md-cluster: re-add capabilities
[linux-2.6-block.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80                                  struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106         return mddev->sync_speed_min ?
107                 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112         return mddev->sync_speed_max ?
113                 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119         {
120                 .procname       = "speed_limit_min",
121                 .data           = &sysctl_speed_limit_min,
122                 .maxlen         = sizeof(int),
123                 .mode           = S_IRUGO|S_IWUSR,
124                 .proc_handler   = proc_dointvec,
125         },
126         {
127                 .procname       = "speed_limit_max",
128                 .data           = &sysctl_speed_limit_max,
129                 .maxlen         = sizeof(int),
130                 .mode           = S_IRUGO|S_IWUSR,
131                 .proc_handler   = proc_dointvec,
132         },
133         { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137         {
138                 .procname       = "raid",
139                 .maxlen         = 0,
140                 .mode           = S_IRUGO|S_IXUGO,
141                 .child          = raid_table,
142         },
143         { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147         {
148                 .procname       = "dev",
149                 .maxlen         = 0,
150                 .mode           = 0555,
151                 .child          = raid_dir_table,
152         },
153         {  }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165                             struct mddev *mddev)
166 {
167         struct bio *b;
168
169         if (!mddev || !mddev->bio_set)
170                 return bio_alloc(gfp_mask, nr_iovecs);
171
172         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173         if (!b)
174                 return NULL;
175         return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180                             struct mddev *mddev)
181 {
182         if (!mddev || !mddev->bio_set)
183                 return bio_clone(bio, gfp_mask);
184
185         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203         atomic_inc(&md_event_count);
204         wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213         atomic_inc(&md_event_count);
214         wake_up(&md_event_waiters);
215 }
216
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)                                     \
232                                                                         \
233         for (({ spin_lock(&all_mddevs_lock);                            \
234                 _tmp = all_mddevs.next;                                 \
235                 _mddev = NULL;});                                       \
236              ({ if (_tmp != &all_mddevs)                                \
237                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238                 spin_unlock(&all_mddevs_lock);                          \
239                 if (_mddev) mddev_put(_mddev);                          \
240                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
241                 _tmp != &all_mddevs;});                                 \
242              ({ spin_lock(&all_mddevs_lock);                            \
243                 _tmp = _tmp->next;})                                    \
244                 )
245
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255         const int rw = bio_data_dir(bio);
256         struct mddev *mddev = q->queuedata;
257         unsigned int sectors;
258
259         if (mddev == NULL || mddev->pers == NULL
260             || !mddev->ready) {
261                 bio_io_error(bio);
262                 return;
263         }
264         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
265                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
266                 return;
267         }
268         smp_rmb(); /* Ensure implications of  'active' are visible */
269         rcu_read_lock();
270         if (mddev->suspended) {
271                 DEFINE_WAIT(__wait);
272                 for (;;) {
273                         prepare_to_wait(&mddev->sb_wait, &__wait,
274                                         TASK_UNINTERRUPTIBLE);
275                         if (!mddev->suspended)
276                                 break;
277                         rcu_read_unlock();
278                         schedule();
279                         rcu_read_lock();
280                 }
281                 finish_wait(&mddev->sb_wait, &__wait);
282         }
283         atomic_inc(&mddev->active_io);
284         rcu_read_unlock();
285
286         /*
287          * save the sectors now since our bio can
288          * go away inside make_request
289          */
290         sectors = bio_sectors(bio);
291         mddev->pers->make_request(mddev, bio);
292
293         generic_start_io_acct(rw, sectors, &mddev->gendisk->part0);
294
295         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
296                 wake_up(&mddev->sb_wait);
297 }
298
299 /* mddev_suspend makes sure no new requests are submitted
300  * to the device, and that any requests that have been submitted
301  * are completely handled.
302  * Once mddev_detach() is called and completes, the module will be
303  * completely unused.
304  */
305 void mddev_suspend(struct mddev *mddev)
306 {
307         BUG_ON(mddev->suspended);
308         mddev->suspended = 1;
309         synchronize_rcu();
310         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
311         mddev->pers->quiesce(mddev, 1);
312
313         del_timer_sync(&mddev->safemode_timer);
314 }
315 EXPORT_SYMBOL_GPL(mddev_suspend);
316
317 void mddev_resume(struct mddev *mddev)
318 {
319         mddev->suspended = 0;
320         wake_up(&mddev->sb_wait);
321         mddev->pers->quiesce(mddev, 0);
322
323         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
324         md_wakeup_thread(mddev->thread);
325         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
326 }
327 EXPORT_SYMBOL_GPL(mddev_resume);
328
329 int mddev_congested(struct mddev *mddev, int bits)
330 {
331         struct md_personality *pers = mddev->pers;
332         int ret = 0;
333
334         rcu_read_lock();
335         if (mddev->suspended)
336                 ret = 1;
337         else if (pers && pers->congested)
338                 ret = pers->congested(mddev, bits);
339         rcu_read_unlock();
340         return ret;
341 }
342 EXPORT_SYMBOL_GPL(mddev_congested);
343 static int md_congested(void *data, int bits)
344 {
345         struct mddev *mddev = data;
346         return mddev_congested(mddev, bits);
347 }
348
349 static int md_mergeable_bvec(struct request_queue *q,
350                              struct bvec_merge_data *bvm,
351                              struct bio_vec *biovec)
352 {
353         struct mddev *mddev = q->queuedata;
354         int ret;
355         rcu_read_lock();
356         if (mddev->suspended) {
357                 /* Must always allow one vec */
358                 if (bvm->bi_size == 0)
359                         ret = biovec->bv_len;
360                 else
361                         ret = 0;
362         } else {
363                 struct md_personality *pers = mddev->pers;
364                 if (pers && pers->mergeable_bvec)
365                         ret = pers->mergeable_bvec(mddev, bvm, biovec);
366                 else
367                         ret = biovec->bv_len;
368         }
369         rcu_read_unlock();
370         return ret;
371 }
372 /*
373  * Generic flush handling for md
374  */
375
376 static void md_end_flush(struct bio *bio, int err)
377 {
378         struct md_rdev *rdev = bio->bi_private;
379         struct mddev *mddev = rdev->mddev;
380
381         rdev_dec_pending(rdev, mddev);
382
383         if (atomic_dec_and_test(&mddev->flush_pending)) {
384                 /* The pre-request flush has finished */
385                 queue_work(md_wq, &mddev->flush_work);
386         }
387         bio_put(bio);
388 }
389
390 static void md_submit_flush_data(struct work_struct *ws);
391
392 static void submit_flushes(struct work_struct *ws)
393 {
394         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
395         struct md_rdev *rdev;
396
397         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
398         atomic_set(&mddev->flush_pending, 1);
399         rcu_read_lock();
400         rdev_for_each_rcu(rdev, mddev)
401                 if (rdev->raid_disk >= 0 &&
402                     !test_bit(Faulty, &rdev->flags)) {
403                         /* Take two references, one is dropped
404                          * when request finishes, one after
405                          * we reclaim rcu_read_lock
406                          */
407                         struct bio *bi;
408                         atomic_inc(&rdev->nr_pending);
409                         atomic_inc(&rdev->nr_pending);
410                         rcu_read_unlock();
411                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
412                         bi->bi_end_io = md_end_flush;
413                         bi->bi_private = rdev;
414                         bi->bi_bdev = rdev->bdev;
415                         atomic_inc(&mddev->flush_pending);
416                         submit_bio(WRITE_FLUSH, bi);
417                         rcu_read_lock();
418                         rdev_dec_pending(rdev, mddev);
419                 }
420         rcu_read_unlock();
421         if (atomic_dec_and_test(&mddev->flush_pending))
422                 queue_work(md_wq, &mddev->flush_work);
423 }
424
425 static void md_submit_flush_data(struct work_struct *ws)
426 {
427         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
428         struct bio *bio = mddev->flush_bio;
429
430         if (bio->bi_iter.bi_size == 0)
431                 /* an empty barrier - all done */
432                 bio_endio(bio, 0);
433         else {
434                 bio->bi_rw &= ~REQ_FLUSH;
435                 mddev->pers->make_request(mddev, bio);
436         }
437
438         mddev->flush_bio = NULL;
439         wake_up(&mddev->sb_wait);
440 }
441
442 void md_flush_request(struct mddev *mddev, struct bio *bio)
443 {
444         spin_lock_irq(&mddev->lock);
445         wait_event_lock_irq(mddev->sb_wait,
446                             !mddev->flush_bio,
447                             mddev->lock);
448         mddev->flush_bio = bio;
449         spin_unlock_irq(&mddev->lock);
450
451         INIT_WORK(&mddev->flush_work, submit_flushes);
452         queue_work(md_wq, &mddev->flush_work);
453 }
454 EXPORT_SYMBOL(md_flush_request);
455
456 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
457 {
458         struct mddev *mddev = cb->data;
459         md_wakeup_thread(mddev->thread);
460         kfree(cb);
461 }
462 EXPORT_SYMBOL(md_unplug);
463
464 static inline struct mddev *mddev_get(struct mddev *mddev)
465 {
466         atomic_inc(&mddev->active);
467         return mddev;
468 }
469
470 static void mddev_delayed_delete(struct work_struct *ws);
471
472 static void mddev_put(struct mddev *mddev)
473 {
474         struct bio_set *bs = NULL;
475
476         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
477                 return;
478         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
479             mddev->ctime == 0 && !mddev->hold_active) {
480                 /* Array is not configured at all, and not held active,
481                  * so destroy it */
482                 list_del_init(&mddev->all_mddevs);
483                 bs = mddev->bio_set;
484                 mddev->bio_set = NULL;
485                 if (mddev->gendisk) {
486                         /* We did a probe so need to clean up.  Call
487                          * queue_work inside the spinlock so that
488                          * flush_workqueue() after mddev_find will
489                          * succeed in waiting for the work to be done.
490                          */
491                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
492                         queue_work(md_misc_wq, &mddev->del_work);
493                 } else
494                         kfree(mddev);
495         }
496         spin_unlock(&all_mddevs_lock);
497         if (bs)
498                 bioset_free(bs);
499 }
500
501 void mddev_init(struct mddev *mddev)
502 {
503         mutex_init(&mddev->open_mutex);
504         mutex_init(&mddev->reconfig_mutex);
505         mutex_init(&mddev->bitmap_info.mutex);
506         INIT_LIST_HEAD(&mddev->disks);
507         INIT_LIST_HEAD(&mddev->all_mddevs);
508         init_timer(&mddev->safemode_timer);
509         atomic_set(&mddev->active, 1);
510         atomic_set(&mddev->openers, 0);
511         atomic_set(&mddev->active_io, 0);
512         spin_lock_init(&mddev->lock);
513         atomic_set(&mddev->flush_pending, 0);
514         init_waitqueue_head(&mddev->sb_wait);
515         init_waitqueue_head(&mddev->recovery_wait);
516         mddev->reshape_position = MaxSector;
517         mddev->reshape_backwards = 0;
518         mddev->last_sync_action = "none";
519         mddev->resync_min = 0;
520         mddev->resync_max = MaxSector;
521         mddev->level = LEVEL_NONE;
522 }
523 EXPORT_SYMBOL_GPL(mddev_init);
524
525 static struct mddev *mddev_find(dev_t unit)
526 {
527         struct mddev *mddev, *new = NULL;
528
529         if (unit && MAJOR(unit) != MD_MAJOR)
530                 unit &= ~((1<<MdpMinorShift)-1);
531
532  retry:
533         spin_lock(&all_mddevs_lock);
534
535         if (unit) {
536                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
537                         if (mddev->unit == unit) {
538                                 mddev_get(mddev);
539                                 spin_unlock(&all_mddevs_lock);
540                                 kfree(new);
541                                 return mddev;
542                         }
543
544                 if (new) {
545                         list_add(&new->all_mddevs, &all_mddevs);
546                         spin_unlock(&all_mddevs_lock);
547                         new->hold_active = UNTIL_IOCTL;
548                         return new;
549                 }
550         } else if (new) {
551                 /* find an unused unit number */
552                 static int next_minor = 512;
553                 int start = next_minor;
554                 int is_free = 0;
555                 int dev = 0;
556                 while (!is_free) {
557                         dev = MKDEV(MD_MAJOR, next_minor);
558                         next_minor++;
559                         if (next_minor > MINORMASK)
560                                 next_minor = 0;
561                         if (next_minor == start) {
562                                 /* Oh dear, all in use. */
563                                 spin_unlock(&all_mddevs_lock);
564                                 kfree(new);
565                                 return NULL;
566                         }
567
568                         is_free = 1;
569                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
570                                 if (mddev->unit == dev) {
571                                         is_free = 0;
572                                         break;
573                                 }
574                 }
575                 new->unit = dev;
576                 new->md_minor = MINOR(dev);
577                 new->hold_active = UNTIL_STOP;
578                 list_add(&new->all_mddevs, &all_mddevs);
579                 spin_unlock(&all_mddevs_lock);
580                 return new;
581         }
582         spin_unlock(&all_mddevs_lock);
583
584         new = kzalloc(sizeof(*new), GFP_KERNEL);
585         if (!new)
586                 return NULL;
587
588         new->unit = unit;
589         if (MAJOR(unit) == MD_MAJOR)
590                 new->md_minor = MINOR(unit);
591         else
592                 new->md_minor = MINOR(unit) >> MdpMinorShift;
593
594         mddev_init(new);
595
596         goto retry;
597 }
598
599 static struct attribute_group md_redundancy_group;
600
601 void mddev_unlock(struct mddev *mddev)
602 {
603         if (mddev->to_remove) {
604                 /* These cannot be removed under reconfig_mutex as
605                  * an access to the files will try to take reconfig_mutex
606                  * while holding the file unremovable, which leads to
607                  * a deadlock.
608                  * So hold set sysfs_active while the remove in happeing,
609                  * and anything else which might set ->to_remove or my
610                  * otherwise change the sysfs namespace will fail with
611                  * -EBUSY if sysfs_active is still set.
612                  * We set sysfs_active under reconfig_mutex and elsewhere
613                  * test it under the same mutex to ensure its correct value
614                  * is seen.
615                  */
616                 struct attribute_group *to_remove = mddev->to_remove;
617                 mddev->to_remove = NULL;
618                 mddev->sysfs_active = 1;
619                 mutex_unlock(&mddev->reconfig_mutex);
620
621                 if (mddev->kobj.sd) {
622                         if (to_remove != &md_redundancy_group)
623                                 sysfs_remove_group(&mddev->kobj, to_remove);
624                         if (mddev->pers == NULL ||
625                             mddev->pers->sync_request == NULL) {
626                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
627                                 if (mddev->sysfs_action)
628                                         sysfs_put(mddev->sysfs_action);
629                                 mddev->sysfs_action = NULL;
630                         }
631                 }
632                 mddev->sysfs_active = 0;
633         } else
634                 mutex_unlock(&mddev->reconfig_mutex);
635
636         /* As we've dropped the mutex we need a spinlock to
637          * make sure the thread doesn't disappear
638          */
639         spin_lock(&pers_lock);
640         md_wakeup_thread(mddev->thread);
641         spin_unlock(&pers_lock);
642 }
643 EXPORT_SYMBOL_GPL(mddev_unlock);
644
645 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
646 {
647         struct md_rdev *rdev;
648
649         rdev_for_each_rcu(rdev, mddev)
650                 if (rdev->desc_nr == nr)
651                         return rdev;
652
653         return NULL;
654 }
655 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
656
657 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
658 {
659         struct md_rdev *rdev;
660
661         rdev_for_each(rdev, mddev)
662                 if (rdev->bdev->bd_dev == dev)
663                         return rdev;
664
665         return NULL;
666 }
667
668 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
669 {
670         struct md_rdev *rdev;
671
672         rdev_for_each_rcu(rdev, mddev)
673                 if (rdev->bdev->bd_dev == dev)
674                         return rdev;
675
676         return NULL;
677 }
678
679 static struct md_personality *find_pers(int level, char *clevel)
680 {
681         struct md_personality *pers;
682         list_for_each_entry(pers, &pers_list, list) {
683                 if (level != LEVEL_NONE && pers->level == level)
684                         return pers;
685                 if (strcmp(pers->name, clevel)==0)
686                         return pers;
687         }
688         return NULL;
689 }
690
691 /* return the offset of the super block in 512byte sectors */
692 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
693 {
694         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
695         return MD_NEW_SIZE_SECTORS(num_sectors);
696 }
697
698 static int alloc_disk_sb(struct md_rdev *rdev)
699 {
700         rdev->sb_page = alloc_page(GFP_KERNEL);
701         if (!rdev->sb_page) {
702                 printk(KERN_ALERT "md: out of memory.\n");
703                 return -ENOMEM;
704         }
705
706         return 0;
707 }
708
709 void md_rdev_clear(struct md_rdev *rdev)
710 {
711         if (rdev->sb_page) {
712                 put_page(rdev->sb_page);
713                 rdev->sb_loaded = 0;
714                 rdev->sb_page = NULL;
715                 rdev->sb_start = 0;
716                 rdev->sectors = 0;
717         }
718         if (rdev->bb_page) {
719                 put_page(rdev->bb_page);
720                 rdev->bb_page = NULL;
721         }
722         kfree(rdev->badblocks.page);
723         rdev->badblocks.page = NULL;
724 }
725 EXPORT_SYMBOL_GPL(md_rdev_clear);
726
727 static void super_written(struct bio *bio, int error)
728 {
729         struct md_rdev *rdev = bio->bi_private;
730         struct mddev *mddev = rdev->mddev;
731
732         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
733                 printk("md: super_written gets error=%d, uptodate=%d\n",
734                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
735                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
736                 md_error(mddev, rdev);
737         }
738
739         if (atomic_dec_and_test(&mddev->pending_writes))
740                 wake_up(&mddev->sb_wait);
741         bio_put(bio);
742 }
743
744 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
745                    sector_t sector, int size, struct page *page)
746 {
747         /* write first size bytes of page to sector of rdev
748          * Increment mddev->pending_writes before returning
749          * and decrement it on completion, waking up sb_wait
750          * if zero is reached.
751          * If an error occurred, call md_error
752          */
753         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
754
755         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
756         bio->bi_iter.bi_sector = sector;
757         bio_add_page(bio, page, size, 0);
758         bio->bi_private = rdev;
759         bio->bi_end_io = super_written;
760
761         atomic_inc(&mddev->pending_writes);
762         submit_bio(WRITE_FLUSH_FUA, bio);
763 }
764
765 void md_super_wait(struct mddev *mddev)
766 {
767         /* wait for all superblock writes that were scheduled to complete */
768         wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
769 }
770
771 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
772                  struct page *page, int rw, bool metadata_op)
773 {
774         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
775         int ret;
776
777         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
778                 rdev->meta_bdev : rdev->bdev;
779         if (metadata_op)
780                 bio->bi_iter.bi_sector = sector + rdev->sb_start;
781         else if (rdev->mddev->reshape_position != MaxSector &&
782                  (rdev->mddev->reshape_backwards ==
783                   (sector >= rdev->mddev->reshape_position)))
784                 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
785         else
786                 bio->bi_iter.bi_sector = sector + rdev->data_offset;
787         bio_add_page(bio, page, size, 0);
788         submit_bio_wait(rw, bio);
789
790         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
791         bio_put(bio);
792         return ret;
793 }
794 EXPORT_SYMBOL_GPL(sync_page_io);
795
796 static int read_disk_sb(struct md_rdev *rdev, int size)
797 {
798         char b[BDEVNAME_SIZE];
799
800         if (rdev->sb_loaded)
801                 return 0;
802
803         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
804                 goto fail;
805         rdev->sb_loaded = 1;
806         return 0;
807
808 fail:
809         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
810                 bdevname(rdev->bdev,b));
811         return -EINVAL;
812 }
813
814 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
815 {
816         return  sb1->set_uuid0 == sb2->set_uuid0 &&
817                 sb1->set_uuid1 == sb2->set_uuid1 &&
818                 sb1->set_uuid2 == sb2->set_uuid2 &&
819                 sb1->set_uuid3 == sb2->set_uuid3;
820 }
821
822 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
823 {
824         int ret;
825         mdp_super_t *tmp1, *tmp2;
826
827         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
828         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
829
830         if (!tmp1 || !tmp2) {
831                 ret = 0;
832                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
833                 goto abort;
834         }
835
836         *tmp1 = *sb1;
837         *tmp2 = *sb2;
838
839         /*
840          * nr_disks is not constant
841          */
842         tmp1->nr_disks = 0;
843         tmp2->nr_disks = 0;
844
845         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
846 abort:
847         kfree(tmp1);
848         kfree(tmp2);
849         return ret;
850 }
851
852 static u32 md_csum_fold(u32 csum)
853 {
854         csum = (csum & 0xffff) + (csum >> 16);
855         return (csum & 0xffff) + (csum >> 16);
856 }
857
858 static unsigned int calc_sb_csum(mdp_super_t *sb)
859 {
860         u64 newcsum = 0;
861         u32 *sb32 = (u32*)sb;
862         int i;
863         unsigned int disk_csum, csum;
864
865         disk_csum = sb->sb_csum;
866         sb->sb_csum = 0;
867
868         for (i = 0; i < MD_SB_BYTES/4 ; i++)
869                 newcsum += sb32[i];
870         csum = (newcsum & 0xffffffff) + (newcsum>>32);
871
872 #ifdef CONFIG_ALPHA
873         /* This used to use csum_partial, which was wrong for several
874          * reasons including that different results are returned on
875          * different architectures.  It isn't critical that we get exactly
876          * the same return value as before (we always csum_fold before
877          * testing, and that removes any differences).  However as we
878          * know that csum_partial always returned a 16bit value on
879          * alphas, do a fold to maximise conformity to previous behaviour.
880          */
881         sb->sb_csum = md_csum_fold(disk_csum);
882 #else
883         sb->sb_csum = disk_csum;
884 #endif
885         return csum;
886 }
887
888 /*
889  * Handle superblock details.
890  * We want to be able to handle multiple superblock formats
891  * so we have a common interface to them all, and an array of
892  * different handlers.
893  * We rely on user-space to write the initial superblock, and support
894  * reading and updating of superblocks.
895  * Interface methods are:
896  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
897  *      loads and validates a superblock on dev.
898  *      if refdev != NULL, compare superblocks on both devices
899  *    Return:
900  *      0 - dev has a superblock that is compatible with refdev
901  *      1 - dev has a superblock that is compatible and newer than refdev
902  *          so dev should be used as the refdev in future
903  *     -EINVAL superblock incompatible or invalid
904  *     -othererror e.g. -EIO
905  *
906  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
907  *      Verify that dev is acceptable into mddev.
908  *       The first time, mddev->raid_disks will be 0, and data from
909  *       dev should be merged in.  Subsequent calls check that dev
910  *       is new enough.  Return 0 or -EINVAL
911  *
912  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
913  *     Update the superblock for rdev with data in mddev
914  *     This does not write to disc.
915  *
916  */
917
918 struct super_type  {
919         char                *name;
920         struct module       *owner;
921         int                 (*load_super)(struct md_rdev *rdev,
922                                           struct md_rdev *refdev,
923                                           int minor_version);
924         int                 (*validate_super)(struct mddev *mddev,
925                                               struct md_rdev *rdev);
926         void                (*sync_super)(struct mddev *mddev,
927                                           struct md_rdev *rdev);
928         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
929                                                 sector_t num_sectors);
930         int                 (*allow_new_offset)(struct md_rdev *rdev,
931                                                 unsigned long long new_offset);
932 };
933
934 /*
935  * Check that the given mddev has no bitmap.
936  *
937  * This function is called from the run method of all personalities that do not
938  * support bitmaps. It prints an error message and returns non-zero if mddev
939  * has a bitmap. Otherwise, it returns 0.
940  *
941  */
942 int md_check_no_bitmap(struct mddev *mddev)
943 {
944         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
945                 return 0;
946         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
947                 mdname(mddev), mddev->pers->name);
948         return 1;
949 }
950 EXPORT_SYMBOL(md_check_no_bitmap);
951
952 /*
953  * load_super for 0.90.0
954  */
955 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
956 {
957         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
958         mdp_super_t *sb;
959         int ret;
960
961         /*
962          * Calculate the position of the superblock (512byte sectors),
963          * it's at the end of the disk.
964          *
965          * It also happens to be a multiple of 4Kb.
966          */
967         rdev->sb_start = calc_dev_sboffset(rdev);
968
969         ret = read_disk_sb(rdev, MD_SB_BYTES);
970         if (ret) return ret;
971
972         ret = -EINVAL;
973
974         bdevname(rdev->bdev, b);
975         sb = page_address(rdev->sb_page);
976
977         if (sb->md_magic != MD_SB_MAGIC) {
978                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
979                        b);
980                 goto abort;
981         }
982
983         if (sb->major_version != 0 ||
984             sb->minor_version < 90 ||
985             sb->minor_version > 91) {
986                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
987                         sb->major_version, sb->minor_version,
988                         b);
989                 goto abort;
990         }
991
992         if (sb->raid_disks <= 0)
993                 goto abort;
994
995         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
996                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
997                         b);
998                 goto abort;
999         }
1000
1001         rdev->preferred_minor = sb->md_minor;
1002         rdev->data_offset = 0;
1003         rdev->new_data_offset = 0;
1004         rdev->sb_size = MD_SB_BYTES;
1005         rdev->badblocks.shift = -1;
1006
1007         if (sb->level == LEVEL_MULTIPATH)
1008                 rdev->desc_nr = -1;
1009         else
1010                 rdev->desc_nr = sb->this_disk.number;
1011
1012         if (!refdev) {
1013                 ret = 1;
1014         } else {
1015                 __u64 ev1, ev2;
1016                 mdp_super_t *refsb = page_address(refdev->sb_page);
1017                 if (!uuid_equal(refsb, sb)) {
1018                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1019                                 b, bdevname(refdev->bdev,b2));
1020                         goto abort;
1021                 }
1022                 if (!sb_equal(refsb, sb)) {
1023                         printk(KERN_WARNING "md: %s has same UUID"
1024                                " but different superblock to %s\n",
1025                                b, bdevname(refdev->bdev, b2));
1026                         goto abort;
1027                 }
1028                 ev1 = md_event(sb);
1029                 ev2 = md_event(refsb);
1030                 if (ev1 > ev2)
1031                         ret = 1;
1032                 else
1033                         ret = 0;
1034         }
1035         rdev->sectors = rdev->sb_start;
1036         /* Limit to 4TB as metadata cannot record more than that.
1037          * (not needed for Linear and RAID0 as metadata doesn't
1038          * record this size)
1039          */
1040         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1041                 rdev->sectors = (2ULL << 32) - 2;
1042
1043         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1044                 /* "this cannot possibly happen" ... */
1045                 ret = -EINVAL;
1046
1047  abort:
1048         return ret;
1049 }
1050
1051 /*
1052  * validate_super for 0.90.0
1053  */
1054 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1055 {
1056         mdp_disk_t *desc;
1057         mdp_super_t *sb = page_address(rdev->sb_page);
1058         __u64 ev1 = md_event(sb);
1059
1060         rdev->raid_disk = -1;
1061         clear_bit(Faulty, &rdev->flags);
1062         clear_bit(In_sync, &rdev->flags);
1063         clear_bit(Bitmap_sync, &rdev->flags);
1064         clear_bit(WriteMostly, &rdev->flags);
1065
1066         if (mddev->raid_disks == 0) {
1067                 mddev->major_version = 0;
1068                 mddev->minor_version = sb->minor_version;
1069                 mddev->patch_version = sb->patch_version;
1070                 mddev->external = 0;
1071                 mddev->chunk_sectors = sb->chunk_size >> 9;
1072                 mddev->ctime = sb->ctime;
1073                 mddev->utime = sb->utime;
1074                 mddev->level = sb->level;
1075                 mddev->clevel[0] = 0;
1076                 mddev->layout = sb->layout;
1077                 mddev->raid_disks = sb->raid_disks;
1078                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1079                 mddev->events = ev1;
1080                 mddev->bitmap_info.offset = 0;
1081                 mddev->bitmap_info.space = 0;
1082                 /* bitmap can use 60 K after the 4K superblocks */
1083                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1084                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1085                 mddev->reshape_backwards = 0;
1086
1087                 if (mddev->minor_version >= 91) {
1088                         mddev->reshape_position = sb->reshape_position;
1089                         mddev->delta_disks = sb->delta_disks;
1090                         mddev->new_level = sb->new_level;
1091                         mddev->new_layout = sb->new_layout;
1092                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1093                         if (mddev->delta_disks < 0)
1094                                 mddev->reshape_backwards = 1;
1095                 } else {
1096                         mddev->reshape_position = MaxSector;
1097                         mddev->delta_disks = 0;
1098                         mddev->new_level = mddev->level;
1099                         mddev->new_layout = mddev->layout;
1100                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1101                 }
1102
1103                 if (sb->state & (1<<MD_SB_CLEAN))
1104                         mddev->recovery_cp = MaxSector;
1105                 else {
1106                         if (sb->events_hi == sb->cp_events_hi &&
1107                                 sb->events_lo == sb->cp_events_lo) {
1108                                 mddev->recovery_cp = sb->recovery_cp;
1109                         } else
1110                                 mddev->recovery_cp = 0;
1111                 }
1112
1113                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1114                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1115                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1116                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1117
1118                 mddev->max_disks = MD_SB_DISKS;
1119
1120                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1121                     mddev->bitmap_info.file == NULL) {
1122                         mddev->bitmap_info.offset =
1123                                 mddev->bitmap_info.default_offset;
1124                         mddev->bitmap_info.space =
1125                                 mddev->bitmap_info.default_space;
1126                 }
1127
1128         } else if (mddev->pers == NULL) {
1129                 /* Insist on good event counter while assembling, except
1130                  * for spares (which don't need an event count) */
1131                 ++ev1;
1132                 if (sb->disks[rdev->desc_nr].state & (
1133                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1134                         if (ev1 < mddev->events)
1135                                 return -EINVAL;
1136         } else if (mddev->bitmap) {
1137                 /* if adding to array with a bitmap, then we can accept an
1138                  * older device ... but not too old.
1139                  */
1140                 if (ev1 < mddev->bitmap->events_cleared)
1141                         return 0;
1142                 if (ev1 < mddev->events)
1143                         set_bit(Bitmap_sync, &rdev->flags);
1144         } else {
1145                 if (ev1 < mddev->events)
1146                         /* just a hot-add of a new device, leave raid_disk at -1 */
1147                         return 0;
1148         }
1149
1150         if (mddev->level != LEVEL_MULTIPATH) {
1151                 desc = sb->disks + rdev->desc_nr;
1152
1153                 if (desc->state & (1<<MD_DISK_FAULTY))
1154                         set_bit(Faulty, &rdev->flags);
1155                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1156                             desc->raid_disk < mddev->raid_disks */) {
1157                         set_bit(In_sync, &rdev->flags);
1158                         rdev->raid_disk = desc->raid_disk;
1159                         rdev->saved_raid_disk = desc->raid_disk;
1160                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1161                         /* active but not in sync implies recovery up to
1162                          * reshape position.  We don't know exactly where
1163                          * that is, so set to zero for now */
1164                         if (mddev->minor_version >= 91) {
1165                                 rdev->recovery_offset = 0;
1166                                 rdev->raid_disk = desc->raid_disk;
1167                         }
1168                 }
1169                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1170                         set_bit(WriteMostly, &rdev->flags);
1171         } else /* MULTIPATH are always insync */
1172                 set_bit(In_sync, &rdev->flags);
1173         return 0;
1174 }
1175
1176 /*
1177  * sync_super for 0.90.0
1178  */
1179 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1180 {
1181         mdp_super_t *sb;
1182         struct md_rdev *rdev2;
1183         int next_spare = mddev->raid_disks;
1184
1185         /* make rdev->sb match mddev data..
1186          *
1187          * 1/ zero out disks
1188          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1189          * 3/ any empty disks < next_spare become removed
1190          *
1191          * disks[0] gets initialised to REMOVED because
1192          * we cannot be sure from other fields if it has
1193          * been initialised or not.
1194          */
1195         int i;
1196         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1197
1198         rdev->sb_size = MD_SB_BYTES;
1199
1200         sb = page_address(rdev->sb_page);
1201
1202         memset(sb, 0, sizeof(*sb));
1203
1204         sb->md_magic = MD_SB_MAGIC;
1205         sb->major_version = mddev->major_version;
1206         sb->patch_version = mddev->patch_version;
1207         sb->gvalid_words  = 0; /* ignored */
1208         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1209         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1210         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1211         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1212
1213         sb->ctime = mddev->ctime;
1214         sb->level = mddev->level;
1215         sb->size = mddev->dev_sectors / 2;
1216         sb->raid_disks = mddev->raid_disks;
1217         sb->md_minor = mddev->md_minor;
1218         sb->not_persistent = 0;
1219         sb->utime = mddev->utime;
1220         sb->state = 0;
1221         sb->events_hi = (mddev->events>>32);
1222         sb->events_lo = (u32)mddev->events;
1223
1224         if (mddev->reshape_position == MaxSector)
1225                 sb->minor_version = 90;
1226         else {
1227                 sb->minor_version = 91;
1228                 sb->reshape_position = mddev->reshape_position;
1229                 sb->new_level = mddev->new_level;
1230                 sb->delta_disks = mddev->delta_disks;
1231                 sb->new_layout = mddev->new_layout;
1232                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1233         }
1234         mddev->minor_version = sb->minor_version;
1235         if (mddev->in_sync)
1236         {
1237                 sb->recovery_cp = mddev->recovery_cp;
1238                 sb->cp_events_hi = (mddev->events>>32);
1239                 sb->cp_events_lo = (u32)mddev->events;
1240                 if (mddev->recovery_cp == MaxSector)
1241                         sb->state = (1<< MD_SB_CLEAN);
1242         } else
1243                 sb->recovery_cp = 0;
1244
1245         sb->layout = mddev->layout;
1246         sb->chunk_size = mddev->chunk_sectors << 9;
1247
1248         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1249                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1250
1251         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1252         rdev_for_each(rdev2, mddev) {
1253                 mdp_disk_t *d;
1254                 int desc_nr;
1255                 int is_active = test_bit(In_sync, &rdev2->flags);
1256
1257                 if (rdev2->raid_disk >= 0 &&
1258                     sb->minor_version >= 91)
1259                         /* we have nowhere to store the recovery_offset,
1260                          * but if it is not below the reshape_position,
1261                          * we can piggy-back on that.
