dm thin: factor out remap_and_issue_overwrite
[linux-2.6-block.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/log2.h>
15 #include <linux/list.h>
16 #include <linux/rculist.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/rbtree.h>
21
22 #define DM_MSG_PREFIX   "thin"
23
24 /*
25  * Tunable constants
26  */
27 #define ENDIO_HOOK_POOL_SIZE 1024
28 #define MAPPING_POOL_SIZE 1024
29 #define COMMIT_PERIOD HZ
30 #define NO_SPACE_TIMEOUT_SECS 60
31
32 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
33
34 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
35                 "A percentage of time allocated for copy on write");
36
37 /*
38  * The block size of the device holding pool data must be
39  * between 64KB and 1GB.
40  */
41 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
42 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
43
44 /*
45  * Device id is restricted to 24 bits.
46  */
47 #define MAX_DEV_ID ((1 << 24) - 1)
48
49 /*
50  * How do we handle breaking sharing of data blocks?
51  * =================================================
52  *
53  * We use a standard copy-on-write btree to store the mappings for the
54  * devices (note I'm talking about copy-on-write of the metadata here, not
55  * the data).  When you take an internal snapshot you clone the root node
56  * of the origin btree.  After this there is no concept of an origin or a
57  * snapshot.  They are just two device trees that happen to point to the
58  * same data blocks.
59  *
60  * When we get a write in we decide if it's to a shared data block using
61  * some timestamp magic.  If it is, we have to break sharing.
62  *
63  * Let's say we write to a shared block in what was the origin.  The
64  * steps are:
65  *
66  * i) plug io further to this physical block. (see bio_prison code).
67  *
68  * ii) quiesce any read io to that shared data block.  Obviously
69  * including all devices that share this block.  (see dm_deferred_set code)
70  *
71  * iii) copy the data block to a newly allocate block.  This step can be
72  * missed out if the io covers the block. (schedule_copy).
73  *
74  * iv) insert the new mapping into the origin's btree
75  * (process_prepared_mapping).  This act of inserting breaks some
76  * sharing of btree nodes between the two devices.  Breaking sharing only
77  * effects the btree of that specific device.  Btrees for the other
78  * devices that share the block never change.  The btree for the origin
79  * device as it was after the last commit is untouched, ie. we're using
80  * persistent data structures in the functional programming sense.
81  *
82  * v) unplug io to this physical block, including the io that triggered
83  * the breaking of sharing.
84  *
85  * Steps (ii) and (iii) occur in parallel.
86  *
87  * The metadata _doesn't_ need to be committed before the io continues.  We
88  * get away with this because the io is always written to a _new_ block.
89  * If there's a crash, then:
90  *
91  * - The origin mapping will point to the old origin block (the shared
92  * one).  This will contain the data as it was before the io that triggered
93  * the breaking of sharing came in.
94  *
95  * - The snap mapping still points to the old block.  As it would after
96  * the commit.
97  *
98  * The downside of this scheme is the timestamp magic isn't perfect, and
99  * will continue to think that data block in the snapshot device is shared
100  * even after the write to the origin has broken sharing.  I suspect data
101  * blocks will typically be shared by many different devices, so we're
102  * breaking sharing n + 1 times, rather than n, where n is the number of
103  * devices that reference this data block.  At the moment I think the
104  * benefits far, far outweigh the disadvantages.
105  */
106
107 /*----------------------------------------------------------------*/
108
109 /*
110  * Key building.
111  */
112 static void build_data_key(struct dm_thin_device *td,
113                            dm_block_t b, struct dm_cell_key *key)
114 {
115         key->virtual = 0;
116         key->dev = dm_thin_dev_id(td);
117         key->block = b;
118 }
119
120 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
121                               struct dm_cell_key *key)
122 {
123         key->virtual = 1;
124         key->dev = dm_thin_dev_id(td);
125         key->block = b;
126 }
127
128 /*----------------------------------------------------------------*/
129
130 #define THROTTLE_THRESHOLD (1 * HZ)
131
132 struct throttle {
133         struct rw_semaphore lock;
134         unsigned long threshold;
135         bool throttle_applied;
136 };
137
138 static void throttle_init(struct throttle *t)
139 {
140         init_rwsem(&t->lock);
141         t->throttle_applied = false;
142 }
143
144 static void throttle_work_start(struct throttle *t)
145 {
146         t->threshold = jiffies + THROTTLE_THRESHOLD;
147 }
148
149 static void throttle_work_update(struct throttle *t)
150 {
151         if (!t->throttle_applied && jiffies > t->threshold) {
152                 down_write(&t->lock);
153                 t->throttle_applied = true;
154         }
155 }
156
157 static void throttle_work_complete(struct throttle *t)
158 {
159         if (t->throttle_applied) {
160                 t->throttle_applied = false;
161                 up_write(&t->lock);
162         }
163 }
164
165 static void throttle_lock(struct throttle *t)
166 {
167         down_read(&t->lock);
168 }
169
170 static void throttle_unlock(struct throttle *t)
171 {
172         up_read(&t->lock);
173 }
174
175 /*----------------------------------------------------------------*/
176
177 /*
178  * A pool device ties together a metadata device and a data device.  It
179  * also provides the interface for creating and destroying internal
180  * devices.
181  */
182 struct dm_thin_new_mapping;
183
184 /*
185  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
186  */
187 enum pool_mode {
188         PM_WRITE,               /* metadata may be changed */
189         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
190         PM_READ_ONLY,           /* metadata may not be changed */
191         PM_FAIL,                /* all I/O fails */
192 };
193
194 struct pool_features {
195         enum pool_mode mode;
196
197         bool zero_new_blocks:1;
198         bool discard_enabled:1;
199         bool discard_passdown:1;
200         bool error_if_no_space:1;
201 };
202
203 struct thin_c;
204 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
205 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
206
207 struct pool {
208         struct list_head list;
209         struct dm_target *ti;   /* Only set if a pool target is bound */
210
211         struct mapped_device *pool_md;
212         struct block_device *md_dev;
213         struct dm_pool_metadata *pmd;
214
215         dm_block_t low_water_blocks;
216         uint32_t sectors_per_block;
217         int sectors_per_block_shift;
218
219         struct pool_features pf;
220         bool low_water_triggered:1;     /* A dm event has been sent */
221
222         struct dm_bio_prison *prison;
223         struct dm_kcopyd_client *copier;
224
225         struct workqueue_struct *wq;
226         struct throttle throttle;
227         struct work_struct worker;
228         struct delayed_work waker;
229         struct delayed_work no_space_timeout;
230
231         unsigned long last_commit_jiffies;
232         unsigned ref_count;
233
234         spinlock_t lock;
235         struct bio_list deferred_flush_bios;
236         struct list_head prepared_mappings;
237         struct list_head prepared_discards;
238         struct list_head active_thins;
239
240         struct dm_deferred_set *shared_read_ds;
241         struct dm_deferred_set *all_io_ds;
242
243         struct dm_thin_new_mapping *next_mapping;
244         mempool_t *mapping_pool;
245
246         process_bio_fn process_bio;
247         process_bio_fn process_discard;
248
249         process_mapping_fn process_prepared_mapping;
250         process_mapping_fn process_prepared_discard;
251 };
252
253 static enum pool_mode get_pool_mode(struct pool *pool);
254 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
255
256 /*
257  * Target context for a pool.
258  */
259 struct pool_c {
260         struct dm_target *ti;
261         struct pool *pool;
262         struct dm_dev *data_dev;
263         struct dm_dev *metadata_dev;
264         struct dm_target_callbacks callbacks;
265
266         dm_block_t low_water_blocks;
267         struct pool_features requested_pf; /* Features requested during table load */
268         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
269 };
270
271 /*
272  * Target context for a thin.
273  */
274 struct thin_c {
275         struct list_head list;
276         struct dm_dev *pool_dev;
277         struct dm_dev *origin_dev;
278         sector_t origin_size;
279         dm_thin_id dev_id;
280
281         struct pool *pool;
282         struct dm_thin_device *td;
283         bool requeue_mode:1;
284         spinlock_t lock;
285         struct bio_list deferred_bio_list;
286         struct bio_list retry_on_resume_list;
287         struct rb_root sort_bio_list; /* sorted list of deferred bios */
288
289         /*
290          * Ensures the thin is not destroyed until the worker has finished
291          * iterating the active_thins list.
292          */
293         atomic_t refcount;
294         struct completion can_destroy;
295 };
296
297 /*----------------------------------------------------------------*/
298
299 /*
300  * wake_worker() is used when new work is queued and when pool_resume is
301  * ready to continue deferred IO processing.
302  */
303 static void wake_worker(struct pool *pool)
304 {
305         queue_work(pool->wq, &pool->worker);
306 }
307
308 /*----------------------------------------------------------------*/
309
310 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
311                       struct dm_bio_prison_cell **cell_result)
312 {
313         int r;
314         struct dm_bio_prison_cell *cell_prealloc;
315
316         /*
317          * Allocate a cell from the prison's mempool.
318          * This might block but it can't fail.
319          */
320         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
321
322         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
323         if (r)
324                 /*
325                  * We reused an old cell; we can get rid of
326                  * the new one.
327                  */
328                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
329
330         return r;
331 }
332
333 static void cell_release(struct pool *pool,
334                          struct dm_bio_prison_cell *cell,
335                          struct bio_list *bios)
336 {
337         dm_cell_release(pool->prison, cell, bios);
338         dm_bio_prison_free_cell(pool->prison, cell);
339 }
340
341 static void cell_release_no_holder(struct pool *pool,
342                                    struct dm_bio_prison_cell *cell,
343                                    struct bio_list *bios)
344 {
345         dm_cell_release_no_holder(pool->prison, cell, bios);
346         dm_bio_prison_free_cell(pool->prison, cell);
347 }
348
349 static void cell_defer_no_holder_no_free(struct thin_c *tc,
350                                          struct dm_bio_prison_cell *cell)
351 {
352         struct pool *pool = tc->pool;
353         unsigned long flags;
354
355         spin_lock_irqsave(&tc->lock, flags);
356         dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
357         spin_unlock_irqrestore(&tc->lock, flags);
358
359         wake_worker(pool);
360 }
361
362 static void cell_error_with_code(struct pool *pool,
363                                  struct dm_bio_prison_cell *cell, int error_code)
364 {
365         dm_cell_error(pool->prison, cell, error_code);
366         dm_bio_prison_free_cell(pool->prison, cell);
367 }
368
369 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
370 {
371         cell_error_with_code(pool, cell, -EIO);
372 }
373
374 /*----------------------------------------------------------------*/
375
376 /*
377  * A global list of pools that uses a struct mapped_device as a key.
378  */
379 static struct dm_thin_pool_table {
380         struct mutex mutex;
381         struct list_head pools;
382 } dm_thin_pool_table;
383
384 static void pool_table_init(void)
385 {
386         mutex_init(&dm_thin_pool_table.mutex);
387         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
388 }
389
390 static void __pool_table_insert(struct pool *pool)
391 {
392         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
393         list_add(&pool->list, &dm_thin_pool_table.pools);
394 }
395
396 static void __pool_table_remove(struct pool *pool)
397 {
398         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
399         list_del(&pool->list);
400 }
401
402 static struct pool *__pool_table_lookup(struct mapped_device *md)
403 {
404         struct pool *pool = NULL, *tmp;
405
406         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
407
408         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
409                 if (tmp->pool_md == md) {
410                         pool = tmp;
411                         break;
412                 }
413         }
414
415         return pool;
416 }
417
418 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
419 {
420         struct pool *pool = NULL, *tmp;
421
422         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
423
424         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
425                 if (tmp->md_dev == md_dev) {
426                         pool = tmp;
427                         break;
428                 }
429         }
430
431         return pool;
432 }
433
434 /*----------------------------------------------------------------*/
435
436 struct dm_thin_endio_hook {
437         struct thin_c *tc;
438         struct dm_deferred_entry *shared_read_entry;
439         struct dm_deferred_entry *all_io_entry;
440         struct dm_thin_new_mapping *overwrite_mapping;
441         struct rb_node rb_node;
442 };
443
444 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
445 {
446         struct bio *bio;
447         struct bio_list bios;
448         unsigned long flags;
449
450         bio_list_init(&bios);
451
452         spin_lock_irqsave(&tc->lock, flags);
453         bio_list_merge(&bios, master);
454         bio_list_init(master);
455         spin_unlock_irqrestore(&tc->lock, flags);
456
457         while ((bio = bio_list_pop(&bios)))
458                 bio_endio(bio, DM_ENDIO_REQUEUE);
459 }
460
461 static void requeue_io(struct thin_c *tc)
462 {
463         requeue_bio_list(tc, &tc->deferred_bio_list);
464         requeue_bio_list(tc, &tc->retry_on_resume_list);
465 }
466
467 static void error_thin_retry_list(struct thin_c *tc)
468 {
469         struct bio *bio;
470         unsigned long flags;
471         struct bio_list bios;
472
473         bio_list_init(&bios);
474
475         spin_lock_irqsave(&tc->lock, flags);
476         bio_list_merge(&bios, &tc->retry_on_resume_list);
477         bio_list_init(&tc->retry_on_resume_list);
478         spin_unlock_irqrestore(&tc->lock, flags);
479
480         while ((bio = bio_list_pop(&bios)))
481                 bio_io_error(bio);
482 }
483
484 static void error_retry_list(struct pool *pool)
485 {
486         struct thin_c *tc;
487
488         rcu_read_lock();
489         list_for_each_entry_rcu(tc, &pool->active_thins, list)
490                 error_thin_retry_list(tc);
491         rcu_read_unlock();
492 }
493
494 /*
495  * This section of code contains the logic for processing a thin device's IO.
