, we iterate over physical addresses, read a good
2909  * value for each non-in_sync drive, and over-write.
2910  *
2911  * So, for recovery we may have several outstanding complex requests for a
2912  * given address, one for each out-of-sync device.  We model this by allocating
2913  * a number of r10_bio structures, one for each out-of-sync device.
2914  * As we setup these structures, we collect all bio's together into a list
2915  * which we then process collectively to add pages, and then process again
2916  * to pass to generic_make_request.
2917  *
2918  * The r10_bio structures are linked using a borrowed master_bio pointer.
2919  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2920  * has its remaining count decremented to 0, the whole complex operation
2921  * is complete.
2922  *
2923  */
2924
2925 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2926                              int *skipped, int go_faster)
2927 {
2928         struct r10conf *conf = mddev->private;
2929         struct r10bio *r10_bio;
2930         struct bio *biolist = NULL, *bio;
2931         sector_t max_sector, nr_sectors;
2932         int i;
2933         int max_sync;
2934         sector_t sync_blocks;
2935         sector_t sectors_skipped = 0;
2936         int chunks_skipped = 0;
2937         sector_t chunk_mask = conf->geo.chunk_mask;
2938
2939         if (!conf->r10buf_pool)
2940                 if (init_resync(conf))
2941                         return 0;
2942
2943         /*
2944          * Allow skipping a full rebuild for incremental assembly
2945          * of a clean array, like RAID1 does.
2946          */
2947         if (mddev->bitmap == NULL &&
2948             mddev->recovery_cp == MaxSector &&
2949             mddev->reshape_position == MaxSector &&
2950             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2951             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2952             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2953             conf->fullsync == 0) {
2954                 *skipped = 1;
2955                 return mddev->dev_sectors - sector_nr;
2956         }
2957
2958  skipped:
2959         max_sector = mddev->dev_sectors;
2960         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2961             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2962                 max_sector = mddev->resync_max_sectors;
2963         if (sector_nr >= max_sector) {
2964                 /* If we aborted, we need to abort the
2965                  * sync on the 'current' bitmap chucks (there can
2966                  * be several when recovering multiple devices).
2967                  * as we may have started syncing it but not finished.
2968                  * We can find the current address in
2969                  * mddev->curr_resync, but for recovery,
2970                  * we need to convert that to several
2971                  * virtual addresses.
2972                  */
2973                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2974                         end_reshape(conf);
2975                         return 0;
2976                 }
2977
2978                 if (mddev->curr_resync < max_sector) { /* aborted */
2979                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2980                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2981                                                 &sync_blocks, 1);
2982                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2983                                 sector_t sect =
2984                                         raid10_find_virt(conf, mddev->curr_resync, i);
2985                                 bitmap_end_sync(mddev->bitmap, sect,
2986                                                 &sync_blocks, 1);
2987                         }
2988                 } else {
2989                         /* completed sync */
2990                         if ((!mddev->bitmap || conf->fullsync)
2991                             && conf->have_replacement
2992                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2993                                 /* Completed a full sync so the replacements
2994                                  * are now fully recovered.
2995                                  */
2996                                 for (i = 0; i < conf->geo.raid_disks; i++)
2997                                         if (conf->mirrors[i].replacement)
2998                                                 conf->mirrors[i].replacement
2999                                                         ->recovery_offset
3000                                                         = MaxSector;
3001                         }
3002                         conf->fullsync = 0;
3003                 }
3004                 bitmap_close_sync(mddev->bitmap);
3005                 close_sync(conf);
3006                 *skipped = 1;
3007                 return sectors_skipped;
3008         }
3009
3010         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3011                 return reshape_request(mddev, sector_nr, skipped);
3012
3013         if (chunks_skipped >= conf->geo.raid_disks) {
3014                 /* if there has been nothing to do on any drive,
3015                  * then there is nothing to do at all..
3016                  */
3017                 *skipped = 1;
3018                 return (max_sector - sector_nr) + sectors_skipped;
3019         }
3020
3021         if (max_sector > mddev->resync_max)
3022                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3023
3024         /* make sure whole request will fit in a chunk - if chunks
3025          * are meaningful
3026          */
3027         if (conf->geo.near_copies < conf->geo.raid_disks &&
3028             max_sector > (sector_nr | chunk_mask))
3029                 max_sector = (sector_nr | chunk_mask) + 1;
3030         /*
3031          * If there is non-resync activity waiting for us then
3032          * put in a delay to throttle resync.
3033          */
3034         if (!go_faster && conf->nr_waiting)
3035                 msleep_interruptible(1000);
3036
3037         /* Again, very different code for resync and recovery.
3038          * Both must result in an r10bio with a list of bios that
3039          * have bi_end_io, bi_sector, bi_bdev set,
3040          * and bi_private set to the r10bio.
3041          * For recovery, we may actually create several r10bios
3042          * with 2 bios in each, that correspond to the bios in the main one.
3043          * In this case, the subordinate r10bios link back through a
3044          * borrowed master_bio pointer, and the counter in the master
3045          * includes a ref from each subordinate.
3046          */
3047         /* First, we decide what to do and set ->bi_end_io
3048          * To end_sync_read if we want to read, and
3049          * end_sync_write if we will want to write.
3050          */
3051
3052         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3053         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3054                 /* recovery... the complicated one */
3055                 int j;
3056                 r10_bio = NULL;
3057
3058                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3059                         int still_degraded;
3060                         struct r10bio *rb2;
3061                         sector_t sect;
3062                         int must_sync;
3063                         int any_working;
3064                         struct raid10_info *mirror = &conf->mirrors[i];
3065
3066                         if ((mirror->rdev == NULL ||
3067                              test_bit(In_sync, &mirror->rdev->flags))
3068                             &&
3069                             (mirror->replacement == NULL ||
3070                              test_bit(Faulty,
3071                                       &mirror->replacement->flags)))
3072                                 continue;
3073
3074                         still_degraded = 0;
3075                         /* want to reconstruct this device */
3076                         rb2 = r10_bio;
3077                         sect = raid10_find_virt(conf, sector_nr, i);
3078                         if (sect >= mddev->resync_max_sectors) {
3079                                 /* last stripe is not complete - don't
3080                                  * try to recover this sector.