1262                          */
1263                         is_active = 1;
1264                 if (rdev2->raid_disk < 0 ||
1265                     test_bit(Faulty, &rdev2->flags))
1266                         is_active = 0;
1267                 if (is_active)
1268                         desc_nr = rdev2->raid_disk;
1269                 else
1270                         desc_nr = next_spare++;
1271                 rdev2->desc_nr = desc_nr;
1272                 d = &sb->disks[rdev2->desc_nr];
1273                 nr_disks++;
1274                 d->number = rdev2->desc_nr;
1275                 d->major = MAJOR(rdev2->bdev->bd_dev);
1276                 d->minor = MINOR(rdev2->bdev->bd_dev);
1277                 if (is_active)
1278                         d->raid_disk = rdev2->raid_disk;
1279                 else
1280                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1281                 if (test_bit(Faulty, &rdev2->flags))
1282                         d->state = (1<<MD_DISK_FAULTY);
1283                 else if (is_active) {
1284                         d->state = (1<<MD_DISK_ACTIVE);
1285                         if (test_bit(In_sync, &rdev2->flags))
1286                                 d->state |= (1<<MD_DISK_SYNC);
1287                         active++;
1288                         working++;
1289                 } else {
1290                         d->state = 0;
1291                         spare++;
1292                         working++;
1293                 }
1294                 if (test_bit(WriteMostly, &rdev2->flags))
1295                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1296         }
1297         /* now set the "removed" and "faulty" bits on any missing devices */
1298         for (i=0 ; i < mddev->raid_disks ; i++) {
1299                 mdp_disk_t *d = &sb->disks[i];
1300                 if (d->state == 0 && d->number == 0) {
1301                         d->number = i;
1302                         d->raid_disk = i;
1303                         d->state = (1<<MD_DISK_REMOVED);
1304                         d->state |= (1<<MD_DISK_FAULTY);
1305                         failed++;
1306                 }
1307         }
1308         sb->nr_disks = nr_disks;
1309         sb->active_disks = active;
1310         sb->working_disks = working;
1311         sb->failed_disks = failed;
1312         sb->spare_disks = spare;
1313
1314         sb->this_disk = sb->disks[rdev->desc_nr];
1315         sb->sb_csum = calc_sb_csum(sb);
1316 }
1317
1318 /*
1319  * rdev_size_change for 0.90.0
1320  */
1321 static unsigned long long
1322 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1323 {
1324         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1325                 return 0; /* component must fit device */
1326         if (rdev->mddev->bitmap_info.offset)
1327                 return 0; /* can't move bitmap */
1328         rdev->sb_start = calc_dev_sboffset(rdev);
1329         if (!num_sectors || num_sectors > rdev->sb_start)
1330                 num_sectors = rdev->sb_start;
1331         /* Limit to 4TB as metadata cannot record more than that.
1332          * 4TB == 2^32 KB, or 2*2^32 sectors.
1333          */
1334         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1335                 num_sectors = (2ULL << 32) - 2;
1336         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1337                        rdev->sb_page);
1338         md_super_wait(rdev->mddev);
1339         return num_sectors;
1340 }
1341
1342 static int
1343 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1344 {
1345         /* non-zero offset changes not possible with v0.90 */
1346         return new_offset == 0;
1347 }
1348
1349 /*
1350  * version 1 superblock
1351  */
1352
1353 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1354 {
1355         __le32 disk_csum;
1356         u32 csum;
1357         unsigned long long newcsum;
1358         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1359         __le32 *isuper = (__le32*)sb;
1360
1361         disk_csum = sb->sb_csum;
1362         sb->sb_csum = 0;
1363         newcsum = 0;
1364         for (; size >= 4; size -= 4)
1365                 newcsum += le32_to_cpu(*isuper++);
1366
1367         if (size == 2)
1368                 newcsum += le16_to_cpu(*(__le16*) isuper);
1369
1370         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1371         sb->sb_csum = disk_csum;
1372         return cpu_to_le32(csum);
1373 }
1374
1375 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1376                             int acknowledged);
1377 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1378 {
1379         struct mdp_superblock_1 *sb;
1380         int ret;
1381         sector_t sb_start;
1382         sector_t sectors;
1383         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1384         int bmask;
1385
1386         /*
1387          * Calculate the position of the superblock in 512byte sectors.
1388          * It is always aligned to a 4K boundary and
1389          * depeding on minor_version, it can be:
1390          * 0: At least 8K, but less than 12K, from end of device
1391          * 1: At start of device
1392          * 2: 4K from start of device.
1393          */
1394         switch(minor_version) {
1395         case 0:
1396                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1397                 sb_start -= 8*2;
1398                 sb_start &= ~(sector_t)(4*2-1);
1399                 break;
1400         case 1:
1401                 sb_start = 0;
1402                 break;
1403         case 2:
1404                 sb_start = 8;
1405                 break;
1406         default:
1407                 return -EINVAL;
1408         }
1409         rdev->sb_start = sb_start;
1410
1411         /* superblock is rarely larger than 1K, but it can be larger,
1412          * and it is safe to read 4k, so we do that
1413          */
1414         ret = read_disk_sb(rdev, 4096);
1415         if (ret) return ret;
1416
1417         sb = page_address(rdev->sb_page);
1418
1419         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1420             sb->major_version != cpu_to_le32(1) ||
1421             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1422             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1423             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1424                 return -EINVAL;
1425
1426         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1427                 printk("md: invalid superblock checksum on %s\n",
1428                         bdevname(rdev->bdev,b));
1429                 return -EINVAL;
1430         }
1431         if (le64_to_cpu(sb->data_size) < 10) {
1432                 printk("md: data_size too small on %s\n",
1433                        bdevname(rdev->bdev,b));
1434                 return -EINVAL;
1435         }
1436         if (sb->pad0 ||
1437             sb->pad3[0] ||
1438             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1439                 /* Some padding is non-zero, might be a new feature */
1440                 return -EINVAL;
1441
1442         rdev->preferred_minor = 0xffff;
1443         rdev->data_offset = le64_to_cpu(sb->data_offset);
1444         rdev->new_data_offset = rdev->data_offset;
1445         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1446             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1447                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1448         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1449
1450         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1451         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1452         if (rdev->sb_size & bmask)
1453                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1454
1455         if (minor_version
1456             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1457                 return -EINVAL;
1458         if (minor_version
1459             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1460                 return -EINVAL;
1461
1462         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1463                 rdev->desc_nr = -1;
1464         else
1465                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1466
1467         if (!rdev->bb_page) {
1468                 rdev->bb_page = alloc_page(GFP_KERNEL);
1469                 if (!rdev->bb_page)
1470                         return -ENOMEM;
1471         }
1472         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1473             rdev->badblocks.count == 0) {
1474                 /* need to load the bad block list.
1475                  * Currently we limit it to one page.
1476                  */
1477                 s32 offset;
1478                 sector_t bb_sector;
1479                 u64 *bbp;
1480                 int i;
1481                 int sectors = le16_to_cpu(sb->bblog_size);
1482                 if (sectors > (PAGE_SIZE / 512))
1483                         return -EINVAL;
1484                 offset = le32_to_cpu(sb->bblog_offset);
1485                 if (offset == 0)
1486                         return -EINVAL;
1487                 bb_sector = (long long)offset;
1488                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1489                                   rdev->bb_page, READ, true))
1490                         return -EIO;
1491                 bbp = (u64 *)page_address(rdev->bb_page);
1492                 rdev->badblocks.shift = sb->bblog_shift;
1493                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1494                         u64 bb = le64_to_cpu(*bbp);
1495                         int count = bb & (0x3ff);
1496                         u64 sector = bb >> 10;
1497                         sector <<= sb->bblog_shift;
1498                         count <<= sb->bblog_shift;
1499                         if (bb + 1 == 0)
1500                                 break;
1501                         if (md_set_badblocks(&rdev->badblocks,
1502                                              sector, count, 1) == 0)
1503                                 return -EINVAL;
1504                 }
1505         } else if (sb->bblog_offset != 0)
1506                 rdev->badblocks.shift = 0;
1507
1508         if (!refdev) {
1509                 ret = 1;
1510         } else {
1511                 __u64 ev1, ev2;
1512                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1513
1514                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1515                     sb->level != refsb->level ||
1516                     sb->layout != refsb->layout ||
1517                     sb->chunksize != refsb->chunksize) {
1518                         printk(KERN_WARNING "md: %s has strangely different"
1519                                 " superblock to %s\n",
1520                                 bdevname(rdev->bdev,b),
1521                                 bdevname(refdev->bdev,b2));
1522                         return -EINVAL;
1523                 }
1524                 ev1 = le64_to_cpu(sb->events);
1525                 ev2 = le64_to_cpu(refsb->events);
1526
1527                 if (ev1 > ev2)
1528                         ret = 1;
1529                 else
1530                         ret = 0;
1531         }
1532         if (minor_version) {
1533                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1534                 sectors -= rdev->data_offset;
1535         } else
1536                 sectors = rdev->sb_start;
1537         if (sectors < le64_to_cpu(sb->data_size))
1538                 return -EINVAL;
1539         rdev->sectors = le64_to_cpu(sb->data_size);
1540         return ret;
1541 }
1542
1543 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1544 {
1545         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1546         __u64 ev1 = le64_to_cpu(sb->events);
1547
1548         rdev->raid_disk = -1;
1549         clear_bit(Faulty, &rdev->flags);
1550         clear_bit(In_sync, &rdev->flags);
1551         clear_bit(Bitmap_sync, &rdev->flags);
1552         clear_bit(WriteMostly, &rdev->flags);
1553
1554         if (mddev->raid_disks == 0) {
1555                 mddev->major_version = 1;
1556                 mddev->patch_version = 0;
1557                 mddev->external = 0;
1558                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1559                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1560                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1561                 mddev->level = le32_to_cpu(sb->level);
1562                 mddev->clevel[0] = 0;
1563                 mddev->layout = le32_to_cpu(sb->layout);
1564                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1565                 mddev->dev_sectors = le64_to_cpu(sb->size);
1566                 mddev->events = ev1;
1567                 mddev->bitmap_info.offset = 0;
1568                 mddev->bitmap_info.space = 0;
1569                 /* Default location for bitmap is 1K after superblock
1570                  * using 3K - total of 4K
1571                  */
1572                 mddev->bitmap_info.default_offset = 1024 >> 9;
1573                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1574                 mddev->reshape_backwards = 0;
1575
1576                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1577                 memcpy(mddev->uuid, sb->set_uuid, 16);
1578
1579                 mddev->max_disks =  (4096-256)/2;
1580
1581                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1582                     mddev->bitmap_info.file == NULL) {
1583                         mddev->bitmap_info.offset =
1584                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1585                         /* Metadata doesn't record how much space is available.
1586                          * For 1.0, we assume we can use up to the superblock
1587                          * if before, else to 4K beyond superblock.
1588                          * For others, assume no change is possible.
1589                          */
1590                         if (mddev->minor_version > 0)
1591                                 mddev->bitmap_info.space = 0;
1592                         else if (mddev->bitmap_info.offset > 0)
1593                                 mddev->bitmap_info.space =
1594                                         8 - mddev->bitmap_info.offset;
1595                         else
1596                                 mddev->bitmap_info.space =
1597                                         -mddev->bitmap_info.offset;
1598                 }
1599
1600                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1601                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1602                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1603                         mddev->new_level = le32_to_cpu(sb->new_level);
1604                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1605                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1606                         if (mddev->delta_disks < 0 ||
1607                             (mddev->delta_disks == 0 &&
1608                              (le32_to_cpu(sb->feature_map)
1609                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1610                                 mddev->reshape_backwards = 1;
1611                 } else {
1612                         mddev->reshape_position = MaxSector;
1613                         mddev->delta_disks = 0;
1614                         mddev->new_level = mddev->level;
1615                         mddev->new_layout = mddev->layout;
1616                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1617                 }
1618
1619         } else if (mddev->pers == NULL) {
1620                 /* Insist of good event counter while assembling, except for
1621                  * spares (which don't need an event count) */
1622                 ++ev1;
1623                 if (rdev->desc_nr >= 0 &&
1624                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1625                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1626                         if (ev1 < mddev->events)
1627                                 return -EINVAL;
1628         } else if (mddev->bitmap) {
1629                 /* If adding to array with a bitmap, then we can accept an
1630                  * older device, but not too old.
1631                  */
1632                 if (ev1 < mddev->bitmap->events_cleared)
1633                         return 0;
1634                 if (ev1 < mddev->events)
1635                         set_bit(Bitmap_sync, &rdev->flags);
1636         } else {
1637                 if (ev1 < mddev->events)
1638                         /* just a hot-add of a new device, leave raid_disk at -1 */
1639                         return 0;
1640         }
1641         if (mddev->level != LEVEL_MULTIPATH) {
1642                 int role;
1643                 if (rdev->desc_nr < 0 ||
1644                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1645                         role = 0xffff;
1646                         rdev->desc_nr = -1;
1647                 } else
1648                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1649                 switch(role) {
1650                 case 0xffff: /* spare */
1651                         break;
1652                 case 0xfffe: /* faulty */
1653                         set_bit(Faulty, &rdev->flags);
1654                         break;
1655                 default:
1656                         rdev->saved_raid_disk = role;
1657                         if ((le32_to_cpu(sb->feature_map) &
1658                              MD_FEATURE_RECOVERY_OFFSET)) {
1659                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1660                                 if (!(le32_to_cpu(sb->feature_map) &
1661                                       MD_FEATURE_RECOVERY_BITMAP))
1662                                         rdev->saved_raid_disk = -1;
1663                         } else
1664                                 set_bit(In_sync, &rdev->flags);
1665                         rdev->raid_disk = role;
1666                         break;
1667                 }
1668                 if (sb->devflags & WriteMostly1)
1669                         set_bit(WriteMostly, &rdev->flags);
1670                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1671                         set_bit(Replacement, &rdev->flags);
1672         } else /* MULTIPATH are always insync */
1673                 set_bit(In_sync, &rdev->flags);
1674
1675         return 0;
1676 }
1677
1678 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1679 {
1680         struct mdp_superblock_1 *sb;
1681         struct md_rdev *rdev2;
1682         int max_dev, i;
1683         /* make rdev->sb match mddev and rdev data. */
1684
1685         sb = page_address(rdev->sb_page);
1686
1687         sb->feature_map = 0;
1688         sb->pad0 = 0;
1689         sb->recovery_offset = cpu_to_le64(0);
1690         memset(sb->pad3, 0, sizeof(sb->pad3));
1691
1692         sb->utime = cpu_to_le64((__u64)mddev->utime);
1693         sb->events = cpu_to_le64(mddev->events);
1694         if (mddev->in_sync)
1695                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1696         else
1697                 sb->resync_offset = cpu_to_le64(0);
1698
1699         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1700
1701         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1702         sb->size = cpu_to_le64(mddev->dev_sectors);
1703         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1704         sb->level = cpu_to_le32(mddev->level);
1705         sb->layout = cpu_to_le32(mddev->layout);
1706
1707         if (test_bit(WriteMostly, &rdev->flags))
1708                 sb->devflags |= WriteMostly1;
1709         else
1710                 sb->devflags &= ~WriteMostly1;
1711         sb->data_offset = cpu_to_le64(rdev->data_offset);
1712         sb->data_size = cpu_to_le64(rdev->sectors);
1713
1714         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1715                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1716                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1717         }
1718
1719         if (rdev->raid_disk >= 0 &&
1720             !test_bit(In_sync, &rdev->flags)) {
1721                 sb->feature_map |=
1722                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1723                 sb->recovery_offset =
1724                         cpu_to_le64(rdev->recovery_offset);
1725                 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1726                         sb->feature_map |=
1727                                 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1728         }
1729         if (test_bit(Replacement, &rdev->flags))
1730                 sb->feature_map |=
1731                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1732
1733         if (mddev->reshape_position != MaxSector) {
1734                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1735                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1736                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1737                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1738                 sb->new_level = cpu_to_le32(mddev->new_level);
1739                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1740                 if (mddev->delta_disks == 0 &&
1741                     mddev->reshape_backwards)
1742                         sb->feature_map
1743                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1744                 if (rdev->new_data_offset != rdev->data_offset) {
1745                         sb->feature_map
1746                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1747                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1748                                                              - rdev->data_offset));
1749                 }
1750         }
1751
1752         if (rdev->badblocks.count == 0)
1753                 /* Nothing to do for bad blocks*/ ;
1754         else if (sb->bblog_offset == 0)
1755                 /* Cannot record bad blocks on this device */
1756                 md_error(mddev, rdev);
1757         else {
1758                 struct badblocks *bb = &rdev->badblocks;
1759                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1760                 u64 *p = bb->page;
1761                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1762                 if (bb->changed) {
1763                         unsigned seq;
1764
1765 retry:
1766                         seq = read_seqbegin(&bb->lock);
1767
1768                         memset(bbp, 0xff, PAGE_SIZE);
1769
1770                         for (i = 0 ; i < bb->count ; i++) {
1771                                 u64 internal_bb = p[i];
1772                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1773                                                 | BB_LEN(internal_bb));
1774                                 bbp[i] = cpu_to_le64(store_bb);
1775                         }
1776                         bb->changed = 0;
1777                         if (read_seqretry(&bb->lock, seq))
1778                                 goto retry;
1779
1780                         bb->sector = (rdev->sb_start +
1781                                       (int)le32_to_cpu(sb->bblog_offset));
1782                         bb->size = le16_to_cpu(sb->bblog_size);
1783                 }
1784         }
1785
1786         max_dev = 0;
1787         rdev_for_each(rdev2, mddev)
1788                 if (rdev2->desc_nr+1 > max_dev)
1789                         max_dev = rdev2->desc_nr+1;
1790
1791         if (max_dev > le32_to_cpu(sb->max_dev)) {
1792                 int bmask;
1793                 sb->max_dev = cpu_to_le32(max_dev);
1794                 rdev->sb_size = max_dev * 2 + 256;
1795                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1796                 if (rdev->sb_size & bmask)
1797                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1798         } else
1799                 max_dev = le32_to_cpu(sb->max_dev);
1800
1801         for (i=0; i<max_dev;i++)
1802                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1803
1804         rdev_for_each(rdev2, mddev) {
1805                 i = rdev2->desc_nr;
1806                 if (test_bit(Faulty, &rdev2->flags))
1807                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1808                 else if (test_bit(In_sync, &rdev2->flags))
1809                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1810                 else if (rdev2->raid_disk >= 0)
1811                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1812                 else
1813                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1814         }
1815
1816         sb->sb_csum = calc_sb_1_csum(sb);
1817 }
1818
1819 static unsigned long long
1820 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1821 {
1822         struct mdp_superblock_1 *sb;
1823         sector_t max_sectors;
1824         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1825                 return 0; /* component must fit device */
1826         if (rdev->data_offset != rdev->new_data_offset)
1827                 return 0; /* too confusing */
1828         if (rdev->sb_start < rdev->data_offset) {
1829                 /* minor versions 1 and 2; superblock before data */
1830                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1831                 max_sectors -= rdev->data_offset;
1832                 if (!num_sectors || num_sectors > max_sectors)
1833                         num_sectors = max_sectors;
1834         } else if (rdev->mddev->bitmap_info.offset) {
1835                 /* minor version 0 with bitmap we can't move */
1836                 return 0;
1837         } else {
1838                 /* minor version 0; superblock after data */
1839                 sector_t sb_start;
1840                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1841                 sb_start &= ~(sector_t)(4*2 - 1);
1842                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1843                 if (!num_sectors || num_sectors > max_sectors)
1844                         num_sectors = max_sectors;
1845                 rdev->sb_start = sb_start;
1846         }
1847         sb = page_address(rdev->sb_page);
1848         sb->data_size = cpu_to_le64(num_sectors);
1849         sb->super_offset = rdev->sb_start;
1850         sb->sb_csum = calc_sb_1_csum(sb);
1851         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1852                        rdev->sb_page);
1853         md_super_wait(rdev->mddev);
1854         return num_sectors;
1855
1856 }
1857
1858 static int
1859 super_1_allow_new_offset(struct md_rdev *rdev,
1860                          unsigned long long new_offset)
1861 {
1862         /* All necessary checks on new >= old have been done */
1863         struct bitmap *bitmap;
1864         if (new_offset >= rdev->data_offset)
1865                 return 1;
1866
1867         /* with 1.0 metadata, there is no metadata to tread on
1868          * so we can always move back */
1869         if (rdev->mddev->minor_version == 0)
1870                 return 1;
1871
1872         /* otherwise we must be sure not to step on
1873          * any metadata, so stay:
1874          * 36K beyond start of superblock
1875          * beyond end of badblocks
1876          * beyond write-intent bitmap
1877          */
1878         if (rdev->sb_start + (32+4)*2 > new_offset)
1879                 return 0;
1880         bitmap = rdev->mddev->bitmap;
1881         if (bitmap && !rdev->mddev->bitmap_info.file &&
1882             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1883             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1884                 return 0;
1885         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1886                 return 0;
1887
1888         return 1;
1889 }
1890
1891 static struct super_type super_types[] = {
1892         [0] = {
1893                 .name   = "0.90.0",
1894                 .owner  = THIS_MODULE,
1895                 .load_super         = super_90_load,
1896                 .validate_super     = super_90_validate,
1897                 .sync_super         = super_90_sync,
1898                 .rdev_size_change   = super_90_rdev_size_change,
1899                 .allow_new_offset   = super_90_allow_new_offset,
1900         },
1901         [1] = {
1902                 .name   = "md-1",
1903                 .owner  = THIS_MODULE,
1904                 .load_super         = super_1_load,
1905                 .validate_super     = super_1_validate,
1906                 .sync_super         = super_1_sync,
1907                 .rdev_size_change   = super_1_rdev_size_change,
1908                 .allow_new_offset   = super_1_allow_new_offset,
1909         },
1910 };
1911
1912 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1913 {
1914         if (mddev->sync_super) {
1915                 mddev->sync_super(mddev, rdev);
1916                 return;
1917         }
1918
1919         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1920
1921         super_types[mddev->major_version].sync_super(mddev, rdev);
1922 }
1923
1924 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1925 {
1926         struct md_rdev *rdev, *rdev2;
1927
1928         rcu_read_lock();
1929         rdev_for_each_rcu(rdev, mddev1)
1930                 rdev_for_each_rcu(rdev2, mddev2)
1931                         if (rdev->bdev->bd_contains ==
1932                             rdev2->bdev->bd_contains) {
1933                                 rcu_read_unlock();
1934                                 return 1;
1935                         }
1936         rcu_read_unlock();
1937         return 0;
1938 }
1939
1940 static LIST_HEAD(pending_raid_disks);
1941
1942 /*
1943  * Try to register data integrity profile for an mddev
1944  *
1945  * This is called when an array is started and after a disk has been kicked
1946  * from the array. It only succeeds if all working and active component devices
1947  * are integrity capable with matching profiles.
1948  */
1949 int md_integrity_register(struct mddev *mddev)
1950 {
1951         struct md_rdev *rdev, *reference = NULL;
1952
1953         if (list_empty(&mddev->disks))
1954                 return 0; /* nothing to do */
1955         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1956                 return 0; /* shouldn't register, or already is */
1957         rdev_for_each(rdev, mddev) {
1958                 /* skip spares and non-functional disks */
1959                 if (test_bit(Faulty, &rdev->flags))
1960                         continue;
1961                 if (rdev->raid_disk < 0)
1962                         continue;
1963                 if (!reference) {
1964                         /* Use the first rdev as the reference */
1965                         reference = rdev;
1966                         continue;
1967                 }
1968                 /* does this rdev's profile match the reference profile? */
1969                 if (blk_integrity_compare(reference->bdev->bd_disk,
1970                                 rdev->bdev->bd_disk) < 0)
1971                         return -EINVAL;
1972         }
1973         if (!reference || !bdev_get_integrity(reference->bdev))
1974                 return 0;
1975         /*
1976          * All component devices are integrity capable and have matching
1977          * profiles, register the common profile for the md device.
1978          */
1979         if (blk_integrity_register(mddev->gendisk,
1980                         bdev_get_integrity(reference->bdev)) != 0) {
1981                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1982                         mdname(mddev));
1983                 return -EINVAL;
1984         }
1985         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1986         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1987                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1988                        mdname(mddev));
1989                 return -EINVAL;
1990         }
1991         return 0;
1992 }
1993 EXPORT_SYMBOL(md_integrity_register);
1994
1995 /* Disable data integrity if non-capable/non-matching disk is being added */
1996 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1997 {
1998         struct blk_integrity *bi_rdev;
1999         struct blk_integrity *bi_mddev;
2000
2001         if (!mddev->gendisk)
2002                 return;
2003
2004         bi_rdev = bdev_get_integrity(rdev->bdev);
2005         bi_mddev = blk_get_integrity(mddev->gendisk);
2006
2007         if (!bi_mddev) /* nothing to do */
2008                 return;
2009         if (rdev->raid_disk < 0) /* skip spares */
2010                 return;
2011         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2012                                              rdev->bdev->bd_disk) >= 0)
2013                 return;
2014         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2015         blk_integrity_unregister(mddev->gendisk);
2016 }
2017 EXPORT_SYMBOL(md_integrity_add_rdev);
2018
2019 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2020 {
2021         char b[BDEVNAME_SIZE];
2022         struct kobject *ko;
2023         char *s;
2024         int err;
2025
2026         /* prevent duplicates */
2027         if (find_rdev(mddev, rdev->bdev->bd_dev))
2028                 return -EEXIST;
2029
2030         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2031         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2032                         rdev->sectors < mddev->dev_sectors)) {
2033                 if (mddev->pers) {
2034                         /* Cannot change size, so fail
2035                          * If mddev->level <= 0, then we don't care
2036                          * about aligning sizes (e.g. linear)
2037                          */
2038                         if (mddev->level > 0)
2039                                 return -ENOSPC;
2040                 } else
2041                         mddev->dev_sectors = rdev->sectors;
2042         }
2043
2044         /* Verify rdev->desc_nr is unique.
2045          * If it is -1, assign a free number, else
2046          * check number is not in use
2047          */
2048         rcu_read_lock();
2049         if (rdev->desc_nr < 0) {
2050                 int choice = 0;
2051                 if (mddev->pers)
2052                         choice = mddev->raid_disks;
2053                 while (md_find_rdev_nr_rcu(mddev, choice))
2054                         choice++;
2055                 rdev->desc_nr = choice;
2056         } else {
2057                 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2058                         rcu_read_unlock();
2059                         return -EBUSY;
2060                 }
2061         }
2062         rcu_read_unlock();
2063         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2064                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2065                        mdname(mddev), mddev->max_disks);
2066                 return -EBUSY;
2067         }
2068         bdevname(rdev->bdev,b);
2069         while ( (s=strchr(b, '/')) != NULL)
2070                 *s = '!';
2071
2072         rdev->mddev = mddev;
2073         printk(KERN_INFO "md: bind<%s>\n", b);
2074
2075         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2076                 goto fail;
2077
2078         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2079         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2080                 /* failure here is OK */;
2081         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2082
2083         list_add_rcu(&rdev->same_set, &mddev->disks);
2084         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2085
2086         /* May as well allow recovery to be retried once */
2087         mddev->recovery_disabled++;
2088
2089         return 0;
2090
2091  fail:
2092         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2093                b, mdname(mddev));
2094         return err;
2095 }
2096
2097 static void md_delayed_delete(struct work_struct *ws)
2098 {
2099         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2100         kobject_del(&rdev->kobj);
2101         kobject_put(&rdev->kobj);
2102 }
2103
2104 static void unbind_rdev_from_array(struct md_rdev *rdev)
2105 {
2106         char b[BDEVNAME_SIZE];
2107
2108         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2109         list_del_rcu(&rdev->same_set);
2110         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2111         rdev->mddev = NULL;
2112         sysfs_remove_link(&rdev->kobj, "block");
2113         sysfs_put(rdev->sysfs_state);
2114         rdev->sysfs_state = NULL;
2115         rdev->badblocks.count = 0;
2116         /* We need to delay this, otherwise we can deadlock when
2117          * writing to 'remove' to "dev/state".  We also need
2118          * to delay it due to rcu usage.
2119          */
2120         synchronize_rcu();
2121         INIT_WORK(&rdev->del_work, md_delayed_delete);
2122         kobject_get(&rdev->kobj);
2123         queue_work(md_misc_wq, &rdev->del_work);
2124 }
2125
2126 /*
2127  * prevent the device from being mounted, repartitioned or
2128  * otherwise reused by a RAID array (or any other kernel
2129  * subsystem), by bd_claiming the device.
2130  */
2131 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2132 {
2133         int err = 0;
2134         struct block_device *bdev;
2135         char b[BDEVNAME_SIZE];
2136
2137         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2138                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2139         if (IS_ERR(bdev)) {
2140                 printk(KERN_ERR "md: could not open %s.\n",
2141                         __bdevname(dev, b));
2142                 return PTR_ERR(bdev);
2143         }
2144         rdev->bdev = bdev;
2145         return err;
2146 }
2147
2148 static void unlock_rdev(struct md_rdev *rdev)
2149 {
2150         struct block_device *bdev = rdev->bdev;
2151         rdev->bdev = NULL;
2152         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2153 }
2154
2155 void md_autodetect_dev(dev_t dev);
2156
2157 static void export_rdev(struct md_rdev *rdev)
2158 {
2159         char b[BDEVNAME_SIZE];
2160
2161         printk(KERN_INFO "md: export_rdev(%s)\n",
2162                 bdevname(rdev->bdev,b));
2163         md_rdev_clear(rdev);
2164 #ifndef MODULE
2165         if (test_bit(AutoDetected, &rdev->flags))
2166                 md_autodetect_dev(rdev->bdev->bd_dev);
2167 #endif
2168         unlock_rdev(rdev);
2169         kobject_put(&rdev->kobj);
2170 }
2171
2172 void md_kick_rdev_from_array(struct md_rdev *rdev)
2173 {
2174         unbind_rdev_from_array(rdev);
2175         export_rdev(rdev);
2176 }
2177 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2178
2179 static void export_array(struct mddev *mddev)
2180 {
2181         struct md_rdev *rdev;
2182
2183         while (!list_empty(&mddev->disks)) {
2184                 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2185                                         same_set);
2186                 md_kick_rdev_from_array(rdev);
2187         }
2188         mddev->raid_disks = 0;
2189         mddev->major_version = 0;
2190 }
2191
2192 static void sync_sbs(struct mddev *mddev, int nospares)
2193 {
2194         /* Update each superblock (in-memory image), but
2195          * if we are allowed to, skip spares which already
2196          * have the right event counter, or have one earlier
2197          * (which would mean they aren't being marked as dirty
2198          * with the rest of the array)
2199          */
2200         struct md_rdev *rdev;
2201         rdev_for_each(rdev, mddev) {
2202                 if (rdev->sb_events == mddev->events ||
2203                     (nospares &&
2204                      rdev->raid_disk < 0 &&
2205                      rdev->sb_events+1 == mddev->events)) {
2206                         /* Don't update this superblock */
2207                         rdev->sb_loaded = 2;
2208                 } else {
2209                         sync_super(mddev, rdev);
2210                         rdev->sb_loaded = 1;
2211                 }
2212         }
2213 }
2214
2215 void md_update_sb(struct mddev *mddev, int force_change)
2216 {
2217         struct md_rdev *rdev;
2218         int sync_req;
2219         int nospares = 0;
2220         int any_badblocks_changed = 0;
2221
2222         if (mddev->ro) {
2223                 if (force_change)
2224                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2225                 return;
2226         }
2227 repeat:
2228         /* First make sure individual recovery_offsets are correct */
2229         rdev_for_each(rdev, mddev) {
2230                 if (rdev->raid_disk >= 0 &&
2231                     mddev->delta_disks >= 0 &&
2232                     !test_bit(In_sync, &rdev->flags) &&
2233                     mddev->curr_resync_completed > rdev->recovery_offset)
2234                                 rdev->recovery_offset = mddev->curr_resync_completed;
2235
2236         }
2237         if (!mddev->persistent) {
2238                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2239                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2240                 if (!mddev->external) {
2241                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2242                         rdev_for_each(rdev, mddev) {
2243                                 if (rdev->badblocks.changed) {
2244                                         rdev->badblocks.changed = 0;
2245                                         md_ack_all_badblocks(&rdev->badblocks);
2246                                         md_error(mddev, rdev);
2247                                 }
2248                                 clear_bit(Blocked, &rdev->flags);
2249                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2250                                 wake_up(&rdev->blocked_wait);
2251                         }
2252                 }
2253                 wake_up(&mddev->sb_wait);
2254                 return;
2255         }
2256
2257         spin_lock(&mddev->lock);
2258
2259         mddev->utime = get_seconds();
2260
2261         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2262                 force_change = 1;
2263         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2264                 /* just a clean<-> dirty transition, possibly leave spares alone,
2265                  * though if events isn't the right even/odd, we will have to do
2266                  * spares after all
2267                  */
2268                 nospares = 1;
2269         if (force_change)
2270                 nospares = 0;
2271         if (mddev->degraded)
2272                 /* If the array is degraded, then skipping spares is both
2273                  * dangerous and fairly pointless.
2274                  * Dangerous because a device that was removed from the array
2275                  * might have a event_count that still looks up-to-date,
2276                  * so it can be re-added without a resync.
2277                  * Pointless because if there are any spares to skip,
2278                  * then a recovery will happen and soon that array won't
2279                  * be degraded any more and the spare can go back to sleep then.
2280                  */
2281                 nospares = 0;
2282
2283         sync_req = mddev->in_sync;
2284
2285         /* If this is just a dirty<->clean transition, and the array is clean
2286          * and 'events' is odd, we can roll back to the previous clean state */
2287         if (nospares
2288             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2289             && mddev->can_decrease_events
2290             && mddev->events != 1) {
2291                 mddev->events--;
2292                 mddev->can_decrease_events = 0;
2293         } else {
2294                 /* otherwise we have to go forward and ... */
2295                 mddev->events ++;
2296                 mddev->can_decrease_events = nospares;
2297         }
2298
2299         /*
2300          * This 64-bit counter should never wrap.
2301          * Either we are in around ~1 trillion A.C., assuming
2302          * 1 reboot per second, or we have a bug...
2303          */
2304         WARN_ON(mddev->events == 0);
2305
2306         rdev_for_each(rdev, mddev) {
2307                 if (rdev->badblocks.changed)
2308                         any_badblocks_changed++;
2309                 if (test_bit(Faulty, &rdev->flags))
2310                         set_bit(FaultRecorded, &rdev->flags);
2311         }
2312
2313         sync_sbs(mddev, nospares);
2314         spin_unlock(&mddev->lock);
2315
2316         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2317                  mdname(mddev), mddev->in_sync);
2318
2319         bitmap_update_sb(mddev->bitmap);
2320         rdev_for_each(rdev, mddev) {
2321                 char b[BDEVNAME_SIZE];
2322
2323                 if (rdev->sb_loaded != 1)
2324                         continue; /* no noise on spare devices */
2325
2326                 if (!test_bit(Faulty, &rdev->flags)) {
2327                         md_super_write(mddev,rdev,
2328                                        rdev->sb_start, rdev->sb_size,
2329                                        rdev->sb_page);
2330                         pr_debug("md: (write) %s's sb offset: %llu\n",
2331                                  bdevname(rdev->bdev, b),
2332                                  (unsigned long long)rdev->sb_start);
2333                         rdev->sb_events = mddev->events;
2334                         if (rdev->badblocks.size) {
2335                                 md_super_write(mddev, rdev,
2336                                                rdev->badblocks.sector,
2337                                                rdev->badblocks.size << 9,
2338                                                rdev->bb_page);
2339                                 rdev->badblocks.size = 0;
2340                         }
2341
2342                 } else
2343                         pr_debug("md: %s (skipping faulty)\n",
2344                                  bdevname(rdev->bdev, b));
2345
2346                 if (mddev->level == LEVEL_MULTIPATH)
2347                         /* only need to write one superblock... */
2348                         break;
2349         }
2350         md_super_wait(mddev);
2351         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2352
2353         spin_lock(&mddev->lock);
2354         if (mddev->in_sync != sync_req ||
2355             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2356                 /* have to write it out again */
2357                 spin_unlock(&mddev->lock);
2358                 goto repeat;
2359         }
2360         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2361         spin_unlock(&mddev->lock);
2362         wake_up(&mddev->sb_wait);
2363         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2364                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2365
2366         rdev_for_each(rdev, mddev) {
2367                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2368                         clear_bit(Blocked, &rdev->flags);
2369
2370                 if (any_badblocks_changed)
2371                         md_ack_all_badblocks(&rdev->badblocks);
2372                 clear_bit(BlockedBadBlocks, &rdev->flags);
2373                 wake_up(&rdev->blocked_wait);
2374         }
2375 }
2376 EXPORT_SYMBOL(md_update_sb);
2377
2378 static int add_bound_rdev(struct md_rdev *rdev)
2379 {
2380         struct mddev *mddev = rdev->mddev;
2381         int err = 0;
2382
2383         if (!mddev->pers->hot_remove_disk) {
2384                 /* If there is hot_add_disk but no hot_remove_disk
2385                  * then added disks for geometry changes,
2386                  * and should be added immediately.
