Merge branch 'acpica'
[linux-2.6-block.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203         PM_READ_ONLY,           /* metadata may not be changed */
204         PM_FAIL,                /* all I/O fails */
205 };
206
207 struct pool_features {
208         enum pool_mode mode;
209
210         bool zero_new_blocks:1;
211         bool discard_enabled:1;
212         bool discard_passdown:1;
213         bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224         struct list_head list;
225         struct dm_target *ti;   /* Only set if a pool target is bound */
226
227         struct mapped_device *pool_md;
228         struct block_device *md_dev;
229         struct dm_pool_metadata *pmd;
230
231         dm_block_t low_water_blocks;
232         uint32_t sectors_per_block;
233         int sectors_per_block_shift;
234
235         struct pool_features pf;
236         bool low_water_triggered:1;     /* A dm event has been sent */
237         bool suspended:1;
238         bool out_of_data_space:1;
239
240         struct dm_bio_prison *prison;
241         struct dm_kcopyd_client *copier;
242
243         struct workqueue_struct *wq;
244         struct throttle throttle;
245         struct work_struct worker;
246         struct delayed_work waker;
247         struct delayed_work no_space_timeout;
248
249         unsigned long last_commit_jiffies;
250         unsigned ref_count;
251
252         spinlock_t lock;
253         struct bio_list deferred_flush_bios;
254         struct list_head prepared_mappings;
255         struct list_head prepared_discards;
256         struct list_head active_thins;
257
258         struct dm_deferred_set *shared_read_ds;
259         struct dm_deferred_set *all_io_ds;
260
261         struct dm_thin_new_mapping *next_mapping;
262         mempool_t *mapping_pool;
263
264         process_bio_fn process_bio;
265         process_bio_fn process_discard;
266
267         process_cell_fn process_cell;
268         process_cell_fn process_discard_cell;
269
270         process_mapping_fn process_prepared_mapping;
271         process_mapping_fn process_prepared_discard;
272
273         struct dm_bio_prison_cell **cell_sort_array;
274 };
275
276 static enum pool_mode get_pool_mode(struct pool *pool);
277 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
278
279 /*
280  * Target context for a pool.
281  */
282 struct pool_c {
283         struct dm_target *ti;
284         struct pool *pool;
285         struct dm_dev *data_dev;
286         struct dm_dev *metadata_dev;
287         struct dm_target_callbacks callbacks;
288
289         dm_block_t low_water_blocks;
290         struct pool_features requested_pf; /* Features requested during table load */
291         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
292 };
293
294 /*
295  * Target context for a thin.
296  */
297 struct thin_c {
298         struct list_head list;
299         struct dm_dev *pool_dev;
300         struct dm_dev *origin_dev;
301         sector_t origin_size;
302         dm_thin_id dev_id;
303
304         struct pool *pool;
305         struct dm_thin_device *td;
306         struct mapped_device *thin_md;
307
308         bool requeue_mode:1;
309         spinlock_t lock;
310         struct list_head deferred_cells;
311         struct bio_list deferred_bio_list;
312         struct bio_list retry_on_resume_list;
313         struct rb_root sort_bio_list; /* sorted list of deferred bios */
314
315         /*
316          * Ensures the thin is not destroyed until the worker has finished
317          * iterating the active_thins list.
318          */
319         atomic_t refcount;
320         struct completion can_destroy;
321 };
322
323 /*----------------------------------------------------------------*/
324
325 /**
326  * __blkdev_issue_discard_async - queue a discard with async completion
327  * @bdev:       blockdev to issue discard for
328  * @sector:     start sector
329  * @nr_sects:   number of sectors to discard
330  * @gfp_mask:   memory allocation flags (for bio_alloc)
331  * @flags:      BLKDEV_IFL_* flags to control behaviour
332  * @parent_bio: parent discard bio that all sub discards get chained to
333  *
334  * Description:
335  *    Asynchronously issue a discard request for the sectors in question.
336  */
337 static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
338                                         sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
339                                         struct bio *parent_bio)
340 {
341         struct request_queue *q = bdev_get_queue(bdev);
342         int type = REQ_WRITE | REQ_DISCARD;
343         struct bio *bio;
344
345         if (!q || !nr_sects)
346                 return -ENXIO;
347
348         if (!blk_queue_discard(q))
349                 return -EOPNOTSUPP;
350
351         if (flags & BLKDEV_DISCARD_SECURE) {
352                 if (!blk_queue_secdiscard(q))
353                         return -EOPNOTSUPP;
354                 type |= REQ_SECURE;
355         }
356
357         /*
358          * Required bio_put occurs in bio_endio thanks to bio_chain below
359          */
360         bio = bio_alloc(gfp_mask, 1);
361         if (!bio)
362                 return -ENOMEM;
363
364         bio_chain(bio, parent_bio);
365
366         bio->bi_iter.bi_sector = sector;
367         bio->bi_bdev = bdev;
368         bio->bi_iter.bi_size = nr_sects << 9;
369
370         submit_bio(type, bio);
371
372         return 0;
373 }
374
375 static bool block_size_is_power_of_two(struct pool *pool)
376 {
377         return pool->sectors_per_block_shift >= 0;
378 }
379
380 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
381 {
382         return block_size_is_power_of_two(pool) ?
383                 (b << pool->sectors_per_block_shift) :
384                 (b * pool->sectors_per_block);
385 }
386
387 static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
388                          struct bio *parent_bio)
389 {
390         sector_t s = block_to_sectors(tc->pool, data_b);
391         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
392
393         return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
394                                             GFP_NOWAIT, 0, parent_bio);
395 }
396
397 /*----------------------------------------------------------------*/
398
399 /*
400  * wake_worker() is used when new work is queued and when pool_resume is
401  * ready to continue deferred IO processing.
402  */
403 static void wake_worker(struct pool *pool)
404 {
405         queue_work(pool->wq, &pool->worker);
406 }
407
408 /*----------------------------------------------------------------*/
409
410 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
411                       struct dm_bio_prison_cell **cell_result)
412 {
413         int r;
414         struct dm_bio_prison_cell *cell_prealloc;
415
416         /*
417          * Allocate a cell from the prison's mempool.
418          * This might block but it can't fail.
419          */
420         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
421
422         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
423         if (r)
424                 /*
425                  * We reused an old cell; we can get rid of
426                  * the new one.
427                  */
428                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
429
430         return r;
431 }
432
433 static void cell_release(struct pool *pool,
434                          struct dm_bio_prison_cell *cell,
435                          struct bio_list *bios)
436 {
437         dm_cell_release(pool->prison, cell, bios);
438         dm_bio_prison_free_cell(pool->prison, cell);
439 }
440
441 static void cell_visit_release(struct pool *pool,
442                                void (*fn)(void *, struct dm_bio_prison_cell *),
443                                void *context,
444                                struct dm_bio_prison_cell *cell)
445 {
446         dm_cell_visit_release(pool->prison, fn, context, cell);
447         dm_bio_prison_free_cell(pool->prison, cell);
448 }
449
450 static void cell_release_no_holder(struct pool *pool,
451                                    struct dm_bio_prison_cell *cell,
452                                    struct bio_list *bios)
453 {
454         dm_cell_release_no_holder(pool->prison, cell, bios);
455         dm_bio_prison_free_cell(pool->prison, cell);
456 }
457
458 static void cell_error_with_code(struct pool *pool,
459                                  struct dm_bio_prison_cell *cell, int error_code)
460 {
461         dm_cell_error(pool->prison, cell, error_code);
462         dm_bio_prison_free_cell(pool->prison, cell);
463 }
464
465 static int get_pool_io_error_code(struct pool *pool)
466 {
467         return pool->out_of_data_space ? -ENOSPC : -EIO;
468 }
469
470 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
471 {
472         int error = get_pool_io_error_code(pool);
473
474         cell_error_with_code(pool, cell, error);
475 }
476
477 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
478 {
479         cell_error_with_code(pool, cell, 0);
480 }
481
482 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
483 {
484         cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
485 }
486
487 /*----------------------------------------------------------------*/
488
489 /*
490  * A global list of pools that uses a struct mapped_device as a key.
491  */
492 static struct dm_thin_pool_table {
493         struct mutex mutex;
494         struct list_head pools;
495 } dm_thin_pool_table;
496
497 static void pool_table_init(void)
498 {
499         mutex_init(&dm_thin_pool_table.mutex);
500         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
501 }
502
503 static void __pool_table_insert(struct pool *pool)
504 {
505         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
506         list_add(&pool->list, &dm_thin_pool_table.pools);
507 }
508
509 static void __pool_table_remove(struct pool *pool)
510 {
511         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
512         list_del(&pool->list);
513 }
514
515 static struct pool *__pool_table_lookup(struct mapped_device *md)
516 {
517         struct pool *pool = NULL, *tmp;
518
519         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
520
521         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
522                 if (tmp->pool_md == md) {
523                         pool = tmp;
524                         break;
525                 }
526         }
527
528         return pool;
529 }
530
531 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
532 {
533         struct pool *pool = NULL, *tmp;
534
535         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
536
537         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
538                 if (tmp->md_dev == md_dev) {
539                         pool = tmp;
540                         break;
541                 }
542         }
543
544         return pool;
545 }
546
547 /*----------------------------------------------------------------*/
548
549 struct dm_thin_endio_hook {
550         struct thin_c *tc;
551         struct dm_deferred_entry *shared_read_entry;
552         struct dm_deferred_entry *all_io_entry;
553         struct dm_thin_new_mapping *overwrite_mapping;
554         struct rb_node rb_node;
555         struct dm_bio_prison_cell *cell;
556 };
557
558 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
559 {
560         bio_list_merge(bios, master);
561         bio_list_init(master);
562 }
563
564 static void error_bio_list(struct bio_list *bios, int error)
565 {
566         struct bio *bio;
567
568         while ((bio = bio_list_pop(bios))) {
569                 bio->bi_error = error;
570                 bio_endio(bio);
571         }
572 }
573
574 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
575 {
576         struct bio_list bios;
577         unsigned long flags;
578
579         bio_list_init(&bios);
580
581         spin_lock_irqsave(&tc->lock, flags);
582         __merge_bio_list(&bios, master);
583         spin_unlock_irqrestore(&tc->lock, flags);
584
585         error_bio_list(&bios, error);
586 }
587
588 static void requeue_deferred_cells(struct thin_c *tc)
589 {
590         struct pool *pool = tc->pool;
591         unsigned long flags;
592         struct list_head cells;
593         struct dm_bio_prison_cell *cell, *tmp;
594
595         INIT_LIST_HEAD(&cells);
596
597         spin_lock_irqsave(&tc->lock, flags);
598         list_splice_init(&tc->deferred_cells, &cells);
599         spin_unlock_irqrestore(&tc->lock, flags);
600
601         list_for_each_entry_safe(cell, tmp, &cells, user_list)
602                 cell_requeue(pool, cell);
603 }
604
605 static void requeue_io(struct thin_c *tc)
606 {
607         struct bio_list bios;
608         unsigned long flags;
609
610         bio_list_init(&bios);
611
612         spin_lock_irqsave(&tc->lock, flags);
613         __merge_bio_list(&bios, &tc->deferred_bio_list);
614         __merge_bio_list(&bios, &tc->retry_on_resume_list);
615         spin_unlock_irqrestore(&tc->lock, flags);
616
617         error_bio_list(&bios, DM_ENDIO_REQUEUE);
618         requeue_deferred_cells(tc);
619 }
620
621 static void error_retry_list_with_code(struct pool *pool, int error)
622 {
623         struct thin_c *tc;
624
625         rcu_read_lock();
626         list_for_each_entry_rcu(tc, &pool->active_thins, list)
627                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
628         rcu_read_unlock();
629 }
630
631 static void error_retry_list(struct pool *pool)
632 {
633         int error = get_pool_io_error_code(pool);
634
635         return error_retry_list_with_code(pool, error);
636 }
637
638 /*
639  * This section of code contains the logic for processing a thin device's IO.
640  * Much of the code depends on pool object resources (lists, workqueues, etc)
641  * but most is exclusively called from the thin target rather than the thin-pool
642  * target.
643  */
644
645 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
646 {
647         struct pool *pool = tc->pool;
648         sector_t block_nr = bio->bi_iter.bi_sector;
649
650         if (block_size_is_power_of_two(pool))
651                 block_nr >>= pool->sectors_per_block_shift;
652         else
653                 (void) sector_div(block_nr, pool->sectors_per_block);
654
655         return block_nr;
656 }
657
658 /*
659  * Returns the _complete_ blocks that this bio covers.
660  */
661 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
662                                 dm_block_t *begin, dm_block_t *end)
663 {
664         struct pool *pool = tc->pool;
665         sector_t b = bio->bi_iter.bi_sector;
666         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
667
668         b += pool->sectors_per_block - 1ull; /* so we round up */
669
670         if (block_size_is_power_of_two(pool)) {
671                 b >>= pool->sectors_per_block_shift;
672                 e >>= pool->sectors_per_block_shift;
673         } else {
674                 (void) sector_div(b, pool->sectors_per_block);
675                 (void) sector_div(e, pool->sectors_per_block);
676         }
677
678         if (e < b)
679                 /* Can happen if the bio is within a single block. */
680                 e = b;
681
682         *begin = b;
683         *end = e;
684 }
685
686 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
687 {
688         struct pool *pool = tc->pool;
689         sector_t bi_sector = bio->bi_iter.bi_sector;
690
691         bio->bi_bdev = tc->pool_dev->bdev;
692         if (block_size_is_power_of_two(pool))
693                 bio->bi_iter.bi_sector =
694                         (block << pool->sectors_per_block_shift) |
695                         (bi_sector & (pool->sectors_per_block - 1));
696         else
697                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
698                                  sector_div(bi_sector, pool->sectors_per_block);
699 }
700
701 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
702 {
703         bio->bi_bdev = tc->origin_dev->bdev;
704 }
705
706 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
707 {
708         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
709                 dm_thin_changed_this_transaction(tc->td);
710 }
711
712 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
713 {
714         struct dm_thin_endio_hook *h;
715
716         if (bio->bi_rw & REQ_DISCARD)
717                 return;
718
719         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
720         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
721 }
722
723 static void issue(struct thin_c *tc, struct bio *bio)
724 {
725         struct pool *pool = tc->pool;
726         unsigned long flags;
727
728         if (!bio_triggers_commit(tc, bio)) {
729                 generic_make_request(bio);
730                 return;
731         }
732
733         /*
734          * Complete bio with an error if earlier I/O caused changes to
735          * the metadata that can't be committed e.g, due to I/O errors
736          * on the metadata device.
737          */
738         if (dm_thin_aborted_changes(tc->td)) {
739                 bio_io_error(bio);
740                 return;
741         }
742
743         /*
744          * Batch together any bios that trigger commits and then issue a
745          * single commit for them in process_deferred_bios().