496  * Much of the code depends on pool object resources (lists, workqueues, etc)
497  * but most is exclusively called from the thin target rather than the thin-pool
498  * target.
499  */
500
501 static bool block_size_is_power_of_two(struct pool *pool)
502 {
503         return pool->sectors_per_block_shift >= 0;
504 }
505
506 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
507 {
508         struct pool *pool = tc->pool;
509         sector_t block_nr = bio->bi_iter.bi_sector;
510
511         if (block_size_is_power_of_two(pool))
512                 block_nr >>= pool->sectors_per_block_shift;
513         else
514                 (void) sector_div(block_nr, pool->sectors_per_block);
515
516         return block_nr;
517 }
518
519 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
520 {
521         struct pool *pool = tc->pool;
522         sector_t bi_sector = bio->bi_iter.bi_sector;
523
524         bio->bi_bdev = tc->pool_dev->bdev;
525         if (block_size_is_power_of_two(pool))
526                 bio->bi_iter.bi_sector =
527                         (block << pool->sectors_per_block_shift) |
528                         (bi_sector & (pool->sectors_per_block - 1));
529         else
530                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
531                                  sector_div(bi_sector, pool->sectors_per_block);
532 }
533
534 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
535 {
536         bio->bi_bdev = tc->origin_dev->bdev;
537 }
538
539 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
540 {
541         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
542                 dm_thin_changed_this_transaction(tc->td);
543 }
544
545 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
546 {
547         struct dm_thin_endio_hook *h;
548
549         if (bio->bi_rw & REQ_DISCARD)
550                 return;
551
552         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
553         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
554 }
555
556 static void issue(struct thin_c *tc, struct bio *bio)
557 {
558         struct pool *pool = tc->pool;
559         unsigned long flags;
560
561         if (!bio_triggers_commit(tc, bio)) {
562                 generic_make_request(bio);
563                 return;
564         }
565
566         /*
567          * Complete bio with an error if earlier I/O caused changes to
568          * the metadata that can't be committed e.g, due to I/O errors
569          * on the metadata device.
570          */
571         if (dm_thin_aborted_changes(tc->td)) {
572                 bio_io_error(bio);
573                 return;
574         }
575
576         /*
577          * Batch together any bios that trigger commits and then issue a
578          * single commit for them in process_deferred_bios().
579          */
580         spin_lock_irqsave(&pool->lock, flags);
581         bio_list_add(&pool->deferred_flush_bios, bio);
582         spin_unlock_irqrestore(&pool->lock, flags);
583 }
584
585 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
586 {
587         remap_to_origin(tc, bio);
588         issue(tc, bio);
589 }
590
591 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
592                             dm_block_t block)
593 {
594         remap(tc, bio, block);
595         issue(tc, bio);
596 }
597
598 /*----------------------------------------------------------------*/
599
600 /*
601  * Bio endio functions.
602  */
603 struct dm_thin_new_mapping {
604         struct list_head list;
605
606         bool pass_discard:1;
607         bool definitely_not_shared:1;
608
609         /*
610          * Track quiescing, copying and zeroing preparation actions.  When this
611          * counter hits zero the block is prepared and can be inserted into the
612          * btree.
613          */
614         atomic_t prepare_actions;
615
616         int err;
617         struct thin_c *tc;
618         dm_block_t virt_block;
619         dm_block_t data_block;
620         struct dm_bio_prison_cell *cell, *cell2;
621
622         /*
623          * If the bio covers the whole area of a block then we can avoid
624          * zeroing or copying.  Instead this bio is hooked.  The bio will
625          * still be in the cell, so care has to be taken to avoid issuing
626          * the bio twice.
627          */
628         struct bio *bio;
629         bio_end_io_t *saved_bi_end_io;
630 };
631
632 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
633 {
634         struct pool *pool = m->tc->pool;
635
636         if (atomic_dec_and_test(&m->prepare_actions)) {
637                 list_add_tail(&m->list, &pool->prepared_mappings);
638                 wake_worker(pool);
639         }
640 }
641
642 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
643 {
644         unsigned long flags;
645         struct pool *pool = m->tc->pool;
646
647         spin_lock_irqsave(&pool->lock, flags);
648         __complete_mapping_preparation(m);
649         spin_unlock_irqrestore(&pool->lock, flags);
650 }
651
652 static void copy_complete(int read_err, unsigned long write_err, void *context)
653 {
654         struct dm_thin_new_mapping *m = context;
655
656         m->err = read_err || write_err ? -EIO : 0;
657         complete_mapping_preparation(m);
658 }
659
660 static void overwrite_endio(struct bio *bio, int err)
661 {
662         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
663         struct dm_thin_new_mapping *m = h->overwrite_mapping;
664
665         m->err = err;
666         complete_mapping_preparation(m);
667 }
668
669 /*----------------------------------------------------------------*/
670
671 /*
672  * Workqueue.
673  */
674
675 /*
676  * Prepared mapping jobs.
677  */
678
679 /*
680  * This sends the bios in the cell back to the deferred_bios list.
681  */
682 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
683 {
684         struct pool *pool = tc->pool;
685         unsigned long flags;
686
687         spin_lock_irqsave(&tc->lock, flags);
688         cell_release(pool, cell, &tc->deferred_bio_list);
689         spin_unlock_irqrestore(&tc->lock, flags);
690
691         wake_worker(pool);
692 }
693
694 /*
695  * Same as cell_defer above, except it omits the original holder of the cell.
696  */
697 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
698 {
699         struct pool *pool = tc->pool;
700         unsigned long flags;
701
702         spin_lock_irqsave(&tc->lock, flags);
703         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
704         spin_unlock_irqrestore(&tc->lock, flags);
705
706         wake_worker(pool);
707 }
708
709 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
710 {
711         if (m->bio) {
712                 m->bio->bi_end_io = m->saved_bi_end_io;
713                 atomic_inc(&m->bio->bi_remaining);
714         }
715         cell_error(m->tc->pool, m->cell);
716         list_del(&m->list);
717         mempool_free(m, m->tc->pool->mapping_pool);
718 }
719
720 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
721 {
722         struct thin_c *tc = m->tc;
723         struct pool *pool = tc->pool;
724         struct bio *bio;
725         int r;
726
727         bio = m->bio;
728         if (bio) {
729                 bio->bi_end_io = m->saved_bi_end_io;
730                 atomic_inc(&bio->bi_remaining);
731         }
732
733         if (m->err) {
734                 cell_error(pool, m->cell);
735                 goto out;
736         }
737
738         /*
739          * Commit the prepared block into the mapping btree.
740          * Any I/O for this block arriving after this point will get
741          * remapped to it directly.
742          */
743         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
744         if (r) {
745                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
746                 cell_error(pool, m->cell);
747                 goto out;
748         }
749
750         /*
751          * Release any bios held while the block was being provisioned.
752          * If we are processing a write bio that completely covers the block,
753          * we already processed it so can ignore it now when processing
754          * the bios in the cell.
755          */
756         if (bio) {
757                 cell_defer_no_holder(tc, m->cell);
758                 bio_endio(bio, 0);
759         } else
760                 cell_defer(tc, m->cell);
761
762 out:
763         list_del(&m->list);
764         mempool_free(m, pool->mapping_pool);
765 }
766
767 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
768 {
769         struct thin_c *tc = m->tc;
770
771         bio_io_error(m->bio);
772         cell_defer_no_holder(tc, m->cell);
773         cell_defer_no_holder(tc, m->cell2);
774         mempool_free(m, tc->pool->mapping_pool);
775 }
776
777 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
778 {
779         struct thin_c *tc = m->tc;
780
781         inc_all_io_entry(tc->pool, m->bio);
782         cell_defer_no_holder(tc, m->cell);
783         cell_defer_no_holder(tc, m->cell2);
784
785         if (m->pass_discard)
786                 if (m->definitely_not_shared)
787                         remap_and_issue(tc, m->bio, m->data_block);
788                 else {
789                         bool used = false;
790                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
791                                 bio_endio(m->bio, 0);
792                         else
793                                 remap_and_issue(tc, m->bio, m->data_block);
794                 }
795         else
796                 bio_endio(m->bio, 0);
797
798         mempool_free(m, tc->pool->mapping_pool);
799 }
800
801 static void process_prepared_discard(struct dm_thin_new_mapping *m)
802 {
803         int r;
804         struct thin_c *tc = m->tc;
805
806         r = dm_thin_remove_block(tc->td, m->virt_block);
807         if (r)
808                 DMERR_LIMIT("dm_thin_remove_block() failed");
809
810         process_prepared_discard_passdown(m);
811 }
812
813 static void process_prepared(struct pool *pool, struct list_head *head,
814                              process_mapping_fn *fn)
815 {
816         unsigned long flags;
817         struct list_head maps;
818         struct dm_thin_new_mapping *m, *tmp;
819
820         INIT_LIST_HEAD(&maps);
821         spin_lock_irqsave(&pool->lock, flags);
822         list_splice_init(head, &maps);
823         spin_unlock_irqrestore(&pool->lock, flags);
824
825         list_for_each_entry_safe(m, tmp, &maps, list)
826                 (*fn)(m);
827 }
828
829 /*
830  * Deferred bio jobs.
831  */
832 static int io_overlaps_block(struct pool *pool, struct bio *bio)
833 {
834         return bio->bi_iter.bi_size ==
835                 (pool->sectors_per_block << SECTOR_SHIFT);
836 }
837
838 static int io_overwrites_block(struct pool *pool, struct bio *bio)
839 {
840         return (bio_data_dir(bio) == WRITE) &&
841                 io_overlaps_block(pool, bio);
842 }
843
844 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
845                                bio_end_io_t *fn)
846 {
847         *save = bio->bi_end_io;
848         bio->bi_end_io = fn;
849 }
850
851 static int ensure_next_mapping(struct pool *pool)
852 {
853         if (pool->next_mapping)
854                 return 0;
855
856         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
857
858         return pool->next_mapping ? 0 : -ENOMEM;
859 }
860
861 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
862 {
863         struct dm_thin_new_mapping *m = pool->next_mapping;
864
865         BUG_ON(!pool->next_mapping);
866
867         memset(m, 0, sizeof(struct dm_thin_new_mapping));
868         INIT_LIST_HEAD(&m->list);
869         m->bio = NULL;
870
871         pool->next_mapping = NULL;
872
873         return m;
874 }
875
876 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
877                     sector_t begin, sector_t end)
878 {
879         int r;
880         struct dm_io_region to;
881
882         to.bdev = tc->pool_dev->bdev;
883         to.sector = begin;
884         to.count = end - begin;
885
886         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
887         if (r < 0) {
888                 DMERR_LIMIT("dm_kcopyd_zero() failed");
889                 copy_complete(1, 1, m);
890         }
891 }
892
893 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
894                                       dm_block_t data_block,
895                                       struct dm_thin_new_mapping *m)
896 {
897         struct pool *pool = tc->pool;
898         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
899
900         h->overwrite_mapping = m;
901         m->bio = bio;
902         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
903         inc_all_io_entry(pool, bio);
904         remap_and_issue(tc, bio, data_block);
905 }
906
907 /*
908  * A partial copy also needs to zero the uncopied region.
909  */
910 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
911                           struct dm_dev *origin, dm_block_t data_origin,
912                           dm_block_t data_dest,
913                           struct dm_bio_prison_cell *cell, struct bio *bio,
914                           sector_t len)
915 {
916         int r;
917         struct pool *pool = tc->pool;
918         struct dm_thin_new_mapping *m = get_next_mapping(pool);
919
920         m->tc = tc;
921         m->virt_block = virt_block;
922         m->data_block = data_dest;
923         m->cell = cell;
924
925         /*
926          * quiesce action + copy action + an extra reference held for the
927          * duration of this function (we may need to inc later for a
928          * partial zero).
929          */
930         atomic_set(&m->prepare_actions, 3);
931
932         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
933                 complete_mapping_preparation(m); /* already quiesced */
934
935         /*
936          * IO to pool_dev remaps to the pool target's data_dev.
937          *
938          * If the whole block of data is being overwritten, we can issue the
939          * bio immediately. Otherwise we use kcopyd to clone the data first.
940          */
941         if (io_overwrites_block(pool, bio))
942                 remap_and_issue_overwrite(tc, bio, data_dest, m);
943         else {
944                 struct dm_io_region from, to;
945
946                 from.bdev = origin->bdev;
947                 from.sector = data_origin * pool->sectors_per_block;
948                 from.count = len;
949
950                 to.bdev = tc->pool_dev->bdev;
951                 to.sector = data_dest * pool->sectors_per_block;
952                 to.count = len;
953
954                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
955                                    0, copy_complete, m);
956                 if (r < 0) {
957                         DMERR_LIMIT("dm_kcopyd_copy() failed");
958                         copy_complete(1, 1, m);
959
960                         /*
961                          * We allow the zero to be issued, to simplify the
962                          * error path.  Otherwise we'd need to start
963                          * worrying about decrementing the prepare_actions
964                          * counter.
965                          */
966                 }
967
968                 /*
969                  * Do we need to zero a tail region?