2387                  */
2388                 super_types[mddev->major_version].
2389                         validate_super(mddev, rdev);
2390                 err = mddev->pers->hot_add_disk(mddev, rdev);
2391                 if (err) {
2392                         unbind_rdev_from_array(rdev);
2393                         export_rdev(rdev);
2394                         return err;
2395                 }
2396         }
2397         sysfs_notify_dirent_safe(rdev->sysfs_state);
2398
2399         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2400         if (mddev->degraded)
2401                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2402         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2403         md_new_event(mddev);
2404         md_wakeup_thread(mddev->thread);
2405         return 0;
2406 }
2407
2408 /* words written to sysfs files may, or may not, be \n terminated.
2409  * We want to accept with case. For this we use cmd_match.
2410  */
2411 static int cmd_match(const char *cmd, const char *str)
2412 {
2413         /* See if cmd, written into a sysfs file, matches
2414          * str.  They must either be the same, or cmd can
2415          * have a trailing newline
2416          */
2417         while (*cmd && *str && *cmd == *str) {
2418                 cmd++;
2419                 str++;
2420         }
2421         if (*cmd == '\n')
2422                 cmd++;
2423         if (*str || *cmd)
2424                 return 0;
2425         return 1;
2426 }
2427
2428 struct rdev_sysfs_entry {
2429         struct attribute attr;
2430         ssize_t (*show)(struct md_rdev *, char *);
2431         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2432 };
2433
2434 static ssize_t
2435 state_show(struct md_rdev *rdev, char *page)
2436 {
2437         char *sep = "";
2438         size_t len = 0;
2439         unsigned long flags = ACCESS_ONCE(rdev->flags);
2440
2441         if (test_bit(Faulty, &flags) ||
2442             rdev->badblocks.unacked_exist) {
2443                 len+= sprintf(page+len, "%sfaulty",sep);
2444                 sep = ",";
2445         }
2446         if (test_bit(In_sync, &flags)) {
2447                 len += sprintf(page+len, "%sin_sync",sep);
2448                 sep = ",";
2449         }
2450         if (test_bit(WriteMostly, &flags)) {
2451                 len += sprintf(page+len, "%swrite_mostly",sep);
2452                 sep = ",";
2453         }
2454         if (test_bit(Blocked, &flags) ||
2455             (rdev->badblocks.unacked_exist
2456              && !test_bit(Faulty, &flags))) {
2457                 len += sprintf(page+len, "%sblocked", sep);
2458                 sep = ",";
2459         }
2460         if (!test_bit(Faulty, &flags) &&
2461             !test_bit(In_sync, &flags)) {
2462                 len += sprintf(page+len, "%sspare", sep);
2463                 sep = ",";
2464         }
2465         if (test_bit(WriteErrorSeen, &flags)) {
2466                 len += sprintf(page+len, "%swrite_error", sep);
2467                 sep = ",";
2468         }
2469         if (test_bit(WantReplacement, &flags)) {
2470                 len += sprintf(page+len, "%swant_replacement", sep);
2471                 sep = ",";
2472         }
2473         if (test_bit(Replacement, &flags)) {
2474                 len += sprintf(page+len, "%sreplacement", sep);
2475                 sep = ",";
2476         }
2477
2478         return len+sprintf(page+len, "\n");
2479 }
2480
2481 static ssize_t
2482 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2483 {
2484         /* can write
2485          *  faulty  - simulates an error
2486          *  remove  - disconnects the device
2487          *  writemostly - sets write_mostly
2488          *  -writemostly - clears write_mostly
2489          *  blocked - sets the Blocked flags
2490          *  -blocked - clears the Blocked and possibly simulates an error
2491          *  insync - sets Insync providing device isn't active
2492          *  -insync - clear Insync for a device with a slot assigned,
2493          *            so that it gets rebuilt based on bitmap
2494          *  write_error - sets WriteErrorSeen
2495          *  -write_error - clears WriteErrorSeen
2496          */
2497         int err = -EINVAL;
2498         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2499                 md_error(rdev->mddev, rdev);
2500                 if (test_bit(Faulty, &rdev->flags))
2501                         err = 0;
2502                 else
2503                         err = -EBUSY;
2504         } else if (cmd_match(buf, "remove")) {
2505                 if (rdev->raid_disk >= 0)
2506                         err = -EBUSY;
2507                 else {
2508                         struct mddev *mddev = rdev->mddev;
2509                         if (mddev_is_clustered(mddev))
2510                                 md_cluster_ops->remove_disk(mddev, rdev);
2511                         md_kick_rdev_from_array(rdev);
2512                         if (mddev_is_clustered(mddev))
2513                                 md_cluster_ops->metadata_update_start(mddev);
2514                         if (mddev->pers)
2515                                 md_update_sb(mddev, 1);
2516                         md_new_event(mddev);
2517                         if (mddev_is_clustered(mddev))
2518                                 md_cluster_ops->metadata_update_finish(mddev);
2519                         err = 0;
2520                 }
2521         } else if (cmd_match(buf, "writemostly")) {
2522                 set_bit(WriteMostly, &rdev->flags);
2523                 err = 0;
2524         } else if (cmd_match(buf, "-writemostly")) {
2525                 clear_bit(WriteMostly, &rdev->flags);
2526                 err = 0;
2527         } else if (cmd_match(buf, "blocked")) {
2528                 set_bit(Blocked, &rdev->flags);
2529                 err = 0;
2530         } else if (cmd_match(buf, "-blocked")) {
2531                 if (!test_bit(Faulty, &rdev->flags) &&
2532                     rdev->badblocks.unacked_exist) {
2533                         /* metadata handler doesn't understand badblocks,
2534                          * so we need to fail the device
2535                          */
2536                         md_error(rdev->mddev, rdev);
2537                 }
2538                 clear_bit(Blocked, &rdev->flags);
2539                 clear_bit(BlockedBadBlocks, &rdev->flags);
2540                 wake_up(&rdev->blocked_wait);
2541                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2542                 md_wakeup_thread(rdev->mddev->thread);
2543
2544                 err = 0;
2545         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2546                 set_bit(In_sync, &rdev->flags);
2547                 err = 0;
2548         } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2549                 if (rdev->mddev->pers == NULL) {
2550                         clear_bit(In_sync, &rdev->flags);
2551                         rdev->saved_raid_disk = rdev->raid_disk;
2552                         rdev->raid_disk = -1;
2553                         err = 0;
2554                 }
2555         } else if (cmd_match(buf, "write_error")) {
2556                 set_bit(WriteErrorSeen, &rdev->flags);
2557                 err = 0;
2558         } else if (cmd_match(buf, "-write_error")) {
2559                 clear_bit(WriteErrorSeen, &rdev->flags);
2560                 err = 0;
2561         } else if (cmd_match(buf, "want_replacement")) {
2562                 /* Any non-spare device that is not a replacement can
2563                  * become want_replacement at any time, but we then need to
2564                  * check if recovery is needed.
2565                  */
2566                 if (rdev->raid_disk >= 0 &&
2567                     !test_bit(Replacement, &rdev->flags))
2568                         set_bit(WantReplacement, &rdev->flags);
2569                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2570                 md_wakeup_thread(rdev->mddev->thread);
2571                 err = 0;
2572         } else if (cmd_match(buf, "-want_replacement")) {
2573                 /* Clearing 'want_replacement' is always allowed.
2574                  * Once replacements starts it is too late though.
2575                  */
2576                 err = 0;
2577                 clear_bit(WantReplacement, &rdev->flags);
2578         } else if (cmd_match(buf, "replacement")) {
2579                 /* Can only set a device as a replacement when array has not
2580                  * yet been started.  Once running, replacement is automatic
2581                  * from spares, or by assigning 'slot'.
2582                  */
2583                 if (rdev->mddev->pers)
2584                         err = -EBUSY;
2585                 else {
2586                         set_bit(Replacement, &rdev->flags);
2587                         err = 0;
2588                 }
2589         } else if (cmd_match(buf, "-replacement")) {
2590                 /* Similarly, can only clear Replacement before start */
2591                 if (rdev->mddev->pers)
2592                         err = -EBUSY;
2593                 else {
2594                         clear_bit(Replacement, &rdev->flags);
2595                         err = 0;
2596                 }
2597         } else if (cmd_match(buf, "re-add")) {
2598                 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2599                         /* clear_bit is performed _after_ all the devices
2600                          * have their local Faulty bit cleared. If any writes
2601                          * happen in the meantime in the local node, they
2602                          * will land in the local bitmap, which will be synced
2603                          * by this node eventually
2604                          */
2605                         if (!mddev_is_clustered(rdev->mddev) ||
2606                             (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2607                                 clear_bit(Faulty, &rdev->flags);
2608                                 err = add_bound_rdev(rdev);
2609                         }
2610                 } else
2611                         err = -EBUSY;
2612         }
2613         if (!err)
2614                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2615         return err ? err : len;
2616 }
2617 static struct rdev_sysfs_entry rdev_state =
2618 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2619
2620 static ssize_t
2621 errors_show(struct md_rdev *rdev, char *page)
2622 {
2623         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2624 }
2625
2626 static ssize_t
2627 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2628 {
2629         char *e;
2630         unsigned long n = simple_strtoul(buf, &e, 10);
2631         if (*buf && (*e == 0 || *e == '\n')) {
2632                 atomic_set(&rdev->corrected_errors, n);
2633                 return len;
2634         }
2635         return -EINVAL;
2636 }
2637 static struct rdev_sysfs_entry rdev_errors =
2638 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2639
2640 static ssize_t
2641 slot_show(struct md_rdev *rdev, char *page)
2642 {
2643         if (rdev->raid_disk < 0)
2644                 return sprintf(page, "none\n");
2645         else
2646                 return sprintf(page, "%d\n", rdev->raid_disk);
2647 }
2648
2649 static ssize_t
2650 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2651 {
2652         char *e;
2653         int err;
2654         int slot = simple_strtoul(buf, &e, 10);
2655         if (strncmp(buf, "none", 4)==0)
2656                 slot = -1;
2657         else if (e==buf || (*e && *e!= '\n'))
2658                 return -EINVAL;
2659         if (rdev->mddev->pers && slot == -1) {
2660                 /* Setting 'slot' on an active array requires also
2661                  * updating the 'rd%d' link, and communicating
2662                  * with the personality with ->hot_*_disk.
2663                  * For now we only support removing
2664                  * failed/spare devices.  This normally happens automatically,
2665                  * but not when the metadata is externally managed.
2666                  */
2667                 if (rdev->raid_disk == -1)
2668                         return -EEXIST;
2669                 /* personality does all needed checks */
2670                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2671                         return -EINVAL;
2672                 clear_bit(Blocked, &rdev->flags);
2673                 remove_and_add_spares(rdev->mddev, rdev);
2674                 if (rdev->raid_disk >= 0)
2675                         return -EBUSY;
2676                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2677                 md_wakeup_thread(rdev->mddev->thread);
2678         } else if (rdev->mddev->pers) {
2679                 /* Activating a spare .. or possibly reactivating
2680                  * if we ever get bitmaps working here.
2681                  */
2682
2683                 if (rdev->raid_disk != -1)
2684                         return -EBUSY;
2685
2686                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2687                         return -EBUSY;
2688
2689                 if (rdev->mddev->pers->hot_add_disk == NULL)
2690                         return -EINVAL;
2691
2692                 if (slot >= rdev->mddev->raid_disks &&
2693                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2694                         return -ENOSPC;
2695
2696                 rdev->raid_disk = slot;
2697                 if (test_bit(In_sync, &rdev->flags))
2698                         rdev->saved_raid_disk = slot;
2699                 else
2700                         rdev->saved_raid_disk = -1;
2701                 clear_bit(In_sync, &rdev->flags);
2702                 clear_bit(Bitmap_sync, &rdev->flags);
2703                 err = rdev->mddev->pers->
2704                         hot_add_disk(rdev->mddev, rdev);
2705                 if (err) {
2706                         rdev->raid_disk = -1;
2707                         return err;
2708                 } else
2709                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2710                 if (sysfs_link_rdev(rdev->mddev, rdev))
2711                         /* failure here is OK */;
2712                 /* don't wakeup anyone, leave that to userspace. */
2713         } else {
2714                 if (slot >= rdev->mddev->raid_disks &&
2715                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2716                         return -ENOSPC;
2717                 rdev->raid_disk = slot;
2718                 /* assume it is working */
2719                 clear_bit(Faulty, &rdev->flags);
2720                 clear_bit(WriteMostly, &rdev->flags);
2721                 set_bit(In_sync, &rdev->flags);
2722                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2723         }
2724         return len;
2725 }
2726
2727 static struct rdev_sysfs_entry rdev_slot =
2728 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2729
2730 static ssize_t
2731 offset_show(struct md_rdev *rdev, char *page)
2732 {
2733         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2734 }
2735
2736 static ssize_t
2737 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2738 {
2739         unsigned long long offset;
2740         if (kstrtoull(buf, 10, &offset) < 0)
2741                 return -EINVAL;
2742         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2743                 return -EBUSY;
2744         if (rdev->sectors && rdev->mddev->external)
2745                 /* Must set offset before size, so overlap checks
2746                  * can be sane */
2747                 return -EBUSY;
2748         rdev->data_offset = offset;
2749         rdev->new_data_offset = offset;
2750         return len;
2751 }
2752
2753 static struct rdev_sysfs_entry rdev_offset =
2754 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2755
2756 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2757 {
2758         return sprintf(page, "%llu\n",
2759                        (unsigned long long)rdev->new_data_offset);
2760 }
2761
2762 static ssize_t new_offset_store(struct md_rdev *rdev,
2763                                 const char *buf, size_t len)
2764 {
2765         unsigned long long new_offset;
2766         struct mddev *mddev = rdev->mddev;
2767
2768         if (kstrtoull(buf, 10, &new_offset) < 0)
2769                 return -EINVAL;
2770
2771         if (mddev->sync_thread ||
2772             test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2773                 return -EBUSY;
2774         if (new_offset == rdev->data_offset)
2775                 /* reset is always permitted */
2776                 ;
2777         else if (new_offset > rdev->data_offset) {
2778                 /* must not push array size beyond rdev_sectors */
2779                 if (new_offset - rdev->data_offset
2780                     + mddev->dev_sectors > rdev->sectors)
2781                                 return -E2BIG;
2782         }
2783         /* Metadata worries about other space details. */
2784
2785         /* decreasing the offset is inconsistent with a backwards
2786          * reshape.
2787          */
2788         if (new_offset < rdev->data_offset &&
2789             mddev->reshape_backwards)
2790                 return -EINVAL;
2791         /* Increasing offset is inconsistent with forwards
2792          * reshape.  reshape_direction should be set to
2793          * 'backwards' first.
2794          */
2795         if (new_offset > rdev->data_offset &&
2796             !mddev->reshape_backwards)
2797                 return -EINVAL;
2798
2799         if (mddev->pers && mddev->persistent &&
2800             !super_types[mddev->major_version]
2801             .allow_new_offset(rdev, new_offset))
2802                 return -E2BIG;
2803         rdev->new_data_offset = new_offset;
2804         if (new_offset > rdev->data_offset)
2805                 mddev->reshape_backwards = 1;
2806         else if (new_offset < rdev->data_offset)
2807                 mddev->reshape_backwards = 0;
2808
2809         return len;
2810 }
2811 static struct rdev_sysfs_entry rdev_new_offset =
2812 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2813
2814 static ssize_t
2815 rdev_size_show(struct md_rdev *rdev, char *page)
2816 {
2817         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2818 }
2819
2820 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2821 {
2822         /* check if two start/length pairs overlap */
2823         if (s1+l1 <= s2)
2824                 return 0;
2825         if (s2+l2 <= s1)
2826                 return 0;
2827         return 1;
2828 }
2829
2830 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2831 {
2832         unsigned long long blocks;
2833         sector_t new;
2834
2835         if (kstrtoull(buf, 10, &blocks) < 0)
2836                 return -EINVAL;
2837
2838         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2839                 return -EINVAL; /* sector conversion overflow */
2840
2841         new = blocks * 2;
2842         if (new != blocks * 2)
2843                 return -EINVAL; /* unsigned long long to sector_t overflow */
2844
2845         *sectors = new;
2846         return 0;
2847 }
2848
2849 static ssize_t
2850 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2851 {
2852         struct mddev *my_mddev = rdev->mddev;
2853         sector_t oldsectors = rdev->sectors;
2854         sector_t sectors;
2855
2856         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2857                 return -EINVAL;
2858         if (rdev->data_offset != rdev->new_data_offset)
2859                 return -EINVAL; /* too confusing */
2860         if (my_mddev->pers && rdev->raid_disk >= 0) {
2861                 if (my_mddev->persistent) {
2862                         sectors = super_types[my_mddev->major_version].
2863                                 rdev_size_change(rdev, sectors);
2864                         if (!sectors)
2865                                 return -EBUSY;
2866                 } else if (!sectors)
2867                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2868                                 rdev->data_offset;
2869                 if (!my_mddev->pers->resize)
2870                         /* Cannot change size for RAID0 or Linear etc */
2871                         return -EINVAL;
2872         }
2873         if (sectors < my_mddev->dev_sectors)
2874                 return -EINVAL; /* component must fit device */
2875
2876         rdev->sectors = sectors;
2877         if (sectors > oldsectors && my_mddev->external) {
2878                 /* Need to check that all other rdevs with the same
2879                  * ->bdev do not overlap.  'rcu' is sufficient to walk
2880                  * the rdev lists safely.
2881                  * This check does not provide a hard guarantee, it
2882                  * just helps avoid dangerous mistakes.
2883                  */
2884                 struct mddev *mddev;
2885                 int overlap = 0;
2886                 struct list_head *tmp;
2887
2888                 rcu_read_lock();
2889                 for_each_mddev(mddev, tmp) {
2890                         struct md_rdev *rdev2;
2891
2892                         rdev_for_each(rdev2, mddev)
2893                                 if (rdev->bdev == rdev2->bdev &&
2894                                     rdev != rdev2 &&
2895                                     overlaps(rdev->data_offset, rdev->sectors,
2896                                              rdev2->data_offset,
2897                                              rdev2->sectors)) {
2898                                         overlap = 1;
2899                                         break;
2900                                 }
2901                         if (overlap) {
2902                                 mddev_put(mddev);
2903                                 break;
2904                         }
2905                 }
2906                 rcu_read_unlock();
2907                 if (overlap) {
2908                         /* Someone else could have slipped in a size
2909                          * change here, but doing so is just silly.
2910                          * We put oldsectors back because we *know* it is
2911                          * safe, and trust userspace not to race with
2912                          * itself
2913                          */
2914                         rdev->sectors = oldsectors;
2915                         return -EBUSY;
2916                 }
2917         }
2918         return len;
2919 }
2920
2921 static struct rdev_sysfs_entry rdev_size =
2922 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2923
2924 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2925 {
2926         unsigned long long recovery_start = rdev->recovery_offset;
2927
2928         if (test_bit(In_sync, &rdev->flags) ||
2929             recovery_start == MaxSector)
2930                 return sprintf(page, "none\n");
2931
2932         return sprintf(page, "%llu\n", recovery_start);
2933 }
2934
2935 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2936 {
2937         unsigned long long recovery_start;
2938
2939         if (cmd_match(buf, "none"))
2940                 recovery_start = MaxSector;
2941         else if (kstrtoull(buf, 10, &recovery_start))
2942                 return -EINVAL;
2943
2944         if (rdev->mddev->pers &&
2945             rdev->raid_disk >= 0)
2946                 return -EBUSY;
2947
2948         rdev->recovery_offset = recovery_start;
2949         if (recovery_start == MaxSector)
2950                 set_bit(In_sync, &rdev->flags);
2951         else
2952                 clear_bit(In_sync, &rdev->flags);
2953         return len;
2954 }
2955
2956 static struct rdev_sysfs_entry rdev_recovery_start =
2957 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2958
2959 static ssize_t
2960 badblocks_show(struct badblocks *bb, char *page, int unack);
2961 static ssize_t
2962 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2963
2964 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2965 {
2966         return badblocks_show(&rdev->badblocks, page, 0);
2967 }
2968 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2969 {
2970         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2971         /* Maybe that ack was all we needed */
2972         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2973                 wake_up(&rdev->blocked_wait);
2974         return rv;
2975 }
2976 static struct rdev_sysfs_entry rdev_bad_blocks =
2977 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2978
2979 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2980 {
2981         return badblocks_show(&rdev->badblocks, page, 1);
2982 }
2983 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2984 {
2985         return badblocks_store(&rdev->badblocks, page, len, 1);
2986 }
2987 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2988 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2989
2990 static struct attribute *rdev_default_attrs[] = {
2991         &rdev_state.attr,
2992         &rdev_errors.attr,
2993         &rdev_slot.attr,
2994         &rdev_offset.attr,
2995         &rdev_new_offset.attr,
2996         &rdev_size.attr,
2997         &rdev_recovery_start.attr,
2998         &rdev_bad_blocks.attr,
2999         &rdev_unack_bad_blocks.attr,
3000         NULL,
3001 };
3002 static ssize_t
3003 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3004 {
3005         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3006         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3007
3008         if (!entry->show)
3009                 return -EIO;
3010         if (!rdev->mddev)
3011                 return -EBUSY;
3012         return entry->show(rdev, page);
3013 }
3014
3015 static ssize_t
3016 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3017               const char *page, size_t length)
3018 {
3019         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3020         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3021         ssize_t rv;
3022         struct mddev *mddev = rdev->mddev;
3023
3024         if (!entry->store)
3025                 return -EIO;
3026         if (!capable(CAP_SYS_ADMIN))
3027                 return -EACCES;
3028         rv = mddev ? mddev_lock(mddev): -EBUSY;
3029         if (!rv) {
3030                 if (rdev->mddev == NULL)
3031                         rv = -EBUSY;
3032                 else
3033                         rv = entry->store(rdev, page, length);
3034                 mddev_unlock(mddev);
3035         }
3036         return rv;
3037 }
3038
3039 static void rdev_free(struct kobject *ko)
3040 {
3041         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3042         kfree(rdev);
3043 }
3044 static const struct sysfs_ops rdev_sysfs_ops = {
3045         .show           = rdev_attr_show,
3046         .store          = rdev_attr_store,
3047 };
3048 static struct kobj_type rdev_ktype = {
3049         .release        = rdev_free,
3050         .sysfs_ops      = &rdev_sysfs_ops,
3051         .default_attrs  = rdev_default_attrs,
3052 };
3053
3054 int md_rdev_init(struct md_rdev *rdev)
3055 {
3056         rdev->desc_nr = -1;
3057         rdev->saved_raid_disk = -1;
3058         rdev->raid_disk = -1;
3059         rdev->flags = 0;
3060         rdev->data_offset = 0;
3061         rdev->new_data_offset = 0;
3062         rdev->sb_events = 0;
3063         rdev->last_read_error.tv_sec  = 0;
3064         rdev->last_read_error.tv_nsec = 0;
3065         rdev->sb_loaded = 0;
3066         rdev->bb_page = NULL;
3067         atomic_set(&rdev->nr_pending, 0);
3068         atomic_set(&rdev->read_errors, 0);
3069         atomic_set(&rdev->corrected_errors, 0);
3070
3071         INIT_LIST_HEAD(&rdev->same_set);
3072         init_waitqueue_head(&rdev->blocked_wait);
3073
3074         /* Add space to store bad block list.
3075          * This reserves the space even on arrays where it cannot
3076          * be used - I wonder if that matters
3077          */
3078         rdev->badblocks.count = 0;
3079         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3080         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3081         seqlock_init(&rdev->badblocks.lock);
3082         if (rdev->badblocks.page == NULL)
3083                 return -ENOMEM;
3084
3085         return 0;
3086 }
3087 EXPORT_SYMBOL_GPL(md_rdev_init);
3088 /*
3089  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3090  *
3091  * mark the device faulty if:
3092  *
3093  *   - the device is nonexistent (zero size)
3094  *   - the device has no valid superblock
3095  *
3096  * a faulty rdev _never_ has rdev->sb set.
3097  */
3098 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3099 {
3100         char b[BDEVNAME_SIZE];
3101         int err;
3102         struct md_rdev *rdev;
3103         sector_t size;
3104
3105         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3106         if (!rdev) {
3107                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3108                 return ERR_PTR(-ENOMEM);
3109         }
3110
3111         err = md_rdev_init(rdev);
3112         if (err)
3113                 goto abort_free;
3114         err = alloc_disk_sb(rdev);
3115         if (err)
3116                 goto abort_free;
3117
3118         err = lock_rdev(rdev, newdev, super_format == -2);
3119         if (err)
3120                 goto abort_free;
3121
3122         kobject_init(&rdev->kobj, &rdev_ktype);
3123
3124         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3125         if (!size) {
3126                 printk(KERN_WARNING
3127                         "md: %s has zero or unknown size, marking faulty!\n",
3128                         bdevname(rdev->bdev,b));
3129                 err = -EINVAL;
3130                 goto abort_free;
3131         }
3132
3133         if (super_format >= 0) {
3134                 err = super_types[super_format].
3135                         load_super(rdev, NULL, super_minor);
3136                 if (err == -EINVAL) {
3137                         printk(KERN_WARNING
3138                                 "md: %s does not have a valid v%d.%d "
3139                                "superblock, not importing!\n",
3140                                 bdevname(rdev->bdev,b),
3141                                super_format, super_minor);
3142                         goto abort_free;
3143                 }
3144                 if (err < 0) {
3145                         printk(KERN_WARNING
3146                                 "md: could not read %s's sb, not importing!\n",
3147                                 bdevname(rdev->bdev,b));
3148                         goto abort_free;
3149                 }
3150         }
3151
3152         return rdev;
3153
3154 abort_free:
3155         if (rdev->bdev)
3156                 unlock_rdev(rdev);
3157         md_rdev_clear(rdev);
3158         kfree(rdev);
3159         return ERR_PTR(err);
3160 }
3161
3162 /*
3163  * Check a full RAID array for plausibility
3164  */
3165
3166 static void analyze_sbs(struct mddev *mddev)
3167 {
3168         int i;
3169         struct md_rdev *rdev, *freshest, *tmp;
3170         char b[BDEVNAME_SIZE];
3171
3172         freshest = NULL;
3173         rdev_for_each_safe(rdev, tmp, mddev)
3174                 switch (super_types[mddev->major_version].
3175                         load_super(rdev, freshest, mddev->minor_version)) {
3176                 case 1:
3177                         freshest = rdev;
3178                         break;
3179                 case 0:
3180                         break;
3181                 default:
3182                         printk( KERN_ERR \
3183                                 "md: fatal superblock inconsistency in %s"
3184                                 " -- removing from array\n",
3185                                 bdevname(rdev->bdev,b));
3186                         md_kick_rdev_from_array(rdev);
3187                 }
3188
3189         super_types[mddev->major_version].
3190                 validate_super(mddev, freshest);
3191
3192         i = 0;
3193         rdev_for_each_safe(rdev, tmp, mddev) {
3194                 if (mddev->max_disks &&
3195                     (rdev->desc_nr >= mddev->max_disks ||
3196                      i > mddev->max_disks)) {
3197                         printk(KERN_WARNING
3198                                "md: %s: %s: only %d devices permitted\n",
3199                                mdname(mddev), bdevname(rdev->bdev, b),
3200                                mddev->max_disks);
3201                         md_kick_rdev_from_array(rdev);
3202                         continue;
3203                 }
3204                 if (rdev != freshest) {
3205                         if (super_types[mddev->major_version].
3206                             validate_super(mddev, rdev)) {
3207                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3208                                         " from array!\n",
3209                                         bdevname(rdev->bdev,b));
3210                                 md_kick_rdev_from_array(rdev);
3211                                 continue;
3212                         }
3213                         /* No device should have a Candidate flag
3214                          * when reading devices
3215                          */
3216                         if (test_bit(Candidate, &rdev->flags)) {
3217                                 pr_info("md: kicking Cluster Candidate %s from array!\n",
3218                                         bdevname(rdev->bdev, b));
3219                                 md_kick_rdev_from_array(rdev);
3220                         }
3221                 }
3222                 if (mddev->level == LEVEL_MULTIPATH) {
3223                         rdev->desc_nr = i++;
3224                         rdev->raid_disk = rdev->desc_nr;
3225                         set_bit(In_sync, &rdev->flags);
3226                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3227                         rdev->raid_disk = -1;
3228                         clear_bit(In_sync, &rdev->flags);
3229                 }
3230         }
3231 }
3232
3233 /* Read a fixed-point number.
3234  * Numbers in sysfs attributes should be in "standard" units where
3235  * possible, so time should be in seconds.
3236  * However we internally use a a much smaller unit such as
3237  * milliseconds or jiffies.
3238  * This function takes a decimal number with a possible fractional
3239  * component, and produces an integer which is the result of
3240  * multiplying that number by 10^'scale'.
3241  * all without any floating-point arithmetic.
3242  */
3243 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3244 {
3245         unsigned long result = 0;
3246         long decimals = -1;
3247         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3248                 if (*cp == '.')
3249                         decimals = 0;
3250                 else if (decimals < scale) {
3251                         unsigned int value;
3252                         value = *cp - '0';
3253                         result = result * 10 + value;
3254                         if (decimals >= 0)
3255                                 decimals++;
3256                 }
3257                 cp++;
3258         }
3259         if (*cp == '\n')
3260                 cp++;
3261         if (*cp)
3262                 return -EINVAL;
3263         if (decimals < 0)
3264                 decimals = 0;
3265         while (decimals < scale) {
3266                 result *= 10;
3267                 decimals ++;
3268         }
3269         *res = result;
3270         return 0;
3271 }
3272
3273 static void md_safemode_timeout(unsigned long data);
3274
3275 static ssize_t
3276 safe_delay_show(struct mddev *mddev, char *page)
3277 {
3278         int msec = (mddev->safemode_delay*1000)/HZ;
3279         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3280 }
3281 static ssize_t
3282 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3283 {
3284         unsigned long msec;
3285
3286         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3287                 return -EINVAL;
3288         if (msec == 0)
3289                 mddev->safemode_delay = 0;
3290         else {
3291                 unsigned long old_delay = mddev->safemode_delay;
3292                 unsigned long new_delay = (msec*HZ)/1000;
3293
3294                 if (new_delay == 0)
3295                         new_delay = 1;
3296                 mddev->safemode_delay = new_delay;
3297                 if (new_delay < old_delay || old_delay == 0)
3298                         mod_timer(&mddev->safemode_timer, jiffies+1);
3299         }
3300         return len;
3301 }
3302 static struct md_sysfs_entry md_safe_delay =
3303 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3304
3305 static ssize_t
3306 level_show(struct mddev *mddev, char *page)
3307 {
3308         struct md_personality *p;
3309         int ret;
3310         spin_lock(&mddev->lock);
3311         p = mddev->pers;
3312         if (p)
3313                 ret = sprintf(page, "%s\n", p->name);
3314         else if (mddev->clevel[0])
3315                 ret = sprintf(page, "%s\n", mddev->clevel);
3316         else if (mddev->level != LEVEL_NONE)
3317                 ret = sprintf(page, "%d\n", mddev->level);
3318         else
3319                 ret = 0;
3320         spin_unlock(&mddev->lock);
3321         return ret;
3322 }
3323
3324 static ssize_t
3325 level_store(struct mddev *mddev, const char *buf, size_t len)
3326 {
3327         char clevel[16];
3328         ssize_t rv;
3329         size_t slen = len;
3330         struct md_personality *pers, *oldpers;
3331         long level;
3332         void *priv, *oldpriv;
3333         struct md_rdev *rdev;
3334
3335         if (slen == 0 || slen >= sizeof(clevel))
3336                 return -EINVAL;
3337
3338         rv = mddev_lock(mddev);
3339         if (rv)
3340                 return rv;
3341
3342         if (mddev->pers == NULL) {
3343                 strncpy(mddev->clevel, buf, slen);
3344                 if (mddev->clevel[slen-1] == '\n')
3345                         slen--;
3346                 mddev->clevel[slen] = 0;
3347                 mddev->level = LEVEL_NONE;
3348                 rv = len;
3349                 goto out_unlock;
3350         }
3351         rv = -EROFS;
3352         if (mddev->ro)
3353                 goto out_unlock;
3354
3355         /* request to change the personality.  Need to ensure:
3356          *  - array is not engaged in resync/recovery/reshape
3357          *  - old personality can be suspended
3358          *  - new personality will access other array.
3359          */
3360
3361         rv = -EBUSY;
3362         if (mddev->sync_thread ||
3363             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3364             mddev->reshape_position != MaxSector ||
3365             mddev->sysfs_active)
3366                 goto out_unlock;
3367
3368         rv = -EINVAL;
3369         if (!mddev->pers->quiesce) {
3370                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3371                        mdname(mddev), mddev->pers->name);
3372                 goto out_unlock;
3373         }
3374
3375         /* Now find the new personality */
3376         strncpy(clevel, buf, slen);
3377         if (clevel[slen-1] == '\n')
3378                 slen--;
3379         clevel[slen] = 0;
3380         if (kstrtol(clevel, 10, &level))
3381                 level = LEVEL_NONE;
3382
3383         if (request_module("md-%s", clevel) != 0)
3384                 request_module("md-level-%s", clevel);
3385         spin_lock(&pers_lock);
3386         pers = find_pers(level, clevel);
3387         if (!pers || !try_module_get(pers->owner)) {
3388                 spin_unlock(&pers_lock);
3389                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3390                 rv = -EINVAL;
3391                 goto out_unlock;
3392         }
3393         spin_unlock(&pers_lock);
3394
3395         if (pers == mddev->pers) {
3396                 /* Nothing to do! */
3397                 module_put(pers->owner);
3398                 rv = len;
3399                 goto out_unlock;
3400         }
3401         if (!pers->takeover) {
3402                 module_put(pers->owner);
3403                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3404                        mdname(mddev), clevel);
3405                 rv = -EINVAL;
3406                 goto out_unlock;
3407         }
3408
3409         rdev_for_each(rdev, mddev)
3410                 rdev->new_raid_disk = rdev->raid_disk;
3411
3412         /* ->takeover must set new_* and/or delta_disks
3413          * if it succeeds, and may set them when it fails.
3414          */
3415         priv = pers->takeover(mddev);
3416         if (IS_ERR(priv)) {
3417                 mddev->new_level = mddev->level;
3418                 mddev->new_layout = mddev->layout;
3419                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3420                 mddev->raid_disks -= mddev->delta_disks;
3421                 mddev->delta_disks = 0;
3422                 mddev->reshape_backwards = 0;
3423                 module_put(pers->owner);
3424                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3425                        mdname(mddev), clevel);
3426                 rv = PTR_ERR(priv);
3427                 goto out_unlock;
3428         }
3429
3430         /* Looks like we have a winner */
3431         mddev_suspend(mddev);
3432         mddev_detach(mddev);
3433
3434         spin_lock(&mddev->lock);
3435         oldpers = mddev->pers;
3436         oldpriv = mddev->private;
3437         mddev->pers = pers;
3438         mddev->private = priv;
3439         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3440         mddev->level = mddev->new_level;
3441         mddev->layout = mddev->new_layout;
3442         mddev->chunk_sectors = mddev->new_chunk_sectors;
3443         mddev->delta_disks = 0;
3444         mddev->reshape_backwards = 0;
3445         mddev->degraded = 0;
3446         spin_unlock(&mddev->lock);
3447
3448         if (oldpers->sync_request == NULL &&
3449             mddev->external) {
3450                 /* We are converting from a no-redundancy array
3451                  * to a redundancy array and metadata is managed
3452                  * externally so we need to be sure that writes
3453                  * won't block due to a need to transition
3454                  *      clean->dirty
3455                  * until external management is started.
