iommu/arm-smmu: Use incoming shareability attributes in bypass mode
[linux-2.6-block.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/interrupt.h>
26 #include <linux/iommu.h>
27 #include <linux/iopoll.h>
28 #include <linux/module.h>
29 #include <linux/msi.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_platform.h>
33 #include <linux/pci.h>
34 #include <linux/platform_device.h>
35
36 #include "io-pgtable.h"
37
38 /* MMIO registers */
39 #define ARM_SMMU_IDR0                   0x0
40 #define IDR0_ST_LVL_SHIFT               27
41 #define IDR0_ST_LVL_MASK                0x3
42 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
43 #define IDR0_STALL_MODEL                (3 << 24)
44 #define IDR0_TTENDIAN_SHIFT             21
45 #define IDR0_TTENDIAN_MASK              0x3
46 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
47 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
48 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
49 #define IDR0_CD2L                       (1 << 19)
50 #define IDR0_VMID16                     (1 << 18)
51 #define IDR0_PRI                        (1 << 16)
52 #define IDR0_SEV                        (1 << 14)
53 #define IDR0_MSI                        (1 << 13)
54 #define IDR0_ASID16                     (1 << 12)
55 #define IDR0_ATS                        (1 << 10)
56 #define IDR0_HYP                        (1 << 9)
57 #define IDR0_COHACC                     (1 << 4)
58 #define IDR0_TTF_SHIFT                  2
59 #define IDR0_TTF_MASK                   0x3
60 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
61 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
62 #define IDR0_S1P                        (1 << 1)
63 #define IDR0_S2P                        (1 << 0)
64
65 #define ARM_SMMU_IDR1                   0x4
66 #define IDR1_TABLES_PRESET              (1 << 30)
67 #define IDR1_QUEUES_PRESET              (1 << 29)
68 #define IDR1_REL                        (1 << 28)
69 #define IDR1_CMDQ_SHIFT                 21
70 #define IDR1_CMDQ_MASK                  0x1f
71 #define IDR1_EVTQ_SHIFT                 16
72 #define IDR1_EVTQ_MASK                  0x1f
73 #define IDR1_PRIQ_SHIFT                 11
74 #define IDR1_PRIQ_MASK                  0x1f
75 #define IDR1_SSID_SHIFT                 6
76 #define IDR1_SSID_MASK                  0x1f
77 #define IDR1_SID_SHIFT                  0
78 #define IDR1_SID_MASK                   0x3f
79
80 #define ARM_SMMU_IDR5                   0x14
81 #define IDR5_STALL_MAX_SHIFT            16
82 #define IDR5_STALL_MAX_MASK             0xffff
83 #define IDR5_GRAN64K                    (1 << 6)
84 #define IDR5_GRAN16K                    (1 << 5)
85 #define IDR5_GRAN4K                     (1 << 4)
86 #define IDR5_OAS_SHIFT                  0
87 #define IDR5_OAS_MASK                   0x7
88 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
89 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
90 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
91 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
92 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
93 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
94
95 #define ARM_SMMU_CR0                    0x20
96 #define CR0_CMDQEN                      (1 << 3)
97 #define CR0_EVTQEN                      (1 << 2)
98 #define CR0_PRIQEN                      (1 << 1)
99 #define CR0_SMMUEN                      (1 << 0)
100
101 #define ARM_SMMU_CR0ACK                 0x24
102
103 #define ARM_SMMU_CR1                    0x28
104 #define CR1_SH_NSH                      0
105 #define CR1_SH_OSH                      2
106 #define CR1_SH_ISH                      3
107 #define CR1_CACHE_NC                    0
108 #define CR1_CACHE_WB                    1
109 #define CR1_CACHE_WT                    2
110 #define CR1_TABLE_SH_SHIFT              10
111 #define CR1_TABLE_OC_SHIFT              8
112 #define CR1_TABLE_IC_SHIFT              6
113 #define CR1_QUEUE_SH_SHIFT              4
114 #define CR1_QUEUE_OC_SHIFT              2
115 #define CR1_QUEUE_IC_SHIFT              0
116
117 #define ARM_SMMU_CR2                    0x2c
118 #define CR2_PTM                         (1 << 2)
119 #define CR2_RECINVSID                   (1 << 1)
120 #define CR2_E2H                         (1 << 0)
121
122 #define ARM_SMMU_IRQ_CTRL               0x50
123 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
124 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
125 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
126
127 #define ARM_SMMU_IRQ_CTRLACK            0x54
128
129 #define ARM_SMMU_GERROR                 0x60
130 #define GERROR_SFM_ERR                  (1 << 8)
131 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
132 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
133 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
134 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
135 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
136 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
137 #define GERROR_CMDQ_ERR                 (1 << 0)
138 #define GERROR_ERR_MASK                 0xfd
139
140 #define ARM_SMMU_GERRORN                0x64
141
142 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
143 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
144 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
145
146 #define ARM_SMMU_STRTAB_BASE            0x80
147 #define STRTAB_BASE_RA                  (1UL << 62)
148 #define STRTAB_BASE_ADDR_SHIFT          6
149 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
150
151 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
152 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
153 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
154 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
155 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
156 #define STRTAB_BASE_CFG_FMT_SHIFT       16
157 #define STRTAB_BASE_CFG_FMT_MASK        0x3
158 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
159 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
160
161 #define ARM_SMMU_CMDQ_BASE              0x90
162 #define ARM_SMMU_CMDQ_PROD              0x98
163 #define ARM_SMMU_CMDQ_CONS              0x9c
164
165 #define ARM_SMMU_EVTQ_BASE              0xa0
166 #define ARM_SMMU_EVTQ_PROD              0x100a8
167 #define ARM_SMMU_EVTQ_CONS              0x100ac
168 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
169 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
170 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
171
172 #define ARM_SMMU_PRIQ_BASE              0xc0
173 #define ARM_SMMU_PRIQ_PROD              0x100c8
174 #define ARM_SMMU_PRIQ_CONS              0x100cc
175 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
176 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
177 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
178
179 /* Common MSI config fields */
180 #define MSI_CFG0_ADDR_SHIFT             2
181 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
182 #define MSI_CFG2_SH_SHIFT               4
183 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
184 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
185 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
186 #define MSI_CFG2_MEMATTR_SHIFT          0
187 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
188
189 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
190 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
191 #define Q_OVERFLOW_FLAG                 (1 << 31)
192 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
193 #define Q_ENT(q, p)                     ((q)->base +                    \
194                                          Q_IDX(q, p) * (q)->ent_dwords)
195
196 #define Q_BASE_RWA                      (1UL << 62)
197 #define Q_BASE_ADDR_SHIFT               5
198 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
199 #define Q_BASE_LOG2SIZE_SHIFT           0
200 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
201
202 /*
203  * Stream table.