746          */
747         spin_lock_irqsave(&pool->lock, flags);
748         bio_list_add(&pool->deferred_flush_bios, bio);
749         spin_unlock_irqrestore(&pool->lock, flags);
750 }
751
752 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
753 {
754         remap_to_origin(tc, bio);
755         issue(tc, bio);
756 }
757
758 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
759                             dm_block_t block)
760 {
761         remap(tc, bio, block);
762         issue(tc, bio);
763 }
764
765 /*----------------------------------------------------------------*/
766
767 /*
768  * Bio endio functions.
769  */
770 struct dm_thin_new_mapping {
771         struct list_head list;
772
773         bool pass_discard:1;
774         bool maybe_shared:1;
775
776         /*
777          * Track quiescing, copying and zeroing preparation actions.  When this
778          * counter hits zero the block is prepared and can be inserted into the
779          * btree.
780          */
781         atomic_t prepare_actions;
782
783         int err;
784         struct thin_c *tc;
785         dm_block_t virt_begin, virt_end;
786         dm_block_t data_block;
787         struct dm_bio_prison_cell *cell;
788
789         /*
790          * If the bio covers the whole area of a block then we can avoid
791          * zeroing or copying.  Instead this bio is hooked.  The bio will
792          * still be in the cell, so care has to be taken to avoid issuing
793          * the bio twice.
794          */
795         struct bio *bio;
796         bio_end_io_t *saved_bi_end_io;
797 };
798
799 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
800 {
801         struct pool *pool = m->tc->pool;
802
803         if (atomic_dec_and_test(&m->prepare_actions)) {
804                 list_add_tail(&m->list, &pool->prepared_mappings);
805                 wake_worker(pool);
806         }
807 }
808
809 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
810 {
811         unsigned long flags;
812         struct pool *pool = m->tc->pool;
813
814         spin_lock_irqsave(&pool->lock, flags);
815         __complete_mapping_preparation(m);
816         spin_unlock_irqrestore(&pool->lock, flags);
817 }
818
819 static void copy_complete(int read_err, unsigned long write_err, void *context)
820 {
821         struct dm_thin_new_mapping *m = context;
822
823         m->err = read_err || write_err ? -EIO : 0;
824         complete_mapping_preparation(m);
825 }
826
827 static void overwrite_endio(struct bio *bio)
828 {
829         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
830         struct dm_thin_new_mapping *m = h->overwrite_mapping;
831
832         bio->bi_end_io = m->saved_bi_end_io;
833
834         m->err = bio->bi_error;
835         complete_mapping_preparation(m);
836 }
837
838 /*----------------------------------------------------------------*/
839
840 /*
841  * Workqueue.
842  */
843
844 /*
845  * Prepared mapping jobs.
846  */
847
848 /*
849  * This sends the bios in the cell, except the original holder, back
850  * to the deferred_bios list.
851  */
852 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
853 {
854         struct pool *pool = tc->pool;
855         unsigned long flags;
856
857         spin_lock_irqsave(&tc->lock, flags);
858         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
859         spin_unlock_irqrestore(&tc->lock, flags);
860
861         wake_worker(pool);
862 }
863
864 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
865
866 struct remap_info {
867         struct thin_c *tc;
868         struct bio_list defer_bios;
869         struct bio_list issue_bios;
870 };
871
872 static void __inc_remap_and_issue_cell(void *context,
873                                        struct dm_bio_prison_cell *cell)
874 {
875         struct remap_info *info = context;
876         struct bio *bio;
877
878         while ((bio = bio_list_pop(&cell->bios))) {
879                 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
880                         bio_list_add(&info->defer_bios, bio);
881                 else {
882                         inc_all_io_entry(info->tc->pool, bio);
883
884                         /*
885                          * We can't issue the bios with the bio prison lock
886                          * held, so we add them to a list to issue on
887                          * return from this function.
888                          */
889                         bio_list_add(&info->issue_bios, bio);
890                 }
891         }
892 }
893
894 static void inc_remap_and_issue_cell(struct thin_c *tc,
895                                      struct dm_bio_prison_cell *cell,
896                                      dm_block_t block)
897 {
898         struct bio *bio;
899         struct remap_info info;
900
901         info.tc = tc;
902         bio_list_init(&info.defer_bios);
903         bio_list_init(&info.issue_bios);
904
905         /*
906          * We have to be careful to inc any bios we're about to issue
907          * before the cell is released, and avoid a race with new bios
908          * being added to the cell.
909          */
910         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
911                            &info, cell);
912
913         while ((bio = bio_list_pop(&info.defer_bios)))
914                 thin_defer_bio(tc, bio);
915
916         while ((bio = bio_list_pop(&info.issue_bios)))
917                 remap_and_issue(info.tc, bio, block);
918 }
919
920 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
921 {
922         cell_error(m->tc->pool, m->cell);
923         list_del(&m->list);
924         mempool_free(m, m->tc->pool->mapping_pool);
925 }
926
927 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
928 {
929         struct thin_c *tc = m->tc;
930         struct pool *pool = tc->pool;
931         struct bio *bio = m->bio;
932         int r;
933
934         if (m->err) {
935                 cell_error(pool, m->cell);
936                 goto out;
937         }
938
939         /*
940          * Commit the prepared block into the mapping btree.
941          * Any I/O for this block arriving after this point will get
942          * remapped to it directly.
943          */
944         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
945         if (r) {
946                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
947                 cell_error(pool, m->cell);
948                 goto out;
949         }
950
951         /*
952          * Release any bios held while the block was being provisioned.
953          * If we are processing a write bio that completely covers the block,
954          * we already processed it so can ignore it now when processing
955          * the bios in the cell.
956          */
957         if (bio) {
958                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
959                 bio_endio(bio);
960         } else {
961                 inc_all_io_entry(tc->pool, m->cell->holder);
962                 remap_and_issue(tc, m->cell->holder, m->data_block);
963                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
964         }
965
966 out:
967         list_del(&m->list);
968         mempool_free(m, pool->mapping_pool);
969 }
970
971 /*----------------------------------------------------------------*/
972
973 static void free_discard_mapping(struct dm_thin_new_mapping *m)
974 {
975         struct thin_c *tc = m->tc;
976         if (m->cell)
977                 cell_defer_no_holder(tc, m->cell);
978         mempool_free(m, tc->pool->mapping_pool);
979 }
980
981 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
982 {
983         bio_io_error(m->bio);
984         free_discard_mapping(m);
985 }
986
987 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
988 {
989         bio_endio(m->bio);
990         free_discard_mapping(m);
991 }
992
993 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
994 {
995         int r;
996         struct thin_c *tc = m->tc;
997
998         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
999         if (r) {
1000                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1001                 bio_io_error(m->bio);
1002         } else
1003                 bio_endio(m->bio);
1004
1005         cell_defer_no_holder(tc, m->cell);
1006         mempool_free(m, tc->pool->mapping_pool);
1007 }
1008
1009 static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1010 {
1011         /*
1012          * We've already unmapped this range of blocks, but before we
1013          * passdown we have to check that these blocks are now unused.
1014          */
1015         int r;
1016         bool used = true;
1017         struct thin_c *tc = m->tc;
1018         struct pool *pool = tc->pool;
1019         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1020
1021         while (b != end) {
1022                 /* find start of unmapped run */
1023                 for (; b < end; b++) {
1024                         r = dm_pool_block_is_used(pool->pmd, b, &used);
1025                         if (r)
1026                                 return r;
1027
1028                         if (!used)
1029                                 break;
1030                 }
1031
1032                 if (b == end)
1033                         break;
1034
1035                 /* find end of run */
1036                 for (e = b + 1; e != end; e++) {
1037                         r = dm_pool_block_is_used(pool->pmd, e, &used);
1038                         if (r)
1039                                 return r;
1040
1041                         if (used)
1042                                 break;
1043                 }
1044
1045                 r = issue_discard(tc, b, e, m->bio);
1046                 if (r)
1047                         return r;
1048
1049                 b = e;
1050         }
1051
1052         return 0;
1053 }
1054
1055 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1056 {
1057         int r;
1058         struct thin_c *tc = m->tc;
1059         struct pool *pool = tc->pool;
1060
1061         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1062         if (r)
1063                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1064
1065         else if (m->maybe_shared)
1066                 r = passdown_double_checking_shared_status(m);
1067         else
1068                 r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
1069
1070         /*
1071          * Even if r is set, there could be sub discards in flight that we
1072          * need to wait for.
1073          */
1074         m->bio->bi_error = r;
1075         bio_endio(m->bio);
1076         cell_defer_no_holder(tc, m->cell);
1077         mempool_free(m, pool->mapping_pool);
1078 }
1079
1080 static void process_prepared(struct pool *pool, struct list_head *head,
1081                              process_mapping_fn *fn)
1082 {
1083         unsigned long flags;
1084         struct list_head maps;
1085         struct dm_thin_new_mapping *m, *tmp;
1086
1087         INIT_LIST_HEAD(&maps);
1088         spin_lock_irqsave(&pool->lock, flags);
1089         list_splice_init(head, &maps);
1090         spin_unlock_irqrestore(&pool->lock, flags);
1091
1092         list_for_each_entry_safe(m, tmp, &maps, list)
1093                 (*fn)(m);
1094 }
1095
1096 /*
1097  * Deferred bio jobs.
1098  */
1099 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1100 {
1101         return bio->bi_iter.bi_size ==
1102                 (pool->sectors_per_block << SECTOR_SHIFT);
1103 }
1104
1105 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1106 {
1107         return (bio_data_dir(bio) == WRITE) &&
1108                 io_overlaps_block(pool, bio);
1109 }
1110
1111 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1112                                bio_end_io_t *fn)
1113 {
1114         *save = bio->bi_end_io;
1115         bio->bi_end_io = fn;
1116 }
1117
1118 static int ensure_next_mapping(struct pool *pool)
1119 {
1120         if (pool->next_mapping)
1121                 return 0;
1122
1123         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1124
1125         return pool->next_mapping ? 0 : -ENOMEM;
1126 }
1127
1128 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1129 {
1130         struct dm_thin_new_mapping *m = pool->next_mapping;
1131
1132         BUG_ON(!pool->next_mapping);
1133
1134         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1135         INIT_LIST_HEAD(&m->list);
1136         m->bio = NULL;
1137
1138         pool->next_mapping = NULL;
1139
1140         return m;
1141 }
1142
1143 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1144                     sector_t begin, sector_t end)
1145 {
1146         int r;
1147         struct dm_io_region to;
1148
1149         to.bdev = tc->pool_dev->bdev;
1150         to.sector = begin;
1151         to.count = end - begin;
1152
1153         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1154         if (r < 0) {
1155                 DMERR_LIMIT("dm_kcopyd_zero() failed");
1156                 copy_complete(1, 1, m);
1157         }
1158 }
1159
1160 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1161                                       dm_block_t data_begin,
1162                                       struct dm_thin_new_mapping *m)
1163 {
1164         struct pool *pool = tc->pool;
1165         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1166
1167         h->overwrite_mapping = m;
1168         m->bio = bio;
1169         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1170         inc_all_io_entry(pool, bio);
1171         remap_and_issue(tc, bio, data_begin);
1172 }
1173
1174 /*
1175  * A partial copy also needs to zero the uncopied region.
1176  */
1177 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1178                           struct dm_dev *origin, dm_block_t data_origin,
1179                           dm_block_t data_dest,
1180                           struct dm_bio_prison_cell *cell, struct bio *bio,
1181                           sector_t len)
1182 {
1183         int r;
1184         struct pool *pool = tc->pool;
1185         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1186
1187         m->tc = tc;
1188         m->virt_begin = virt_block;
1189         m->virt_end = virt_block + 1u;
1190         m->data_block = data_dest;
1191         m->cell = cell;
1192
1193         /*
1194          * quiesce action + copy action + an extra reference held for the
1195          * duration of this function (we may need to inc later for a
1196          * partial zero).
1197          */
1198         atomic_set(&m->prepare_actions, 3);
1199
1200         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1201                 complete_mapping_preparation(m); /* already quiesced */
1202
1203         /*
1204          * IO to pool_dev remaps to the pool target's data_dev.
1205          *
1206          * If the whole block of data is being overwritten, we can issue the
1207          * bio immediately. Otherwise we use kcopyd to clone the data first.
1208          */
1209         if (io_overwrites_block(pool, bio))
1210                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1211         else {
1212                 struct dm_io_region from, to;
1213
1214                 from.bdev = origin->bdev;
1215                 from.sector = data_origin * pool->sectors_per_block;
1216                 from.count = len;
1217
1218                 to.bdev = tc->pool_dev->bdev;
1219                 to.sector = data_dest * pool->sectors_per_block;
1220                 to.count = len;
1221
1222                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1223                                    0, copy_complete, m);
1224                 if (r < 0) {
1225                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1226                         copy_complete(1, 1, m);
1227
1228                         /*
1229                          * We allow the zero to be issued, to simplify the
1230                          * error path.  Otherwise we'd need to start
1231                          * worrying about decrementing the prepare_actions
1232                          * counter.
1233                          */
1234                 }
1235
1236                 /*
1237                  * Do we need to zero a tail region?
1238                  */
1239                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1240                         atomic_inc(&m->prepare_actions);
1241                         ll_zero(tc, m,
1242                                 data_dest * pool->sectors_per_block + len,
1243                                 (data_dest + 1) * pool->sectors_per_block);
1244                 }
1245         }
1246
1247         complete_mapping_preparation(m); /* drop our ref */
1248 }
1249
1250 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1251                                    dm_block_t data_origin, dm_block_t data_dest,
1252                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1253 {
1254         schedule_copy(tc, virt_block, tc->pool_dev,
1255                       data_origin, data_dest, cell, bio,
1256                       tc->pool->sectors_per_block);
1257 }
1258
1259 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1260                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1261                           struct bio *bio)
1262 {
1263         struct pool *pool = tc->pool;
1264         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1265
1266         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1267         m->tc = tc;
1268         m->virt_begin = virt_block;
1269         m->virt_end = virt_block + 1u;
1270         m->data_block = data_block;
1271         m->cell = cell;
1272
1273         /*
1274          * If the whole block of data is being overwritten or we are not
1275          * zeroing pre-existing data, we can issue the bio immediately.
1276          * Otherwise we use kcopyd to zero the data first.