3456                  */
3457                 mddev->in_sync = 0;
3458                 mddev->safemode_delay = 0;
3459                 mddev->safemode = 0;
3460         }
3461
3462         oldpers->free(mddev, oldpriv);
3463
3464         if (oldpers->sync_request == NULL &&
3465             pers->sync_request != NULL) {
3466                 /* need to add the md_redundancy_group */
3467                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3468                         printk(KERN_WARNING
3469                                "md: cannot register extra attributes for %s\n",
3470                                mdname(mddev));
3471                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3472         }
3473         if (oldpers->sync_request != NULL &&
3474             pers->sync_request == NULL) {
3475                 /* need to remove the md_redundancy_group */
3476                 if (mddev->to_remove == NULL)
3477                         mddev->to_remove = &md_redundancy_group;
3478         }
3479
3480         rdev_for_each(rdev, mddev) {
3481                 if (rdev->raid_disk < 0)
3482                         continue;
3483                 if (rdev->new_raid_disk >= mddev->raid_disks)
3484                         rdev->new_raid_disk = -1;
3485                 if (rdev->new_raid_disk == rdev->raid_disk)
3486                         continue;
3487                 sysfs_unlink_rdev(mddev, rdev);
3488         }
3489         rdev_for_each(rdev, mddev) {
3490                 if (rdev->raid_disk < 0)
3491                         continue;
3492                 if (rdev->new_raid_disk == rdev->raid_disk)
3493                         continue;
3494                 rdev->raid_disk = rdev->new_raid_disk;
3495                 if (rdev->raid_disk < 0)
3496                         clear_bit(In_sync, &rdev->flags);
3497                 else {
3498                         if (sysfs_link_rdev(mddev, rdev))
3499                                 printk(KERN_WARNING "md: cannot register rd%d"
3500                                        " for %s after level change\n",
3501                                        rdev->raid_disk, mdname(mddev));
3502                 }
3503         }
3504
3505         if (pers->sync_request == NULL) {
3506                 /* this is now an array without redundancy, so
3507                  * it must always be in_sync
3508                  */
3509                 mddev->in_sync = 1;
3510                 del_timer_sync(&mddev->safemode_timer);
3511         }
3512         blk_set_stacking_limits(&mddev->queue->limits);
3513         pers->run(mddev);
3514         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3515         mddev_resume(mddev);
3516         if (!mddev->thread)
3517                 md_update_sb(mddev, 1);
3518         sysfs_notify(&mddev->kobj, NULL, "level");
3519         md_new_event(mddev);
3520         rv = len;
3521 out_unlock:
3522         mddev_unlock(mddev);
3523         return rv;
3524 }
3525
3526 static struct md_sysfs_entry md_level =
3527 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3528
3529 static ssize_t
3530 layout_show(struct mddev *mddev, char *page)
3531 {
3532         /* just a number, not meaningful for all levels */
3533         if (mddev->reshape_position != MaxSector &&
3534             mddev->layout != mddev->new_layout)
3535                 return sprintf(page, "%d (%d)\n",
3536                                mddev->new_layout, mddev->layout);
3537         return sprintf(page, "%d\n", mddev->layout);
3538 }
3539
3540 static ssize_t
3541 layout_store(struct mddev *mddev, const char *buf, size_t len)
3542 {
3543         char *e;
3544         unsigned long n = simple_strtoul(buf, &e, 10);
3545         int err;
3546
3547         if (!*buf || (*e && *e != '\n'))
3548                 return -EINVAL;
3549         err = mddev_lock(mddev);
3550         if (err)
3551                 return err;
3552
3553         if (mddev->pers) {
3554                 if (mddev->pers->check_reshape == NULL)
3555                         err = -EBUSY;
3556                 else if (mddev->ro)
3557                         err = -EROFS;
3558                 else {
3559                         mddev->new_layout = n;
3560                         err = mddev->pers->check_reshape(mddev);
3561                         if (err)
3562                                 mddev->new_layout = mddev->layout;
3563                 }
3564         } else {
3565                 mddev->new_layout = n;
3566                 if (mddev->reshape_position == MaxSector)
3567                         mddev->layout = n;
3568         }
3569         mddev_unlock(mddev);
3570         return err ?: len;
3571 }
3572 static struct md_sysfs_entry md_layout =
3573 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3574
3575 static ssize_t
3576 raid_disks_show(struct mddev *mddev, char *page)
3577 {
3578         if (mddev->raid_disks == 0)
3579                 return 0;
3580         if (mddev->reshape_position != MaxSector &&
3581             mddev->delta_disks != 0)
3582                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3583                                mddev->raid_disks - mddev->delta_disks);
3584         return sprintf(page, "%d\n", mddev->raid_disks);
3585 }
3586
3587 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3588
3589 static ssize_t
3590 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3591 {
3592         char *e;
3593         int err;
3594         unsigned long n = simple_strtoul(buf, &e, 10);
3595
3596         if (!*buf || (*e && *e != '\n'))
3597                 return -EINVAL;
3598
3599         err = mddev_lock(mddev);
3600         if (err)
3601                 return err;
3602         if (mddev->pers)
3603                 err = update_raid_disks(mddev, n);
3604         else if (mddev->reshape_position != MaxSector) {
3605                 struct md_rdev *rdev;
3606                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3607
3608                 err = -EINVAL;
3609                 rdev_for_each(rdev, mddev) {
3610                         if (olddisks < n &&
3611                             rdev->data_offset < rdev->new_data_offset)
3612                                 goto out_unlock;
3613                         if (olddisks > n &&
3614                             rdev->data_offset > rdev->new_data_offset)
3615                                 goto out_unlock;
3616                 }
3617                 err = 0;
3618                 mddev->delta_disks = n - olddisks;
3619                 mddev->raid_disks = n;
3620                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3621         } else
3622                 mddev->raid_disks = n;
3623 out_unlock:
3624         mddev_unlock(mddev);
3625         return err ? err : len;
3626 }
3627 static struct md_sysfs_entry md_raid_disks =
3628 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3629
3630 static ssize_t
3631 chunk_size_show(struct mddev *mddev, char *page)
3632 {
3633         if (mddev->reshape_position != MaxSector &&
3634             mddev->chunk_sectors != mddev->new_chunk_sectors)
3635                 return sprintf(page, "%d (%d)\n",
3636                                mddev->new_chunk_sectors << 9,
3637                                mddev->chunk_sectors << 9);
3638         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3639 }
3640
3641 static ssize_t
3642 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3643 {
3644         int err;
3645         char *e;
3646         unsigned long n = simple_strtoul(buf, &e, 10);
3647
3648         if (!*buf || (*e && *e != '\n'))
3649                 return -EINVAL;
3650
3651         err = mddev_lock(mddev);
3652         if (err)
3653                 return err;
3654         if (mddev->pers) {
3655                 if (mddev->pers->check_reshape == NULL)
3656                         err = -EBUSY;
3657                 else if (mddev->ro)
3658                         err = -EROFS;
3659                 else {
3660                         mddev->new_chunk_sectors = n >> 9;
3661                         err = mddev->pers->check_reshape(mddev);
3662                         if (err)
3663                                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3664                 }
3665         } else {
3666                 mddev->new_chunk_sectors = n >> 9;
3667                 if (mddev->reshape_position == MaxSector)
3668                         mddev->chunk_sectors = n >> 9;
3669         }
3670         mddev_unlock(mddev);
3671         return err ?: len;
3672 }
3673 static struct md_sysfs_entry md_chunk_size =
3674 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3675
3676 static ssize_t
3677 resync_start_show(struct mddev *mddev, char *page)
3678 {
3679         if (mddev->recovery_cp == MaxSector)
3680                 return sprintf(page, "none\n");
3681         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3682 }
3683
3684 static ssize_t
3685 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3686 {
3687         int err;
3688         char *e;
3689         unsigned long long n = simple_strtoull(buf, &e, 10);
3690
3691         err = mddev_lock(mddev);
3692         if (err)
3693                 return err;
3694         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3695                 err = -EBUSY;
3696         else if (cmd_match(buf, "none"))
3697                 n = MaxSector;
3698         else if (!*buf || (*e && *e != '\n'))
3699                 err = -EINVAL;
3700
3701         if (!err) {
3702                 mddev->recovery_cp = n;
3703                 if (mddev->pers)
3704                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3705         }
3706         mddev_unlock(mddev);
3707         return err ?: len;
3708 }
3709 static struct md_sysfs_entry md_resync_start =
3710 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3711
3712 /*
3713  * The array state can be:
3714  *
3715  * clear
3716  *     No devices, no size, no level
3717  *     Equivalent to STOP_ARRAY ioctl
3718  * inactive
3719  *     May have some settings, but array is not active
3720  *        all IO results in error
3721  *     When written, doesn't tear down array, but just stops it
3722  * suspended (not supported yet)
3723  *     All IO requests will block. The array can be reconfigured.
3724  *     Writing this, if accepted, will block until array is quiescent
3725  * readonly
3726  *     no resync can happen.  no superblocks get written.
3727  *     write requests fail
3728  * read-auto
3729  *     like readonly, but behaves like 'clean' on a write request.
3730  *
3731  * clean - no pending writes, but otherwise active.
3732  *     When written to inactive array, starts without resync
3733  *     If a write request arrives then
3734  *       if metadata is known, mark 'dirty' and switch to 'active'.
3735  *       if not known, block and switch to write-pending
3736  *     If written to an active array that has pending writes, then fails.
3737  * active
3738  *     fully active: IO and resync can be happening.
3739  *     When written to inactive array, starts with resync
3740  *
3741  * write-pending
3742  *     clean, but writes are blocked waiting for 'active' to be written.
3743  *
3744  * active-idle
3745  *     like active, but no writes have been seen for a while (100msec).
3746  *
3747  */
3748 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3749                    write_pending, active_idle, bad_word};
3750 static char *array_states[] = {
3751         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3752         "write-pending", "active-idle", NULL };
3753
3754 static int match_word(const char *word, char **list)
3755 {
3756         int n;
3757         for (n=0; list[n]; n++)
3758                 if (cmd_match(word, list[n]))
3759                         break;
3760         return n;
3761 }
3762
3763 static ssize_t
3764 array_state_show(struct mddev *mddev, char *page)
3765 {
3766         enum array_state st = inactive;
3767
3768         if (mddev->pers)
3769                 switch(mddev->ro) {
3770                 case 1:
3771                         st = readonly;
3772                         break;
3773                 case 2:
3774                         st = read_auto;
3775                         break;
3776                 case 0:
3777                         if (mddev->in_sync)
3778                                 st = clean;
3779                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3780                                 st = write_pending;
3781                         else if (mddev->safemode)
3782                                 st = active_idle;
3783                         else
3784                                 st = active;
3785                 }
3786         else {
3787                 if (list_empty(&mddev->disks) &&
3788                     mddev->raid_disks == 0 &&
3789                     mddev->dev_sectors == 0)
3790                         st = clear;
3791                 else
3792                         st = inactive;
3793         }
3794         return sprintf(page, "%s\n", array_states[st]);
3795 }
3796
3797 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3798 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3799 static int do_md_run(struct mddev *mddev);
3800 static int restart_array(struct mddev *mddev);
3801
3802 static ssize_t
3803 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3804 {
3805         int err;
3806         enum array_state st = match_word(buf, array_states);
3807
3808         if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3809                 /* don't take reconfig_mutex when toggling between
3810                  * clean and active
3811                  */
3812                 spin_lock(&mddev->lock);
3813                 if (st == active) {
3814                         restart_array(mddev);
3815                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3816                         wake_up(&mddev->sb_wait);
3817                         err = 0;
3818                 } else /* st == clean */ {
3819                         restart_array(mddev);
3820                         if (atomic_read(&mddev->writes_pending) == 0) {
3821                                 if (mddev->in_sync == 0) {
3822                                         mddev->in_sync = 1;
3823                                         if (mddev->safemode == 1)
3824                                                 mddev->safemode = 0;
3825                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3826                                 }
3827                                 err = 0;
3828                         } else
3829                                 err = -EBUSY;
3830                 }
3831                 spin_unlock(&mddev->lock);
3832                 return err;
3833         }
3834         err = mddev_lock(mddev);
3835         if (err)
3836                 return err;
3837         err = -EINVAL;
3838         switch(st) {
3839         case bad_word:
3840                 break;
3841         case clear:
3842                 /* stopping an active array */
3843                 err = do_md_stop(mddev, 0, NULL);
3844                 break;
3845         case inactive:
3846                 /* stopping an active array */
3847                 if (mddev->pers)
3848                         err = do_md_stop(mddev, 2, NULL);
3849                 else
3850                         err = 0; /* already inactive */
3851                 break;
3852         case suspended:
3853                 break; /* not supported yet */
3854         case readonly:
3855                 if (mddev->pers)
3856                         err = md_set_readonly(mddev, NULL);
3857                 else {
3858                         mddev->ro = 1;
3859                         set_disk_ro(mddev->gendisk, 1);
3860                         err = do_md_run(mddev);
3861                 }
3862                 break;
3863         case read_auto:
3864                 if (mddev->pers) {
3865                         if (mddev->ro == 0)
3866                                 err = md_set_readonly(mddev, NULL);
3867                         else if (mddev->ro == 1)
3868                                 err = restart_array(mddev);
3869                         if (err == 0) {
3870                                 mddev->ro = 2;
3871                                 set_disk_ro(mddev->gendisk, 0);
3872                         }
3873                 } else {
3874                         mddev->ro = 2;
3875                         err = do_md_run(mddev);
3876                 }
3877                 break;
3878         case clean:
3879                 if (mddev->pers) {
3880                         restart_array(mddev);
3881                         spin_lock(&mddev->lock);
3882                         if (atomic_read(&mddev->writes_pending) == 0) {
3883                                 if (mddev->in_sync == 0) {
3884                                         mddev->in_sync = 1;
3885                                         if (mddev->safemode == 1)
3886                                                 mddev->safemode = 0;
3887                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3888                                 }
3889                                 err = 0;
3890                         } else
3891                                 err = -EBUSY;
3892                         spin_unlock(&mddev->lock);
3893                 } else
3894                         err = -EINVAL;
3895                 break;
3896         case active:
3897                 if (mddev->pers) {
3898                         restart_array(mddev);
3899                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3900                         wake_up(&mddev->sb_wait);
3901                         err = 0;
3902                 } else {
3903                         mddev->ro = 0;
3904                         set_disk_ro(mddev->gendisk, 0);
3905                         err = do_md_run(mddev);
3906                 }
3907                 break;
3908         case write_pending:
3909         case active_idle:
3910                 /* these cannot be set */
3911                 break;
3912         }
3913
3914         if (!err) {
3915                 if (mddev->hold_active == UNTIL_IOCTL)
3916                         mddev->hold_active = 0;
3917                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3918         }
3919         mddev_unlock(mddev);
3920         return err ?: len;
3921 }
3922 static struct md_sysfs_entry md_array_state =
3923 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3924
3925 static ssize_t
3926 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3927         return sprintf(page, "%d\n",
3928                        atomic_read(&mddev->max_corr_read_errors));
3929 }
3930
3931 static ssize_t
3932 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3933 {
3934         char *e;
3935         unsigned long n = simple_strtoul(buf, &e, 10);
3936
3937         if (*buf && (*e == 0 || *e == '\n')) {
3938                 atomic_set(&mddev->max_corr_read_errors, n);
3939                 return len;
3940         }
3941         return -EINVAL;
3942 }
3943
3944 static struct md_sysfs_entry max_corr_read_errors =
3945 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3946         max_corrected_read_errors_store);
3947
3948 static ssize_t
3949 null_show(struct mddev *mddev, char *page)
3950 {
3951         return -EINVAL;
3952 }
3953
3954 static ssize_t
3955 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3956 {
3957         /* buf must be %d:%d\n? giving major and minor numbers */
3958         /* The new device is added to the array.
3959          * If the array has a persistent superblock, we read the
3960          * superblock to initialise info and check validity.
3961          * Otherwise, only checking done is that in bind_rdev_to_array,
3962          * which mainly checks size.
3963          */
3964         char *e;
3965         int major = simple_strtoul(buf, &e, 10);
3966         int minor;
3967         dev_t dev;
3968         struct md_rdev *rdev;
3969         int err;
3970
3971         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3972                 return -EINVAL;
3973         minor = simple_strtoul(e+1, &e, 10);
3974         if (*e && *e != '\n')
3975                 return -EINVAL;
3976         dev = MKDEV(major, minor);
3977         if (major != MAJOR(dev) ||
3978             minor != MINOR(dev))
3979                 return -EOVERFLOW;
3980
3981         flush_workqueue(md_misc_wq);
3982
3983         err = mddev_lock(mddev);
3984         if (err)
3985                 return err;
3986         if (mddev->persistent) {
3987                 rdev = md_import_device(dev, mddev->major_version,
3988                                         mddev->minor_version);
3989                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3990                         struct md_rdev *rdev0
3991                                 = list_entry(mddev->disks.next,
3992                                              struct md_rdev, same_set);
3993                         err = super_types[mddev->major_version]
3994                                 .load_super(rdev, rdev0, mddev->minor_version);
3995                         if (err < 0)
3996                                 goto out;
3997                 }
3998         } else if (mddev->external)
3999                 rdev = md_import_device(dev, -2, -1);
4000         else
4001                 rdev = md_import_device(dev, -1, -1);
4002
4003         if (IS_ERR(rdev))
4004                 return PTR_ERR(rdev);
4005         err = bind_rdev_to_array(rdev, mddev);
4006  out:
4007         if (err)
4008                 export_rdev(rdev);
4009         mddev_unlock(mddev);
4010         return err ? err : len;
4011 }
4012
4013 static struct md_sysfs_entry md_new_device =
4014 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4015
4016 static ssize_t
4017 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4018 {
4019         char *end;
4020         unsigned long chunk, end_chunk;
4021         int err;
4022
4023         err = mddev_lock(mddev);
4024         if (err)
4025                 return err;
4026         if (!mddev->bitmap)
4027                 goto out;
4028         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4029         while (*buf) {
4030                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4031                 if (buf == end) break;
4032                 if (*end == '-') { /* range */
4033                         buf = end + 1;
4034                         end_chunk = simple_strtoul(buf, &end, 0);
4035                         if (buf == end) break;
4036                 }
4037                 if (*end && !isspace(*end)) break;
4038                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4039                 buf = skip_spaces(end);
4040         }
4041         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4042 out:
4043         mddev_unlock(mddev);
4044         return len;
4045 }
4046
4047 static struct md_sysfs_entry md_bitmap =
4048 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4049
4050 static ssize_t
4051 size_show(struct mddev *mddev, char *page)
4052 {
4053         return sprintf(page, "%llu\n",
4054                 (unsigned long long)mddev->dev_sectors / 2);
4055 }
4056
4057 static int update_size(struct mddev *mddev, sector_t num_sectors);
4058
4059 static ssize_t
4060 size_store(struct mddev *mddev, const char *buf, size_t len)
4061 {
4062         /* If array is inactive, we can reduce the component size, but
4063          * not increase it (except from 0).
4064          * If array is active, we can try an on-line resize
4065          */
4066         sector_t sectors;
4067         int err = strict_blocks_to_sectors(buf, &sectors);
4068
4069         if (err < 0)
4070                 return err;
4071         err = mddev_lock(mddev);
4072         if (err)
4073                 return err;
4074         if (mddev->pers) {
4075                 if (mddev_is_clustered(mddev))
4076                         md_cluster_ops->metadata_update_start(mddev);
4077                 err = update_size(mddev, sectors);
4078                 md_update_sb(mddev, 1);
4079                 if (mddev_is_clustered(mddev))
4080                         md_cluster_ops->metadata_update_finish(mddev);
4081         } else {
4082                 if (mddev->dev_sectors == 0 ||
4083                     mddev->dev_sectors > sectors)
4084                         mddev->dev_sectors = sectors;
4085                 else
4086                         err = -ENOSPC;
4087         }
4088         mddev_unlock(mddev);
4089         return err ? err : len;
4090 }
4091
4092 static struct md_sysfs_entry md_size =
4093 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4094
4095 /* Metadata version.
4096  * This is one of
4097  *   'none' for arrays with no metadata (good luck...)
4098  *   'external' for arrays with externally managed metadata,
4099  * or N.M for internally known formats
4100  */
4101 static ssize_t
4102 metadata_show(struct mddev *mddev, char *page)
4103 {
4104         if (mddev->persistent)
4105                 return sprintf(page, "%d.%d\n",
4106                                mddev->major_version, mddev->minor_version);
4107         else if (mddev->external)
4108                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4109         else
4110                 return sprintf(page, "none\n");
4111 }
4112
4113 static ssize_t
4114 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4115 {
4116         int major, minor;
4117         char *e;
4118         int err;
4119         /* Changing the details of 'external' metadata is
4120          * always permitted.  Otherwise there must be
4121          * no devices attached to the array.
4122          */
4123
4124         err = mddev_lock(mddev);
4125         if (err)
4126                 return err;
4127         err = -EBUSY;
4128         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4129                 ;
4130         else if (!list_empty(&mddev->disks))
4131                 goto out_unlock;
4132
4133         err = 0;
4134         if (cmd_match(buf, "none")) {
4135                 mddev->persistent = 0;
4136                 mddev->external = 0;
4137                 mddev->major_version = 0;
4138                 mddev->minor_version = 90;
4139                 goto out_unlock;
4140         }
4141         if (strncmp(buf, "external:", 9) == 0) {
4142                 size_t namelen = len-9;
4143                 if (namelen >= sizeof(mddev->metadata_type))
4144                         namelen = sizeof(mddev->metadata_type)-1;
4145                 strncpy(mddev->metadata_type, buf+9, namelen);
4146                 mddev->metadata_type[namelen] = 0;
4147                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4148                         mddev->metadata_type[--namelen] = 0;
4149                 mddev->persistent = 0;
4150                 mddev->external = 1;
4151                 mddev->major_version = 0;
4152                 mddev->minor_version = 90;
4153                 goto out_unlock;
4154         }
4155         major = simple_strtoul(buf, &e, 10);
4156         err = -EINVAL;
4157         if (e==buf || *e != '.')
4158                 goto out_unlock;
4159         buf = e+1;
4160         minor = simple_strtoul(buf, &e, 10);
4161         if (e==buf || (*e && *e != '\n') )
4162                 goto out_unlock;
4163         err = -ENOENT;
4164         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4165                 goto out_unlock;
4166         mddev->major_version = major;
4167         mddev->minor_version = minor;
4168         mddev->persistent = 1;
4169         mddev->external = 0;
4170         err = 0;
4171 out_unlock:
4172         mddev_unlock(mddev);
4173         return err ?: len;
4174 }
4175
4176 static struct md_sysfs_entry md_metadata =
4177 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4178
4179 static ssize_t
4180 action_show(struct mddev *mddev, char *page)
4181 {
4182         char *type = "idle";
4183         unsigned long recovery = mddev->recovery;
4184         if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4185                 type = "frozen";
4186         else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4187             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4188                 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4189                         type = "reshape";
4190                 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4191                         if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4192                                 type = "resync";
4193                         else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4194                                 type = "check";
4195                         else
4196                                 type = "repair";
4197                 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4198                         type = "recover";
4199         }
4200         return sprintf(page, "%s\n", type);
4201 }
4202
4203 static ssize_t
4204 action_store(struct mddev *mddev, const char *page, size_t len)
4205 {
4206         if (!mddev->pers || !mddev->pers->sync_request)
4207                 return -EINVAL;
4208
4209         if (cmd_match(page, "frozen"))
4210                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4211         else
4212                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4213
4214         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4215                 flush_workqueue(md_misc_wq);
4216                 if (mddev->sync_thread) {
4217                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4218                         if (mddev_lock(mddev) == 0) {
4219                                 md_reap_sync_thread(mddev);
4220                                 mddev_unlock(mddev);
4221                         }
4222                 }
4223         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4224                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4225                 return -EBUSY;
4226         else if (cmd_match(page, "resync"))
4227                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4228         else if (cmd_match(page, "recover")) {
4229                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4230                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4231         } else if (cmd_match(page, "reshape")) {
4232                 int err;
4233                 if (mddev->pers->start_reshape == NULL)
4234                         return -EINVAL;
4235                 err = mddev_lock(mddev);
4236                 if (!err) {
4237                         err = mddev->pers->start_reshape(mddev);
4238                         mddev_unlock(mddev);
4239                 }
4240                 if (err)
4241                         return err;
4242                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4243         } else {
4244                 if (cmd_match(page, "check"))
4245                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4246                 else if (!cmd_match(page, "repair"))
4247                         return -EINVAL;
4248                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4249                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4250         }
4251         if (mddev->ro == 2) {
4252                 /* A write to sync_action is enough to justify
4253                  * canceling read-auto mode
4254                  */
4255                 mddev->ro = 0;
4256                 md_wakeup_thread(mddev->sync_thread);
4257         }
4258         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4259         md_wakeup_thread(mddev->thread);
4260         sysfs_notify_dirent_safe(mddev->sysfs_action);
4261         return len;
4262 }
4263
4264 static struct md_sysfs_entry md_scan_mode =
4265 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4266
4267 static ssize_t
4268 last_sync_action_show(struct mddev *mddev, char *page)
4269 {
4270         return sprintf(page, "%s\n", mddev->last_sync_action);
4271 }
4272
4273 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4274
4275 static ssize_t
4276 mismatch_cnt_show(struct mddev *mddev, char *page)
4277 {
4278         return sprintf(page, "%llu\n",
4279                        (unsigned long long)
4280                        atomic64_read(&mddev->resync_mismatches));
4281 }
4282
4283 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4284
4285 static ssize_t
4286 sync_min_show(struct mddev *mddev, char *page)
4287 {
4288         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4289                        mddev->sync_speed_min ? "local": "system");
4290 }
4291
4292 static ssize_t
4293 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4294 {
4295         int min;
4296         char *e;
4297         if (strncmp(buf, "system", 6)==0) {
4298                 mddev->sync_speed_min = 0;
4299                 return len;
4300         }
4301         min = simple_strtoul(buf, &e, 10);
4302         if (buf == e || (*e && *e != '\n') || min <= 0)
4303                 return -EINVAL;
4304         mddev->sync_speed_min = min;
4305         return len;
4306 }
4307
4308 static struct md_sysfs_entry md_sync_min =
4309 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4310
4311 static ssize_t
4312 sync_max_show(struct mddev *mddev, char *page)
4313 {
4314         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4315                        mddev->sync_speed_max ? "local": "system");
4316 }
4317
4318 static ssize_t
4319 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4320 {
4321         int max;
4322         char *e;
4323         if (strncmp(buf, "system", 6)==0) {
4324                 mddev->sync_speed_max = 0;
4325                 return len;
4326         }
4327         max = simple_strtoul(buf, &e, 10);
4328         if (buf == e || (*e && *e != '\n') || max <= 0)
4329                 return -EINVAL;
4330         mddev->sync_speed_max = max;
4331         return len;
4332 }
4333
4334 static struct md_sysfs_entry md_sync_max =
4335 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4336
4337 static ssize_t
4338 degraded_show(struct mddev *mddev, char *page)
4339 {
4340         return sprintf(page, "%d\n", mddev->degraded);
4341 }
4342 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4343
4344 static ssize_t
4345 sync_force_parallel_show(struct mddev *mddev, char *page)
4346 {
4347         return sprintf(page, "%d\n", mddev->parallel_resync);
4348 }
4349
4350 static ssize_t
4351 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4352 {
4353         long n;
4354
4355         if (kstrtol(buf, 10, &n))
4356                 return -EINVAL;
4357
4358         if (n != 0 && n != 1)
4359                 return -EINVAL;
4360
4361         mddev->parallel_resync = n;
4362
4363         if (mddev->sync_thread)
4364                 wake_up(&resync_wait);
4365
4366         return len;
4367 }
4368
4369 /* force parallel resync, even with shared block devices */
4370 static struct md_sysfs_entry md_sync_force_parallel =
4371 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4372        sync_force_parallel_show, sync_force_parallel_store);
4373
4374 static ssize_t
4375 sync_speed_show(struct mddev *mddev, char *page)
4376 {
4377         unsigned long resync, dt, db;
4378         if (mddev->curr_resync == 0)
4379                 return sprintf(page, "none\n");
4380         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4381         dt = (jiffies - mddev->resync_mark) / HZ;
4382         if (!dt) dt++;
4383         db = resync - mddev->resync_mark_cnt;
4384         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4385 }
4386
4387 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4388
4389 static ssize_t
4390 sync_completed_show(struct mddev *mddev, char *page)
4391 {
4392         unsigned long long max_sectors, resync;
4393
4394         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4395                 return sprintf(page, "none\n");
4396
4397         if (mddev->curr_resync == 1 ||
4398             mddev->curr_resync == 2)
4399                 return sprintf(page, "delayed\n");
4400
4401         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4402             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4403                 max_sectors = mddev->resync_max_sectors;
4404         else
4405                 max_sectors = mddev->dev_sectors;
4406
4407         resync = mddev->curr_resync_completed;
4408         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4409 }
4410
4411 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4412
4413 static ssize_t
4414 min_sync_show(struct mddev *mddev, char *page)
4415 {
4416         return sprintf(page, "%llu\n",
4417                        (unsigned long long)mddev->resync_min);
4418 }
4419 static ssize_t
4420 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4421 {
4422         unsigned long long min;
4423         int err;
4424         int chunk;
4425
4426         if (kstrtoull(buf, 10, &min))
4427                 return -EINVAL;
4428
4429         spin_lock(&mddev->lock);
4430         err = -EINVAL;
4431         if (min > mddev->resync_max)
4432                 goto out_unlock;
4433
4434         err = -EBUSY;
4435         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4436                 goto out_unlock;
4437
4438         /* Must be a multiple of chunk_size */
4439         chunk = mddev->chunk_sectors;
4440         if (chunk) {
4441                 sector_t temp = min;
4442
4443                 err = -EINVAL;
4444                 if (sector_div(temp, chunk))
4445                         goto out_unlock;
4446         }
4447         mddev->resync_min = min;
4448         err = 0;
4449
4450 out_unlock:
4451         spin_unlock(&mddev->lock);
4452         return err ?: len;
4453 }
4454
4455 static struct md_sysfs_entry md_min_sync =
4456 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4457
4458 static ssize_t
4459 max_sync_show(struct mddev *mddev, char *page)
4460 {
4461         if (mddev->resync_max == MaxSector)
4462                 return sprintf(page, "max\n");
4463         else
4464                 return sprintf(page, "%llu\n",
4465                                (unsigned long long)mddev->resync_max);
4466 }
4467 static ssize_t
4468 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4469 {
4470         int err;
4471         spin_lock(&mddev->lock);
4472         if (strncmp(buf, "max", 3) == 0)
4473                 mddev->resync_max = MaxSector;
4474         else {
4475                 unsigned long long max;
4476                 int chunk;
4477
4478                 err = -EINVAL;
4479                 if (kstrtoull(buf, 10, &max))
4480                         goto out_unlock;
4481                 if (max < mddev->resync_min)
4482                         goto out_unlock;
4483
4484                 err = -EBUSY;
4485                 if (max < mddev->resync_max &&
4486                     mddev->ro == 0 &&
4487                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4488                         goto out_unlock;
4489
4490                 /* Must be a multiple of chunk_size */
4491                 chunk = mddev->chunk_sectors;
4492                 if (chunk) {
4493                         sector_t temp = max;
4494
4495                         err = -EINVAL;
4496                         if (sector_div(temp, chunk))
4497                                 goto out_unlock;
4498                 }
4499                 mddev->resync_max = max;
4500         }
4501         wake_up(&mddev->recovery_wait);
4502         err = 0;
4503 out_unlock:
4504         spin_unlock(&mddev->lock);
4505         return err ?: len;
4506 }
4507
4508 static struct md_sysfs_entry md_max_sync =
4509 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4510
4511 static ssize_t
4512 suspend_lo_show(struct mddev *mddev, char *page)
4513 {
4514         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4515 }
4516
4517 static ssize_t
4518 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4519 {
4520         char *e;
4521         unsigned long long new = simple_strtoull(buf, &e, 10);
4522         unsigned long long old;
4523         int err;
4524
4525         if (buf == e || (*e && *e != '\n'))
4526                 return -EINVAL;
4527
4528         err = mddev_lock(mddev);
4529         if (err)
4530                 return err;
4531         err = -EINVAL;
4532         if (mddev->pers == NULL ||
4533             mddev->pers->quiesce == NULL)
4534                 goto unlock;
4535         old = mddev->suspend_lo;
4536         mddev->suspend_lo = new;
4537         if (new >= old)
4538                 /* Shrinking suspended region */
4539                 mddev->pers->quiesce(mddev, 2);
4540         else {
4541                 /* Expanding suspended region - need to wait */
4542                 mddev->pers->quiesce(mddev, 1);
4543                 mddev->pers->quiesce(mddev, 0);
4544         }
4545         err = 0;
4546 unlock:
4547         mddev_unlock(mddev);
4548         return err ?: len;
4549 }
4550 static struct md_sysfs_entry md_suspend_lo =
4551 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4552
4553 static ssize_t
4554 suspend_hi_show(struct mddev *mddev, char *page)
4555 {
4556         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4557 }
4558
4559 static ssize_t
4560 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4561 {
4562         char *e;
4563         unsigned long long new = simple_strtoull(buf, &e, 10);
4564         unsigned long long old;
4565         int err;
4566
4567         if (buf == e || (*e && *e != '\n'))
4568                 return -EINVAL;
4569
4570         err = mddev_lock(mddev);
4571         if (err)
4572                 return err;
4573         err = -EINVAL;
4574         if (mddev->pers == NULL ||
4575             mddev->pers->quiesce == NULL)
4576                 goto unlock;
4577         old = mddev->suspend_hi;
4578         mddev->suspend_hi = new;
4579         if (new <= old)
4580                 /* Shrinking suspended region */
4581                 mddev->pers->quiesce(mddev, 2);
4582         else {
4583                 /* Expanding suspended region - need to wait */
4584                 mddev->pers->quiesce(mddev, 1);
4585                 mddev->pers->quiesce(mddev, 0);
4586         }
4587         err = 0;
4588 unlock:
4589         mddev_unlock(mddev);
4590         return err ?: len;
4591 }
4592 static struct md_sysfs_entry md_suspend_hi =
4593 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4594
4595 static ssize_t
4596 reshape_position_show(struct mddev *mddev, char *page)
4597 {
4598         if (mddev->reshape_position != MaxSector)
4599                 return sprintf(page, "%llu\n",
4600                                (unsigned long long)mddev->reshape_position);
4601         strcpy(page, "none\n");
4602         return 5;
4603 }
4604
4605 static ssize_t
4606 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4607 {
4608         struct md_rdev *rdev;
4609         char *e;
4610         int err;
4611         unsigned long long new = simple_strtoull(buf, &e, 10);
4612
4613         if (buf == e || (*e && *e != '\n'))
4614                 return -EINVAL;
4615         err = mddev_lock(mddev);
4616         if (err)
4617                 return err;
4618         err = -EBUSY;
4619         if (mddev->pers)
4620                 goto unlock;
4621         mddev->reshape_position = new;
4622         mddev->delta_disks = 0;
4623         mddev->reshape_backwards = 0;
4624         mddev->new_level = mddev->level;
4625         mddev->new_layout = mddev->layout;
4626         mddev->new_chunk_sectors = mddev->chunk_sectors;
4627         rdev_for_each(rdev, mddev)
4628                 rdev->new_data_offset = rdev->data_offset;
4629         err = 0;
4630 unlock:
4631         mddev_unlock(mddev);
4632         return err ?: len;
4633 }
4634
4635 static struct md_sysfs_entry md_reshape_position =
4636 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4637        reshape_position_store);
4638
4639 static ssize_t
4640 reshape_direction_show(struct mddev *mddev, char *page)
4641 {
4642         return sprintf(page, "%s\n",
4643                        mddev->reshape_backwards ? "backwards" : "forwards");
4644 }
4645
4646 static ssize_t
4647 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4648 {
4649         int backwards = 0;
4650         int err;
4651
4652         if (cmd_match(buf, "forwards"))
4653                 backwards = 0;
4654         else if (cmd_match(buf, "backwards"))
4655                 backwards = 1;
4656         else
4657                 return -EINVAL;
4658         if (mddev->reshape_backwards == backwards)
4659                 return len;
4660
4661         err = mddev_lock(mddev);
4662         if (err)
4663                 return err;
4664         /* check if we are allowed to change */
4665         if (mddev->delta_disks)
4666                 err = -EBUSY;
4667         else if (mddev->persistent &&
4668             mddev->major_version == 0)
4669                 err =  -EINVAL;
4670         else
4671                 mddev->reshape_backwards = backwards;
4672         mddev_unlock(mddev);
4673         return err ?: len;
4674 }
4675
4676 static struct md_sysfs_entry md_reshape_direction =
4677 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4678        reshape_direction_store);
4679
4680 static ssize_t
4681 array_size_show(struct mddev *mddev, char *page)
4682 {
4683         if (mddev->external_size)
4684                 return sprintf(page, "%llu\n",
4685                                (unsigned long long)mddev->array_sectors/2);
4686         else
4687                 return sprintf(page, "default\n");
4688 }
4689
4690 static ssize_t
4691 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4692 {
4693         sector_t sectors;
4694         int err;
4695
4696         err = mddev_lock(mddev);
4697         if (err)
4698                 return err;
4699
4700         if (strncmp(buf, "default", 7) == 0) {
4701                 if (mddev->pers)
4702                         sectors = mddev->pers->size(mddev, 0, 0);
4703                 else
4704                         sectors = mddev->array_sectors;
4705
4706                 mddev->external_size = 0;
4707         } else {
4708                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4709                         err = -EINVAL;
4710                 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4711                         err = -E2BIG;
4712                 else
4713                         mddev->external_size = 1;
4714         }
4715
4716         if (!err) {
4717                 mddev->array_sectors = sectors;
4718                 if (mddev->pers) {
4719                         set_capacity(mddev->gendisk, mddev->array_sectors);
4720                         revalidate_disk(mddev->gendisk);
4721                 }
4722         }
4723         mddev_unlock(mddev);
4724         return err ?: len;
4725 }
4726
4727 static struct md_sysfs_entry md_array_size =
4728 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4729        array_size_store);
4730
4731 static struct attribute *md_default_attrs[] = {
4732         &md_level.attr,
4733         &md_layout.attr,
4734         &md_raid_disks.attr,
4735         &md_chunk_size.attr,
4736         &md_size.attr,
4737         &md_resync_start.attr,
4738         &md_metadata.attr,
4739         &md_new_device.attr,
4740         &md_safe_delay.attr,
4741         &md_array_state.attr,
4742         &md_reshape_position.attr,
4743         &md_reshape_direction.attr,
4744         &md_array_size.attr,
4745         &max_corr_read_errors.attr,
4746         NULL,
4747 };
4748
4749 static struct attribute *md_redundancy_attrs[] = {
4750         &md_scan_mode.attr,
4751         &md_last_scan_mode.attr,
4752         &md_mismatches.attr,
4753         &md_sync_min.attr,
4754         &md_sync_max.attr,
4755         &md_sync_speed.attr,
4756         &md_sync_force_parallel.attr,
4757         &md_sync_completed.attr,
4758         &md_min_sync.attr,
4759         &md_max_sync.attr,
4760         &md_suspend_lo.attr,
4761         &md_suspend_hi.attr,
4762         &md_bitmap.attr,
4763         &md_degraded.attr,
4764         NULL,
4765 };
4766 static struct attribute_group md_redundancy_group = {
4767         .name = NULL,
4768         .attrs = md_redundancy_attrs,
4769 };
4770
4771 static ssize_t
4772 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4773 {
4774         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4775         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4776         ssize_t rv;
4777
4778         if (!entry->show)
4779                 return -EIO;
4780         spin_lock(&all_mddevs_lock);
4781         if (list_empty(&mddev->all_mddevs)) {
4782                 spin_unlock(&all_mddevs_lock);
4783                 return -EBUSY;
4784         }
4785         mddev_get(mddev);
4786         spin_unlock(&all_mddevs_lock);
4787
4788         rv = entry->show(mddev, page);
4789         mddev_put(mddev);
4790         return rv;
4791 }
4792
4793 static ssize_t
4794 md_attr_store(struct kobject *kobj, struct attribute *attr,
4795               const char *page, size_t length)
4796 {
4797         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4798         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4799         ssize_t rv;
4800
4801         if (!entry->store)
4802                 return -EIO;
4803         if (!capable(CAP_SYS_ADMIN))
4804                 return -EACCES;
4805         spin_lock(&all_mddevs_lock);
4806         if (list_empty(&mddev->all_mddevs)) {
4807                 spin_unlock(&all_mddevs_lock);
4808                 return -EBUSY;
4809         }
4810         mddev_get(mddev);
4811         spin_unlock(&all_mddevs_lock);
4812         rv = entry->store(mddev, page, length);
4813         mddev_put(mddev);
4814         return rv;
4815 }
4816
4817 static void md_free(struct kobject *ko)
4818 {
4819         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4820
4821         if (mddev->sysfs_state)
4822                 sysfs_put(mddev->sysfs_state);
4823
4824         if (mddev->gendisk) {
4825                 del_gendisk(mddev->gendisk);
4826                 put_disk(mddev->gendisk);
4827         }
4828         if (mddev->queue)
4829                 blk_cleanup_queue(mddev->queue);
4830
4831         kfree(mddev);
4832 }
4833
4834 static const struct sysfs_ops md_sysfs_ops = {
4835         .show   = md_attr_show,
4836         .store  = md_attr_store,
4837 };
4838 static struct kobj_type md_ktype = {
4839         .release        = md_free,
4840         .sysfs_ops      = &md_sysfs_ops,
4841         .default_attrs  = md_default_attrs,
4842 };
4843
4844 int mdp_major = 0;
4845
4846 static void mddev_delayed_delete(struct work_struct *ws)
4847 {
4848         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4849
4850         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4851         kobject_del(&mddev->kobj);
4852         kobject_put(&mddev->kobj);
4853 }
4854
4855 static int md_alloc(dev_t dev, char *name)
4856 {
4857         static DEFINE_MUTEX(disks_mutex);
4858         struct mddev *mddev = mddev_find(dev);
4859         struct gendisk *disk;
4860         int partitioned;
4861         int shift;
4862         int unit;
4863         int error;
4864
4865         if (!mddev)
4866                 return -ENODEV;
4867
4868         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4869         shift = partitioned ? MdpMinorShift : 0;
4870         unit = MINOR(mddev->unit) >> shift;
4871
4872         /* wait for any previous instance of this device to be
4873          * completely removed (mddev_delayed_delete).