3081                                  */
3082                                 continue;
3083                         }
3084                         /* Unless we are doing a full sync, or a replacement
3085                          * we only need to recover the block if it is set in
3086                          * the bitmap
3087                          */
3088                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3089                                                       &sync_blocks, 1);
3090                         if (sync_blocks < max_sync)
3091                                 max_sync = sync_blocks;
3092                         if (!must_sync &&
3093                             mirror->replacement == NULL &&
3094                             !conf->fullsync) {
3095                                 /* yep, skip the sync_blocks here, but don't assume
3096                                  * that there will never be anything to do here
3097                                  */
3098                                 chunks_skipped = -1;
3099                                 continue;
3100                         }
3101
3102                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3103                         raise_barrier(conf, rb2 != NULL);
3104                         atomic_set(&r10_bio->remaining, 0);
3105
3106                         r10_bio->master_bio = (struct bio*)rb2;
3107                         if (rb2)
3108                                 atomic_inc(&rb2->remaining);
3109                         r10_bio->mddev = mddev;
3110                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3111                         r10_bio->sector = sect;
3112
3113                         raid10_find_phys(conf, r10_bio);
3114
3115                         /* Need to check if the array will still be
3116                          * degraded
3117                          */
3118                         for (j = 0; j < conf->geo.raid_disks; j++)
3119                                 if (conf->mirrors[j].rdev == NULL ||
3120                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3121                                         still_degraded = 1;
3122                                         break;
3123                                 }
3124
3125                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3126                                                       &sync_blocks, still_degraded);
3127
3128                         any_working = 0;
3129                         for (j=0; j<conf->copies;j++) {
3130                                 int k;
3131                                 int d = r10_bio->devs[j].devnum;
3132                                 sector_t from_addr, to_addr;
3133                                 struct md_rdev *rdev;
3134                                 sector_t sector, first_bad;
3135                                 int bad_sectors;
3136                                 if (!conf->mirrors[d].rdev ||
3137                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3138                                         continue;
3139                                 /* This is where we read from */
3140                                 any_working = 1;
3141                                 rdev = conf->mirrors[d].rdev;
3142                                 sector = r10_bio->devs[j].addr;
3143
3144                                 if (is_badblock(rdev, sector, max_sync,
3145                                                 &first_bad, &bad_sectors)) {
3146                                         if (first_bad > sector)
3147                                                 max_sync = first_bad - sector;
3148                                         else {
3149                                                 bad_sectors -= (sector
3150                                                                 - first_bad);
3151                                                 if (max_sync > bad_sectors)
3152                                                         max_sync = bad_sectors;
3153                                                 continue;
3154                                         }
3155                                 }
3156                                 bio = r10_bio->devs[0].bio;
3157                                 bio_reset(bio);
3158                                 bio->bi_next = biolist;
3159                                 biolist = bio;
3160                                 bio->bi_private = r10_bio;
3161                                 bio->bi_end_io = end_sync_read;
3162                                 bio->bi_rw = READ;
3163                                 from_addr = r10_bio->devs[j].addr;
3164                                 bio->bi_iter.bi_sector = from_addr +
3165                                         rdev->data_offset;
3166                                 bio->bi_bdev = rdev->bdev;
3167                                 atomic_inc(&rdev->nr_pending);
3168                                 /* and we write to 'i' (if not in_sync) */
3169
3170                                 for (k=0; k<conf->copies; k++)
3171                                         if (r10_bio->devs[k].devnum == i)
3172                                                 break;
3173                                 BUG_ON(k == conf->copies);
3174                                 to_addr = r10_bio->devs[k].addr;
3175                                 r10_bio->devs[0].devnum = d;
3176                                 r10_bio->devs[0].addr = from_addr;
3177                                 r10_bio->devs[1].devnum = i;
3178                                 r10_bio->devs[1].addr = to_addr;
3179
3180                                 rdev = mirror->rdev;
3181                                 if (!test_bit(In_sync, &rdev->flags)) {
3182                                         bio = r10_bio->devs[1].bio;
3183                                         bio_reset(bio);
3184                                         bio->bi_next = biolist;
3185                                         biolist = bio;
3186                                         bio->bi_private = r10_bio;
3187                                         bio->bi_end_io = end_sync_write;
3188                                         bio->bi_rw = WRITE;
3189                                         bio->bi_iter.bi_sector = to_addr
3190                                                 + rdev->data_offset;
3191                                         bio->bi_bdev = rdev->bdev;
3192                                         atomic_inc(&r10_bio->remaining);
3193                                 } else
3194                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3195
3196                                 /* and maybe write to replacement */
3197                                 bio = r10_bio->devs[1].repl_bio;
3198                                 if (bio)
3199                                         bio->bi_end_io = NULL;
3200                                 rdev = mirror->replacement;
3201                                 /* Note: if rdev != NULL, then bio
3202                                  * cannot be NULL as r10buf_pool_alloc will
3203                                  * have allocated it.
3204                                  * So the second test here is pointless.
3205                                  * But it keeps semantic-checkers happy, and
3206                                  * this comment keeps human reviewers
3207                                  * happy.
3208                                  */
3209                                 if (rdev == NULL || bio == NULL ||
3210                                     test_bit(Faulty, &rdev->flags))
3211                                         break;
3212                                 bio_reset(bio);
3213                                 bio->bi_next = biolist;
3214                                 biolist = bio;
3215                                 bio->bi_private = r10_bio;
3216                                 bio->bi_end_io = end_sync_write;
3217                                 bio->bi_rw = WRITE;
3218                                 bio->bi_iter.bi_sector = to_addr +
3219                                         rdev->data_offset;
3220                                 bio->bi_bdev = rdev->bdev;
3221                                 atomic_inc(&r10_bio->remaining);
3222                                 break;
3223                         }
3224                         if (j == conf->copies) {
3225                                 /* Cannot recover, so abort the recovery or
3226                                  * record a bad block */
3227                                 put_buf(r10_bio);
3228                                 if (rb2)
3229                                         atomic_dec(&rb2->remaining);
3230                                 r10_bio = rb2;
3231                                 if (any_working) {
3232                                         /* problem is that there are bad blocks
3233                                          * on other device(s)
3234                                          */
3235                                         int k;
3236                                         for (k = 0; k < conf->copies; k++)
3237                                                 if (r10_bio->devs[k].devnum == i)
3238                                                         break;
3239                                         if (!test_bit(In_sync,
3240                                                       &mirror->rdev->flags)
3241                                             && !rdev_set_badblocks(
3242                                                     mirror->rdev,
3243                                                     r10_bio->devs[k].addr,
3244                                                     max_sync, 0))
3245                                                 any_working = 0;
3246                                         if (mirror->replacement &&
3247                                             !rdev_set_badblocks(
3248                                                     mirror->replacement,
3249                                                     r10_bio->devs[k].addr,
3250                                                     max_sync, 0))
3251                                                 any_working = 0;
3252                                 }
3253                                 if (!any_working)  {
3254                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3255                                                               &mddev->recovery))
3256                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3257                                                        "working devices for recovery.\n",
3258                                                        mdname(mddev));
3259                                         mirror->recovery_disabled
3260                                                 = mddev->recovery_disabled;
3261                                 }
3262                                 break;
3263                         }
3264                 }
3265                 if (biolist == NULL) {
3266                         while (r10_bio) {
3267                                 struct r10bio *rb2 = r10_bio;
3268                                 r10_bio = (struct r10bio*) rb2->master_bio;
3269                                 rb2->master_bio = NULL;
3270                                 put_buf(rb2);
3271                         }
3272                         goto giveup;
3273                 }
3274         } else {
3275                 /* resync. Schedule a read for every block at this virt offset */
3276                 int count = 0;
3277
3278                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3279
3280                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3281                                        &sync_blocks, mddev->degraded) &&
3282                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3283                                                  &mddev->recovery)) {
3284                         /* We can skip this block */
3285                         *skipped = 1;
3286                         return sync_blocks + sectors_skipped;
3287                 }