1277          */
1278         if (pool->pf.zero_new_blocks) {
1279                 if (io_overwrites_block(pool, bio))
1280                         remap_and_issue_overwrite(tc, bio, data_block, m);
1281                 else
1282                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1283                                 (data_block + 1) * pool->sectors_per_block);
1284         } else
1285                 process_prepared_mapping(m);
1286 }
1287
1288 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1289                                    dm_block_t data_dest,
1290                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1291 {
1292         struct pool *pool = tc->pool;
1293         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1294         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1295
1296         if (virt_block_end <= tc->origin_size)
1297                 schedule_copy(tc, virt_block, tc->origin_dev,
1298                               virt_block, data_dest, cell, bio,
1299                               pool->sectors_per_block);
1300
1301         else if (virt_block_begin < tc->origin_size)
1302                 schedule_copy(tc, virt_block, tc->origin_dev,
1303                               virt_block, data_dest, cell, bio,
1304                               tc->origin_size - virt_block_begin);
1305
1306         else
1307                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1308 }
1309
1310 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1311
1312 static void check_for_space(struct pool *pool)
1313 {
1314         int r;
1315         dm_block_t nr_free;
1316
1317         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1318                 return;
1319
1320         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1321         if (r)
1322                 return;
1323
1324         if (nr_free)
1325                 set_pool_mode(pool, PM_WRITE);
1326 }
1327
1328 /*
1329  * A non-zero return indicates read_only or fail_io mode.
1330  * Many callers don't care about the return value.
1331  */
1332 static int commit(struct pool *pool)
1333 {
1334         int r;
1335
1336         if (get_pool_mode(pool) >= PM_READ_ONLY)
1337                 return -EINVAL;
1338
1339         r = dm_pool_commit_metadata(pool->pmd);
1340         if (r)
1341                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1342         else
1343                 check_for_space(pool);
1344
1345         return r;
1346 }
1347
1348 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1349 {
1350         unsigned long flags;
1351
1352         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1353                 DMWARN("%s: reached low water mark for data device: sending event.",
1354                        dm_device_name(pool->pool_md));
1355                 spin_lock_irqsave(&pool->lock, flags);
1356                 pool->low_water_triggered = true;
1357                 spin_unlock_irqrestore(&pool->lock, flags);
1358                 dm_table_event(pool->ti->table);
1359         }
1360 }
1361
1362 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1363 {
1364         int r;
1365         dm_block_t free_blocks;
1366         struct pool *pool = tc->pool;
1367
1368         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1369                 return -EINVAL;
1370
1371         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1372         if (r) {
1373                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1374                 return r;
1375         }
1376
1377         check_low_water_mark(pool, free_blocks);
1378
1379         if (!free_blocks) {
1380                 /*
1381                  * Try to commit to see if that will free up some
1382                  * more space.
1383                  */
1384                 r = commit(pool);
1385                 if (r)
1386                         return r;
1387
1388                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1389                 if (r) {
1390                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1391                         return r;
1392                 }
1393
1394                 if (!free_blocks) {
1395                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1396                         return -ENOSPC;
1397                 }
1398         }
1399
1400         r = dm_pool_alloc_data_block(pool->pmd, result);
1401         if (r) {
1402                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1403                 return r;
1404         }
1405
1406         return 0;
1407 }
1408
1409 /*
1410  * If we have run out of space, queue bios until the device is
1411  * resumed, presumably after having been reloaded with more space.
1412  */
1413 static void retry_on_resume(struct bio *bio)
1414 {
1415         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1416         struct thin_c *tc = h->tc;
1417         unsigned long flags;
1418
1419         spin_lock_irqsave(&tc->lock, flags);
1420         bio_list_add(&tc->retry_on_resume_list, bio);
1421         spin_unlock_irqrestore(&tc->lock, flags);
1422 }
1423
1424 static int should_error_unserviceable_bio(struct pool *pool)
1425 {
1426         enum pool_mode m = get_pool_mode(pool);
1427
1428         switch (m) {
1429         case PM_WRITE:
1430                 /* Shouldn't get here */
1431                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1432                 return -EIO;
1433
1434         case PM_OUT_OF_DATA_SPACE:
1435                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1436
1437         case PM_READ_ONLY:
1438         case PM_FAIL:
1439                 return -EIO;
1440         default:
1441                 /* Shouldn't get here */
1442                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1443                 return -EIO;
1444         }
1445 }
1446
1447 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1448 {
1449         int error = should_error_unserviceable_bio(pool);
1450
1451         if (error) {
1452                 bio->bi_error = error;
1453                 bio_endio(bio);
1454         } else
1455                 retry_on_resume(bio);
1456 }
1457
1458 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1459 {
1460         struct bio *bio;
1461         struct bio_list bios;
1462         int error;
1463
1464         error = should_error_unserviceable_bio(pool);
1465         if (error) {
1466                 cell_error_with_code(pool, cell, error);
1467                 return;
1468         }
1469
1470         bio_list_init(&bios);
1471         cell_release(pool, cell, &bios);
1472
1473         while ((bio = bio_list_pop(&bios)))
1474                 retry_on_resume(bio);
1475 }
1476
1477 static void process_discard_cell_no_passdown(struct thin_c *tc,
1478                                              struct dm_bio_prison_cell *virt_cell)
1479 {
1480         struct pool *pool = tc->pool;
1481         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1482
1483         /*
1484          * We don't need to lock the data blocks, since there's no
1485          * passdown.  We only lock data blocks for allocation and breaking sharing.
1486          */
1487         m->tc = tc;
1488         m->virt_begin = virt_cell->key.block_begin;
1489         m->virt_end = virt_cell->key.block_end;
1490         m->cell = virt_cell;
1491         m->bio = virt_cell->holder;
1492
1493         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1494                 pool->process_prepared_discard(m);
1495 }
1496
1497 /*
1498  * __bio_inc_remaining() is used to defer parent bios's end_io until
1499  * we _know_ all chained sub range discard bios have completed.
1500  */
1501 static inline void __bio_inc_remaining(struct bio *bio)
1502 {
1503         bio->bi_flags |= (1 << BIO_CHAIN);
1504         smp_mb__before_atomic();
1505         atomic_inc(&bio->__bi_remaining);
1506 }
1507
1508 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1509                                  struct bio *bio)
1510 {
1511         struct pool *pool = tc->pool;
1512
1513         int r;
1514         bool maybe_shared;
1515         struct dm_cell_key data_key;
1516         struct dm_bio_prison_cell *data_cell;
1517         struct dm_thin_new_mapping *m;
1518         dm_block_t virt_begin, virt_end, data_begin;
1519
1520         while (begin != end) {
1521                 r = ensure_next_mapping(pool);
1522                 if (r)
1523                         /* we did our best */
1524                         return;
1525
1526                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1527                                               &data_begin, &maybe_shared);
1528                 if (r)
1529                         /*
1530                          * Silently fail, letting any mappings we've
1531                          * created complete.
1532                          */
1533                         break;
1534
1535                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1536                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1537                         /* contention, we'll give up with this range */
1538                         begin = virt_end;
1539                         continue;
1540                 }
1541
1542                 /*
1543                  * IO may still be going to the destination block.  We must
1544                  * quiesce before we can do the removal.
1545                  */
1546                 m = get_next_mapping(pool);
1547                 m->tc = tc;
1548                 m->maybe_shared = maybe_shared;
1549                 m->virt_begin = virt_begin;
1550                 m->virt_end = virt_end;
1551                 m->data_block = data_begin;
1552                 m->cell = data_cell;
1553                 m->bio = bio;
1554
1555                 /*
1556                  * The parent bio must not complete before sub discard bios are
1557                  * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1558                  *
1559                  * This per-mapping bi_remaining increment is paired with
1560                  * the implicit decrement that occurs via bio_endio() in
1561                  * process_prepared_discard_{passdown,no_passdown}.
1562                  */
1563                 __bio_inc_remaining(bio);
1564                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1565                         pool->process_prepared_discard(m);
1566
1567                 begin = virt_end;
1568         }
1569 }
1570
1571 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1572 {
1573         struct bio *bio = virt_cell->holder;
1574         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1575
1576         /*
1577          * The virt_cell will only get freed once the origin bio completes.
1578          * This means it will remain locked while all the individual
1579          * passdown bios are in flight.
1580          */
1581         h->cell = virt_cell;
1582         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1583
1584         /*
1585          * We complete the bio now, knowing that the bi_remaining field
1586          * will prevent completion until the sub range discards have
1587          * completed.
1588          */
1589         bio_endio(bio);
1590 }
1591
1592 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1593 {
1594         dm_block_t begin, end;
1595         struct dm_cell_key virt_key;
1596         struct dm_bio_prison_cell *virt_cell;
1597
1598         get_bio_block_range(tc, bio, &begin, &end);
1599         if (begin == end) {
1600                 /*
1601                  * The discard covers less than a block.
1602                  */
1603                 bio_endio(bio);
1604                 return;
1605         }
1606
1607         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1608         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1609                 /*
1610                  * Potential starvation issue: We're relying on the
1611                  * fs/application being well behaved, and not trying to
1612                  * send IO to a region at the same time as discarding it.
1613                  * If they do this persistently then it's possible this
1614                  * cell will never be granted.
1615                  */
1616                 return;
1617
1618         tc->pool->process_discard_cell(tc, virt_cell);
1619 }
1620
1621 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1622                           struct dm_cell_key *key,
1623                           struct dm_thin_lookup_result *lookup_result,
1624                           struct dm_bio_prison_cell *cell)
1625 {
1626         int r;
1627         dm_block_t data_block;
1628         struct pool *pool = tc->pool;
1629
1630         r = alloc_data_block(tc, &data_block);
1631         switch (r) {
1632         case 0:
1633                 schedule_internal_copy(tc, block, lookup_result->block,
1634                                        data_block, cell, bio);
1635                 break;
1636
1637         case -ENOSPC:
1638                 retry_bios_on_resume(pool, cell);
1639                 break;
1640
1641         default:
1642                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1643                             __func__, r);
1644                 cell_error(pool, cell);
1645                 break;
1646         }
1647 }
1648
1649 static void __remap_and_issue_shared_cell(void *context,
1650                                           struct dm_bio_prison_cell *cell)
1651 {
1652         struct remap_info *info = context;
1653         struct bio *bio;
1654
1655         while ((bio = bio_list_pop(&cell->bios))) {
1656                 if ((bio_data_dir(bio) == WRITE) ||
1657                     (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1658                         bio_list_add(&info->defer_bios, bio);
1659                 else {
1660                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1661
1662                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1663                         inc_all_io_entry(info->tc->pool, bio);
1664                         bio_list_add(&info->issue_bios, bio);
1665                 }
1666         }
1667 }
1668
1669 static void remap_and_issue_shared_cell(struct thin_c *tc,
1670                                         struct dm_bio_prison_cell *cell,
1671                                         dm_block_t block)
1672 {
1673         struct bio *bio;
1674         struct remap_info info;
1675
1676         info.tc = tc;
1677         bio_list_init(&info.defer_bios);
1678         bio_list_init(&info.issue_bios);
1679
1680         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1681                            &info, cell);
1682
1683         while ((bio = bio_list_pop(&info.defer_bios)))
1684                 thin_defer_bio(tc, bio);
1685
1686         while ((bio = bio_list_pop(&info.issue_bios)))
1687                 remap_and_issue(tc, bio, block);
1688 }
1689
1690 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1691                                dm_block_t block,
1692                                struct dm_thin_lookup_result *lookup_result,
1693                                struct dm_bio_prison_cell *virt_cell)
1694 {
1695         struct dm_bio_prison_cell *data_cell;
1696         struct pool *pool = tc->pool;
1697         struct dm_cell_key key;
1698
1699         /*
1700          * If cell is already occupied, then sharing is already in the process
1701          * of being broken so we have nothing further to do here.
1702          */
1703         build_data_key(tc->td, lookup_result->block, &key);
1704         if (bio_detain(pool, &key, bio, &data_cell)) {
1705                 cell_defer_no_holder(tc, virt_cell);
1706                 return;
1707         }
1708
1709         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1710                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1711                 cell_defer_no_holder(tc, virt_cell);
1712         } else {
1713                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1714
1715                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1716                 inc_all_io_entry(pool, bio);
1717                 remap_and_issue(tc, bio, lookup_result->block);
1718
1719                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1720                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1721         }
1722 }
1723
1724 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1725                             struct dm_bio_prison_cell *cell)
1726 {
1727         int r;
1728         dm_block_t data_block;
1729         struct pool *pool = tc->pool;
1730
1731         /*
1732          * Remap empty bios (flushes) immediately, without provisioning.
1733          */
1734         if (!bio->bi_iter.bi_size) {
1735                 inc_all_io_entry(pool, bio);
1736                 cell_defer_no_holder(tc, cell);
1737
1738                 remap_and_issue(tc, bio, 0);
1739                 return;
1740         }
1741
1742         /*
1743          * Fill read bios with zeroes and complete them immediately.
1744          */
1745         if (bio_data_dir(bio) == READ) {
1746                 zero_fill_bio(bio);
1747                 cell_defer_no_holder(tc, cell);
1748                 bio_endio(bio);
1749                 return;
1750         }
1751
1752         r = alloc_data_block(tc, &data_block);
1753         switch (r) {
1754         case 0:
1755                 if (tc->origin_dev)
1756                         schedule_external_copy(tc, block, data_block, cell, bio);
1757                 else
1758                         schedule_zero(tc, block, data_block, cell, bio);
1759                 break;
1760
1761         case -ENOSPC:
1762                 retry_bios_on_resume(pool, cell);
1763                 break;
1764
1765         default:
1766                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1767                             __func__, r);
1768                 cell_error(pool, cell);
1769                 break;
1770         }
1771 }
1772
1773 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1774 {
1775         int r;
1776         struct pool *pool = tc->pool;
1777         struct bio *bio = cell->holder;
1778         dm_block_t block = get_bio_block(tc, bio);
1779         struct dm_thin_lookup_result lookup_result;
1780
1781         if (tc->requeue_mode) {
1782                 cell_requeue(pool, cell);
1783                 return;
1784         }
1785
1786         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1787         switch (r) {
1788         case 0:
1789                 if (lookup_result.shared)
1790                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1791                 else {
1792                         inc_all_io_entry(pool, bio);
1793                         remap_and_issue(tc, bio, lookup_result.block);
1794                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1795                 }
1796                 break;
1797
1798         case -ENODATA:
1799                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1800                         inc_all_io_entry(pool, bio);
1801                         cell_defer_no_holder(tc, cell);
1802
1803                         if (bio_end_sector(bio) <= tc->origin_size)
1804                                 remap_to_origin_and_issue(tc, bio);
1805
1806                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1807                                 zero_fill_bio(bio);
1808                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1809                                 remap_to_origin_and_issue(tc, bio);
1810
1811                         } else {
1812                                 zero_fill_bio(bio);
1813                                 bio_endio(bio);
1814                         }
1815                 } else
1816                         provision_block(tc, bio, block, cell);
1817                 break;
1818
1819         default:
1820                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1821                             __func__, r);
1822                 cell_defer_no_holder(tc, cell);
1823                 bio_io_error(bio);
1824                 break;
1825         }
1826 }
1827
1828 static void process_bio(struct thin_c *tc, struct bio *bio)
1829 {
1830         struct pool *pool = tc->pool;
1831         dm_block_t block = get_bio_block(tc, bio);
1832         struct dm_bio_prison_cell *cell;
1833         struct dm_cell_key key;
1834
1835         /*
1836          * If cell is already occupied, then the block is already
1837          * being provisioned so we have nothing further to do here.