970                  */
971                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
972                         atomic_inc(&m->prepare_actions);
973                         ll_zero(tc, m,
974                                 data_dest * pool->sectors_per_block + len,
975                                 (data_dest + 1) * pool->sectors_per_block);
976                 }
977         }
978
979         complete_mapping_preparation(m); /* drop our ref */
980 }
981
982 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
983                                    dm_block_t data_origin, dm_block_t data_dest,
984                                    struct dm_bio_prison_cell *cell, struct bio *bio)
985 {
986         schedule_copy(tc, virt_block, tc->pool_dev,
987                       data_origin, data_dest, cell, bio,
988                       tc->pool->sectors_per_block);
989 }
990
991 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
992                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
993                           struct bio *bio)
994 {
995         struct pool *pool = tc->pool;
996         struct dm_thin_new_mapping *m = get_next_mapping(pool);
997
998         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
999         m->tc = tc;
1000         m->virt_block = virt_block;
1001         m->data_block = data_block;
1002         m->cell = cell;
1003
1004         /*
1005          * If the whole block of data is being overwritten or we are not
1006          * zeroing pre-existing data, we can issue the bio immediately.
1007          * Otherwise we use kcopyd to zero the data first.
1008          */
1009         if (!pool->pf.zero_new_blocks)
1010                 process_prepared_mapping(m);
1011
1012         else if (io_overwrites_block(pool, bio))
1013                 remap_and_issue_overwrite(tc, bio, data_block, m);
1014
1015         else
1016                 ll_zero(tc, m,
1017                         data_block * pool->sectors_per_block,
1018                         (data_block + 1) * pool->sectors_per_block);
1019 }
1020
1021 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1022                                    dm_block_t data_dest,
1023                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1024 {
1025         struct pool *pool = tc->pool;
1026         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1027         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1028
1029         if (virt_block_end <= tc->origin_size)
1030                 schedule_copy(tc, virt_block, tc->origin_dev,
1031                               virt_block, data_dest, cell, bio,
1032                               pool->sectors_per_block);
1033
1034         else if (virt_block_begin < tc->origin_size)
1035                 schedule_copy(tc, virt_block, tc->origin_dev,
1036                               virt_block, data_dest, cell, bio,
1037                               tc->origin_size - virt_block_begin);
1038
1039         else
1040                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1041 }
1042
1043 /*
1044  * A non-zero return indicates read_only or fail_io mode.
1045  * Many callers don't care about the return value.
1046  */
1047 static int commit(struct pool *pool)
1048 {
1049         int r;
1050
1051         if (get_pool_mode(pool) >= PM_READ_ONLY)
1052                 return -EINVAL;
1053
1054         r = dm_pool_commit_metadata(pool->pmd);
1055         if (r)
1056                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1057
1058         return r;
1059 }
1060
1061 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1062 {
1063         unsigned long flags;
1064
1065         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1066                 DMWARN("%s: reached low water mark for data device: sending event.",
1067                        dm_device_name(pool->pool_md));
1068                 spin_lock_irqsave(&pool->lock, flags);
1069                 pool->low_water_triggered = true;
1070                 spin_unlock_irqrestore(&pool->lock, flags);
1071                 dm_table_event(pool->ti->table);
1072         }
1073 }
1074
1075 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1076
1077 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1078 {
1079         int r;
1080         dm_block_t free_blocks;
1081         struct pool *pool = tc->pool;
1082
1083         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1084                 return -EINVAL;
1085
1086         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1087         if (r) {
1088                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1089                 return r;
1090         }
1091
1092         check_low_water_mark(pool, free_blocks);
1093
1094         if (!free_blocks) {
1095                 /*
1096                  * Try to commit to see if that will free up some
1097                  * more space.
1098                  */
1099                 r = commit(pool);
1100                 if (r)
1101                         return r;
1102
1103                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1104                 if (r) {
1105                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1106                         return r;
1107                 }
1108
1109                 if (!free_blocks) {
1110                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1111                         return -ENOSPC;
1112                 }
1113         }
1114
1115         r = dm_pool_alloc_data_block(pool->pmd, result);
1116         if (r) {
1117                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1118                 return r;
1119         }
1120
1121         return 0;
1122 }
1123
1124 /*
1125  * If we have run out of space, queue bios until the device is
1126  * resumed, presumably after having been reloaded with more space.
1127  */
1128 static void retry_on_resume(struct bio *bio)
1129 {
1130         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1131         struct thin_c *tc = h->tc;
1132         unsigned long flags;
1133
1134         spin_lock_irqsave(&tc->lock, flags);
1135         bio_list_add(&tc->retry_on_resume_list, bio);
1136         spin_unlock_irqrestore(&tc->lock, flags);
1137 }
1138
1139 static int should_error_unserviceable_bio(struct pool *pool)
1140 {
1141         enum pool_mode m = get_pool_mode(pool);
1142
1143         switch (m) {
1144         case PM_WRITE:
1145                 /* Shouldn't get here */
1146                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1147                 return -EIO;
1148
1149         case PM_OUT_OF_DATA_SPACE:
1150                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1151
1152         case PM_READ_ONLY:
1153         case PM_FAIL:
1154                 return -EIO;
1155         default:
1156                 /* Shouldn't get here */
1157                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1158                 return -EIO;
1159         }
1160 }
1161
1162 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1163 {
1164         int error = should_error_unserviceable_bio(pool);
1165
1166         if (error)
1167                 bio_endio(bio, error);
1168         else
1169                 retry_on_resume(bio);
1170 }
1171
1172 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1173 {
1174         struct bio *bio;
1175         struct bio_list bios;
1176         int error;
1177
1178         error = should_error_unserviceable_bio(pool);
1179         if (error) {
1180                 cell_error_with_code(pool, cell, error);
1181                 return;
1182         }
1183
1184         bio_list_init(&bios);
1185         cell_release(pool, cell, &bios);
1186
1187         error = should_error_unserviceable_bio(pool);
1188         if (error)
1189                 while ((bio = bio_list_pop(&bios)))
1190                         bio_endio(bio, error);
1191         else
1192                 while ((bio = bio_list_pop(&bios)))
1193                         retry_on_resume(bio);
1194 }
1195
1196 static void process_discard(struct thin_c *tc, struct bio *bio)
1197 {
1198         int r;
1199         struct pool *pool = tc->pool;
1200         struct dm_bio_prison_cell *cell, *cell2;
1201         struct dm_cell_key key, key2;
1202         dm_block_t block = get_bio_block(tc, bio);
1203         struct dm_thin_lookup_result lookup_result;
1204         struct dm_thin_new_mapping *m;
1205
1206         build_virtual_key(tc->td, block, &key);
1207         if (bio_detain(tc->pool, &key, bio, &cell))
1208                 return;
1209
1210         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1211         switch (r) {
1212         case 0:
1213                 /*
1214                  * Check nobody is fiddling with this pool block.  This can
1215                  * happen if someone's in the process of breaking sharing
1216                  * on this block.
1217                  */
1218                 build_data_key(tc->td, lookup_result.block, &key2);
1219                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1220                         cell_defer_no_holder(tc, cell);
1221                         break;
1222                 }
1223
1224                 if (io_overlaps_block(pool, bio)) {
1225                         /*
1226                          * IO may still be going to the destination block.  We must
1227                          * quiesce before we can do the removal.
1228                          */
1229                         m = get_next_mapping(pool);
1230                         m->tc = tc;
1231                         m->pass_discard = pool->pf.discard_passdown;
1232                         m->definitely_not_shared = !lookup_result.shared;
1233                         m->virt_block = block;
1234                         m->data_block = lookup_result.block;
1235                         m->cell = cell;
1236                         m->cell2 = cell2;
1237                         m->bio = bio;
1238
1239                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1240                                 pool->process_prepared_discard(m);
1241
1242                 } else {
1243                         inc_all_io_entry(pool, bio);
1244                         cell_defer_no_holder(tc, cell);
1245                         cell_defer_no_holder(tc, cell2);
1246
1247                         /*
1248                          * The DM core makes sure that the discard doesn't span
1249                          * a block boundary.  So we submit the discard of a
1250                          * partial block appropriately.
1251                          */
1252                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1253                                 remap_and_issue(tc, bio, lookup_result.block);
1254                         else
1255                                 bio_endio(bio, 0);
1256                 }
1257                 break;
1258
1259         case -ENODATA:
1260                 /*
1261                  * It isn't provisioned, just forget it.
1262                  */
1263                 cell_defer_no_holder(tc, cell);
1264                 bio_endio(bio, 0);
1265                 break;
1266
1267         default:
1268                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1269                             __func__, r);
1270                 cell_defer_no_holder(tc, cell);
1271                 bio_io_error(bio);
1272                 break;
1273         }
1274 }
1275
1276 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1277                           struct dm_cell_key *key,
1278                           struct dm_thin_lookup_result *lookup_result,
1279                           struct dm_bio_prison_cell *cell)
1280 {
1281         int r;
1282         dm_block_t data_block;
1283         struct pool *pool = tc->pool;
1284
1285         r = alloc_data_block(tc, &data_block);
1286         switch (r) {
1287         case 0:
1288                 schedule_internal_copy(tc, block, lookup_result->block,
1289                                        data_block, cell, bio);
1290                 break;
1291
1292         case -ENOSPC:
1293                 retry_bios_on_resume(pool, cell);
1294                 break;
1295
1296         default:
1297                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1298                             __func__, r);
1299                 cell_error(pool, cell);
1300                 break;
1301         }
1302 }
1303
1304 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1305                                dm_block_t block,
1306                                struct dm_thin_lookup_result *lookup_result)
1307 {
1308         struct dm_bio_prison_cell *cell;
1309         struct pool *pool = tc->pool;
1310         struct dm_cell_key key;
1311
1312         /*
1313          * If cell is already occupied, then sharing is already in the process
1314          * of being broken so we have nothing further to do here.
1315          */
1316         build_data_key(tc->td, lookup_result->block, &key);
1317         if (bio_detain(pool, &key, bio, &cell))
1318                 return;
1319
1320         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1321                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1322         else {
1323                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1324
1325                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1326                 inc_all_io_entry(pool, bio);
1327                 cell_defer_no_holder(tc, cell);
1328
1329                 remap_and_issue(tc, bio, lookup_result->block);
1330         }
1331 }
1332
1333 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1334                             struct dm_bio_prison_cell *cell)
1335 {
1336         int r;
1337         dm_block_t data_block;
1338         struct pool *pool = tc->pool;
1339
1340         /*
1341          * Remap empty bios (flushes) immediately, without provisioning.
1342          */
1343         if (!bio->bi_iter.bi_size) {
1344                 inc_all_io_entry(pool, bio);
1345                 cell_defer_no_holder(tc, cell);
1346
1347                 remap_and_issue(tc, bio, 0);
1348                 return;
1349         }
1350
1351         /*
1352          * Fill read bios with zeroes and complete them immediately.
1353          */
1354         if (bio_data_dir(bio) == READ) {
1355                 zero_fill_bio(bio);
1356                 cell_defer_no_holder(tc, cell);
1357                 bio_endio(bio, 0);
1358                 return;
1359         }
1360
1361         r = alloc_data_block(tc, &data_block);
1362         switch (r) {
1363         case 0:
1364                 if (tc->origin_dev)
1365                         schedule_external_copy(tc, block, data_block, cell, bio);
1366                 else
1367                         schedule_zero(tc, block, data_block, cell, bio);
1368                 break;
1369
1370         case -ENOSPC:
1371                 retry_bios_on_resume(pool, cell);
1372                 break;
1373
1374         default:
1375                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1376                             __func__, r);
1377                 cell_error(pool, cell);
1378                 break;
1379         }
1380 }
1381
1382 static void process_bio(struct thin_c *tc, struct bio *bio)
1383 {
1384         int r;
1385         struct pool *pool = tc->pool;
1386         dm_block_t block = get_bio_block(tc, bio);
1387         struct dm_bio_prison_cell *cell;
1388         struct dm_cell_key key;
1389         struct dm_thin_lookup_result lookup_result;
1390
1391         /*
1392          * If cell is already occupied, then the block is already
1393          * being provisioned so we have nothing further to do here.
1394          */
1395         build_virtual_key(tc->td, block, &key);
1396         if (bio_detain(pool, &key, bio, &cell))
1397                 return;
1398
1399         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1400         switch (r) {
1401         case 0:
1402                 if (lookup_result.shared) {
1403                         process_shared_bio(tc, bio, block, &lookup_result);
1404                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1405                 } else {
1406                         inc_all_io_entry(pool, bio);
1407                         cell_defer_no_holder(tc, cell);
1408
1409                         remap_and_issue(tc, bio, lookup_result.block);
1410                 }
1411                 break;
1412
1413         case -ENODATA:
1414                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1415                         inc_all_io_entry(pool, bio);
1416                         cell_defer_no_holder(tc, cell);
1417
1418                         if (bio_end_sector(bio) <= tc->origin_size)
1419                                 remap_to_origin_and_issue(tc, bio);
1420
1421                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1422                                 zero_fill_bio(bio);
1423                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1424                                 remap_to_origin_and_issue(tc, bio);
1425
1426                         } else {
1427                                 zero_fill_bio(bio);
1428                                 bio_endio(bio, 0);
1429                         }
1430                 } else
1431                         provision_block(tc, bio, block, cell);
1432                 break;
1433
1434         default:
1435                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1436                             __func__, r);
1437                 cell_defer_no_holder(tc, cell);
1438                 bio_io_error(bio);
1439                 break;
1440         }
1441 }
1442
1443 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1444 {
1445         int r;
1446         int rw = bio_data_dir(bio);
1447         dm_block_t block = get_bio_block(tc, bio);
1448         struct dm_thin_lookup_result lookup_result;
1449
1450         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1451         switch (r) {
1452         case 0:
1453                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1454                         handle_unserviceable_bio(tc->pool, bio);
1455                 else {
1456                         inc_all_io_entry(tc->pool, bio);
1457                         remap_and_issue(tc, bio, lookup_result.block);
1458                 }
1459                 break;
1460
1461         case -ENODATA:
1462                 if (rw != READ) {
1463                         handle_unserviceable_bio(tc->pool, bio);
1464                         break;
1465                 }
1466
1467                 if (tc->origin_dev) {
1468                         inc_all_io_entry(tc->pool, bio);
1469                         remap_to_origin_and_issue(tc, bio);
1470                         break;
1471                 }
1472
1473                 zero_fill_bio(bio);
1474                 bio_endio(bio, 0);
1475                 break;
1476
1477         default:
1478                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1479                             __func__, r);
1480                 bio_io_error(bio);
1481                 break;
1482         }
1483 }
1484
1485 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1486 {
1487         bio_endio(bio, 0);
1488 }
1489
1490 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1491 {
1492         bio_io_error(bio);
1493 }
1494
1495 /*
1496  * FIXME: should we also commit due to size of transaction, measured in
1497  * metadata blocks?