3288                 if (sync_blocks < max_sync)
3289                         max_sync = sync_blocks;
3290                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3291
3292                 r10_bio->mddev = mddev;
3293                 atomic_set(&r10_bio->remaining, 0);
3294                 raise_barrier(conf, 0);
3295                 conf->next_resync = sector_nr;
3296
3297                 r10_bio->master_bio = NULL;
3298                 r10_bio->sector = sector_nr;
3299                 set_bit(R10BIO_IsSync, &r10_bio->state);
3300                 raid10_find_phys(conf, r10_bio);
3301                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3302
3303                 for (i = 0; i < conf->copies; i++) {
3304                         int d = r10_bio->devs[i].devnum;
3305                         sector_t first_bad, sector;
3306                         int bad_sectors;
3307
3308                         if (r10_bio->devs[i].repl_bio)
3309                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3310
3311                         bio = r10_bio->devs[i].bio;
3312                         bio_reset(bio);
3313                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3314                         if (conf->mirrors[d].rdev == NULL ||
3315                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3316                                 continue;
3317                         sector = r10_bio->devs[i].addr;
3318                         if (is_badblock(conf->mirrors[d].rdev,
3319                                         sector, max_sync,
3320                                         &first_bad, &bad_sectors)) {
3321                                 if (first_bad > sector)
3322                                         max_sync = first_bad - sector;
3323                                 else {
3324                                         bad_sectors -= (sector - first_bad);
3325                                         if (max_sync > bad_sectors)
3326                                                 max_sync = bad_sectors;
3327                                         continue;
3328                                 }
3329                         }
3330                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3331                         atomic_inc(&r10_bio->remaining);
3332                         bio->bi_next = biolist;
3333                         biolist = bio;
3334                         bio->bi_private = r10_bio;
3335                         bio->bi_end_io = end_sync_read;
3336                         bio->bi_rw = READ;
3337                         bio->bi_iter.bi_sector = sector +
3338                                 conf->mirrors[d].rdev->data_offset;
3339                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3340                         count++;
3341
3342                         if (conf->mirrors[d].replacement == NULL ||
3343                             test_bit(Faulty,
3344                                      &conf->mirrors[d].replacement->flags))
3345                                 continue;
3346
3347                         /* Need to set up for writing to the replacement */
3348                         bio = r10_bio->devs[i].repl_bio;
3349                         bio_reset(bio);
3350                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3351
3352                         sector = r10_bio->devs[i].addr;
3353                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3354                         bio->bi_next = biolist;
3355                         biolist = bio;
3356                         bio->bi_private = r10_bio;
3357                         bio->bi_end_io = end_sync_write;
3358                         bio->bi_rw = WRITE;
3359                         bio->bi_iter.bi_sector = sector +
3360                                 conf->mirrors[d].replacement->data_offset;
3361                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3362                         count++;
3363                 }
3364
3365                 if (count < 2) {
3366                         for (i=0; i<conf->copies; i++) {
3367                                 int d = r10_bio->devs[i].devnum;
3368                                 if (r10_bio->devs[i].bio->bi_end_io)
3369                                         rdev_dec_pending(conf->mirrors[d].rdev,
3370                                                          mddev);
3371                                 if (r10_bio->devs[i].repl_bio &&
3372                                     r10_bio->devs[i].repl_bio->bi_end_io)
3373                                         rdev_dec_pending(
3374                                                 conf->mirrors[d].replacement,
3375                                                 mddev);
3376                         }
3377                         put_buf(r10_bio);
3378                         biolist = NULL;
3379                         goto giveup;
3380                 }
3381         }
3382
3383         nr_sectors = 0;
3384         if (sector_nr + max_sync < max_sector)
3385                 max_sector = sector_nr + max_sync;
3386         do {
3387                 struct page *page;
3388                 int len = PAGE_SIZE;
3389                 if (sector_nr + (len>>9) > max_sector)
3390                         len = (max_sector - sector_nr) << 9;
3391                 if (len == 0)
3392                         break;
3393                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3394                         struct bio *bio2;
3395                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3396                         if (bio_add_page(bio, page, len, 0))
3397                                 continue;
3398
3399                         /* stop here */
3400                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3401                         for (bio2 = biolist;
3402                              bio2 && bio2 != bio;
3403                              bio2 = bio2->bi_next) {
3404                                 /* remove last page from this bio */
3405                                 bio2->bi_vcnt--;
3406                                 bio2->bi_iter.bi_size -= len;
3407                                 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3408                         }
3409                         goto bio_full;
3410                 }
3411                 nr_sectors += len>>9;
3412                 sector_nr += len>>9;
3413         } while (biolist->bi_vcnt < RESYNC_PAGES);
3414  bio_full:
3415         r10_bio->sectors = nr_sectors;
3416
3417         while (biolist) {
3418                 bio = biolist;
3419                 biolist = biolist->bi_next;
3420
3421                 bio->bi_next = NULL;
3422                 r10_bio = bio->bi_private;
3423                 r10_bio->sectors = nr_sectors;
3424
3425                 if (bio->bi_end_io == end_sync_read) {
3426                         md_sync_acct(bio->bi_bdev, nr_sectors);
3427                         set_bit(BIO_UPTODATE, &bio->bi_flags);
3428                         generic_make_request(bio);
3429                 }
3430         }
3431
3432         if (sectors_skipped)
3433                 /* pretend they weren't skipped, it makes
3434                  * no important difference in this case
3435                  */
3436                 md_done_sync(mddev, sectors_skipped, 1);
3437
3438         return sectors_skipped + nr_sectors;
3439  giveup:
3440         /* There is nowhere to write, so all non-sync
3441          * drives must be failed or in resync, all drives
3442          * have a bad block, so try the next chunk...
3443          */
3444         if (sector_nr + max_sync < max_sector)
3445                 max_sector = sector_nr + max_sync;
3446
3447         sectors_skipped += (max_sector - sector_nr);
3448         chunks_skipped ++;
3449         sector_nr = max_sector;
3450         goto skipped;
3451 }
3452
3453 static sector_t
3454 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3455 {
3456         sector_t size;
3457         struct r10conf *conf = mddev->private;
3458
3459         if (!raid_disks)
3460                 raid_disks = min(conf->geo.raid_disks,
3461                                  conf->prev.raid_disks);
3462         if (!sectors)
3463                 sectors = conf->dev_sectors;
3464
3465         size = sectors >> conf->geo.chunk_shift;
3466         sector_div(size, conf->geo.far_copies);
3467         size = size * raid_disks;
3468         sector_div(size, conf->geo.near_copies);
3469
3470         return size << conf->geo.chunk_shift;
3471 }
3472
3473 static void calc_sectors(struct r10conf *conf, sector_t size)
3474 {
3475         /* Calculate the number of sectors-per-device that will
3476          * actually be used, and set conf->dev_sectors and
3477          * conf->stride
3478          */
3479
3480         size = size >> conf->geo.chunk_shift;
3481         sector_div(size, conf->geo.far_copies);
3482         size = size * conf->geo.raid_disks;
3483         sector_div(size, conf->geo.near_copies);
3484         /* 'size' is now the number of chunks in the array */
3485         /* calculate "used chunks per device" */
3486         size = size * conf->copies;
3487
3488         /* We need to round up when dividing by raid_disks to
3489          * get the stride size.
3490          */
3491         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3492
3493         conf->dev_sectors = size << conf->geo.chunk_shift;
3494
3495         if (conf->geo.far_offset)
3496                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3497         else {
3498                 sector_div(size, conf->geo.far_copies);
3499                 conf->geo.stride = size << conf->geo.chunk_shift;
3500         }
3501 }
3502
3503 enum geo_type {geo_new, geo_old, geo_start};
3504 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3505 {
3506         int nc, fc, fo;
3507         int layout, chunk, disks;
3508         switch (new) {
3509         case geo_old:
3510                 layout = mddev->layout;
3511                 chunk = mddev->chunk_sectors;
3512                 disks = mddev->raid_disks - mddev->delta_disks;
3513                 break;
3514         case geo_new:
3515                 layout = mddev->new_layout;
3516                 chunk = mddev->new_chunk_sectors;
3517                 disks = mddev->raid_disks;
3518                 break;
3519         default: /* avoid 'may be unused' warnings */
3520         case geo_start: /* new when starting reshape - raid_disks not
3521                          * updated yet. */
3522                 layout = mddev->new_layout;
3523                 chunk = mddev->new_chunk_sectors;
3524                 disks = mddev->raid_disks + mddev->delta_disks;
3525                 break;
3526         }
3527         if (layout >> 18)
3528                 return -1;
3529         if (chunk < (PAGE_SIZE >> 9) ||
3530             !is_power_of_2(chunk))
3531                 return -2;
3532         nc = layout & 255;
3533         fc = (layout >> 8) & 255;
3534         fo = layout & (1<<16);
3535         geo->raid_disks = disks;
3536         geo->near_copies = nc;
3537         geo->far_copies = fc;
3538         geo->far_offset = fo;
3539         geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3540         geo->chunk_mask = chunk - 1;
3541         geo->chunk_shift = ffz(~chunk);
3542         return nc*fc;
3543 }
3544
3545 static struct r10conf *setup_conf(struct mddev *mddev)
3546 {
3547         struct r10conf *conf = NULL;
3548         int err = -EINVAL;
3549         struct geom geo;
3550         int copies;
3551
3552         copies = setup_geo(&geo, mddev, geo_new);
3553
3554         if (copies == -2) {
3555                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3556                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3557                        mdname(mddev), PAGE_SIZE);
3558                 goto out;
3559         }
3560
3561         if (copies < 2 || copies > mddev->raid_disks) {
3562                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3563                        mdname(mddev), mddev->new_layout);
3564                 goto out;
3565         }
3566
3567         err = -ENOMEM;
3568         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3569         if (!conf)