1838          */
1839         build_virtual_key(tc->td, block, &key);
1840         if (bio_detain(pool, &key, bio, &cell))
1841                 return;
1842
1843         process_cell(tc, cell);
1844 }
1845
1846 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1847                                     struct dm_bio_prison_cell *cell)
1848 {
1849         int r;
1850         int rw = bio_data_dir(bio);
1851         dm_block_t block = get_bio_block(tc, bio);
1852         struct dm_thin_lookup_result lookup_result;
1853
1854         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1855         switch (r) {
1856         case 0:
1857                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1858                         handle_unserviceable_bio(tc->pool, bio);
1859                         if (cell)
1860                                 cell_defer_no_holder(tc, cell);
1861                 } else {
1862                         inc_all_io_entry(tc->pool, bio);
1863                         remap_and_issue(tc, bio, lookup_result.block);
1864                         if (cell)
1865                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1866                 }
1867                 break;
1868
1869         case -ENODATA:
1870                 if (cell)
1871                         cell_defer_no_holder(tc, cell);
1872                 if (rw != READ) {
1873                         handle_unserviceable_bio(tc->pool, bio);
1874                         break;
1875                 }
1876
1877                 if (tc->origin_dev) {
1878                         inc_all_io_entry(tc->pool, bio);
1879                         remap_to_origin_and_issue(tc, bio);
1880                         break;
1881                 }
1882
1883                 zero_fill_bio(bio);
1884                 bio_endio(bio);
1885                 break;
1886
1887         default:
1888                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1889                             __func__, r);
1890                 if (cell)
1891                         cell_defer_no_holder(tc, cell);
1892                 bio_io_error(bio);
1893                 break;
1894         }
1895 }
1896
1897 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1898 {
1899         __process_bio_read_only(tc, bio, NULL);
1900 }
1901
1902 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1903 {
1904         __process_bio_read_only(tc, cell->holder, cell);
1905 }
1906
1907 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1908 {
1909         bio_endio(bio);
1910 }
1911
1912 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1913 {
1914         bio_io_error(bio);
1915 }
1916
1917 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1918 {
1919         cell_success(tc->pool, cell);
1920 }
1921
1922 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1923 {
1924         cell_error(tc->pool, cell);
1925 }
1926
1927 /*
1928  * FIXME: should we also commit due to size of transaction, measured in
1929  * metadata blocks?
1930  */
1931 static int need_commit_due_to_time(struct pool *pool)
1932 {
1933         return !time_in_range(jiffies, pool->last_commit_jiffies,
1934                               pool->last_commit_jiffies + COMMIT_PERIOD);
1935 }
1936
1937 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1938 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1939
1940 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1941 {
1942         struct rb_node **rbp, *parent;
1943         struct dm_thin_endio_hook *pbd;
1944         sector_t bi_sector = bio->bi_iter.bi_sector;
1945
1946         rbp = &tc->sort_bio_list.rb_node;
1947         parent = NULL;
1948         while (*rbp) {
1949                 parent = *rbp;
1950                 pbd = thin_pbd(parent);
1951
1952                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1953                         rbp = &(*rbp)->rb_left;
1954                 else
1955                         rbp = &(*rbp)->rb_right;
1956         }
1957
1958         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1959         rb_link_node(&pbd->rb_node, parent, rbp);
1960         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1961 }
1962
1963 static void __extract_sorted_bios(struct thin_c *tc)
1964 {
1965         struct rb_node *node;
1966         struct dm_thin_endio_hook *pbd;
1967         struct bio *bio;
1968
1969         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1970                 pbd = thin_pbd(node);
1971                 bio = thin_bio(pbd);
1972
1973                 bio_list_add(&tc->deferred_bio_list, bio);
1974                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1975         }
1976
1977         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1978 }
1979
1980 static void __sort_thin_deferred_bios(struct thin_c *tc)
1981 {
1982         struct bio *bio;
1983         struct bio_list bios;
1984
1985         bio_list_init(&bios);
1986         bio_list_merge(&bios, &tc->deferred_bio_list);
1987         bio_list_init(&tc->deferred_bio_list);
1988
1989         /* Sort deferred_bio_list using rb-tree */
1990         while ((bio = bio_list_pop(&bios)))
1991                 __thin_bio_rb_add(tc, bio);
1992
1993         /*
1994          * Transfer the sorted bios in sort_bio_list back to
1995          * deferred_bio_list to allow lockless submission of
1996          * all bios.
1997          */
1998         __extract_sorted_bios(tc);
1999 }
2000
2001 static void process_thin_deferred_bios(struct thin_c *tc)
2002 {
2003         struct pool *pool = tc->pool;
2004         unsigned long flags;
2005         struct bio *bio;
2006         struct bio_list bios;
2007         struct blk_plug plug;
2008         unsigned count = 0;
2009
2010         if (tc->requeue_mode) {
2011                 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2012                 return;
2013         }
2014
2015         bio_list_init(&bios);
2016
2017         spin_lock_irqsave(&tc->lock, flags);
2018
2019         if (bio_list_empty(&tc->deferred_bio_list)) {
2020                 spin_unlock_irqrestore(&tc->lock, flags);
2021                 return;
2022         }
2023
2024         __sort_thin_deferred_bios(tc);
2025
2026         bio_list_merge(&bios, &tc->deferred_bio_list);
2027         bio_list_init(&tc->deferred_bio_list);
2028
2029         spin_unlock_irqrestore(&tc->lock, flags);
2030
2031         blk_start_plug(&plug);
2032         while ((bio = bio_list_pop(&bios))) {
2033                 /*
2034                  * If we've got no free new_mapping structs, and processing
2035                  * this bio might require one, we pause until there are some
2036                  * prepared mappings to process.
2037                  */
2038                 if (ensure_next_mapping(pool)) {
2039                         spin_lock_irqsave(&tc->lock, flags);
2040                         bio_list_add(&tc->deferred_bio_list, bio);
2041                         bio_list_merge(&tc->deferred_bio_list, &bios);
2042                         spin_unlock_irqrestore(&tc->lock, flags);
2043                         break;
2044                 }
2045
2046                 if (bio->bi_rw & REQ_DISCARD)
2047                         pool->process_discard(tc, bio);
2048                 else
2049                         pool->process_bio(tc, bio);
2050
2051                 if ((count++ & 127) == 0) {
2052                         throttle_work_update(&pool->throttle);
2053                         dm_pool_issue_prefetches(pool->pmd);
2054                 }
2055         }
2056         blk_finish_plug(&plug);
2057 }
2058
2059 static int cmp_cells(const void *lhs, const void *rhs)
2060 {
2061         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2062         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2063
2064         BUG_ON(!lhs_cell->holder);
2065         BUG_ON(!rhs_cell->holder);
2066
2067         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2068                 return -1;
2069
2070         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2071                 return 1;
2072
2073         return 0;
2074 }
2075
2076 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2077 {
2078         unsigned count = 0;
2079         struct dm_bio_prison_cell *cell, *tmp;
2080
2081         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2082                 if (count >= CELL_SORT_ARRAY_SIZE)
2083                         break;
2084
2085                 pool->cell_sort_array[count++] = cell;
2086                 list_del(&cell->user_list);
2087         }
2088
2089         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2090
2091         return count;
2092 }
2093
2094 static void process_thin_deferred_cells(struct thin_c *tc)
2095 {
2096         struct pool *pool = tc->pool;
2097         unsigned long flags;
2098         struct list_head cells;
2099         struct dm_bio_prison_cell *cell;
2100         unsigned i, j, count;
2101
2102         INIT_LIST_HEAD(&cells);
2103
2104         spin_lock_irqsave(&tc->lock, flags);
2105         list_splice_init(&tc->deferred_cells, &cells);
2106         spin_unlock_irqrestore(&tc->lock, flags);
2107
2108         if (list_empty(&cells))
2109                 return;
2110
2111         do {
2112                 count = sort_cells(tc->pool, &cells);
2113
2114                 for (i = 0; i < count; i++) {
2115                         cell = pool->cell_sort_array[i];
2116                         BUG_ON(!cell->holder);
2117
2118                         /*
2119                          * If we've got no free new_mapping structs, and processing
2120                          * this bio might require one, we pause until there are some
2121                          * prepared mappings to process.
2122                          */
2123                         if (ensure_next_mapping(pool)) {
2124                                 for (j = i; j < count; j++)
2125                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2126
2127                                 spin_lock_irqsave(&tc->lock, flags);
2128                                 list_splice(&cells, &tc->deferred_cells);
2129                                 spin_unlock_irqrestore(&tc->lock, flags);
2130                                 return;
2131                         }
2132
2133                         if (cell->holder->bi_rw & REQ_DISCARD)
2134                                 pool->process_discard_cell(tc, cell);
2135                         else
2136                                 pool->process_cell(tc, cell);
2137                 }
2138         } while (!list_empty(&cells));
2139 }
2140
2141 static void thin_get(struct thin_c *tc);
2142 static void thin_put(struct thin_c *tc);
2143
2144 /*
2145  * We can't hold rcu_read_lock() around code that can block.  So we
2146  * find a thin with the rcu lock held; bump a refcount; then drop
2147  * the lock.
2148  */
2149 static struct thin_c *get_first_thin(struct pool *pool)
2150 {
2151         struct thin_c *tc = NULL;
2152
2153         rcu_read_lock();
2154         if (!list_empty(&pool->active_thins)) {
2155                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2156                 thin_get(tc);
2157         }
2158         rcu_read_unlock();
2159
2160         return tc;
2161 }
2162
2163 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2164 {
2165         struct thin_c *old_tc = tc;
2166
2167         rcu_read_lock();
2168         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2169                 thin_get(tc);
2170                 thin_put(old_tc);
2171                 rcu_read_unlock();
2172                 return tc;
2173         }
2174         thin_put(old_tc);
2175         rcu_read_unlock();
2176
2177         return NULL;
2178 }
2179
2180 static void process_deferred_bios(struct pool *pool)
2181 {
2182         unsigned long flags;
2183         struct bio *bio;
2184         struct bio_list bios;
2185         struct thin_c *tc;
2186
2187         tc = get_first_thin(pool);
2188         while (tc) {
2189                 process_thin_deferred_cells(tc);
2190                 process_thin_deferred_bios(tc);
2191                 tc = get_next_thin(pool, tc);
2192         }
2193
2194         /*
2195          * If there are any deferred flush bios, we must commit
2196          * the metadata before issuing them.
2197          */
2198         bio_list_init(&bios);
2199         spin_lock_irqsave(&pool->lock, flags);
2200         bio_list_merge(&bios, &pool->deferred_flush_bios);
2201         bio_list_init(&pool->deferred_flush_bios);
2202         spin_unlock_irqrestore(&pool->lock, flags);
2203
2204         if (bio_list_empty(&bios) &&
2205             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2206                 return;
2207
2208         if (commit(pool)) {
2209                 while ((bio = bio_list_pop(&bios)))
2210                         bio_io_error(bio);
2211                 return;
2212         }
2213         pool->last_commit_jiffies = jiffies;
2214
2215         while ((bio = bio_list_pop(&bios)))
2216                 generic_make_request(bio);
2217 }
2218
2219 static void do_worker(struct work_struct *ws)
2220 {
2221         struct pool *pool = container_of(ws, struct pool, worker);
2222
2223         throttle_work_start(&pool->throttle);
2224         dm_pool_issue_prefetches(pool->pmd);
2225         throttle_work_update(&pool->throttle);
2226         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2227         throttle_work_update(&pool->throttle);
2228         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2229         throttle_work_update(&pool->throttle);
2230         process_deferred_bios(pool);
2231         throttle_work_complete(&pool->throttle);
2232 }
2233
2234 /*
2235  * We want to commit periodically so that not too much
2236  * unwritten data builds up.
2237  */
2238 static void do_waker(struct work_struct *ws)
2239 {
2240         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2241         wake_worker(pool);
2242         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2243 }
2244
2245 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2246
2247 /*
2248  * We're holding onto IO to allow userland time to react.  After the
2249  * timeout either the pool will have been resized (and thus back in
2250  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2251  */
2252 static void do_no_space_timeout(struct work_struct *ws)
2253 {
2254         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2255                                          no_space_timeout);
2256
2257         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2258                 pool->pf.error_if_no_space = true;
2259                 notify_of_pool_mode_change_to_oods(pool);
2260                 error_retry_list_with_code(pool, -ENOSPC);
2261         }
2262 }
2263
2264 /*----------------------------------------------------------------*/
2265
2266 struct pool_work {
2267         struct work_struct worker;
2268         struct completion complete;
2269 };
2270
2271 static struct pool_work *to_pool_work(struct work_struct *ws)
2272 {
2273         return container_of(ws, struct pool_work, worker);
2274 }
2275
2276 static void pool_work_complete(struct pool_work *pw)
2277 {
2278         complete(&pw->complete);
2279 }
2280
2281 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2282                            void (*fn)(struct work_struct *))
2283 {
2284         INIT_WORK_ONSTACK(&pw->worker, fn);
2285         init_completion(&pw->complete);
2286         queue_work(pool->wq, &pw->worker);
2287         wait_for_completion(&pw->complete);
2288 }
2289
2290 /*----------------------------------------------------------------*/
2291
2292 struct noflush_work {
2293         struct pool_work pw;
2294         struct thin_c *tc;
2295 };
2296
2297 static struct noflush_work *to_noflush(struct work_struct *ws)
2298 {
2299         return container_of(to_pool_work(ws), struct noflush_work, pw);
2300 }
2301
2302 static void do_noflush_start(struct work_struct *ws)
2303 {
2304         struct noflush_work *w = to_noflush(ws);
2305         w->tc->requeue_mode = true;
2306         requeue_io(w->tc);
2307         pool_work_complete(&w->pw);
2308 }
2309
2310 static void do_noflush_stop(struct work_struct *ws)
2311 {
2312         struct noflush_work *w = to_noflush(ws);
2313         w->tc->requeue_mode = false;
2314         pool_work_complete(&w->pw);
2315 }
2316
2317 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2318 {
2319         struct noflush_work w;
2320
2321         w.tc = tc;
2322         pool_work_wait(&w.pw, tc->pool, fn);
2323 }
2324
2325 /*----------------------------------------------------------------*/
2326
2327 static enum pool_mode get_pool_mode(struct pool *pool)
2328 {
2329         return pool->pf.mode;
2330 }
2331
2332 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2333 {
2334         dm_table_event(pool->ti->table);
2335         DMINFO("%s: switching pool to %s mode",
2336                dm_device_name(pool->pool_md), new_mode);
2337 }
2338
2339 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2340 {
2341         if (!pool->pf.error_if_no_space)
2342                 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2343         else
2344                 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2345 }
2346
2347 static bool passdown_enabled(struct pool_c *pt)
2348 {
2349         return pt->adjusted_pf.discard_passdown;
2350 }
2351
2352 static void set_discard_callbacks(struct pool *pool)
2353 {
2354         struct pool_c *pt = pool->ti->private;
2355
2356         if (passdown_enabled(pt)) {
2357                 pool->process_discard_cell = process_discard_cell_passdown;
2358                 pool->process_prepared_discard = process_prepared_discard_passdown;
2359         } else {
2360                 pool->process_discard_cell = process_discard_cell_no_passdown;
2361                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2362         }
2363 }
2364
2365 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2366 {
2367         struct pool_c *pt = pool->ti->private;
2368         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2369         enum pool_mode old_mode = get_pool_mode(pool);
2370         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2371
2372         /*
2373          * Never allow the pool to transition to PM_WRITE mode if user
2374          * intervention is required to verify metadata and data consistency.