4874          */
4875         flush_workqueue(md_misc_wq);
4876
4877         mutex_lock(&disks_mutex);
4878         error = -EEXIST;
4879         if (mddev->gendisk)
4880                 goto abort;
4881
4882         if (name) {
4883                 /* Need to ensure that 'name' is not a duplicate.
4884                  */
4885                 struct mddev *mddev2;
4886                 spin_lock(&all_mddevs_lock);
4887
4888                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4889                         if (mddev2->gendisk &&
4890                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4891                                 spin_unlock(&all_mddevs_lock);
4892                                 goto abort;
4893                         }
4894                 spin_unlock(&all_mddevs_lock);
4895         }
4896
4897         error = -ENOMEM;
4898         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4899         if (!mddev->queue)
4900                 goto abort;
4901         mddev->queue->queuedata = mddev;
4902
4903         blk_queue_make_request(mddev->queue, md_make_request);
4904         blk_set_stacking_limits(&mddev->queue->limits);
4905
4906         disk = alloc_disk(1 << shift);
4907         if (!disk) {
4908                 blk_cleanup_queue(mddev->queue);
4909                 mddev->queue = NULL;
4910                 goto abort;
4911         }
4912         disk->major = MAJOR(mddev->unit);
4913         disk->first_minor = unit << shift;
4914         if (name)
4915                 strcpy(disk->disk_name, name);
4916         else if (partitioned)
4917                 sprintf(disk->disk_name, "md_d%d", unit);
4918         else
4919                 sprintf(disk->disk_name, "md%d", unit);
4920         disk->fops = &md_fops;
4921         disk->private_data = mddev;
4922         disk->queue = mddev->queue;
4923         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4924         /* Allow extended partitions.  This makes the
4925          * 'mdp' device redundant, but we can't really
4926          * remove it now.
4927          */
4928         disk->flags |= GENHD_FL_EXT_DEVT;
4929         mddev->gendisk = disk;
4930         /* As soon as we call add_disk(), another thread could get
4931          * through to md_open, so make sure it doesn't get too far
4932          */
4933         mutex_lock(&mddev->open_mutex);
4934         add_disk(disk);
4935
4936         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4937                                      &disk_to_dev(disk)->kobj, "%s", "md");
4938         if (error) {
4939                 /* This isn't possible, but as kobject_init_and_add is marked
4940                  * __must_check, we must do something with the result
4941                  */
4942                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4943                        disk->disk_name);
4944                 error = 0;
4945         }
4946         if (mddev->kobj.sd &&
4947             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4948                 printk(KERN_DEBUG "pointless warning\n");
4949         mutex_unlock(&mddev->open_mutex);
4950  abort:
4951         mutex_unlock(&disks_mutex);
4952         if (!error && mddev->kobj.sd) {
4953                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4954                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4955         }
4956         mddev_put(mddev);
4957         return error;
4958 }
4959
4960 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4961 {
4962         md_alloc(dev, NULL);
4963         return NULL;
4964 }
4965
4966 static int add_named_array(const char *val, struct kernel_param *kp)
4967 {
4968         /* val must be "md_*" where * is not all digits.
4969          * We allocate an array with a large free minor number, and
4970          * set the name to val.  val must not already be an active name.
4971          */
4972         int len = strlen(val);
4973         char buf[DISK_NAME_LEN];
4974
4975         while (len && val[len-1] == '\n')
4976                 len--;
4977         if (len >= DISK_NAME_LEN)
4978                 return -E2BIG;
4979         strlcpy(buf, val, len+1);
4980         if (strncmp(buf, "md_", 3) != 0)
4981                 return -EINVAL;
4982         return md_alloc(0, buf);
4983 }
4984
4985 static void md_safemode_timeout(unsigned long data)
4986 {
4987         struct mddev *mddev = (struct mddev *) data;
4988
4989         if (!atomic_read(&mddev->writes_pending)) {
4990                 mddev->safemode = 1;
4991                 if (mddev->external)
4992                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4993         }
4994         md_wakeup_thread(mddev->thread);
4995 }
4996
4997 static int start_dirty_degraded;
4998
4999 int md_run(struct mddev *mddev)
5000 {
5001         int err;
5002         struct md_rdev *rdev;
5003         struct md_personality *pers;
5004
5005         if (list_empty(&mddev->disks))
5006                 /* cannot run an array with no devices.. */
5007                 return -EINVAL;
5008
5009         if (mddev->pers)
5010                 return -EBUSY;
5011         /* Cannot run until previous stop completes properly */
5012         if (mddev->sysfs_active)
5013                 return -EBUSY;
5014
5015         /*
5016          * Analyze all RAID superblock(s)
5017          */
5018         if (!mddev->raid_disks) {
5019                 if (!mddev->persistent)
5020                         return -EINVAL;
5021                 analyze_sbs(mddev);
5022         }
5023
5024         if (mddev->level != LEVEL_NONE)
5025                 request_module("md-level-%d", mddev->level);
5026         else if (mddev->clevel[0])
5027                 request_module("md-%s", mddev->clevel);
5028
5029         /*
5030          * Drop all container device buffers, from now on
5031          * the only valid external interface is through the md
5032          * device.
5033          */
5034         rdev_for_each(rdev, mddev) {
5035                 if (test_bit(Faulty, &rdev->flags))
5036                         continue;
5037                 sync_blockdev(rdev->bdev);
5038                 invalidate_bdev(rdev->bdev);
5039
5040                 /* perform some consistency tests on the device.
5041                  * We don't want the data to overlap the metadata,
5042                  * Internal Bitmap issues have been handled elsewhere.
5043                  */
5044                 if (rdev->meta_bdev) {
5045                         /* Nothing to check */;
5046                 } else if (rdev->data_offset < rdev->sb_start) {
5047                         if (mddev->dev_sectors &&
5048                             rdev->data_offset + mddev->dev_sectors
5049                             > rdev->sb_start) {
5050                                 printk("md: %s: data overlaps metadata\n",
5051                                        mdname(mddev));
5052                                 return -EINVAL;
5053                         }
5054                 } else {
5055                         if (rdev->sb_start + rdev->sb_size/512
5056                             > rdev->data_offset) {
5057                                 printk("md: %s: metadata overlaps data\n",
5058                                        mdname(mddev));
5059                                 return -EINVAL;
5060                         }
5061                 }
5062                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5063         }
5064
5065         if (mddev->bio_set == NULL)
5066                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5067
5068         spin_lock(&pers_lock);
5069         pers = find_pers(mddev->level, mddev->clevel);
5070         if (!pers || !try_module_get(pers->owner)) {
5071                 spin_unlock(&pers_lock);
5072                 if (mddev->level != LEVEL_NONE)
5073                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5074                                mddev->level);
5075                 else
5076                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5077                                mddev->clevel);
5078                 return -EINVAL;
5079         }
5080         spin_unlock(&pers_lock);
5081         if (mddev->level != pers->level) {
5082                 mddev->level = pers->level;
5083                 mddev->new_level = pers->level;
5084         }
5085         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5086
5087         if (mddev->reshape_position != MaxSector &&
5088             pers->start_reshape == NULL) {
5089                 /* This personality cannot handle reshaping... */
5090                 module_put(pers->owner);
5091                 return -EINVAL;
5092         }
5093
5094         if (pers->sync_request) {
5095                 /* Warn if this is a potentially silly
5096                  * configuration.
5097                  */
5098                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5099                 struct md_rdev *rdev2;
5100                 int warned = 0;
5101
5102                 rdev_for_each(rdev, mddev)
5103                         rdev_for_each(rdev2, mddev) {
5104                                 if (rdev < rdev2 &&
5105                                     rdev->bdev->bd_contains ==
5106                                     rdev2->bdev->bd_contains) {
5107                                         printk(KERN_WARNING
5108                                                "%s: WARNING: %s appears to be"
5109                                                " on the same physical disk as"
5110                                                " %s.\n",
5111                                                mdname(mddev),
5112                                                bdevname(rdev->bdev,b),
5113                                                bdevname(rdev2->bdev,b2));
5114                                         warned = 1;
5115                                 }
5116                         }
5117
5118                 if (warned)
5119                         printk(KERN_WARNING
5120                                "True protection against single-disk"
5121                                " failure might be compromised.\n");
5122         }
5123
5124         mddev->recovery = 0;
5125         /* may be over-ridden by personality */
5126         mddev->resync_max_sectors = mddev->dev_sectors;
5127
5128         mddev->ok_start_degraded = start_dirty_degraded;
5129
5130         if (start_readonly && mddev->ro == 0)
5131                 mddev->ro = 2; /* read-only, but switch on first write */
5132
5133         err = pers->run(mddev);
5134         if (err)
5135                 printk(KERN_ERR "md: pers->run() failed ...\n");
5136         else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5137                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5138                           " but 'external_size' not in effect?\n", __func__);
5139                 printk(KERN_ERR
5140                        "md: invalid array_size %llu > default size %llu\n",
5141                        (unsigned long long)mddev->array_sectors / 2,
5142                        (unsigned long long)pers->size(mddev, 0, 0) / 2);
5143                 err = -EINVAL;
5144         }
5145         if (err == 0 && pers->sync_request &&
5146             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5147                 struct bitmap *bitmap;
5148
5149                 bitmap = bitmap_create(mddev, -1);
5150                 if (IS_ERR(bitmap)) {
5151                         err = PTR_ERR(bitmap);
5152                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5153                                mdname(mddev), err);
5154                 } else
5155                         mddev->bitmap = bitmap;
5156
5157         }
5158         if (err) {
5159                 mddev_detach(mddev);
5160                 pers->free(mddev, mddev->private);
5161                 module_put(pers->owner);
5162                 bitmap_destroy(mddev);
5163                 return err;
5164         }
5165         if (mddev->queue) {
5166                 mddev->queue->backing_dev_info.congested_data = mddev;
5167                 mddev->queue->backing_dev_info.congested_fn = md_congested;
5168                 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5169         }
5170         if (pers->sync_request) {
5171                 if (mddev->kobj.sd &&
5172                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5173                         printk(KERN_WARNING
5174                                "md: cannot register extra attributes for %s\n",
5175                                mdname(mddev));
5176                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5177         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5178                 mddev->ro = 0;
5179
5180         atomic_set(&mddev->writes_pending,0);
5181         atomic_set(&mddev->max_corr_read_errors,
5182                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5183         mddev->safemode = 0;
5184         mddev->safemode_timer.function = md_safemode_timeout;
5185         mddev->safemode_timer.data = (unsigned long) mddev;
5186         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5187         mddev->in_sync = 1;
5188         smp_wmb();
5189         spin_lock(&mddev->lock);
5190         mddev->pers = pers;
5191         mddev->ready = 1;
5192         spin_unlock(&mddev->lock);
5193         rdev_for_each(rdev, mddev)
5194                 if (rdev->raid_disk >= 0)
5195                         if (sysfs_link_rdev(mddev, rdev))
5196                                 /* failure here is OK */;
5197
5198         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5199
5200         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5201                 md_update_sb(mddev, 0);
5202
5203         md_new_event(mddev);
5204         sysfs_notify_dirent_safe(mddev->sysfs_state);
5205         sysfs_notify_dirent_safe(mddev->sysfs_action);
5206         sysfs_notify(&mddev->kobj, NULL, "degraded");
5207         return 0;
5208 }
5209 EXPORT_SYMBOL_GPL(md_run);
5210
5211 static int do_md_run(struct mddev *mddev)
5212 {
5213         int err;
5214
5215         err = md_run(mddev);
5216         if (err)
5217                 goto out;
5218         err = bitmap_load(mddev);
5219         if (err) {
5220                 bitmap_destroy(mddev);
5221                 goto out;
5222         }
5223
5224         md_wakeup_thread(mddev->thread);
5225         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5226
5227         set_capacity(mddev->gendisk, mddev->array_sectors);
5228         revalidate_disk(mddev->gendisk);
5229         mddev->changed = 1;
5230         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5231 out:
5232         return err;
5233 }
5234
5235 static int restart_array(struct mddev *mddev)
5236 {
5237         struct gendisk *disk = mddev->gendisk;
5238
5239         /* Complain if it has no devices */
5240         if (list_empty(&mddev->disks))
5241                 return -ENXIO;
5242         if (!mddev->pers)
5243                 return -EINVAL;
5244         if (!mddev->ro)
5245                 return -EBUSY;
5246         mddev->safemode = 0;
5247         mddev->ro = 0;
5248         set_disk_ro(disk, 0);
5249         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5250                 mdname(mddev));
5251         /* Kick recovery or resync if necessary */
5252         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5253         md_wakeup_thread(mddev->thread);
5254         md_wakeup_thread(mddev->sync_thread);
5255         sysfs_notify_dirent_safe(mddev->sysfs_state);
5256         return 0;
5257 }
5258
5259 static void md_clean(struct mddev *mddev)
5260 {
5261         mddev->array_sectors = 0;
5262         mddev->external_size = 0;
5263         mddev->dev_sectors = 0;
5264         mddev->raid_disks = 0;
5265         mddev->recovery_cp = 0;
5266         mddev->resync_min = 0;
5267         mddev->resync_max = MaxSector;
5268         mddev->reshape_position = MaxSector;
5269         mddev->external = 0;
5270         mddev->persistent = 0;
5271         mddev->level = LEVEL_NONE;
5272         mddev->clevel[0] = 0;
5273         mddev->flags = 0;
5274         mddev->ro = 0;
5275         mddev->metadata_type[0] = 0;
5276         mddev->chunk_sectors = 0;
5277         mddev->ctime = mddev->utime = 0;
5278         mddev->layout = 0;
5279         mddev->max_disks = 0;
5280         mddev->events = 0;
5281         mddev->can_decrease_events = 0;
5282         mddev->delta_disks = 0;
5283         mddev->reshape_backwards = 0;
5284         mddev->new_level = LEVEL_NONE;
5285         mddev->new_layout = 0;
5286         mddev->new_chunk_sectors = 0;
5287         mddev->curr_resync = 0;
5288         atomic64_set(&mddev->resync_mismatches, 0);
5289         mddev->suspend_lo = mddev->suspend_hi = 0;
5290         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5291         mddev->recovery = 0;
5292         mddev->in_sync = 0;
5293         mddev->changed = 0;
5294         mddev->degraded = 0;
5295         mddev->safemode = 0;
5296         mddev->merge_check_needed = 0;
5297         mddev->bitmap_info.offset = 0;
5298         mddev->bitmap_info.default_offset = 0;
5299         mddev->bitmap_info.default_space = 0;
5300         mddev->bitmap_info.chunksize = 0;
5301         mddev->bitmap_info.daemon_sleep = 0;
5302         mddev->bitmap_info.max_write_behind = 0;
5303 }
5304
5305 static void __md_stop_writes(struct mddev *mddev)
5306 {
5307         if (mddev_is_clustered(mddev))
5308                 md_cluster_ops->metadata_update_start(mddev);
5309         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5310         flush_workqueue(md_misc_wq);
5311         if (mddev->sync_thread) {
5312                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5313                 md_reap_sync_thread(mddev);
5314         }
5315
5316         del_timer_sync(&mddev->safemode_timer);
5317
5318         bitmap_flush(mddev);
5319         md_super_wait(mddev);
5320
5321         if (mddev->ro == 0 &&
5322             (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5323                 /* mark array as shutdown cleanly */
5324                 mddev->in_sync = 1;
5325                 md_update_sb(mddev, 1);
5326         }
5327         if (mddev_is_clustered(mddev))
5328                 md_cluster_ops->metadata_update_finish(mddev);
5329 }
5330
5331 void md_stop_writes(struct mddev *mddev)
5332 {
5333         mddev_lock_nointr(mddev);
5334         __md_stop_writes(mddev);
5335         mddev_unlock(mddev);
5336 }
5337 EXPORT_SYMBOL_GPL(md_stop_writes);
5338
5339 static void mddev_detach(struct mddev *mddev)
5340 {
5341         struct bitmap *bitmap = mddev->bitmap;
5342         /* wait for behind writes to complete */
5343         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5344                 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5345                        mdname(mddev));
5346                 /* need to kick something here to make sure I/O goes? */
5347                 wait_event(bitmap->behind_wait,
5348                            atomic_read(&bitmap->behind_writes) == 0);
5349         }
5350         if (mddev->pers && mddev->pers->quiesce) {
5351                 mddev->pers->quiesce(mddev, 1);
5352                 mddev->pers->quiesce(mddev, 0);
5353         }
5354         md_unregister_thread(&mddev->thread);
5355         if (mddev->queue)
5356                 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5357 }
5358
5359 static void __md_stop(struct mddev *mddev)
5360 {
5361         struct md_personality *pers = mddev->pers;
5362         mddev_detach(mddev);
5363         spin_lock(&mddev->lock);
5364         mddev->ready = 0;
5365         mddev->pers = NULL;
5366         spin_unlock(&mddev->lock);
5367         pers->free(mddev, mddev->private);
5368         if (pers->sync_request && mddev->to_remove == NULL)
5369                 mddev->to_remove = &md_redundancy_group;
5370         module_put(pers->owner);
5371         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5372 }
5373
5374 void md_stop(struct mddev *mddev)
5375 {
5376         /* stop the array and free an attached data structures.
5377          * This is called from dm-raid
5378          */
5379         __md_stop(mddev);
5380         bitmap_destroy(mddev);
5381         if (mddev->bio_set)
5382                 bioset_free(mddev->bio_set);
5383 }
5384
5385 EXPORT_SYMBOL_GPL(md_stop);
5386
5387 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5388 {
5389         int err = 0;
5390         int did_freeze = 0;
5391
5392         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5393                 did_freeze = 1;
5394                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5395                 md_wakeup_thread(mddev->thread);
5396         }
5397         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5398                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5399         if (mddev->sync_thread)
5400                 /* Thread might be blocked waiting for metadata update
5401                  * which will now never happen */
5402                 wake_up_process(mddev->sync_thread->tsk);
5403
5404         mddev_unlock(mddev);
5405         wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5406                                           &mddev->recovery));
5407         mddev_lock_nointr(mddev);
5408
5409         mutex_lock(&mddev->open_mutex);
5410         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5411             mddev->sync_thread ||
5412             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5413             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5414                 printk("md: %s still in use.\n",mdname(mddev));
5415                 if (did_freeze) {
5416                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5417                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5418                         md_wakeup_thread(mddev->thread);
5419                 }
5420                 err = -EBUSY;
5421                 goto out;
5422         }
5423         if (mddev->pers) {
5424                 __md_stop_writes(mddev);
5425
5426                 err  = -ENXIO;
5427                 if (mddev->ro==1)
5428                         goto out;
5429                 mddev->ro = 1;
5430                 set_disk_ro(mddev->gendisk, 1);
5431                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5432                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5433                 md_wakeup_thread(mddev->thread);
5434                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5435                 err = 0;
5436         }
5437 out:
5438         mutex_unlock(&mddev->open_mutex);
5439         return err;
5440 }
5441
5442 /* mode:
5443  *   0 - completely stop and dis-assemble array
5444  *   2 - stop but do not disassemble array
5445  */
5446 static int do_md_stop(struct mddev *mddev, int mode,
5447                       struct block_device *bdev)
5448 {
5449         struct gendisk *disk = mddev->gendisk;
5450         struct md_rdev *rdev;
5451         int did_freeze = 0;
5452
5453         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5454                 did_freeze = 1;
5455                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5456                 md_wakeup_thread(mddev->thread);
5457         }
5458         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5459                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5460         if (mddev->sync_thread)
5461                 /* Thread might be blocked waiting for metadata update
5462                  * which will now never happen */
5463                 wake_up_process(mddev->sync_thread->tsk);
5464
5465         mddev_unlock(mddev);
5466         wait_event(resync_wait, (mddev->sync_thread == NULL &&
5467                                  !test_bit(MD_RECOVERY_RUNNING,
5468                                            &mddev->recovery)));
5469         mddev_lock_nointr(mddev);
5470
5471         mutex_lock(&mddev->open_mutex);
5472         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5473             mddev->sysfs_active ||
5474             mddev->sync_thread ||
5475             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5476             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5477                 printk("md: %s still in use.\n",mdname(mddev));
5478                 mutex_unlock(&mddev->open_mutex);
5479                 if (did_freeze) {
5480                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5481                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5482                         md_wakeup_thread(mddev->thread);
5483                 }
5484                 return -EBUSY;
5485         }
5486         if (mddev->pers) {
5487                 if (mddev->ro)
5488                         set_disk_ro(disk, 0);
5489
5490                 __md_stop_writes(mddev);
5491                 __md_stop(mddev);
5492                 mddev->queue->merge_bvec_fn = NULL;
5493                 mddev->queue->backing_dev_info.congested_fn = NULL;
5494
5495                 /* tell userspace to handle 'inactive' */
5496                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5497
5498                 rdev_for_each(rdev, mddev)
5499                         if (rdev->raid_disk >= 0)
5500                                 sysfs_unlink_rdev(mddev, rdev);
5501
5502                 set_capacity(disk, 0);
5503                 mutex_unlock(&mddev->open_mutex);
5504                 mddev->changed = 1;
5505                 revalidate_disk(disk);
5506
5507                 if (mddev->ro)
5508                         mddev->ro = 0;
5509         } else
5510                 mutex_unlock(&mddev->open_mutex);
5511         /*
5512          * Free resources if final stop
5513          */
5514         if (mode == 0) {
5515                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5516
5517                 bitmap_destroy(mddev);
5518                 if (mddev->bitmap_info.file) {
5519                         struct file *f = mddev->bitmap_info.file;
5520                         spin_lock(&mddev->lock);
5521                         mddev->bitmap_info.file = NULL;
5522                         spin_unlock(&mddev->lock);
5523                         fput(f);
5524                 }
5525                 mddev->bitmap_info.offset = 0;
5526
5527                 export_array(mddev);
5528
5529                 md_clean(mddev);
5530                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5531                 if (mddev->hold_active == UNTIL_STOP)
5532                         mddev->hold_active = 0;
5533         }
5534         blk_integrity_unregister(disk);
5535         md_new_event(mddev);
5536         sysfs_notify_dirent_safe(mddev->sysfs_state);
5537         return 0;
5538 }
5539
5540 #ifndef MODULE
5541 static void autorun_array(struct mddev *mddev)
5542 {
5543         struct md_rdev *rdev;
5544         int err;
5545
5546         if (list_empty(&mddev->disks))
5547                 return;
5548
5549         printk(KERN_INFO "md: running: ");
5550
5551         rdev_for_each(rdev, mddev) {
5552                 char b[BDEVNAME_SIZE];
5553                 printk("<%s>", bdevname(rdev->bdev,b));
5554         }
5555         printk("\n");
5556
5557         err = do_md_run(mddev);
5558         if (err) {
5559                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5560                 do_md_stop(mddev, 0, NULL);
5561         }
5562 }
5563
5564 /*
5565  * lets try to run arrays based on all disks that have arrived
5566  * until now. (those are in pending_raid_disks)
5567  *
5568  * the method: pick the first pending disk, collect all disks with
5569  * the same UUID, remove all from the pending list and put them into
5570  * the 'same_array' list. Then order this list based on superblock
5571  * update time (freshest comes first), kick out 'old' disks and
5572  * compare superblocks. If everything's fine then run it.
5573  *
5574  * If "unit" is allocated, then bump its reference count
5575  */
5576 static void autorun_devices(int part)
5577 {
5578         struct md_rdev *rdev0, *rdev, *tmp;
5579         struct mddev *mddev;
5580         char b[BDEVNAME_SIZE];
5581
5582         printk(KERN_INFO "md: autorun ...\n");
5583         while (!list_empty(&pending_raid_disks)) {
5584                 int unit;
5585                 dev_t dev;
5586                 LIST_HEAD(candidates);
5587                 rdev0 = list_entry(pending_raid_disks.next,
5588                                          struct md_rdev, same_set);
5589
5590                 printk(KERN_INFO "md: considering %s ...\n",
5591                         bdevname(rdev0->bdev,b));
5592                 INIT_LIST_HEAD(&candidates);
5593                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5594                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5595                                 printk(KERN_INFO "md:  adding %s ...\n",
5596                                         bdevname(rdev->bdev,b));
5597                                 list_move(&rdev->same_set, &candidates);
5598                         }
5599                 /*
5600                  * now we have a set of devices, with all of them having
5601                  * mostly sane superblocks. It's time to allocate the
5602                  * mddev.
5603                  */
5604                 if (part) {
5605                         dev = MKDEV(mdp_major,
5606                                     rdev0->preferred_minor << MdpMinorShift);
5607                         unit = MINOR(dev) >> MdpMinorShift;
5608                 } else {
5609                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5610                         unit = MINOR(dev);
5611                 }
5612                 if (rdev0->preferred_minor != unit) {
5613                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5614                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5615                         break;
5616                 }
5617
5618                 md_probe(dev, NULL, NULL);
5619                 mddev = mddev_find(dev);
5620                 if (!mddev || !mddev->gendisk) {
5621                         if (mddev)
5622                                 mddev_put(mddev);
5623                         printk(KERN_ERR
5624                                 "md: cannot allocate memory for md drive.\n");
5625                         break;
5626                 }
5627                 if (mddev_lock(mddev))
5628                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5629                                mdname(mddev));
5630                 else if (mddev->raid_disks || mddev->major_version
5631                          || !list_empty(&mddev->disks)) {
5632                         printk(KERN_WARNING
5633                                 "md: %s already running, cannot run %s\n",
5634                                 mdname(mddev), bdevname(rdev0->bdev,b));
5635                         mddev_unlock(mddev);
5636                 } else {
5637                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5638                         mddev->persistent = 1;
5639                         rdev_for_each_list(rdev, tmp, &candidates) {
5640                                 list_del_init(&rdev->same_set);
5641                                 if (bind_rdev_to_array(rdev, mddev))
5642                                         export_rdev(rdev);
5643                         }
5644                         autorun_array(mddev);
5645                         mddev_unlock(mddev);
5646                 }
5647                 /* on success, candidates will be empty, on error
5648                  * it won't...