204  *
205  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
206  * 2lvl: 128k L1 entries,
207  *       256 lazy entries per table (each table covers a PCI bus)
208  */
209 #define STRTAB_L1_SZ_SHIFT              20
210 #define STRTAB_SPLIT                    8
211
212 #define STRTAB_L1_DESC_DWORDS           1
213 #define STRTAB_L1_DESC_SPAN_SHIFT       0
214 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
215 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
216 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
217
218 #define STRTAB_STE_DWORDS               8
219 #define STRTAB_STE_0_V                  (1UL << 0)
220 #define STRTAB_STE_0_CFG_SHIFT          1
221 #define STRTAB_STE_0_CFG_MASK           0x7UL
222 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
223 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
224 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
225 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
226
227 #define STRTAB_STE_0_S1FMT_SHIFT        4
228 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
229 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
230 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
231 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
232 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
233
234 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
235 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
236 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
237 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
238 #define STRTAB_STE_1_S1C_SH_NSH         0UL
239 #define STRTAB_STE_1_S1C_SH_OSH         2UL
240 #define STRTAB_STE_1_S1C_SH_ISH         3UL
241 #define STRTAB_STE_1_S1CIR_SHIFT        2
242 #define STRTAB_STE_1_S1COR_SHIFT        4
243 #define STRTAB_STE_1_S1CSH_SHIFT        6
244
245 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
246
247 #define STRTAB_STE_1_EATS_ABT           0UL
248 #define STRTAB_STE_1_EATS_TRANS         1UL
249 #define STRTAB_STE_1_EATS_S1CHK         2UL
250 #define STRTAB_STE_1_EATS_SHIFT         28
251
252 #define STRTAB_STE_1_STRW_NSEL1         0UL
253 #define STRTAB_STE_1_STRW_EL2           2UL
254 #define STRTAB_STE_1_STRW_SHIFT         30
255
256 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
257 #define STRTAB_STE_1_SHCFG_SHIFT        44
258
259 #define STRTAB_STE_2_S2VMID_SHIFT       0
260 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
261 #define STRTAB_STE_2_VTCR_SHIFT         32
262 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
263 #define STRTAB_STE_2_S2AA64             (1UL << 51)
264 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
265 #define STRTAB_STE_2_S2PTW              (1UL << 54)
266 #define STRTAB_STE_2_S2R                (1UL << 58)
267
268 #define STRTAB_STE_3_S2TTB_SHIFT        4
269 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
270
271 /* Context descriptor (stage-1 only) */
272 #define CTXDESC_CD_DWORDS               8
273 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
274 #define ARM64_TCR_T0SZ_SHIFT            0
275 #define ARM64_TCR_T0SZ_MASK             0x1fUL
276 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
277 #define ARM64_TCR_TG0_SHIFT             14
278 #define ARM64_TCR_TG0_MASK              0x3UL
279 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
280 #define ARM64_TCR_IRGN0_SHIFT           8
281 #define ARM64_TCR_IRGN0_MASK            0x3UL
282 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
283 #define ARM64_TCR_ORGN0_SHIFT           10
284 #define ARM64_TCR_ORGN0_MASK            0x3UL
285 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
286 #define ARM64_TCR_SH0_SHIFT             12
287 #define ARM64_TCR_SH0_MASK              0x3UL
288 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
289 #define ARM64_TCR_EPD0_SHIFT            7
290 #define ARM64_TCR_EPD0_MASK             0x1UL
291 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
292 #define ARM64_TCR_EPD1_SHIFT            23
293 #define ARM64_TCR_EPD1_MASK             0x1UL
294
295 #define CTXDESC_CD_0_ENDI               (1UL << 15)
296 #define CTXDESC_CD_0_V                  (1UL << 31)
297
298 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
299 #define ARM64_TCR_IPS_SHIFT             32
300 #define ARM64_TCR_IPS_MASK              0x7UL
301 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
302 #define ARM64_TCR_TBI0_SHIFT            37
303 #define ARM64_TCR_TBI0_MASK             0x1UL
304
305 #define CTXDESC_CD_0_AA64               (1UL << 41)
306 #define CTXDESC_CD_0_R                  (1UL << 45)
307 #define CTXDESC_CD_0_A                  (1UL << 46)
308 #define CTXDESC_CD_0_ASET_SHIFT         47
309 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
310 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
311 #define CTXDESC_CD_0_ASID_SHIFT         48
312 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
313
314 #define CTXDESC_CD_1_TTB0_SHIFT         4
315 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
316
317 #define CTXDESC_CD_3_MAIR_SHIFT         0
318
319 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
320 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
321         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
322          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
323
324 /* Command queue */
325 #define CMDQ_ENT_DWORDS                 2
326 #define CMDQ_MAX_SZ_SHIFT               8
327
328 #define CMDQ_ERR_SHIFT                  24
329 #define CMDQ_ERR_MASK                   0x7f
330 #define CMDQ_ERR_CERROR_NONE_IDX        0
331 #define CMDQ_ERR_CERROR_ILL_IDX         1
332 #define CMDQ_ERR_CERROR_ABT_IDX         2
333
334 #define CMDQ_0_OP_SHIFT                 0
335 #define CMDQ_0_OP_MASK                  0xffUL
336 #define CMDQ_0_SSV                      (1UL << 11)
337
338 #define CMDQ_PREFETCH_0_SID_SHIFT       32
339 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
340 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
341
342 #define CMDQ_CFGI_0_SID_SHIFT           32
343 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
344 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
345 #define CMDQ_CFGI_1_RANGE_SHIFT         0
346 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
347
348 #define CMDQ_TLBI_0_VMID_SHIFT          32
349 #define CMDQ_TLBI_0_ASID_SHIFT          48
350 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
351 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
352 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
353
354 #define CMDQ_PRI_0_SSID_SHIFT           12
355 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
356 #define CMDQ_PRI_0_SID_SHIFT            32
357 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
358 #define CMDQ_PRI_1_GRPID_SHIFT          0
359 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
360 #define CMDQ_PRI_1_RESP_SHIFT           12
361 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
362 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
363 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
364
365 #define CMDQ_SYNC_0_CS_SHIFT            12
366 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
367 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
368
369 /* Event queue */
370 #define EVTQ_ENT_DWORDS                 4
371 #define EVTQ_MAX_SZ_SHIFT               7
372
373 #define EVTQ_0_ID_SHIFT                 0
374 #define EVTQ_0_ID_MASK                  0xffUL
375
376 /* PRI queue */
377 #define PRIQ_ENT_DWORDS                 2
378 #define PRIQ_MAX_SZ_SHIFT               8
379
380 #define PRIQ_0_SID_SHIFT                0
381 #define PRIQ_0_SID_MASK                 0xffffffffUL
382 #define PRIQ_0_SSID_SHIFT               32
383 #define PRIQ_0_SSID_MASK                0xfffffUL
384 #define PRIQ_0_PERM_PRIV                (1UL << 58)
385 #define PRIQ_0_PERM_EXEC                (1UL << 59)
386 #define PRIQ_0_PERM_READ                (1UL << 60)
387 #define PRIQ_0_PERM_WRITE               (1UL << 61)
388 #define PRIQ_0_PRG_LAST                 (1UL << 62)
389 #define PRIQ_0_SSID_V                   (1UL << 63)
390
391 #define PRIQ_1_PRG_IDX_SHIFT            0
392 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
393 #define PRIQ_1_ADDR_SHIFT               12
394 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
395
396 /* High-level queue structures */
397 #define ARM_SMMU_POLL_TIMEOUT_US        100
398
399 static bool disable_bypass;
400 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
401 MODULE_PARM_DESC(disable_bypass,
402         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
403
404 enum pri_resp {
405         PRI_RESP_DENY,
406         PRI_RESP_FAIL,
407         PRI_RESP_SUCC,
408 };
409
410 enum arm_smmu_msi_index {
411         EVTQ_MSI_INDEX,
412         GERROR_MSI_INDEX,
413         PRIQ_MSI_INDEX,
414         ARM_SMMU_MAX_MSIS,
415 };
416
417 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
418         [EVTQ_MSI_INDEX] = {
419                 ARM_SMMU_EVTQ_IRQ_CFG0,
420                 ARM_SMMU_EVTQ_IRQ_CFG1,
421                 ARM_SMMU_EVTQ_IRQ_CFG2,
422         },
423         [GERROR_MSI_INDEX] = {
424                 ARM_SMMU_GERROR_IRQ_CFG0,
425                 ARM_SMMU_GERROR_IRQ_CFG1,
426                 ARM_SMMU_GERROR_IRQ_CFG2,
427         },
428         [PRIQ_MSI_INDEX] = {
429                 ARM_SMMU_PRIQ_IRQ_CFG0,
430                 ARM_SMMU_PRIQ_IRQ_CFG1,
431                 ARM_SMMU_PRIQ_IRQ_CFG2,