3570                 goto out;
3571
3572         /* FIXME calc properly */
3573         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3574                                                             max(0,-mddev->delta_disks)),
3575                                 GFP_KERNEL);
3576         if (!conf->mirrors)
3577                 goto out;
3578
3579         conf->tmppage = alloc_page(GFP_KERNEL);
3580         if (!conf->tmppage)
3581                 goto out;
3582
3583         conf->geo = geo;
3584         conf->copies = copies;
3585         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3586                                            r10bio_pool_free, conf);
3587         if (!conf->r10bio_pool)
3588                 goto out;
3589
3590         calc_sectors(conf, mddev->dev_sectors);
3591         if (mddev->reshape_position == MaxSector) {
3592                 conf->prev = conf->geo;
3593                 conf->reshape_progress = MaxSector;
3594         } else {
3595                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3596                         err = -EINVAL;
3597                         goto out;
3598                 }
3599                 conf->reshape_progress = mddev->reshape_position;
3600                 if (conf->prev.far_offset)
3601                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3602                 else
3603                         /* far_copies must be 1 */
3604                         conf->prev.stride = conf->dev_sectors;
3605         }
3606         spin_lock_init(&conf->device_lock);
3607         INIT_LIST_HEAD(&conf->retry_list);
3608
3609         spin_lock_init(&conf->resync_lock);
3610         init_waitqueue_head(&conf->wait_barrier);
3611
3612         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3613         if (!conf->thread)
3614                 goto out;
3615
3616         conf->mddev = mddev;
3617         return conf;
3618
3619  out:
3620         if (err == -ENOMEM)
3621                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3622                        mdname(mddev));
3623         if (conf) {
3624                 if (conf->r10bio_pool)
3625                         mempool_destroy(conf->r10bio_pool);
3626                 kfree(conf->mirrors);
3627                 safe_put_page(conf->tmppage);
3628                 kfree(conf);
3629         }
3630         return ERR_PTR(err);
3631 }
3632
3633 static int run(struct mddev *mddev)
3634 {
3635         struct r10conf *conf;
3636         int i, disk_idx, chunk_size;
3637         struct raid10_info *disk;
3638         struct md_rdev *rdev;
3639         sector_t size;
3640         sector_t min_offset_diff = 0;
3641         int first = 1;
3642         bool discard_supported = false;
3643
3644         if (mddev->private == NULL) {
3645                 conf = setup_conf(mddev);
3646                 if (IS_ERR(conf))
3647                         return PTR_ERR(conf);
3648                 mddev->private = conf;
3649         }
3650         conf = mddev->private;
3651         if (!conf)
3652                 goto out;
3653
3654         mddev->thread = conf->thread;
3655         conf->thread = NULL;
3656
3657         chunk_size = mddev->chunk_sectors << 9;
3658         if (mddev->queue) {
3659                 blk_queue_max_discard_sectors(mddev->queue,
3660                                               mddev->chunk_sectors);
3661                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3662                 blk_queue_io_min(mddev->queue, chunk_size);
3663                 if (conf->geo.raid_disks % conf->geo.near_copies)
3664                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3665                 else
3666                         blk_queue_io_opt(mddev->queue, chunk_size *
3667                                          (conf->geo.raid_disks / conf->geo.near_copies));
3668         }
3669
3670         rdev_for_each(rdev, mddev) {
3671                 long long diff;
3672                 struct request_queue *q;
3673
3674                 disk_idx = rdev->raid_disk;
3675                 if (disk_idx < 0)
3676                         continue;
3677                 if (disk_idx >= conf->geo.raid_disks &&
3678                     disk_idx >= conf->prev.raid_disks)
3679                         continue;
3680                 disk = conf->mirrors + disk_idx;
3681
3682                 if (test_bit(Replacement, &rdev->flags)) {
3683                         if (disk->replacement)
3684                                 goto out_free_conf;
3685                         disk->replacement = rdev;
3686                 } else {
3687                         if (disk->rdev)
3688                                 goto out_free_conf;
3689                         disk->rdev = rdev;
3690                 }
3691                 q = bdev_get_queue(rdev->bdev);
3692                 if (q->merge_bvec_fn)
3693                         mddev->merge_check_needed = 1;
3694                 diff = (rdev->new_data_offset - rdev->data_offset);
3695                 if (!mddev->reshape_backwards)
3696                         diff = -diff;
3697                 if (diff < 0)
3698                         diff = 0;
3699                 if (first || diff < min_offset_diff)
3700                         min_offset_diff = diff;
3701
3702                 if (mddev->gendisk)
3703                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3704                                           rdev->data_offset << 9);
3705
3706                 disk->head_position = 0;
3707
3708                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3709                         discard_supported = true;
3710         }
3711
3712         if (mddev->queue) {
3713                 if (discard_supported)
3714                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3715                                                 mddev->queue);
3716                 else
3717                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3718                                                   mddev->queue);
3719         }
3720         /* need to check that every block has at least one working mirror */
3721         if (!enough(conf, -1)) {
3722                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3723                        mdname(mddev));
3724                 goto out_free_conf;
3725         }
3726
3727         if (conf->reshape_progress != MaxSector) {
3728                 /* must ensure that shape change is supported */
3729                 if (conf->geo.far_copies != 1 &&
3730                     conf->geo.far_offset == 0)
3731                         goto out_free_conf;
3732                 if (conf->prev.far_copies != 1 &&
3733                     conf->prev.far_offset == 0)
3734                         goto out_free_conf;
3735         }
3736
3737         mddev->degraded = 0;
3738         for (i = 0;
3739              i < conf->geo.raid_disks
3740                      || i < conf->prev.raid_disks;
3741              i++) {
3742
3743                 disk = conf->mirrors + i;
3744
3745                 if (!disk->rdev && disk->replacement) {
3746                         /* The replacement is all we have - use it */
3747                         disk->rdev = disk->replacement;
3748                         disk->replacement = NULL;
3749                         clear_bit(Replacement, &disk->rdev->flags);
3750                 }
3751
3752                 if (!disk->rdev ||
3753                     !test_bit(In_sync, &disk->rdev->flags)) {
3754                         disk->head_position = 0;
3755                         mddev->degraded++;
3756                         if (disk->rdev)
3757                                 conf->fullsync = 1;
3758                 }
3759                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3760         }
3761
3762         if (mddev->recovery_cp != MaxSector)
3763                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3764                        " -- starting background reconstruction\n",
3765                        mdname(mddev));
3766         printk(KERN_INFO
3767                 "md/raid10:%s: active with %d out of %d devices\n",
3768                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3769                 conf->geo.raid_disks);
3770         /*
3771          * Ok, everything is just fine now
3772          */
3773         mddev->dev_sectors = conf->dev_sectors;
3774         size = raid10_size(mddev, 0, 0);
3775         md_set_array_sectors(mddev, size);
3776         mddev->resync_max_sectors = size;
3777
3778         if (mddev->queue) {
3779                 int stripe = conf->geo.raid_disks *
3780                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3781                 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3782                 mddev->queue->backing_dev_info.congested_data = mddev;
3783
3784                 /* Calculate max read-ahead size.
3785                  * We need to readahead at least twice a whole stripe....
3786                  * maybe...
3787                  */
3788                 stripe /= conf->geo.near_copies;
3789                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3790                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3791                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3792         }
3793
3794
3795         if (md_integrity_register(mddev))
3796                 goto out_free_conf;
3797
3798         if (conf->reshape_progress != MaxSector) {
3799                 unsigned long before_length, after_length;
3800
3801                 before_length = ((1 << conf->prev.chunk_shift) *
3802                                  conf->prev.far_copies);
3803                 after_length = ((1 << conf->geo.chunk_shift) *
3804                                 conf->geo.far_copies);
3805
3806                 if (max(before_length, after_length) > min_offset_diff) {
3807                         /* This cannot work */
3808                         printk("md/raid10: offset difference not enough to continue reshape\n");
3809                         goto out_free_conf;
3810                 }
3811                 conf->offset_diff = min_offset_diff;
3812
3813                 conf->reshape_safe = conf->reshape_progress;
3814                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3815                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3816                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3817                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3818                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3819                                                         "reshape");
3820         }
3821
3822         return 0;
3823
3824 out_free_conf:
3825         md_unregister_thread(&mddev->thread);
3826         if (conf->r10bio_pool)
3827                 mempool_destroy(conf->r10bio_pool);
3828         safe_put_page(conf->tmppage);
3829         kfree(conf->mirrors);
3830         kfree(conf);
3831         mddev->private = NULL;
3832 out:
3833         return -EIO;
3834 }
3835
3836 static int stop(struct mddev *mddev)
3837 {
3838         struct r10conf *conf = mddev->private;
3839
3840         raise_barrier(conf, 0);
3841         lower_barrier(conf);
3842
3843         md_unregister_thread(&mddev->thread);
3844         if (mddev->queue)
3845                 /* the unplug fn references 'conf'*/
3846                 blk_sync_queue(mddev->queue);
3847
3848         if (conf->r10bio_pool)
3849                 mempool_destroy(conf->r10bio_pool);
3850         safe_put_page(conf->tmppage);
3851         kfree(conf->mirrors);
3852         kfree(conf);
3853         mddev->private = NULL;
3854         return 0;
3855 }
3856
3857 static void raid10_quiesce(struct mddev *mddev, int state)
3858 {
3859         struct r10conf *conf = mddev->private;
3860
3861         switch(state) {
3862         case 1:
3863                 raise_barrier(conf, 0);
3864                 break;
3865         case 0:
3866                 lower_barrier(conf);
3867                 break;
3868         }
3869 }
3870
3871 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3872 {
3873         /* Resize of 'far' arrays is not supported.
