Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[linux-2.6-block.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203         PM_READ_ONLY,           /* metadata may not be changed */
204         PM_FAIL,                /* all I/O fails */
205 };
206
207 struct pool_features {
208         enum pool_mode mode;
209
210         bool zero_new_blocks:1;
211         bool discard_enabled:1;
212         bool discard_passdown:1;
213         bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224         struct list_head list;
225         struct dm_target *ti;   /* Only set if a pool target is bound */
226
227         struct mapped_device *pool_md;
228         struct block_device *md_dev;
229         struct dm_pool_metadata *pmd;
230
231         dm_block_t low_water_blocks;
232         uint32_t sectors_per_block;
233         int sectors_per_block_shift;
234
235         struct pool_features pf;
236         bool low_water_triggered:1;     /* A dm event has been sent */
237         bool suspended:1;
238
239         struct dm_bio_prison *prison;
240         struct dm_kcopyd_client *copier;
241
242         struct workqueue_struct *wq;
243         struct throttle throttle;
244         struct work_struct worker;
245         struct delayed_work waker;
246         struct delayed_work no_space_timeout;
247
248         unsigned long last_commit_jiffies;
249         unsigned ref_count;
250
251         spinlock_t lock;
252         struct bio_list deferred_flush_bios;
253         struct list_head prepared_mappings;
254         struct list_head prepared_discards;
255         struct list_head active_thins;
256
257         struct dm_deferred_set *shared_read_ds;
258         struct dm_deferred_set *all_io_ds;
259
260         struct dm_thin_new_mapping *next_mapping;
261         mempool_t *mapping_pool;
262
263         process_bio_fn process_bio;
264         process_bio_fn process_discard;
265
266         process_cell_fn process_cell;
267         process_cell_fn process_discard_cell;
268
269         process_mapping_fn process_prepared_mapping;
270         process_mapping_fn process_prepared_discard;
271
272         struct dm_bio_prison_cell **cell_sort_array;
273 };
274
275 static enum pool_mode get_pool_mode(struct pool *pool);
276 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
277
278 /*
279  * Target context for a pool.
280  */
281 struct pool_c {
282         struct dm_target *ti;
283         struct pool *pool;
284         struct dm_dev *data_dev;
285         struct dm_dev *metadata_dev;
286         struct dm_target_callbacks callbacks;
287
288         dm_block_t low_water_blocks;
289         struct pool_features requested_pf; /* Features requested during table load */
290         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
291 };
292
293 /*
294  * Target context for a thin.
295  */
296 struct thin_c {
297         struct list_head list;
298         struct dm_dev *pool_dev;
299         struct dm_dev *origin_dev;
300         sector_t origin_size;
301         dm_thin_id dev_id;
302
303         struct pool *pool;
304         struct dm_thin_device *td;
305         struct mapped_device *thin_md;
306
307         bool requeue_mode:1;
308         spinlock_t lock;
309         struct list_head deferred_cells;
310         struct bio_list deferred_bio_list;
311         struct bio_list retry_on_resume_list;
312         struct rb_root sort_bio_list; /* sorted list of deferred bios */
313
314         /*
315          * Ensures the thin is not destroyed until the worker has finished
316          * iterating the active_thins list.
317          */
318         atomic_t refcount;
319         struct completion can_destroy;
320 };
321
322 /*----------------------------------------------------------------*/
323
324 /**
325  * __blkdev_issue_discard_async - queue a discard with async completion
326  * @bdev:       blockdev to issue discard for
327  * @sector:     start sector
328  * @nr_sects:   number of sectors to discard
329  * @gfp_mask:   memory allocation flags (for bio_alloc)
330  * @flags:      BLKDEV_IFL_* flags to control behaviour
331  * @parent_bio: parent discard bio that all sub discards get chained to
332  *
333  * Description:
334  *    Asynchronously issue a discard request for the sectors in question.
335  *    NOTE: this variant of blk-core's blkdev_issue_discard() is a stop-gap
336  *    that is being kept local to DM thinp until the block changes to allow
337  *    late bio splitting land upstream.
338  */
339 static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
340                                         sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
341                                         struct bio *parent_bio)
342 {
343         struct request_queue *q = bdev_get_queue(bdev);
344         int type = REQ_WRITE | REQ_DISCARD;
345         unsigned int max_discard_sectors, granularity;
346         int alignment;
347         struct bio *bio;
348         int ret = 0;
349         struct blk_plug plug;
350
351         if (!q)
352                 return -ENXIO;
353
354         if (!blk_queue_discard(q))
355                 return -EOPNOTSUPP;
356
357         /* Zero-sector (unknown) and one-sector granularities are the same.  */
358         granularity = max(q->limits.discard_granularity >> 9, 1U);
359         alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
360
361         /*
362          * Ensure that max_discard_sectors is of the proper
363          * granularity, so that requests stay aligned after a split.
364          */
365         max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
366         max_discard_sectors -= max_discard_sectors % granularity;
367         if (unlikely(!max_discard_sectors)) {
368                 /* Avoid infinite loop below. Being cautious never hurts. */
369                 return -EOPNOTSUPP;
370         }
371
372         if (flags & BLKDEV_DISCARD_SECURE) {
373                 if (!blk_queue_secdiscard(q))
374                         return -EOPNOTSUPP;
375                 type |= REQ_SECURE;
376         }
377
378         blk_start_plug(&plug);
379         while (nr_sects) {
380                 unsigned int req_sects;
381                 sector_t end_sect, tmp;
382
383                 /*
384                  * Required bio_put occurs in bio_endio thanks to bio_chain below
385                  */
386                 bio = bio_alloc(gfp_mask, 1);
387                 if (!bio) {
388                         ret = -ENOMEM;
389                         break;
390                 }
391
392                 req_sects = min_t(sector_t, nr_sects, max_discard_sectors);
393
394                 /*
395                  * If splitting a request, and the next starting sector would be
396                  * misaligned, stop the discard at the previous aligned sector.
397                  */
398                 end_sect = sector + req_sects;
399                 tmp = end_sect;
400                 if (req_sects < nr_sects &&
401                     sector_div(tmp, granularity) != alignment) {
402                         end_sect = end_sect - alignment;
403                         sector_div(end_sect, granularity);
404                         end_sect = end_sect * granularity + alignment;
405                         req_sects = end_sect - sector;
406                 }
407
408                 bio_chain(bio, parent_bio);
409
410                 bio->bi_iter.bi_sector = sector;
411                 bio->bi_bdev = bdev;
412
413                 bio->bi_iter.bi_size = req_sects << 9;
414                 nr_sects -= req_sects;
415                 sector = end_sect;
416
417                 submit_bio(type, bio);
418
419                 /*
420                  * We can loop for a long time in here, if someone does
421                  * full device discards (like mkfs). Be nice and allow
422                  * us to schedule out to avoid softlocking if preempt
423                  * is disabled.
424                  */
425                 cond_resched();
426         }
427         blk_finish_plug(&plug);
428
429         return ret;
430 }
431
432 static bool block_size_is_power_of_two(struct pool *pool)
433 {
434         return pool->sectors_per_block_shift >= 0;
435 }
436
437 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
438 {
439         return block_size_is_power_of_two(pool) ?
440                 (b << pool->sectors_per_block_shift) :
441                 (b * pool->sectors_per_block);
442 }
443
444 static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
445                          struct bio *parent_bio)
446 {
447         sector_t s = block_to_sectors(tc->pool, data_b);
448         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
449
450         return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
451                                             GFP_NOWAIT, 0, parent_bio);
452 }
453
454 /*----------------------------------------------------------------*/
455
456 /*
457  * wake_worker() is used when new work is queued and when pool_resume is
458  * ready to continue deferred IO processing.
459  */
460 static void wake_worker(struct pool *pool)
461 {
462         queue_work(pool->wq, &pool->worker);
463 }
464
465 /*----------------------------------------------------------------*/
466
467 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
468                       struct dm_bio_prison_cell **cell_result)
469 {
470         int r;
471         struct dm_bio_prison_cell *cell_prealloc;
472
473         /*
474          * Allocate a cell from the prison's mempool.
475          * This might block but it can't fail.
476          */
477         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
478
479         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
480         if (r)
481                 /*
482                  * We reused an old cell; we can get rid of
483                  * the new one.
484                  */
485                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
486
487         return r;
488 }
489
490 static void cell_release(struct pool *pool,
491                          struct dm_bio_prison_cell *cell,
492                          struct bio_list *bios)
493 {
494         dm_cell_release(pool->prison, cell, bios);
495         dm_bio_prison_free_cell(pool->prison, cell);
496 }
497
498 static void cell_visit_release(struct pool *pool,
499                                void (*fn)(void *, struct dm_bio_prison_cell *),
500                                void *context,
501                                struct dm_bio_prison_cell *cell)
502 {
503         dm_cell_visit_release(pool->prison, fn, context, cell);
504         dm_bio_prison_free_cell(pool->prison, cell);
505 }
506
507 static void cell_release_no_holder(struct pool *pool,
508                                    struct dm_bio_prison_cell *cell,
509                                    struct bio_list *bios)
510 {
511         dm_cell_release_no_holder(pool->prison, cell, bios);
512         dm_bio_prison_free_cell(pool->prison, cell);
513 }
514
515 static void cell_error_with_code(struct pool *pool,
516                                  struct dm_bio_prison_cell *cell, int error_code)
517 {
518         dm_cell_error(pool->prison, cell, error_code);
519         dm_bio_prison_free_cell(pool->prison, cell);
520 }
521
522 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
523 {
524         cell_error_with_code(pool, cell, -EIO);
525 }
526
527 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
528 {
529         cell_error_with_code(pool, cell, 0);
530 }
531
532 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
533 {
534         cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
535 }
536
537 /*----------------------------------------------------------------*/
538
539 /*
540  * A global list of pools that uses a struct mapped_device as a key.
541  */
542 static struct dm_thin_pool_table {
543         struct mutex mutex;
544         struct list_head pools;
545 } dm_thin_pool_table;
546
547 static void pool_table_init(void)
548 {
549         mutex_init(&dm_thin_pool_table.mutex);
550         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
551 }
552
553 static void __pool_table_insert(struct pool *pool)
554 {
555         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
556         list_add(&pool->list, &dm_thin_pool_table.pools);
557 }
558
559 static void __pool_table_remove(struct pool *pool)
560 {
561         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
562         list_del(&pool->list);
563 }
564
565 static struct pool *__pool_table_lookup(struct mapped_device *md)
566 {
567         struct pool *pool = NULL, *tmp;
568
569         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
570
571         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
572                 if (tmp->pool_md == md) {
573                         pool = tmp;
574                         break;
575                 }
576         }
577
578         return pool;
579 }
580
581 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
582 {
583         struct pool *pool = NULL, *tmp;
584
585         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
586
587         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
588                 if (tmp->md_dev == md_dev) {
589                         pool = tmp;
590                         break;
591                 }
592         }
593
594         return pool;
595 }
596
597 /*----------------------------------------------------------------*/
598
599 struct dm_thin_endio_hook {
600         struct thin_c *tc;
601         struct dm_deferred_entry *shared_read_entry;
602         struct dm_deferred_entry *all_io_entry;
603         struct dm_thin_new_mapping *overwrite_mapping;
604         struct rb_node rb_node;
605         struct dm_bio_prison_cell *cell;
606 };
607
608 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
609 {
610         bio_list_merge(bios, master);
611         bio_list_init(master);
612 }
613
614 static void error_bio_list(struct bio_list *bios, int error)
615 {
616         struct bio *bio;
617
618         while ((bio = bio_list_pop(bios)))
619                 bio_endio(bio, error);
620 }
621
622 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
623 {
624         struct bio_list bios;
625         unsigned long flags;
626
627         bio_list_init(&bios);
628
629         spin_lock_irqsave(&tc->lock, flags);
630         __merge_bio_list(&bios, master);
631         spin_unlock_irqrestore(&tc->lock, flags);
632
633         error_bio_list(&bios, error);
634 }
635
636 static void requeue_deferred_cells(struct thin_c *tc)
637 {
638         struct pool *pool = tc->pool;
639         unsigned long flags;
640         struct list_head cells;
641         struct dm_bio_prison_cell *cell, *tmp;
642
643         INIT_LIST_HEAD(&cells);
644
645         spin_lock_irqsave(&tc->lock, flags);
646         list_splice_init(&tc->deferred_cells, &cells);
647         spin_unlock_irqrestore(&tc->lock, flags);
648
649         list_for_each_entry_safe(cell, tmp, &cells, user_list)
650                 cell_requeue(pool, cell);
651 }
652
653 static void requeue_io(struct thin_c *tc)
654 {
655         struct bio_list bios;
656         unsigned long flags;
657
658         bio_list_init(&bios);
659
660         spin_lock_irqsave(&tc->lock, flags);
661         __merge_bio_list(&bios, &tc->deferred_bio_list);
662         __merge_bio_list(&bios, &tc->retry_on_resume_list);
663         spin_unlock_irqrestore(&tc->lock, flags);
664
665         error_bio_list(&bios, DM_ENDIO_REQUEUE);
666         requeue_deferred_cells(tc);
667 }
668
669 static void error_retry_list_with_code(struct pool *pool, int error)
670 {
671         struct thin_c *tc;
672
673         rcu_read_lock();
674         list_for_each_entry_rcu(tc, &pool->active_thins, list)
675                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
676         rcu_read_unlock();
677 }
678
679 static void error_retry_list(struct pool *pool)
680 {
681         return error_retry_list_with_code(pool, -EIO);
682 }
683
684 /*
685  * This section of code contains the logic for processing a thin device's IO.
686  * Much of the code depends on pool object resources (lists, workqueues, etc)
687  * but most is exclusively called from the thin target rather than the thin-pool
688  * target.
689  */
690
691 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
692 {
693         struct pool *pool = tc->pool;
694         sector_t block_nr = bio->bi_iter.bi_sector;
695
696         if (block_size_is_power_of_two(pool))
697                 block_nr >>= pool->sectors_per_block_shift;
698         else
699                 (void) sector_div(block_nr, pool->sectors_per_block);
700
701         return block_nr;
702 }
703
704 /*
705  * Returns the _complete_ blocks that this bio covers.