432         },
433 };
434
435 struct arm_smmu_cmdq_ent {
436         /* Common fields */
437         u8                              opcode;
438         bool                            substream_valid;
439
440         /* Command-specific fields */
441         union {
442                 #define CMDQ_OP_PREFETCH_CFG    0x1
443                 struct {
444                         u32                     sid;
445                         u8                      size;
446                         u64                     addr;
447                 } prefetch;
448
449                 #define CMDQ_OP_CFGI_STE        0x3
450                 #define CMDQ_OP_CFGI_ALL        0x4
451                 struct {
452                         u32                     sid;
453                         union {
454                                 bool            leaf;
455                                 u8              span;
456                         };
457                 } cfgi;
458
459                 #define CMDQ_OP_TLBI_NH_ASID    0x11
460                 #define CMDQ_OP_TLBI_NH_VA      0x12
461                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
462                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
463                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
464                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
465                 struct {
466                         u16                     asid;
467                         u16                     vmid;
468                         bool                    leaf;
469                         u64                     addr;
470                 } tlbi;
471
472                 #define CMDQ_OP_PRI_RESP        0x41
473                 struct {
474                         u32                     sid;
475                         u32                     ssid;
476                         u16                     grpid;
477                         enum pri_resp           resp;
478                 } pri;
479
480                 #define CMDQ_OP_CMD_SYNC        0x46
481         };
482 };
483
484 struct arm_smmu_queue {
485         int                             irq; /* Wired interrupt */
486
487         __le64                          *base;
488         dma_addr_t                      base_dma;
489         u64                             q_base;
490
491         size_t                          ent_dwords;
492         u32                             max_n_shift;
493         u32                             prod;
494         u32                             cons;
495
496         u32 __iomem                     *prod_reg;
497         u32 __iomem                     *cons_reg;
498 };
499
500 struct arm_smmu_cmdq {
501         struct arm_smmu_queue           q;
502         spinlock_t                      lock;
503 };
504
505 struct arm_smmu_evtq {
506         struct arm_smmu_queue           q;
507         u32                             max_stalls;
508 };
509
510 struct arm_smmu_priq {
511         struct arm_smmu_queue           q;
512 };
513
514 /* High-level stream table and context descriptor structures */
515 struct arm_smmu_strtab_l1_desc {
516         u8                              span;
517
518         __le64                          *l2ptr;
519         dma_addr_t                      l2ptr_dma;
520 };
521
522 struct arm_smmu_s1_cfg {
523         __le64                          *cdptr;
524         dma_addr_t                      cdptr_dma;
525
526         struct arm_smmu_ctx_desc {
527                 u16     asid;
528                 u64     ttbr;
529                 u64     tcr;
530                 u64     mair;
531         }                               cd;
532 };
533
534 struct arm_smmu_s2_cfg {
535         u16                             vmid;
536         u64                             vttbr;
537         u64                             vtcr;
538 };
539
540 struct arm_smmu_strtab_ent {
541         bool                            valid;
542
543         bool                            bypass; /* Overrides s1/s2 config */
544         struct arm_smmu_s1_cfg          *s1_cfg;
545         struct arm_smmu_s2_cfg          *s2_cfg;
546 };
547
548 struct arm_smmu_strtab_cfg {
549         __le64                          *strtab;
550         dma_addr_t                      strtab_dma;
551         struct arm_smmu_strtab_l1_desc  *l1_desc;
552         unsigned int                    num_l1_ents;
553
554         u64                             strtab_base;
555         u32                             strtab_base_cfg;
556 };
557
558 /* An SMMUv3 instance */
559 struct arm_smmu_device {
560         struct device                   *dev;
561         void __iomem                    *base;
562
563 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
564 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
565 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
566 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
567 #define ARM_SMMU_FEAT_PRI               (1 << 4)
568 #define ARM_SMMU_FEAT_ATS               (1 << 5)
569 #define ARM_SMMU_FEAT_SEV               (1 << 6)
570 #define ARM_SMMU_FEAT_MSI               (1 << 7)
571 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
572 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
573 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
574 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
575 #define ARM_SMMU_FEAT_HYP               (1 << 12)
576         u32                             features;
577
578 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
579         u32                             options;
580
581         struct arm_smmu_cmdq            cmdq;
582         struct arm_smmu_evtq            evtq;
583         struct arm_smmu_priq            priq;
584
585         int                             gerr_irq;
586
587         unsigned long                   ias; /* IPA */
588         unsigned long                   oas; /* PA */
589
590 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
591         unsigned int                    asid_bits;
592         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
593
594 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
595         unsigned int                    vmid_bits;
596         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
597
598         unsigned int                    ssid_bits;
599         unsigned int                    sid_bits;
600
601         struct arm_smmu_strtab_cfg      strtab_cfg;
602 };
603
604 /* SMMU private data for an IOMMU group */
605 struct arm_smmu_group {
606         struct arm_smmu_device          *smmu;
607         struct arm_smmu_domain          *domain;
608         int                             num_sids;
609         u32                             *sids;
610         struct arm_smmu_strtab_ent      ste;
611 };
612
613 /* SMMU private data for an IOMMU domain */
614 enum arm_smmu_domain_stage {
615         ARM_SMMU_DOMAIN_S1 = 0,
616         ARM_SMMU_DOMAIN_S2,
617         ARM_SMMU_DOMAIN_NESTED,
618 };
619
620 struct arm_smmu_domain {
621         struct arm_smmu_device          *smmu;
622         struct mutex                    init_mutex; /* Protects smmu pointer */
623
624         struct io_pgtable_ops           *pgtbl_ops;
625         spinlock_t                      pgtbl_lock;
626
627         enum arm_smmu_domain_stage      stage;
628         union {
629                 struct arm_smmu_s1_cfg  s1_cfg;
630                 struct arm_smmu_s2_cfg  s2_cfg;
631         };
632
633         struct iommu_domain             domain;
634 };
635
636 struct arm_smmu_option_prop {
637         u32 opt;
638         const char *prop;
639 };
640
641 static struct arm_smmu_option_prop arm_smmu_options[] = {
642         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
643         { 0, NULL},
644 };
645
646 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
647 {
648         return container_of(dom, struct arm_smmu_domain, domain);
649 }
650
651 static void parse_driver_options(struct arm_smmu_device *smmu)
652 {
653         int i = 0;
654
655         do {
656                 if (of_property_read_bool(smmu->dev->of_node,
657                                                 arm_smmu_options[i].prop)) {
658                         smmu->options |= arm_smmu_options[i].opt;
659                         dev_notice(smmu->dev, "option %s\n",
660                                 arm_smmu_options[i].prop);
661                 }
662         } while (arm_smmu_options[++i].opt);
663 }
664
665 /* Low-level queue manipulation functions */
666 static bool queue_full(struct arm_smmu_queue *q)
667 {
668         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
669                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
670 }
671
672 static bool queue_empty(struct arm_smmu_queue *q)
673 {
674         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
675                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
676 }
677
678 static void queue_sync_cons(struct arm_smmu_queue *q)
679 {
680         q->cons = readl_relaxed(q->cons_reg);
681 }
682
683 static void queue_inc_cons(struct arm_smmu_queue *q)
684 {
685         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
686
687         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
688         writel(q->cons, q->cons_reg);
689 }
690
691 static int queue_sync_prod(struct arm_smmu_queue *q)
692 {
693         int ret = 0;