2375          */
2376         if (new_mode == PM_WRITE && needs_check) {
2377                 DMERR("%s: unable to switch pool to write mode until repaired.",
2378                       dm_device_name(pool->pool_md));
2379                 if (old_mode != new_mode)
2380                         new_mode = old_mode;
2381                 else
2382                         new_mode = PM_READ_ONLY;
2383         }
2384         /*
2385          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2386          * not going to recover without a thin_repair.  So we never let the
2387          * pool move out of the old mode.
2388          */
2389         if (old_mode == PM_FAIL)
2390                 new_mode = old_mode;
2391
2392         switch (new_mode) {
2393         case PM_FAIL:
2394                 if (old_mode != new_mode)
2395                         notify_of_pool_mode_change(pool, "failure");
2396                 dm_pool_metadata_read_only(pool->pmd);
2397                 pool->process_bio = process_bio_fail;
2398                 pool->process_discard = process_bio_fail;
2399                 pool->process_cell = process_cell_fail;
2400                 pool->process_discard_cell = process_cell_fail;
2401                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2402                 pool->process_prepared_discard = process_prepared_discard_fail;
2403
2404                 error_retry_list(pool);
2405                 break;
2406
2407         case PM_READ_ONLY:
2408                 if (old_mode != new_mode)
2409                         notify_of_pool_mode_change(pool, "read-only");
2410                 dm_pool_metadata_read_only(pool->pmd);
2411                 pool->process_bio = process_bio_read_only;
2412                 pool->process_discard = process_bio_success;
2413                 pool->process_cell = process_cell_read_only;
2414                 pool->process_discard_cell = process_cell_success;
2415                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2416                 pool->process_prepared_discard = process_prepared_discard_success;
2417
2418                 error_retry_list(pool);
2419                 break;
2420
2421         case PM_OUT_OF_DATA_SPACE:
2422                 /*
2423                  * Ideally we'd never hit this state; the low water mark
2424                  * would trigger userland to extend the pool before we
2425                  * completely run out of data space.  However, many small
2426                  * IOs to unprovisioned space can consume data space at an
2427                  * alarming rate.  Adjust your low water mark if you're
2428                  * frequently seeing this mode.
2429                  */
2430                 if (old_mode != new_mode)
2431                         notify_of_pool_mode_change_to_oods(pool);
2432                 pool->out_of_data_space = true;
2433                 pool->process_bio = process_bio_read_only;
2434                 pool->process_discard = process_discard_bio;
2435                 pool->process_cell = process_cell_read_only;
2436                 pool->process_prepared_mapping = process_prepared_mapping;
2437                 set_discard_callbacks(pool);
2438
2439                 if (!pool->pf.error_if_no_space && no_space_timeout)
2440                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2441                 break;
2442
2443         case PM_WRITE:
2444                 if (old_mode != new_mode)
2445                         notify_of_pool_mode_change(pool, "write");
2446                 pool->out_of_data_space = false;
2447                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2448                 dm_pool_metadata_read_write(pool->pmd);
2449                 pool->process_bio = process_bio;
2450                 pool->process_discard = process_discard_bio;
2451                 pool->process_cell = process_cell;
2452                 pool->process_prepared_mapping = process_prepared_mapping;
2453                 set_discard_callbacks(pool);
2454                 break;
2455         }
2456
2457         pool->pf.mode = new_mode;
2458         /*
2459          * The pool mode may have changed, sync it so bind_control_target()
2460          * doesn't cause an unexpected mode transition on resume.
2461          */
2462         pt->adjusted_pf.mode = new_mode;
2463 }
2464
2465 static void abort_transaction(struct pool *pool)
2466 {
2467         const char *dev_name = dm_device_name(pool->pool_md);
2468
2469         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2470         if (dm_pool_abort_metadata(pool->pmd)) {
2471                 DMERR("%s: failed to abort metadata transaction", dev_name);
2472                 set_pool_mode(pool, PM_FAIL);
2473         }
2474
2475         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2476                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2477                 set_pool_mode(pool, PM_FAIL);
2478         }
2479 }
2480
2481 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2482 {
2483         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2484                     dm_device_name(pool->pool_md), op, r);
2485
2486         abort_transaction(pool);
2487         set_pool_mode(pool, PM_READ_ONLY);
2488 }
2489
2490 /*----------------------------------------------------------------*/
2491
2492 /*
2493  * Mapping functions.
2494  */
2495
2496 /*
2497  * Called only while mapping a thin bio to hand it over to the workqueue.
2498  */
2499 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2500 {
2501         unsigned long flags;
2502         struct pool *pool = tc->pool;
2503
2504         spin_lock_irqsave(&tc->lock, flags);
2505         bio_list_add(&tc->deferred_bio_list, bio);
2506         spin_unlock_irqrestore(&tc->lock, flags);
2507
2508         wake_worker(pool);
2509 }
2510
2511 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2512 {
2513         struct pool *pool = tc->pool;
2514
2515         throttle_lock(&pool->throttle);
2516         thin_defer_bio(tc, bio);
2517         throttle_unlock(&pool->throttle);
2518 }
2519
2520 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2521 {
2522         unsigned long flags;
2523         struct pool *pool = tc->pool;
2524
2525         throttle_lock(&pool->throttle);
2526         spin_lock_irqsave(&tc->lock, flags);
2527         list_add_tail(&cell->user_list, &tc->deferred_cells);
2528         spin_unlock_irqrestore(&tc->lock, flags);
2529         throttle_unlock(&pool->throttle);
2530
2531         wake_worker(pool);
2532 }
2533
2534 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2535 {
2536         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2537
2538         h->tc = tc;
2539         h->shared_read_entry = NULL;
2540         h->all_io_entry = NULL;
2541         h->overwrite_mapping = NULL;
2542         h->cell = NULL;
2543 }
2544
2545 /*
2546  * Non-blocking function called from the thin target's map function.
2547  */
2548 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2549 {
2550         int r;
2551         struct thin_c *tc = ti->private;
2552         dm_block_t block = get_bio_block(tc, bio);
2553         struct dm_thin_device *td = tc->td;
2554         struct dm_thin_lookup_result result;
2555         struct dm_bio_prison_cell *virt_cell, *data_cell;
2556         struct dm_cell_key key;
2557
2558         thin_hook_bio(tc, bio);
2559
2560         if (tc->requeue_mode) {
2561                 bio->bi_error = DM_ENDIO_REQUEUE;
2562                 bio_endio(bio);
2563                 return DM_MAPIO_SUBMITTED;
2564         }
2565
2566         if (get_pool_mode(tc->pool) == PM_FAIL) {
2567                 bio_io_error(bio);
2568                 return DM_MAPIO_SUBMITTED;
2569         }
2570
2571         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2572                 thin_defer_bio_with_throttle(tc, bio);
2573                 return DM_MAPIO_SUBMITTED;
2574         }
2575
2576         /*
2577          * We must hold the virtual cell before doing the lookup, otherwise
2578          * there's a race with discard.
2579          */
2580         build_virtual_key(tc->td, block, &key);
2581         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2582                 return DM_MAPIO_SUBMITTED;
2583
2584         r = dm_thin_find_block(td, block, 0, &result);
2585
2586         /*
2587          * Note that we defer readahead too.
2588          */
2589         switch (r) {
2590         case 0:
2591                 if (unlikely(result.shared)) {
2592                         /*
2593                          * We have a race condition here between the
2594                          * result.shared value returned by the lookup and
2595                          * snapshot creation, which may cause new
2596                          * sharing.
2597                          *
2598                          * To avoid this always quiesce the origin before
2599                          * taking the snap.  You want to do this anyway to
2600                          * ensure a consistent application view
2601                          * (i.e. lockfs).
2602                          *
2603                          * More distant ancestors are irrelevant. The
2604                          * shared flag will be set in their case.
2605                          */
2606                         thin_defer_cell(tc, virt_cell);
2607                         return DM_MAPIO_SUBMITTED;
2608                 }
2609
2610                 build_data_key(tc->td, result.block, &key);
2611                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2612                         cell_defer_no_holder(tc, virt_cell);
2613                         return DM_MAPIO_SUBMITTED;
2614                 }
2615
2616                 inc_all_io_entry(tc->pool, bio);
2617                 cell_defer_no_holder(tc, data_cell);
2618                 cell_defer_no_holder(tc, virt_cell);
2619
2620                 remap(tc, bio, result.block);
2621                 return DM_MAPIO_REMAPPED;
2622
2623         case -ENODATA:
2624         case -EWOULDBLOCK:
2625                 thin_defer_cell(tc, virt_cell);
2626                 return DM_MAPIO_SUBMITTED;
2627
2628         default:
2629                 /*
2630                  * Must always call bio_io_error on failure.
2631                  * dm_thin_find_block can fail with -EINVAL if the
2632                  * pool is switched to fail-io mode.
2633                  */
2634                 bio_io_error(bio);
2635                 cell_defer_no_holder(tc, virt_cell);
2636                 return DM_MAPIO_SUBMITTED;
2637         }
2638 }
2639
2640 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2641 {
2642         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2643         struct request_queue *q;
2644
2645         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2646                 return 1;
2647
2648         q = bdev_get_queue(pt->data_dev->bdev);
2649         return bdi_congested(&q->backing_dev_info, bdi_bits);
2650 }
2651
2652 static void requeue_bios(struct pool *pool)
2653 {
2654         unsigned long flags;
2655         struct thin_c *tc;
2656
2657         rcu_read_lock();
2658         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2659                 spin_lock_irqsave(&tc->lock, flags);
2660                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2661                 bio_list_init(&tc->retry_on_resume_list);
2662                 spin_unlock_irqrestore(&tc->lock, flags);
2663         }
2664         rcu_read_unlock();
2665 }
2666
2667 /*----------------------------------------------------------------
2668  * Binding of control targets to a pool object
2669  *--------------------------------------------------------------*/
2670 static bool data_dev_supports_discard(struct pool_c *pt)
2671 {
2672         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2673
2674         return q && blk_queue_discard(q);
2675 }
2676
2677 static bool is_factor(sector_t block_size, uint32_t n)
2678 {
2679         return !sector_div(block_size, n);
2680 }
2681
2682 /*
2683  * If discard_passdown was enabled verify that the data device
2684  * supports discards.  Disable discard_passdown if not.
2685  */
2686 static void disable_passdown_if_not_supported(struct pool_c *pt)
2687 {
2688         struct pool *pool = pt->pool;
2689         struct block_device *data_bdev = pt->data_dev->bdev;
2690         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2691         const char *reason = NULL;
2692         char buf[BDEVNAME_SIZE];
2693
2694         if (!pt->adjusted_pf.discard_passdown)
2695                 return;
2696
2697         if (!data_dev_supports_discard(pt))
2698                 reason = "discard unsupported";
2699
2700         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2701                 reason = "max discard sectors smaller than a block";
2702
2703         if (reason) {
2704                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2705                 pt->adjusted_pf.discard_passdown = false;
2706         }
2707 }
2708
2709 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2710 {
2711         struct pool_c *pt = ti->private;
2712
2713         /*
2714          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2715          */
2716         enum pool_mode old_mode = get_pool_mode(pool);
2717         enum pool_mode new_mode = pt->adjusted_pf.mode;
2718
2719         /*
2720          * Don't change the pool's mode until set_pool_mode() below.
2721          * Otherwise the pool's process_* function pointers may
2722          * not match the desired pool mode.
2723          */
2724         pt->adjusted_pf.mode = old_mode;
2725
2726         pool->ti = ti;
2727         pool->pf = pt->adjusted_pf;
2728         pool->low_water_blocks = pt->low_water_blocks;
2729
2730         set_pool_mode(pool, new_mode);
2731
2732         return 0;
2733 }
2734
2735 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2736 {
2737         if (pool->ti == ti)
2738                 pool->ti = NULL;
2739 }
2740
2741 /*----------------------------------------------------------------
2742  * Pool creation
2743  *--------------------------------------------------------------*/
2744 /* Initialize pool features. */
2745 static void pool_features_init(struct pool_features *pf)
2746 {
2747         pf->mode = PM_WRITE;
2748         pf->zero_new_blocks = true;
2749         pf->discard_enabled = true;
2750         pf->discard_passdown = true;
2751         pf->error_if_no_space = false;
2752 }
2753
2754 static void __pool_destroy(struct pool *pool)
2755 {
2756         __pool_table_remove(pool);
2757
2758         vfree(pool->cell_sort_array);
2759         if (dm_pool_metadata_close(pool->pmd) < 0)
2760                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2761
2762         dm_bio_prison_destroy(pool->prison);
2763         dm_kcopyd_client_destroy(pool->copier);
2764
2765         if (pool->wq)
2766                 destroy_workqueue(pool->wq);
2767
2768         if (pool->next_mapping)
2769                 mempool_free(pool->next_mapping, pool->mapping_pool);
2770         mempool_destroy(pool->mapping_pool);
2771         dm_deferred_set_destroy(pool->shared_read_ds);
2772         dm_deferred_set_destroy(pool->all_io_ds);
2773         kfree(pool);
2774 }
2775
2776 static struct kmem_cache *_new_mapping_cache;
2777
2778 static struct pool *pool_create(struct mapped_device *pool_md,
2779                                 struct block_device *metadata_dev,
2780                                 unsigned long block_size,
2781                                 int read_only, char **error)
2782 {
2783         int r;
2784         void *err_p;
2785         struct pool *pool;
2786         struct dm_pool_metadata *pmd;
2787         bool format_device = read_only ? false : true;
2788
2789         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2790         if (IS_ERR(pmd)) {
2791                 *error = "Error creating metadata object";
2792                 return (struct pool *)pmd;
2793         }
2794
2795         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2796         if (!pool) {
2797                 *error = "Error allocating memory for pool";
2798                 err_p = ERR_PTR(-ENOMEM);
2799                 goto bad_pool;
2800         }
2801
2802         pool->pmd = pmd;
2803         pool->sectors_per_block = block_size;
2804         if (block_size & (block_size - 1))
2805                 pool->sectors_per_block_shift = -1;
2806         else
2807                 pool->sectors_per_block_shift = __ffs(block_size);
2808         pool->low_water_blocks = 0;
2809         pool_features_init(&pool->pf);
2810         pool->prison = dm_bio_prison_create();
2811         if (!pool->prison) {
2812                 *error = "Error creating pool's bio prison";
2813                 err_p = ERR_PTR(-ENOMEM);
2814                 goto bad_prison;
2815         }
2816
2817         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2818         if (IS_ERR(pool->copier)) {
2819                 r = PTR_ERR(pool->copier);
2820                 *error = "Error creating pool's kcopyd client";
2821                 err_p = ERR_PTR(r);
2822                 goto bad_kcopyd_client;
2823         }
2824
2825         /*
2826          * Create singlethreaded workqueue that will service all devices
2827          * that use this metadata.