706  */
707 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
708                                 dm_block_t *begin, dm_block_t *end)
709 {
710         struct pool *pool = tc->pool;
711         sector_t b = bio->bi_iter.bi_sector;
712         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
713
714         b += pool->sectors_per_block - 1ull; /* so we round up */
715
716         if (block_size_is_power_of_two(pool)) {
717                 b >>= pool->sectors_per_block_shift;
718                 e >>= pool->sectors_per_block_shift;
719         } else {
720                 (void) sector_div(b, pool->sectors_per_block);
721                 (void) sector_div(e, pool->sectors_per_block);
722         }
723
724         if (e < b)
725                 /* Can happen if the bio is within a single block. */
726                 e = b;
727
728         *begin = b;
729         *end = e;
730 }
731
732 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
733 {
734         struct pool *pool = tc->pool;
735         sector_t bi_sector = bio->bi_iter.bi_sector;
736
737         bio->bi_bdev = tc->pool_dev->bdev;
738         if (block_size_is_power_of_two(pool))
739                 bio->bi_iter.bi_sector =
740                         (block << pool->sectors_per_block_shift) |
741                         (bi_sector & (pool->sectors_per_block - 1));
742         else
743                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
744                                  sector_div(bi_sector, pool->sectors_per_block);
745 }
746
747 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
748 {
749         bio->bi_bdev = tc->origin_dev->bdev;
750 }
751
752 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
753 {
754         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
755                 dm_thin_changed_this_transaction(tc->td);
756 }
757
758 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
759 {
760         struct dm_thin_endio_hook *h;
761
762         if (bio->bi_rw & REQ_DISCARD)
763                 return;
764
765         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
766         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
767 }
768
769 static void issue(struct thin_c *tc, struct bio *bio)
770 {
771         struct pool *pool = tc->pool;
772         unsigned long flags;
773
774         if (!bio_triggers_commit(tc, bio)) {
775                 generic_make_request(bio);
776                 return;
777         }
778
779         /*
780          * Complete bio with an error if earlier I/O caused changes to
781          * the metadata that can't be committed e.g, due to I/O errors
782          * on the metadata device.
783          */
784         if (dm_thin_aborted_changes(tc->td)) {
785                 bio_io_error(bio);
786                 return;
787         }
788
789         /*
790          * Batch together any bios that trigger commits and then issue a
791          * single commit for them in process_deferred_bios().
792          */
793         spin_lock_irqsave(&pool->lock, flags);
794         bio_list_add(&pool->deferred_flush_bios, bio);
795         spin_unlock_irqrestore(&pool->lock, flags);
796 }
797
798 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
799 {
800         remap_to_origin(tc, bio);
801         issue(tc, bio);
802 }
803
804 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
805                             dm_block_t block)
806 {
807         remap(tc, bio, block);
808         issue(tc, bio);
809 }
810
811 /*----------------------------------------------------------------*/
812
813 /*
814  * Bio endio functions.
815  */
816 struct dm_thin_new_mapping {
817         struct list_head list;
818
819         bool pass_discard:1;
820         bool maybe_shared:1;
821
822         /*
823          * Track quiescing, copying and zeroing preparation actions.  When this
824          * counter hits zero the block is prepared and can be inserted into the
825          * btree.
826          */
827         atomic_t prepare_actions;
828
829         int err;
830         struct thin_c *tc;
831         dm_block_t virt_begin, virt_end;
832         dm_block_t data_block;
833         struct dm_bio_prison_cell *cell;
834
835         /*
836          * If the bio covers the whole area of a block then we can avoid
837          * zeroing or copying.  Instead this bio is hooked.  The bio will
838          * still be in the cell, so care has to be taken to avoid issuing
839          * the bio twice.
840          */
841         struct bio *bio;
842         bio_end_io_t *saved_bi_end_io;
843 };
844
845 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
846 {
847         struct pool *pool = m->tc->pool;
848
849         if (atomic_dec_and_test(&m->prepare_actions)) {
850                 list_add_tail(&m->list, &pool->prepared_mappings);
851                 wake_worker(pool);
852         }
853 }
854
855 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
856 {
857         unsigned long flags;
858         struct pool *pool = m->tc->pool;
859
860         spin_lock_irqsave(&pool->lock, flags);
861         __complete_mapping_preparation(m);
862         spin_unlock_irqrestore(&pool->lock, flags);
863 }
864
865 static void copy_complete(int read_err, unsigned long write_err, void *context)
866 {
867         struct dm_thin_new_mapping *m = context;
868
869         m->err = read_err || write_err ? -EIO : 0;
870         complete_mapping_preparation(m);
871 }
872
873 static void overwrite_endio(struct bio *bio, int err)
874 {
875         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
876         struct dm_thin_new_mapping *m = h->overwrite_mapping;
877
878         bio->bi_end_io = m->saved_bi_end_io;
879
880         m->err = err;
881         complete_mapping_preparation(m);
882 }
883
884 /*----------------------------------------------------------------*/
885
886 /*
887  * Workqueue.
888  */
889
890 /*
891  * Prepared mapping jobs.
892  */
893
894 /*
895  * This sends the bios in the cell, except the original holder, back
896  * to the deferred_bios list.
897  */
898 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
899 {
900         struct pool *pool = tc->pool;
901         unsigned long flags;
902
903         spin_lock_irqsave(&tc->lock, flags);
904         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
905         spin_unlock_irqrestore(&tc->lock, flags);
906
907         wake_worker(pool);
908 }
909
910 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
911
912 struct remap_info {
913         struct thin_c *tc;
914         struct bio_list defer_bios;
915         struct bio_list issue_bios;
916 };
917
918 static void __inc_remap_and_issue_cell(void *context,
919                                        struct dm_bio_prison_cell *cell)
920 {
921         struct remap_info *info = context;
922         struct bio *bio;
923
924         while ((bio = bio_list_pop(&cell->bios))) {
925                 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
926                         bio_list_add(&info->defer_bios, bio);
927                 else {
928                         inc_all_io_entry(info->tc->pool, bio);
929
930                         /*
931                          * We can't issue the bios with the bio prison lock
932                          * held, so we add them to a list to issue on
933                          * return from this function.
934                          */
935                         bio_list_add(&info->issue_bios, bio);
936                 }
937         }
938 }
939
940 static void inc_remap_and_issue_cell(struct thin_c *tc,
941                                      struct dm_bio_prison_cell *cell,
942                                      dm_block_t block)
943 {
944         struct bio *bio;
945         struct remap_info info;
946
947         info.tc = tc;
948         bio_list_init(&info.defer_bios);
949         bio_list_init(&info.issue_bios);
950
951         /*
952          * We have to be careful to inc any bios we're about to issue
953          * before the cell is released, and avoid a race with new bios
954          * being added to the cell.
955          */
956         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
957                            &info, cell);
958
959         while ((bio = bio_list_pop(&info.defer_bios)))
960                 thin_defer_bio(tc, bio);
961
962         while ((bio = bio_list_pop(&info.issue_bios)))
963                 remap_and_issue(info.tc, bio, block);
964 }
965
966 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
967 {
968         cell_error(m->tc->pool, m->cell);
969         list_del(&m->list);
970         mempool_free(m, m->tc->pool->mapping_pool);
971 }
972
973 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
974 {
975         struct thin_c *tc = m->tc;
976         struct pool *pool = tc->pool;
977         struct bio *bio = m->bio;
978         int r;
979
980         if (m->err) {
981                 cell_error(pool, m->cell);
982                 goto out;
983         }
984
985         /*
986          * Commit the prepared block into the mapping btree.
987          * Any I/O for this block arriving after this point will get
988          * remapped to it directly.
989          */
990         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
991         if (r) {
992                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
993                 cell_error(pool, m->cell);
994                 goto out;
995         }
996
997         /*
998          * Release any bios held while the block was being provisioned.
999          * If we are processing a write bio that completely covers the block,
1000          * we already processed it so can ignore it now when processing
1001          * the bios in the cell.
1002          */
1003         if (bio) {
1004                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1005                 bio_endio(bio, 0);
1006         } else {
1007                 inc_all_io_entry(tc->pool, m->cell->holder);
1008                 remap_and_issue(tc, m->cell->holder, m->data_block);
1009                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1010         }
1011
1012 out:
1013         list_del(&m->list);
1014         mempool_free(m, pool->mapping_pool);
1015 }
1016
1017 /*----------------------------------------------------------------*/
1018
1019 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1020 {
1021         struct thin_c *tc = m->tc;
1022         if (m->cell)
1023                 cell_defer_no_holder(tc, m->cell);
1024         mempool_free(m, tc->pool->mapping_pool);
1025 }
1026
1027 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1028 {
1029         bio_io_error(m->bio);
1030         free_discard_mapping(m);
1031 }
1032
1033 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1034 {
1035         bio_endio(m->bio, 0);
1036         free_discard_mapping(m);
1037 }
1038
1039 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1040 {
1041         int r;
1042         struct thin_c *tc = m->tc;
1043
1044         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1045         if (r) {
1046                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1047                 bio_io_error(m->bio);
1048         } else
1049                 bio_endio(m->bio, 0);
1050
1051         cell_defer_no_holder(tc, m->cell);
1052         mempool_free(m, tc->pool->mapping_pool);
1053 }
1054
1055 static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1056 {
1057         /*
1058          * We've already unmapped this range of blocks, but before we
1059          * passdown we have to check that these blocks are now unused.
1060          */
1061         int r;
1062         bool used = true;
1063         struct thin_c *tc = m->tc;
1064         struct pool *pool = tc->pool;
1065         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1066
1067         while (b != end) {
1068                 /* find start of unmapped run */
1069                 for (; b < end; b++) {
1070                         r = dm_pool_block_is_used(pool->pmd, b, &used);
1071                         if (r)
1072                                 return r;
1073
1074                         if (!used)
1075                                 break;
1076                 }
1077
1078                 if (b == end)
1079                         break;
1080
1081                 /* find end of run */
1082                 for (e = b + 1; e != end; e++) {
1083                         r = dm_pool_block_is_used(pool->pmd, e, &used);
1084                         if (r)
1085                                 return r;
1086
1087                         if (used)
1088                                 break;
1089                 }
1090
1091                 r = issue_discard(tc, b, e, m->bio);
1092                 if (r)
1093                         return r;
1094
1095                 b = e;
1096         }
1097
1098         return 0;
1099 }
1100
1101 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1102 {
1103         int r;
1104         struct thin_c *tc = m->tc;
1105         struct pool *pool = tc->pool;
1106
1107         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1108         if (r)
1109                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1110
1111         else if (m->maybe_shared)
1112                 r = passdown_double_checking_shared_status(m);
1113         else
1114                 r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
1115
1116         /*
1117          * Even if r is set, there could be sub discards in flight that we
1118          * need to wait for.
1119          */
1120         bio_endio(m->bio, r);
1121         cell_defer_no_holder(tc, m->cell);
1122         mempool_free(m, pool->mapping_pool);
1123 }
1124
1125 static void process_prepared(struct pool *pool, struct list_head *head,
1126                              process_mapping_fn *fn)
1127 {
1128         unsigned long flags;
1129         struct list_head maps;
1130         struct dm_thin_new_mapping *m, *tmp;
1131
1132         INIT_LIST_HEAD(&maps);
1133         spin_lock_irqsave(&pool->lock, flags);
1134         list_splice_init(head, &maps);
1135         spin_unlock_irqrestore(&pool->lock, flags);
1136
1137         list_for_each_entry_safe(m, tmp, &maps, list)
1138                 (*fn)(m);
1139 }
1140
1141 /*
1142  * Deferred bio jobs.
1143  */
1144 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1145 {
1146         return bio->bi_iter.bi_size ==
1147                 (pool->sectors_per_block << SECTOR_SHIFT);
1148 }
1149
1150 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1151 {
1152         return (bio_data_dir(bio) == WRITE) &&
1153                 io_overlaps_block(pool, bio);
1154 }
1155
1156 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1157                                bio_end_io_t *fn)
1158 {
1159         *save = bio->bi_end_io;
1160         bio->bi_end_io = fn;
1161 }
1162
1163 static int ensure_next_mapping(struct pool *pool)
1164 {
1165         if (pool->next_mapping)
1166                 return 0;
1167
1168         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1169
1170         return pool->next_mapping ? 0 : -ENOMEM;
1171 }
1172
1173 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1174 {
1175         struct dm_thin_new_mapping *m = pool->next_mapping;
1176
1177         BUG_ON(!pool->next_mapping);
1178
1179         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1180         INIT_LIST_HEAD(&m->list);
1181         m->bio = NULL;
1182
1183         pool->next_mapping = NULL;
1184
1185         return m;
1186 }
1187
1188 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1189                     sector_t begin, sector_t end)
1190 {
1191         int r;
1192         struct dm_io_region to;
1193
1194         to.bdev = tc->pool_dev->bdev;
1195         to.sector = begin;
1196         to.count = end - begin;
1197
1198         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1199         if (r < 0) {
1200                 DMERR_LIMIT("dm_kcopyd_zero() failed");
1201                 copy_complete(1, 1, m);
1202         }
1203 }
1204
1205 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1206                                       dm_block_t data_begin,
1207                                       struct dm_thin_new_mapping *m)
1208 {
1209         struct pool *pool = tc->pool;
1210         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1211
1212         h->overwrite_mapping = m;
1213         m->bio = bio;
1214         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1215         inc_all_io_entry(pool, bio);
1216         remap_and_issue(tc, bio, data_begin);
1217 }
1218
1219 /*
1220  * A partial copy also needs to zero the uncopied region.
1221  */
1222 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1223                           struct dm_dev *origin, dm_block_t data_origin,
1224                           dm_block_t data_dest,
1225                           struct dm_bio_prison_cell *cell, struct bio *bio,
1226                           sector_t len)
1227 {
1228         int r;
1229         struct pool *pool = tc->pool;
1230         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1231
1232         m->tc = tc;
1233         m->virt_begin = virt_block;
1234         m->virt_end = virt_block + 1u;
1235         m->data_block = data_dest;
1236         m->cell = cell;
1237
1238         /*
1239          * quiesce action + copy action + an extra reference held for the
1240          * duration of this function (we may need to inc later for a
1241          * partial zero).
1242          */
1243         atomic_set(&m->prepare_actions, 3);
1244
1245         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1246                 complete_mapping_preparation(m); /* already quiesced */
1247
1248         /*
1249          * IO to pool_dev remaps to the pool target's data_dev.
1250          *
1251          * If the whole block of data is being overwritten, we can issue the
1252          * bio immediately. Otherwise we use kcopyd to clone the data first.
1253          */
1254         if (io_overwrites_block(pool, bio))
1255                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1256         else {
1257                 struct dm_io_region from, to;
1258
1259                 from.bdev = origin->bdev;
1260                 from.sector = data_origin * pool->sectors_per_block;
1261                 from.count = len;
1262
1263                 to.bdev = tc->pool_dev->bdev;
1264                 to.sector = data_dest * pool->sectors_per_block;
1265                 to.count = len;
1266
1267                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1268                                    0, copy_complete, m);
1269                 if (r < 0) {
1270                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1271                         copy_complete(1, 1, m);
1272
1273                         /*
1274                          * We allow the zero to be issued, to simplify the
1275                          * error path.  Otherwise we'd need to start
1276                          * worrying about decrementing the prepare_actions
1277                          * counter.
1278                          */
1279                 }
1280
1281                 /*
1282                  * Do we need to zero a tail region?
1283                  */
1284                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1285                         atomic_inc(&m->prepare_actions);
1286                         ll_zero(tc, m,
1287                                 data_dest * pool->sectors_per_block + len,
1288                                 (data_dest + 1) * pool->sectors_per_block);
1289                 }
1290         }
1291
1292         complete_mapping_preparation(m); /* drop our ref */
1293 }
1294
1295 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1296                                    dm_block_t data_origin, dm_block_t data_dest,
1297                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1298 {
1299         schedule_copy(tc, virt_block, tc->pool_dev,
1300                       data_origin, data_dest, cell, bio,
1301                       tc->pool->sectors_per_block);
1302 }
1303
1304 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1305                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1306                           struct bio *bio)
1307 {
1308         struct pool *pool = tc->pool;
1309         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1310
1311         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1312         m->tc = tc;
1313         m->virt_begin = virt_block;
1314         m->virt_end = virt_block + 1u;
1315         m->data_block = data_block;
1316         m->cell = cell;
1317
1318         /*
1319          * If the whole block of data is being overwritten or we are not
1320          * zeroing pre-existing data, we can issue the bio immediately.