694         u32 prod = readl_relaxed(q->prod_reg);
695
696         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
697                 ret = -EOVERFLOW;
698
699         q->prod = prod;
700         return ret;
701 }
702
703 static void queue_inc_prod(struct arm_smmu_queue *q)
704 {
705         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
706
707         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
708         writel(q->prod, q->prod_reg);
709 }
710
711 static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
712 {
713         if (Q_WRP(q, q->cons) == Q_WRP(q, until))
714                 return Q_IDX(q, q->cons) < Q_IDX(q, until);
715
716         return Q_IDX(q, q->cons) >= Q_IDX(q, until);
717 }
718
719 static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
720 {
721         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
722
723         while (queue_sync_cons(q), __queue_cons_before(q, until)) {
724                 if (ktime_compare(ktime_get(), timeout) > 0)
725                         return -ETIMEDOUT;
726
727                 if (wfe) {
728                         wfe();
729                 } else {
730                         cpu_relax();
731                         udelay(1);
732                 }
733         }
734
735         return 0;
736 }
737
738 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
739 {
740         int i;
741
742         for (i = 0; i < n_dwords; ++i)
743                 *dst++ = cpu_to_le64(*src++);
744 }
745
746 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
747 {
748         if (queue_full(q))
749                 return -ENOSPC;
750
751         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
752         queue_inc_prod(q);
753         return 0;
754 }
755
756 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
757 {
758         int i;
759
760         for (i = 0; i < n_dwords; ++i)
761                 *dst++ = le64_to_cpu(*src++);
762 }
763
764 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
765 {
766         if (queue_empty(q))
767                 return -EAGAIN;
768
769         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
770         queue_inc_cons(q);
771         return 0;
772 }
773
774 /* High-level queue accessors */
775 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
776 {
777         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
778         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
779
780         switch (ent->opcode) {
781         case CMDQ_OP_TLBI_EL2_ALL:
782         case CMDQ_OP_TLBI_NSNH_ALL:
783                 break;
784         case CMDQ_OP_PREFETCH_CFG:
785                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
786                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
787                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
788                 break;
789         case CMDQ_OP_CFGI_STE:
790                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
791                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
792                 break;
793         case CMDQ_OP_CFGI_ALL:
794                 /* Cover the entire SID range */
795                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
796                 break;
797         case CMDQ_OP_TLBI_NH_VA:
798                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
799                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
800                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
801                 break;
802         case CMDQ_OP_TLBI_S2_IPA:
803                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
804                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
805                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
806                 break;
807         case CMDQ_OP_TLBI_NH_ASID:
808                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
809                 /* Fallthrough */
810         case CMDQ_OP_TLBI_S12_VMALL:
811                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
812                 break;
813         case CMDQ_OP_PRI_RESP:
814                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
815                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
816                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
817                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
818                 switch (ent->pri.resp) {
819                 case PRI_RESP_DENY:
820                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
821                         break;
822                 case PRI_RESP_FAIL:
823                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
824                         break;
825                 case PRI_RESP_SUCC:
826                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
827                         break;
828                 default:
829                         return -EINVAL;
830                 }
831                 break;
832         case CMDQ_OP_CMD_SYNC:
833                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
834                 break;
835         default:
836                 return -ENOENT;
837         }
838
839         return 0;
840 }
841
842 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
843 {
844         static const char *cerror_str[] = {
845                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
846                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
847                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
848         };
849
850         int i;
851         u64 cmd[CMDQ_ENT_DWORDS];
852         struct arm_smmu_queue *q = &smmu->cmdq.q;
853         u32 cons = readl_relaxed(q->cons_reg);
854         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
855         struct arm_smmu_cmdq_ent cmd_sync = {
856                 .opcode = CMDQ_OP_CMD_SYNC,
857         };
858
859         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
860                 cerror_str[idx]);
861
862         switch (idx) {
863         case CMDQ_ERR_CERROR_ILL_IDX:
864                 break;
865         case CMDQ_ERR_CERROR_ABT_IDX:
866                 dev_err(smmu->dev, "retrying command fetch\n");
867         case CMDQ_ERR_CERROR_NONE_IDX:
868                 return;
869         }
870
871         /*
872          * We may have concurrent producers, so we need to be careful
873          * not to touch any of the shadow cmdq state.
874          */
875         queue_read(cmd, Q_ENT(q, idx), q->ent_dwords);
876         dev_err(smmu->dev, "skipping command in error state:\n");
877         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
878                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
879
880         /* Convert the erroneous command into a CMD_SYNC */
881         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
882                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
883                 return;
884         }
885
886         queue_write(cmd, Q_ENT(q, idx), q->ent_dwords);
887 }
888
889 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
890                                     struct arm_smmu_cmdq_ent *ent)
891 {
892         u32 until;
893         u64 cmd[CMDQ_ENT_DWORDS];
894         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
895         struct arm_smmu_queue *q = &smmu->cmdq.q;
896
897         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
898                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
899                          ent->opcode);
900                 return;
901         }
902
903         spin_lock(&smmu->cmdq.lock);
904         while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
905                 /*
906                  * Keep the queue locked, otherwise the producer could wrap
907                  * twice and we could see a future consumer pointer that looks
908                  * like it's behind us.
909                  */
910                 if (queue_poll_cons(q, until, wfe))
911                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
912         }
913
914         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
915                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
916         spin_unlock(&smmu->cmdq.lock);
917 }
918
919 /* Context descriptor manipulation functions */
920 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
921 {
922         u64 val = 0;
923
924         /* Repack the TCR. Just care about TTBR0 for now */
925         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
926         val |= ARM_SMMU_TCR2CD(tcr, TG0);
927         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
928         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
929         val |= ARM_SMMU_TCR2CD(tcr, SH0);
930         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
931         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
932         val |= ARM_SMMU_TCR2CD(tcr, IPS);
933         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
934
935         return val;
936 }
937
938 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
939                                     struct arm_smmu_s1_cfg *cfg)
940 {
941         u64 val;
942
943         /*
944          * We don't need to issue any invalidation here, as we'll invalidate
945          * the STE when installing the new entry anyway.