2828          */
2829         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2830         if (!pool->wq) {
2831                 *error = "Error creating pool's workqueue";
2832                 err_p = ERR_PTR(-ENOMEM);
2833                 goto bad_wq;
2834         }
2835
2836         throttle_init(&pool->throttle);
2837         INIT_WORK(&pool->worker, do_worker);
2838         INIT_DELAYED_WORK(&pool->waker, do_waker);
2839         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2840         spin_lock_init(&pool->lock);
2841         bio_list_init(&pool->deferred_flush_bios);
2842         INIT_LIST_HEAD(&pool->prepared_mappings);
2843         INIT_LIST_HEAD(&pool->prepared_discards);
2844         INIT_LIST_HEAD(&pool->active_thins);
2845         pool->low_water_triggered = false;
2846         pool->suspended = true;
2847         pool->out_of_data_space = false;
2848
2849         pool->shared_read_ds = dm_deferred_set_create();
2850         if (!pool->shared_read_ds) {
2851                 *error = "Error creating pool's shared read deferred set";
2852                 err_p = ERR_PTR(-ENOMEM);
2853                 goto bad_shared_read_ds;
2854         }
2855
2856         pool->all_io_ds = dm_deferred_set_create();
2857         if (!pool->all_io_ds) {
2858                 *error = "Error creating pool's all io deferred set";
2859                 err_p = ERR_PTR(-ENOMEM);
2860                 goto bad_all_io_ds;
2861         }
2862
2863         pool->next_mapping = NULL;
2864         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2865                                                       _new_mapping_cache);
2866         if (!pool->mapping_pool) {
2867                 *error = "Error creating pool's mapping mempool";
2868                 err_p = ERR_PTR(-ENOMEM);
2869                 goto bad_mapping_pool;
2870         }
2871
2872         pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2873         if (!pool->cell_sort_array) {
2874                 *error = "Error allocating cell sort array";
2875                 err_p = ERR_PTR(-ENOMEM);
2876                 goto bad_sort_array;
2877         }
2878
2879         pool->ref_count = 1;
2880         pool->last_commit_jiffies = jiffies;
2881         pool->pool_md = pool_md;
2882         pool->md_dev = metadata_dev;
2883         __pool_table_insert(pool);
2884
2885         return pool;
2886
2887 bad_sort_array:
2888         mempool_destroy(pool->mapping_pool);
2889 bad_mapping_pool:
2890         dm_deferred_set_destroy(pool->all_io_ds);
2891 bad_all_io_ds:
2892         dm_deferred_set_destroy(pool->shared_read_ds);
2893 bad_shared_read_ds:
2894         destroy_workqueue(pool->wq);
2895 bad_wq:
2896         dm_kcopyd_client_destroy(pool->copier);
2897 bad_kcopyd_client:
2898         dm_bio_prison_destroy(pool->prison);
2899 bad_prison:
2900         kfree(pool);
2901 bad_pool:
2902         if (dm_pool_metadata_close(pmd))
2903                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2904
2905         return err_p;
2906 }
2907
2908 static void __pool_inc(struct pool *pool)
2909 {
2910         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2911         pool->ref_count++;
2912 }
2913
2914 static void __pool_dec(struct pool *pool)
2915 {
2916         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2917         BUG_ON(!pool->ref_count);
2918         if (!--pool->ref_count)
2919                 __pool_destroy(pool);
2920 }
2921
2922 static struct pool *__pool_find(struct mapped_device *pool_md,
2923                                 struct block_device *metadata_dev,
2924                                 unsigned long block_size, int read_only,
2925                                 char **error, int *created)
2926 {
2927         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2928
2929         if (pool) {
2930                 if (pool->pool_md != pool_md) {
2931                         *error = "metadata device already in use by a pool";
2932                         return ERR_PTR(-EBUSY);
2933                 }
2934                 __pool_inc(pool);
2935
2936         } else {
2937                 pool = __pool_table_lookup(pool_md);
2938                 if (pool) {
2939                         if (pool->md_dev != metadata_dev) {
2940                                 *error = "different pool cannot replace a pool";
2941                                 return ERR_PTR(-EINVAL);
2942                         }
2943                         __pool_inc(pool);
2944
2945                 } else {
2946                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2947                         *created = 1;
2948                 }
2949         }
2950
2951         return pool;
2952 }
2953
2954 /*----------------------------------------------------------------
2955  * Pool target methods
2956  *--------------------------------------------------------------*/
2957 static void pool_dtr(struct dm_target *ti)
2958 {
2959         struct pool_c *pt = ti->private;
2960
2961         mutex_lock(&dm_thin_pool_table.mutex);
2962
2963         unbind_control_target(pt->pool, ti);
2964         __pool_dec(pt->pool);
2965         dm_put_device(ti, pt->metadata_dev);
2966         dm_put_device(ti, pt->data_dev);
2967         kfree(pt);
2968
2969         mutex_unlock(&dm_thin_pool_table.mutex);
2970 }
2971
2972 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2973                                struct dm_target *ti)
2974 {
2975         int r;
2976         unsigned argc;
2977         const char *arg_name;
2978
2979         static struct dm_arg _args[] = {
2980                 {0, 4, "Invalid number of pool feature arguments"},
2981         };
2982
2983         /*
2984          * No feature arguments supplied.
2985          */
2986         if (!as->argc)
2987                 return 0;
2988
2989         r = dm_read_arg_group(_args, as, &argc, &ti->error);
2990         if (r)
2991                 return -EINVAL;
2992
2993         while (argc && !r) {
2994                 arg_name = dm_shift_arg(as);
2995                 argc--;
2996
2997                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2998                         pf->zero_new_blocks = false;
2999
3000                 else if (!strcasecmp(arg_name, "ignore_discard"))
3001                         pf->discard_enabled = false;
3002
3003                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3004                         pf->discard_passdown = false;
3005
3006                 else if (!strcasecmp(arg_name, "read_only"))
3007                         pf->mode = PM_READ_ONLY;
3008
3009                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3010                         pf->error_if_no_space = true;
3011
3012                 else {
3013                         ti->error = "Unrecognised pool feature requested";
3014                         r = -EINVAL;
3015                         break;
3016                 }
3017         }
3018
3019         return r;
3020 }
3021
3022 static void metadata_low_callback(void *context)
3023 {
3024         struct pool *pool = context;
3025
3026         DMWARN("%s: reached low water mark for metadata device: sending event.",
3027                dm_device_name(pool->pool_md));
3028
3029         dm_table_event(pool->ti->table);
3030 }
3031
3032 static sector_t get_dev_size(struct block_device *bdev)
3033 {
3034         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3035 }
3036
3037 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3038 {
3039         sector_t metadata_dev_size = get_dev_size(bdev);
3040         char buffer[BDEVNAME_SIZE];
3041
3042         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3043                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3044                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3045 }
3046
3047 static sector_t get_metadata_dev_size(struct block_device *bdev)
3048 {
3049         sector_t metadata_dev_size = get_dev_size(bdev);
3050
3051         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3052                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3053
3054         return metadata_dev_size;
3055 }
3056
3057 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3058 {
3059         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3060
3061         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3062
3063         return metadata_dev_size;
3064 }
3065
3066 /*
3067  * When a metadata threshold is crossed a dm event is triggered, and
3068  * userland should respond by growing the metadata device.  We could let
3069  * userland set the threshold, like we do with the data threshold, but I'm
3070  * not sure they know enough to do this well.
3071  */
3072 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3073 {
3074         /*
3075          * 4M is ample for all ops with the possible exception of thin
3076          * device deletion which is harmless if it fails (just retry the
3077          * delete after you've grown the device).
3078          */
3079         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3080         return min((dm_block_t)1024ULL /* 4M */, quarter);
3081 }
3082
3083 /*
3084  * thin-pool <metadata dev> <data dev>
3085  *           <data block size (sectors)>
3086  *           <low water mark (blocks)>
3087  *           [<#feature args> [<arg>]*]
3088  *
3089  * Optional feature arguments are:
3090  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3091  *           ignore_discard: disable discard
3092  *           no_discard_passdown: don't pass discards down to the data device
3093  *           read_only: Don't allow any changes to be made to the pool metadata.
3094  *           error_if_no_space: error IOs, instead of queueing, if no space.
3095  */
3096 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3097 {
3098         int r, pool_created = 0;
3099         struct pool_c *pt;
3100         struct pool *pool;
3101         struct pool_features pf;
3102         struct dm_arg_set as;
3103         struct dm_dev *data_dev;
3104         unsigned long block_size;
3105         dm_block_t low_water_blocks;
3106         struct dm_dev *metadata_dev;
3107         fmode_t metadata_mode;
3108
3109         /*
3110          * FIXME Remove validation from scope of lock.
3111          */
3112         mutex_lock(&dm_thin_pool_table.mutex);
3113
3114         if (argc < 4) {
3115                 ti->error = "Invalid argument count";
3116                 r = -EINVAL;
3117                 goto out_unlock;
3118         }
3119
3120         as.argc = argc;
3121         as.argv = argv;
3122
3123         /*
3124          * Set default pool features.
3125          */
3126         pool_features_init(&pf);
3127
3128         dm_consume_args(&as, 4);
3129         r = parse_pool_features(&as, &pf, ti);
3130         if (r)
3131                 goto out_unlock;
3132
3133         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3134         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3135         if (r) {
3136                 ti->error = "Error opening metadata block device";
3137                 goto out_unlock;
3138         }
3139         warn_if_metadata_device_too_big(metadata_dev->bdev);
3140
3141         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3142         if (r) {
3143                 ti->error = "Error getting data device";
3144                 goto out_metadata;
3145         }
3146
3147         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3148             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3149             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3150             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3151                 ti->error = "Invalid block size";
3152                 r = -EINVAL;
3153                 goto out;
3154         }
3155
3156         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3157                 ti->error = "Invalid low water mark";
3158                 r = -EINVAL;
3159                 goto out;
3160         }
3161
3162         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3163         if (!pt) {
3164                 r = -ENOMEM;
3165                 goto out;
3166         }
3167
3168         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3169                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3170         if (IS_ERR(pool)) {
3171                 r = PTR_ERR(pool);
3172                 goto out_free_pt;
3173         }
3174
3175         /*
3176          * 'pool_created' reflects whether this is the first table load.
3177          * Top level discard support is not allowed to be changed after
3178          * initial load.  This would require a pool reload to trigger thin
3179          * device changes.
3180          */
3181         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3182                 ti->error = "Discard support cannot be disabled once enabled";
3183                 r = -EINVAL;
3184                 goto out_flags_changed;
3185         }
3186
3187         pt->pool = pool;
3188         pt->ti = ti;
3189         pt->metadata_dev = metadata_dev;
3190         pt->data_dev = data_dev;
3191         pt->low_water_blocks = low_water_blocks;
3192         pt->adjusted_pf = pt->requested_pf = pf;
3193         ti->num_flush_bios = 1;
3194
3195         /*
3196          * Only need to enable discards if the pool should pass
3197          * them down to the data device.  The thin device's discard
3198          * processing will cause mappings to be removed from the btree.
3199          */
3200         ti->discard_zeroes_data_unsupported = true;
3201         if (pf.discard_enabled && pf.discard_passdown) {
3202                 ti->num_discard_bios = 1;
3203
3204                 /*
3205                  * Setting 'discards_supported' circumvents the normal
3206                  * stacking of discard limits (this keeps the pool and
3207                  * thin devices' discard limits consistent).
3208                  */
3209                 ti->discards_supported = true;
3210         }
3211         ti->private = pt;
3212
3213         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3214                                                 calc_metadata_threshold(pt),
3215                                                 metadata_low_callback,
3216                                                 pool);
3217         if (r)
3218                 goto out_flags_changed;
3219
3220         pt->callbacks.congested_fn = pool_is_congested;
3221         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3222
3223         mutex_unlock(&dm_thin_pool_table.mutex);
3224
3225         return 0;
3226
3227 out_flags_changed:
3228         __pool_dec(pool);
3229 out_free_pt:
3230         kfree(pt);
3231 out:
3232         dm_put_device(ti, data_dev);
3233 out_metadata:
3234         dm_put_device(ti, metadata_dev);
3235 out_unlock:
3236         mutex_unlock(&dm_thin_pool_table.mutex);
3237
3238         return r;
3239 }
3240
3241 static int pool_map(struct dm_target *ti, struct bio *bio)
3242 {
3243         int r;
3244         struct pool_c *pt = ti->private;
3245         struct pool *pool = pt->pool;
3246         unsigned long flags;
3247
3248         /*
3249          * As this is a singleton target, ti->begin is always zero.