3874          * For 'near' and 'offset' arrays we can set the
3875          * number of sectors used to be an appropriate multiple
3876          * of the chunk size.
3877          * For 'offset', this is far_copies*chunksize.
3878          * For 'near' the multiplier is the LCM of
3879          * near_copies and raid_disks.
3880          * So if far_copies > 1 && !far_offset, fail.
3881          * Else find LCM(raid_disks, near_copy)*far_copies and
3882          * multiply by chunk_size.  Then round to this number.
3883          * This is mostly done by raid10_size()
3884          */
3885         struct r10conf *conf = mddev->private;
3886         sector_t oldsize, size;
3887
3888         if (mddev->reshape_position != MaxSector)
3889                 return -EBUSY;
3890
3891         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3892                 return -EINVAL;
3893
3894         oldsize = raid10_size(mddev, 0, 0);
3895         size = raid10_size(mddev, sectors, 0);
3896         if (mddev->external_size &&
3897             mddev->array_sectors > size)
3898                 return -EINVAL;
3899         if (mddev->bitmap) {
3900                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3901                 if (ret)
3902                         return ret;
3903         }
3904         md_set_array_sectors(mddev, size);
3905         set_capacity(mddev->gendisk, mddev->array_sectors);
3906         revalidate_disk(mddev->gendisk);
3907         if (sectors > mddev->dev_sectors &&
3908             mddev->recovery_cp > oldsize) {
3909                 mddev->recovery_cp = oldsize;
3910                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3911         }
3912         calc_sectors(conf, sectors);
3913         mddev->dev_sectors = conf->dev_sectors;
3914         mddev->resync_max_sectors = size;
3915         return 0;
3916 }
3917
3918 static void *raid10_takeover_raid0(struct mddev *mddev)
3919 {
3920         struct md_rdev *rdev;
3921         struct r10conf *conf;
3922
3923         if (mddev->degraded > 0) {
3924                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3925                        mdname(mddev));
3926                 return ERR_PTR(-EINVAL);
3927         }
3928
3929         /* Set new parameters */
3930         mddev->new_level = 10;
3931         /* new layout: far_copies = 1, near_copies = 2 */
3932         mddev->new_layout = (1<<8) + 2;
3933         mddev->new_chunk_sectors = mddev->chunk_sectors;
3934         mddev->delta_disks = mddev->raid_disks;
3935         mddev->raid_disks *= 2;
3936         /* make sure it will be not marked as dirty */
3937         mddev->recovery_cp = MaxSector;
3938
3939         conf = setup_conf(mddev);
3940         if (!IS_ERR(conf)) {
3941                 rdev_for_each(rdev, mddev)
3942                         if (rdev->raid_disk >= 0)
3943                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3944                 conf->barrier = 1;
3945         }
3946
3947         return conf;
3948 }
3949
3950 static void *raid10_takeover(struct mddev *mddev)
3951 {
3952         struct r0conf *raid0_conf;
3953
3954         /* raid10 can take over:
3955          *  raid0 - providing it has only two drives
3956          */
3957         if (mddev->level == 0) {
3958                 /* for raid0 takeover only one zone is supported */
3959                 raid0_conf = mddev->private;
3960                 if (raid0_conf->nr_strip_zones > 1) {
3961                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3962                                " with more than one zone.\n",
3963                                mdname(mddev));
3964                         return ERR_PTR(-EINVAL);
3965                 }
3966                 return raid10_takeover_raid0(mddev);
3967         }
3968         return ERR_PTR(-EINVAL);
3969 }
3970
3971 static int raid10_check_reshape(struct mddev *mddev)
3972 {
3973         /* Called when there is a request to change
3974          * - layout (to ->new_layout)
3975          * - chunk size (to ->new_chunk_sectors)
3976          * - raid_disks (by delta_disks)
3977          * or when trying to restart a reshape that was ongoing.
3978          *
3979          * We need to validate the request and possibly allocate
3980          * space if that might be an issue later.
3981          *
3982          * Currently we reject any reshape of a 'far' mode array,
3983          * allow chunk size to change if new is generally acceptable,
3984          * allow raid_disks to increase, and allow
3985          * a switch between 'near' mode and 'offset' mode.
3986          */
3987         struct r10conf *conf = mddev->private;
3988         struct geom geo;
3989
3990         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3991                 return -EINVAL;
3992
3993         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3994                 /* mustn't change number of copies */
3995                 return -EINVAL;
3996         if (geo.far_copies > 1 && !geo.far_offset)
3997                 /* Cannot switch to 'far' mode */
3998                 return -EINVAL;
3999
4000         if (mddev->array_sectors & geo.chunk_mask)
4001                         /* not factor of array size */
4002                         return -EINVAL;
4003
4004         if (!enough(conf, -1))
4005                 return -EINVAL;
4006
4007         kfree(conf->mirrors_new);
4008         conf->mirrors_new = NULL;
4009         if (mddev->delta_disks > 0) {
4010                 /* allocate new 'mirrors' list */
4011                 conf->mirrors_new = kzalloc(
4012                         sizeof(struct raid10_info)
4013                         *(mddev->raid_disks +
4014                           mddev->delta_disks),
4015                         GFP_KERNEL);
4016                 if (!conf->mirrors_new)
4017                         return -ENOMEM;
4018         }
4019         return 0;
4020 }
4021
4022 /*
4023  * Need to check if array has failed when deciding whether to:
4024  *  - start an array
4025  *  - remove non-faulty devices
4026  *  - add a spare
4027  *  - allow a reshape
4028  * This determination is simple when no reshape is happening.
4029  * However if there is a reshape, we need to carefully check
4030  * both the before and after sections.
4031  * This is because some failed devices may only affect one
4032  * of the two sections, and some non-in_sync devices may
4033  * be insync in the section most affected by failed devices.
4034  */
4035 static int calc_degraded(struct r10conf *conf)
4036 {
4037         int degraded, degraded2;
4038         int i;
4039
4040         rcu_read_lock();
4041         degraded = 0;
4042         /* 'prev' section first */
4043         for (i = 0; i < conf->prev.raid_disks; i++) {
4044                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4045                 if (!rdev || test_bit(Faulty, &rdev->flags))
4046                         degraded++;
4047                 else if (!test_bit(In_sync, &rdev->flags))
4048                         /* When we can reduce the number of devices in
4049                          * an array, this might not contribute to
4050                          * 'degraded'.  It does now.
4051                          */
4052                         degraded++;
4053         }
4054         rcu_read_unlock();
4055         if (conf->geo.raid_disks == conf->prev.raid_disks)
4056                 return degraded;
4057         rcu_read_lock();
4058         degraded2 = 0;
4059         for (i = 0; i < conf->geo.raid_disks; i++) {
4060                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4061                 if (!rdev || test_bit(Faulty, &rdev->flags))
4062                         degraded2++;
4063                 else if (!test_bit(In_sync, &rdev->flags)) {
4064                         /* If reshape is increasing the number of devices,
4065                          * this section has already been recovered, so
4066                          * it doesn't contribute to degraded.