946          */
947         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
948 #ifdef __BIG_ENDIAN
949               CTXDESC_CD_0_ENDI |
950 #endif
951               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
952               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
953               CTXDESC_CD_0_V;
954         cfg->cdptr[0] = cpu_to_le64(val);
955
956         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
957         cfg->cdptr[1] = cpu_to_le64(val);
958
959         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
960 }
961
962 /* Stream table manipulation functions */
963 static void
964 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
965 {
966         u64 val = 0;
967
968         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
969                 << STRTAB_L1_DESC_SPAN_SHIFT;
970         val |= desc->l2ptr_dma &
971                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
972
973         *dst = cpu_to_le64(val);
974 }
975
976 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
977 {
978         struct arm_smmu_cmdq_ent cmd = {
979                 .opcode = CMDQ_OP_CFGI_STE,
980                 .cfgi   = {
981                         .sid    = sid,
982                         .leaf   = true,
983                 },
984         };
985
986         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
987         cmd.opcode = CMDQ_OP_CMD_SYNC;
988         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
989 }
990
991 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
992                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
993 {
994         /*
995          * This is hideously complicated, but we only really care about
996          * three cases at the moment:
997          *
998          * 1. Invalid (all zero) -> bypass  (init)
999          * 2. Bypass -> translation (attach)
1000          * 3. Translation -> bypass (detach)
1001          *
1002          * Given that we can't update the STE atomically and the SMMU
1003          * doesn't read the thing in a defined order, that leaves us
1004          * with the following maintenance requirements:
1005          *
1006          * 1. Update Config, return (init time STEs aren't live)
1007          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1008          * 3. Update Config, sync
1009          */
1010         u64 val = le64_to_cpu(dst[0]);
1011         bool ste_live = false;
1012         struct arm_smmu_cmdq_ent prefetch_cmd = {
1013                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1014                 .prefetch       = {
1015                         .sid    = sid,
1016                 },
1017         };
1018
1019         if (val & STRTAB_STE_0_V) {
1020                 u64 cfg;
1021
1022                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1023                 switch (cfg) {
1024                 case STRTAB_STE_0_CFG_BYPASS:
1025                         break;
1026                 case STRTAB_STE_0_CFG_S1_TRANS:
1027                 case STRTAB_STE_0_CFG_S2_TRANS:
1028                         ste_live = true;
1029                         break;
1030                 default:
1031                         BUG(); /* STE corruption */
1032                 }
1033         }
1034
1035         /* Nuke the existing Config, as we're going to rewrite it */
1036         val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1037
1038         if (ste->valid)
1039                 val |= STRTAB_STE_0_V;
1040         else
1041                 val &= ~STRTAB_STE_0_V;
1042
1043         if (ste->bypass) {
1044                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1045                                       : STRTAB_STE_0_CFG_BYPASS;
1046                 dst[0] = cpu_to_le64(val);
1047                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1048                          << STRTAB_STE_1_SHCFG_SHIFT);
1049                 dst[2] = 0; /* Nuke the VMID */
1050                 if (ste_live)
1051                         arm_smmu_sync_ste_for_sid(smmu, sid);
1052                 return;
1053         }
1054
1055         if (ste->s1_cfg) {
1056                 BUG_ON(ste_live);
1057                 dst[1] = cpu_to_le64(
1058                          STRTAB_STE_1_S1C_CACHE_WBRA
1059                          << STRTAB_STE_1_S1CIR_SHIFT |
1060                          STRTAB_STE_1_S1C_CACHE_WBRA
1061                          << STRTAB_STE_1_S1COR_SHIFT |
1062                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1063                          STRTAB_STE_1_S1STALLD |
1064 #ifdef CONFIG_PCI_ATS
1065                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1066 #endif
1067                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1068
1069                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1070                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1071                         STRTAB_STE_0_CFG_S1_TRANS;
1072
1073         }
1074
1075         if (ste->s2_cfg) {
1076                 BUG_ON(ste_live);
1077                 dst[2] = cpu_to_le64(
1078                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1079                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1080                           << STRTAB_STE_2_VTCR_SHIFT |
1081 #ifdef __BIG_ENDIAN
1082                          STRTAB_STE_2_S2ENDI |
1083 #endif
1084                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1085                          STRTAB_STE_2_S2R);
1086
1087                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1088                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1089
1090                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1091         }
1092
1093         arm_smmu_sync_ste_for_sid(smmu, sid);
1094         dst[0] = cpu_to_le64(val);
1095         arm_smmu_sync_ste_for_sid(smmu, sid);
1096
1097         /* It's likely that we'll want to use the new STE soon */
1098         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1099                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1100 }
1101
1102 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1103 {
1104         unsigned int i;
1105         struct arm_smmu_strtab_ent ste = {
1106                 .valid  = true,
1107                 .bypass = true,
1108         };
1109
1110         for (i = 0; i < nent; ++i) {
1111                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1112                 strtab += STRTAB_STE_DWORDS;
1113         }
1114 }
1115
1116 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1117 {
1118         size_t size;
1119         void *strtab;
1120         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1121         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1122
1123         if (desc->l2ptr)
1124                 return 0;
1125
1126         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1127         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1128
1129         desc->span = STRTAB_SPLIT + 1;
1130         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1131                                           GFP_KERNEL | __GFP_ZERO);
1132         if (!desc->l2ptr) {
1133                 dev_err(smmu->dev,
1134                         "failed to allocate l2 stream table for SID %u\n",
1135                         sid);
1136                 return -ENOMEM;
1137         }
1138
1139         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1140         arm_smmu_write_strtab_l1_desc(strtab, desc);
1141         return 0;
1142 }
1143
1144 /* IRQ and event handlers */
1145 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1146 {
1147         int i;
1148         struct arm_smmu_device *smmu = dev;
1149         struct arm_smmu_queue *q = &smmu->evtq.q;
1150         u64 evt[EVTQ_ENT_DWORDS];
1151
1152         while (!queue_remove_raw(q, evt)) {
1153                 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1154
1155                 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1156                 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1157                         dev_info(smmu->dev, "\t0x%016llx\n",
1158                                  (unsigned long long)evt[i]);
1159         }
1160
1161         /* Sync our overflow flag, as we believe we're up to speed */
1162         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1163         return IRQ_HANDLED;
1164 }
1165
1166 static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1167 {
1168         irqreturn_t ret = IRQ_WAKE_THREAD;
1169         struct arm_smmu_device *smmu = dev;
1170         struct arm_smmu_queue *q = &smmu->evtq.q;
1171
1172         /*
1173          * Not much we can do on overflow, so scream and pretend we're
1174          * trying harder.