5649                  */
5650                 rdev_for_each_list(rdev, tmp, &candidates) {
5651                         list_del_init(&rdev->same_set);
5652                         export_rdev(rdev);
5653                 }
5654                 mddev_put(mddev);
5655         }
5656         printk(KERN_INFO "md: ... autorun DONE.\n");
5657 }
5658 #endif /* !MODULE */
5659
5660 static int get_version(void __user *arg)
5661 {
5662         mdu_version_t ver;
5663
5664         ver.major = MD_MAJOR_VERSION;
5665         ver.minor = MD_MINOR_VERSION;
5666         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5667
5668         if (copy_to_user(arg, &ver, sizeof(ver)))
5669                 return -EFAULT;
5670
5671         return 0;
5672 }
5673
5674 static int get_array_info(struct mddev *mddev, void __user *arg)
5675 {
5676         mdu_array_info_t info;
5677         int nr,working,insync,failed,spare;
5678         struct md_rdev *rdev;
5679
5680         nr = working = insync = failed = spare = 0;
5681         rcu_read_lock();
5682         rdev_for_each_rcu(rdev, mddev) {
5683                 nr++;
5684                 if (test_bit(Faulty, &rdev->flags))
5685                         failed++;
5686                 else {
5687                         working++;
5688                         if (test_bit(In_sync, &rdev->flags))
5689                                 insync++;
5690                         else
5691                                 spare++;
5692                 }
5693         }
5694         rcu_read_unlock();
5695
5696         info.major_version = mddev->major_version;
5697         info.minor_version = mddev->minor_version;
5698         info.patch_version = MD_PATCHLEVEL_VERSION;
5699         info.ctime         = mddev->ctime;
5700         info.level         = mddev->level;
5701         info.size          = mddev->dev_sectors / 2;
5702         if (info.size != mddev->dev_sectors / 2) /* overflow */
5703                 info.size = -1;
5704         info.nr_disks      = nr;
5705         info.raid_disks    = mddev->raid_disks;
5706         info.md_minor      = mddev->md_minor;
5707         info.not_persistent= !mddev->persistent;
5708
5709         info.utime         = mddev->utime;
5710         info.state         = 0;
5711         if (mddev->in_sync)
5712                 info.state = (1<<MD_SB_CLEAN);
5713         if (mddev->bitmap && mddev->bitmap_info.offset)
5714                 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5715         if (mddev_is_clustered(mddev))
5716                 info.state |= (1<<MD_SB_CLUSTERED);
5717         info.active_disks  = insync;
5718         info.working_disks = working;
5719         info.failed_disks  = failed;
5720         info.spare_disks   = spare;
5721
5722         info.layout        = mddev->layout;
5723         info.chunk_size    = mddev->chunk_sectors << 9;
5724
5725         if (copy_to_user(arg, &info, sizeof(info)))
5726                 return -EFAULT;
5727
5728         return 0;
5729 }
5730
5731 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5732 {
5733         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5734         char *ptr;
5735         int err;
5736
5737         file = kmalloc(sizeof(*file), GFP_NOIO);
5738         if (!file)
5739                 return -ENOMEM;
5740
5741         err = 0;
5742         spin_lock(&mddev->lock);
5743         /* bitmap disabled, zero the first byte and copy out */
5744         if (!mddev->bitmap_info.file)
5745                 file->pathname[0] = '\0';
5746         else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5747                                file->pathname, sizeof(file->pathname))),
5748                  IS_ERR(ptr))
5749                 err = PTR_ERR(ptr);
5750         else
5751                 memmove(file->pathname, ptr,
5752                         sizeof(file->pathname)-(ptr-file->pathname));
5753         spin_unlock(&mddev->lock);
5754
5755         if (err == 0 &&
5756             copy_to_user(arg, file, sizeof(*file)))
5757                 err = -EFAULT;
5758
5759         kfree(file);
5760         return err;
5761 }
5762
5763 static int get_disk_info(struct mddev *mddev, void __user * arg)
5764 {
5765         mdu_disk_info_t info;
5766         struct md_rdev *rdev;
5767
5768         if (copy_from_user(&info, arg, sizeof(info)))
5769                 return -EFAULT;
5770
5771         rcu_read_lock();
5772         rdev = md_find_rdev_nr_rcu(mddev, info.number);
5773         if (rdev) {
5774                 info.major = MAJOR(rdev->bdev->bd_dev);
5775                 info.minor = MINOR(rdev->bdev->bd_dev);
5776                 info.raid_disk = rdev->raid_disk;
5777                 info.state = 0;
5778                 if (test_bit(Faulty, &rdev->flags))
5779                         info.state |= (1<<MD_DISK_FAULTY);
5780                 else if (test_bit(In_sync, &rdev->flags)) {
5781                         info.state |= (1<<MD_DISK_ACTIVE);
5782                         info.state |= (1<<MD_DISK_SYNC);
5783                 }
5784                 if (test_bit(WriteMostly, &rdev->flags))
5785                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5786         } else {
5787                 info.major = info.minor = 0;
5788                 info.raid_disk = -1;
5789                 info.state = (1<<MD_DISK_REMOVED);
5790         }
5791         rcu_read_unlock();
5792
5793         if (copy_to_user(arg, &info, sizeof(info)))
5794                 return -EFAULT;
5795
5796         return 0;
5797 }
5798
5799 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5800 {
5801         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5802         struct md_rdev *rdev;
5803         dev_t dev = MKDEV(info->major,info->minor);
5804
5805         if (mddev_is_clustered(mddev) &&
5806                 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5807                 pr_err("%s: Cannot add to clustered mddev.\n",
5808                                mdname(mddev));
5809                 return -EINVAL;
5810         }
5811
5812         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5813                 return -EOVERFLOW;
5814
5815         if (!mddev->raid_disks) {
5816                 int err;
5817                 /* expecting a device which has a superblock */
5818                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5819                 if (IS_ERR(rdev)) {
5820                         printk(KERN_WARNING
5821                                 "md: md_import_device returned %ld\n",
5822                                 PTR_ERR(rdev));
5823                         return PTR_ERR(rdev);
5824                 }
5825                 if (!list_empty(&mddev->disks)) {
5826                         struct md_rdev *rdev0
5827                                 = list_entry(mddev->disks.next,
5828                                              struct md_rdev, same_set);
5829                         err = super_types[mddev->major_version]
5830                                 .load_super(rdev, rdev0, mddev->minor_version);
5831                         if (err < 0) {
5832                                 printk(KERN_WARNING
5833                                         "md: %s has different UUID to %s\n",
5834                                         bdevname(rdev->bdev,b),
5835                                         bdevname(rdev0->bdev,b2));
5836                                 export_rdev(rdev);
5837                                 return -EINVAL;
5838                         }
5839                 }
5840                 err = bind_rdev_to_array(rdev, mddev);
5841                 if (err)
5842                         export_rdev(rdev);
5843                 return err;
5844         }
5845
5846         /*
5847          * add_new_disk can be used once the array is assembled
5848          * to add "hot spares".  They must already have a superblock
5849          * written
5850          */
5851         if (mddev->pers) {
5852                 int err;
5853                 if (!mddev->pers->hot_add_disk) {
5854                         printk(KERN_WARNING
5855                                 "%s: personality does not support diskops!\n",
5856                                mdname(mddev));
5857                         return -EINVAL;
5858                 }
5859                 if (mddev->persistent)
5860                         rdev = md_import_device(dev, mddev->major_version,
5861                                                 mddev->minor_version);
5862                 else
5863                         rdev = md_import_device(dev, -1, -1);
5864                 if (IS_ERR(rdev)) {
5865                         printk(KERN_WARNING
5866                                 "md: md_import_device returned %ld\n",
5867                                 PTR_ERR(rdev));
5868                         return PTR_ERR(rdev);
5869                 }
5870                 /* set saved_raid_disk if appropriate */
5871                 if (!mddev->persistent) {
5872                         if (info->state & (1<<MD_DISK_SYNC)  &&
5873                             info->raid_disk < mddev->raid_disks) {
5874                                 rdev->raid_disk = info->raid_disk;
5875                                 set_bit(In_sync, &rdev->flags);
5876                                 clear_bit(Bitmap_sync, &rdev->flags);
5877                         } else
5878                                 rdev->raid_disk = -1;
5879                         rdev->saved_raid_disk = rdev->raid_disk;
5880                 } else
5881                         super_types[mddev->major_version].
5882                                 validate_super(mddev, rdev);
5883                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5884                      rdev->raid_disk != info->raid_disk) {
5885                         /* This was a hot-add request, but events doesn't
5886                          * match, so reject it.
5887                          */
5888                         export_rdev(rdev);
5889                         return -EINVAL;
5890                 }
5891
5892                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5893                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5894                         set_bit(WriteMostly, &rdev->flags);
5895                 else
5896                         clear_bit(WriteMostly, &rdev->flags);
5897
5898                 /*
5899                  * check whether the device shows up in other nodes
5900                  */
5901                 if (mddev_is_clustered(mddev)) {
5902                         if (info->state & (1 << MD_DISK_CANDIDATE)) {
5903                                 /* Through --cluster-confirm */
5904                                 set_bit(Candidate, &rdev->flags);
5905                                 err = md_cluster_ops->new_disk_ack(mddev, true);
5906                                 if (err) {
5907                                         export_rdev(rdev);
5908                                         return err;
5909                                 }
5910                         } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5911                                 /* --add initiated by this node */
5912                                 err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5913                                 if (err) {
5914                                         md_cluster_ops->add_new_disk_finish(mddev);
5915                                         export_rdev(rdev);
5916                                         return err;
5917                                 }
5918                         }
5919                 }
5920
5921                 rdev->raid_disk = -1;
5922                 err = bind_rdev_to_array(rdev, mddev);
5923                 if (err)
5924                         export_rdev(rdev);
5925                 else
5926                         err = add_bound_rdev(rdev);
5927                 if (mddev_is_clustered(mddev) &&
5928                                 (info->state & (1 << MD_DISK_CLUSTER_ADD)))
5929                         md_cluster_ops->add_new_disk_finish(mddev);
5930                 return err;
5931         }
5932
5933         /* otherwise, add_new_disk is only allowed
5934          * for major_version==0 superblocks
5935          */
5936         if (mddev->major_version != 0) {
5937                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5938                        mdname(mddev));
5939                 return -EINVAL;
5940         }
5941
5942         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5943                 int err;
5944                 rdev = md_import_device(dev, -1, 0);
5945                 if (IS_ERR(rdev)) {
5946                         printk(KERN_WARNING
5947                                 "md: error, md_import_device() returned %ld\n",
5948                                 PTR_ERR(rdev));
5949                         return PTR_ERR(rdev);
5950                 }
5951                 rdev->desc_nr = info->number;
5952                 if (info->raid_disk < mddev->raid_disks)
5953                         rdev->raid_disk = info->raid_disk;
5954                 else
5955                         rdev->raid_disk = -1;
5956
5957                 if (rdev->raid_disk < mddev->raid_disks)
5958                         if (info->state & (1<<MD_DISK_SYNC))
5959                                 set_bit(In_sync, &rdev->flags);
5960
5961                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5962                         set_bit(WriteMostly, &rdev->flags);
5963
5964                 if (!mddev->persistent) {
5965                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5966                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5967                 } else
5968                         rdev->sb_start = calc_dev_sboffset(rdev);
5969                 rdev->sectors = rdev->sb_start;
5970
5971                 err = bind_rdev_to_array(rdev, mddev);
5972                 if (err) {
5973                         export_rdev(rdev);
5974                         return err;
5975                 }
5976         }
5977
5978         return 0;
5979 }
5980
5981 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5982 {
5983         char b[BDEVNAME_SIZE];
5984         struct md_rdev *rdev;
5985
5986         rdev = find_rdev(mddev, dev);
5987         if (!rdev)
5988                 return -ENXIO;
5989
5990         if (mddev_is_clustered(mddev))
5991                 md_cluster_ops->metadata_update_start(mddev);
5992
5993         clear_bit(Blocked, &rdev->flags);
5994         remove_and_add_spares(mddev, rdev);
5995
5996         if (rdev->raid_disk >= 0)
5997                 goto busy;
5998
5999         if (mddev_is_clustered(mddev))
6000                 md_cluster_ops->remove_disk(mddev, rdev);
6001
6002         md_kick_rdev_from_array(rdev);
6003         md_update_sb(mddev, 1);
6004         md_new_event(mddev);
6005
6006         if (mddev_is_clustered(mddev))
6007                 md_cluster_ops->metadata_update_finish(mddev);
6008
6009         return 0;
6010 busy:
6011         if (mddev_is_clustered(mddev))
6012                 md_cluster_ops->metadata_update_cancel(mddev);
6013         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6014                 bdevname(rdev->bdev,b), mdname(mddev));
6015         return -EBUSY;
6016 }
6017
6018 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6019 {
6020         char b[BDEVNAME_SIZE];
6021         int err;
6022         struct md_rdev *rdev;
6023
6024         if (!mddev->pers)
6025                 return -ENODEV;
6026
6027         if (mddev->major_version != 0) {
6028                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6029                         " version-0 superblocks.\n",
6030                         mdname(mddev));
6031                 return -EINVAL;
6032         }
6033         if (!mddev->pers->hot_add_disk) {
6034                 printk(KERN_WARNING
6035                         "%s: personality does not support diskops!\n",
6036                         mdname(mddev));
6037                 return -EINVAL;
6038         }
6039
6040         rdev = md_import_device(dev, -1, 0);
6041         if (IS_ERR(rdev)) {
6042                 printk(KERN_WARNING
6043                         "md: error, md_import_device() returned %ld\n",
6044                         PTR_ERR(rdev));
6045                 return -EINVAL;
6046         }
6047
6048         if (mddev->persistent)
6049                 rdev->sb_start = calc_dev_sboffset(rdev);
6050         else
6051                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6052
6053         rdev->sectors = rdev->sb_start;
6054
6055         if (test_bit(Faulty, &rdev->flags)) {
6056                 printk(KERN_WARNING
6057                         "md: can not hot-add faulty %s disk to %s!\n",
6058                         bdevname(rdev->bdev,b), mdname(mddev));
6059                 err = -EINVAL;
6060                 goto abort_export;
6061         }
6062
6063         if (mddev_is_clustered(mddev))
6064                 md_cluster_ops->metadata_update_start(mddev);
6065         clear_bit(In_sync, &rdev->flags);
6066         rdev->desc_nr = -1;
6067         rdev->saved_raid_disk = -1;
6068         err = bind_rdev_to_array(rdev, mddev);
6069         if (err)
6070                 goto abort_clustered;
6071
6072         /*
6073          * The rest should better be atomic, we can have disk failures
6074          * noticed in interrupt contexts ...
6075          */
6076
6077         rdev->raid_disk = -1;
6078
6079         md_update_sb(mddev, 1);
6080
6081         if (mddev_is_clustered(mddev))
6082                 md_cluster_ops->metadata_update_finish(mddev);
6083         /*
6084          * Kick recovery, maybe this spare has to be added to the
6085          * array immediately.
6086          */
6087         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6088         md_wakeup_thread(mddev->thread);
6089         md_new_event(mddev);
6090         return 0;
6091
6092 abort_clustered:
6093         if (mddev_is_clustered(mddev))
6094                 md_cluster_ops->metadata_update_cancel(mddev);
6095 abort_export:
6096         export_rdev(rdev);
6097         return err;
6098 }
6099
6100 static int set_bitmap_file(struct mddev *mddev, int fd)
6101 {
6102         int err = 0;
6103
6104         if (mddev->pers) {
6105                 if (!mddev->pers->quiesce || !mddev->thread)
6106                         return -EBUSY;
6107                 if (mddev->recovery || mddev->sync_thread)
6108                         return -EBUSY;
6109                 /* we should be able to change the bitmap.. */
6110         }
6111
6112         if (fd >= 0) {
6113                 struct inode *inode;
6114                 struct file *f;
6115
6116                 if (mddev->bitmap || mddev->bitmap_info.file)
6117                         return -EEXIST; /* cannot add when bitmap is present */
6118                 f = fget(fd);
6119
6120                 if (f == NULL) {
6121                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6122                                mdname(mddev));
6123                         return -EBADF;
6124                 }
6125
6126                 inode = f->f_mapping->host;
6127                 if (!S_ISREG(inode->i_mode)) {
6128                         printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6129                                mdname(mddev));
6130                         err = -EBADF;
6131                 } else if (!(f->f_mode & FMODE_WRITE)) {
6132                         printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6133                                mdname(mddev));
6134                         err = -EBADF;
6135                 } else if (atomic_read(&inode->i_writecount) != 1) {
6136                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6137                                mdname(mddev));
6138                         err = -EBUSY;
6139                 }
6140                 if (err) {
6141                         fput(f);
6142                         return err;
6143                 }
6144                 mddev->bitmap_info.file = f;
6145                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6146         } else if (mddev->bitmap == NULL)
6147                 return -ENOENT; /* cannot remove what isn't there */
6148         err = 0;
6149         if (mddev->pers) {
6150                 mddev->pers->quiesce(mddev, 1);
6151                 if (fd >= 0) {
6152                         struct bitmap *bitmap;
6153
6154                         bitmap = bitmap_create(mddev, -1);
6155                         if (!IS_ERR(bitmap)) {
6156                                 mddev->bitmap = bitmap;
6157                                 err = bitmap_load(mddev);
6158                         } else
6159                                 err = PTR_ERR(bitmap);
6160                 }
6161                 if (fd < 0 || err) {
6162                         bitmap_destroy(mddev);
6163                         fd = -1; /* make sure to put the file */
6164                 }
6165                 mddev->pers->quiesce(mddev, 0);
6166         }
6167         if (fd < 0) {
6168                 struct file *f = mddev->bitmap_info.file;
6169                 if (f) {
6170                         spin_lock(&mddev->lock);
6171                         mddev->bitmap_info.file = NULL;
6172                         spin_unlock(&mddev->lock);
6173                         fput(f);
6174                 }
6175         }
6176
6177         return err;
6178 }
6179
6180 /*
6181  * set_array_info is used two different ways
6182  * The original usage is when creating a new array.
6183  * In this usage, raid_disks is > 0 and it together with
6184  *  level, size, not_persistent,layout,chunksize determine the
6185  *  shape of the array.
6186  *  This will always create an array with a type-0.90.0 superblock.
6187  * The newer usage is when assembling an array.
6188  *  In this case raid_disks will be 0, and the major_version field is
6189  *  use to determine which style super-blocks are to be found on the devices.
6190  *  The minor and patch _version numbers are also kept incase the
6191  *  super_block handler wishes to interpret them.
6192  */
6193 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6194 {
6195
6196         if (info->raid_disks == 0) {
6197                 /* just setting version number for superblock loading */
6198                 if (info->major_version < 0 ||
6199                     info->major_version >= ARRAY_SIZE(super_types) ||
6200                     super_types[info->major_version].name == NULL) {
6201                         /* maybe try to auto-load a module? */
6202                         printk(KERN_INFO
6203                                 "md: superblock version %d not known\n",
6204                                 info->major_version);
6205                         return -EINVAL;
6206                 }
6207                 mddev->major_version = info->major_version;
6208                 mddev->minor_version = info->minor_version;
6209                 mddev->patch_version = info->patch_version;
6210                 mddev->persistent = !info->not_persistent;
6211                 /* ensure mddev_put doesn't delete this now that there
6212                  * is some minimal configuration.
6213                  */
6214                 mddev->ctime         = get_seconds();
6215                 return 0;
6216         }
6217         mddev->major_version = MD_MAJOR_VERSION;
6218         mddev->minor_version = MD_MINOR_VERSION;
6219         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6220         mddev->ctime         = get_seconds();
6221
6222         mddev->level         = info->level;
6223         mddev->clevel[0]     = 0;
6224         mddev->dev_sectors   = 2 * (sector_t)info->size;
6225         mddev->raid_disks    = info->raid_disks;
6226         /* don't set md_minor, it is determined by which /dev/md* was
6227          * openned
6228          */
6229         if (info->state & (1<<MD_SB_CLEAN))
6230                 mddev->recovery_cp = MaxSector;
6231         else
6232                 mddev->recovery_cp = 0;
6233         mddev->persistent    = ! info->not_persistent;
6234         mddev->external      = 0;
6235
6236         mddev->layout        = info->layout;
6237         mddev->chunk_sectors = info->chunk_size >> 9;
6238
6239         mddev->max_disks     = MD_SB_DISKS;
6240
6241         if (mddev->persistent)
6242                 mddev->flags         = 0;
6243         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6244
6245         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6246         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6247         mddev->bitmap_info.offset = 0;
6248
6249         mddev->reshape_position = MaxSector;
6250
6251         /*
6252          * Generate a 128 bit UUID
6253          */
6254         get_random_bytes(mddev->uuid, 16);
6255
6256         mddev->new_level = mddev->level;
6257         mddev->new_chunk_sectors = mddev->chunk_sectors;
6258         mddev->new_layout = mddev->layout;
6259         mddev->delta_disks = 0;
6260         mddev->reshape_backwards = 0;
6261
6262         return 0;
6263 }
6264
6265 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6266 {
6267         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6268
6269         if (mddev->external_size)
6270                 return;
6271
6272         mddev->array_sectors = array_sectors;
6273 }
6274 EXPORT_SYMBOL(md_set_array_sectors);
6275
6276 static int update_size(struct mddev *mddev, sector_t num_sectors)
6277 {
6278         struct md_rdev *rdev;
6279         int rv;
6280         int fit = (num_sectors == 0);
6281
6282         if (mddev->pers->resize == NULL)
6283                 return -EINVAL;
6284         /* The "num_sectors" is the number of sectors of each device that
6285          * is used.  This can only make sense for arrays with redundancy.
6286          * linear and raid0 always use whatever space is available. We can only
6287          * consider changing this number if no resync or reconstruction is
6288          * happening, and if the new size is acceptable. It must fit before the
6289          * sb_start or, if that is <data_offset, it must fit before the size
6290          * of each device.  If num_sectors is zero, we find the largest size
6291          * that fits.
6292          */
6293         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6294             mddev->sync_thread)
6295                 return -EBUSY;
6296         if (mddev->ro)
6297                 return -EROFS;
6298
6299         rdev_for_each(rdev, mddev) {
6300                 sector_t avail = rdev->sectors;
6301
6302                 if (fit && (num_sectors == 0 || num_sectors > avail))
6303                         num_sectors = avail;
6304                 if (avail < num_sectors)
6305                         return -ENOSPC;
6306         }
6307         rv = mddev->pers->resize(mddev, num_sectors);
6308         if (!rv)
6309                 revalidate_disk(mddev->gendisk);
6310         return rv;
6311 }
6312
6313 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6314 {
6315         int rv;
6316         struct md_rdev *rdev;
6317         /* change the number of raid disks */
6318         if (mddev->pers->check_reshape == NULL)
6319                 return -EINVAL;
6320         if (mddev->ro)
6321                 return -EROFS;
6322         if (raid_disks <= 0 ||
6323             (mddev->max_disks && raid_disks >= mddev->max_disks))
6324                 return -EINVAL;
6325         if (mddev->sync_thread ||
6326             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6327             mddev->reshape_position != MaxSector)
6328                 return -EBUSY;
6329
6330         rdev_for_each(rdev, mddev) {
6331                 if (mddev->raid_disks < raid_disks &&
6332                     rdev->data_offset < rdev->new_data_offset)
6333                         return -EINVAL;
6334                 if (mddev->raid_disks > raid_disks &&
6335                     rdev->data_offset > rdev->new_data_offset)
6336                         return -EINVAL;
6337         }
6338
6339         mddev->delta_disks = raid_disks - mddev->raid_disks;
6340         if (mddev->delta_disks < 0)
6341                 mddev->reshape_backwards = 1;
6342         else if (mddev->delta_disks > 0)
6343                 mddev->reshape_backwards = 0;
6344
6345         rv = mddev->pers->check_reshape(mddev);
6346         if (rv < 0) {
6347                 mddev->delta_disks = 0;
6348                 mddev->reshape_backwards = 0;
6349         }
6350         return rv;
6351 }
6352
6353 /*
6354  * update_array_info is used to change the configuration of an
6355  * on-line array.
6356  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6357  * fields in the info are checked against the array.
6358  * Any differences that cannot be handled will cause an error.
6359  * Normally, only one change can be managed at a time.
6360  */
6361 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6362 {
6363         int rv = 0;
6364         int cnt = 0;
6365         int state = 0;
6366
6367         /* calculate expected state,ignoring low bits */
6368         if (mddev->bitmap && mddev->bitmap_info.offset)
6369                 state |= (1 << MD_SB_BITMAP_PRESENT);
6370
6371         if (mddev->major_version != info->major_version ||
6372             mddev->minor_version != info->minor_version ||
6373 /*          mddev->patch_version != info->patch_version || */
6374             mddev->ctime         != info->ctime         ||
6375             mddev->level         != info->level         ||
6376 /*          mddev->layout        != info->layout        || */
6377             !mddev->persistent   != info->not_persistent||
6378             mddev->chunk_sectors != info->chunk_size >> 9 ||
6379             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6380             ((state^info->state) & 0xfffffe00)
6381                 )
6382                 return -EINVAL;
6383         /* Check there is only one change */
6384         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6385                 cnt++;
6386         if (mddev->raid_disks != info->raid_disks)
6387                 cnt++;
6388         if (mddev->layout != info->layout)
6389                 cnt++;
6390         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6391                 cnt++;
6392         if (cnt == 0)
6393                 return 0;
6394         if (cnt > 1)
6395                 return -EINVAL;
6396
6397         if (mddev->layout != info->layout) {
6398                 /* Change layout
6399                  * we don't need to do anything at the md level, the
6400                  * personality will take care of it all.
6401                  */
6402                 if (mddev->pers->check_reshape == NULL)
6403                         return -EINVAL;
6404                 else {
6405                         mddev->new_layout = info->layout;
6406                         rv = mddev->pers->check_reshape(mddev);
6407                         if (rv)
6408                                 mddev->new_layout = mddev->layout;
6409                         return rv;
6410                 }
6411         }
6412         if (mddev_is_clustered(mddev))
6413                 md_cluster_ops->metadata_update_start(mddev);
6414         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6415                 rv = update_size(mddev, (sector_t)info->size * 2);
6416
6417         if (mddev->raid_disks    != info->raid_disks)
6418                 rv = update_raid_disks(mddev, info->raid_disks);
6419
6420         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6421                 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6422                         rv = -EINVAL;
6423                         goto err;
6424                 }
6425                 if (mddev->recovery || mddev->sync_thread) {
6426                         rv = -EBUSY;
6427                         goto err;
6428                 }
6429                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6430                         struct bitmap *bitmap;
6431                         /* add the bitmap */
6432                         if (mddev->bitmap) {
6433                                 rv = -EEXIST;
6434                                 goto err;
6435                         }
6436                         if (mddev->bitmap_info.default_offset == 0) {
6437                                 rv = -EINVAL;
6438                                 goto err;
6439                         }
6440                         mddev->bitmap_info.offset =
6441                                 mddev->bitmap_info.default_offset;
6442                         mddev->bitmap_info.space =
6443                                 mddev->bitmap_info.default_space;
6444                         mddev->pers->quiesce(mddev, 1);
6445                         bitmap = bitmap_create(mddev, -1);
6446                         if (!IS_ERR(bitmap)) {
6447                                 mddev->bitmap = bitmap;
6448                                 rv = bitmap_load(mddev);
6449                         } else
6450                                 rv = PTR_ERR(bitmap);
6451                         if (rv)
6452                                 bitmap_destroy(mddev);
6453                         mddev->pers->quiesce(mddev, 0);
6454                 } else {
6455                         /* remove the bitmap */
6456                         if (!mddev->bitmap) {
6457                                 rv = -ENOENT;
6458                                 goto err;
6459                         }
6460                         if (mddev->bitmap->storage.file) {
6461                                 rv = -EINVAL;
6462                                 goto err;
6463                         }
6464                         mddev->pers->quiesce(mddev, 1);
6465                         bitmap_destroy(mddev);
6466                         mddev->pers->quiesce(mddev, 0);
6467                         mddev->bitmap_info.offset = 0;
6468                 }
6469         }
6470         md_update_sb(mddev, 1);
6471         if (mddev_is_clustered(mddev))
6472                 md_cluster_ops->metadata_update_finish(mddev);
6473         return rv;
6474 err:
6475         if (mddev_is_clustered(mddev))
6476                 md_cluster_ops->metadata_update_cancel(mddev);
6477         return rv;
6478 }
6479
6480 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6481 {
6482         struct md_rdev *rdev;
6483         int err = 0;
6484
6485         if (mddev->pers == NULL)
6486                 return -ENODEV;
6487
6488         rcu_read_lock();
6489         rdev = find_rdev_rcu(mddev, dev);
6490         if (!rdev)
6491                 err =  -ENODEV;
6492         else {
6493                 md_error(mddev, rdev);
6494                 if (!test_bit(Faulty, &rdev->flags))
6495                         err = -EBUSY;
6496         }
6497         rcu_read_unlock();
6498         return err;
6499 }
6500
6501 /*
6502  * We have a problem here : there is no easy way to give a CHS
6503  * virtual geometry. We currently pretend that we have a 2 heads
6504  * 4 sectors (with a BIG number of cylinders...). This drives
6505  * dosfs just mad... ;-)
6506  */
6507 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6508 {
6509         struct mddev *mddev = bdev->bd_disk->private_data;
6510
6511         geo->heads = 2;
6512         geo->sectors = 4;
6513         geo->cylinders = mddev->array_sectors / 8;
6514         return 0;
6515 }
6516
6517 static inline bool md_ioctl_valid(unsigned int cmd)
6518 {
6519         switch (cmd) {
6520         case ADD_NEW_DISK:
6521         case BLKROSET:
6522         case GET_ARRAY_INFO:
6523         case GET_BITMAP_FILE:
6524         case GET_DISK_INFO:
6525         case HOT_ADD_DISK:
6526         case HOT_REMOVE_DISK:
6527         case RAID_AUTORUN:
6528         case RAID_VERSION:
6529         case RESTART_ARRAY_RW:
6530         case RUN_ARRAY:
6531         case SET_ARRAY_INFO:
6532         case SET_BITMAP_FILE:
6533         case SET_DISK_FAULTY:
6534         case STOP_ARRAY:
6535         case STOP_ARRAY_RO:
6536         case CLUSTERED_DISK_NACK:
6537                 return true;
6538         default:
6539                 return false;
6540         }
6541 }
6542
6543 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6544                         unsigned int cmd, unsigned long arg)
6545 {
6546         int err = 0;
6547         void __user *argp = (void __user *)arg;
6548         struct mddev *mddev = NULL;
6549         int ro;
6550
6551         if (!md_ioctl_valid(cmd))
6552                 return -ENOTTY;
6553
6554         switch (cmd) {
6555         case RAID_VERSION:
6556         case GET_ARRAY_INFO:
6557         case GET_DISK_INFO:
6558                 break;
6559         default:
6560                 if (!capable(CAP_SYS_ADMIN))
6561                         return -EACCES;
6562         }
6563
6564         /*
6565          * Commands dealing with the RAID driver but not any
6566          * particular array:
6567          */
6568         switch (cmd) {
6569         case RAID_VERSION:
6570                 err = get_version(argp);
6571                 goto out;
6572
6573 #ifndef MODULE
6574         case RAID_AUTORUN:
6575                 err = 0;
6576                 autostart_arrays(arg);
6577                 goto out;
6578 #endif
6579         default:;
6580         }
6581
6582         /*
6583          * Commands creating/starting a new array:
6584          */
6585
6586         mddev = bdev->bd_disk->private_data;
6587
6588         if (!mddev) {
6589                 BUG();
6590                 goto out;
6591         }
6592
6593         /* Some actions do not requires the mutex */
6594         switch (cmd) {
6595         case GET_ARRAY_INFO:
6596                 if (!mddev->raid_disks && !mddev->external)
6597                         err = -ENODEV;
6598                 else
6599                         err = get_array_info(mddev, argp);
6600                 goto out;
6601
6602         case GET_DISK_INFO:
6603                 if (!mddev->raid_disks && !mddev->external)
6604                         err = -ENODEV;
6605                 else
6606                         err = get_disk_info(mddev, argp);
6607                 goto out;
6608
6609         case SET_DISK_FAULTY:
6610                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6611                 goto out;
6612
6613         case GET_BITMAP_FILE:
6614                 err = get_bitmap_file(mddev, argp);
6615                 goto out;
6616
6617         }
6618
6619         if (cmd == ADD_NEW_DISK)
6620                 /* need to ensure md_delayed_delete() has completed */
6621                 flush_workqueue(md_misc_wq);
6622
6623         if (cmd == HOT_REMOVE_DISK)
6624                 /* need to ensure recovery thread has run */
6625                 wait_event_interruptible_timeout(mddev->sb_wait,
6626                                                  !test_bit(MD_RECOVERY_NEEDED,
6627                                                            &mddev->flags),
6628                                                  msecs_to_jiffies(5000));
6629         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6630                 /* Need to flush page cache, and ensure no-one else opens
6631                  * and writes
6632                  */
6633                 mutex_lock(&mddev->open_mutex);
6634                 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6635                         mutex_unlock(&mddev->open_mutex);
6636                         err = -EBUSY;
6637                         goto out;
6638                 }
6639                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6640                 mutex_unlock(&mddev->open_mutex);
6641                 sync_blockdev(bdev);
6642         }
6643         err = mddev_lock(mddev);
6644         if (err) {
6645                 printk(KERN_INFO
6646                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6647                         err, cmd);
6648                 goto out;
6649         }
6650
6651         if (cmd == SET_ARRAY_INFO) {
6652                 mdu_array_info_t info;
6653                 if (!arg)
6654                         memset(&info, 0, sizeof(info));
6655                 else if (copy_from_user(&info, argp, sizeof(info))) {
6656                         err = -EFAULT;
6657                         goto unlock;
6658                 }
6659                 if (mddev->pers) {
6660                         err = update_array_info(mddev, &info);
6661                         if (err) {
6662                                 printk(KERN_WARNING "md: couldn't update"
6663                                        " array info. %d\n", err);
6664                                 goto unlock;
6665                         }
6666                         goto unlock;
6667                 }
6668                 if (!list_empty(&mddev->disks)) {
6669                         printk(KERN_WARNING
6670                                "md: array %s already has disks!\n",
6671                                mdname(mddev));
6672                         err = -EBUSY;
6673                         goto unlock;
6674                 }
6675                 if (mddev->raid_disks) {
6676                         printk(KERN_WARNING
6677                                "md: array %s already initialised!\n",
6678                                mdname(mddev));
6679                         err = -EBUSY;
6680                         goto unlock;
6681                 }
6682                 err = set_array_info(mddev, &info);
6683                 if (err) {
6684                         printk(KERN_WARNING "md: couldn't set"
6685                                " array info. %d\n", err);
6686                         goto unlock;
6687                 }
6688                 goto unlock;
6689         }
6690
6691         /*
6692          * Commands querying/configuring an existing array:
6693          */
6694         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6695          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6696         if ((!mddev->raid_disks && !mddev->external)
6697             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6698             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6699             && cmd != GET_BITMAP_FILE) {
6700                 err = -ENODEV;
6701                 goto unlock;
6702         }
6703
6704         /*
6705          * Commands even a read-only array can execute:
6706          */
6707         switch (cmd) {
6708         case RESTART_ARRAY_RW:
6709                 err = restart_array(mddev);
6710                 goto unlock;
6711
6712         case STOP_ARRAY:
6713                 err = do_md_stop(mddev, 0, bdev);
6714                 goto unlock;
6715
6716         case STOP_ARRAY_RO:
6717                 err = md_set_readonly(mddev, bdev);
6718                 goto unlock;
6719
6720         case HOT_REMOVE_DISK:
6721                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6722                 goto unlock;
6723
6724         case ADD_NEW_DISK:
6725                 /* We can support ADD_NEW_DISK on read-only arrays
6726                  * on if we are re-adding a preexisting device.
6727                  * So require mddev->pers and MD_DISK_SYNC.
6728                  */
6729                 if (mddev->pers) {
6730                         mdu_disk_info_t info;
6731                         if (copy_from_user(&info, argp, sizeof(info)))
6732                                 err = -EFAULT;
6733                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6734                                 /* Need to clear read-only for this */
6735                                 break;
6736                         else
6737                                 err = add_new_disk(mddev, &info);
6738                         goto unlock;
6739                 }
6740                 break;
6741
6742         case BLKROSET:
6743                 if (get_user(ro, (int __user *)(arg))) {
6744                         err = -EFAULT;
6745                         goto unlock;
6746                 }
6747                 err = -EINVAL;
6748
6749                 /* if the bdev is going readonly the value of mddev->ro
6750                  * does not matter, no writes are coming
6751                  */
6752                 if (ro)
6753                         goto unlock;
6754
6755                 /* are we are already prepared for writes? */
6756                 if (mddev->ro != 1)
6757                         goto unlock;
6758
6759                 /* transitioning to readauto need only happen for
6760                  * arrays that call md_write_start
6761                  */
6762                 if (mddev->pers) {
6763                         err = restart_array(mddev);
6764                         if (err == 0) {
6765                                 mddev->ro = 2;
6766                                 set_disk_ro(mddev->gendisk, 0);
6767                         }
6768                 }
6769                 goto unlock;
6770         }
6771
6772         /*
6773          * The remaining ioctls are changing the state of the
6774          * superblock, so we do not allow them on read-only arrays.
6775          */
6776         if (mddev->ro && mddev->pers) {
6777                 if (mddev->ro == 2) {
6778                         mddev->ro = 0;
6779                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6780                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6781                         /* mddev_unlock will wake thread */
6782                         /* If a device failed while we were read-only, we
6783                          * need to make sure the metadata is updated now.