4067                          * else it does.
4068                          */
4069                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4070                                 degraded2++;
4071                 }
4072         }
4073         rcu_read_unlock();
4074         if (degraded2 > degraded)
4075                 return degraded2;
4076         return degraded;
4077 }
4078
4079 static int raid10_start_reshape(struct mddev *mddev)
4080 {
4081         /* A 'reshape' has been requested. This commits
4082          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4083          * This also checks if there are enough spares and adds them
4084          * to the array.
4085          * We currently require enough spares to make the final
4086          * array non-degraded.  We also require that the difference
4087          * between old and new data_offset - on each device - is
4088          * enough that we never risk over-writing.
4089          */
4090
4091         unsigned long before_length, after_length;
4092         sector_t min_offset_diff = 0;
4093         int first = 1;
4094         struct geom new;
4095         struct r10conf *conf = mddev->private;
4096         struct md_rdev *rdev;
4097         int spares = 0;
4098         int ret;
4099
4100         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4101                 return -EBUSY;
4102
4103         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4104                 return -EINVAL;
4105
4106         before_length = ((1 << conf->prev.chunk_shift) *
4107                          conf->prev.far_copies);
4108         after_length = ((1 << conf->geo.chunk_shift) *
4109                         conf->geo.far_copies);
4110
4111         rdev_for_each(rdev, mddev) {
4112                 if (!test_bit(In_sync, &rdev->flags)
4113                     && !test_bit(Faulty, &rdev->flags))
4114                         spares++;
4115                 if (rdev->raid_disk >= 0) {
4116                         long long diff = (rdev->new_data_offset
4117                                           - rdev->data_offset);
4118                         if (!mddev->reshape_backwards)
4119                                 diff = -diff;
4120                         if (diff < 0)
4121                                 diff = 0;
4122                         if (first || diff < min_offset_diff)
4123                                 min_offset_diff = diff;
4124                 }
4125         }
4126
4127         if (max(before_length, after_length) > min_offset_diff)
4128                 return -EINVAL;
4129
4130         if (spares < mddev->delta_disks)
4131                 return -EINVAL;
4132
4133         conf->offset_diff = min_offset_diff;
4134         spin_lock_irq(&conf->device_lock);
4135         if (conf->mirrors_new) {
4136                 memcpy(conf->mirrors_new, conf->mirrors,
4137                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4138                 smp_mb();
4139                 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4140                 conf->mirrors_old = conf->mirrors;
4141                 conf->mirrors = conf->mirrors_new;
4142                 conf->mirrors_new = NULL;
4143         }
4144         setup_geo(&conf->geo, mddev, geo_start);
4145         smp_mb();
4146         if (mddev->reshape_backwards) {
4147                 sector_t size = raid10_size(mddev, 0, 0);
4148                 if (size < mddev->array_sectors) {
4149                         spin_unlock_irq(&conf->device_lock);
4150                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4151                                mdname(mddev));
4152                         return -EINVAL;
4153                 }
4154                 mddev->resync_max_sectors = size;
4155                 conf->reshape_progress = size;
4156         } else
4157                 conf->reshape_progress = 0;
4158         spin_unlock_irq(&conf->device_lock);
4159
4160         if (mddev->delta_disks && mddev->bitmap) {
4161                 ret = bitmap_resize(mddev->bitmap,
4162                                     raid10_size(mddev, 0,
4163                                                 conf->geo.raid_disks),
4164                                     0, 0);
4165                 if (ret)
4166                         goto abort;
4167         }
4168         if (mddev->delta_disks > 0) {
4169                 rdev_for_each(rdev, mddev)
4170                         if (rdev->raid_disk < 0 &&
4171                             !test_bit(Faulty, &rdev->flags)) {
4172                                 if (raid10_add_disk(mddev, rdev) == 0) {
4173                                         if (rdev->raid_disk >=
4174                                             conf->prev.raid_disks)
4175                                                 set_bit(In_sync, &rdev->flags);
4176                                         else
4177                                                 rdev->recovery_offset = 0;
4178
4179                                         if (sysfs_link_rdev(mddev, rdev))
4180                                                 /* Failure here  is OK */;
4181                                 }
4182                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4183                                    && !test_bit(Faulty, &rdev->flags)) {
4184                                 /* This is a spare that was manually added */
4185                                 set_bit(In_sync, &rdev->flags);
4186                         }
4187         }
4188         /* When a reshape changes the number of devices,
4189          * ->degraded is measured against the larger of the
4190          * pre and  post numbers.
4191          */
4192         spin_lock_irq(&conf->device_lock);
4193         mddev->degraded = calc_degraded(conf);
4194         spin_unlock_irq(&conf->device_lock);
4195         mddev->raid_disks = conf->geo.raid_disks;
4196         mddev->reshape_position = conf->reshape_progress;
4197         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4198
4199         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4200         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4201         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4202         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4203
4204         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4205                                                 "reshape");
4206         if (!mddev->sync_thread) {
4207                 ret = -EAGAIN;
4208                 goto abort;
4209         }
4210         conf->reshape_checkpoint = jiffies;
4211         md_wakeup_thread(mddev->sync_thread);
4212         md_new_event(mddev);
4213         return 0;
4214
4215 abort:
4216         mddev->recovery = 0;
4217         spin_lock_irq(&conf->device_lock);
4218         conf->geo = conf->prev;
4219         mddev->raid_disks = conf->geo.raid_disks;
4220         rdev_for_each(rdev, mddev)
4221                 rdev->new_data_offset = rdev->data_offset;
4222         smp_wmb();
4223         conf->reshape_progress = MaxSector;
4224         mddev->reshape_position = MaxSector;
4225         spin_unlock_irq(&conf->device_lock);
4226         return ret;
4227 }
4228
4229 /* Calculate the last device-address that could contain
4230  * any block from the chunk that includes the array-address 's'
4231  * and report the next address.
4232  * i.e. the address returned will be chunk-aligned and after
4233  * any data that is in the chunk containing 's'.
4234  */
4235 static sector_t last_dev_address(sector_t s, struct geom *geo)
4236 {
4237         s = (s | geo->chunk_mask) + 1;
4238         s >>= geo->chunk_shift;
4239         s *= geo->near_copies;
4240         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4241         s *= geo->far_copies;
4242         s <<= geo->chunk_shift;
4243         return s;
4244 }
4245
4246 /* Calculate the first device-address that could contain
4247  * any block from the chunk that includes the array-address 's'.
4248  * This too will be the start of a chunk
4249  */
4250 static sector_t first_dev_address(sector_t s, struct geom *geo)
4251 {
4252         s >>= geo->chunk_shift;
4253         s *= geo->near_copies;
4254         sector_div(s, geo->raid_disks);
4255         s *= geo->far_copies;
4256         s <<= geo->chunk_shift;
4257         return s;
4258 }
4259
4260 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4261                                 int *skipped)
4262 {
4263         /* We simply copy at most one chunk (smallest of old and new)
4264          * at a time, possibly less if that exceeds RESYNC_PAGES,
4265          * or we hit a bad block or something.
4266          * This might mean we pause for normal IO in the middle of
4267          * a chunk, but that is not a problem was mddev->reshape_position
4268          * can record any location.
4269          *
4270          * If we will want to write to a location that isn't
4271          * yet recorded as 'safe' (i.e. in metadata on disk) then
4272          * we need to flush all reshape requests and update the metadata.
4273          *
4274          * When reshaping forwards (e.g. to more devices), we interpret
4275          * 'safe' as the earliest block which might not have been copied
4276          * down yet.  We divide this by previous stripe size and multiply
4277          * by previous stripe length to get lowest device offset that we
4278          * cannot write to yet.
4279          * We interpret 'sector_nr' as an address that we want to write to.
4280          * From this we use last_device_address() to find where we might
4281          * write to, and first_device_address on the  'safe' position.
4282          * If this 'next' write position is after the 'safe' position,
4283          * we must update the metadata to increase the 'safe' position.