1175          */
1176         if (queue_sync_prod(q) == -EOVERFLOW)
1177                 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1178         else if (queue_empty(q))
1179                 ret = IRQ_NONE;
1180
1181         return ret;
1182 }
1183
1184 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1185 {
1186         struct arm_smmu_device *smmu = dev;
1187         struct arm_smmu_queue *q = &smmu->priq.q;
1188         u64 evt[PRIQ_ENT_DWORDS];
1189
1190         while (!queue_remove_raw(q, evt)) {
1191                 u32 sid, ssid;
1192                 u16 grpid;
1193                 bool ssv, last;
1194
1195                 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1196                 ssv = evt[0] & PRIQ_0_SSID_V;
1197                 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1198                 last = evt[0] & PRIQ_0_PRG_LAST;
1199                 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1200
1201                 dev_info(smmu->dev, "unexpected PRI request received:\n");
1202                 dev_info(smmu->dev,
1203                          "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1204                          sid, ssid, grpid, last ? "L" : "",
1205                          evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1206                          evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1207                          evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1208                          evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1209                          evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1210
1211                 if (last) {
1212                         struct arm_smmu_cmdq_ent cmd = {
1213                                 .opcode                 = CMDQ_OP_PRI_RESP,
1214                                 .substream_valid        = ssv,
1215                                 .pri                    = {
1216                                         .sid    = sid,
1217                                         .ssid   = ssid,
1218                                         .grpid  = grpid,
1219                                         .resp   = PRI_RESP_DENY,
1220                                 },
1221                         };
1222
1223                         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1224                 }
1225         }
1226
1227         /* Sync our overflow flag, as we believe we're up to speed */
1228         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1229         return IRQ_HANDLED;
1230 }
1231
1232 static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1233 {
1234         irqreturn_t ret = IRQ_WAKE_THREAD;
1235         struct arm_smmu_device *smmu = dev;
1236         struct arm_smmu_queue *q = &smmu->priq.q;
1237
1238         /* PRIQ overflow indicates a programming error */
1239         if (queue_sync_prod(q) == -EOVERFLOW)
1240                 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1241         else if (queue_empty(q))
1242                 ret = IRQ_NONE;
1243
1244         return ret;
1245 }
1246
1247 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1248 {
1249         /* We don't actually use CMD_SYNC interrupts for anything */
1250         return IRQ_HANDLED;
1251 }
1252
1253 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1254
1255 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1256 {
1257         u32 gerror, gerrorn;
1258         struct arm_smmu_device *smmu = dev;
1259
1260         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1261         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1262
1263         gerror ^= gerrorn;
1264         if (!(gerror & GERROR_ERR_MASK))
1265                 return IRQ_NONE; /* No errors pending */
1266
1267         dev_warn(smmu->dev,
1268                  "unexpected global error reported (0x%08x), this could be serious\n",
1269                  gerror);
1270
1271         if (gerror & GERROR_SFM_ERR) {
1272                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1273                 arm_smmu_device_disable(smmu);
1274         }
1275
1276         if (gerror & GERROR_MSI_GERROR_ABT_ERR)
1277                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1278
1279         if (gerror & GERROR_MSI_PRIQ_ABT_ERR) {
1280                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1281                 arm_smmu_priq_handler(irq, smmu->dev);
1282         }
1283
1284         if (gerror & GERROR_MSI_EVTQ_ABT_ERR) {
1285                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1286                 arm_smmu_evtq_handler(irq, smmu->dev);
1287         }
1288
1289         if (gerror & GERROR_MSI_CMDQ_ABT_ERR) {
1290                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1291                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1292         }
1293
1294         if (gerror & GERROR_PRIQ_ABT_ERR)
1295                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1296
1297         if (gerror & GERROR_EVTQ_ABT_ERR)
1298                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1299
1300         if (gerror & GERROR_CMDQ_ERR)
1301                 arm_smmu_cmdq_skip_err(smmu);
1302
1303         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1304         return IRQ_HANDLED;
1305 }
1306
1307 /* IO_PGTABLE API */
1308 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1309 {
1310         struct arm_smmu_cmdq_ent cmd;
1311
1312         cmd.opcode = CMDQ_OP_CMD_SYNC;
1313         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1314 }
1315
1316 static void arm_smmu_tlb_sync(void *cookie)
1317 {
1318         struct arm_smmu_domain *smmu_domain = cookie;
1319         __arm_smmu_tlb_sync(smmu_domain->smmu);
1320 }
1321
1322 static void arm_smmu_tlb_inv_context(void *cookie)
1323 {
1324         struct arm_smmu_domain *smmu_domain = cookie;
1325         struct arm_smmu_device *smmu = smmu_domain->smmu;
1326         struct arm_smmu_cmdq_ent cmd;
1327
1328         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1329                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1330                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1331                 cmd.tlbi.vmid   = 0;
1332         } else {
1333                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1334                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1335         }
1336
1337         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1338         __arm_smmu_tlb_sync(smmu);
1339 }
1340
1341 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1342                                           bool leaf, void *cookie)
1343 {
1344         struct arm_smmu_domain *smmu_domain = cookie;
1345         struct arm_smmu_device *smmu = smmu_domain->smmu;
1346         struct arm_smmu_cmdq_ent cmd = {
1347                 .tlbi = {
1348                         .leaf   = leaf,
1349                         .addr   = iova,
1350                 },
1351         };
1352
1353         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1354                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1355                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1356         } else {
1357                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1358                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1359         }
1360
1361         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1362 }
1363
1364 static struct iommu_gather_ops arm_smmu_gather_ops = {
1365         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1366         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1367         .tlb_sync       = arm_smmu_tlb_sync,
1368 };
1369
1370 /* IOMMU API */
1371 static bool arm_smmu_capable(enum iommu_cap cap)
1372 {
1373         switch (cap) {
1374         case IOMMU_CAP_CACHE_COHERENCY:
1375                 return true;
1376         case IOMMU_CAP_INTR_REMAP:
1377                 return true; /* MSIs are just memory writes */
1378         case IOMMU_CAP_NOEXEC:
1379                 return true;
1380         default:
1381                 return false;
1382         }
1383 }
1384
1385 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1386 {
1387         struct arm_smmu_domain *smmu_domain;
1388
1389         if (type != IOMMU_DOMAIN_UNMANAGED)
1390                 return NULL;
1391
1392         /*
1393          * Allocate the domain and initialise some of its data structures.
1394          * We can't really do anything meaningful until we've added a
1395          * master.