1321          * Otherwise we use kcopyd to zero the data first.
1322          */
1323         if (pool->pf.zero_new_blocks) {
1324                 if (io_overwrites_block(pool, bio))
1325                         remap_and_issue_overwrite(tc, bio, data_block, m);
1326                 else
1327                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1328                                 (data_block + 1) * pool->sectors_per_block);
1329         } else
1330                 process_prepared_mapping(m);
1331 }
1332
1333 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1334                                    dm_block_t data_dest,
1335                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1336 {
1337         struct pool *pool = tc->pool;
1338         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1339         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1340
1341         if (virt_block_end <= tc->origin_size)
1342                 schedule_copy(tc, virt_block, tc->origin_dev,
1343                               virt_block, data_dest, cell, bio,
1344                               pool->sectors_per_block);
1345
1346         else if (virt_block_begin < tc->origin_size)
1347                 schedule_copy(tc, virt_block, tc->origin_dev,
1348                               virt_block, data_dest, cell, bio,
1349                               tc->origin_size - virt_block_begin);
1350
1351         else
1352                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1353 }
1354
1355 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1356
1357 static void check_for_space(struct pool *pool)
1358 {
1359         int r;
1360         dm_block_t nr_free;
1361
1362         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1363                 return;
1364
1365         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1366         if (r)
1367                 return;
1368
1369         if (nr_free)
1370                 set_pool_mode(pool, PM_WRITE);
1371 }
1372
1373 /*
1374  * A non-zero return indicates read_only or fail_io mode.
1375  * Many callers don't care about the return value.
1376  */
1377 static int commit(struct pool *pool)
1378 {
1379         int r;
1380
1381         if (get_pool_mode(pool) >= PM_READ_ONLY)
1382                 return -EINVAL;
1383
1384         r = dm_pool_commit_metadata(pool->pmd);
1385         if (r)
1386                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1387         else
1388                 check_for_space(pool);
1389
1390         return r;
1391 }
1392
1393 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1394 {
1395         unsigned long flags;
1396
1397         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1398                 DMWARN("%s: reached low water mark for data device: sending event.",
1399                        dm_device_name(pool->pool_md));
1400                 spin_lock_irqsave(&pool->lock, flags);
1401                 pool->low_water_triggered = true;
1402                 spin_unlock_irqrestore(&pool->lock, flags);
1403                 dm_table_event(pool->ti->table);
1404         }
1405 }
1406
1407 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1408 {
1409         int r;
1410         dm_block_t free_blocks;
1411         struct pool *pool = tc->pool;
1412
1413         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1414                 return -EINVAL;
1415
1416         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1417         if (r) {
1418                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1419                 return r;
1420         }
1421
1422         check_low_water_mark(pool, free_blocks);
1423
1424         if (!free_blocks) {
1425                 /*
1426                  * Try to commit to see if that will free up some
1427                  * more space.
1428                  */
1429                 r = commit(pool);
1430                 if (r)
1431                         return r;
1432
1433                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1434                 if (r) {
1435                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1436                         return r;
1437                 }
1438
1439                 if (!free_blocks) {
1440                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1441                         return -ENOSPC;
1442                 }
1443         }
1444
1445         r = dm_pool_alloc_data_block(pool->pmd, result);
1446         if (r) {
1447                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1448                 return r;
1449         }
1450
1451         return 0;
1452 }
1453
1454 /*
1455  * If we have run out of space, queue bios until the device is
1456  * resumed, presumably after having been reloaded with more space.
1457  */
1458 static void retry_on_resume(struct bio *bio)
1459 {
1460         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1461         struct thin_c *tc = h->tc;
1462         unsigned long flags;
1463
1464         spin_lock_irqsave(&tc->lock, flags);
1465         bio_list_add(&tc->retry_on_resume_list, bio);
1466         spin_unlock_irqrestore(&tc->lock, flags);
1467 }
1468
1469 static int should_error_unserviceable_bio(struct pool *pool)
1470 {
1471         enum pool_mode m = get_pool_mode(pool);
1472
1473         switch (m) {
1474         case PM_WRITE:
1475                 /* Shouldn't get here */
1476                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1477                 return -EIO;
1478
1479         case PM_OUT_OF_DATA_SPACE:
1480                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1481
1482         case PM_READ_ONLY:
1483         case PM_FAIL:
1484                 return -EIO;
1485         default:
1486                 /* Shouldn't get here */
1487                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1488                 return -EIO;
1489         }
1490 }
1491
1492 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1493 {
1494         int error = should_error_unserviceable_bio(pool);
1495
1496         if (error)
1497                 bio_endio(bio, error);
1498         else
1499                 retry_on_resume(bio);
1500 }
1501
1502 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1503 {
1504         struct bio *bio;
1505         struct bio_list bios;
1506         int error;
1507
1508         error = should_error_unserviceable_bio(pool);
1509         if (error) {
1510                 cell_error_with_code(pool, cell, error);
1511                 return;
1512         }
1513
1514         bio_list_init(&bios);
1515         cell_release(pool, cell, &bios);
1516
1517         while ((bio = bio_list_pop(&bios)))
1518                 retry_on_resume(bio);
1519 }
1520
1521 static void process_discard_cell_no_passdown(struct thin_c *tc,
1522                                              struct dm_bio_prison_cell *virt_cell)
1523 {
1524         struct pool *pool = tc->pool;
1525         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1526
1527         /*
1528          * We don't need to lock the data blocks, since there's no
1529          * passdown.  We only lock data blocks for allocation and breaking sharing.
1530          */
1531         m->tc = tc;
1532         m->virt_begin = virt_cell->key.block_begin;
1533         m->virt_end = virt_cell->key.block_end;
1534         m->cell = virt_cell;
1535         m->bio = virt_cell->holder;
1536
1537         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1538                 pool->process_prepared_discard(m);
1539 }
1540
1541 /*
1542  * FIXME: DM local hack to defer parent bios's end_io until we
1543  * _know_ all chained sub range discard bios have completed.
1544  * Will go away once late bio splitting lands upstream!
1545  */
1546 static inline void __bio_inc_remaining(struct bio *bio)
1547 {
1548         bio->bi_flags |= (1 << BIO_CHAIN);
1549         smp_mb__before_atomic();
1550         atomic_inc(&bio->__bi_remaining);
1551 }
1552
1553 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1554                                  struct bio *bio)
1555 {
1556         struct pool *pool = tc->pool;
1557
1558         int r;
1559         bool maybe_shared;
1560         struct dm_cell_key data_key;
1561         struct dm_bio_prison_cell *data_cell;
1562         struct dm_thin_new_mapping *m;
1563         dm_block_t virt_begin, virt_end, data_begin;
1564
1565         while (begin != end) {
1566                 r = ensure_next_mapping(pool);
1567                 if (r)
1568                         /* we did our best */
1569                         return;
1570
1571                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1572                                               &data_begin, &maybe_shared);
1573                 if (r)
1574                         /*
1575                          * Silently fail, letting any mappings we've
1576                          * created complete.
1577                          */
1578                         break;
1579
1580                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1581                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1582                         /* contention, we'll give up with this range */
1583                         begin = virt_end;
1584                         continue;
1585                 }
1586
1587                 /*
1588                  * IO may still be going to the destination block.  We must
1589                  * quiesce before we can do the removal.
1590                  */
1591                 m = get_next_mapping(pool);
1592                 m->tc = tc;
1593                 m->maybe_shared = maybe_shared;
1594                 m->virt_begin = virt_begin;
1595                 m->virt_end = virt_end;
1596                 m->data_block = data_begin;
1597                 m->cell = data_cell;
1598                 m->bio = bio;
1599
1600                 /*
1601                  * The parent bio must not complete before sub discard bios are
1602                  * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1603                  *
1604                  * This per-mapping bi_remaining increment is paired with
1605                  * the implicit decrement that occurs via bio_endio() in
1606                  * process_prepared_discard_{passdown,no_passdown}.
1607                  */
1608                 __bio_inc_remaining(bio);
1609                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1610                         pool->process_prepared_discard(m);
1611
1612                 begin = virt_end;
1613         }
1614 }
1615
1616 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1617 {
1618         struct bio *bio = virt_cell->holder;
1619         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1620
1621         /*
1622          * The virt_cell will only get freed once the origin bio completes.
1623          * This means it will remain locked while all the individual
1624          * passdown bios are in flight.
1625          */
1626         h->cell = virt_cell;
1627         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1628
1629         /*
1630          * We complete the bio now, knowing that the bi_remaining field
1631          * will prevent completion until the sub range discards have
1632          * completed.
1633          */
1634         bio_endio(bio, 0);
1635 }
1636
1637 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1638 {
1639         dm_block_t begin, end;
1640         struct dm_cell_key virt_key;
1641         struct dm_bio_prison_cell *virt_cell;
1642
1643         get_bio_block_range(tc, bio, &begin, &end);
1644         if (begin == end) {
1645                 /*
1646                  * The discard covers less than a block.
1647                  */
1648                 bio_endio(bio, 0);
1649                 return;
1650         }
1651
1652         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1653         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1654                 /*
1655                  * Potential starvation issue: We're relying on the
1656                  * fs/application being well behaved, and not trying to
1657                  * send IO to a region at the same time as discarding it.
1658                  * If they do this persistently then it's possible this
1659                  * cell will never be granted.
1660                  */
1661                 return;
1662
1663         tc->pool->process_discard_cell(tc, virt_cell);
1664 }
1665
1666 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1667                           struct dm_cell_key *key,
1668                           struct dm_thin_lookup_result *lookup_result,
1669                           struct dm_bio_prison_cell *cell)
1670 {
1671         int r;
1672         dm_block_t data_block;
1673         struct pool *pool = tc->pool;
1674
1675         r = alloc_data_block(tc, &data_block);
1676         switch (r) {
1677         case 0:
1678                 schedule_internal_copy(tc, block, lookup_result->block,
1679                                        data_block, cell, bio);
1680                 break;
1681
1682         case -ENOSPC:
1683                 retry_bios_on_resume(pool, cell);
1684                 break;
1685
1686         default:
1687                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1688                             __func__, r);
1689                 cell_error(pool, cell);
1690                 break;
1691         }
1692 }
1693
1694 static void __remap_and_issue_shared_cell(void *context,
1695                                           struct dm_bio_prison_cell *cell)
1696 {
1697         struct remap_info *info = context;
1698         struct bio *bio;
1699
1700         while ((bio = bio_list_pop(&cell->bios))) {
1701                 if ((bio_data_dir(bio) == WRITE) ||
1702                     (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1703                         bio_list_add(&info->defer_bios, bio);
1704                 else {
1705                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1706
1707                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1708                         inc_all_io_entry(info->tc->pool, bio);
1709                         bio_list_add(&info->issue_bios, bio);
1710                 }
1711         }
1712 }
1713
1714 static void remap_and_issue_shared_cell(struct thin_c *tc,
1715                                         struct dm_bio_prison_cell *cell,
1716                                         dm_block_t block)
1717 {
1718         struct bio *bio;
1719         struct remap_info info;
1720
1721         info.tc = tc;
1722         bio_list_init(&info.defer_bios);
1723         bio_list_init(&info.issue_bios);
1724
1725         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1726                            &info, cell);
1727
1728         while ((bio = bio_list_pop(&info.defer_bios)))
1729                 thin_defer_bio(tc, bio);
1730
1731         while ((bio = bio_list_pop(&info.issue_bios)))
1732                 remap_and_issue(tc, bio, block);
1733 }
1734
1735 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1736                                dm_block_t block,
1737                                struct dm_thin_lookup_result *lookup_result,
1738                                struct dm_bio_prison_cell *virt_cell)
1739 {
1740         struct dm_bio_prison_cell *data_cell;
1741         struct pool *pool = tc->pool;
1742         struct dm_cell_key key;
1743
1744         /*
1745          * If cell is already occupied, then sharing is already in the process
1746          * of being broken so we have nothing further to do here.
1747          */
1748         build_data_key(tc->td, lookup_result->block, &key);
1749         if (bio_detain(pool, &key, bio, &data_cell)) {
1750                 cell_defer_no_holder(tc, virt_cell);
1751                 return;
1752         }
1753
1754         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1755                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1756                 cell_defer_no_holder(tc, virt_cell);
1757         } else {
1758                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1759
1760                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1761                 inc_all_io_entry(pool, bio);
1762                 remap_and_issue(tc, bio, lookup_result->block);
1763
1764                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1765                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1766         }
1767 }
1768
1769 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1770                             struct dm_bio_prison_cell *cell)
1771 {
1772         int r;
1773         dm_block_t data_block;
1774         struct pool *pool = tc->pool;
1775
1776         /*
1777          * Remap empty bios (flushes) immediately, without provisioning.
1778          */
1779         if (!bio->bi_iter.bi_size) {
1780                 inc_all_io_entry(pool, bio);
1781                 cell_defer_no_holder(tc, cell);
1782
1783                 remap_and_issue(tc, bio, 0);
1784                 return;
1785         }
1786
1787         /*
1788          * Fill read bios with zeroes and complete them immediately.
1789          */
1790         if (bio_data_dir(bio) == READ) {
1791                 zero_fill_bio(bio);
1792                 cell_defer_no_holder(tc, cell);
1793                 bio_endio(bio, 0);
1794                 return;
1795         }
1796
1797         r = alloc_data_block(tc, &data_block);
1798         switch (r) {
1799         case 0:
1800                 if (tc->origin_dev)
1801                         schedule_external_copy(tc, block, data_block, cell, bio);
1802                 else
1803                         schedule_zero(tc, block, data_block, cell, bio);
1804                 break;
1805
1806         case -ENOSPC:
1807                 retry_bios_on_resume(pool, cell);
1808                 break;
1809
1810         default:
1811                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1812                             __func__, r);
1813                 cell_error(pool, cell);
1814                 break;
1815         }
1816 }
1817
1818 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1819 {
1820         int r;
1821         struct pool *pool = tc->pool;
1822         struct bio *bio = cell->holder;
1823         dm_block_t block = get_bio_block(tc, bio);
1824         struct dm_thin_lookup_result lookup_result;
1825
1826         if (tc->requeue_mode) {
1827                 cell_requeue(pool, cell);
1828                 return;
1829         }
1830
1831         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1832         switch (r) {
1833         case 0:
1834                 if (lookup_result.shared)
1835                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1836                 else {
1837                         inc_all_io_entry(pool, bio);
1838                         remap_and_issue(tc, bio, lookup_result.block);
1839                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1840                 }
1841                 break;
1842
1843         case -ENODATA:
1844                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1845                         inc_all_io_entry(pool, bio);
1846                         cell_defer_no_holder(tc, cell);
1847
1848                         if (bio_end_sector(bio) <= tc->origin_size)
1849                                 remap_to_origin_and_issue(tc, bio);
1850
1851                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1852                                 zero_fill_bio(bio);
1853                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1854                                 remap_to_origin_and_issue(tc, bio);
1855
1856                         } else {
1857                                 zero_fill_bio(bio);
1858                                 bio_endio(bio, 0);
1859                         }
1860                 } else
1861                         provision_block(tc, bio, block, cell);
1862                 break;
1863
1864         default:
1865                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1866                             __func__, r);
1867                 cell_defer_no_holder(tc, cell);
1868                 bio_io_error(bio);
1869                 break;
1870         }
1871 }
1872
1873 static void process_bio(struct thin_c *tc, struct bio *bio)
1874 {
1875         struct pool *pool = tc->pool;
1876         dm_block_t block = get_bio_block(tc, bio);
1877         struct dm_bio_prison_cell *cell;
1878         struct dm_cell_key key;
1879
1880         /*
1881          * If cell is already occupied, then the block is already
1882          * being provisioned so we have nothing further to do here.