3250          */
3251         spin_lock_irqsave(&pool->lock, flags);
3252         bio->bi_bdev = pt->data_dev->bdev;
3253         r = DM_MAPIO_REMAPPED;
3254         spin_unlock_irqrestore(&pool->lock, flags);
3255
3256         return r;
3257 }
3258
3259 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3260 {
3261         int r;
3262         struct pool_c *pt = ti->private;
3263         struct pool *pool = pt->pool;
3264         sector_t data_size = ti->len;
3265         dm_block_t sb_data_size;
3266
3267         *need_commit = false;
3268
3269         (void) sector_div(data_size, pool->sectors_per_block);
3270
3271         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3272         if (r) {
3273                 DMERR("%s: failed to retrieve data device size",
3274                       dm_device_name(pool->pool_md));
3275                 return r;
3276         }
3277
3278         if (data_size < sb_data_size) {
3279                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3280                       dm_device_name(pool->pool_md),
3281                       (unsigned long long)data_size, sb_data_size);
3282                 return -EINVAL;
3283
3284         } else if (data_size > sb_data_size) {
3285                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3286                         DMERR("%s: unable to grow the data device until repaired.",
3287                               dm_device_name(pool->pool_md));
3288                         return 0;
3289                 }
3290
3291                 if (sb_data_size)
3292                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3293                                dm_device_name(pool->pool_md),
3294                                sb_data_size, (unsigned long long)data_size);
3295                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3296                 if (r) {
3297                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3298                         return r;
3299                 }
3300
3301                 *need_commit = true;
3302         }
3303
3304         return 0;
3305 }
3306
3307 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3308 {
3309         int r;
3310         struct pool_c *pt = ti->private;
3311         struct pool *pool = pt->pool;
3312         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3313
3314         *need_commit = false;
3315
3316         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3317
3318         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3319         if (r) {
3320                 DMERR("%s: failed to retrieve metadata device size",
3321                       dm_device_name(pool->pool_md));
3322                 return r;
3323         }
3324
3325         if (metadata_dev_size < sb_metadata_dev_size) {
3326                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3327                       dm_device_name(pool->pool_md),
3328                       metadata_dev_size, sb_metadata_dev_size);
3329                 return -EINVAL;
3330
3331         } else if (metadata_dev_size > sb_metadata_dev_size) {
3332                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3333                         DMERR("%s: unable to grow the metadata device until repaired.",
3334                               dm_device_name(pool->pool_md));
3335                         return 0;
3336                 }
3337
3338                 warn_if_metadata_device_too_big(pool->md_dev);
3339                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3340                        dm_device_name(pool->pool_md),
3341                        sb_metadata_dev_size, metadata_dev_size);
3342                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3343                 if (r) {
3344                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3345                         return r;
3346                 }
3347
3348                 *need_commit = true;
3349         }
3350
3351         return 0;
3352 }
3353
3354 /*
3355  * Retrieves the number of blocks of the data device from
3356  * the superblock and compares it to the actual device size,
3357  * thus resizing the data device in case it has grown.
3358  *
3359  * This both copes with opening preallocated data devices in the ctr
3360  * being followed by a resume
3361  * -and-
3362  * calling the resume method individually after userspace has
3363  * grown the data device in reaction to a table event.
3364  */
3365 static int pool_preresume(struct dm_target *ti)
3366 {
3367         int r;
3368         bool need_commit1, need_commit2;
3369         struct pool_c *pt = ti->private;
3370         struct pool *pool = pt->pool;
3371
3372         /*
3373          * Take control of the pool object.
3374          */
3375         r = bind_control_target(pool, ti);
3376         if (r)
3377                 return r;
3378
3379         r = maybe_resize_data_dev(ti, &need_commit1);
3380         if (r)
3381                 return r;
3382
3383         r = maybe_resize_metadata_dev(ti, &need_commit2);
3384         if (r)
3385                 return r;
3386
3387         if (need_commit1 || need_commit2)
3388                 (void) commit(pool);
3389
3390         return 0;
3391 }
3392
3393 static void pool_suspend_active_thins(struct pool *pool)
3394 {
3395         struct thin_c *tc;
3396
3397         /* Suspend all active thin devices */
3398         tc = get_first_thin(pool);
3399         while (tc) {
3400                 dm_internal_suspend_noflush(tc->thin_md);
3401                 tc = get_next_thin(pool, tc);
3402         }
3403 }
3404
3405 static void pool_resume_active_thins(struct pool *pool)
3406 {
3407         struct thin_c *tc;
3408
3409         /* Resume all active thin devices */
3410         tc = get_first_thin(pool);
3411         while (tc) {
3412                 dm_internal_resume(tc->thin_md);
3413                 tc = get_next_thin(pool, tc);
3414         }
3415 }
3416
3417 static void pool_resume(struct dm_target *ti)
3418 {
3419         struct pool_c *pt = ti->private;
3420         struct pool *pool = pt->pool;
3421         unsigned long flags;
3422
3423         /*
3424          * Must requeue active_thins' bios and then resume
3425          * active_thins _before_ clearing 'suspend' flag.
3426          */
3427         requeue_bios(pool);
3428         pool_resume_active_thins(pool);
3429
3430         spin_lock_irqsave(&pool->lock, flags);
3431         pool->low_water_triggered = false;
3432         pool->suspended = false;
3433         spin_unlock_irqrestore(&pool->lock, flags);
3434
3435         do_waker(&pool->waker.work);
3436 }
3437
3438 static void pool_presuspend(struct dm_target *ti)
3439 {
3440         struct pool_c *pt = ti->private;
3441         struct pool *pool = pt->pool;
3442         unsigned long flags;
3443
3444         spin_lock_irqsave(&pool->lock, flags);
3445         pool->suspended = true;
3446         spin_unlock_irqrestore(&pool->lock, flags);
3447
3448         pool_suspend_active_thins(pool);
3449 }
3450
3451 static void pool_presuspend_undo(struct dm_target *ti)
3452 {
3453         struct pool_c *pt = ti->private;
3454         struct pool *pool = pt->pool;
3455         unsigned long flags;
3456
3457         pool_resume_active_thins(pool);
3458
3459         spin_lock_irqsave(&pool->lock, flags);
3460         pool->suspended = false;
3461         spin_unlock_irqrestore(&pool->lock, flags);
3462 }
3463
3464 static void pool_postsuspend(struct dm_target *ti)
3465 {
3466         struct pool_c *pt = ti->private;
3467         struct pool *pool = pt->pool;
3468
3469         cancel_delayed_work_sync(&pool->waker);
3470         cancel_delayed_work_sync(&pool->no_space_timeout);
3471         flush_workqueue(pool->wq);
3472         (void) commit(pool);
3473 }
3474
3475 static int check_arg_count(unsigned argc, unsigned args_required)
3476 {
3477         if (argc != args_required) {
3478                 DMWARN("Message received with %u arguments instead of %u.",
3479                        argc, args_required);
3480                 return -EINVAL;
3481         }
3482
3483         return 0;
3484 }
3485
3486 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3487 {
3488         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3489             *dev_id <= MAX_DEV_ID)
3490                 return 0;
3491
3492         if (warning)
3493                 DMWARN("Message received with invalid device id: %s", arg);
3494
3495         return -EINVAL;
3496 }
3497
3498 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3499 {
3500         dm_thin_id dev_id;
3501         int r;
3502
3503         r = check_arg_count(argc, 2);
3504         if (r)
3505                 return r;
3506
3507         r = read_dev_id(argv[1], &dev_id, 1);
3508         if (r)
3509                 return r;
3510
3511         r = dm_pool_create_thin(pool->pmd, dev_id);
3512         if (r) {
3513                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3514                        argv[1]);
3515                 return r;
3516         }
3517
3518         return 0;
3519 }
3520
3521 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3522 {
3523         dm_thin_id dev_id;
3524         dm_thin_id origin_dev_id;
3525         int r;
3526
3527         r = check_arg_count(argc, 3);
3528         if (r)
3529                 return r;
3530
3531         r = read_dev_id(argv[1], &dev_id, 1);
3532         if (r)
3533                 return r;
3534
3535         r = read_dev_id(argv[2], &origin_dev_id, 1);
3536         if (r)
3537                 return r;
3538
3539         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3540         if (r) {
3541                 DMWARN("Creation of new snapshot %s of device %s failed.",
3542                        argv[1], argv[2]);
3543                 return r;
3544         }
3545
3546         return 0;
3547 }
3548
3549 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3550 {
3551         dm_thin_id dev_id;
3552         int r;
3553
3554         r = check_arg_count(argc, 2);
3555         if (r)
3556                 return r;
3557
3558         r = read_dev_id(argv[1], &dev_id, 1);
3559         if (r)
3560                 return r;
3561
3562         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3563         if (r)
3564                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3565
3566         return r;
3567 }
3568
3569 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3570 {
3571         dm_thin_id old_id, new_id;
3572         int r;
3573
3574         r = check_arg_count(argc, 3);
3575         if (r)
3576                 return r;
3577
3578         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3579                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3580                 return -EINVAL;
3581         }
3582
3583         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3584                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3585                 return -EINVAL;
3586         }
3587
3588         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3589         if (r) {
3590                 DMWARN("Failed to change transaction id from %s to %s.",
3591                        argv[1], argv[2]);
3592                 return r;
3593         }
3594
3595         return 0;
3596 }
3597
3598 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3599 {
3600         int r;
3601
3602         r = check_arg_count(argc, 1);
3603         if (r)
3604                 return r;
3605
3606         (void) commit(pool);
3607
3608         r = dm_pool_reserve_metadata_snap(pool->pmd);
3609         if (r)
3610                 DMWARN("reserve_metadata_snap message failed.");
3611
3612         return r;
3613 }
3614
3615 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3616 {
3617         int r;
3618
3619         r = check_arg_count(argc, 1);
3620         if (r)
3621                 return r;
3622
3623         r = dm_pool_release_metadata_snap(pool->pmd);
3624         if (r)
3625                 DMWARN("release_metadata_snap message failed.");
3626
3627         return r;
3628 }
3629
3630 /*
3631  * Messages supported:
3632  *   create_thin        <dev_id>
3633  *   create_snap        <dev_id> <origin_id>
3634  *   delete             <dev_id>
3635  *   set_transaction_id <current_trans_id> <new_trans_id>
3636  *   reserve_metadata_snap
3637  *   release_metadata_snap
3638  */
3639 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3640 {
3641         int r = -EINVAL;
3642         struct pool_c *pt = ti->private;
3643         struct pool *pool = pt->pool;
3644
3645         if (get_pool_mode(pool) >= PM_READ_ONLY) {
3646                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3647                       dm_device_name(pool->pool_md));
3648                 return -EOPNOTSUPP;
3649         }
3650
3651         if (!strcasecmp(argv[0], "create_thin"))
3652                 r = process_create_thin_mesg(argc, argv, pool);
3653
3654         else if (!strcasecmp(argv[0], "create_snap"))
3655                 r = process_create_snap_mesg(argc, argv, pool);
3656
3657         else if (!strcasecmp(argv[0], "delete"))
3658                 r = process_delete_mesg(argc, argv, pool);
3659
3660         else if (!strcasecmp(argv[0], "set_transaction_id"))
3661                 r = process_set_transaction_id_mesg(argc, argv, pool);
3662
3663         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3664                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3665
3666         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3667                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3668
3669         else
3670                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3671
3672         if (!r)
3673                 (void) commit(pool);
3674
3675         return r;
3676 }
3677
3678 static void emit_flags(struct pool_features *pf, char *result,
3679                        unsigned sz, unsigned maxlen)
3680 {
3681         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3682                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3683                 pf->error_if_no_space;
3684         DMEMIT("%u ", count);
3685
3686         if (!pf->zero_new_blocks)
3687                 DMEMIT("skip_block_zeroing ");
3688
3689         if (!pf->discard_enabled)
3690                 DMEMIT("ignore_discard ");
3691
3692         if (!pf->discard_passdown)
3693                 DMEMIT("no_discard_passdown ");
3694
3695         if (pf->mode == PM_READ_ONLY)
3696                 DMEMIT("read_only ");
3697
3698         if (pf->error_if_no_space)
3699                 DMEMIT("error_if_no_space ");
3700 }
3701
3702 /*
3703  * Status line is:
3704  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3705  *    <used data sectors>/<total data sectors> <held metadata root>
3706  *    <pool mode> <discard config> <no space config> <needs_check>
3707  */
3708 static void pool_status(struct dm_target *ti, status_type_t type,
3709                         unsigned status_flags, char *result, unsigned maxlen)
3710 {
3711         int r;
3712         unsigned sz = 0;
3713         uint64_t transaction_id;
3714         dm_block_t nr_free_blocks_data;
3715         dm_block_t nr_free_blocks_metadata;
3716         dm_block_t nr_blocks_data;
3717         dm_block_t nr_blocks_metadata;
3718         dm_block_t held_root;
3719         char buf[BDEVNAME_SIZE];
3720         char buf2[BDEVNAME_SIZE];
3721         struct pool_c *pt = ti->private;
3722         struct pool *pool = pt->pool;
3723
3724         switch (type) {
3725         case STATUSTYPE_INFO:
3726                 if (get_pool_mode(pool) == PM_FAIL) {
3727                         DMEMIT("Fail");
3728                         break;
3729                 }
3730
3731                 /* Commit to ensure statistics aren't out-of-date */
3732                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3733                         (void) commit(pool);
3734
3735                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3736                 if (r) {
3737                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3738                               dm_device_name(pool->pool_md), r);
3739                         goto err;
3740                 }
3741
3742                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3743                 if (r) {
3744                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3745                               dm_device_name(pool->pool_md), r);
3746                         goto err;
3747                 }
3748
3749                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3750                 if (r) {
3751                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3752                               dm_device_name(pool->pool_md), r);
3753                         goto err;
3754                 }
3755
3756                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3757                 if (r) {
3758                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3759                               dm_device_name(pool->pool_md), r);
3760                         goto err;
3761                 }
3762
3763                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3764                 if (r) {
3765                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3766                               dm_device_name(pool->pool_md), r);
3767                         goto err;
3768                 }
3769
3770                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3771                 if (r) {
3772                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3773                               dm_device_name(pool->pool_md), r);
3774                         goto err;
3775                 }
3776
3777                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3778                        (unsigned long long)transaction_id,
3779                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3780                        (unsigned long long)nr_blocks_metadata,
3781                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3782                        (unsigned long long)nr_blocks_data);
3783
3784                 if (held_root)
3785                         DMEMIT("%llu ", held_root);
3786                 else
3787                         DMEMIT("- ");
3788
3789                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3790                         DMEMIT("out_of_data_space ");
3791                 else if (pool->pf.mode == PM_READ_ONLY)
3792                         DMEMIT("ro ");
3793                 else
3794                         DMEMIT("rw ");
3795
3796                 if (!pool->pf.discard_enabled)
3797                         DMEMIT("ignore_discard ");
3798                 else if (pool->pf.discard_passdown)
3799                         DMEMIT("discard_passdown ");
3800                 else
3801                         DMEMIT("no_discard_passdown ");
3802
3803                 if (pool->pf.error_if_no_space)
3804                         DMEMIT("error_if_no_space ");
3805                 else
3806                         DMEMIT("queue_if_no_space ");
3807
3808                 if (dm_pool_metadata_needs_check(pool->pmd))
3809                         DMEMIT("needs_check ");
3810                 else
3811                         DMEMIT("- ");
3812
3813                 break;
3814
3815         case STATUSTYPE_TABLE:
3816                 DMEMIT("%s %s %lu %llu ",
3817                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3818                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3819                        (unsigned long)pool->sectors_per_block,
3820                        (unsigned long long)pt->low_water_blocks);
3821                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3822                 break;
3823         }
3824         return;
3825
3826 err:
3827         DMEMIT("Error");
3828 }
3829
3830 static int pool_iterate_devices(struct dm_target *ti,
3831                                 iterate_devices_callout_fn fn, void *data)
3832 {
3833         struct pool_c *pt = ti->private;
3834
3835         return fn(ti, pt->data_dev, 0, ti->len, data);
3836 }
3837
3838 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3839 {
3840         struct pool_c *pt = ti->private;
3841         struct pool *pool = pt->pool;
3842         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3843
3844         /*
3845          * If max_sectors is smaller than pool->sectors_per_block adjust it
3846          * to the highest possible power-of-2 factor of pool->sectors_per_block.