1498  */
1499 static int need_commit_due_to_time(struct pool *pool)
1500 {
1501         return jiffies < pool->last_commit_jiffies ||
1502                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1503 }
1504
1505 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1506 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1507
1508 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1509 {
1510         struct rb_node **rbp, *parent;
1511         struct dm_thin_endio_hook *pbd;
1512         sector_t bi_sector = bio->bi_iter.bi_sector;
1513
1514         rbp = &tc->sort_bio_list.rb_node;
1515         parent = NULL;
1516         while (*rbp) {
1517                 parent = *rbp;
1518                 pbd = thin_pbd(parent);
1519
1520                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1521                         rbp = &(*rbp)->rb_left;
1522                 else
1523                         rbp = &(*rbp)->rb_right;
1524         }
1525
1526         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1527         rb_link_node(&pbd->rb_node, parent, rbp);
1528         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1529 }
1530
1531 static void __extract_sorted_bios(struct thin_c *tc)
1532 {
1533         struct rb_node *node;
1534         struct dm_thin_endio_hook *pbd;
1535         struct bio *bio;
1536
1537         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1538                 pbd = thin_pbd(node);
1539                 bio = thin_bio(pbd);
1540
1541                 bio_list_add(&tc->deferred_bio_list, bio);
1542                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1543         }
1544
1545         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1546 }
1547
1548 static void __sort_thin_deferred_bios(struct thin_c *tc)
1549 {
1550         struct bio *bio;
1551         struct bio_list bios;
1552
1553         bio_list_init(&bios);
1554         bio_list_merge(&bios, &tc->deferred_bio_list);
1555         bio_list_init(&tc->deferred_bio_list);
1556
1557         /* Sort deferred_bio_list using rb-tree */
1558         while ((bio = bio_list_pop(&bios)))
1559                 __thin_bio_rb_add(tc, bio);
1560
1561         /*
1562          * Transfer the sorted bios in sort_bio_list back to
1563          * deferred_bio_list to allow lockless submission of
1564          * all bios.
1565          */
1566         __extract_sorted_bios(tc);
1567 }
1568
1569 static void process_thin_deferred_bios(struct thin_c *tc)
1570 {
1571         struct pool *pool = tc->pool;
1572         unsigned long flags;
1573         struct bio *bio;
1574         struct bio_list bios;
1575         struct blk_plug plug;
1576         unsigned count = 0;
1577
1578         if (tc->requeue_mode) {
1579                 requeue_bio_list(tc, &tc->deferred_bio_list);
1580                 return;
1581         }
1582
1583         bio_list_init(&bios);
1584
1585         spin_lock_irqsave(&tc->lock, flags);
1586
1587         if (bio_list_empty(&tc->deferred_bio_list)) {
1588                 spin_unlock_irqrestore(&tc->lock, flags);
1589                 return;
1590         }
1591
1592         __sort_thin_deferred_bios(tc);
1593
1594         bio_list_merge(&bios, &tc->deferred_bio_list);
1595         bio_list_init(&tc->deferred_bio_list);
1596
1597         spin_unlock_irqrestore(&tc->lock, flags);
1598
1599         blk_start_plug(&plug);
1600         while ((bio = bio_list_pop(&bios))) {
1601                 /*
1602                  * If we've got no free new_mapping structs, and processing
1603                  * this bio might require one, we pause until there are some
1604                  * prepared mappings to process.
1605                  */
1606                 if (ensure_next_mapping(pool)) {
1607                         spin_lock_irqsave(&tc->lock, flags);
1608                         bio_list_add(&tc->deferred_bio_list, bio);
1609                         bio_list_merge(&tc->deferred_bio_list, &bios);
1610                         spin_unlock_irqrestore(&tc->lock, flags);
1611                         break;
1612                 }
1613
1614                 if (bio->bi_rw & REQ_DISCARD)
1615                         pool->process_discard(tc, bio);
1616                 else
1617                         pool->process_bio(tc, bio);
1618
1619                 if ((count++ & 127) == 0) {
1620                         throttle_work_update(&pool->throttle);
1621                         dm_pool_issue_prefetches(pool->pmd);
1622                 }
1623         }
1624         blk_finish_plug(&plug);
1625 }
1626
1627 static void thin_get(struct thin_c *tc);
1628 static void thin_put(struct thin_c *tc);
1629
1630 /*
1631  * We can't hold rcu_read_lock() around code that can block.  So we
1632  * find a thin with the rcu lock held; bump a refcount; then drop
1633  * the lock.
1634  */
1635 static struct thin_c *get_first_thin(struct pool *pool)
1636 {
1637         struct thin_c *tc = NULL;
1638
1639         rcu_read_lock();
1640         if (!list_empty(&pool->active_thins)) {
1641                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1642                 thin_get(tc);
1643         }
1644         rcu_read_unlock();
1645
1646         return tc;
1647 }
1648
1649 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1650 {
1651         struct thin_c *old_tc = tc;
1652
1653         rcu_read_lock();
1654         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1655                 thin_get(tc);
1656                 thin_put(old_tc);
1657                 rcu_read_unlock();
1658                 return tc;
1659         }
1660         thin_put(old_tc);
1661         rcu_read_unlock();
1662
1663         return NULL;
1664 }
1665
1666 static void process_deferred_bios(struct pool *pool)
1667 {
1668         unsigned long flags;
1669         struct bio *bio;
1670         struct bio_list bios;
1671         struct thin_c *tc;
1672
1673         tc = get_first_thin(pool);
1674         while (tc) {
1675                 process_thin_deferred_bios(tc);
1676                 tc = get_next_thin(pool, tc);
1677         }
1678
1679         /*
1680          * If there are any deferred flush bios, we must commit
1681          * the metadata before issuing them.
1682          */
1683         bio_list_init(&bios);
1684         spin_lock_irqsave(&pool->lock, flags);
1685         bio_list_merge(&bios, &pool->deferred_flush_bios);
1686         bio_list_init(&pool->deferred_flush_bios);
1687         spin_unlock_irqrestore(&pool->lock, flags);
1688
1689         if (bio_list_empty(&bios) &&
1690             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1691                 return;
1692
1693         if (commit(pool)) {
1694                 while ((bio = bio_list_pop(&bios)))
1695                         bio_io_error(bio);
1696                 return;
1697         }
1698         pool->last_commit_jiffies = jiffies;
1699
1700         while ((bio = bio_list_pop(&bios)))
1701                 generic_make_request(bio);
1702 }
1703
1704 static void do_worker(struct work_struct *ws)
1705 {
1706         struct pool *pool = container_of(ws, struct pool, worker);
1707
1708         throttle_work_start(&pool->throttle);
1709         dm_pool_issue_prefetches(pool->pmd);
1710         throttle_work_update(&pool->throttle);
1711         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1712         throttle_work_update(&pool->throttle);
1713         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1714         throttle_work_update(&pool->throttle);
1715         process_deferred_bios(pool);
1716         throttle_work_complete(&pool->throttle);
1717 }
1718
1719 /*
1720  * We want to commit periodically so that not too much
1721  * unwritten data builds up.
1722  */
1723 static void do_waker(struct work_struct *ws)
1724 {
1725         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1726         wake_worker(pool);
1727         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1728 }
1729
1730 /*
1731  * We're holding onto IO to allow userland time to react.  After the
1732  * timeout either the pool will have been resized (and thus back in
1733  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
1734  */
1735 static void do_no_space_timeout(struct work_struct *ws)
1736 {
1737         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
1738                                          no_space_timeout);
1739
1740         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
1741                 set_pool_mode(pool, PM_READ_ONLY);
1742 }
1743
1744 /*----------------------------------------------------------------*/
1745
1746 struct pool_work {
1747         struct work_struct worker;
1748         struct completion complete;
1749 };
1750
1751 static struct pool_work *to_pool_work(struct work_struct *ws)
1752 {
1753         return container_of(ws, struct pool_work, worker);
1754 }
1755
1756 static void pool_work_complete(struct pool_work *pw)
1757 {
1758         complete(&pw->complete);
1759 }
1760
1761 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
1762                            void (*fn)(struct work_struct *))
1763 {
1764         INIT_WORK_ONSTACK(&pw->worker, fn);
1765         init_completion(&pw->complete);
1766         queue_work(pool->wq, &pw->worker);
1767         wait_for_completion(&pw->complete);
1768 }
1769
1770 /*----------------------------------------------------------------*/
1771
1772 struct noflush_work {
1773         struct pool_work pw;
1774         struct thin_c *tc;
1775 };
1776
1777 static struct noflush_work *to_noflush(struct work_struct *ws)
1778 {
1779         return container_of(to_pool_work(ws), struct noflush_work, pw);
1780 }
1781
1782 static void do_noflush_start(struct work_struct *ws)
1783 {
1784         struct noflush_work *w = to_noflush(ws);
1785         w->tc->requeue_mode = true;
1786         requeue_io(w->tc);
1787         pool_work_complete(&w->pw);
1788 }
1789
1790 static void do_noflush_stop(struct work_struct *ws)
1791 {
1792         struct noflush_work *w = to_noflush(ws);
1793         w->tc->requeue_mode = false;
1794         pool_work_complete(&w->pw);
1795 }
1796
1797 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1798 {
1799         struct noflush_work w;
1800
1801         w.tc = tc;
1802         pool_work_wait(&w.pw, tc->pool, fn);
1803 }
1804
1805 /*----------------------------------------------------------------*/
1806
1807 static enum pool_mode get_pool_mode(struct pool *pool)
1808 {
1809         return pool->pf.mode;
1810 }
1811
1812 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1813 {
1814         dm_table_event(pool->ti->table);
1815         DMINFO("%s: switching pool to %s mode",
1816                dm_device_name(pool->pool_md), new_mode);
1817 }
1818
1819 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1820 {
1821         struct pool_c *pt = pool->ti->private;
1822         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1823         enum pool_mode old_mode = get_pool_mode(pool);
1824         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
1825
1826         /*
1827          * Never allow the pool to transition to PM_WRITE mode if user
1828          * intervention is required to verify metadata and data consistency.
1829          */
1830         if (new_mode == PM_WRITE && needs_check) {
1831                 DMERR("%s: unable to switch pool to write mode until repaired.",
1832                       dm_device_name(pool->pool_md));
1833                 if (old_mode != new_mode)
1834                         new_mode = old_mode;
1835                 else
1836                         new_mode = PM_READ_ONLY;
1837         }
1838         /*
1839          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1840          * not going to recover without a thin_repair.  So we never let the
1841          * pool move out of the old mode.
1842          */
1843         if (old_mode == PM_FAIL)
1844                 new_mode = old_mode;
1845
1846         switch (new_mode) {
1847         case PM_FAIL:
1848                 if (old_mode != new_mode)
1849                         notify_of_pool_mode_change(pool, "failure");
1850                 dm_pool_metadata_read_only(pool->pmd);
1851                 pool->process_bio = process_bio_fail;
1852                 pool->process_discard = process_bio_fail;
1853                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1854                 pool->process_prepared_discard = process_prepared_discard_fail;
1855
1856                 error_retry_list(pool);
1857                 break;
1858
1859         case PM_READ_ONLY:
1860                 if (old_mode != new_mode)
1861                         notify_of_pool_mode_change(pool, "read-only");
1862                 dm_pool_metadata_read_only(pool->pmd);
1863                 pool->process_bio = process_bio_read_only;
1864                 pool->process_discard = process_bio_success;
1865                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1866                 pool->process_prepared_discard = process_prepared_discard_passdown;
1867
1868                 error_retry_list(pool);
1869                 break;
1870
1871         case PM_OUT_OF_DATA_SPACE:
1872                 /*
1873                  * Ideally we'd never hit this state; the low water mark
1874                  * would trigger userland to extend the pool before we
1875                  * completely run out of data space.  However, many small
1876                  * IOs to unprovisioned space can consume data space at an
1877                  * alarming rate.  Adjust your low water mark if you're
1878                  * frequently seeing this mode.
1879                  */
1880                 if (old_mode != new_mode)
1881                         notify_of_pool_mode_change(pool, "out-of-data-space");
1882                 pool->process_bio = process_bio_read_only;
1883                 pool->process_discard = process_discard;
1884                 pool->process_prepared_mapping = process_prepared_mapping;
1885                 pool->process_prepared_discard = process_prepared_discard_passdown;
1886
1887                 if (!pool->pf.error_if_no_space && no_space_timeout)
1888                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
1889                 break;
1890
1891         case PM_WRITE:
1892                 if (old_mode != new_mode)
1893                         notify_of_pool_mode_change(pool, "write");
1894                 dm_pool_metadata_read_write(pool->pmd);
1895                 pool->process_bio = process_bio;
1896                 pool->process_discard = process_discard;
1897                 pool->process_prepared_mapping = process_prepared_mapping;
1898                 pool->process_prepared_discard = process_prepared_discard;
1899                 break;
1900         }
1901
1902         pool->pf.mode = new_mode;
1903         /*
1904          * The pool mode may have changed, sync it so bind_control_target()
1905          * doesn't cause an unexpected mode transition on resume.