1883          */
1884         build_virtual_key(tc->td, block, &key);
1885         if (bio_detain(pool, &key, bio, &cell))
1886                 return;
1887
1888         process_cell(tc, cell);
1889 }
1890
1891 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1892                                     struct dm_bio_prison_cell *cell)
1893 {
1894         int r;
1895         int rw = bio_data_dir(bio);
1896         dm_block_t block = get_bio_block(tc, bio);
1897         struct dm_thin_lookup_result lookup_result;
1898
1899         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1900         switch (r) {
1901         case 0:
1902                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1903                         handle_unserviceable_bio(tc->pool, bio);
1904                         if (cell)
1905                                 cell_defer_no_holder(tc, cell);
1906                 } else {
1907                         inc_all_io_entry(tc->pool, bio);
1908                         remap_and_issue(tc, bio, lookup_result.block);
1909                         if (cell)
1910                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1911                 }
1912                 break;
1913
1914         case -ENODATA:
1915                 if (cell)
1916                         cell_defer_no_holder(tc, cell);
1917                 if (rw != READ) {
1918                         handle_unserviceable_bio(tc->pool, bio);
1919                         break;
1920                 }
1921
1922                 if (tc->origin_dev) {
1923                         inc_all_io_entry(tc->pool, bio);
1924                         remap_to_origin_and_issue(tc, bio);
1925                         break;
1926                 }
1927
1928                 zero_fill_bio(bio);
1929                 bio_endio(bio, 0);
1930                 break;
1931
1932         default:
1933                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1934                             __func__, r);
1935                 if (cell)
1936                         cell_defer_no_holder(tc, cell);
1937                 bio_io_error(bio);
1938                 break;
1939         }
1940 }
1941
1942 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1943 {
1944         __process_bio_read_only(tc, bio, NULL);
1945 }
1946
1947 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1948 {
1949         __process_bio_read_only(tc, cell->holder, cell);
1950 }
1951
1952 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1953 {
1954         bio_endio(bio, 0);
1955 }
1956
1957 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1958 {
1959         bio_io_error(bio);
1960 }
1961
1962 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1963 {
1964         cell_success(tc->pool, cell);
1965 }
1966
1967 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1968 {
1969         cell_error(tc->pool, cell);
1970 }
1971
1972 /*
1973  * FIXME: should we also commit due to size of transaction, measured in
1974  * metadata blocks?
1975  */
1976 static int need_commit_due_to_time(struct pool *pool)
1977 {
1978         return !time_in_range(jiffies, pool->last_commit_jiffies,
1979                               pool->last_commit_jiffies + COMMIT_PERIOD);
1980 }
1981
1982 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1983 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1984
1985 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1986 {
1987         struct rb_node **rbp, *parent;
1988         struct dm_thin_endio_hook *pbd;
1989         sector_t bi_sector = bio->bi_iter.bi_sector;
1990
1991         rbp = &tc->sort_bio_list.rb_node;
1992         parent = NULL;
1993         while (*rbp) {
1994                 parent = *rbp;
1995                 pbd = thin_pbd(parent);
1996
1997                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1998                         rbp = &(*rbp)->rb_left;
1999                 else
2000                         rbp = &(*rbp)->rb_right;
2001         }
2002
2003         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2004         rb_link_node(&pbd->rb_node, parent, rbp);
2005         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2006 }
2007
2008 static void __extract_sorted_bios(struct thin_c *tc)
2009 {
2010         struct rb_node *node;
2011         struct dm_thin_endio_hook *pbd;
2012         struct bio *bio;
2013
2014         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2015                 pbd = thin_pbd(node);
2016                 bio = thin_bio(pbd);
2017
2018                 bio_list_add(&tc->deferred_bio_list, bio);
2019                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2020         }
2021
2022         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2023 }
2024
2025 static void __sort_thin_deferred_bios(struct thin_c *tc)
2026 {
2027         struct bio *bio;
2028         struct bio_list bios;
2029
2030         bio_list_init(&bios);
2031         bio_list_merge(&bios, &tc->deferred_bio_list);
2032         bio_list_init(&tc->deferred_bio_list);
2033
2034         /* Sort deferred_bio_list using rb-tree */
2035         while ((bio = bio_list_pop(&bios)))
2036                 __thin_bio_rb_add(tc, bio);
2037
2038         /*
2039          * Transfer the sorted bios in sort_bio_list back to
2040          * deferred_bio_list to allow lockless submission of
2041          * all bios.
2042          */
2043         __extract_sorted_bios(tc);
2044 }
2045
2046 static void process_thin_deferred_bios(struct thin_c *tc)
2047 {
2048         struct pool *pool = tc->pool;
2049         unsigned long flags;
2050         struct bio *bio;
2051         struct bio_list bios;
2052         struct blk_plug plug;
2053         unsigned count = 0;
2054
2055         if (tc->requeue_mode) {
2056                 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2057                 return;
2058         }
2059
2060         bio_list_init(&bios);
2061
2062         spin_lock_irqsave(&tc->lock, flags);
2063
2064         if (bio_list_empty(&tc->deferred_bio_list)) {
2065                 spin_unlock_irqrestore(&tc->lock, flags);
2066                 return;
2067         }
2068
2069         __sort_thin_deferred_bios(tc);
2070
2071         bio_list_merge(&bios, &tc->deferred_bio_list);
2072         bio_list_init(&tc->deferred_bio_list);
2073
2074         spin_unlock_irqrestore(&tc->lock, flags);
2075
2076         blk_start_plug(&plug);
2077         while ((bio = bio_list_pop(&bios))) {
2078                 /*
2079                  * If we've got no free new_mapping structs, and processing
2080                  * this bio might require one, we pause until there are some
2081                  * prepared mappings to process.
2082                  */
2083                 if (ensure_next_mapping(pool)) {
2084                         spin_lock_irqsave(&tc->lock, flags);
2085                         bio_list_add(&tc->deferred_bio_list, bio);
2086                         bio_list_merge(&tc->deferred_bio_list, &bios);
2087                         spin_unlock_irqrestore(&tc->lock, flags);
2088                         break;
2089                 }
2090
2091                 if (bio->bi_rw & REQ_DISCARD)
2092                         pool->process_discard(tc, bio);
2093                 else
2094                         pool->process_bio(tc, bio);
2095
2096                 if ((count++ & 127) == 0) {
2097                         throttle_work_update(&pool->throttle);
2098                         dm_pool_issue_prefetches(pool->pmd);
2099                 }
2100         }
2101         blk_finish_plug(&plug);
2102 }
2103
2104 static int cmp_cells(const void *lhs, const void *rhs)
2105 {
2106         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2107         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2108
2109         BUG_ON(!lhs_cell->holder);
2110         BUG_ON(!rhs_cell->holder);
2111
2112         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2113                 return -1;
2114
2115         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2116                 return 1;
2117
2118         return 0;
2119 }
2120
2121 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2122 {
2123         unsigned count = 0;
2124         struct dm_bio_prison_cell *cell, *tmp;
2125
2126         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2127                 if (count >= CELL_SORT_ARRAY_SIZE)
2128                         break;
2129
2130                 pool->cell_sort_array[count++] = cell;
2131                 list_del(&cell->user_list);
2132         }
2133
2134         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2135
2136         return count;
2137 }
2138
2139 static void process_thin_deferred_cells(struct thin_c *tc)
2140 {
2141         struct pool *pool = tc->pool;
2142         unsigned long flags;
2143         struct list_head cells;
2144         struct dm_bio_prison_cell *cell;
2145         unsigned i, j, count;
2146
2147         INIT_LIST_HEAD(&cells);
2148
2149         spin_lock_irqsave(&tc->lock, flags);
2150         list_splice_init(&tc->deferred_cells, &cells);
2151         spin_unlock_irqrestore(&tc->lock, flags);
2152
2153         if (list_empty(&cells))
2154                 return;
2155
2156         do {
2157                 count = sort_cells(tc->pool, &cells);
2158
2159                 for (i = 0; i < count; i++) {
2160                         cell = pool->cell_sort_array[i];
2161                         BUG_ON(!cell->holder);
2162
2163                         /*
2164                          * If we've got no free new_mapping structs, and processing
2165                          * this bio might require one, we pause until there are some
2166                          * prepared mappings to process.
2167                          */
2168                         if (ensure_next_mapping(pool)) {
2169                                 for (j = i; j < count; j++)
2170                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2171
2172                                 spin_lock_irqsave(&tc->lock, flags);
2173                                 list_splice(&cells, &tc->deferred_cells);
2174                                 spin_unlock_irqrestore(&tc->lock, flags);
2175                                 return;
2176                         }
2177
2178                         if (cell->holder->bi_rw & REQ_DISCARD)
2179                                 pool->process_discard_cell(tc, cell);
2180                         else
2181                                 pool->process_cell(tc, cell);
2182                 }
2183         } while (!list_empty(&cells));
2184 }
2185
2186 static void thin_get(struct thin_c *tc);
2187 static void thin_put(struct thin_c *tc);
2188
2189 /*
2190  * We can't hold rcu_read_lock() around code that can block.  So we
2191  * find a thin with the rcu lock held; bump a refcount; then drop
2192  * the lock.
2193  */
2194 static struct thin_c *get_first_thin(struct pool *pool)
2195 {
2196         struct thin_c *tc = NULL;
2197
2198         rcu_read_lock();
2199         if (!list_empty(&pool->active_thins)) {
2200                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2201                 thin_get(tc);
2202         }
2203         rcu_read_unlock();
2204
2205         return tc;
2206 }
2207
2208 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2209 {
2210         struct thin_c *old_tc = tc;
2211
2212         rcu_read_lock();
2213         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2214                 thin_get(tc);
2215                 thin_put(old_tc);
2216                 rcu_read_unlock();
2217                 return tc;
2218         }
2219         thin_put(old_tc);
2220         rcu_read_unlock();
2221
2222         return NULL;
2223 }
2224
2225 static void process_deferred_bios(struct pool *pool)
2226 {
2227         unsigned long flags;
2228         struct bio *bio;
2229         struct bio_list bios;
2230         struct thin_c *tc;
2231
2232         tc = get_first_thin(pool);
2233         while (tc) {
2234                 process_thin_deferred_cells(tc);
2235                 process_thin_deferred_bios(tc);
2236                 tc = get_next_thin(pool, tc);
2237         }
2238
2239         /*
2240          * If there are any deferred flush bios, we must commit
2241          * the metadata before issuing them.
2242          */
2243         bio_list_init(&bios);
2244         spin_lock_irqsave(&pool->lock, flags);
2245         bio_list_merge(&bios, &pool->deferred_flush_bios);
2246         bio_list_init(&pool->deferred_flush_bios);
2247         spin_unlock_irqrestore(&pool->lock, flags);
2248
2249         if (bio_list_empty(&bios) &&
2250             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2251                 return;
2252
2253         if (commit(pool)) {
2254                 while ((bio = bio_list_pop(&bios)))
2255                         bio_io_error(bio);
2256                 return;
2257         }
2258         pool->last_commit_jiffies = jiffies;
2259
2260         while ((bio = bio_list_pop(&bios)))
2261                 generic_make_request(bio);
2262 }
2263
2264 static void do_worker(struct work_struct *ws)
2265 {
2266         struct pool *pool = container_of(ws, struct pool, worker);
2267
2268         throttle_work_start(&pool->throttle);
2269         dm_pool_issue_prefetches(pool->pmd);
2270         throttle_work_update(&pool->throttle);
2271         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2272         throttle_work_update(&pool->throttle);
2273         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2274         throttle_work_update(&pool->throttle);
2275         process_deferred_bios(pool);
2276         throttle_work_complete(&pool->throttle);
2277 }
2278
2279 /*
2280  * We want to commit periodically so that not too much
2281  * unwritten data builds up.
2282  */
2283 static void do_waker(struct work_struct *ws)
2284 {
2285         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2286         wake_worker(pool);
2287         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2288 }
2289
2290 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2291
2292 /*
2293  * We're holding onto IO to allow userland time to react.  After the
2294  * timeout either the pool will have been resized (and thus back in
2295  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2296  */
2297 static void do_no_space_timeout(struct work_struct *ws)
2298 {
2299         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2300                                          no_space_timeout);
2301
2302         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2303                 pool->pf.error_if_no_space = true;
2304                 notify_of_pool_mode_change_to_oods(pool);
2305                 error_retry_list_with_code(pool, -ENOSPC);
2306         }
2307 }
2308
2309 /*----------------------------------------------------------------*/
2310
2311 struct pool_work {
2312         struct work_struct worker;
2313         struct completion complete;
2314 };
2315
2316 static struct pool_work *to_pool_work(struct work_struct *ws)
2317 {
2318         return container_of(ws, struct pool_work, worker);
2319 }
2320
2321 static void pool_work_complete(struct pool_work *pw)
2322 {
2323         complete(&pw->complete);
2324 }
2325
2326 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2327                            void (*fn)(struct work_struct *))
2328 {
2329         INIT_WORK_ONSTACK(&pw->worker, fn);
2330         init_completion(&pw->complete);
2331         queue_work(pool->wq, &pw->worker);
2332         wait_for_completion(&pw->complete);
2333 }
2334
2335 /*----------------------------------------------------------------*/
2336
2337 struct noflush_work {
2338         struct pool_work pw;
2339         struct thin_c *tc;
2340 };
2341
2342 static struct noflush_work *to_noflush(struct work_struct *ws)
2343 {
2344         return container_of(to_pool_work(ws), struct noflush_work, pw);
2345 }
2346
2347 static void do_noflush_start(struct work_struct *ws)
2348 {
2349         struct noflush_work *w = to_noflush(ws);
2350         w->tc->requeue_mode = true;
2351         requeue_io(w->tc);
2352         pool_work_complete(&w->pw);
2353 }
2354
2355 static void do_noflush_stop(struct work_struct *ws)
2356 {
2357         struct noflush_work *w = to_noflush(ws);
2358         w->tc->requeue_mode = false;
2359         pool_work_complete(&w->pw);
2360 }
2361
2362 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2363 {
2364         struct noflush_work w;
2365
2366         w.tc = tc;
2367         pool_work_wait(&w.pw, tc->pool, fn);
2368 }
2369
2370 /*----------------------------------------------------------------*/
2371
2372 static enum pool_mode get_pool_mode(struct pool *pool)
2373 {
2374         return pool->pf.mode;
2375 }
2376
2377 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2378 {
2379         dm_table_event(pool->ti->table);
2380         DMINFO("%s: switching pool to %s mode",
2381                dm_device_name(pool->pool_md), new_mode);
2382 }
2383
2384 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2385 {
2386         if (!pool->pf.error_if_no_space)
2387                 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2388         else
2389                 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2390 }
2391
2392 static bool passdown_enabled(struct pool_c *pt)
2393 {
2394         return pt->adjusted_pf.discard_passdown;
2395 }
2396
2397 static void set_discard_callbacks(struct pool *pool)
2398 {
2399         struct pool_c *pt = pool->ti->private;
2400
2401         if (passdown_enabled(pt)) {
2402                 pool->process_discard_cell = process_discard_cell_passdown;
2403                 pool->process_prepared_discard = process_prepared_discard_passdown;
2404         } else {
2405                 pool->process_discard_cell = process_discard_cell_no_passdown;
2406                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2407         }
2408 }
2409
2410 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2411 {
2412         struct pool_c *pt = pool->ti->private;
2413         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2414         enum pool_mode old_mode = get_pool_mode(pool);
2415         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2416
2417         /*
2418          * Never allow the pool to transition to PM_WRITE mode if user
2419          * intervention is required to verify metadata and data consistency.