4284          *
4285          * When reshaping backwards, we round in the opposite direction
4286          * and perform the reverse test:  next write position must not be
4287          * less than current safe position.
4288          *
4289          * In all this the minimum difference in data offsets
4290          * (conf->offset_diff - always positive) allows a bit of slack,
4291          * so next can be after 'safe', but not by more than offset_disk
4292          *
4293          * We need to prepare all the bios here before we start any IO
4294          * to ensure the size we choose is acceptable to all devices.
4295          * The means one for each copy for write-out and an extra one for
4296          * read-in.
4297          * We store the read-in bio in ->master_bio and the others in
4298          * ->devs[x].bio and ->devs[x].repl_bio.
4299          */
4300         struct r10conf *conf = mddev->private;
4301         struct r10bio *r10_bio;
4302         sector_t next, safe, last;
4303         int max_sectors;
4304         int nr_sectors;
4305         int s;
4306         struct md_rdev *rdev;
4307         int need_flush = 0;
4308         struct bio *blist;
4309         struct bio *bio, *read_bio;
4310         int sectors_done = 0;
4311
4312         if (sector_nr == 0) {
4313                 /* If restarting in the middle, skip the initial sectors */
4314                 if (mddev->reshape_backwards &&
4315                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4316                         sector_nr = (raid10_size(mddev, 0, 0)
4317                                      - conf->reshape_progress);
4318                 } else if (!mddev->reshape_backwards &&
4319                            conf->reshape_progress > 0)
4320                         sector_nr = conf->reshape_progress;
4321                 if (sector_nr) {
4322                         mddev->curr_resync_completed = sector_nr;
4323                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4324                         *skipped = 1;
4325                         return sector_nr;
4326                 }
4327         }
4328
4329         /* We don't use sector_nr to track where we are up to
4330          * as that doesn't work well for ->reshape_backwards.
4331          * So just use ->reshape_progress.
4332          */
4333         if (mddev->reshape_backwards) {
4334                 /* 'next' is the earliest device address that we might
4335                  * write to for this chunk in the new layout
4336                  */
4337                 next = first_dev_address(conf->reshape_progress - 1,
4338                                          &conf->geo);
4339
4340                 /* 'safe' is the last device address that we might read from
4341                  * in the old layout after a restart
4342                  */
4343                 safe = last_dev_address(conf->reshape_safe - 1,
4344                                         &conf->prev);
4345
4346                 if (next + conf->offset_diff < safe)
4347                         need_flush = 1;
4348
4349                 last = conf->reshape_progress - 1;
4350                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4351                                                & conf->prev.chunk_mask);
4352                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4353                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4354         } else {
4355                 /* 'next' is after the last device address that we
4356                  * might write to for this chunk in the new layout
4357                  */
4358                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4359
4360                 /* 'safe' is the earliest device address that we might
4361                  * read from in the old layout after a restart
4362                  */
4363                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4364
4365                 /* Need to update metadata if 'next' might be beyond 'safe'
4366                  * as that would possibly corrupt data
4367                  */
4368                 if (next > safe + conf->offset_diff)
4369                         need_flush = 1;
4370
4371                 sector_nr = conf->reshape_progress;
4372                 last  = sector_nr | (conf->geo.chunk_mask
4373                                      & conf->prev.chunk_mask);
4374
4375                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4376                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4377         }
4378
4379         if (need_flush ||
4380             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4381                 /* Need to update reshape_position in metadata */
4382                 wait_barrier(conf);
4383                 mddev->reshape_position = conf->reshape_progress;
4384                 if (mddev->reshape_backwards)
4385                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4386                                 - conf->reshape_progress;
4387                 else
4388                         mddev->curr_resync_completed = conf->reshape_progress;
4389                 conf->reshape_checkpoint = jiffies;
4390                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4391                 md_wakeup_thread(mddev->thread);
4392                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4393                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4394                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4395                         allow_barrier(conf);
4396                         return sectors_done;
4397                 }
4398                 conf->reshape_safe = mddev->reshape_position;
4399                 allow_barrier(conf);
4400         }
4401
4402 read_more:
4403         /* Now schedule reads for blocks from sector_nr to last */
4404         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4405         raise_barrier(conf, sectors_done != 0);
4406         atomic_set(&r10_bio->remaining, 0);
4407         r10_bio->mddev = mddev;
4408         r10_bio->sector = sector_nr;
4409         set_bit(R10BIO_IsReshape, &r10_bio->state);
4410         r10_bio->sectors = last - sector_nr + 1;
4411         rdev = read_balance(conf, r10_bio, &max_sectors);
4412         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4413
4414         if (!rdev) {
4415                 /* Cannot read from here, so need to record bad blocks
4416                  * on all the target devices.
4417                  */
4418                 // FIXME
4419                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4420                 return sectors_done;
4421         }
4422
4423         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4424
4425         read_bio->bi_bdev = rdev->bdev;
4426         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4427                                + rdev->data_offset);
4428         read_bio->bi_private = r10_bio;
4429         read_bio->bi_end_io = end_sync_read;
4430         read_bio->bi_rw = READ;
4431         read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4432         read_bio->bi_flags |= 1 << BIO_UPTODATE;
4433         read_bio->bi_vcnt = 0;
4434         read_bio->bi_iter.bi_size = 0;
4435         r10_bio->master_bio = read_bio;
4436         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4437
4438         /* Now find the locations in the new layout */
4439         __raid10_find_phys(&conf->geo, r10_bio);
4440
4441         blist = read_bio;
4442         read_bio->bi_next = NULL;
4443
4444         for (s = 0; s < conf->copies*2; s++) {
4445                 struct bio *b;
4446                 int d = r10_bio->devs[s/2].devnum;
4447                 struct md_rdev *rdev2;
4448                 if (s&1) {
4449                         rdev2 = conf->mirrors[d].replacement;
4450                         b = r10_bio->devs[s/2].repl_bio;
4451                 } else {
4452                         rdev2 = conf->mirrors[d].rdev;
4453                         b = r10_bio->devs[s/2].bio;
4454                 }
4455                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4456                         continue;
4457
4458                 bio_reset(b);
4459                 b->bi_bdev = rdev2->bdev;
4460                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4461                         rdev2->new_data_offset;
4462                 b->bi_private = r10_bio;
4463                 b->bi_end_io = end_reshape_write;
4464                 b->bi_rw = WRITE;
4465                 b->bi_next = blist;
4466                 blist = b;
4467         }
4468
4469         /* Now add as many pages as possible to all of these bios. */
4470
4471         nr_sectors = 0;
4472         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4473                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4474                 int len = (max_sectors - s) << 9;
4475                 if (len > PAGE_SIZE)
4476                         len = PAGE_SIZE;
4477                 for (bio = blist; bio ; bio = bio->bi_next) {
4478                         struct bio *bio2;
4479                         if (bio_add_page(bio, page, len, 0))
4480                                 continue;
4481
4482                         /* Didn't fit, must stop */
4483                         for (bio2 = blist;
4484                              bio2 && bio2 != bio;
4485                              bio2 = bio2->bi_next) {
4486                                 /* Remove last page from this bio */
4487                                 bio2->bi_vcnt--;
4488                                 bio2->bi_iter.bi_size -= len;
4489                                 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4490                         }
4491                         goto bio_full;
4492                 }
4493                 sector_nr += len >> 9;
4494                 nr_sectors += len >> 9;
4495         }
4496 bio_full:
4497         r10_bio->sectors = nr_sectors;
4498
4499         /* Now submit the read */
4500         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4501         atomic_inc(&r10_bio->remaining);
4502         read_bio->bi_next = NULL;
4503         generic_make_request(read_bio);
4504         sector_nr += nr_sectors;
4505         sectors_done += nr_sectors;
4506         if (sector_nr <= last)
4507                 goto read_more;
4508
4509         /* Now that we have done the whole section we can
4510          * update reshape_progress
4511          */
4512         if (mddev->reshape_backwards)
4513                 conf->reshape_progress -= sectors_done;
4514         else
4515                 conf->reshape_progress += sectors_done;
4516
4517         return sectors_done;
4518 }
4519
4520 static void end_reshape_request(struct r10bio *r10_bio);
4521 static int handle_reshape_read_error(struct mddev *mddev,
4522                                      struct r10bio *r10_bio);
4523 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4524 {
4525         /* Reshape read completed.  Hopefully we have a block
4526          * to write out.