1906          */
1907         pt->adjusted_pf.mode = new_mode;
1908 }
1909
1910 static void abort_transaction(struct pool *pool)
1911 {
1912         const char *dev_name = dm_device_name(pool->pool_md);
1913
1914         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1915         if (dm_pool_abort_metadata(pool->pmd)) {
1916                 DMERR("%s: failed to abort metadata transaction", dev_name);
1917                 set_pool_mode(pool, PM_FAIL);
1918         }
1919
1920         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1921                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1922                 set_pool_mode(pool, PM_FAIL);
1923         }
1924 }
1925
1926 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1927 {
1928         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1929                     dm_device_name(pool->pool_md), op, r);
1930
1931         abort_transaction(pool);
1932         set_pool_mode(pool, PM_READ_ONLY);
1933 }
1934
1935 /*----------------------------------------------------------------*/
1936
1937 /*
1938  * Mapping functions.
1939  */
1940
1941 /*
1942  * Called only while mapping a thin bio to hand it over to the workqueue.
1943  */
1944 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1945 {
1946         unsigned long flags;
1947         struct pool *pool = tc->pool;
1948
1949         spin_lock_irqsave(&tc->lock, flags);
1950         bio_list_add(&tc->deferred_bio_list, bio);
1951         spin_unlock_irqrestore(&tc->lock, flags);
1952
1953         wake_worker(pool);
1954 }
1955
1956 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
1957 {
1958         struct pool *pool = tc->pool;
1959
1960         throttle_lock(&pool->throttle);
1961         thin_defer_bio(tc, bio);
1962         throttle_unlock(&pool->throttle);
1963 }
1964
1965 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1966 {
1967         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1968
1969         h->tc = tc;
1970         h->shared_read_entry = NULL;
1971         h->all_io_entry = NULL;
1972         h->overwrite_mapping = NULL;
1973 }
1974
1975 /*
1976  * Non-blocking function called from the thin target's map function.
1977  */
1978 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1979 {
1980         int r;
1981         struct thin_c *tc = ti->private;
1982         dm_block_t block = get_bio_block(tc, bio);
1983         struct dm_thin_device *td = tc->td;
1984         struct dm_thin_lookup_result result;
1985         struct dm_bio_prison_cell cell1, cell2;
1986         struct dm_bio_prison_cell *cell_result;
1987         struct dm_cell_key key;
1988
1989         thin_hook_bio(tc, bio);
1990
1991         if (tc->requeue_mode) {
1992                 bio_endio(bio, DM_ENDIO_REQUEUE);
1993                 return DM_MAPIO_SUBMITTED;
1994         }
1995
1996         if (get_pool_mode(tc->pool) == PM_FAIL) {
1997                 bio_io_error(bio);
1998                 return DM_MAPIO_SUBMITTED;
1999         }
2000
2001         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2002                 thin_defer_bio_with_throttle(tc, bio);
2003                 return DM_MAPIO_SUBMITTED;
2004         }
2005
2006         /*
2007          * We must hold the virtual cell before doing the lookup, otherwise
2008          * there's a race with discard.
2009          */
2010         build_virtual_key(tc->td, block, &key);
2011         if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
2012                 return DM_MAPIO_SUBMITTED;
2013
2014         r = dm_thin_find_block(td, block, 0, &result);
2015
2016         /*
2017          * Note that we defer readahead too.
2018          */
2019         switch (r) {
2020         case 0:
2021                 if (unlikely(result.shared)) {
2022                         /*
2023                          * We have a race condition here between the
2024                          * result.shared value returned by the lookup and
2025                          * snapshot creation, which may cause new
2026                          * sharing.
2027                          *
2028                          * To avoid this always quiesce the origin before
2029                          * taking the snap.  You want to do this anyway to
2030                          * ensure a consistent application view
2031                          * (i.e. lockfs).
2032                          *
2033                          * More distant ancestors are irrelevant. The
2034                          * shared flag will be set in their case.
2035                          */
2036                         thin_defer_bio(tc, bio);
2037                         cell_defer_no_holder_no_free(tc, &cell1);
2038                         return DM_MAPIO_SUBMITTED;
2039                 }
2040
2041                 build_data_key(tc->td, result.block, &key);
2042                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
2043                         cell_defer_no_holder_no_free(tc, &cell1);
2044                         return DM_MAPIO_SUBMITTED;
2045                 }
2046
2047                 inc_all_io_entry(tc->pool, bio);
2048                 cell_defer_no_holder_no_free(tc, &cell2);
2049                 cell_defer_no_holder_no_free(tc, &cell1);
2050
2051                 remap(tc, bio, result.block);
2052                 return DM_MAPIO_REMAPPED;
2053
2054         case -ENODATA:
2055                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
2056                         /*
2057                          * This block isn't provisioned, and we have no way
2058                          * of doing so.
2059                          */
2060                         handle_unserviceable_bio(tc->pool, bio);
2061                         cell_defer_no_holder_no_free(tc, &cell1);
2062                         return DM_MAPIO_SUBMITTED;
2063                 }
2064                 /* fall through */
2065
2066         case -EWOULDBLOCK:
2067                 thin_defer_bio(tc, bio);
2068                 cell_defer_no_holder_no_free(tc, &cell1);
2069                 return DM_MAPIO_SUBMITTED;
2070
2071         default:
2072                 /*
2073                  * Must always call bio_io_error on failure.
2074                  * dm_thin_find_block can fail with -EINVAL if the
2075                  * pool is switched to fail-io mode.
2076                  */
2077                 bio_io_error(bio);
2078                 cell_defer_no_holder_no_free(tc, &cell1);
2079                 return DM_MAPIO_SUBMITTED;
2080         }
2081 }
2082
2083 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2084 {
2085         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2086         struct request_queue *q;
2087
2088         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2089                 return 1;
2090
2091         q = bdev_get_queue(pt->data_dev->bdev);
2092         return bdi_congested(&q->backing_dev_info, bdi_bits);
2093 }
2094
2095 static void requeue_bios(struct pool *pool)
2096 {
2097         unsigned long flags;
2098         struct thin_c *tc;
2099
2100         rcu_read_lock();
2101         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2102                 spin_lock_irqsave(&tc->lock, flags);
2103                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2104                 bio_list_init(&tc->retry_on_resume_list);
2105                 spin_unlock_irqrestore(&tc->lock, flags);
2106         }
2107         rcu_read_unlock();
2108 }
2109
2110 /*----------------------------------------------------------------
2111  * Binding of control targets to a pool object
2112  *--------------------------------------------------------------*/
2113 static bool data_dev_supports_discard(struct pool_c *pt)
2114 {
2115         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2116
2117         return q && blk_queue_discard(q);
2118 }
2119
2120 static bool is_factor(sector_t block_size, uint32_t n)
2121 {
2122         return !sector_div(block_size, n);
2123 }
2124
2125 /*
2126  * If discard_passdown was enabled verify that the data device
2127  * supports discards.  Disable discard_passdown if not.
2128  */
2129 static void disable_passdown_if_not_supported(struct pool_c *pt)
2130 {
2131         struct pool *pool = pt->pool;
2132         struct block_device *data_bdev = pt->data_dev->bdev;
2133         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2134         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2135         const char *reason = NULL;
2136         char buf[BDEVNAME_SIZE];
2137
2138         if (!pt->adjusted_pf.discard_passdown)
2139                 return;
2140
2141         if (!data_dev_supports_discard(pt))
2142                 reason = "discard unsupported";
2143
2144         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2145                 reason = "max discard sectors smaller than a block";
2146
2147         else if (data_limits->discard_granularity > block_size)
2148                 reason = "discard granularity larger than a block";
2149
2150         else if (!is_factor(block_size, data_limits->discard_granularity))
2151                 reason = "discard granularity not a factor of block size";
2152
2153         if (reason) {
2154                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2155                 pt->adjusted_pf.discard_passdown = false;
2156         }
2157 }
2158
2159 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2160 {
2161         struct pool_c *pt = ti->private;
2162
2163         /*
2164          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2165          */
2166         enum pool_mode old_mode = get_pool_mode(pool);
2167         enum pool_mode new_mode = pt->adjusted_pf.mode;
2168
2169         /*
2170          * Don't change the pool's mode until set_pool_mode() below.
2171          * Otherwise the pool's process_* function pointers may
2172          * not match the desired pool mode.
2173          */
2174         pt->adjusted_pf.mode = old_mode;
2175
2176         pool->ti = ti;
2177         pool->pf = pt->adjusted_pf;
2178         pool->low_water_blocks = pt->low_water_blocks;
2179
2180         set_pool_mode(pool, new_mode);
2181
2182         return 0;
2183 }
2184
2185 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2186 {
2187         if (pool->ti == ti)
2188                 pool->ti = NULL;
2189 }
2190
2191 /*----------------------------------------------------------------
2192  * Pool creation
2193  *--------------------------------------------------------------*/
2194 /* Initialize pool features. */
2195 static void pool_features_init(struct pool_features *pf)
2196 {
2197         pf->mode = PM_WRITE;
2198         pf->zero_new_blocks = true;
2199         pf->discard_enabled = true;
2200         pf->discard_passdown = true;
2201         pf->error_if_no_space = false;
2202 }
2203
2204 static void __pool_destroy(struct pool *pool)
2205 {
2206         __pool_table_remove(pool);
2207
2208         if (dm_pool_metadata_close(pool->pmd) < 0)
2209                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2210
2211         dm_bio_prison_destroy(pool->prison);
2212         dm_kcopyd_client_destroy(pool->copier);
2213
2214         if (pool->wq)
2215                 destroy_workqueue(pool->wq);
2216
2217         if (pool->next_mapping)
2218                 mempool_free(pool->next_mapping, pool->mapping_pool);
2219         mempool_destroy(pool->mapping_pool);
2220         dm_deferred_set_destroy(pool->shared_read_ds);
2221         dm_deferred_set_destroy(pool->all_io_ds);
2222         kfree(pool);
2223 }
2224
2225 static struct kmem_cache *_new_mapping_cache;
2226
2227 static struct pool *pool_create(struct mapped_device *pool_md,
2228                                 struct block_device *metadata_dev,
2229                                 unsigned long block_size,
2230                                 int read_only, char **error)
2231 {
2232         int r;
2233         void *err_p;
2234         struct pool *pool;
2235         struct dm_pool_metadata *pmd;
2236         bool format_device = read_only ? false : true;
2237
2238         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2239         if (IS_ERR(pmd)) {
2240                 *error = "Error creating metadata object";
2241                 return (struct pool *)pmd;
2242         }
2243
2244         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2245         if (!pool) {
2246                 *error = "Error allocating memory for pool";
2247                 err_p = ERR_PTR(-ENOMEM);
2248                 goto bad_pool;
2249         }
2250
2251         pool->pmd = pmd;
2252         pool->sectors_per_block = block_size;
2253         if (block_size & (block_size - 1))
2254                 pool->sectors_per_block_shift = -1;
2255         else
2256                 pool->sectors_per_block_shift = __ffs(block_size);
2257         pool->low_water_blocks = 0;
2258         pool_features_init(&pool->pf);
2259         pool->prison = dm_bio_prison_create();
2260         if (!pool->prison) {
2261                 *error = "Error creating pool's bio prison";
2262                 err_p = ERR_PTR(-ENOMEM);
2263                 goto bad_prison;
2264         }
2265
2266         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2267         if (IS_ERR(pool->copier)) {
2268                 r = PTR_ERR(pool->copier);
2269                 *error = "Error creating pool's kcopyd client";
2270                 err_p = ERR_PTR(r);
2271                 goto bad_kcopyd_client;
2272         }
2273
2274         /*
2275          * Create singlethreaded workqueue that will service all devices
2276          * that use this metadata.