2420          */
2421         if (new_mode == PM_WRITE && needs_check) {
2422                 DMERR("%s: unable to switch pool to write mode until repaired.",
2423                       dm_device_name(pool->pool_md));
2424                 if (old_mode != new_mode)
2425                         new_mode = old_mode;
2426                 else
2427                         new_mode = PM_READ_ONLY;
2428         }
2429         /*
2430          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2431          * not going to recover without a thin_repair.  So we never let the
2432          * pool move out of the old mode.
2433          */
2434         if (old_mode == PM_FAIL)
2435                 new_mode = old_mode;
2436
2437         switch (new_mode) {
2438         case PM_FAIL:
2439                 if (old_mode != new_mode)
2440                         notify_of_pool_mode_change(pool, "failure");
2441                 dm_pool_metadata_read_only(pool->pmd);
2442                 pool->process_bio = process_bio_fail;
2443                 pool->process_discard = process_bio_fail;
2444                 pool->process_cell = process_cell_fail;
2445                 pool->process_discard_cell = process_cell_fail;
2446                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2447                 pool->process_prepared_discard = process_prepared_discard_fail;
2448
2449                 error_retry_list(pool);
2450                 break;
2451
2452         case PM_READ_ONLY:
2453                 if (old_mode != new_mode)
2454                         notify_of_pool_mode_change(pool, "read-only");
2455                 dm_pool_metadata_read_only(pool->pmd);
2456                 pool->process_bio = process_bio_read_only;
2457                 pool->process_discard = process_bio_success;
2458                 pool->process_cell = process_cell_read_only;
2459                 pool->process_discard_cell = process_cell_success;
2460                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2461                 pool->process_prepared_discard = process_prepared_discard_success;
2462
2463                 error_retry_list(pool);
2464                 break;
2465
2466         case PM_OUT_OF_DATA_SPACE:
2467                 /*
2468                  * Ideally we'd never hit this state; the low water mark
2469                  * would trigger userland to extend the pool before we
2470                  * completely run out of data space.  However, many small
2471                  * IOs to unprovisioned space can consume data space at an
2472                  * alarming rate.  Adjust your low water mark if you're
2473                  * frequently seeing this mode.
2474                  */
2475                 if (old_mode != new_mode)
2476                         notify_of_pool_mode_change_to_oods(pool);
2477                 pool->process_bio = process_bio_read_only;
2478                 pool->process_discard = process_discard_bio;
2479                 pool->process_cell = process_cell_read_only;
2480                 pool->process_prepared_mapping = process_prepared_mapping;
2481                 set_discard_callbacks(pool);
2482
2483                 if (!pool->pf.error_if_no_space && no_space_timeout)
2484                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2485                 break;
2486
2487         case PM_WRITE:
2488                 if (old_mode != new_mode)
2489                         notify_of_pool_mode_change(pool, "write");
2490                 dm_pool_metadata_read_write(pool->pmd);
2491                 pool->process_bio = process_bio;
2492                 pool->process_discard = process_discard_bio;
2493                 pool->process_cell = process_cell;
2494                 pool->process_prepared_mapping = process_prepared_mapping;
2495                 set_discard_callbacks(pool);
2496                 break;
2497         }
2498
2499         pool->pf.mode = new_mode;
2500         /*
2501          * The pool mode may have changed, sync it so bind_control_target()
2502          * doesn't cause an unexpected mode transition on resume.
2503          */
2504         pt->adjusted_pf.mode = new_mode;
2505 }
2506
2507 static void abort_transaction(struct pool *pool)
2508 {
2509         const char *dev_name = dm_device_name(pool->pool_md);
2510
2511         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2512         if (dm_pool_abort_metadata(pool->pmd)) {
2513                 DMERR("%s: failed to abort metadata transaction", dev_name);
2514                 set_pool_mode(pool, PM_FAIL);
2515         }
2516
2517         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2518                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2519                 set_pool_mode(pool, PM_FAIL);
2520         }
2521 }
2522
2523 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2524 {
2525         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2526                     dm_device_name(pool->pool_md), op, r);
2527
2528         abort_transaction(pool);
2529         set_pool_mode(pool, PM_READ_ONLY);
2530 }
2531
2532 /*----------------------------------------------------------------*/
2533
2534 /*
2535  * Mapping functions.
2536  */
2537
2538 /*
2539  * Called only while mapping a thin bio to hand it over to the workqueue.
2540  */
2541 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2542 {
2543         unsigned long flags;
2544         struct pool *pool = tc->pool;
2545
2546         spin_lock_irqsave(&tc->lock, flags);
2547         bio_list_add(&tc->deferred_bio_list, bio);
2548         spin_unlock_irqrestore(&tc->lock, flags);
2549
2550         wake_worker(pool);
2551 }
2552
2553 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2554 {
2555         struct pool *pool = tc->pool;
2556
2557         throttle_lock(&pool->throttle);
2558         thin_defer_bio(tc, bio);
2559         throttle_unlock(&pool->throttle);
2560 }
2561
2562 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2563 {
2564         unsigned long flags;
2565         struct pool *pool = tc->pool;
2566
2567         throttle_lock(&pool->throttle);
2568         spin_lock_irqsave(&tc->lock, flags);
2569         list_add_tail(&cell->user_list, &tc->deferred_cells);
2570         spin_unlock_irqrestore(&tc->lock, flags);
2571         throttle_unlock(&pool->throttle);
2572
2573         wake_worker(pool);
2574 }
2575
2576 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2577 {
2578         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2579
2580         h->tc = tc;
2581         h->shared_read_entry = NULL;
2582         h->all_io_entry = NULL;
2583         h->overwrite_mapping = NULL;
2584         h->cell = NULL;
2585 }
2586
2587 /*
2588  * Non-blocking function called from the thin target's map function.
2589  */
2590 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2591 {
2592         int r;
2593         struct thin_c *tc = ti->private;
2594         dm_block_t block = get_bio_block(tc, bio);
2595         struct dm_thin_device *td = tc->td;
2596         struct dm_thin_lookup_result result;
2597         struct dm_bio_prison_cell *virt_cell, *data_cell;
2598         struct dm_cell_key key;
2599
2600         thin_hook_bio(tc, bio);
2601
2602         if (tc->requeue_mode) {
2603                 bio_endio(bio, DM_ENDIO_REQUEUE);
2604                 return DM_MAPIO_SUBMITTED;
2605         }
2606
2607         if (get_pool_mode(tc->pool) == PM_FAIL) {
2608                 bio_io_error(bio);
2609                 return DM_MAPIO_SUBMITTED;
2610         }
2611
2612         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2613                 thin_defer_bio_with_throttle(tc, bio);
2614                 return DM_MAPIO_SUBMITTED;
2615         }
2616
2617         /*
2618          * We must hold the virtual cell before doing the lookup, otherwise
2619          * there's a race with discard.
2620          */
2621         build_virtual_key(tc->td, block, &key);
2622         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2623                 return DM_MAPIO_SUBMITTED;
2624
2625         r = dm_thin_find_block(td, block, 0, &result);
2626
2627         /*
2628          * Note that we defer readahead too.
2629          */
2630         switch (r) {
2631         case 0:
2632                 if (unlikely(result.shared)) {
2633                         /*
2634                          * We have a race condition here between the
2635                          * result.shared value returned by the lookup and
2636                          * snapshot creation, which may cause new
2637                          * sharing.
2638                          *
2639                          * To avoid this always quiesce the origin before
2640                          * taking the snap.  You want to do this anyway to
2641                          * ensure a consistent application view
2642                          * (i.e. lockfs).
2643                          *
2644                          * More distant ancestors are irrelevant. The
2645                          * shared flag will be set in their case.
2646                          */
2647                         thin_defer_cell(tc, virt_cell);
2648                         return DM_MAPIO_SUBMITTED;
2649                 }
2650
2651                 build_data_key(tc->td, result.block, &key);
2652                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2653                         cell_defer_no_holder(tc, virt_cell);
2654                         return DM_MAPIO_SUBMITTED;
2655                 }
2656
2657                 inc_all_io_entry(tc->pool, bio);
2658                 cell_defer_no_holder(tc, data_cell);
2659                 cell_defer_no_holder(tc, virt_cell);
2660
2661                 remap(tc, bio, result.block);
2662                 return DM_MAPIO_REMAPPED;
2663
2664         case -ENODATA:
2665         case -EWOULDBLOCK:
2666                 thin_defer_cell(tc, virt_cell);
2667                 return DM_MAPIO_SUBMITTED;
2668
2669         default:
2670                 /*
2671                  * Must always call bio_io_error on failure.
2672                  * dm_thin_find_block can fail with -EINVAL if the
2673                  * pool is switched to fail-io mode.
2674                  */
2675                 bio_io_error(bio);
2676                 cell_defer_no_holder(tc, virt_cell);
2677                 return DM_MAPIO_SUBMITTED;
2678         }
2679 }
2680
2681 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2682 {
2683         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2684         struct request_queue *q;
2685
2686         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2687                 return 1;
2688
2689         q = bdev_get_queue(pt->data_dev->bdev);
2690         return bdi_congested(&q->backing_dev_info, bdi_bits);
2691 }
2692
2693 static void requeue_bios(struct pool *pool)
2694 {
2695         unsigned long flags;
2696         struct thin_c *tc;
2697
2698         rcu_read_lock();
2699         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2700                 spin_lock_irqsave(&tc->lock, flags);
2701                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2702                 bio_list_init(&tc->retry_on_resume_list);
2703                 spin_unlock_irqrestore(&tc->lock, flags);
2704         }
2705         rcu_read_unlock();
2706 }
2707
2708 /*----------------------------------------------------------------
2709  * Binding of control targets to a pool object
2710  *--------------------------------------------------------------*/
2711 static bool data_dev_supports_discard(struct pool_c *pt)
2712 {
2713         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2714
2715         return q && blk_queue_discard(q);
2716 }
2717
2718 static bool is_factor(sector_t block_size, uint32_t n)
2719 {
2720         return !sector_div(block_size, n);
2721 }
2722
2723 /*
2724  * If discard_passdown was enabled verify that the data device
2725  * supports discards.  Disable discard_passdown if not.
2726  */
2727 static void disable_passdown_if_not_supported(struct pool_c *pt)
2728 {
2729         struct pool *pool = pt->pool;
2730         struct block_device *data_bdev = pt->data_dev->bdev;
2731         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2732         const char *reason = NULL;
2733         char buf[BDEVNAME_SIZE];
2734
2735         if (!pt->adjusted_pf.discard_passdown)
2736                 return;
2737
2738         if (!data_dev_supports_discard(pt))
2739                 reason = "discard unsupported";
2740
2741         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2742                 reason = "max discard sectors smaller than a block";
2743
2744         if (reason) {
2745                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2746                 pt->adjusted_pf.discard_passdown = false;
2747         }
2748 }
2749
2750 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2751 {
2752         struct pool_c *pt = ti->private;
2753
2754         /*
2755          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2756          */
2757         enum pool_mode old_mode = get_pool_mode(pool);
2758         enum pool_mode new_mode = pt->adjusted_pf.mode;
2759
2760         /*
2761          * Don't change the pool's mode until set_pool_mode() below.
2762          * Otherwise the pool's process_* function pointers may
2763          * not match the desired pool mode.
2764          */
2765         pt->adjusted_pf.mode = old_mode;
2766
2767         pool->ti = ti;
2768         pool->pf = pt->adjusted_pf;
2769         pool->low_water_blocks = pt->low_water_blocks;
2770
2771         set_pool_mode(pool, new_mode);
2772
2773         return 0;
2774 }
2775
2776 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2777 {
2778         if (pool->ti == ti)
2779                 pool->ti = NULL;
2780 }
2781
2782 /*----------------------------------------------------------------
2783  * Pool creation
2784  *--------------------------------------------------------------*/
2785 /* Initialize pool features. */
2786 static void pool_features_init(struct pool_features *pf)
2787 {
2788         pf->mode = PM_WRITE;
2789         pf->zero_new_blocks = true;
2790         pf->discard_enabled = true;
2791         pf->discard_passdown = true;
2792         pf->error_if_no_space = false;
2793 }
2794
2795 static void __pool_destroy(struct pool *pool)
2796 {
2797         __pool_table_remove(pool);
2798
2799         vfree(pool->cell_sort_array);
2800         if (dm_pool_metadata_close(pool->pmd) < 0)
2801                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2802
2803         dm_bio_prison_destroy(pool->prison);
2804         dm_kcopyd_client_destroy(pool->copier);
2805
2806         if (pool->wq)
2807                 destroy_workqueue(pool->wq);
2808
2809         if (pool->next_mapping)
2810                 mempool_free(pool->next_mapping, pool->mapping_pool);
2811         mempool_destroy(pool->mapping_pool);
2812         dm_deferred_set_destroy(pool->shared_read_ds);
2813         dm_deferred_set_destroy(pool->all_io_ds);
2814         kfree(pool);
2815 }
2816
2817 static struct kmem_cache *_new_mapping_cache;
2818
2819 static struct pool *pool_create(struct mapped_device *pool_md,
2820                                 struct block_device *metadata_dev,
2821                                 unsigned long block_size,
2822                                 int read_only, char **error)
2823 {
2824         int r;
2825         void *err_p;
2826         struct pool *pool;
2827         struct dm_pool_metadata *pmd;
2828         bool format_device = read_only ? false : true;
2829
2830         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2831         if (IS_ERR(pmd)) {
2832                 *error = "Error creating metadata object";
2833                 return (struct pool *)pmd;
2834         }
2835
2836         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2837         if (!pool) {
2838                 *error = "Error allocating memory for pool";
2839                 err_p = ERR_PTR(-ENOMEM);
2840                 goto bad_pool;
2841         }
2842
2843         pool->pmd = pmd;
2844         pool->sectors_per_block = block_size;
2845         if (block_size & (block_size - 1))
2846                 pool->sectors_per_block_shift = -1;
2847         else
2848                 pool->sectors_per_block_shift = __ffs(block_size);
2849         pool->low_water_blocks = 0;
2850         pool_features_init(&pool->pf);
2851         pool->prison = dm_bio_prison_create();
2852         if (!pool->prison) {
2853                 *error = "Error creating pool's bio prison";
2854                 err_p = ERR_PTR(-ENOMEM);
2855                 goto bad_prison;
2856         }
2857
2858         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2859         if (IS_ERR(pool->copier)) {
2860                 r = PTR_ERR(pool->copier);
2861                 *error = "Error creating pool's kcopyd client";
2862                 err_p = ERR_PTR(r);
2863                 goto bad_kcopyd_client;
2864         }
2865
2866         /*
2867          * Create singlethreaded workqueue that will service all devices
2868          * that use this metadata.