4527          * If we got a read error then we do sync 1-page reads from
4528          * elsewhere until we find the data - or give up.
4529          */
4530         struct r10conf *conf = mddev->private;
4531         int s;
4532
4533         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4534                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4535                         /* Reshape has been aborted */
4536                         md_done_sync(mddev, r10_bio->sectors, 0);
4537                         return;
4538                 }
4539
4540         /* We definitely have the data in the pages, schedule the
4541          * writes.
4542          */
4543         atomic_set(&r10_bio->remaining, 1);
4544         for (s = 0; s < conf->copies*2; s++) {
4545                 struct bio *b;
4546                 int d = r10_bio->devs[s/2].devnum;
4547                 struct md_rdev *rdev;
4548                 if (s&1) {
4549                         rdev = conf->mirrors[d].replacement;
4550                         b = r10_bio->devs[s/2].repl_bio;
4551                 } else {
4552                         rdev = conf->mirrors[d].rdev;
4553                         b = r10_bio->devs[s/2].bio;
4554                 }
4555                 if (!rdev || test_bit(Faulty, &rdev->flags))
4556                         continue;
4557                 atomic_inc(&rdev->nr_pending);
4558                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4559                 atomic_inc(&r10_bio->remaining);
4560                 b->bi_next = NULL;
4561                 generic_make_request(b);
4562         }
4563         end_reshape_request(r10_bio);
4564 }
4565
4566 static void end_reshape(struct r10conf *conf)
4567 {
4568         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4569                 return;
4570
4571         spin_lock_irq(&conf->device_lock);
4572         conf->prev = conf->geo;
4573         md_finish_reshape(conf->mddev);
4574         smp_wmb();
4575         conf->reshape_progress = MaxSector;
4576         spin_unlock_irq(&conf->device_lock);
4577
4578         /* read-ahead size must cover two whole stripes, which is
4579          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4580          */
4581         if (conf->mddev->queue) {
4582                 int stripe = conf->geo.raid_disks *
4583                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4584                 stripe /= conf->geo.near_copies;
4585                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4586                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4587         }
4588         conf->fullsync = 0;
4589 }
4590
4591
4592 static int handle_reshape_read_error(struct mddev *mddev,
4593                                      struct r10bio *r10_bio)
4594 {
4595         /* Use sync reads to get the blocks from somewhere else */
4596         int sectors = r10_bio->sectors;
4597         struct r10conf *conf = mddev->private;
4598         struct {
4599                 struct r10bio r10_bio;
4600                 struct r10dev devs[conf->copies];
4601         } on_stack;
4602         struct r10bio *r10b = &on_stack.r10_bio;
4603         int slot = 0;
4604         int idx = 0;
4605         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4606
4607         r10b->sector = r10_bio->sector;
4608         __raid10_find_phys(&conf->prev, r10b);
4609
4610         while (sectors) {
4611                 int s = sectors;
4612                 int success = 0;
4613                 int first_slot = slot;
4614
4615                 if (s > (PAGE_SIZE >> 9))
4616                         s = PAGE_SIZE >> 9;
4617
4618                 while (!success) {
4619                         int d = r10b->devs[slot].devnum;
4620                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4621                         sector_t addr;
4622                         if (rdev == NULL ||
4623                             test_bit(Faulty, &rdev->flags) ||
4624                             !test_bit(In_sync, &rdev->flags))
4625                                 goto failed;
4626
4627                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4628                         success = sync_page_io(rdev,
4629                                                addr,
4630                                                s << 9,
4631                                                bvec[idx].bv_page,
4632                                                READ, false);
4633                         if (success)
4634                                 break;
4635                 failed:
4636                         slot++;
4637                         if (slot >= conf->copies)
4638                                 slot = 0;
4639                         if (slot == first_slot)
4640                                 break;
4641                 }
4642                 if (!success) {
4643                         /* couldn't read this block, must give up */
4644                         set_bit(MD_RECOVERY_INTR,
4645                                 &mddev->recovery);
4646                         return -EIO;
4647                 }
4648                 sectors -= s;
4649                 idx++;
4650         }
4651         return 0;
4652 }
4653
4654 static void end_reshape_write(struct bio *bio, int error)
4655 {
4656         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4657         struct r10bio *r10_bio = bio->bi_private;
4658         struct mddev *mddev = r10_bio->mddev;
4659         struct r10conf *conf = mddev->private;
4660         int d;
4661         int slot;
4662         int repl;
4663         struct md_rdev *rdev = NULL;
4664
4665         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4666         if (repl)
4667                 rdev = conf->mirrors[d].replacement;
4668         if (!rdev) {
4669                 smp_mb();
4670                 rdev = conf->mirrors[d].rdev;
4671         }
4672
4673         if (!uptodate) {
4674                 /* FIXME should record badblock */
4675                 md_error(mddev, rdev);
4676         }
4677
4678         rdev_dec_pending(rdev, mddev);
4679         end_reshape_request(r10_bio);
4680 }
4681
4682 static void end_reshape_request(struct r10bio *r10_bio)
4683 {
4684         if (!atomic_dec_and_test(&r10_bio->remaining))
4685                 return;
4686         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4687         bio_put(r10_bio->master_bio);
4688         put_buf(r10_bio);
4689 }
4690
4691 static void raid10_finish_reshape(struct mddev *mddev)
4692 {
4693         struct r10conf *conf = mddev->private;
4694
4695         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4696                 return;
4697
4698         if (mddev->delta_disks > 0) {
4699                 sector_t size = raid10_size(mddev, 0, 0);
4700                 md_set_array_sectors(mddev, size);
4701                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4702                         mddev->recovery_cp = mddev->resync_max_sectors;
4703                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4704                 }
4705                 mddev->resync_max_sectors = size;
4706                 set_capacity(mddev->gendisk, mddev->array_sectors);
4707                 revalidate_disk(mddev->gendisk);
4708         } else {
4709                 int d;
4710                 for (d = conf->geo.raid_disks ;
4711                      d < conf->geo.raid_disks - mddev->delta_disks;
4712                      d++) {
4713                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4714                         if (rdev)
4715                                 clear_bit(In_sync, &rdev->flags);
4716                         rdev = conf->mirrors[d].replacement;
4717                         if (rdev)
4718                                 clear_bit(In_sync, &rdev->flags);
4719                 }
4720         }
4721         mddev->layout = mddev->new_layout;
4722         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4723         mddev->reshape_position = MaxSector;
4724         mddev->delta_disks = 0;
4725         mddev->reshape_backwards = 0;
4726 }
4727
4728 static struct md_personality raid10_personality =
4729 {
4730         .name           = "raid10",
4731         .level          = 10,
4732         .owner          = THIS_MODULE,
4733         .make_request   = make_request,
4734         .run            = run,
4735         .stop           = stop,
4736         .status         = status,
4737         .error_handler  = error,
4738         .hot_add_disk   = raid10_add_disk,
4739         .hot_remove_disk= raid10_remove_disk,
4740         .spare_active   = raid10_spare_active,
4741         .sync_request   = sync_request,
4742         .quiesce        = raid10_quiesce,
4743         .size           = raid10_size,
4744         .resize         = raid10_resize,
4745         .takeover       = raid10_takeover,
4746         .check_reshape  = raid10_check_reshape,
4747         .start_reshape  = raid10_start_reshape,
4748         .finish_reshape = raid10_finish_reshape,
4749 };
4750
4751 static int __init raid_init(void)
4752 {
4753         return register_md_personality(&raid10_personality);
4754 }
4755
4756 static void raid_exit(void)
4757 {
4758         unregister_md_personality(&raid10_personality);
4759 }
4760
4761 module_init(raid_init);
4762 module_exit(raid_exit);
4763 MODULE_LICENSE("GPL");
4764 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4765 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4766 MODULE_ALIAS("md-raid10");
4767 MODULE_ALIAS("md-level-10");
4768
4769 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);