2277          */
2278         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2279         if (!pool->wq) {
2280                 *error = "Error creating pool's workqueue";
2281                 err_p = ERR_PTR(-ENOMEM);
2282                 goto bad_wq;
2283         }
2284
2285         throttle_init(&pool->throttle);
2286         INIT_WORK(&pool->worker, do_worker);
2287         INIT_DELAYED_WORK(&pool->waker, do_waker);
2288         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2289         spin_lock_init(&pool->lock);
2290         bio_list_init(&pool->deferred_flush_bios);
2291         INIT_LIST_HEAD(&pool->prepared_mappings);
2292         INIT_LIST_HEAD(&pool->prepared_discards);
2293         INIT_LIST_HEAD(&pool->active_thins);
2294         pool->low_water_triggered = false;
2295
2296         pool->shared_read_ds = dm_deferred_set_create();
2297         if (!pool->shared_read_ds) {
2298                 *error = "Error creating pool's shared read deferred set";
2299                 err_p = ERR_PTR(-ENOMEM);
2300                 goto bad_shared_read_ds;
2301         }
2302
2303         pool->all_io_ds = dm_deferred_set_create();
2304         if (!pool->all_io_ds) {
2305                 *error = "Error creating pool's all io deferred set";
2306                 err_p = ERR_PTR(-ENOMEM);
2307                 goto bad_all_io_ds;
2308         }
2309
2310         pool->next_mapping = NULL;
2311         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2312                                                       _new_mapping_cache);
2313         if (!pool->mapping_pool) {
2314                 *error = "Error creating pool's mapping mempool";
2315                 err_p = ERR_PTR(-ENOMEM);
2316                 goto bad_mapping_pool;
2317         }
2318
2319         pool->ref_count = 1;
2320         pool->last_commit_jiffies = jiffies;
2321         pool->pool_md = pool_md;
2322         pool->md_dev = metadata_dev;
2323         __pool_table_insert(pool);
2324
2325         return pool;
2326
2327 bad_mapping_pool:
2328         dm_deferred_set_destroy(pool->all_io_ds);
2329 bad_all_io_ds:
2330         dm_deferred_set_destroy(pool->shared_read_ds);
2331 bad_shared_read_ds:
2332         destroy_workqueue(pool->wq);
2333 bad_wq:
2334         dm_kcopyd_client_destroy(pool->copier);
2335 bad_kcopyd_client:
2336         dm_bio_prison_destroy(pool->prison);
2337 bad_prison:
2338         kfree(pool);
2339 bad_pool:
2340         if (dm_pool_metadata_close(pmd))
2341                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2342
2343         return err_p;
2344 }
2345
2346 static void __pool_inc(struct pool *pool)
2347 {
2348         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2349         pool->ref_count++;
2350 }
2351
2352 static void __pool_dec(struct pool *pool)
2353 {
2354         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2355         BUG_ON(!pool->ref_count);
2356         if (!--pool->ref_count)
2357                 __pool_destroy(pool);
2358 }
2359
2360 static struct pool *__pool_find(struct mapped_device *pool_md,
2361                                 struct block_device *metadata_dev,
2362                                 unsigned long block_size, int read_only,
2363                                 char **error, int *created)
2364 {
2365         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2366
2367         if (pool) {
2368                 if (pool->pool_md != pool_md) {
2369                         *error = "metadata device already in use by a pool";
2370                         return ERR_PTR(-EBUSY);
2371                 }
2372                 __pool_inc(pool);
2373
2374         } else {
2375                 pool = __pool_table_lookup(pool_md);
2376                 if (pool) {
2377                         if (pool->md_dev != metadata_dev) {
2378                                 *error = "different pool cannot replace a pool";
2379                                 return ERR_PTR(-EINVAL);
2380                         }
2381                         __pool_inc(pool);
2382
2383                 } else {
2384                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2385                         *created = 1;
2386                 }
2387         }
2388
2389         return pool;
2390 }
2391
2392 /*----------------------------------------------------------------
2393  * Pool target methods
2394  *--------------------------------------------------------------*/
2395 static void pool_dtr(struct dm_target *ti)
2396 {
2397         struct pool_c *pt = ti->private;
2398
2399         mutex_lock(&dm_thin_pool_table.mutex);
2400
2401         unbind_control_target(pt->pool, ti);
2402         __pool_dec(pt->pool);
2403         dm_put_device(ti, pt->metadata_dev);
2404         dm_put_device(ti, pt->data_dev);
2405         kfree(pt);
2406
2407         mutex_unlock(&dm_thin_pool_table.mutex);
2408 }
2409
2410 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2411                                struct dm_target *ti)
2412 {
2413         int r;
2414         unsigned argc;
2415         const char *arg_name;
2416
2417         static struct dm_arg _args[] = {
2418                 {0, 4, "Invalid number of pool feature arguments"},
2419         };
2420
2421         /*
2422          * No feature arguments supplied.
2423          */
2424         if (!as->argc)
2425                 return 0;
2426
2427         r = dm_read_arg_group(_args, as, &argc, &ti->error);
2428         if (r)
2429                 return -EINVAL;
2430
2431         while (argc && !r) {
2432                 arg_name = dm_shift_arg(as);
2433                 argc--;
2434
2435                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2436                         pf->zero_new_blocks = false;
2437
2438                 else if (!strcasecmp(arg_name, "ignore_discard"))
2439                         pf->discard_enabled = false;
2440
2441                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2442                         pf->discard_passdown = false;
2443
2444                 else if (!strcasecmp(arg_name, "read_only"))
2445                         pf->mode = PM_READ_ONLY;
2446
2447                 else if (!strcasecmp(arg_name, "error_if_no_space"))
2448                         pf->error_if_no_space = true;
2449
2450                 else {
2451                         ti->error = "Unrecognised pool feature requested";
2452                         r = -EINVAL;
2453                         break;
2454                 }
2455         }
2456
2457         return r;
2458 }
2459
2460 static void metadata_low_callback(void *context)
2461 {
2462         struct pool *pool = context;
2463
2464         DMWARN("%s: reached low water mark for metadata device: sending event.",
2465                dm_device_name(pool->pool_md));
2466
2467         dm_table_event(pool->ti->table);
2468 }
2469
2470 static sector_t get_dev_size(struct block_device *bdev)
2471 {
2472         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2473 }
2474
2475 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2476 {
2477         sector_t metadata_dev_size = get_dev_size(bdev);
2478         char buffer[BDEVNAME_SIZE];
2479
2480         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2481                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2482                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2483 }
2484
2485 static sector_t get_metadata_dev_size(struct block_device *bdev)
2486 {
2487         sector_t metadata_dev_size = get_dev_size(bdev);
2488
2489         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2490                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2491
2492         return metadata_dev_size;
2493 }
2494
2495 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2496 {
2497         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2498
2499         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2500
2501         return metadata_dev_size;
2502 }
2503
2504 /*
2505  * When a metadata threshold is crossed a dm event is triggered, and
2506  * userland should respond by growing the metadata device.  We could let
2507  * userland set the threshold, like we do with the data threshold, but I'm
2508  * not sure they know enough to do this well.
2509  */
2510 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2511 {
2512         /*
2513          * 4M is ample for all ops with the possible exception of thin
2514          * device deletion which is harmless if it fails (just retry the
2515          * delete after you've grown the device).
2516          */
2517         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2518         return min((dm_block_t)1024ULL /* 4M */, quarter);
2519 }
2520
2521 /*
2522  * thin-pool <metadata dev> <data dev>
2523  *           <data block size (sectors)>
2524  *           <low water mark (blocks)>
2525  *           [<#feature args> [<arg>]*]
2526  *
2527  * Optional feature arguments are:
2528  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2529  *           ignore_discard: disable discard
2530  *           no_discard_passdown: don't pass discards down to the data device
2531  *           read_only: Don't allow any changes to be made to the pool metadata.
2532  *           error_if_no_space: error IOs, instead of queueing, if no space.
2533  */
2534 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2535 {
2536         int r, pool_created = 0;
2537         struct pool_c *pt;
2538         struct pool *pool;
2539         struct pool_features pf;
2540         struct dm_arg_set as;
2541         struct dm_dev *data_dev;
2542         unsigned long block_size;
2543         dm_block_t low_water_blocks;
2544         struct dm_dev *metadata_dev;
2545         fmode_t metadata_mode;
2546
2547         /*
2548          * FIXME Remove validation from scope of lock.
2549          */
2550         mutex_lock(&dm_thin_pool_table.mutex);
2551
2552         if (argc < 4) {
2553                 ti->error = "Invalid argument count";
2554                 r = -EINVAL;
2555                 goto out_unlock;
2556         }
2557
2558         as.argc = argc;
2559         as.argv = argv;
2560
2561         /*
2562          * Set default pool features.
2563          */
2564         pool_features_init(&pf);
2565
2566         dm_consume_args(&as, 4);
2567         r = parse_pool_features(&as, &pf, ti);
2568         if (r)
2569                 goto out_unlock;
2570
2571         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2572         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2573         if (r) {
2574                 ti->error = "Error opening metadata block device";
2575                 goto out_unlock;
2576         }
2577         warn_if_metadata_device_too_big(metadata_dev->bdev);
2578
2579         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2580         if (r) {
2581                 ti->error = "Error getting data device";
2582                 goto out_metadata;
2583         }
2584
2585         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2586             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2587             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2588             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2589                 ti->error = "Invalid block size";
2590                 r = -EINVAL;
2591                 goto out;
2592         }
2593
2594         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2595                 ti->error = "Invalid low water mark";
2596                 r = -EINVAL;
2597                 goto out;
2598         }
2599
2600         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2601         if (!pt) {
2602                 r = -ENOMEM;
2603                 goto out;
2604         }
2605
2606         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2607                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2608         if (IS_ERR(pool)) {
2609                 r = PTR_ERR(pool);
2610                 goto out_free_pt;
2611         }
2612
2613         /*
2614          * 'pool_created' reflects whether this is the first table load.
2615          * Top level discard support is not allowed to be changed after
2616          * initial load.  This would require a pool reload to trigger thin
2617          * device changes.
2618          */
2619         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2620                 ti->error = "Discard support cannot be disabled once enabled";
2621                 r = -EINVAL;
2622                 goto out_flags_changed;
2623         }
2624
2625         pt->pool = pool;
2626         pt->ti = ti;
2627         pt->metadata_dev = metadata_dev;
2628         pt->data_dev = data_dev;
2629         pt->low_water_blocks = low_water_blocks;
2630         pt->adjusted_pf = pt->requested_pf = pf;
2631         ti->num_flush_bios = 1;
2632
2633         /*
2634          * Only need to enable discards if the pool should pass
2635          * them down to the data device.  The thin device's discard
2636          * processing will cause mappings to be removed from the btree.
2637          */
2638         ti->discard_zeroes_data_unsupported = true;
2639         if (pf.discard_enabled && pf.discard_passdown) {
2640                 ti->num_discard_bios = 1;
2641
2642                 /*
2643                  * Setting 'discards_supported' circumvents the normal
2644                  * stacking of discard limits (this keeps the pool and
2645                  * thin devices' discard limits consistent).
2646                  */
2647                 ti->discards_supported = true;
2648         }
2649         ti->private = pt;
2650
2651         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2652                                                 calc_metadata_threshold(pt),
2653                                                 metadata_low_callback,
2654                                                 pool);
2655         if (r)
2656                 goto out_free_pt;
2657
2658         pt->callbacks.congested_fn = pool_is_congested;
2659         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2660
2661         mutex_unlock(&dm_thin_pool_table.mutex);
2662
2663         return 0;
2664
2665 out_flags_changed:
2666         __pool_dec(pool);
2667 out_free_pt:
2668         kfree(pt);
2669 out:
2670         dm_put_device(ti, data_dev);
2671 out_metadata:
2672         dm_put_device(ti, metadata_dev);
2673 out_unlock:
2674         mutex_unlock(&dm_thin_pool_table.mutex);
2675
2676         return r;
2677 }
2678
2679 static int pool_map(struct dm_target *ti, struct bio *bio)
2680 {
2681         int r;
2682         struct pool_c *pt = ti->private;
2683         struct pool *pool = pt->pool;
2684         unsigned long flags;
2685
2686         /*
2687          * As this is a singleton target, ti->begin is always zero.
2688          */
2689         spin_lock_irqsave(&pool->lock, flags);
2690         bio->bi_bdev = pt->data_dev->bdev;
2691         r = DM_MAPIO_REMAPPED;
2692         spin_unlock_irqrestore(&pool->lock, flags);
2693
2694         return r;
2695 }
2696
2697 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2698 {
2699         int r;
2700         struct pool_c *pt = ti->private;
2701         struct pool *pool = pt->pool;
2702         sector_t data_size = ti->len;
2703         dm_block_t sb_data_size;
2704
2705         *need_commit = false;
2706
2707         (void) sector_div(data_size, pool->sectors_per_block);
2708
2709         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2710         if (r) {
2711                 DMERR("%s: failed to retrieve data device size",
2712                       dm_device_name(pool->pool_md));
2713                 return r;
2714         }
2715
2716         if (data_size < sb_data_size) {
2717                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2718                       dm_device_name(pool->pool_md),
2719                       (unsigned long long)data_size, sb_data_size);
2720                 return -EINVAL;
2721
2722         } else if (data_size > sb_data_size) {
2723                 if (dm_pool_metadata_needs_check(pool->pmd)) {
2724                         DMERR("%s: unable to grow the data device until repaired.",
2725                               dm_device_name(pool->pool_md));
2726                         return 0;
2727                 }
2728
2729                 if (sb_data_size)
2730                         DMINFO("%s: growing the data device from %llu to %llu blocks",
2731                                dm_device_name(pool->pool_md),
2732                                sb_data_size, (unsigned long long)data_size);
2733                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2734                 if (r) {
2735                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2736                         return r;
2737                 }
2738
2739                 *need_commit = true;
2740         }
2741
2742         return 0;
2743 }
2744
2745 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2746 {
2747         int r;
2748         struct pool_c *pt = ti->private;
2749         struct pool *pool = pt->pool;
2750         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2751
2752         *need_commit = false;
2753
2754         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2755
2756         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2757         if (r) {
2758                 DMERR("%s: failed to retrieve metadata device size",
2759                       dm_device_name(pool->pool_md));
2760                 return r;
2761         }
2762
2763         if (metadata_dev_size < sb_metadata_dev_size) {
2764                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2765                       dm_device_name(pool->pool_md),
2766                       metadata_dev_size, sb_metadata_dev_size);
2767                 return -EINVAL;
2768
2769         } else if (metadata_dev_size > sb_metadata_dev_size) {
2770                 if (dm_pool_metadata_needs_check(pool->pmd)) {
2771                         DMERR("%s: unable to grow the metadata device until repaired.",
2772                               dm_device_name(pool->pool_md));
2773                         return 0;
2774                 }
2775
2776                 warn_if_metadata_device_too_big(pool->md_dev);
2777                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2778                        dm_device_name(pool->pool_md),
2779                        sb_metadata_dev_size, metadata_dev_size);
2780                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2781                 if (r) {
2782                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2783                         return r;
2784                 }
2785
2786                 *need_commit = true;
2787         }
2788
2789         return 0;
2790 }
2791
2792 /*
2793  * Retrieves the number of blocks of the data device from
2794  * the superblock and compares it to the actual device size,
2795  * thus resizing the data device in case it has grown.