2869          */
2870         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2871         if (!pool->wq) {
2872                 *error = "Error creating pool's workqueue";
2873                 err_p = ERR_PTR(-ENOMEM);
2874                 goto bad_wq;
2875         }
2876
2877         throttle_init(&pool->throttle);
2878         INIT_WORK(&pool->worker, do_worker);
2879         INIT_DELAYED_WORK(&pool->waker, do_waker);
2880         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2881         spin_lock_init(&pool->lock);
2882         bio_list_init(&pool->deferred_flush_bios);
2883         INIT_LIST_HEAD(&pool->prepared_mappings);
2884         INIT_LIST_HEAD(&pool->prepared_discards);
2885         INIT_LIST_HEAD(&pool->active_thins);
2886         pool->low_water_triggered = false;
2887         pool->suspended = true;
2888
2889         pool->shared_read_ds = dm_deferred_set_create();
2890         if (!pool->shared_read_ds) {
2891                 *error = "Error creating pool's shared read deferred set";
2892                 err_p = ERR_PTR(-ENOMEM);
2893                 goto bad_shared_read_ds;
2894         }
2895
2896         pool->all_io_ds = dm_deferred_set_create();
2897         if (!pool->all_io_ds) {
2898                 *error = "Error creating pool's all io deferred set";
2899                 err_p = ERR_PTR(-ENOMEM);
2900                 goto bad_all_io_ds;
2901         }
2902
2903         pool->next_mapping = NULL;
2904         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2905                                                       _new_mapping_cache);
2906         if (!pool->mapping_pool) {
2907                 *error = "Error creating pool's mapping mempool";
2908                 err_p = ERR_PTR(-ENOMEM);
2909                 goto bad_mapping_pool;
2910         }
2911
2912         pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2913         if (!pool->cell_sort_array) {
2914                 *error = "Error allocating cell sort array";
2915                 err_p = ERR_PTR(-ENOMEM);
2916                 goto bad_sort_array;
2917         }
2918
2919         pool->ref_count = 1;
2920         pool->last_commit_jiffies = jiffies;
2921         pool->pool_md = pool_md;
2922         pool->md_dev = metadata_dev;
2923         __pool_table_insert(pool);
2924
2925         return pool;
2926
2927 bad_sort_array:
2928         mempool_destroy(pool->mapping_pool);
2929 bad_mapping_pool:
2930         dm_deferred_set_destroy(pool->all_io_ds);
2931 bad_all_io_ds:
2932         dm_deferred_set_destroy(pool->shared_read_ds);
2933 bad_shared_read_ds:
2934         destroy_workqueue(pool->wq);
2935 bad_wq:
2936         dm_kcopyd_client_destroy(pool->copier);
2937 bad_kcopyd_client:
2938         dm_bio_prison_destroy(pool->prison);
2939 bad_prison:
2940         kfree(pool);
2941 bad_pool:
2942         if (dm_pool_metadata_close(pmd))
2943                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2944
2945         return err_p;
2946 }
2947
2948 static void __pool_inc(struct pool *pool)
2949 {
2950         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2951         pool->ref_count++;
2952 }
2953
2954 static void __pool_dec(struct pool *pool)
2955 {
2956         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2957         BUG_ON(!pool->ref_count);
2958         if (!--pool->ref_count)
2959                 __pool_destroy(pool);
2960 }
2961
2962 static struct pool *__pool_find(struct mapped_device *pool_md,
2963                                 struct block_device *metadata_dev,
2964                                 unsigned long block_size, int read_only,
2965                                 char **error, int *created)
2966 {
2967         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2968
2969         if (pool) {
2970                 if (pool->pool_md != pool_md) {
2971                         *error = "metadata device already in use by a pool";
2972                         return ERR_PTR(-EBUSY);
2973                 }
2974                 __pool_inc(pool);
2975
2976         } else {
2977                 pool = __pool_table_lookup(pool_md);
2978                 if (pool) {
2979                         if (pool->md_dev != metadata_dev) {
2980                                 *error = "different pool cannot replace a pool";
2981                                 return ERR_PTR(-EINVAL);
2982                         }
2983                         __pool_inc(pool);
2984
2985                 } else {
2986                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2987                         *created = 1;
2988                 }
2989         }
2990
2991         return pool;
2992 }
2993
2994 /*----------------------------------------------------------------
2995  * Pool target methods
2996  *--------------------------------------------------------------*/
2997 static void pool_dtr(struct dm_target *ti)
2998 {
2999         struct pool_c *pt = ti->private;
3000
3001         mutex_lock(&dm_thin_pool_table.mutex);
3002
3003         unbind_control_target(pt->pool, ti);
3004         __pool_dec(pt->pool);
3005         dm_put_device(ti, pt->metadata_dev);
3006         dm_put_device(ti, pt->data_dev);
3007         kfree(pt);
3008
3009         mutex_unlock(&dm_thin_pool_table.mutex);
3010 }
3011
3012 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3013                                struct dm_target *ti)
3014 {
3015         int r;
3016         unsigned argc;
3017         const char *arg_name;
3018
3019         static struct dm_arg _args[] = {
3020                 {0, 4, "Invalid number of pool feature arguments"},
3021         };
3022
3023         /*
3024          * No feature arguments supplied.
3025          */
3026         if (!as->argc)
3027                 return 0;
3028
3029         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3030         if (r)
3031                 return -EINVAL;
3032
3033         while (argc && !r) {
3034                 arg_name = dm_shift_arg(as);
3035                 argc--;
3036
3037                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3038                         pf->zero_new_blocks = false;
3039
3040                 else if (!strcasecmp(arg_name, "ignore_discard"))
3041                         pf->discard_enabled = false;
3042
3043                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3044                         pf->discard_passdown = false;
3045
3046                 else if (!strcasecmp(arg_name, "read_only"))
3047                         pf->mode = PM_READ_ONLY;
3048
3049                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3050                         pf->error_if_no_space = true;
3051
3052                 else {
3053                         ti->error = "Unrecognised pool feature requested";
3054                         r = -EINVAL;
3055                         break;
3056                 }
3057         }
3058
3059         return r;
3060 }
3061
3062 static void metadata_low_callback(void *context)
3063 {
3064         struct pool *pool = context;
3065
3066         DMWARN("%s: reached low water mark for metadata device: sending event.",
3067                dm_device_name(pool->pool_md));
3068
3069         dm_table_event(pool->ti->table);
3070 }
3071
3072 static sector_t get_dev_size(struct block_device *bdev)
3073 {
3074         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3075 }
3076
3077 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3078 {
3079         sector_t metadata_dev_size = get_dev_size(bdev);
3080         char buffer[BDEVNAME_SIZE];
3081
3082         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3083                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3084                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3085 }
3086
3087 static sector_t get_metadata_dev_size(struct block_device *bdev)
3088 {
3089         sector_t metadata_dev_size = get_dev_size(bdev);
3090
3091         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3092                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3093
3094         return metadata_dev_size;
3095 }
3096
3097 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3098 {
3099         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3100
3101         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3102
3103         return metadata_dev_size;
3104 }
3105
3106 /*
3107  * When a metadata threshold is crossed a dm event is triggered, and
3108  * userland should respond by growing the metadata device.  We could let
3109  * userland set the threshold, like we do with the data threshold, but I'm
3110  * not sure they know enough to do this well.
3111  */
3112 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3113 {
3114         /*
3115          * 4M is ample for all ops with the possible exception of thin
3116          * device deletion which is harmless if it fails (just retry the
3117          * delete after you've grown the device).
3118          */
3119         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3120         return min((dm_block_t)1024ULL /* 4M */, quarter);
3121 }
3122
3123 /*
3124  * thin-pool <metadata dev> <data dev>
3125  *           <data block size (sectors)>
3126  *           <low water mark (blocks)>
3127  *           [<#feature args> [<arg>]*]
3128  *
3129  * Optional feature arguments are:
3130  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3131  *           ignore_discard: disable discard
3132  *           no_discard_passdown: don't pass discards down to the data device
3133  *           read_only: Don't allow any changes to be made to the pool metadata.
3134  *           error_if_no_space: error IOs, instead of queueing, if no space.
3135  */
3136 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3137 {
3138         int r, pool_created = 0;
3139         struct pool_c *pt;
3140         struct pool *pool;
3141         struct pool_features pf;
3142         struct dm_arg_set as;
3143         struct dm_dev *data_dev;
3144         unsigned long block_size;
3145         dm_block_t low_water_blocks;
3146         struct dm_dev *metadata_dev;
3147         fmode_t metadata_mode;
3148
3149         /*
3150          * FIXME Remove validation from scope of lock.
3151          */
3152         mutex_lock(&dm_thin_pool_table.mutex);
3153
3154         if (argc < 4) {
3155                 ti->error = "Invalid argument count";
3156                 r = -EINVAL;
3157                 goto out_unlock;
3158         }
3159
3160         as.argc = argc;
3161         as.argv = argv;
3162
3163         /*
3164          * Set default pool features.
3165          */
3166         pool_features_init(&pf);
3167
3168         dm_consume_args(&as, 4);
3169         r = parse_pool_features(&as, &pf, ti);
3170         if (r)
3171                 goto out_unlock;
3172
3173         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3174         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3175         if (r) {
3176                 ti->error = "Error opening metadata block device";
3177                 goto out_unlock;
3178         }
3179         warn_if_metadata_device_too_big(metadata_dev->bdev);
3180
3181         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3182         if (r) {
3183                 ti->error = "Error getting data device";
3184                 goto out_metadata;
3185         }
3186
3187         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3188             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3189             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3190             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3191                 ti->error = "Invalid block size";
3192                 r = -EINVAL;
3193                 goto out;
3194         }
3195
3196         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3197                 ti->error = "Invalid low water mark";
3198                 r = -EINVAL;
3199                 goto out;
3200         }
3201
3202         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3203         if (!pt) {
3204                 r = -ENOMEM;
3205                 goto out;
3206         }
3207
3208         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3209                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3210         if (IS_ERR(pool)) {
3211                 r = PTR_ERR(pool);
3212                 goto out_free_pt;
3213         }
3214
3215         /*
3216          * 'pool_created' reflects whether this is the first table load.
3217          * Top level discard support is not allowed to be changed after
3218          * initial load.  This would require a pool reload to trigger thin
3219          * device changes.
3220          */
3221         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3222                 ti->error = "Discard support cannot be disabled once enabled";
3223                 r = -EINVAL;
3224                 goto out_flags_changed;
3225         }
3226
3227         pt->pool = pool;
3228         pt->ti = ti;
3229         pt->metadata_dev = metadata_dev;
3230         pt->data_dev = data_dev;
3231         pt->low_water_blocks = low_water_blocks;
3232         pt->adjusted_pf = pt->requested_pf = pf;
3233         ti->num_flush_bios = 1;
3234
3235         /*
3236          * Only need to enable discards if the pool should pass
3237          * them down to the data device.  The thin device's discard
3238          * processing will cause mappings to be removed from the btree.
3239          */
3240         ti->discard_zeroes_data_unsupported = true;
3241         if (pf.discard_enabled && pf.discard_passdown) {
3242                 ti->num_discard_bios = 1;
3243
3244                 /*
3245                  * Setting 'discards_supported' circumvents the normal
3246                  * stacking of discard limits (this keeps the pool and
3247                  * thin devices' discard limits consistent).
3248                  */
3249                 ti->discards_supported = true;
3250         }
3251         ti->private = pt;
3252
3253         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3254                                                 calc_metadata_threshold(pt),
3255                                                 metadata_low_callback,
3256                                                 pool);
3257         if (r)
3258                 goto out_free_pt;
3259
3260         pt->callbacks.congested_fn = pool_is_congested;
3261         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3262
3263         mutex_unlock(&dm_thin_pool_table.mutex);
3264
3265         return 0;
3266
3267 out_flags_changed:
3268         __pool_dec(pool);
3269 out_free_pt:
3270         kfree(pt);
3271 out:
3272         dm_put_device(ti, data_dev);
3273 out_metadata:
3274         dm_put_device(ti, metadata_dev);
3275 out_unlock:
3276         mutex_unlock(&dm_thin_pool_table.mutex);
3277
3278         return r;
3279 }
3280
3281 static int pool_map(struct dm_target *ti, struct bio *bio)
3282 {
3283         int r;
3284         struct pool_c *pt = ti->private;
3285         struct pool *pool = pt->pool;
3286         unsigned long flags;
3287
3288         /*
3289          * As this is a singleton target, ti->begin is always zero.
3290          */
3291         spin_lock_irqsave(&pool->lock, flags);
3292         bio->bi_bdev = pt->data_dev->bdev;
3293         r = DM_MAPIO_REMAPPED;
3294         spin_unlock_irqrestore(&pool->lock, flags);
3295
3296         return r;
3297 }
3298
3299 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3300 {
3301         int r;
3302         struct pool_c *pt = ti->private;
3303         struct pool *pool = pt->pool;
3304         sector_t data_size = ti->len;
3305         dm_block_t sb_data_size;
3306
3307         *need_commit = false;
3308
3309         (void) sector_div(data_size, pool->sectors_per_block);
3310
3311         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3312         if (r) {
3313                 DMERR("%s: failed to retrieve data device size",
3314                       dm_device_name(pool->pool_md));
3315                 return r;
3316         }
3317
3318         if (data_size < sb_data_size) {
3319                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3320                       dm_device_name(pool->pool_md),
3321                       (unsigned long long)data_size, sb_data_size);
3322                 return -EINVAL;
3323
3324         } else if (data_size > sb_data_size) {
3325                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3326                         DMERR("%s: unable to grow the data device until repaired.",
3327                               dm_device_name(pool->pool_md));
3328                         return 0;
3329                 }
3330
3331                 if (sb_data_size)
3332                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3333                                dm_device_name(pool->pool_md),
3334                                sb_data_size, (unsigned long long)data_size);
3335                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3336                 if (r) {
3337                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3338                         return r;
3339                 }
3340
3341                 *need_commit = true;
3342         }
3343
3344         return 0;
3345 }
3346
3347 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3348 {
3349         int r;
3350         struct pool_c *pt = ti->private;
3351         struct pool *pool = pt->pool;
3352         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3353
3354         *need_commit = false;
3355
3356         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3357
3358         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3359         if (r) {
3360                 DMERR("%s: failed to retrieve metadata device size",
3361                       dm_device_name(pool->pool_md));
3362                 return r;
3363         }
3364
3365         if (metadata_dev_size < sb_metadata_dev_size) {
3366                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3367                       dm_device_name(pool->pool_md),
3368                       metadata_dev_size, sb_metadata_dev_size);
3369                 return -EINVAL;
3370
3371         } else if (metadata_dev_size > sb_metadata_dev_size) {
3372                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3373                         DMERR("%s: unable to grow the metadata device until repaired.",
3374                               dm_device_name(pool->pool_md));
3375                         return 0;
3376                 }
3377
3378                 warn_if_metadata_device_too_big(pool->md_dev);
3379                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3380                        dm_device_name(pool->pool_md),
3381                        sb_metadata_dev_size, metadata_dev_size);
3382                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3383                 if (r) {
3384                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3385                         return r;
3386                 }
3387
3388                 *need_commit = true;
3389         }
3390
3391         return 0;
3392 }
3393
3394 /*
3395  * Retrieves the number of blocks of the data device from
3396  * the superblock and compares it to the actual device size,
3397  * thus resizing the data device in case it has grown.