3847          * This is especially beneficial when the pool's data device is a RAID
3848          * device that has a full stripe width that matches pool->sectors_per_block
3849          * -- because even though partial RAID stripe-sized IOs will be issued to a
3850          *    single RAID stripe; when aggregated they will end on a full RAID stripe
3851          *    boundary.. which avoids additional partial RAID stripe writes cascading
3852          */
3853         if (limits->max_sectors < pool->sectors_per_block) {
3854                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3855                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3856                                 limits->max_sectors--;
3857                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3858                 }
3859         }
3860
3861         /*
3862          * If the system-determined stacked limits are compatible with the
3863          * pool's blocksize (io_opt is a factor) do not override them.
3864          */
3865         if (io_opt_sectors < pool->sectors_per_block ||
3866             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3867                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3868                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3869                 else
3870                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3871                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3872         }
3873
3874         /*
3875          * pt->adjusted_pf is a staging area for the actual features to use.
3876          * They get transferred to the live pool in bind_control_target()
3877          * called from pool_preresume().
3878          */
3879         if (!pt->adjusted_pf.discard_enabled) {
3880                 /*
3881                  * Must explicitly disallow stacking discard limits otherwise the
3882                  * block layer will stack them if pool's data device has support.
3883                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3884                  * user to see that, so make sure to set all discard limits to 0.
3885                  */
3886                 limits->discard_granularity = 0;
3887                 return;
3888         }
3889
3890         disable_passdown_if_not_supported(pt);
3891
3892         /*
3893          * The pool uses the same discard limits as the underlying data
3894          * device.  DM core has already set this up.
3895          */
3896 }
3897
3898 static struct target_type pool_target = {
3899         .name = "thin-pool",
3900         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3901                     DM_TARGET_IMMUTABLE,
3902         .version = {1, 18, 0},
3903         .module = THIS_MODULE,
3904         .ctr = pool_ctr,
3905         .dtr = pool_dtr,
3906         .map = pool_map,
3907         .presuspend = pool_presuspend,
3908         .presuspend_undo = pool_presuspend_undo,
3909         .postsuspend = pool_postsuspend,
3910         .preresume = pool_preresume,
3911         .resume = pool_resume,
3912         .message = pool_message,
3913         .status = pool_status,
3914         .iterate_devices = pool_iterate_devices,
3915         .io_hints = pool_io_hints,
3916 };
3917
3918 /*----------------------------------------------------------------
3919  * Thin target methods
3920  *--------------------------------------------------------------*/
3921 static void thin_get(struct thin_c *tc)
3922 {
3923         atomic_inc(&tc->refcount);
3924 }
3925
3926 static void thin_put(struct thin_c *tc)
3927 {
3928         if (atomic_dec_and_test(&tc->refcount))
3929                 complete(&tc->can_destroy);
3930 }
3931
3932 static void thin_dtr(struct dm_target *ti)
3933 {
3934         struct thin_c *tc = ti->private;
3935         unsigned long flags;
3936
3937         spin_lock_irqsave(&tc->pool->lock, flags);
3938         list_del_rcu(&tc->list);
3939         spin_unlock_irqrestore(&tc->pool->lock, flags);
3940         synchronize_rcu();
3941
3942         thin_put(tc);
3943         wait_for_completion(&tc->can_destroy);
3944
3945         mutex_lock(&dm_thin_pool_table.mutex);
3946
3947         __pool_dec(tc->pool);
3948         dm_pool_close_thin_device(tc->td);
3949         dm_put_device(ti, tc->pool_dev);
3950         if (tc->origin_dev)
3951                 dm_put_device(ti, tc->origin_dev);
3952         kfree(tc);
3953
3954         mutex_unlock(&dm_thin_pool_table.mutex);
3955 }
3956
3957 /*
3958  * Thin target parameters:
3959  *
3960  * <pool_dev> <dev_id> [origin_dev]
3961  *
3962  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3963  * dev_id: the internal device identifier
3964  * origin_dev: a device external to the pool that should act as the origin
3965  *
3966  * If the pool device has discards disabled, they get disabled for the thin
3967  * device as well.
3968  */
3969 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3970 {
3971         int r;
3972         struct thin_c *tc;
3973         struct dm_dev *pool_dev, *origin_dev;
3974         struct mapped_device *pool_md;
3975         unsigned long flags;
3976
3977         mutex_lock(&dm_thin_pool_table.mutex);
3978
3979         if (argc != 2 && argc != 3) {
3980                 ti->error = "Invalid argument count";
3981                 r = -EINVAL;
3982                 goto out_unlock;
3983         }
3984
3985         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3986         if (!tc) {
3987                 ti->error = "Out of memory";
3988                 r = -ENOMEM;
3989                 goto out_unlock;
3990         }
3991         tc->thin_md = dm_table_get_md(ti->table);
3992         spin_lock_init(&tc->lock);
3993         INIT_LIST_HEAD(&tc->deferred_cells);
3994         bio_list_init(&tc->deferred_bio_list);
3995         bio_list_init(&tc->retry_on_resume_list);
3996         tc->sort_bio_list = RB_ROOT;
3997
3998         if (argc == 3) {
3999                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4000                 if (r) {
4001                         ti->error = "Error opening origin device";
4002                         goto bad_origin_dev;
4003                 }
4004                 tc->origin_dev = origin_dev;
4005         }
4006
4007         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4008         if (r) {
4009                 ti->error = "Error opening pool device";
4010                 goto bad_pool_dev;
4011         }
4012         tc->pool_dev = pool_dev;
4013
4014         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4015                 ti->error = "Invalid device id";
4016                 r = -EINVAL;
4017                 goto bad_common;
4018         }
4019
4020         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4021         if (!pool_md) {
4022                 ti->error = "Couldn't get pool mapped device";
4023                 r = -EINVAL;
4024                 goto bad_common;
4025         }
4026
4027         tc->pool = __pool_table_lookup(pool_md);
4028         if (!tc->pool) {
4029                 ti->error = "Couldn't find pool object";
4030                 r = -EINVAL;
4031                 goto bad_pool_lookup;
4032         }
4033         __pool_inc(tc->pool);
4034
4035         if (get_pool_mode(tc->pool) == PM_FAIL) {
4036                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4037                 r = -EINVAL;
4038                 goto bad_pool;
4039         }
4040
4041         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4042         if (r) {
4043                 ti->error = "Couldn't open thin internal device";
4044                 goto bad_pool;
4045         }
4046
4047         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4048         if (r)
4049                 goto bad;
4050
4051         ti->num_flush_bios = 1;
4052         ti->flush_supported = true;
4053         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4054
4055         /* In case the pool supports discards, pass them on. */
4056         ti->discard_zeroes_data_unsupported = true;
4057         if (tc->pool->pf.discard_enabled) {
4058                 ti->discards_supported = true;
4059                 ti->num_discard_bios = 1;
4060                 ti->split_discard_bios = false;
4061         }
4062
4063         mutex_unlock(&dm_thin_pool_table.mutex);
4064
4065         spin_lock_irqsave(&tc->pool->lock, flags);
4066         if (tc->pool->suspended) {
4067                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4068                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4069                 ti->error = "Unable to activate thin device while pool is suspended";
4070                 r = -EINVAL;
4071                 goto bad;
4072         }
4073         atomic_set(&tc->refcount, 1);
4074         init_completion(&tc->can_destroy);
4075         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4076         spin_unlock_irqrestore(&tc->pool->lock, flags);
4077         /*
4078          * This synchronize_rcu() call is needed here otherwise we risk a
4079          * wake_worker() call finding no bios to process (because the newly
4080          * added tc isn't yet visible).  So this reduces latency since we
4081          * aren't then dependent on the periodic commit to wake_worker().
4082          */
4083         synchronize_rcu();
4084
4085         dm_put(pool_md);
4086
4087         return 0;
4088
4089 bad:
4090         dm_pool_close_thin_device(tc->td);
4091 bad_pool:
4092         __pool_dec(tc->pool);
4093 bad_pool_lookup:
4094         dm_put(pool_md);
4095 bad_common:
4096         dm_put_device(ti, tc->pool_dev);
4097 bad_pool_dev:
4098         if (tc->origin_dev)
4099                 dm_put_device(ti, tc->origin_dev);
4100 bad_origin_dev:
4101         kfree(tc);
4102 out_unlock:
4103         mutex_unlock(&dm_thin_pool_table.mutex);
4104
4105         return r;
4106 }
4107
4108 static int thin_map(struct dm_target *ti, struct bio *bio)
4109 {
4110         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4111
4112         return thin_bio_map(ti, bio);
4113 }
4114
4115 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4116 {
4117         unsigned long flags;
4118         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4119         struct list_head work;
4120         struct dm_thin_new_mapping *m, *tmp;
4121         struct pool *pool = h->tc->pool;
4122
4123         if (h->shared_read_entry) {
4124                 INIT_LIST_HEAD(&work);
4125                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4126
4127                 spin_lock_irqsave(&pool->lock, flags);
4128                 list_for_each_entry_safe(m, tmp, &work, list) {
4129                         list_del(&m->list);
4130                         __complete_mapping_preparation(m);
4131                 }
4132                 spin_unlock_irqrestore(&pool->lock, flags);
4133         }
4134
4135         if (h->all_io_entry) {
4136                 INIT_LIST_HEAD(&work);
4137                 dm_deferred_entry_dec(h->all_io_entry, &work);
4138                 if (!list_empty(&work)) {
4139                         spin_lock_irqsave(&pool->lock, flags);
4140                         list_for_each_entry_safe(m, tmp, &work, list)
4141                                 list_add_tail(&m->list, &pool->prepared_discards);
4142                         spin_unlock_irqrestore(&pool->lock, flags);
4143                         wake_worker(pool);
4144                 }
4145         }
4146
4147         if (h->cell)
4148                 cell_defer_no_holder(h->tc, h->cell);
4149
4150         return 0;
4151 }
4152
4153 static void thin_presuspend(struct dm_target *ti)
4154 {
4155         struct thin_c *tc = ti->private;
4156
4157         if (dm_noflush_suspending(ti))
4158                 noflush_work(tc, do_noflush_start);
4159 }
4160
4161 static void thin_postsuspend(struct dm_target *ti)
4162 {
4163         struct thin_c *tc = ti->private;
4164
4165         /*
4166          * The dm_noflush_suspending flag has been cleared by now, so
4167          * unfortunately we must always run this.
4168          */
4169         noflush_work(tc, do_noflush_stop);
4170 }
4171
4172 static int thin_preresume(struct dm_target *ti)
4173 {
4174         struct thin_c *tc = ti->private;
4175
4176         if (tc->origin_dev)
4177                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4178
4179         return 0;
4180 }
4181
4182 /*
4183  * <nr mapped sectors> <highest mapped sector>
4184  */
4185 static void thin_status(struct dm_target *ti, status_type_t type,
4186                         unsigned status_flags, char *result, unsigned maxlen)
4187 {
4188         int r;
4189         ssize_t sz = 0;
4190         dm_block_t mapped, highest;
4191         char buf[BDEVNAME_SIZE];
4192         struct thin_c *tc = ti->private;
4193
4194         if (get_pool_mode(tc->pool) == PM_FAIL) {
4195                 DMEMIT("Fail");
4196                 return;
4197         }
4198
4199         if (!tc->td)
4200                 DMEMIT("-");
4201         else {
4202                 switch (type) {
4203                 case STATUSTYPE_INFO:
4204                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4205                         if (r) {
4206                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4207                                 goto err;
4208                         }
4209
4210                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4211                         if (r < 0) {
4212                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4213                                 goto err;
4214                         }
4215
4216                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4217                         if (r)
4218                                 DMEMIT("%llu", ((highest + 1) *
4219                                                 tc->pool->sectors_per_block) - 1);
4220                         else
4221                                 DMEMIT("-");
4222                         break;
4223
4224                 case STATUSTYPE_TABLE:
4225                         DMEMIT("%s %lu",
4226                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4227                                (unsigned long) tc->dev_id);
4228                         if (tc->origin_dev)
4229                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4230                         break;
4231                 }
4232         }
4233
4234         return;
4235
4236 err:
4237         DMEMIT("Error");
4238 }
4239
4240 static int thin_iterate_devices(struct dm_target *ti,
4241                                 iterate_devices_callout_fn fn, void *data)
4242 {
4243         sector_t blocks;
4244         struct thin_c *tc = ti->private;
4245         struct pool *pool = tc->pool;
4246
4247         /*
4248          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4249          * we follow a more convoluted path through to the pool's target.
4250          */
4251         if (!pool->ti)
4252                 return 0;       /* nothing is bound */
4253
4254         blocks = pool->ti->len;
4255         (void) sector_div(blocks, pool->sectors_per_block);
4256         if (blocks)
4257                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4258
4259         return 0;
4260 }
4261
4262 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4263 {
4264         struct thin_c *tc = ti->private;
4265         struct pool *pool = tc->pool;
4266
4267         if (!pool->pf.discard_enabled)
4268                 return;
4269
4270         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4271         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4272 }
4273
4274 static struct target_type thin_target = {
4275         .name = "thin",
4276         .version = {1, 18, 0},
4277         .module = THIS_MODULE,
4278         .ctr = thin_ctr,
4279         .dtr = thin_dtr,
4280         .map = thin_map,
4281         .end_io = thin_endio,
4282         .preresume = thin_preresume,
4283         .presuspend = thin_presuspend,
4284         .postsuspend = thin_postsuspend,
4285         .status = thin_status,
4286         .iterate_devices = thin_iterate_devices,
4287         .io_hints = thin_io_hints,
4288 };
4289
4290 /*----------------------------------------------------------------*/
4291
4292 static int __init dm_thin_init(void)
4293 {
4294         int r;
4295
4296         pool_table_init();
4297
4298         r = dm_register_target(&thin_target);
4299         if (r)
4300                 return r;
4301
4302         r = dm_register_target(&pool_target);
4303         if (r)
4304                 goto bad_pool_target;
4305
4306         r = -ENOMEM;
4307
4308         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4309         if (!_new_mapping_cache)
4310                 goto bad_new_mapping_cache;
4311
4312         return 0;
4313
4314 bad_new_mapping_cache:
4315         dm_unregister_target(&pool_target);
4316 bad_pool_target:
4317         dm_unregister_target(&thin_target);
4318
4319         return r;
4320 }
4321
4322 static void dm_thin_exit(void)
4323 {
4324         dm_unregister_target(&thin_target);
4325         dm_unregister_target(&pool_target);
4326
4327         kmem_cache_destroy(_new_mapping_cache);
4328 }
4329
4330 module_init(dm_thin_init);
4331 module_exit(dm_thin_exit);
4332
4333 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4334 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4335
4336 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4337 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4338 MODULE_LICENSE("GPL");