2796  *
2797  * This both copes with opening preallocated data devices in the ctr
2798  * being followed by a resume
2799  * -and-
2800  * calling the resume method individually after userspace has
2801  * grown the data device in reaction to a table event.
2802  */
2803 static int pool_preresume(struct dm_target *ti)
2804 {
2805         int r;
2806         bool need_commit1, need_commit2;
2807         struct pool_c *pt = ti->private;
2808         struct pool *pool = pt->pool;
2809
2810         /*
2811          * Take control of the pool object.
2812          */
2813         r = bind_control_target(pool, ti);
2814         if (r)
2815                 return r;
2816
2817         r = maybe_resize_data_dev(ti, &need_commit1);
2818         if (r)
2819                 return r;
2820
2821         r = maybe_resize_metadata_dev(ti, &need_commit2);
2822         if (r)
2823                 return r;
2824
2825         if (need_commit1 || need_commit2)
2826                 (void) commit(pool);
2827
2828         return 0;
2829 }
2830
2831 static void pool_resume(struct dm_target *ti)
2832 {
2833         struct pool_c *pt = ti->private;
2834         struct pool *pool = pt->pool;
2835         unsigned long flags;
2836
2837         spin_lock_irqsave(&pool->lock, flags);
2838         pool->low_water_triggered = false;
2839         spin_unlock_irqrestore(&pool->lock, flags);
2840         requeue_bios(pool);
2841
2842         do_waker(&pool->waker.work);
2843 }
2844
2845 static void pool_postsuspend(struct dm_target *ti)
2846 {
2847         struct pool_c *pt = ti->private;
2848         struct pool *pool = pt->pool;
2849
2850         cancel_delayed_work(&pool->waker);
2851         cancel_delayed_work(&pool->no_space_timeout);
2852         flush_workqueue(pool->wq);
2853         (void) commit(pool);
2854 }
2855
2856 static int check_arg_count(unsigned argc, unsigned args_required)
2857 {
2858         if (argc != args_required) {
2859                 DMWARN("Message received with %u arguments instead of %u.",
2860                        argc, args_required);
2861                 return -EINVAL;
2862         }
2863
2864         return 0;
2865 }
2866
2867 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2868 {
2869         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2870             *dev_id <= MAX_DEV_ID)
2871                 return 0;
2872
2873         if (warning)
2874                 DMWARN("Message received with invalid device id: %s", arg);
2875
2876         return -EINVAL;
2877 }
2878
2879 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2880 {
2881         dm_thin_id dev_id;
2882         int r;
2883
2884         r = check_arg_count(argc, 2);
2885         if (r)
2886                 return r;
2887
2888         r = read_dev_id(argv[1], &dev_id, 1);
2889         if (r)
2890                 return r;
2891
2892         r = dm_pool_create_thin(pool->pmd, dev_id);
2893         if (r) {
2894                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2895                        argv[1]);
2896                 return r;
2897         }
2898
2899         return 0;
2900 }
2901
2902 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2903 {
2904         dm_thin_id dev_id;
2905         dm_thin_id origin_dev_id;
2906         int r;
2907
2908         r = check_arg_count(argc, 3);
2909         if (r)
2910                 return r;
2911
2912         r = read_dev_id(argv[1], &dev_id, 1);
2913         if (r)
2914                 return r;
2915
2916         r = read_dev_id(argv[2], &origin_dev_id, 1);
2917         if (r)
2918                 return r;
2919
2920         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2921         if (r) {
2922                 DMWARN("Creation of new snapshot %s of device %s failed.",
2923                        argv[1], argv[2]);
2924                 return r;
2925         }
2926
2927         return 0;
2928 }
2929
2930 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2931 {
2932         dm_thin_id dev_id;
2933         int r;
2934
2935         r = check_arg_count(argc, 2);
2936         if (r)
2937                 return r;
2938
2939         r = read_dev_id(argv[1], &dev_id, 1);
2940         if (r)
2941                 return r;
2942
2943         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2944         if (r)
2945                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2946
2947         return r;
2948 }
2949
2950 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2951 {
2952         dm_thin_id old_id, new_id;
2953         int r;
2954
2955         r = check_arg_count(argc, 3);
2956         if (r)
2957                 return r;
2958
2959         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2960                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2961                 return -EINVAL;
2962         }
2963
2964         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2965                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2966                 return -EINVAL;
2967         }
2968
2969         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2970         if (r) {
2971                 DMWARN("Failed to change transaction id from %s to %s.",
2972                        argv[1], argv[2]);
2973                 return r;
2974         }
2975
2976         return 0;
2977 }
2978
2979 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2980 {
2981         int r;
2982
2983         r = check_arg_count(argc, 1);
2984         if (r)
2985                 return r;
2986
2987         (void) commit(pool);
2988
2989         r = dm_pool_reserve_metadata_snap(pool->pmd);
2990         if (r)
2991                 DMWARN("reserve_metadata_snap message failed.");
2992
2993         return r;
2994 }
2995
2996 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2997 {
2998         int r;
2999
3000         r = check_arg_count(argc, 1);
3001         if (r)
3002                 return r;
3003
3004         r = dm_pool_release_metadata_snap(pool->pmd);
3005         if (r)
3006                 DMWARN("release_metadata_snap message failed.");
3007
3008         return r;
3009 }
3010
3011 /*
3012  * Messages supported:
3013  *   create_thin        <dev_id>
3014  *   create_snap        <dev_id> <origin_id>
3015  *   delete             <dev_id>
3016  *   trim               <dev_id> <new_size_in_sectors>
3017  *   set_transaction_id <current_trans_id> <new_trans_id>
3018  *   reserve_metadata_snap
3019  *   release_metadata_snap
3020  */
3021 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3022 {
3023         int r = -EINVAL;
3024         struct pool_c *pt = ti->private;
3025         struct pool *pool = pt->pool;
3026
3027         if (!strcasecmp(argv[0], "create_thin"))
3028                 r = process_create_thin_mesg(argc, argv, pool);
3029
3030         else if (!strcasecmp(argv[0], "create_snap"))
3031                 r = process_create_snap_mesg(argc, argv, pool);
3032
3033         else if (!strcasecmp(argv[0], "delete"))
3034                 r = process_delete_mesg(argc, argv, pool);
3035
3036         else if (!strcasecmp(argv[0], "set_transaction_id"))
3037                 r = process_set_transaction_id_mesg(argc, argv, pool);
3038
3039         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3040                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3041
3042         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3043                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3044
3045         else
3046                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3047
3048         if (!r)
3049                 (void) commit(pool);
3050
3051         return r;
3052 }
3053
3054 static void emit_flags(struct pool_features *pf, char *result,
3055                        unsigned sz, unsigned maxlen)
3056 {
3057         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3058                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3059                 pf->error_if_no_space;
3060         DMEMIT("%u ", count);
3061
3062         if (!pf->zero_new_blocks)
3063                 DMEMIT("skip_block_zeroing ");
3064
3065         if (!pf->discard_enabled)
3066                 DMEMIT("ignore_discard ");
3067
3068         if (!pf->discard_passdown)
3069                 DMEMIT("no_discard_passdown ");
3070
3071         if (pf->mode == PM_READ_ONLY)
3072                 DMEMIT("read_only ");
3073
3074         if (pf->error_if_no_space)
3075                 DMEMIT("error_if_no_space ");
3076 }
3077
3078 /*
3079  * Status line is:
3080  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3081  *    <used data sectors>/<total data sectors> <held metadata root>
3082  */
3083 static void pool_status(struct dm_target *ti, status_type_t type,
3084                         unsigned status_flags, char *result, unsigned maxlen)
3085 {
3086         int r;
3087         unsigned sz = 0;
3088         uint64_t transaction_id;
3089         dm_block_t nr_free_blocks_data;
3090         dm_block_t nr_free_blocks_metadata;
3091         dm_block_t nr_blocks_data;
3092         dm_block_t nr_blocks_metadata;
3093         dm_block_t held_root;
3094         char buf[BDEVNAME_SIZE];
3095         char buf2[BDEVNAME_SIZE];
3096         struct pool_c *pt = ti->private;
3097         struct pool *pool = pt->pool;
3098
3099         switch (type) {
3100         case STATUSTYPE_INFO:
3101                 if (get_pool_mode(pool) == PM_FAIL) {
3102                         DMEMIT("Fail");
3103                         break;
3104                 }
3105
3106                 /* Commit to ensure statistics aren't out-of-date */
3107                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3108                         (void) commit(pool);
3109
3110                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3111                 if (r) {
3112                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3113                               dm_device_name(pool->pool_md), r);
3114                         goto err;
3115                 }
3116
3117                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3118                 if (r) {
3119                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3120                               dm_device_name(pool->pool_md), r);
3121                         goto err;
3122                 }
3123
3124                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3125                 if (r) {
3126                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3127                               dm_device_name(pool->pool_md), r);
3128                         goto err;
3129                 }
3130
3131                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3132                 if (r) {
3133                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3134                               dm_device_name(pool->pool_md), r);
3135                         goto err;
3136                 }
3137
3138                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3139                 if (r) {
3140                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3141                               dm_device_name(pool->pool_md), r);
3142                         goto err;
3143                 }
3144
3145                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3146                 if (r) {
3147                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3148                               dm_device_name(pool->pool_md), r);
3149                         goto err;
3150                 }
3151
3152                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3153                        (unsigned long long)transaction_id,
3154                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3155                        (unsigned long long)nr_blocks_metadata,
3156                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3157                        (unsigned long long)nr_blocks_data);
3158
3159                 if (held_root)
3160                         DMEMIT("%llu ", held_root);
3161                 else
3162                         DMEMIT("- ");
3163
3164                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3165                         DMEMIT("out_of_data_space ");
3166                 else if (pool->pf.mode == PM_READ_ONLY)
3167                         DMEMIT("ro ");
3168                 else
3169                         DMEMIT("rw ");
3170
3171                 if (!pool->pf.discard_enabled)
3172                         DMEMIT("ignore_discard ");
3173                 else if (pool->pf.discard_passdown)
3174                         DMEMIT("discard_passdown ");
3175                 else
3176                         DMEMIT("no_discard_passdown ");
3177
3178                 if (pool->pf.error_if_no_space)
3179                         DMEMIT("error_if_no_space ");
3180                 else
3181                         DMEMIT("queue_if_no_space ");
3182
3183                 break;
3184
3185         case STATUSTYPE_TABLE:
3186                 DMEMIT("%s %s %lu %llu ",
3187                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3188                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3189                        (unsigned long)pool->sectors_per_block,
3190                        (unsigned long long)pt->low_water_blocks);
3191                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3192                 break;
3193         }
3194         return;
3195
3196 err:
3197         DMEMIT("Error");
3198 }
3199
3200 static int pool_iterate_devices(struct dm_target *ti,
3201                                 iterate_devices_callout_fn fn, void *data)
3202 {
3203         struct pool_c *pt = ti->private;
3204
3205         return fn(ti, pt->data_dev, 0, ti->len, data);
3206 }
3207
3208 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3209                       struct bio_vec *biovec, int max_size)
3210 {
3211         struct pool_c *pt = ti->private;
3212         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3213
3214         if (!q->merge_bvec_fn)
3215                 return max_size;
3216
3217         bvm->bi_bdev = pt->data_dev->bdev;
3218
3219         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3220 }
3221
3222 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3223 {
3224         struct pool *pool = pt->pool;
3225         struct queue_limits *data_limits;
3226
3227         limits->max_discard_sectors = pool->sectors_per_block;
3228
3229         /*
3230          * discard_granularity is just a hint, and not enforced.
3231          */
3232         if (pt->adjusted_pf.discard_passdown) {
3233                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3234                 limits->discard_granularity = max(data_limits->discard_granularity,
3235                                                   pool->sectors_per_block << SECTOR_SHIFT);
3236         } else
3237                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3238 }
3239
3240 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3241 {
3242         struct pool_c *pt = ti->private;
3243         struct pool *pool = pt->pool;
3244         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3245
3246         /*
3247          * Adjust max_sectors_kb to highest possible power-of-2
3248          * factor of pool->sectors_per_block.
3249          */
3250         if (limits->max_hw_sectors & (limits->max_hw_sectors - 1))
3251                 limits->max_sectors = rounddown_pow_of_two(limits->max_hw_sectors);
3252         else
3253                 limits->max_sectors = limits->max_hw_sectors;
3254
3255         if (limits->max_sectors < pool->sectors_per_block) {
3256                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3257                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3258                                 limits->max_sectors--;
3259                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3260                 }
3261         } else if (block_size_is_power_of_two(pool)) {
3262                 /* max_sectors_kb is >= power-of-2 thinp blocksize */
3263                 while (!is_factor(limits->max_sectors, pool->sectors_per_block)) {
3264                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3265                                 limits->max_sectors--;
3266                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3267                 }
3268         }
3269
3270         /*
3271          * If the system-determined stacked limits are compatible with the
3272          * pool's blocksize (io_opt is a factor) do not override them.
3273          */
3274         if (io_opt_sectors < pool->sectors_per_block ||
3275             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3276                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3277                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3278                 else
3279                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3280                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3281         }
3282
3283         /*
3284          * pt->adjusted_pf is a staging area for the actual features to use.
3285          * They get transferred to the live pool in bind_control_target()
3286          * called from pool_preresume().