1396          */
1397         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1398         if (!smmu_domain)
1399                 return NULL;
1400
1401         mutex_init(&smmu_domain->init_mutex);
1402         spin_lock_init(&smmu_domain->pgtbl_lock);
1403         return &smmu_domain->domain;
1404 }
1405
1406 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1407 {
1408         int idx, size = 1 << span;
1409
1410         do {
1411                 idx = find_first_zero_bit(map, size);
1412                 if (idx == size)
1413                         return -ENOSPC;
1414         } while (test_and_set_bit(idx, map));
1415
1416         return idx;
1417 }
1418
1419 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1420 {
1421         clear_bit(idx, map);
1422 }
1423
1424 static void arm_smmu_domain_free(struct iommu_domain *domain)
1425 {
1426         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1427         struct arm_smmu_device *smmu = smmu_domain->smmu;
1428
1429         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1430
1431         /* Free the CD and ASID, if we allocated them */
1432         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1433                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1434
1435                 if (cfg->cdptr) {
1436                         dmam_free_coherent(smmu_domain->smmu->dev,
1437                                            CTXDESC_CD_DWORDS << 3,
1438                                            cfg->cdptr,
1439                                            cfg->cdptr_dma);
1440
1441                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1442                 }
1443         } else {
1444                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1445                 if (cfg->vmid)
1446                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1447         }
1448
1449         kfree(smmu_domain);
1450 }
1451
1452 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1453                                        struct io_pgtable_cfg *pgtbl_cfg)
1454 {
1455         int ret;
1456         int asid;
1457         struct arm_smmu_device *smmu = smmu_domain->smmu;
1458         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1459
1460         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1461         if (IS_ERR_VALUE(asid))
1462                 return asid;
1463
1464         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1465                                          &cfg->cdptr_dma,
1466                                          GFP_KERNEL | __GFP_ZERO);
1467         if (!cfg->cdptr) {
1468                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1469                 ret = -ENOMEM;
1470                 goto out_free_asid;
1471         }
1472
1473         cfg->cd.asid    = (u16)asid;
1474         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1475         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1476         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1477         return 0;
1478
1479 out_free_asid:
1480         arm_smmu_bitmap_free(smmu->asid_map, asid);
1481         return ret;
1482 }
1483
1484 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1485                                        struct io_pgtable_cfg *pgtbl_cfg)
1486 {
1487         int vmid;
1488         struct arm_smmu_device *smmu = smmu_domain->smmu;
1489         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1490
1491         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1492         if (IS_ERR_VALUE(vmid))
1493                 return vmid;
1494
1495         cfg->vmid       = (u16)vmid;
1496         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1497         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1498         return 0;
1499 }
1500
1501 static struct iommu_ops arm_smmu_ops;
1502
1503 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1504 {
1505         int ret;
1506         unsigned long ias, oas;
1507         enum io_pgtable_fmt fmt;
1508         struct io_pgtable_cfg pgtbl_cfg;
1509         struct io_pgtable_ops *pgtbl_ops;
1510         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1511                                  struct io_pgtable_cfg *);
1512         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1513         struct arm_smmu_device *smmu = smmu_domain->smmu;
1514
1515         /* Restrict the stage to what we can actually support */
1516         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1517                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1518         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1519                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1520
1521         switch (smmu_domain->stage) {
1522         case ARM_SMMU_DOMAIN_S1:
1523                 ias = VA_BITS;
1524                 oas = smmu->ias;
1525                 fmt = ARM_64_LPAE_S1;
1526                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1527                 break;
1528         case ARM_SMMU_DOMAIN_NESTED:
1529         case ARM_SMMU_DOMAIN_S2:
1530                 ias = smmu->ias;
1531                 oas = smmu->oas;
1532                 fmt = ARM_64_LPAE_S2;
1533                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1534                 break;
1535         default:
1536                 return -EINVAL;
1537         }
1538
1539         pgtbl_cfg = (struct io_pgtable_cfg) {
1540                 .pgsize_bitmap  = arm_smmu_ops.pgsize_bitmap,
1541                 .ias            = ias,
1542                 .oas            = oas,
1543                 .tlb            = &arm_smmu_gather_ops,
1544                 .iommu_dev      = smmu->dev,
1545         };
1546
1547         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1548         if (!pgtbl_ops)
1549                 return -ENOMEM;
1550
1551         arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1552         smmu_domain->pgtbl_ops = pgtbl_ops;
1553
1554         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1555         if (IS_ERR_VALUE(ret))
1556                 free_io_pgtable_ops(pgtbl_ops);
1557
1558         return ret;
1559 }
1560
1561 static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1562 {
1563         struct iommu_group *group;
1564         struct arm_smmu_group *smmu_group;
1565
1566         group = iommu_group_get(dev);
1567         if (!group)
1568                 return NULL;
1569
1570         smmu_group = iommu_group_get_iommudata(group);
1571         iommu_group_put(group);
1572         return smmu_group;
1573 }
1574
1575 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1576 {
1577         __le64 *step;
1578         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1579
1580         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1581                 struct arm_smmu_strtab_l1_desc *l1_desc;
1582                 int idx;
1583
1584                 /* Two-level walk */
1585                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1586                 l1_desc = &cfg->l1_desc[idx];
1587                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1588                 step = &l1_desc->l2ptr[idx];
1589         } else {
1590                 /* Simple linear lookup */
1591                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1592         }
1593
1594         return step;
1595 }
1596
1597 static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1598 {
1599         int i;
1600         struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1601         struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1602         struct arm_smmu_device *smmu = smmu_group->smmu;
1603
1604         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1605                 ste->s1_cfg = &smmu_domain->s1_cfg;
1606                 ste->s2_cfg = NULL;
1607                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1608         } else {
1609                 ste->s1_cfg = NULL;
1610                 ste->s2_cfg = &smmu_domain->s2_cfg;
1611         }
1612
1613         for (i = 0; i < smmu_group->num_sids; ++i) {
1614                 u32 sid = smmu_group->sids[i];
1615                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1616
1617                 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1618         }
1619
1620         return 0;
1621 }
1622
1623 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1624 {
1625         int ret = 0;
1626         struct arm_smmu_device *smmu;
1627         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1628         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1629
1630         if (!smmu_group)
1631                 return -ENOENT;
1632
1633         /* Already attached to a different domain? */
1634         if (smmu_group->domain && smmu_group->domain != smmu_domain)
1635                 return -EEXIST;
1636
1637         smmu = smmu_group->smmu;
1638         mutex_lock(&smmu_domain->init_mutex);
1639
1640         if (!smmu_domain->smmu) {
1641                 smmu_domain->smmu = smmu;
1642                 ret = arm_smmu_domain_finalise(domain);
1643                 if (ret) {
1644                         smmu_domain->smmu = NULL;
1645                         goto out_unlock;
1646                 }
1647         } else if (smmu_domain->smmu != smmu) {
1648                 dev_err(dev,
1649                         "cannot attach to SMMU %s (upstream of %s)\n",
1650                         dev_name(smmu_domain->smmu->dev),
1651                         dev_name(smmu->dev));
1652                 ret = -ENXIO;
1653                 goto out_unlock;
1654         }
1655
1656         /* Group already attached to this domain? */
1657         if (smmu_group->domain)
1658                 goto out_unlock;
1659
1660         smmu_group->domain      = smmu_domain;
1661         smmu_group->ste.bypass  = false;
1662
1663         ret = arm_smmu_install_ste_for_group(smmu_group);
1664         if (IS_ERR_VALUE(ret))
1665                 smmu_group->domain = NULL;
1666
1667 out_unlock:
1668         mutex_unlock(&smmu_domain->init_mutex);
1669         return ret;
1670 }
1671
1672 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1673 {
1674         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1675         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1676
1677         BUG_ON(!smmu_domain);
1678         BUG_ON(!smmu_group);
1679
1680         mutex_lock(&smmu_domain->init_mutex);
1681         BUG_ON(smmu_group->domain != smmu_domain);
1682
1683         smmu_group->ste.bypass = true;
1684         if (IS_ERR_VALUE(arm_smmu_install_ste_for_group(smmu_group)))
1685                 dev_warn(dev, "failed to install bypass STE\n");
1686
1687         smmu_group->domain = NULL;
1688         mutex_unlock(&smmu_domain->init_mutex);
1689 }
1690