6784                          */
6785                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6786                                 mddev_unlock(mddev);
6787                                 wait_event(mddev->sb_wait,
6788                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6789                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6790                                 mddev_lock_nointr(mddev);
6791                         }
6792                 } else {
6793                         err = -EROFS;
6794                         goto unlock;
6795                 }
6796         }
6797
6798         switch (cmd) {
6799         case ADD_NEW_DISK:
6800         {
6801                 mdu_disk_info_t info;
6802                 if (copy_from_user(&info, argp, sizeof(info)))
6803                         err = -EFAULT;
6804                 else
6805                         err = add_new_disk(mddev, &info);
6806                 goto unlock;
6807         }
6808
6809         case CLUSTERED_DISK_NACK:
6810                 if (mddev_is_clustered(mddev))
6811                         md_cluster_ops->new_disk_ack(mddev, false);
6812                 else
6813                         err = -EINVAL;
6814                 goto unlock;
6815
6816         case HOT_ADD_DISK:
6817                 err = hot_add_disk(mddev, new_decode_dev(arg));
6818                 goto unlock;
6819
6820         case RUN_ARRAY:
6821                 err = do_md_run(mddev);
6822                 goto unlock;
6823
6824         case SET_BITMAP_FILE:
6825                 err = set_bitmap_file(mddev, (int)arg);
6826                 goto unlock;
6827
6828         default:
6829                 err = -EINVAL;
6830                 goto unlock;
6831         }
6832
6833 unlock:
6834         if (mddev->hold_active == UNTIL_IOCTL &&
6835             err != -EINVAL)
6836                 mddev->hold_active = 0;
6837         mddev_unlock(mddev);
6838 out:
6839         return err;
6840 }
6841 #ifdef CONFIG_COMPAT
6842 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6843                     unsigned int cmd, unsigned long arg)
6844 {
6845         switch (cmd) {
6846         case HOT_REMOVE_DISK:
6847         case HOT_ADD_DISK:
6848         case SET_DISK_FAULTY:
6849         case SET_BITMAP_FILE:
6850                 /* These take in integer arg, do not convert */
6851                 break;
6852         default:
6853                 arg = (unsigned long)compat_ptr(arg);
6854                 break;
6855         }
6856
6857         return md_ioctl(bdev, mode, cmd, arg);
6858 }
6859 #endif /* CONFIG_COMPAT */
6860
6861 static int md_open(struct block_device *bdev, fmode_t mode)
6862 {
6863         /*
6864          * Succeed if we can lock the mddev, which confirms that
6865          * it isn't being stopped right now.
6866          */
6867         struct mddev *mddev = mddev_find(bdev->bd_dev);
6868         int err;
6869
6870         if (!mddev)
6871                 return -ENODEV;
6872
6873         if (mddev->gendisk != bdev->bd_disk) {
6874                 /* we are racing with mddev_put which is discarding this
6875                  * bd_disk.
6876                  */
6877                 mddev_put(mddev);
6878                 /* Wait until bdev->bd_disk is definitely gone */
6879                 flush_workqueue(md_misc_wq);
6880                 /* Then retry the open from the top */
6881                 return -ERESTARTSYS;
6882         }
6883         BUG_ON(mddev != bdev->bd_disk->private_data);
6884
6885         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6886                 goto out;
6887
6888         err = 0;
6889         atomic_inc(&mddev->openers);
6890         clear_bit(MD_STILL_CLOSED, &mddev->flags);
6891         mutex_unlock(&mddev->open_mutex);
6892
6893         check_disk_change(bdev);
6894  out:
6895         return err;
6896 }
6897
6898 static void md_release(struct gendisk *disk, fmode_t mode)
6899 {
6900         struct mddev *mddev = disk->private_data;
6901
6902         BUG_ON(!mddev);
6903         atomic_dec(&mddev->openers);
6904         mddev_put(mddev);
6905 }
6906
6907 static int md_media_changed(struct gendisk *disk)
6908 {
6909         struct mddev *mddev = disk->private_data;
6910
6911         return mddev->changed;
6912 }
6913
6914 static int md_revalidate(struct gendisk *disk)
6915 {
6916         struct mddev *mddev = disk->private_data;
6917
6918         mddev->changed = 0;
6919         return 0;
6920 }
6921 static const struct block_device_operations md_fops =
6922 {
6923         .owner          = THIS_MODULE,
6924         .open           = md_open,
6925         .release        = md_release,
6926         .ioctl          = md_ioctl,
6927 #ifdef CONFIG_COMPAT
6928         .compat_ioctl   = md_compat_ioctl,
6929 #endif
6930         .getgeo         = md_getgeo,
6931         .media_changed  = md_media_changed,
6932         .revalidate_disk= md_revalidate,
6933 };
6934
6935 static int md_thread(void *arg)
6936 {
6937         struct md_thread *thread = arg;
6938
6939         /*
6940          * md_thread is a 'system-thread', it's priority should be very
6941          * high. We avoid resource deadlocks individually in each
6942          * raid personality. (RAID5 does preallocation) We also use RR and
6943          * the very same RT priority as kswapd, thus we will never get
6944          * into a priority inversion deadlock.
6945          *
6946          * we definitely have to have equal or higher priority than
6947          * bdflush, otherwise bdflush will deadlock if there are too
6948          * many dirty RAID5 blocks.
6949          */
6950
6951         allow_signal(SIGKILL);
6952         while (!kthread_should_stop()) {
6953
6954                 /* We need to wait INTERRUPTIBLE so that
6955                  * we don't add to the load-average.
6956                  * That means we need to be sure no signals are
6957                  * pending
6958                  */
6959                 if (signal_pending(current))
6960                         flush_signals(current);
6961
6962                 wait_event_interruptible_timeout
6963                         (thread->wqueue,
6964                          test_bit(THREAD_WAKEUP, &thread->flags)
6965                          || kthread_should_stop(),
6966                          thread->timeout);
6967
6968                 clear_bit(THREAD_WAKEUP, &thread->flags);
6969                 if (!kthread_should_stop())
6970                         thread->run(thread);
6971         }
6972
6973         return 0;
6974 }
6975
6976 void md_wakeup_thread(struct md_thread *thread)
6977 {
6978         if (thread) {
6979                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6980                 set_bit(THREAD_WAKEUP, &thread->flags);
6981                 wake_up(&thread->wqueue);
6982         }
6983 }
6984 EXPORT_SYMBOL(md_wakeup_thread);
6985
6986 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6987                 struct mddev *mddev, const char *name)
6988 {
6989         struct md_thread *thread;
6990
6991         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6992         if (!thread)
6993                 return NULL;
6994
6995         init_waitqueue_head(&thread->wqueue);
6996
6997         thread->run = run;
6998         thread->mddev = mddev;
6999         thread->timeout = MAX_SCHEDULE_TIMEOUT;
7000         thread->tsk = kthread_run(md_thread, thread,
7001                                   "%s_%s",
7002                                   mdname(thread->mddev),
7003                                   name);
7004         if (IS_ERR(thread->tsk)) {
7005                 kfree(thread);
7006                 return NULL;
7007         }
7008         return thread;
7009 }
7010 EXPORT_SYMBOL(md_register_thread);
7011
7012 void md_unregister_thread(struct md_thread **threadp)
7013 {
7014         struct md_thread *thread = *threadp;
7015         if (!thread)
7016                 return;
7017         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7018         /* Locking ensures that mddev_unlock does not wake_up a
7019          * non-existent thread
7020          */
7021         spin_lock(&pers_lock);
7022         *threadp = NULL;
7023         spin_unlock(&pers_lock);
7024
7025         kthread_stop(thread->tsk);
7026         kfree(thread);
7027 }
7028 EXPORT_SYMBOL(md_unregister_thread);
7029
7030 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7031 {
7032         if (!rdev || test_bit(Faulty, &rdev->flags))
7033                 return;
7034
7035         if (!mddev->pers || !mddev->pers->error_handler)
7036                 return;
7037         mddev->pers->error_handler(mddev,rdev);
7038         if (mddev->degraded)
7039                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7040         sysfs_notify_dirent_safe(rdev->sysfs_state);
7041         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7042         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7043         md_wakeup_thread(mddev->thread);
7044         if (mddev->event_work.func)
7045                 queue_work(md_misc_wq, &mddev->event_work);
7046         md_new_event_inintr(mddev);
7047 }
7048 EXPORT_SYMBOL(md_error);
7049
7050 /* seq_file implementation /proc/mdstat */
7051
7052 static void status_unused(struct seq_file *seq)
7053 {
7054         int i = 0;
7055         struct md_rdev *rdev;
7056
7057         seq_printf(seq, "unused devices: ");
7058
7059         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7060                 char b[BDEVNAME_SIZE];
7061                 i++;
7062                 seq_printf(seq, "%s ",
7063                               bdevname(rdev->bdev,b));
7064         }
7065         if (!i)
7066                 seq_printf(seq, "<none>");
7067
7068         seq_printf(seq, "\n");
7069 }
7070
7071 static void status_resync(struct seq_file *seq, struct mddev *mddev)
7072 {
7073         sector_t max_sectors, resync, res;
7074         unsigned long dt, db;
7075         sector_t rt;
7076         int scale;
7077         unsigned int per_milli;
7078
7079         if (mddev->curr_resync <= 3)
7080                 resync = 0;
7081         else
7082                 resync = mddev->curr_resync
7083                         - atomic_read(&mddev->recovery_active);
7084
7085         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7086             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7087                 max_sectors = mddev->resync_max_sectors;
7088         else
7089                 max_sectors = mddev->dev_sectors;
7090
7091         WARN_ON(max_sectors == 0);
7092         /* Pick 'scale' such that (resync>>scale)*1000 will fit
7093          * in a sector_t, and (max_sectors>>scale) will fit in a
7094          * u32, as those are the requirements for sector_div.
7095          * Thus 'scale' must be at least 10
7096          */
7097         scale = 10;
7098         if (sizeof(sector_t) > sizeof(unsigned long)) {
7099                 while ( max_sectors/2 > (1ULL<<(scale+32)))
7100                         scale++;
7101         }
7102         res = (resync>>scale)*1000;
7103         sector_div(res, (u32)((max_sectors>>scale)+1));
7104
7105         per_milli = res;
7106         {
7107                 int i, x = per_milli/50, y = 20-x;
7108                 seq_printf(seq, "[");
7109                 for (i = 0; i < x; i++)
7110                         seq_printf(seq, "=");
7111                 seq_printf(seq, ">");
7112                 for (i = 0; i < y; i++)
7113                         seq_printf(seq, ".");
7114                 seq_printf(seq, "] ");
7115         }
7116         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7117                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7118                     "reshape" :
7119                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7120                      "check" :
7121                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7122                       "resync" : "recovery"))),
7123                    per_milli/10, per_milli % 10,
7124                    (unsigned long long) resync/2,
7125                    (unsigned long long) max_sectors/2);
7126
7127         /*
7128          * dt: time from mark until now
7129          * db: blocks written from mark until now
7130          * rt: remaining time
7131          *
7132          * rt is a sector_t, so could be 32bit or 64bit.
7133          * So we divide before multiply in case it is 32bit and close
7134          * to the limit.
7135          * We scale the divisor (db) by 32 to avoid losing precision
7136          * near the end of resync when the number of remaining sectors
7137          * is close to 'db'.
7138          * We then divide rt by 32 after multiplying by db to compensate.
7139          * The '+1' avoids division by zero if db is very small.
7140          */
7141         dt = ((jiffies - mddev->resync_mark) / HZ);
7142         if (!dt) dt++;
7143         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7144                 - mddev->resync_mark_cnt;
7145
7146         rt = max_sectors - resync;    /* number of remaining sectors */
7147         sector_div(rt, db/32+1);
7148         rt *= dt;
7149         rt >>= 5;
7150
7151         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7152                    ((unsigned long)rt % 60)/6);
7153
7154         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7155 }
7156
7157 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7158 {
7159         struct list_head *tmp;
7160         loff_t l = *pos;
7161         struct mddev *mddev;
7162
7163         if (l >= 0x10000)
7164                 return NULL;
7165         if (!l--)
7166                 /* header */
7167                 return (void*)1;
7168
7169         spin_lock(&all_mddevs_lock);
7170         list_for_each(tmp,&all_mddevs)
7171                 if (!l--) {
7172                         mddev = list_entry(tmp, struct mddev, all_mddevs);
7173                         mddev_get(mddev);
7174                         spin_unlock(&all_mddevs_lock);
7175                         return mddev;
7176                 }
7177         spin_unlock(&all_mddevs_lock);
7178         if (!l--)
7179                 return (void*)2;/* tail */
7180         return NULL;
7181 }
7182
7183 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7184 {
7185         struct list_head *tmp;
7186         struct mddev *next_mddev, *mddev = v;
7187
7188         ++*pos;
7189         if (v == (void*)2)
7190                 return NULL;
7191
7192         spin_lock(&all_mddevs_lock);
7193         if (v == (void*)1)
7194                 tmp = all_mddevs.next;
7195         else
7196                 tmp = mddev->all_mddevs.next;
7197         if (tmp != &all_mddevs)
7198                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7199         else {
7200                 next_mddev = (void*)2;
7201                 *pos = 0x10000;
7202         }
7203         spin_unlock(&all_mddevs_lock);
7204
7205         if (v != (void*)1)
7206                 mddev_put(mddev);
7207         return next_mddev;
7208
7209 }
7210
7211 static void md_seq_stop(struct seq_file *seq, void *v)
7212 {
7213         struct mddev *mddev = v;
7214
7215         if (mddev && v != (void*)1 && v != (void*)2)
7216                 mddev_put(mddev);
7217 }
7218
7219 static int md_seq_show(struct seq_file *seq, void *v)
7220 {
7221         struct mddev *mddev = v;
7222         sector_t sectors;
7223         struct md_rdev *rdev;
7224
7225         if (v == (void*)1) {
7226                 struct md_personality *pers;
7227                 seq_printf(seq, "Personalities : ");
7228                 spin_lock(&pers_lock);
7229                 list_for_each_entry(pers, &pers_list, list)
7230                         seq_printf(seq, "[%s] ", pers->name);
7231
7232                 spin_unlock(&pers_lock);
7233                 seq_printf(seq, "\n");
7234                 seq->poll_event = atomic_read(&md_event_count);
7235                 return 0;
7236         }
7237         if (v == (void*)2) {
7238                 status_unused(seq);
7239                 return 0;
7240         }
7241
7242         spin_lock(&mddev->lock);
7243         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7244                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7245                                                 mddev->pers ? "" : "in");
7246                 if (mddev->pers) {
7247                         if (mddev->ro==1)
7248                                 seq_printf(seq, " (read-only)");
7249                         if (mddev->ro==2)
7250                                 seq_printf(seq, " (auto-read-only)");
7251                         seq_printf(seq, " %s", mddev->pers->name);
7252                 }
7253
7254                 sectors = 0;
7255                 rcu_read_lock();
7256                 rdev_for_each_rcu(rdev, mddev) {
7257                         char b[BDEVNAME_SIZE];
7258                         seq_printf(seq, " %s[%d]",
7259                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7260                         if (test_bit(WriteMostly, &rdev->flags))
7261                                 seq_printf(seq, "(W)");
7262                         if (test_bit(Faulty, &rdev->flags)) {
7263                                 seq_printf(seq, "(F)");
7264                                 continue;
7265                         }
7266                         if (rdev->raid_disk < 0)
7267                                 seq_printf(seq, "(S)"); /* spare */
7268                         if (test_bit(Replacement, &rdev->flags))
7269                                 seq_printf(seq, "(R)");
7270                         sectors += rdev->sectors;
7271                 }
7272                 rcu_read_unlock();
7273
7274                 if (!list_empty(&mddev->disks)) {
7275                         if (mddev->pers)
7276                                 seq_printf(seq, "\n      %llu blocks",
7277                                            (unsigned long long)
7278                                            mddev->array_sectors / 2);
7279                         else
7280                                 seq_printf(seq, "\n      %llu blocks",
7281                                            (unsigned long long)sectors / 2);
7282                 }
7283                 if (mddev->persistent) {
7284                         if (mddev->major_version != 0 ||
7285                             mddev->minor_version != 90) {
7286                                 seq_printf(seq," super %d.%d",
7287                                            mddev->major_version,
7288                                            mddev->minor_version);
7289                         }
7290                 } else if (mddev->external)
7291                         seq_printf(seq, " super external:%s",
7292                                    mddev->metadata_type);
7293                 else
7294                         seq_printf(seq, " super non-persistent");
7295
7296                 if (mddev->pers) {
7297                         mddev->pers->status(seq, mddev);
7298                         seq_printf(seq, "\n      ");
7299                         if (mddev->pers->sync_request) {
7300                                 if (mddev->curr_resync > 2) {
7301                                         status_resync(seq, mddev);
7302                                         seq_printf(seq, "\n      ");
7303                                 } else if (mddev->curr_resync >= 1)
7304                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7305                                 else if (mddev->recovery_cp < MaxSector)
7306                                         seq_printf(seq, "\tresync=PENDING\n      ");
7307                         }
7308                 } else
7309                         seq_printf(seq, "\n       ");
7310
7311                 bitmap_status(seq, mddev->bitmap);
7312
7313                 seq_printf(seq, "\n");
7314         }
7315         spin_unlock(&mddev->lock);
7316
7317         return 0;
7318 }
7319
7320 static const struct seq_operations md_seq_ops = {
7321         .start  = md_seq_start,
7322         .next   = md_seq_next,
7323         .stop   = md_seq_stop,
7324         .show   = md_seq_show,
7325 };
7326
7327 static int md_seq_open(struct inode *inode, struct file *file)
7328 {
7329         struct seq_file *seq;
7330         int error;
7331
7332         error = seq_open(file, &md_seq_ops);
7333         if (error)
7334                 return error;
7335
7336         seq = file->private_data;
7337         seq->poll_event = atomic_read(&md_event_count);
7338         return error;
7339 }
7340
7341 static int md_unloading;
7342 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7343 {
7344         struct seq_file *seq = filp->private_data;
7345         int mask;
7346
7347         if (md_unloading)
7348                 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7349         poll_wait(filp, &md_event_waiters, wait);
7350
7351         /* always allow read */
7352         mask = POLLIN | POLLRDNORM;
7353
7354         if (seq->poll_event != atomic_read(&md_event_count))
7355                 mask |= POLLERR | POLLPRI;
7356         return mask;
7357 }
7358
7359 static const struct file_operations md_seq_fops = {
7360         .owner          = THIS_MODULE,
7361         .open           = md_seq_open,
7362         .read           = seq_read,
7363         .llseek         = seq_lseek,
7364         .release        = seq_release_private,
7365         .poll           = mdstat_poll,
7366 };
7367
7368 int register_md_personality(struct md_personality *p)
7369 {
7370         printk(KERN_INFO "md: %s personality registered for level %d\n",
7371                                                 p->name, p->level);
7372         spin_lock(&pers_lock);
7373         list_add_tail(&p->list, &pers_list);
7374         spin_unlock(&pers_lock);
7375         return 0;
7376 }
7377 EXPORT_SYMBOL(register_md_personality);
7378
7379 int unregister_md_personality(struct md_personality *p)
7380 {
7381         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7382         spin_lock(&pers_lock);
7383         list_del_init(&p->list);
7384         spin_unlock(&pers_lock);
7385         return 0;
7386 }
7387 EXPORT_SYMBOL(unregister_md_personality);
7388
7389 int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
7390 {
7391         if (md_cluster_ops != NULL)
7392                 return -EALREADY;
7393         spin_lock(&pers_lock);
7394         md_cluster_ops = ops;
7395         md_cluster_mod = module;
7396         spin_unlock(&pers_lock);
7397         return 0;
7398 }
7399 EXPORT_SYMBOL(register_md_cluster_operations);
7400
7401 int unregister_md_cluster_operations(void)
7402 {
7403         spin_lock(&pers_lock);
7404         md_cluster_ops = NULL;
7405         spin_unlock(&pers_lock);
7406         return 0;
7407 }
7408 EXPORT_SYMBOL(unregister_md_cluster_operations);
7409
7410 int md_setup_cluster(struct mddev *mddev, int nodes)
7411 {
7412         int err;
7413
7414         err = request_module("md-cluster");
7415         if (err) {
7416                 pr_err("md-cluster module not found.\n");
7417                 return err;
7418         }
7419
7420         spin_lock(&pers_lock);
7421         if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7422                 spin_unlock(&pers_lock);
7423                 return -ENOENT;
7424         }
7425         spin_unlock(&pers_lock);
7426
7427         return md_cluster_ops->join(mddev, nodes);
7428 }
7429
7430 void md_cluster_stop(struct mddev *mddev)
7431 {
7432         if (!md_cluster_ops)
7433                 return;
7434         md_cluster_ops->leave(mddev);
7435         module_put(md_cluster_mod);
7436 }
7437
7438 static int is_mddev_idle(struct mddev *mddev, int init)
7439 {
7440         struct md_rdev *rdev;
7441         int idle;
7442         int curr_events;
7443
7444         idle = 1;
7445         rcu_read_lock();
7446         rdev_for_each_rcu(rdev, mddev) {
7447                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7448                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7449                               (int)part_stat_read(&disk->part0, sectors[1]) -
7450                               atomic_read(&disk->sync_io);
7451                 /* sync IO will cause sync_io to increase before the disk_stats
7452                  * as sync_io is counted when a request starts, and
7453                  * disk_stats is counted when it completes.
7454                  * So resync activity will cause curr_events to be smaller than
7455                  * when there was no such activity.
7456                  * non-sync IO will cause disk_stat to increase without
7457                  * increasing sync_io so curr_events will (eventually)
7458                  * be larger than it was before.  Once it becomes
7459                  * substantially larger, the test below will cause
7460                  * the array to appear non-idle, and resync will slow
7461                  * down.
7462                  * If there is a lot of outstanding resync activity when
7463                  * we set last_event to curr_events, then all that activity
7464                  * completing might cause the array to appear non-idle
7465                  * and resync will be slowed down even though there might
7466                  * not have been non-resync activity.  This will only
7467                  * happen once though.  'last_events' will soon reflect
7468                  * the state where there is little or no outstanding
7469                  * resync requests, and further resync activity will
7470                  * always make curr_events less than last_events.
7471                  *
7472                  */
7473                 if (init || curr_events - rdev->last_events > 64) {
7474                         rdev->last_events = curr_events;
7475                         idle = 0;
7476                 }
7477         }
7478         rcu_read_unlock();
7479         return idle;
7480 }
7481
7482 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7483 {
7484         /* another "blocks" (512byte) blocks have been synced */
7485         atomic_sub(blocks, &mddev->recovery_active);
7486         wake_up(&mddev->recovery_wait);
7487         if (!ok) {
7488                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7489                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7490                 md_wakeup_thread(mddev->thread);
7491                 // stop recovery, signal do_sync ....
7492         }
7493 }
7494 EXPORT_SYMBOL(md_done_sync);
7495
7496 /* md_write_start(mddev, bi)
7497  * If we need to update some array metadata (e.g. 'active' flag
7498  * in superblock) before writing, schedule a superblock update
7499  * and wait for it to complete.
7500  */
7501 void md_write_start(struct mddev *mddev, struct bio *bi)
7502 {
7503         int did_change = 0;
7504         if (bio_data_dir(bi) != WRITE)
7505                 return;
7506
7507         BUG_ON(mddev->ro == 1);
7508         if (mddev->ro == 2) {
7509                 /* need to switch to read/write */
7510                 mddev->ro = 0;
7511                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7512                 md_wakeup_thread(mddev->thread);
7513                 md_wakeup_thread(mddev->sync_thread);
7514                 did_change = 1;
7515         }
7516         atomic_inc(&mddev->writes_pending);
7517         if (mddev->safemode == 1)
7518                 mddev->safemode = 0;
7519         if (mddev->in_sync) {
7520                 spin_lock(&mddev->lock);
7521                 if (mddev->in_sync) {
7522                         mddev->in_sync = 0;
7523                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7524                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7525                         md_wakeup_thread(mddev->thread);
7526                         did_change = 1;
7527                 }
7528                 spin_unlock(&mddev->lock);
7529         }
7530         if (did_change)
7531                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7532         wait_event(mddev->sb_wait,
7533                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7534 }
7535 EXPORT_SYMBOL(md_write_start);
7536
7537 void md_write_end(struct mddev *mddev)
7538 {
7539         if (atomic_dec_and_test(&mddev->writes_pending)) {
7540                 if (mddev->safemode == 2)
7541                         md_wakeup_thread(mddev->thread);
7542                 else if (mddev->safemode_delay)
7543                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7544         }
7545 }
7546 EXPORT_SYMBOL(md_write_end);
7547
7548 /* md_allow_write(mddev)
7549  * Calling this ensures that the array is marked 'active' so that writes
7550  * may proceed without blocking.  It is important to call this before
7551  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7552  * Must be called with mddev_lock held.
7553  *
7554  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7555  * is dropped, so return -EAGAIN after notifying userspace.
7556  */
7557 int md_allow_write(struct mddev *mddev)
7558 {
7559         if (!mddev->pers)
7560                 return 0;
7561         if (mddev->ro)
7562                 return 0;
7563         if (!mddev->pers->sync_request)
7564                 return 0;
7565
7566         spin_lock(&mddev->lock);
7567         if (mddev->in_sync) {
7568                 mddev->in_sync = 0;
7569                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7570                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7571                 if (mddev->safemode_delay &&
7572                     mddev->safemode == 0)
7573                         mddev->safemode = 1;
7574                 spin_unlock(&mddev->lock);
7575                 if (mddev_is_clustered(mddev))
7576                         md_cluster_ops->metadata_update_start(mddev);
7577                 md_update_sb(mddev, 0);
7578                 if (mddev_is_clustered(mddev))
7579                         md_cluster_ops->metadata_update_finish(mddev);
7580                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7581         } else
7582                 spin_unlock(&mddev->lock);
7583
7584         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7585                 return -EAGAIN;
7586         else
7587                 return 0;
7588 }
7589 EXPORT_SYMBOL_GPL(md_allow_write);
7590
7591 #define SYNC_MARKS      10
7592 #define SYNC_MARK_STEP  (3*HZ)
7593 #define UPDATE_FREQUENCY (5*60*HZ)
7594 void md_do_sync(struct md_thread *thread)
7595 {
7596         struct mddev *mddev = thread->mddev;
7597         struct mddev *mddev2;
7598         unsigned int currspeed = 0,
7599                  window;
7600         sector_t max_sectors,j, io_sectors, recovery_done;
7601         unsigned long mark[SYNC_MARKS];
7602         unsigned long update_time;
7603         sector_t mark_cnt[SYNC_MARKS];
7604         int last_mark,m;
7605         struct list_head *tmp;
7606         sector_t last_check;
7607         int skipped = 0;
7608         struct md_rdev *rdev;
7609         char *desc, *action = NULL;
7610         struct blk_plug plug;
7611
7612         /* just incase thread restarts... */
7613         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7614                 return;
7615         if (mddev->ro) {/* never try to sync a read-only array */
7616                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7617                 return;
7618         }
7619
7620         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7621                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7622                         desc = "data-check";
7623                         action = "check";
7624                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7625                         desc = "requested-resync";
7626                         action = "repair";
7627                 } else
7628                         desc = "resync";
7629         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7630                 desc = "reshape";
7631         else
7632                 desc = "recovery";
7633
7634         mddev->last_sync_action = action ?: desc;
7635
7636         /* we overload curr_resync somewhat here.
7637          * 0 == not engaged in resync at all
7638          * 2 == checking that there is no conflict with another sync
7639          * 1 == like 2, but have yielded to allow conflicting resync to
7640          *              commense
7641          * other == active in resync - this many blocks
7642          *
7643          * Before starting a resync we must have set curr_resync to
7644          * 2, and then checked that every "conflicting" array has curr_resync
7645          * less than ours.  When we find one that is the same or higher
7646          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7647          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7648          * This will mean we have to start checking from the beginning again.
7649          *
7650          */
7651
7652         do {
7653                 mddev->curr_resync = 2;
7654
7655         try_again:
7656                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7657                         goto skip;
7658                 for_each_mddev(mddev2, tmp) {
7659                         if (mddev2 == mddev)
7660                                 continue;
7661                         if (!mddev->parallel_resync
7662                         &&  mddev2->curr_resync
7663                         &&  match_mddev_units(mddev, mddev2)) {
7664                                 DEFINE_WAIT(wq);
7665                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7666                                         /* arbitrarily yield */
7667                                         mddev->curr_resync = 1;
7668                                         wake_up(&resync_wait);
7669                                 }
7670                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7671                                         /* no need to wait here, we can wait the next
7672                                          * time 'round when curr_resync == 2
7673                                          */
7674                                         continue;
7675                                 /* We need to wait 'interruptible' so as not to
7676                                  * contribute to the load average, and not to
7677                                  * be caught by 'softlockup'
7678                                  */
7679                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7680                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7681                                     mddev2->curr_resync >= mddev->curr_resync) {
7682                                         printk(KERN_INFO "md: delaying %s of %s"
7683                                                " until %s has finished (they"
7684                                                " share one or more physical units)\n",
7685                                                desc, mdname(mddev), mdname(mddev2));
7686                                         mddev_put(mddev2);
7687                                         if (signal_pending(current))
7688                                                 flush_signals(current);
7689                                         schedule();
7690                                         finish_wait(&resync_wait, &wq);
7691                                         goto try_again;
7692                                 }
7693                                 finish_wait(&resync_wait, &wq);
7694                         }
7695                 }
7696         } while (mddev->curr_resync < 2);
7697
7698         j = 0;
7699         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7700                 /* resync follows the size requested by the personality,
7701                  * which defaults to physical size, but can be virtual size
7702                  */
7703                 max_sectors = mddev->resync_max_sectors;
7704                 atomic64_set(&mddev->resync_mismatches, 0);
7705                 /* we don't use the checkpoint if there's a bitmap */
7706                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7707                         j = mddev->resync_min;
7708                 else if (!mddev->bitmap)
7709                         j = mddev->recovery_cp;
7710
7711         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7712                 max_sectors = mddev->resync_max_sectors;
7713         else {
7714                 /* recovery follows the physical size of devices */
7715                 max_sectors = mddev->dev_sectors;
7716                 j = MaxSector;
7717                 rcu_read_lock();
7718                 rdev_for_each_rcu(rdev, mddev)
7719                         if (rdev->raid_disk >= 0 &&
7720                             !test_bit(Faulty, &rdev->flags) &&
7721                             !test_bit(In_sync, &rdev->flags) &&
7722                             rdev->recovery_offset < j)
7723                                 j = rdev->recovery_offset;
7724                 rcu_read_unlock();
7725
7726                 /* If there is a bitmap, we need to make sure all
7727                  * writes that started before we added a spare
7728                  * complete before we start doing a recovery.
7729                  * Otherwise the write might complete and (via
7730                  * bitmap_endwrite) set a bit in the bitmap after the
7731                  * recovery has checked that bit and skipped that
7732                  * region.
7733                  */
7734                 if (mddev->bitmap) {
7735                         mddev->pers->quiesce(mddev, 1);
7736                         mddev->pers->quiesce(mddev, 0);
7737                 }
7738         }
7739
7740         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7741         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7742                 " %d KB/sec/disk.\n", speed_min(mddev));
7743         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7744                "(but not more than %d KB/sec) for %s.\n",
7745                speed_max(mddev), desc);
7746
7747         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7748
7749         io_sectors = 0;
7750         for (m = 0; m < SYNC_MARKS; m++) {
7751                 mark[m] = jiffies;
7752                 mark_cnt[m] = io_sectors;
7753         }
7754         last_mark = 0;
7755         mddev->resync_mark = mark[last_mark];
7756         mddev->resync_mark_cnt = mark_cnt[last_mark];
7757
7758         /*
7759          * Tune reconstruction:
7760          */
7761         window = 32*(PAGE_SIZE/512);
7762         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7763                 window/2, (unsigned long long)max_sectors/2);
7764
7765         atomic_set(&mddev->recovery_active, 0);
7766         last_check = 0;
7767
7768         if (j>2) {
7769                 printk(KERN_INFO
7770                        "md: resuming %s of %s from checkpoint.\n",
7771                        desc, mdname(mddev));
7772                 mddev->curr_resync = j;
7773         } else
7774                 mddev->curr_resync = 3; /* no longer delayed */
7775         mddev->curr_resync_completed = j;
7776         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7777         md_new_event(mddev);
7778         update_time = jiffies;
7779
7780         if (mddev_is_clustered(mddev))
7781                 md_cluster_ops->resync_start(mddev, j, max_sectors);
7782
7783         blk_start_plug(&plug);
7784         while (j < max_sectors) {
7785                 sector_t sectors;
7786
7787                 skipped = 0;
7788
7789                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7790                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7791                       (mddev->curr_resync - mddev->curr_resync_completed)
7792                       > (max_sectors >> 4)) ||
7793                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7794                      (j - mddev->curr_resync_completed)*2
7795                      >= mddev->resync_max - mddev->curr_resync_completed
7796                             )) {
7797                         /* time to update curr_resync_completed */
7798                         wait_event(mddev->recovery_wait,
7799                                    atomic_read(&mddev->recovery_active) == 0);
7800                         mddev->curr_resync_completed = j;
7801                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7802                             j > mddev->recovery_cp)
7803                                 mddev->recovery_cp = j;
7804                         update_time = jiffies;
7805                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7806                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7807                 }
7808
7809                 while (j >= mddev->resync_max &&
7810                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7811                         /* As this condition is controlled by user-space,
7812                          * we can block indefinitely, so use '_interruptible'
7813                          * to avoid triggering warnings.
7814                          */
7815                         flush_signals(current); /* just in case */
7816                         wait_event_interruptible(mddev->recovery_wait,
7817                                                  mddev->resync_max > j
7818                                                  || test_bit(MD_RECOVERY_INTR,
7819                                                              &mddev->recovery));
7820                 }
7821
7822                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7823                         break;
7824
7825                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7826                                                   currspeed < speed_min(mddev));
7827                 if (sectors == 0) {
7828                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7829                         break;
7830                 }
7831
7832                 if (!skipped) { /* actual IO requested */
7833                         io_sectors += sectors;
7834                         atomic_add(sectors, &mddev->recovery_active);
7835                 }
7836
7837                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7838                         break;
7839
7840                 j += sectors;
7841                 if (j > 2)
7842                         mddev->curr_resync = j;
7843                 if (mddev_is_clustered(mddev))
7844                         md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7845                 mddev->curr_mark_cnt = io_sectors;
7846                 if (last_check == 0)
7847                         /* this is the earliest that rebuild will be
7848                          * visible in /proc/mdstat
7849                          */
7850                         md_new_event(mddev);
7851
7852                 if (last_check + window > io_sectors || j == max_sectors)
7853                         continue;
7854
7855                 last_check = io_sectors;
7856         repeat:
7857                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7858                         /* step marks */
7859                         int next = (last_mark+1) % SYNC_MARKS;
7860
7861                         mddev->resync_mark = mark[next];
7862                         mddev->resync_mark_cnt = mark_cnt[next];
7863                         mark[next] = jiffies;
7864                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7865                         last_mark = next;
7866                 }
7867
7868                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7869                         break;
7870
7871                 /*
7872                  * this loop exits only if either when we are slower than
7873                  * the 'hard' speed limit, or the system was IO-idle for
7874                  * a jiffy.