3287          */
3288         if (!pt->adjusted_pf.discard_enabled) {
3289                 /*
3290                  * Must explicitly disallow stacking discard limits otherwise the
3291                  * block layer will stack them if pool's data device has support.
3292                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3293                  * user to see that, so make sure to set all discard limits to 0.
3294                  */
3295                 limits->discard_granularity = 0;
3296                 return;
3297         }
3298
3299         disable_passdown_if_not_supported(pt);
3300
3301         set_discard_limits(pt, limits);
3302 }
3303
3304 static struct target_type pool_target = {
3305         .name = "thin-pool",
3306         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3307                     DM_TARGET_IMMUTABLE,
3308         .version = {1, 14, 0},
3309         .module = THIS_MODULE,
3310         .ctr = pool_ctr,
3311         .dtr = pool_dtr,
3312         .map = pool_map,
3313         .postsuspend = pool_postsuspend,
3314         .preresume = pool_preresume,
3315         .resume = pool_resume,
3316         .message = pool_message,
3317         .status = pool_status,
3318         .merge = pool_merge,
3319         .iterate_devices = pool_iterate_devices,
3320         .io_hints = pool_io_hints,
3321 };
3322
3323 /*----------------------------------------------------------------
3324  * Thin target methods
3325  *--------------------------------------------------------------*/
3326 static void thin_get(struct thin_c *tc)
3327 {
3328         atomic_inc(&tc->refcount);
3329 }
3330
3331 static void thin_put(struct thin_c *tc)
3332 {
3333         if (atomic_dec_and_test(&tc->refcount))
3334                 complete(&tc->can_destroy);
3335 }
3336
3337 static void thin_dtr(struct dm_target *ti)
3338 {
3339         struct thin_c *tc = ti->private;
3340         unsigned long flags;
3341
3342         thin_put(tc);
3343         wait_for_completion(&tc->can_destroy);
3344
3345         spin_lock_irqsave(&tc->pool->lock, flags);
3346         list_del_rcu(&tc->list);
3347         spin_unlock_irqrestore(&tc->pool->lock, flags);
3348         synchronize_rcu();
3349
3350         mutex_lock(&dm_thin_pool_table.mutex);
3351
3352         __pool_dec(tc->pool);
3353         dm_pool_close_thin_device(tc->td);
3354         dm_put_device(ti, tc->pool_dev);
3355         if (tc->origin_dev)
3356                 dm_put_device(ti, tc->origin_dev);
3357         kfree(tc);
3358
3359         mutex_unlock(&dm_thin_pool_table.mutex);
3360 }
3361
3362 /*
3363  * Thin target parameters:
3364  *
3365  * <pool_dev> <dev_id> [origin_dev]
3366  *
3367  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3368  * dev_id: the internal device identifier
3369  * origin_dev: a device external to the pool that should act as the origin
3370  *
3371  * If the pool device has discards disabled, they get disabled for the thin
3372  * device as well.
3373  */
3374 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3375 {
3376         int r;
3377         struct thin_c *tc;
3378         struct dm_dev *pool_dev, *origin_dev;
3379         struct mapped_device *pool_md;
3380         unsigned long flags;
3381
3382         mutex_lock(&dm_thin_pool_table.mutex);
3383
3384         if (argc != 2 && argc != 3) {
3385                 ti->error = "Invalid argument count";
3386                 r = -EINVAL;
3387                 goto out_unlock;
3388         }
3389
3390         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3391         if (!tc) {
3392                 ti->error = "Out of memory";
3393                 r = -ENOMEM;
3394                 goto out_unlock;
3395         }
3396         spin_lock_init(&tc->lock);
3397         bio_list_init(&tc->deferred_bio_list);
3398         bio_list_init(&tc->retry_on_resume_list);
3399         tc->sort_bio_list = RB_ROOT;
3400
3401         if (argc == 3) {
3402                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3403                 if (r) {
3404                         ti->error = "Error opening origin device";
3405                         goto bad_origin_dev;
3406                 }
3407                 tc->origin_dev = origin_dev;
3408         }
3409
3410         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3411         if (r) {
3412                 ti->error = "Error opening pool device";
3413                 goto bad_pool_dev;
3414         }
3415         tc->pool_dev = pool_dev;
3416
3417         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3418                 ti->error = "Invalid device id";
3419                 r = -EINVAL;
3420                 goto bad_common;
3421         }
3422
3423         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3424         if (!pool_md) {
3425                 ti->error = "Couldn't get pool mapped device";
3426                 r = -EINVAL;
3427                 goto bad_common;
3428         }
3429
3430         tc->pool = __pool_table_lookup(pool_md);
3431         if (!tc->pool) {
3432                 ti->error = "Couldn't find pool object";
3433                 r = -EINVAL;
3434                 goto bad_pool_lookup;
3435         }
3436         __pool_inc(tc->pool);
3437
3438         if (get_pool_mode(tc->pool) == PM_FAIL) {
3439                 ti->error = "Couldn't open thin device, Pool is in fail mode";
3440                 r = -EINVAL;
3441                 goto bad_thin_open;
3442         }
3443
3444         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3445         if (r) {
3446                 ti->error = "Couldn't open thin internal device";
3447                 goto bad_thin_open;
3448         }
3449
3450         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3451         if (r)
3452                 goto bad_target_max_io_len;
3453
3454         ti->num_flush_bios = 1;
3455         ti->flush_supported = true;
3456         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3457
3458         /* In case the pool supports discards, pass them on. */
3459         ti->discard_zeroes_data_unsupported = true;
3460         if (tc->pool->pf.discard_enabled) {
3461                 ti->discards_supported = true;
3462                 ti->num_discard_bios = 1;
3463                 /* Discard bios must be split on a block boundary */
3464                 ti->split_discard_bios = true;
3465         }
3466
3467         dm_put(pool_md);
3468
3469         mutex_unlock(&dm_thin_pool_table.mutex);
3470
3471         atomic_set(&tc->refcount, 1);
3472         init_completion(&tc->can_destroy);
3473
3474         spin_lock_irqsave(&tc->pool->lock, flags);
3475         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3476         spin_unlock_irqrestore(&tc->pool->lock, flags);
3477         /*
3478          * This synchronize_rcu() call is needed here otherwise we risk a
3479          * wake_worker() call finding no bios to process (because the newly
3480          * added tc isn't yet visible).  So this reduces latency since we
3481          * aren't then dependent on the periodic commit to wake_worker().
3482          */
3483         synchronize_rcu();
3484
3485         return 0;
3486
3487 bad_target_max_io_len:
3488         dm_pool_close_thin_device(tc->td);
3489 bad_thin_open:
3490         __pool_dec(tc->pool);
3491 bad_pool_lookup:
3492         dm_put(pool_md);
3493 bad_common:
3494         dm_put_device(ti, tc->pool_dev);
3495 bad_pool_dev:
3496         if (tc->origin_dev)
3497                 dm_put_device(ti, tc->origin_dev);
3498 bad_origin_dev:
3499         kfree(tc);
3500 out_unlock:
3501         mutex_unlock(&dm_thin_pool_table.mutex);
3502
3503         return r;
3504 }
3505
3506 static int thin_map(struct dm_target *ti, struct bio *bio)
3507 {
3508         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3509
3510         return thin_bio_map(ti, bio);
3511 }
3512
3513 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3514 {
3515         unsigned long flags;
3516         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3517         struct list_head work;
3518         struct dm_thin_new_mapping *m, *tmp;
3519         struct pool *pool = h->tc->pool;
3520
3521         if (h->shared_read_entry) {
3522                 INIT_LIST_HEAD(&work);
3523                 dm_deferred_entry_dec(h->shared_read_entry, &work);
3524
3525                 spin_lock_irqsave(&pool->lock, flags);
3526                 list_for_each_entry_safe(m, tmp, &work, list) {
3527                         list_del(&m->list);
3528                         __complete_mapping_preparation(m);
3529                 }
3530                 spin_unlock_irqrestore(&pool->lock, flags);
3531         }
3532
3533         if (h->all_io_entry) {
3534                 INIT_LIST_HEAD(&work);
3535                 dm_deferred_entry_dec(h->all_io_entry, &work);
3536                 if (!list_empty(&work)) {
3537                         spin_lock_irqsave(&pool->lock, flags);
3538                         list_for_each_entry_safe(m, tmp, &work, list)
3539                                 list_add_tail(&m->list, &pool->prepared_discards);
3540                         spin_unlock_irqrestore(&pool->lock, flags);
3541                         wake_worker(pool);
3542                 }
3543         }
3544
3545         return 0;
3546 }
3547
3548 static void thin_presuspend(struct dm_target *ti)
3549 {
3550         struct thin_c *tc = ti->private;
3551
3552         if (dm_noflush_suspending(ti))
3553                 noflush_work(tc, do_noflush_start);
3554 }
3555
3556 static void thin_postsuspend(struct dm_target *ti)
3557 {
3558         struct thin_c *tc = ti->private;
3559
3560         /*
3561          * The dm_noflush_suspending flag has been cleared by now, so
3562          * unfortunately we must always run this.
3563          */
3564         noflush_work(tc, do_noflush_stop);
3565 }
3566
3567 static int thin_preresume(struct dm_target *ti)
3568 {
3569         struct thin_c *tc = ti->private;
3570
3571         if (tc->origin_dev)
3572                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3573
3574         return 0;
3575 }
3576
3577 /*
3578  * <nr mapped sectors> <highest mapped sector>
3579  */
3580 static void thin_status(struct dm_target *ti, status_type_t type,
3581                         unsigned status_flags, char *result, unsigned maxlen)
3582 {
3583         int r;
3584         ssize_t sz = 0;
3585         dm_block_t mapped, highest;
3586         char buf[BDEVNAME_SIZE];
3587         struct thin_c *tc = ti->private;
3588
3589         if (get_pool_mode(tc->pool) == PM_FAIL) {
3590                 DMEMIT("Fail");
3591                 return;
3592         }
3593
3594         if (!tc->td)
3595                 DMEMIT("-");
3596         else {
3597                 switch (type) {
3598                 case STATUSTYPE_INFO:
3599                         r = dm_thin_get_mapped_count(tc->td, &mapped);
3600                         if (r) {
3601                                 DMERR("dm_thin_get_mapped_count returned %d", r);
3602                                 goto err;
3603                         }
3604
3605                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3606                         if (r < 0) {
3607                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3608                                 goto err;
3609                         }
3610
3611                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3612                         if (r)
3613                                 DMEMIT("%llu", ((highest + 1) *
3614                                                 tc->pool->sectors_per_block) - 1);
3615                         else
3616                                 DMEMIT("-");
3617                         break;
3618
3619                 case STATUSTYPE_TABLE:
3620                         DMEMIT("%s %lu",
3621                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3622                                (unsigned long) tc->dev_id);
3623                         if (tc->origin_dev)
3624                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3625                         break;
3626                 }
3627         }
3628
3629         return;
3630
3631 err:
3632         DMEMIT("Error");
3633 }
3634
3635 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3636                       struct bio_vec *biovec, int max_size)
3637 {
3638         struct thin_c *tc = ti->private;
3639         struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
3640
3641         if (!q->merge_bvec_fn)
3642                 return max_size;
3643
3644         bvm->bi_bdev = tc->pool_dev->bdev;
3645         bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
3646
3647         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3648 }
3649
3650 static int thin_iterate_devices(struct dm_target *ti,
3651                                 iterate_devices_callout_fn fn, void *data)
3652 {
3653         sector_t blocks;
3654         struct thin_c *tc = ti->private;
3655         struct pool *pool = tc->pool;
3656
3657         /*
3658          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3659          * we follow a more convoluted path through to the pool's target.
3660          */
3661         if (!pool->ti)
3662                 return 0;       /* nothing is bound */
3663
3664         blocks = pool->ti->len;
3665         (void) sector_div(blocks, pool->sectors_per_block);
3666         if (blocks)
3667                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3668
3669         return 0;
3670 }
3671
3672 static struct target_type thin_target = {
3673         .name = "thin",
3674         .version = {1, 14, 0},
3675         .module = THIS_MODULE,
3676         .ctr = thin_ctr,
3677         .dtr = thin_dtr,
3678         .map = thin_map,
3679         .end_io = thin_endio,
3680         .preresume = thin_preresume,
3681         .presuspend = thin_presuspend,
3682         .postsuspend = thin_postsuspend,
3683         .status = thin_status,
3684         .merge = thin_merge,
3685         .iterate_devices = thin_iterate_devices,
3686 };
3687
3688 /*----------------------------------------------------------------*/
3689
3690 static int __init dm_thin_init(void)
3691 {
3692         int r;
3693
3694         pool_table_init();
3695
3696         r = dm_register_target(&thin_target);
3697         if (r)
3698                 return r;
3699
3700         r = dm_register_target(&pool_target);
3701         if (r)
3702                 goto bad_pool_target;
3703
3704         r = -ENOMEM;
3705
3706         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3707         if (!_new_mapping_cache)
3708                 goto bad_new_mapping_cache;
3709
3710         return 0;
3711
3712 bad_new_mapping_cache:
3713         dm_unregister_target(&pool_target);
3714 bad_pool_target:
3715         dm_unregister_target(&thin_target);
3716
3717         return r;
3718 }
3719
3720 static void dm_thin_exit(void)
3721 {
3722         dm_unregister_target(&thin_target);
3723         dm_unregister_target(&pool_target);
3724
3725         kmem_cache_destroy(_new_mapping_cache);
3726 }
3727
3728 module_init(dm_thin_init);
3729 module_exit(dm_thin_exit);
3730
3731 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
3732 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
3733
3734 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3735 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3736 MODULE_LICENSE("GPL");