3398  *
3399  * This both copes with opening preallocated data devices in the ctr
3400  * being followed by a resume
3401  * -and-
3402  * calling the resume method individually after userspace has
3403  * grown the data device in reaction to a table event.
3404  */
3405 static int pool_preresume(struct dm_target *ti)
3406 {
3407         int r;
3408         bool need_commit1, need_commit2;
3409         struct pool_c *pt = ti->private;
3410         struct pool *pool = pt->pool;
3411
3412         /*
3413          * Take control of the pool object.
3414          */
3415         r = bind_control_target(pool, ti);
3416         if (r)
3417                 return r;
3418
3419         r = maybe_resize_data_dev(ti, &need_commit1);
3420         if (r)
3421                 return r;
3422
3423         r = maybe_resize_metadata_dev(ti, &need_commit2);
3424         if (r)
3425                 return r;
3426
3427         if (need_commit1 || need_commit2)
3428                 (void) commit(pool);
3429
3430         return 0;
3431 }
3432
3433 static void pool_suspend_active_thins(struct pool *pool)
3434 {
3435         struct thin_c *tc;
3436
3437         /* Suspend all active thin devices */
3438         tc = get_first_thin(pool);
3439         while (tc) {
3440                 dm_internal_suspend_noflush(tc->thin_md);
3441                 tc = get_next_thin(pool, tc);
3442         }
3443 }
3444
3445 static void pool_resume_active_thins(struct pool *pool)
3446 {
3447         struct thin_c *tc;
3448
3449         /* Resume all active thin devices */
3450         tc = get_first_thin(pool);
3451         while (tc) {
3452                 dm_internal_resume(tc->thin_md);
3453                 tc = get_next_thin(pool, tc);
3454         }
3455 }
3456
3457 static void pool_resume(struct dm_target *ti)
3458 {
3459         struct pool_c *pt = ti->private;
3460         struct pool *pool = pt->pool;
3461         unsigned long flags;
3462
3463         /*
3464          * Must requeue active_thins' bios and then resume
3465          * active_thins _before_ clearing 'suspend' flag.
3466          */
3467         requeue_bios(pool);
3468         pool_resume_active_thins(pool);
3469
3470         spin_lock_irqsave(&pool->lock, flags);
3471         pool->low_water_triggered = false;
3472         pool->suspended = false;
3473         spin_unlock_irqrestore(&pool->lock, flags);
3474
3475         do_waker(&pool->waker.work);
3476 }
3477
3478 static void pool_presuspend(struct dm_target *ti)
3479 {
3480         struct pool_c *pt = ti->private;
3481         struct pool *pool = pt->pool;
3482         unsigned long flags;
3483
3484         spin_lock_irqsave(&pool->lock, flags);
3485         pool->suspended = true;
3486         spin_unlock_irqrestore(&pool->lock, flags);
3487
3488         pool_suspend_active_thins(pool);
3489 }
3490
3491 static void pool_presuspend_undo(struct dm_target *ti)
3492 {
3493         struct pool_c *pt = ti->private;
3494         struct pool *pool = pt->pool;
3495         unsigned long flags;
3496
3497         pool_resume_active_thins(pool);
3498
3499         spin_lock_irqsave(&pool->lock, flags);
3500         pool->suspended = false;
3501         spin_unlock_irqrestore(&pool->lock, flags);
3502 }
3503
3504 static void pool_postsuspend(struct dm_target *ti)
3505 {
3506         struct pool_c *pt = ti->private;
3507         struct pool *pool = pt->pool;
3508
3509         cancel_delayed_work(&pool->waker);
3510         cancel_delayed_work(&pool->no_space_timeout);
3511         flush_workqueue(pool->wq);
3512         (void) commit(pool);
3513 }
3514
3515 static int check_arg_count(unsigned argc, unsigned args_required)
3516 {
3517         if (argc != args_required) {
3518                 DMWARN("Message received with %u arguments instead of %u.",
3519                        argc, args_required);
3520                 return -EINVAL;
3521         }
3522
3523         return 0;
3524 }
3525
3526 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3527 {
3528         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3529             *dev_id <= MAX_DEV_ID)
3530                 return 0;
3531
3532         if (warning)
3533                 DMWARN("Message received with invalid device id: %s", arg);
3534
3535         return -EINVAL;
3536 }
3537
3538 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3539 {
3540         dm_thin_id dev_id;
3541         int r;
3542
3543         r = check_arg_count(argc, 2);
3544         if (r)
3545                 return r;
3546
3547         r = read_dev_id(argv[1], &dev_id, 1);
3548         if (r)
3549                 return r;
3550
3551         r = dm_pool_create_thin(pool->pmd, dev_id);
3552         if (r) {
3553                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3554                        argv[1]);
3555                 return r;
3556         }
3557
3558         return 0;
3559 }
3560
3561 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3562 {
3563         dm_thin_id dev_id;
3564         dm_thin_id origin_dev_id;
3565         int r;
3566
3567         r = check_arg_count(argc, 3);
3568         if (r)
3569                 return r;
3570
3571         r = read_dev_id(argv[1], &dev_id, 1);
3572         if (r)
3573                 return r;
3574
3575         r = read_dev_id(argv[2], &origin_dev_id, 1);
3576         if (r)
3577                 return r;
3578
3579         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3580         if (r) {
3581                 DMWARN("Creation of new snapshot %s of device %s failed.",
3582                        argv[1], argv[2]);
3583                 return r;
3584         }
3585
3586         return 0;
3587 }
3588
3589 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3590 {
3591         dm_thin_id dev_id;
3592         int r;
3593
3594         r = check_arg_count(argc, 2);
3595         if (r)
3596                 return r;
3597
3598         r = read_dev_id(argv[1], &dev_id, 1);
3599         if (r)
3600                 return r;
3601
3602         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3603         if (r)
3604                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3605
3606         return r;
3607 }
3608
3609 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3610 {
3611         dm_thin_id old_id, new_id;
3612         int r;
3613
3614         r = check_arg_count(argc, 3);
3615         if (r)
3616                 return r;
3617
3618         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3619                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3620                 return -EINVAL;
3621         }
3622
3623         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3624                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3625                 return -EINVAL;
3626         }
3627
3628         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3629         if (r) {
3630                 DMWARN("Failed to change transaction id from %s to %s.",
3631                        argv[1], argv[2]);
3632                 return r;
3633         }
3634
3635         return 0;
3636 }
3637
3638 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3639 {
3640         int r;
3641
3642         r = check_arg_count(argc, 1);
3643         if (r)
3644                 return r;
3645
3646         (void) commit(pool);
3647
3648         r = dm_pool_reserve_metadata_snap(pool->pmd);
3649         if (r)
3650                 DMWARN("reserve_metadata_snap message failed.");
3651
3652         return r;
3653 }
3654
3655 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3656 {
3657         int r;
3658
3659         r = check_arg_count(argc, 1);
3660         if (r)
3661                 return r;
3662
3663         r = dm_pool_release_metadata_snap(pool->pmd);
3664         if (r)
3665                 DMWARN("release_metadata_snap message failed.");
3666
3667         return r;
3668 }
3669
3670 /*
3671  * Messages supported:
3672  *   create_thin        <dev_id>
3673  *   create_snap        <dev_id> <origin_id>
3674  *   delete             <dev_id>
3675  *   set_transaction_id <current_trans_id> <new_trans_id>
3676  *   reserve_metadata_snap
3677  *   release_metadata_snap
3678  */
3679 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3680 {
3681         int r = -EINVAL;
3682         struct pool_c *pt = ti->private;
3683         struct pool *pool = pt->pool;
3684
3685         if (get_pool_mode(pool) >= PM_READ_ONLY) {
3686                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3687                       dm_device_name(pool->pool_md));
3688                 return -EOPNOTSUPP;
3689         }
3690
3691         if (!strcasecmp(argv[0], "create_thin"))
3692                 r = process_create_thin_mesg(argc, argv, pool);
3693
3694         else if (!strcasecmp(argv[0], "create_snap"))
3695                 r = process_create_snap_mesg(argc, argv, pool);
3696
3697         else if (!strcasecmp(argv[0], "delete"))
3698                 r = process_delete_mesg(argc, argv, pool);
3699
3700         else if (!strcasecmp(argv[0], "set_transaction_id"))
3701                 r = process_set_transaction_id_mesg(argc, argv, pool);
3702
3703         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3704                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3705
3706         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3707                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3708
3709         else
3710                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3711
3712         if (!r)
3713                 (void) commit(pool);
3714
3715         return r;
3716 }
3717
3718 static void emit_flags(struct pool_features *pf, char *result,
3719                        unsigned sz, unsigned maxlen)
3720 {
3721         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3722                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3723                 pf->error_if_no_space;
3724         DMEMIT("%u ", count);
3725
3726         if (!pf->zero_new_blocks)
3727                 DMEMIT("skip_block_zeroing ");
3728
3729         if (!pf->discard_enabled)
3730                 DMEMIT("ignore_discard ");
3731
3732         if (!pf->discard_passdown)
3733                 DMEMIT("no_discard_passdown ");
3734
3735         if (pf->mode == PM_READ_ONLY)
3736                 DMEMIT("read_only ");
3737
3738         if (pf->error_if_no_space)
3739                 DMEMIT("error_if_no_space ");
3740 }
3741
3742 /*
3743  * Status line is:
3744  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3745  *    <used data sectors>/<total data sectors> <held metadata root>
3746  *    <pool mode> <discard config> <no space config> <needs_check>
3747  */
3748 static void pool_status(struct dm_target *ti, status_type_t type,
3749                         unsigned status_flags, char *result, unsigned maxlen)
3750 {
3751         int r;
3752         unsigned sz = 0;
3753         uint64_t transaction_id;
3754         dm_block_t nr_free_blocks_data;
3755         dm_block_t nr_free_blocks_metadata;
3756         dm_block_t nr_blocks_data;
3757         dm_block_t nr_blocks_metadata;
3758         dm_block_t held_root;
3759         char buf[BDEVNAME_SIZE];
3760         char buf2[BDEVNAME_SIZE];
3761         struct pool_c *pt = ti->private;
3762         struct pool *pool = pt->pool;
3763
3764         switch (type) {
3765         case STATUSTYPE_INFO:
3766                 if (get_pool_mode(pool) == PM_FAIL) {
3767                         DMEMIT("Fail");
3768                         break;
3769                 }
3770
3771                 /* Commit to ensure statistics aren't out-of-date */
3772                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3773                         (void) commit(pool);
3774
3775                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3776                 if (r) {
3777                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3778                               dm_device_name(pool->pool_md), r);
3779                         goto err;
3780                 }
3781
3782                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3783                 if (r) {
3784                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3785                               dm_device_name(pool->pool_md), r);
3786                         goto err;
3787                 }
3788
3789                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3790                 if (r) {
3791                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3792                               dm_device_name(pool->pool_md), r);
3793                         goto err;
3794                 }
3795
3796                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3797                 if (r) {
3798                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3799                               dm_device_name(pool->pool_md), r);
3800                         goto err;
3801                 }
3802
3803                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3804                 if (r) {
3805                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3806                               dm_device_name(pool->pool_md), r);
3807                         goto err;
3808                 }
3809
3810                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3811                 if (r) {
3812                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3813                               dm_device_name(pool->pool_md), r);
3814                         goto err;
3815                 }
3816
3817                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3818                        (unsigned long long)transaction_id,
3819                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3820                        (unsigned long long)nr_blocks_metadata,
3821                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3822                        (unsigned long long)nr_blocks_data);
3823
3824                 if (held_root)
3825                         DMEMIT("%llu ", held_root);
3826                 else
3827                         DMEMIT("- ");
3828
3829                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3830                         DMEMIT("out_of_data_space ");
3831                 else if (pool->pf.mode == PM_READ_ONLY)
3832                         DMEMIT("ro ");
3833                 else
3834                         DMEMIT("rw ");
3835
3836                 if (!pool->pf.discard_enabled)
3837                         DMEMIT("ignore_discard ");
3838                 else if (pool->pf.discard_passdown)
3839                         DMEMIT("discard_passdown ");
3840                 else
3841                         DMEMIT("no_discard_passdown ");
3842
3843                 if (pool->pf.error_if_no_space)
3844                         DMEMIT("error_if_no_space ");
3845                 else
3846                         DMEMIT("queue_if_no_space ");
3847
3848                 if (dm_pool_metadata_needs_check(pool->pmd))
3849                         DMEMIT("needs_check ");
3850                 else
3851                         DMEMIT("- ");
3852
3853                 break;
3854
3855         case STATUSTYPE_TABLE:
3856                 DMEMIT("%s %s %lu %llu ",
3857                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3858                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3859                        (unsigned long)pool->sectors_per_block,
3860                        (unsigned long long)pt->low_water_blocks);
3861                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3862                 break;
3863         }
3864         return;
3865
3866 err:
3867         DMEMIT("Error");
3868 }
3869
3870 static int pool_iterate_devices(struct dm_target *ti,
3871                                 iterate_devices_callout_fn fn, void *data)
3872 {
3873         struct pool_c *pt = ti->private;
3874
3875         return fn(ti, pt->data_dev, 0, ti->len, data);
3876 }
3877
3878 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3879                       struct bio_vec *biovec, int max_size)
3880 {
3881         struct pool_c *pt = ti->private;
3882         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3883
3884         if (!q->merge_bvec_fn)
3885                 return max_size;
3886
3887         bvm->bi_bdev = pt->data_dev->bdev;
3888
3889         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3890 }
3891
3892 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3893 {
3894         struct pool_c *pt = ti->private;
3895         struct pool *pool = pt->pool;
3896         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3897
3898         /*
3899          * If max_sectors is smaller than pool->sectors_per_block adjust it
3900          * to the highest possible power-of-2 factor of pool->sectors_per_block.