7875                  * the system might be non-idle CPU-wise, but we only care
7876                  * about not overloading the IO subsystem. (things like an
7877                  * e2fsck being done on the RAID array should execute fast)
7878                  */
7879                 cond_resched();
7880
7881                 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7882                 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7883                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7884
7885                 if (currspeed > speed_min(mddev)) {
7886                         if ((currspeed > speed_max(mddev)) ||
7887                                         !is_mddev_idle(mddev, 0)) {
7888                                 msleep(500);
7889                                 goto repeat;
7890                         }
7891                 }
7892         }
7893         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7894                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7895                ? "interrupted" : "done");
7896         /*
7897          * this also signals 'finished resyncing' to md_stop
7898          */
7899         blk_finish_plug(&plug);
7900         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7901
7902         /* tell personality that we are finished */
7903         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7904
7905         if (mddev_is_clustered(mddev))
7906                 md_cluster_ops->resync_finish(mddev);
7907
7908         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7909             mddev->curr_resync > 2) {
7910                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7911                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7912                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7913                                         printk(KERN_INFO
7914                                                "md: checkpointing %s of %s.\n",
7915                                                desc, mdname(mddev));
7916                                         if (test_bit(MD_RECOVERY_ERROR,
7917                                                 &mddev->recovery))
7918                                                 mddev->recovery_cp =
7919                                                         mddev->curr_resync_completed;
7920                                         else
7921                                                 mddev->recovery_cp =
7922                                                         mddev->curr_resync;
7923                                 }
7924                         } else
7925                                 mddev->recovery_cp = MaxSector;
7926                 } else {
7927                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7928                                 mddev->curr_resync = MaxSector;
7929                         rcu_read_lock();
7930                         rdev_for_each_rcu(rdev, mddev)
7931                                 if (rdev->raid_disk >= 0 &&
7932                                     mddev->delta_disks >= 0 &&
7933                                     !test_bit(Faulty, &rdev->flags) &&
7934                                     !test_bit(In_sync, &rdev->flags) &&
7935                                     rdev->recovery_offset < mddev->curr_resync)
7936                                         rdev->recovery_offset = mddev->curr_resync;
7937                         rcu_read_unlock();
7938                 }
7939         }
7940  skip:
7941         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7942
7943         spin_lock(&mddev->lock);
7944         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7945                 /* We completed so min/max setting can be forgotten if used. */
7946                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7947                         mddev->resync_min = 0;
7948                 mddev->resync_max = MaxSector;
7949         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7950                 mddev->resync_min = mddev->curr_resync_completed;
7951         mddev->curr_resync = 0;
7952         spin_unlock(&mddev->lock);
7953
7954         wake_up(&resync_wait);
7955         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7956         md_wakeup_thread(mddev->thread);
7957         return;
7958 }
7959 EXPORT_SYMBOL_GPL(md_do_sync);
7960
7961 static int remove_and_add_spares(struct mddev *mddev,
7962                                  struct md_rdev *this)
7963 {
7964         struct md_rdev *rdev;
7965         int spares = 0;
7966         int removed = 0;
7967
7968         rdev_for_each(rdev, mddev)
7969                 if ((this == NULL || rdev == this) &&
7970                     rdev->raid_disk >= 0 &&
7971                     !test_bit(Blocked, &rdev->flags) &&
7972                     (test_bit(Faulty, &rdev->flags) ||
7973                      ! test_bit(In_sync, &rdev->flags)) &&
7974                     atomic_read(&rdev->nr_pending)==0) {
7975                         if (mddev->pers->hot_remove_disk(
7976                                     mddev, rdev) == 0) {
7977                                 sysfs_unlink_rdev(mddev, rdev);
7978                                 rdev->raid_disk = -1;
7979                                 removed++;
7980                         }
7981                 }
7982         if (removed && mddev->kobj.sd)
7983                 sysfs_notify(&mddev->kobj, NULL, "degraded");
7984
7985         if (this)
7986                 goto no_add;
7987
7988         rdev_for_each(rdev, mddev) {
7989                 if (rdev->raid_disk >= 0 &&
7990                     !test_bit(In_sync, &rdev->flags) &&
7991                     !test_bit(Faulty, &rdev->flags))
7992                         spares++;
7993                 if (rdev->raid_disk >= 0)
7994                         continue;
7995                 if (test_bit(Faulty, &rdev->flags))
7996                         continue;
7997                 if (mddev->ro &&
7998                     ! (rdev->saved_raid_disk >= 0 &&
7999                        !test_bit(Bitmap_sync, &rdev->flags)))
8000                         continue;
8001
8002                 if (rdev->saved_raid_disk < 0)
8003                         rdev->recovery_offset = 0;
8004                 if (mddev->pers->
8005                     hot_add_disk(mddev, rdev) == 0) {
8006                         if (sysfs_link_rdev(mddev, rdev))
8007                                 /* failure here is OK */;
8008                         spares++;
8009                         md_new_event(mddev);
8010                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8011                 }
8012         }
8013 no_add:
8014         if (removed)
8015                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8016         return spares;
8017 }
8018
8019 static void md_start_sync(struct work_struct *ws)
8020 {
8021         struct mddev *mddev = container_of(ws, struct mddev, del_work);
8022
8023         mddev->sync_thread = md_register_thread(md_do_sync,
8024                                                 mddev,
8025                                                 "resync");
8026         if (!mddev->sync_thread) {
8027                 printk(KERN_ERR "%s: could not start resync"
8028                        " thread...\n",
8029                        mdname(mddev));
8030                 /* leave the spares where they are, it shouldn't hurt */
8031                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8032                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8033                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8034                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8035                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8036                 wake_up(&resync_wait);
8037                 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8038                                        &mddev->recovery))
8039                         if (mddev->sysfs_action)
8040                                 sysfs_notify_dirent_safe(mddev->sysfs_action);
8041         } else
8042                 md_wakeup_thread(mddev->sync_thread);
8043         sysfs_notify_dirent_safe(mddev->sysfs_action);
8044         md_new_event(mddev);
8045 }
8046
8047 /*
8048  * This routine is regularly called by all per-raid-array threads to
8049  * deal with generic issues like resync and super-block update.
8050  * Raid personalities that don't have a thread (linear/raid0) do not
8051  * need this as they never do any recovery or update the superblock.
8052  *
8053  * It does not do any resync itself, but rather "forks" off other threads
8054  * to do that as needed.
8055  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8056  * "->recovery" and create a thread at ->sync_thread.
8057  * When the thread finishes it sets MD_RECOVERY_DONE
8058  * and wakeups up this thread which will reap the thread and finish up.
8059  * This thread also removes any faulty devices (with nr_pending == 0).
8060  *
8061  * The overall approach is:
8062  *  1/ if the superblock needs updating, update it.
8063  *  2/ If a recovery thread is running, don't do anything else.
8064  *  3/ If recovery has finished, clean up, possibly marking spares active.
8065  *  4/ If there are any faulty devices, remove them.
8066  *  5/ If array is degraded, try to add spares devices
8067  *  6/ If array has spares or is not in-sync, start a resync thread.
8068  */
8069 void md_check_recovery(struct mddev *mddev)
8070 {
8071         if (mddev->suspended)
8072                 return;
8073
8074         if (mddev->bitmap)
8075                 bitmap_daemon_work(mddev);
8076
8077         if (signal_pending(current)) {
8078                 if (mddev->pers->sync_request && !mddev->external) {
8079                         printk(KERN_INFO "md: %s in immediate safe mode\n",
8080                                mdname(mddev));
8081                         mddev->safemode = 2;
8082                 }
8083                 flush_signals(current);
8084         }
8085
8086         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8087                 return;
8088         if ( ! (
8089                 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8090                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8091                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8092                 (mddev->external == 0 && mddev->safemode == 1) ||
8093                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8094                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8095                 ))
8096                 return;
8097
8098         if (mddev_trylock(mddev)) {
8099                 int spares = 0;
8100
8101                 if (mddev->ro) {
8102                         /* On a read-only array we can:
8103                          * - remove failed devices
8104                          * - add already-in_sync devices if the array itself
8105                          *   is in-sync.
8106                          * As we only add devices that are already in-sync,
8107                          * we can activate the spares immediately.
8108                          */
8109                         remove_and_add_spares(mddev, NULL);
8110                         /* There is no thread, but we need to call
8111                          * ->spare_active and clear saved_raid_disk
8112                          */
8113                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8114                         md_reap_sync_thread(mddev);
8115                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8116                         goto unlock;
8117                 }
8118
8119                 if (!mddev->external) {
8120                         int did_change = 0;
8121                         spin_lock(&mddev->lock);
8122                         if (mddev->safemode &&
8123                             !atomic_read(&mddev->writes_pending) &&
8124                             !mddev->in_sync &&
8125                             mddev->recovery_cp == MaxSector) {
8126                                 mddev->in_sync = 1;
8127                                 did_change = 1;
8128                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8129                         }
8130                         if (mddev->safemode == 1)
8131                                 mddev->safemode = 0;
8132                         spin_unlock(&mddev->lock);
8133                         if (did_change)
8134                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
8135                 }
8136
8137                 if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8138                         if (mddev_is_clustered(mddev))
8139                                 md_cluster_ops->metadata_update_start(mddev);
8140                         md_update_sb(mddev, 0);
8141                         if (mddev_is_clustered(mddev))
8142                                 md_cluster_ops->metadata_update_finish(mddev);
8143                 }
8144
8145                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8146                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8147                         /* resync/recovery still happening */
8148                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8149                         goto unlock;
8150                 }
8151                 if (mddev->sync_thread) {
8152                         md_reap_sync_thread(mddev);
8153                         goto unlock;
8154                 }
8155                 /* Set RUNNING before clearing NEEDED to avoid
8156                  * any transients in the value of "sync_action".
8157                  */
8158                 mddev->curr_resync_completed = 0;
8159                 spin_lock(&mddev->lock);
8160                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8161                 spin_unlock(&mddev->lock);
8162                 /* Clear some bits that don't mean anything, but
8163                  * might be left set
8164                  */
8165                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8166                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8167
8168                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8169                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8170                         goto not_running;
8171                 /* no recovery is running.
8172                  * remove any failed drives, then
8173                  * add spares if possible.
8174                  * Spares are also removed and re-added, to allow
8175                  * the personality to fail the re-add.
8176                  */
8177
8178                 if (mddev->reshape_position != MaxSector) {
8179                         if (mddev->pers->check_reshape == NULL ||
8180                             mddev->pers->check_reshape(mddev) != 0)
8181                                 /* Cannot proceed */
8182                                 goto not_running;
8183                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8184                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8185                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8186                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8187                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8188                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8189                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8190                 } else if (mddev->recovery_cp < MaxSector) {
8191                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8192                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8193                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8194                         /* nothing to be done ... */
8195                         goto not_running;
8196
8197                 if (mddev->pers->sync_request) {
8198                         if (spares) {
8199                                 /* We are adding a device or devices to an array
8200                                  * which has the bitmap stored on all devices.
8201                                  * So make sure all bitmap pages get written
8202                                  */
8203                                 bitmap_write_all(mddev->bitmap);
8204                         }
8205                         INIT_WORK(&mddev->del_work, md_start_sync);
8206                         queue_work(md_misc_wq, &mddev->del_work);
8207                         goto unlock;
8208                 }
8209         not_running:
8210                 if (!mddev->sync_thread) {
8211                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8212                         wake_up(&resync_wait);
8213                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8214                                                &mddev->recovery))
8215                                 if (mddev->sysfs_action)
8216                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
8217                 }
8218         unlock:
8219                 wake_up(&mddev->sb_wait);
8220                 mddev_unlock(mddev);
8221         }
8222 }
8223 EXPORT_SYMBOL(md_check_recovery);
8224
8225 void md_reap_sync_thread(struct mddev *mddev)
8226 {
8227         struct md_rdev *rdev;
8228
8229         /* resync has finished, collect result */
8230         md_unregister_thread(&mddev->sync_thread);
8231         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8232             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8233                 /* success...*/
8234                 /* activate any spares */
8235                 if (mddev->pers->spare_active(mddev)) {
8236                         sysfs_notify(&mddev->kobj, NULL,
8237                                      "degraded");
8238                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8239                 }
8240         }
8241         if (mddev_is_clustered(mddev))
8242                 md_cluster_ops->metadata_update_start(mddev);
8243         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8244             mddev->pers->finish_reshape)
8245                 mddev->pers->finish_reshape(mddev);
8246
8247         /* If array is no-longer degraded, then any saved_raid_disk
8248          * information must be scrapped.
8249          */
8250         if (!mddev->degraded)
8251                 rdev_for_each(rdev, mddev)
8252                         rdev->saved_raid_disk = -1;
8253
8254         md_update_sb(mddev, 1);
8255         if (mddev_is_clustered(mddev))
8256                 md_cluster_ops->metadata_update_finish(mddev);
8257         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8258         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8259         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8260         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8261         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8262         wake_up(&resync_wait);
8263         /* flag recovery needed just to double check */
8264         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8265         sysfs_notify_dirent_safe(mddev->sysfs_action);
8266         md_new_event(mddev);
8267         if (mddev->event_work.func)
8268                 queue_work(md_misc_wq, &mddev->event_work);
8269 }
8270 EXPORT_SYMBOL(md_reap_sync_thread);
8271
8272 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8273 {
8274         sysfs_notify_dirent_safe(rdev->sysfs_state);
8275         wait_event_timeout(rdev->blocked_wait,
8276                            !test_bit(Blocked, &rdev->flags) &&
8277                            !test_bit(BlockedBadBlocks, &rdev->flags),
8278                            msecs_to_jiffies(5000));
8279         rdev_dec_pending(rdev, mddev);
8280 }
8281 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8282
8283 void md_finish_reshape(struct mddev *mddev)
8284 {
8285         /* called be personality module when reshape completes. */
8286         struct md_rdev *rdev;
8287
8288         rdev_for_each(rdev, mddev) {
8289                 if (rdev->data_offset > rdev->new_data_offset)
8290                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8291                 else
8292                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8293                 rdev->data_offset = rdev->new_data_offset;
8294         }
8295 }
8296 EXPORT_SYMBOL(md_finish_reshape);
8297
8298 /* Bad block management.
8299  * We can record which blocks on each device are 'bad' and so just
8300  * fail those blocks, or that stripe, rather than the whole device.
8301  * Entries in the bad-block table are 64bits wide.  This comprises:
8302  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8303  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8304  *  A 'shift' can be set so that larger blocks are tracked and
8305  *  consequently larger devices can be covered.
8306  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8307  *
8308  * Locking of the bad-block table uses a seqlock so md_is_badblock
8309  * might need to retry if it is very unlucky.
8310  * We will sometimes want to check for bad blocks in a bi_end_io function,
8311  * so we use the write_seqlock_irq variant.
8312  *
8313  * When looking for a bad block we specify a range and want to
8314  * know if any block in the range is bad.  So we binary-search
8315  * to the last range that starts at-or-before the given endpoint,
8316  * (or "before the sector after the target range")
8317  * then see if it ends after the given start.
8318  * We return
8319  *  0 if there are no known bad blocks in the range
8320  *  1 if there are known bad block which are all acknowledged
8321  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8322  * plus the start/length of the first bad section we overlap.
8323  */
8324 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8325                    sector_t *first_bad, int *bad_sectors)
8326 {
8327         int hi;
8328         int lo;
8329         u64 *p = bb->page;
8330         int rv;
8331         sector_t target = s + sectors;
8332         unsigned seq;
8333
8334         if (bb->shift > 0) {
8335                 /* round the start down, and the end up */
8336                 s >>= bb->shift;
8337                 target += (1<<bb->shift) - 1;
8338                 target >>= bb->shift;
8339                 sectors = target - s;
8340         }
8341         /* 'target' is now the first block after the bad range */
8342
8343 retry:
8344         seq = read_seqbegin(&bb->lock);
8345         lo = 0;
8346         rv = 0;
8347         hi = bb->count;
8348
8349         /* Binary search between lo and hi for 'target'
8350          * i.e. for the last range that starts before 'target'
8351          */
8352         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8353          * are known not to be the last range before target.
8354          * VARIANT: hi-lo is the number of possible
8355          * ranges, and decreases until it reaches 1
8356          */
8357         while (hi - lo > 1) {
8358                 int mid = (lo + hi) / 2;
8359                 sector_t a = BB_OFFSET(p[mid]);
8360                 if (a < target)
8361                         /* This could still be the one, earlier ranges
8362                          * could not. */
8363                         lo = mid;
8364                 else
8365                         /* This and later ranges are definitely out. */
8366                         hi = mid;
8367         }
8368         /* 'lo' might be the last that started before target, but 'hi' isn't */
8369         if (hi > lo) {
8370                 /* need to check all range that end after 's' to see if
8371                  * any are unacknowledged.
8372                  */
8373                 while (lo >= 0 &&
8374                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8375                         if (BB_OFFSET(p[lo]) < target) {
8376                                 /* starts before the end, and finishes after
8377                                  * the start, so they must overlap
8378                                  */
8379                                 if (rv != -1 && BB_ACK(p[lo]))
8380                                         rv = 1;
8381                                 else
8382                                         rv = -1;
8383                                 *first_bad = BB_OFFSET(p[lo]);
8384                                 *bad_sectors = BB_LEN(p[lo]);
8385                         }
8386                         lo--;
8387                 }
8388         }
8389
8390         if (read_seqretry(&bb->lock, seq))
8391                 goto retry;
8392
8393         return rv;
8394 }
8395 EXPORT_SYMBOL_GPL(md_is_badblock);
8396
8397 /*
8398  * Add a range of bad blocks to the table.
8399  * This might extend the table, or might contract it
8400  * if two adjacent ranges can be merged.
8401  * We binary-search to find the 'insertion' point, then
8402  * decide how best to handle it.
8403  */
8404 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8405                             int acknowledged)
8406 {
8407         u64 *p;
8408         int lo, hi;
8409         int rv = 1;
8410         unsigned long flags;
8411
8412         if (bb->shift < 0)
8413                 /* badblocks are disabled */
8414                 return 0;
8415
8416         if (bb->shift) {
8417                 /* round the start down, and the end up */
8418                 sector_t next = s + sectors;
8419                 s >>= bb->shift;
8420                 next += (1<<bb->shift) - 1;
8421                 next >>= bb->shift;
8422                 sectors = next - s;
8423         }
8424
8425         write_seqlock_irqsave(&bb->lock, flags);
8426
8427         p = bb->page;
8428         lo = 0;
8429         hi = bb->count;
8430         /* Find the last range that starts at-or-before 's' */
8431         while (hi - lo > 1) {
8432                 int mid = (lo + hi) / 2;
8433                 sector_t a = BB_OFFSET(p[mid]);
8434                 if (a <= s)
8435                         lo = mid;
8436                 else
8437                         hi = mid;
8438         }
8439         if (hi > lo && BB_OFFSET(p[lo]) > s)
8440                 hi = lo;
8441
8442         if (hi > lo) {
8443                 /* we found a range that might merge with the start
8444                  * of our new range
8445                  */
8446                 sector_t a = BB_OFFSET(p[lo]);
8447                 sector_t e = a + BB_LEN(p[lo]);
8448                 int ack = BB_ACK(p[lo]);
8449                 if (e >= s) {
8450                         /* Yes, we can merge with a previous range */
8451                         if (s == a && s + sectors >= e)
8452                                 /* new range covers old */
8453                                 ack = acknowledged;
8454                         else
8455                                 ack = ack && acknowledged;
8456
8457                         if (e < s + sectors)
8458                                 e = s + sectors;
8459                         if (e - a <= BB_MAX_LEN) {
8460                                 p[lo] = BB_MAKE(a, e-a, ack);
8461                                 s = e;
8462                         } else {
8463                                 /* does not all fit in one range,
8464                                  * make p[lo] maximal
8465                                  */
8466                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8467                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8468                                 s = a + BB_MAX_LEN;
8469                         }
8470                         sectors = e - s;
8471                 }
8472         }
8473         if (sectors && hi < bb->count) {
8474                 /* 'hi' points to the first range that starts after 's'.
8475                  * Maybe we can merge with the start of that range */
8476                 sector_t a = BB_OFFSET(p[hi]);
8477                 sector_t e = a + BB_LEN(p[hi]);
8478                 int ack = BB_ACK(p[hi]);
8479                 if (a <= s + sectors) {
8480                         /* merging is possible */
8481                         if (e <= s + sectors) {
8482                                 /* full overlap */
8483                                 e = s + sectors;
8484                                 ack = acknowledged;
8485                         } else
8486                                 ack = ack && acknowledged;
8487
8488                         a = s;
8489                         if (e - a <= BB_MAX_LEN) {
8490                                 p[hi] = BB_MAKE(a, e-a, ack);
8491                                 s = e;
8492                         } else {
8493                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8494                                 s = a + BB_MAX_LEN;
8495                         }
8496                         sectors = e - s;
8497                         lo = hi;
8498                         hi++;
8499                 }
8500         }
8501         if (sectors == 0 && hi < bb->count) {
8502                 /* we might be able to combine lo and hi */
8503                 /* Note: 's' is at the end of 'lo' */
8504                 sector_t a = BB_OFFSET(p[hi]);
8505                 int lolen = BB_LEN(p[lo]);
8506                 int hilen = BB_LEN(p[hi]);
8507                 int newlen = lolen + hilen - (s - a);
8508                 if (s >= a && newlen < BB_MAX_LEN) {
8509                         /* yes, we can combine them */
8510                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8511                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8512                         memmove(p + hi, p + hi + 1,
8513                                 (bb->count - hi - 1) * 8);
8514                         bb->count--;
8515                 }
8516         }
8517         while (sectors) {
8518                 /* didn't merge (it all).
8519                  * Need to add a range just before 'hi' */
8520                 if (bb->count >= MD_MAX_BADBLOCKS) {
8521                         /* No room for more */
8522                         rv = 0;
8523                         break;
8524                 } else {
8525                         int this_sectors = sectors;
8526                         memmove(p + hi + 1, p + hi,
8527                                 (bb->count - hi) * 8);
8528                         bb->count++;
8529
8530                         if (this_sectors > BB_MAX_LEN)
8531                                 this_sectors = BB_MAX_LEN;
8532                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8533                         sectors -= this_sectors;
8534                         s += this_sectors;
8535                 }
8536         }
8537
8538         bb->changed = 1;
8539         if (!acknowledged)
8540                 bb->unacked_exist = 1;
8541         write_sequnlock_irqrestore(&bb->lock, flags);
8542
8543         return rv;
8544 }
8545
8546 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8547                        int is_new)
8548 {
8549         int rv;
8550         if (is_new)
8551                 s += rdev->new_data_offset;
8552         else
8553                 s += rdev->data_offset;
8554         rv = md_set_badblocks(&rdev->badblocks,
8555                               s, sectors, 0);
8556         if (rv) {
8557                 /* Make sure they get written out promptly */
8558                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8559                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8560                 md_wakeup_thread(rdev->mddev->thread);
8561         }
8562         return rv;
8563 }
8564 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8565
8566 /*
8567  * Remove a range of bad blocks from the table.
8568  * This may involve extending the table if we spilt a region,
8569  * but it must not fail.  So if the table becomes full, we just
8570  * drop the remove request.
8571  */
8572 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8573 {
8574         u64 *p;
8575         int lo, hi;
8576         sector_t target = s + sectors;
8577         int rv = 0;
8578
8579         if (bb->shift > 0) {
8580                 /* When clearing we round the start up and the end down.
8581                  * This should not matter as the shift should align with
8582                  * the block size and no rounding should ever be needed.
8583                  * However it is better the think a block is bad when it
8584                  * isn't than to think a block is not bad when it is.
8585                  */
8586                 s += (1<<bb->shift) - 1;
8587                 s >>= bb->shift;
8588                 target >>= bb->shift;
8589                 sectors = target - s;
8590         }
8591
8592         write_seqlock_irq(&bb->lock);
8593
8594         p = bb->page;
8595         lo = 0;
8596         hi = bb->count;
8597         /* Find the last range that starts before 'target' */
8598         while (hi - lo > 1) {
8599                 int mid = (lo + hi) / 2;
8600                 sector_t a = BB_OFFSET(p[mid]);
8601                 if (a < target)
8602                         lo = mid;
8603                 else
8604                         hi = mid;
8605         }
8606         if (hi > lo) {
8607                 /* p[lo] is the last range that could overlap the
8608                  * current range.  Earlier ranges could also overlap,
8609                  * but only this one can overlap the end of the range.
8610                  */
8611                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8612                         /* Partial overlap, leave the tail of this range */
8613                         int ack = BB_ACK(p[lo]);
8614                         sector_t a = BB_OFFSET(p[lo]);
8615                         sector_t end = a + BB_LEN(p[lo]);
8616
8617                         if (a < s) {
8618                                 /* we need to split this range */
8619                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8620                                         rv = -ENOSPC;
8621                                         goto out;
8622                                 }
8623                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8624                                 bb->count++;
8625                                 p[lo] = BB_MAKE(a, s-a, ack);
8626                                 lo++;
8627                         }
8628                         p[lo] = BB_MAKE(target, end - target, ack);
8629                         /* there is no longer an overlap */
8630                         hi = lo;
8631                         lo--;
8632                 }
8633                 while (lo >= 0 &&
8634                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8635                         /* This range does overlap */
8636                         if (BB_OFFSET(p[lo]) < s) {
8637                                 /* Keep the early parts of this range. */
8638                                 int ack = BB_ACK(p[lo]);
8639                                 sector_t start = BB_OFFSET(p[lo]);
8640                                 p[lo] = BB_MAKE(start, s - start, ack);
8641                                 /* now low doesn't overlap, so.. */
8642                                 break;
8643                         }
8644                         lo--;
8645                 }
8646                 /* 'lo' is strictly before, 'hi' is strictly after,
8647                  * anything between needs to be discarded
8648                  */
8649                 if (hi - lo > 1) {
8650                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8651                         bb->count -= (hi - lo - 1);
8652                 }
8653         }
8654
8655         bb->changed = 1;
8656 out:
8657         write_sequnlock_irq(&bb->lock);
8658         return rv;
8659 }
8660
8661 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8662                          int is_new)
8663 {
8664         if (is_new)
8665                 s += rdev->new_data_offset;
8666         else
8667                 s += rdev->data_offset;
8668         return md_clear_badblocks(&rdev->badblocks,
8669                                   s, sectors);
8670 }
8671 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8672
8673 /*
8674  * Acknowledge all bad blocks in a list.
8675  * This only succeeds if ->changed is clear.  It is used by
8676  * in-kernel metadata updates
8677  */
8678 void md_ack_all_badblocks(struct badblocks *bb)
8679 {
8680         if (bb->page == NULL || bb->changed)
8681                 /* no point even trying */
8682                 return;
8683         write_seqlock_irq(&bb->lock);
8684
8685         if (bb->changed == 0 && bb->unacked_exist) {
8686                 u64 *p = bb->page;
8687                 int i;
8688                 for (i = 0; i < bb->count ; i++) {
8689                         if (!BB_ACK(p[i])) {
8690                                 sector_t start = BB_OFFSET(p[i]);
8691                                 int len = BB_LEN(p[i]);
8692                                 p[i] = BB_MAKE(start, len, 1);
8693                         }
8694                 }
8695                 bb->unacked_exist = 0;
8696         }
8697         write_sequnlock_irq(&bb->lock);
8698 }
8699 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8700
8701 /* sysfs access to bad-blocks list.
8702  * We present two files.
8703  * 'bad-blocks' lists sector numbers and lengths of ranges that
8704  *    are recorded as bad.  The list is truncated to fit within
8705  *    the one-page limit of sysfs.
8706  *    Writing "sector length" to this file adds an acknowledged
8707  *    bad block list.
8708  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8709  *    been acknowledged.  Writing to this file adds bad blocks
8710  *    without acknowledging them.  This is largely for testing.
8711  */
8712
8713 static ssize_t
8714 badblocks_show(struct badblocks *bb, char *page, int unack)
8715 {
8716         size_t len;
8717         int i;
8718         u64 *p = bb->page;
8719         unsigned seq;
8720
8721         if (bb->shift < 0)
8722                 return 0;
8723
8724 retry:
8725         seq = read_seqbegin(&bb->lock);
8726
8727         len = 0;
8728         i = 0;
8729
8730         while (len < PAGE_SIZE && i < bb->count) {
8731                 sector_t s = BB_OFFSET(p[i]);
8732                 unsigned int length = BB_LEN(p[i]);
8733                 int ack = BB_ACK(p[i]);
8734                 i++;
8735
8736                 if (unack && ack)
8737                         continue;
8738
8739                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8740                                 (unsigned long long)s << bb->shift,
8741                                 length << bb->shift);
8742         }
8743         if (unack && len == 0)
8744                 bb->unacked_exist = 0;
8745
8746         if (read_seqretry(&bb->lock, seq))
8747                 goto retry;
8748
8749         return len;
8750 }
8751
8752 #define DO_DEBUG 1
8753
8754 static ssize_t
8755 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8756 {
8757         unsigned long long sector;
8758         int length;
8759         char newline;
8760 #ifdef DO_DEBUG
8761         /* Allow clearing via sysfs *only* for testing/debugging.
8762          * Normally only a successful write may clear a badblock
8763          */
8764         int clear = 0;
8765         if (page[0] == '-') {
8766                 clear = 1;
8767                 page++;
8768         }
8769 #endif /* DO_DEBUG */
8770
8771         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8772         case 3:
8773                 if (newline != '\n')
8774                         return -EINVAL;
8775         case 2:
8776                 if (length <= 0)
8777                         return -EINVAL;
8778                 break;
8779         default:
8780                 return -EINVAL;
8781         }
8782
8783 #ifdef DO_DEBUG
8784         if (clear) {
8785                 md_clear_badblocks(bb, sector, length);
8786                 return len;
8787         }
8788 #endif /* DO_DEBUG */
8789         if (md_set_badblocks(bb, sector, length, !unack))
8790                 return len;
8791         else
8792                 return -ENOSPC;
8793 }
8794
8795 static int md_notify_reboot(struct notifier_block *this,
8796                             unsigned long code, void *x)
8797 {
8798         struct list_head *tmp;
8799         struct mddev *mddev;
8800         int need_delay = 0;
8801
8802         for_each_mddev(mddev, tmp) {
8803                 if (mddev_trylock(mddev)) {
8804                         if (mddev->pers)
8805                                 __md_stop_writes(mddev);
8806                         if (mddev->persistent)
8807                                 mddev->safemode = 2;
8808                         mddev_unlock(mddev);
8809                 }
8810                 need_delay = 1;
8811         }
8812         /*
8813          * certain more exotic SCSI devices are known to be
8814          * volatile wrt too early system reboots. While the
8815          * right place to handle this issue is the given
8816          * driver, we do want to have a safe RAID driver ...
8817          */
8818         if (need_delay)
8819                 mdelay(1000*1);
8820
8821         return NOTIFY_DONE;
8822 }
8823
8824 static struct notifier_block md_notifier = {
8825         .notifier_call  = md_notify_reboot,
8826         .next           = NULL,
8827         .priority       = INT_MAX, /* before any real devices */
8828 };
8829
8830 static void md_geninit(void)
8831 {
8832         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8833
8834         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8835 }
8836
8837 static int __init md_init(void)
8838 {
8839         int ret = -ENOMEM;
8840
8841         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8842         if (!md_wq)
8843                 goto err_wq;
8844
8845         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8846         if (!md_misc_wq)
8847                 goto err_misc_wq;
8848
8849         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8850                 goto err_md;
8851
8852         if ((ret = register_blkdev(0, "mdp")) < 0)
8853                 goto err_mdp;
8854         mdp_major = ret;
8855
8856         blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8857                             md_probe, NULL, NULL);
8858         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8859                             md_probe, NULL, NULL);
8860
8861         register_reboot_notifier(&md_notifier);
8862         raid_table_header = register_sysctl_table(raid_root_table);
8863
8864         md_geninit();
8865         return 0;
8866
8867 err_mdp:
8868         unregister_blkdev(MD_MAJOR, "md");
8869 err_md:
8870         destroy_workqueue(md_misc_wq);
8871 err_misc_wq:
8872         destroy_workqueue(md_wq);
8873 err_wq:
8874         return ret;
8875 }
8876
8877 void md_reload_sb(struct mddev *mddev)
8878 {
8879         struct md_rdev *rdev, *tmp;
8880
8881         rdev_for_each_safe(rdev, tmp, mddev) {
8882                 rdev->sb_loaded = 0;
8883                 ClearPageUptodate(rdev->sb_page);
8884         }
8885         mddev->raid_disks = 0;
8886         analyze_sbs(mddev);
8887         rdev_for_each_safe(rdev, tmp, mddev) {
8888                 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8889                 /* since we don't write to faulty devices, we figure out if the
8890                  *  disk is faulty by comparing events
8891                  */
8892                 if (mddev->events > sb->events)
8893                         set_bit(Faulty, &rdev->flags);
8894         }
8895
8896 }
8897 EXPORT_SYMBOL(md_reload_sb);
8898
8899 #ifndef MODULE
8900
8901 /*
8902  * Searches all registered partitions for autorun RAID arrays
8903  * at boot time.
8904  */
8905
8906 static LIST_HEAD(all_detected_devices);
8907 struct detected_devices_node {
8908         struct list_head list;
8909         dev_t dev;
8910 };
8911
8912 void md_autodetect_dev(dev_t dev)
8913 {
8914         struct detected_devices_node *node_detected_dev;
8915
8916         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8917         if (node_detected_dev) {
8918                 node_detected_dev->dev = dev;
8919                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8920         } else {
8921                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8922                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8923         }
8924 }
8925
8926 static void autostart_arrays(int part)
8927 {
8928         struct md_rdev *rdev;
8929         struct detected_devices_node *node_detected_dev;
8930         dev_t dev;
8931         int i_scanned, i_passed;
8932
8933         i_scanned = 0;
8934         i_passed = 0;
8935
8936         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8937
8938         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8939                 i_scanned++;
8940                 node_detected_dev = list_entry(all_detected_devices.next,
8941                                         struct detected_devices_node, list);
8942                 list_del(&node_detected_dev->list);
8943                 dev = node_detected_dev->dev;
8944                 kfree(node_detected_dev);
8945                 rdev = md_import_device(dev,0, 90);
8946                 if (IS_ERR(rdev))
8947                         continue;
8948
8949                 if (test_bit(Faulty, &rdev->flags))
8950                         continue;
8951
8952                 set_bit(AutoDetected, &rdev->flags);
8953                 list_add(&rdev->same_set, &pending_raid_disks);
8954                 i_passed++;
8955         }
8956
8957         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8958                                                 i_scanned, i_passed);
8959
8960         autorun_devices(part);
8961 }
8962
8963 #endif /* !MODULE */
8964
8965 static __exit void md_exit(void)
8966 {
8967         struct mddev *mddev;
8968         struct list_head *tmp;
8969         int delay = 1;
8970
8971         blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8972         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8973
8974         unregister_blkdev(MD_MAJOR,"md");
8975         unregister_blkdev(mdp_major, "mdp");
8976         unregister_reboot_notifier(&md_notifier);
8977         unregister_sysctl_table(raid_table_header);
8978
8979         /* We cannot unload the modules while some process is
8980          * waiting for us in select() or poll() - wake them up
8981          */
8982         md_unloading = 1;
8983         while (waitqueue_active(&md_event_waiters)) {
8984                 /* not safe to leave yet */
8985                 wake_up(&md_event_waiters);
8986                 msleep(delay);
8987                 delay += delay;
8988         }
8989         remove_proc_entry("mdstat", NULL);
8990
8991         for_each_mddev(mddev, tmp) {
8992                 export_array(mddev);
8993                 mddev->hold_active = 0;
8994         }
8995         destroy_workqueue(md_misc_wq);
8996         destroy_workqueue(md_wq);
8997 }
8998
8999 subsys_initcall(md_init);
9000 module_exit(md_exit)
9001
9002 static int get_ro(char *buffer, struct kernel_param *kp)
9003 {
9004         return sprintf(buffer, "%d", start_readonly);
9005 }
9006 static int set_ro(const char *val, struct kernel_param *kp)
9007 {
9008         char *e;
9009         int num = simple_strtoul(val, &e, 10);
9010         if (*val && (*e == '\0' || *e == '\n')) {
9011                 start_readonly = num;
9012                 return 0;
9013         }
9014         return -EINVAL;
9015 }
9016
9017 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9018 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9019 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9020
9021 MODULE_LICENSE("GPL");
9022 MODULE_DESCRIPTION("MD RAID framework");
9023 MODULE_ALIAS("md");
9024 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);