3901          * This is especially beneficial when the pool's data device is a RAID
3902          * device that has a full stripe width that matches pool->sectors_per_block
3903          * -- because even though partial RAID stripe-sized IOs will be issued to a
3904          *    single RAID stripe; when aggregated they will end on a full RAID stripe
3905          *    boundary.. which avoids additional partial RAID stripe writes cascading
3906          */
3907         if (limits->max_sectors < pool->sectors_per_block) {
3908                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3909                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3910                                 limits->max_sectors--;
3911                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3912                 }
3913         }
3914
3915         /*
3916          * If the system-determined stacked limits are compatible with the
3917          * pool's blocksize (io_opt is a factor) do not override them.
3918          */
3919         if (io_opt_sectors < pool->sectors_per_block ||
3920             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3921                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3922                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3923                 else
3924                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3925                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3926         }
3927
3928         /*
3929          * pt->adjusted_pf is a staging area for the actual features to use.
3930          * They get transferred to the live pool in bind_control_target()
3931          * called from pool_preresume().
3932          */
3933         if (!pt->adjusted_pf.discard_enabled) {
3934                 /*
3935                  * Must explicitly disallow stacking discard limits otherwise the
3936                  * block layer will stack them if pool's data device has support.
3937                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3938                  * user to see that, so make sure to set all discard limits to 0.
3939                  */
3940                 limits->discard_granularity = 0;
3941                 return;
3942         }
3943
3944         disable_passdown_if_not_supported(pt);
3945
3946         /*
3947          * The pool uses the same discard limits as the underlying data
3948          * device.  DM core has already set this up.
3949          */
3950 }
3951
3952 static struct target_type pool_target = {
3953         .name = "thin-pool",
3954         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3955                     DM_TARGET_IMMUTABLE,
3956         .version = {1, 16, 0},
3957         .module = THIS_MODULE,
3958         .ctr = pool_ctr,
3959         .dtr = pool_dtr,
3960         .map = pool_map,
3961         .presuspend = pool_presuspend,
3962         .presuspend_undo = pool_presuspend_undo,
3963         .postsuspend = pool_postsuspend,
3964         .preresume = pool_preresume,
3965         .resume = pool_resume,
3966         .message = pool_message,
3967         .status = pool_status,
3968         .merge = pool_merge,
3969         .iterate_devices = pool_iterate_devices,
3970         .io_hints = pool_io_hints,
3971 };
3972
3973 /*----------------------------------------------------------------
3974  * Thin target methods
3975  *--------------------------------------------------------------*/
3976 static void thin_get(struct thin_c *tc)
3977 {
3978         atomic_inc(&tc->refcount);
3979 }
3980
3981 static void thin_put(struct thin_c *tc)
3982 {
3983         if (atomic_dec_and_test(&tc->refcount))
3984                 complete(&tc->can_destroy);
3985 }
3986
3987 static void thin_dtr(struct dm_target *ti)
3988 {
3989         struct thin_c *tc = ti->private;
3990         unsigned long flags;
3991
3992         spin_lock_irqsave(&tc->pool->lock, flags);
3993         list_del_rcu(&tc->list);
3994         spin_unlock_irqrestore(&tc->pool->lock, flags);
3995         synchronize_rcu();
3996
3997         thin_put(tc);
3998         wait_for_completion(&tc->can_destroy);
3999
4000         mutex_lock(&dm_thin_pool_table.mutex);
4001
4002         __pool_dec(tc->pool);
4003         dm_pool_close_thin_device(tc->td);
4004         dm_put_device(ti, tc->pool_dev);
4005         if (tc->origin_dev)
4006                 dm_put_device(ti, tc->origin_dev);
4007         kfree(tc);
4008
4009         mutex_unlock(&dm_thin_pool_table.mutex);
4010 }
4011
4012 /*
4013  * Thin target parameters:
4014  *
4015  * <pool_dev> <dev_id> [origin_dev]
4016  *
4017  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4018  * dev_id: the internal device identifier
4019  * origin_dev: a device external to the pool that should act as the origin
4020  *
4021  * If the pool device has discards disabled, they get disabled for the thin
4022  * device as well.
4023  */
4024 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4025 {
4026         int r;
4027         struct thin_c *tc;
4028         struct dm_dev *pool_dev, *origin_dev;
4029         struct mapped_device *pool_md;
4030         unsigned long flags;
4031
4032         mutex_lock(&dm_thin_pool_table.mutex);
4033
4034         if (argc != 2 && argc != 3) {
4035                 ti->error = "Invalid argument count";
4036                 r = -EINVAL;
4037                 goto out_unlock;
4038         }
4039
4040         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4041         if (!tc) {
4042                 ti->error = "Out of memory";
4043                 r = -ENOMEM;
4044                 goto out_unlock;
4045         }
4046         tc->thin_md = dm_table_get_md(ti->table);
4047         spin_lock_init(&tc->lock);
4048         INIT_LIST_HEAD(&tc->deferred_cells);
4049         bio_list_init(&tc->deferred_bio_list);
4050         bio_list_init(&tc->retry_on_resume_list);
4051         tc->sort_bio_list = RB_ROOT;
4052
4053         if (argc == 3) {
4054                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4055                 if (r) {
4056                         ti->error = "Error opening origin device";
4057                         goto bad_origin_dev;
4058                 }
4059                 tc->origin_dev = origin_dev;
4060         }
4061
4062         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4063         if (r) {
4064                 ti->error = "Error opening pool device";
4065                 goto bad_pool_dev;
4066         }
4067         tc->pool_dev = pool_dev;
4068
4069         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4070                 ti->error = "Invalid device id";
4071                 r = -EINVAL;
4072                 goto bad_common;
4073         }
4074
4075         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4076         if (!pool_md) {
4077                 ti->error = "Couldn't get pool mapped device";
4078                 r = -EINVAL;
4079                 goto bad_common;
4080         }
4081
4082         tc->pool = __pool_table_lookup(pool_md);
4083         if (!tc->pool) {
4084                 ti->error = "Couldn't find pool object";
4085                 r = -EINVAL;
4086                 goto bad_pool_lookup;
4087         }
4088         __pool_inc(tc->pool);
4089
4090         if (get_pool_mode(tc->pool) == PM_FAIL) {
4091                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4092                 r = -EINVAL;
4093                 goto bad_pool;
4094         }
4095
4096         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4097         if (r) {
4098                 ti->error = "Couldn't open thin internal device";
4099                 goto bad_pool;
4100         }
4101
4102         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4103         if (r)
4104                 goto bad;
4105
4106         ti->num_flush_bios = 1;
4107         ti->flush_supported = true;
4108         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
4109
4110         /* In case the pool supports discards, pass them on. */
4111         ti->discard_zeroes_data_unsupported = true;
4112         if (tc->pool->pf.discard_enabled) {
4113                 ti->discards_supported = true;
4114                 ti->num_discard_bios = 1;
4115                 ti->split_discard_bios = false;
4116         }
4117
4118         mutex_unlock(&dm_thin_pool_table.mutex);
4119
4120         spin_lock_irqsave(&tc->pool->lock, flags);
4121         if (tc->pool->suspended) {
4122                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4123                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4124                 ti->error = "Unable to activate thin device while pool is suspended";
4125                 r = -EINVAL;
4126                 goto bad;
4127         }
4128         atomic_set(&tc->refcount, 1);
4129         init_completion(&tc->can_destroy);
4130         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4131         spin_unlock_irqrestore(&tc->pool->lock, flags);
4132         /*
4133          * This synchronize_rcu() call is needed here otherwise we risk a
4134          * wake_worker() call finding no bios to process (because the newly
4135          * added tc isn't yet visible).  So this reduces latency since we
4136          * aren't then dependent on the periodic commit to wake_worker().
4137          */
4138         synchronize_rcu();
4139
4140         dm_put(pool_md);
4141
4142         return 0;
4143
4144 bad:
4145         dm_pool_close_thin_device(tc->td);
4146 bad_pool:
4147         __pool_dec(tc->pool);
4148 bad_pool_lookup:
4149         dm_put(pool_md);
4150 bad_common:
4151         dm_put_device(ti, tc->pool_dev);
4152 bad_pool_dev:
4153         if (tc->origin_dev)
4154                 dm_put_device(ti, tc->origin_dev);
4155 bad_origin_dev:
4156         kfree(tc);
4157 out_unlock:
4158         mutex_unlock(&dm_thin_pool_table.mutex);
4159
4160         return r;
4161 }
4162
4163 static int thin_map(struct dm_target *ti, struct bio *bio)
4164 {
4165         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4166
4167         return thin_bio_map(ti, bio);
4168 }
4169
4170 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4171 {
4172         unsigned long flags;
4173         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4174         struct list_head work;
4175         struct dm_thin_new_mapping *m, *tmp;
4176         struct pool *pool = h->tc->pool;
4177
4178         if (h->shared_read_entry) {
4179                 INIT_LIST_HEAD(&work);
4180                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4181
4182                 spin_lock_irqsave(&pool->lock, flags);
4183                 list_for_each_entry_safe(m, tmp, &work, list) {
4184                         list_del(&m->list);
4185                         __complete_mapping_preparation(m);
4186                 }
4187                 spin_unlock_irqrestore(&pool->lock, flags);
4188         }
4189
4190         if (h->all_io_entry) {
4191                 INIT_LIST_HEAD(&work);
4192                 dm_deferred_entry_dec(h->all_io_entry, &work);
4193                 if (!list_empty(&work)) {
4194                         spin_lock_irqsave(&pool->lock, flags);
4195                         list_for_each_entry_safe(m, tmp, &work, list)
4196                                 list_add_tail(&m->list, &pool->prepared_discards);
4197                         spin_unlock_irqrestore(&pool->lock, flags);
4198                         wake_worker(pool);
4199                 }
4200         }
4201
4202         if (h->cell)
4203                 cell_defer_no_holder(h->tc, h->cell);
4204
4205         return 0;
4206 }
4207
4208 static void thin_presuspend(struct dm_target *ti)
4209 {
4210         struct thin_c *tc = ti->private;
4211
4212         if (dm_noflush_suspending(ti))
4213                 noflush_work(tc, do_noflush_start);
4214 }
4215
4216 static void thin_postsuspend(struct dm_target *ti)
4217 {
4218         struct thin_c *tc = ti->private;
4219
4220         /*
4221          * The dm_noflush_suspending flag has been cleared by now, so
4222          * unfortunately we must always run this.
4223          */
4224         noflush_work(tc, do_noflush_stop);
4225 }
4226
4227 static int thin_preresume(struct dm_target *ti)
4228 {
4229         struct thin_c *tc = ti->private;
4230
4231         if (tc->origin_dev)
4232                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4233
4234         return 0;
4235 }
4236
4237 /*
4238  * <nr mapped sectors> <highest mapped sector>
4239  */
4240 static void thin_status(struct dm_target *ti, status_type_t type,
4241                         unsigned status_flags, char *result, unsigned maxlen)
4242 {
4243         int r;
4244         ssize_t sz = 0;
4245         dm_block_t mapped, highest;
4246         char buf[BDEVNAME_SIZE];
4247         struct thin_c *tc = ti->private;
4248
4249         if (get_pool_mode(tc->pool) == PM_FAIL) {
4250                 DMEMIT("Fail");
4251                 return;
4252         }
4253
4254         if (!tc->td)
4255                 DMEMIT("-");
4256         else {
4257                 switch (type) {
4258                 case STATUSTYPE_INFO:
4259                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4260                         if (r) {
4261                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4262                                 goto err;
4263                         }
4264
4265                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4266                         if (r < 0) {
4267                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4268                                 goto err;
4269                         }
4270
4271                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4272                         if (r)
4273                                 DMEMIT("%llu", ((highest + 1) *
4274                                                 tc->pool->sectors_per_block) - 1);
4275                         else
4276                                 DMEMIT("-");
4277                         break;
4278
4279                 case STATUSTYPE_TABLE:
4280                         DMEMIT("%s %lu",
4281                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4282                                (unsigned long) tc->dev_id);
4283                         if (tc->origin_dev)
4284                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4285                         break;
4286                 }
4287         }
4288
4289         return;
4290
4291 err:
4292         DMEMIT("Error");
4293 }
4294
4295 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
4296                       struct bio_vec *biovec, int max_size)
4297 {
4298         struct thin_c *tc = ti->private;
4299         struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4300
4301         if (!q->merge_bvec_fn)
4302                 return max_size;
4303
4304         bvm->bi_bdev = tc->pool_dev->bdev;
4305         bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4306
4307         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4308 }
4309
4310 static int thin_iterate_devices(struct dm_target *ti,
4311                                 iterate_devices_callout_fn fn, void *data)
4312 {
4313         sector_t blocks;
4314         struct thin_c *tc = ti->private;
4315         struct pool *pool = tc->pool;
4316
4317         /*
4318          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4319          * we follow a more convoluted path through to the pool's target.
4320          */
4321         if (!pool->ti)
4322                 return 0;       /* nothing is bound */
4323
4324         blocks = pool->ti->len;
4325         (void) sector_div(blocks, pool->sectors_per_block);
4326         if (blocks)
4327                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4328
4329         return 0;
4330 }
4331
4332 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4333 {
4334         struct thin_c *tc = ti->private;
4335         struct pool *pool = tc->pool;
4336
4337         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4338         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4339 }
4340
4341 static struct target_type thin_target = {
4342         .name = "thin",
4343         .version = {1, 16, 0},
4344         .module = THIS_MODULE,
4345         .ctr = thin_ctr,
4346         .dtr = thin_dtr,
4347         .map = thin_map,
4348         .end_io = thin_endio,
4349         .preresume = thin_preresume,
4350         .presuspend = thin_presuspend,
4351         .postsuspend = thin_postsuspend,
4352         .status = thin_status,
4353         .merge = thin_merge,
4354         .iterate_devices = thin_iterate_devices,
4355         .io_hints = thin_io_hints,
4356 };
4357
4358 /*----------------------------------------------------------------*/
4359
4360 static int __init dm_thin_init(void)
4361 {
4362         int r;
4363
4364         pool_table_init();
4365
4366         r = dm_register_target(&thin_target);
4367         if (r)
4368                 return r;
4369
4370         r = dm_register_target(&pool_target);
4371         if (r)
4372                 goto bad_pool_target;
4373
4374         r = -ENOMEM;
4375
4376         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4377         if (!_new_mapping_cache)
4378                 goto bad_new_mapping_cache;
4379
4380         return 0;
4381
4382 bad_new_mapping_cache:
4383         dm_unregister_target(&pool_target);
4384 bad_pool_target:
4385         dm_unregister_target(&thin_target);
4386
4387         return r;
4388 }
4389
4390 static void dm_thin_exit(void)
4391 {
4392         dm_unregister_target(&thin_target);
4393         dm_unregister_target(&pool_target);
4394
4395         kmem_cache_destroy(_new_mapping_cache);
4396 }
4397
4398 module_init(dm_thin_init);
4399 module_exit(dm_thin_exit);
4400
4401 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4402 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4403
4404 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4405 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4406 MODULE_LICENSE("GPL");