1691 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1692                         phys_addr_t paddr, size_t size, int prot)
1693 {
1694         int ret;
1695         unsigned long flags;
1696         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1697         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1698
1699         if (!ops)
1700                 return -ENODEV;
1701
1702         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1703         ret = ops->map(ops, iova, paddr, size, prot);
1704         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1705         return ret;
1706 }
1707
1708 static size_t
1709 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1710 {
1711         size_t ret;
1712         unsigned long flags;
1713         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1714         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1715
1716         if (!ops)
1717                 return 0;
1718
1719         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1720         ret = ops->unmap(ops, iova, size);
1721         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1722         return ret;
1723 }
1724
1725 static phys_addr_t
1726 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1727 {
1728         phys_addr_t ret;
1729         unsigned long flags;
1730         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1731         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1732
1733         if (!ops)
1734                 return 0;
1735
1736         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1737         ret = ops->iova_to_phys(ops, iova);
1738         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1739
1740         return ret;
1741 }
1742
1743 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1744 {
1745         *(u32 *)sidp = alias;
1746         return 0; /* Continue walking */
1747 }
1748
1749 static void __arm_smmu_release_pci_iommudata(void *data)
1750 {
1751         kfree(data);
1752 }
1753
1754 static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1755 {
1756         struct device_node *of_node;
1757         struct platform_device *smmu_pdev;
1758         struct arm_smmu_device *smmu = NULL;
1759         struct pci_bus *bus = pdev->bus;
1760
1761         /* Walk up to the root bus */
1762         while (!pci_is_root_bus(bus))
1763                 bus = bus->parent;
1764
1765         /* Follow the "iommus" phandle from the host controller */
1766         of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1767         if (!of_node)
1768                 return NULL;
1769
1770         /* See if we can find an SMMU corresponding to the phandle */
1771         smmu_pdev = of_find_device_by_node(of_node);
1772         if (smmu_pdev)
1773                 smmu = platform_get_drvdata(smmu_pdev);
1774
1775         of_node_put(of_node);
1776         return smmu;
1777 }
1778
1779 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1780 {
1781         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1782
1783         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1784                 limit *= 1UL << STRTAB_SPLIT;
1785
1786         return sid < limit;
1787 }
1788
1789 static int arm_smmu_add_device(struct device *dev)
1790 {
1791         int i, ret;
1792         u32 sid, *sids;
1793         struct pci_dev *pdev;
1794         struct iommu_group *group;
1795         struct arm_smmu_group *smmu_group;
1796         struct arm_smmu_device *smmu;
1797
1798         /* We only support PCI, for now */
1799         if (!dev_is_pci(dev))
1800                 return -ENODEV;
1801
1802         pdev = to_pci_dev(dev);
1803         group = iommu_group_get_for_dev(dev);
1804         if (IS_ERR(group))
1805                 return PTR_ERR(group);
1806
1807         smmu_group = iommu_group_get_iommudata(group);
1808         if (!smmu_group) {
1809                 smmu = arm_smmu_get_for_pci_dev(pdev);
1810                 if (!smmu) {
1811                         ret = -ENOENT;
1812                         goto out_put_group;
1813                 }
1814
1815                 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1816                 if (!smmu_group) {
1817                         ret = -ENOMEM;
1818                         goto out_put_group;
1819                 }
1820
1821                 smmu_group->ste.valid   = true;
1822                 smmu_group->smmu        = smmu;
1823                 iommu_group_set_iommudata(group, smmu_group,
1824                                           __arm_smmu_release_pci_iommudata);
1825         } else {
1826                 smmu = smmu_group->smmu;
1827         }
1828
1829         /* Assume SID == RID until firmware tells us otherwise */
1830         pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1831         for (i = 0; i < smmu_group->num_sids; ++i) {
1832                 /* If we already know about this SID, then we're done */
1833                 if (smmu_group->sids[i] == sid)
1834                         return 0;
1835         }
1836
1837         /* Check the SID is in range of the SMMU and our stream table */
1838         if (!arm_smmu_sid_in_range(smmu, sid)) {
1839                 ret = -ERANGE;
1840                 goto out_put_group;
1841         }
1842
1843         /* Ensure l2 strtab is initialised */
1844         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1845                 ret = arm_smmu_init_l2_strtab(smmu, sid);
1846                 if (ret)
1847                         goto out_put_group;
1848         }
1849
1850         /* Resize the SID array for the group */
1851         smmu_group->num_sids++;
1852         sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1853                         GFP_KERNEL);
1854         if (!sids) {
1855                 smmu_group->num_sids--;
1856                 ret = -ENOMEM;
1857                 goto out_put_group;
1858         }
1859
1860         /* Add the new SID */
1861         sids[smmu_group->num_sids - 1] = sid;
1862         smmu_group->sids = sids;
1863         return 0;
1864
1865 out_put_group:
1866         iommu_group_put(group);
1867         return ret;
1868 }
1869
1870 static void arm_smmu_remove_device(struct device *dev)
1871 {
1872         iommu_group_remove_device(dev);
1873 }
1874
1875 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1876                                     enum iommu_attr attr, void *data)
1877 {
1878         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1879
1880         switch (attr) {
1881         case DOMAIN_ATTR_NESTING:
1882                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1883                 return 0;
1884         default:
1885                 return -ENODEV;
1886         }
1887 }
1888
1889 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1890                                     enum iommu_attr attr, void *data)
1891 {
1892         int ret = 0;
1893         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1894
1895         mutex_lock(&smmu_domain->init_mutex);
1896
1897         switch (attr) {
1898         case DOMAIN_ATTR_NESTING:
1899                 if (smmu_domain->smmu) {
1900                         ret = -EPERM;
1901                         goto out_unlock;
1902                 }
1903
1904                 if (*(int *)data)
1905                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1906                 else
1907                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1908
1909                 break;
1910         default:
1911                 ret = -ENODEV;
1912         }
1913
1914 out_unlock:
1915         mutex_unlock(&smmu_domain->init_mutex);
1916         return ret;
1917 }
1918
1919 static struct iommu_ops arm_smmu_ops = {
1920         .capable                = arm_smmu_capable,
1921         .domain_alloc           = arm_smmu_domain_alloc,
1922         .domain_free            = arm_smmu_domain_free,
1923         .attach_dev             = arm_smmu_attach_dev,
1924         .detach_dev             = arm_smmu_detach_dev,
1925         .map                    = arm_smmu_map,
1926         .unmap                  = arm_smmu_unmap,
1927         .iova_to_phys           = arm_smmu_iova_to_phys,
1928         .add_device             = arm_smmu_add_device,
1929         .remove_device          = arm_smmu_remove_device,
1930         .device_group           = pci_device_group,
1931         .domain_get_attr        = arm_smmu_domain_get_attr,
1932         .domain_set_attr        = arm_smmu_domain_set_attr,
1933         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1934 };
1935
1936 /* Probing and initialisation functions */
1937 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1938                                    struct arm_smmu_queue *q,
1939                                    unsigned long prod_off,
1940                                    unsigned long cons_off,
1941                                    size_t dwords)
1942 {
1943         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1944
1945         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1946         if (!q->base) {
1947                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1948                         qsz);
1949                 return -ENOMEM;
1950         }
1951
1952         q->prod_reg     = smmu->base + prod_off;
1953         q->cons_reg     = smmu->base + cons_off;
1954         q->ent_dwords   = dwords;
1955
1956         q->q_base  = Q_BASE_RWA;
1957         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1958         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1959                      << Q_BASE_LOG2SIZE_SHIFT;
1960
1961         q->prod = q->cons = 0;
1962         return 0;
1963 }
1964
1965 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1966 {
1967         int ret;
1968
1969         /* cmdq */
1970         spin_lock_init(&smmu->cmdq.lock);
1971         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1972                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1973         if (ret)
1974                 return ret;
1975
1976         /* evtq */
1977         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1978                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1979         if (ret)
1980                 return ret;
1981
1982         /* priq */
1983         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1984                 return 0;
1985
1986         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1987                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1988 }
1989
1990 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1991 {
1992         unsigned int i;
1993         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1994         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1995         void *strtab = smmu->strtab_cfg.strtab;
1996
1997         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1998         if (!cfg->l1_desc) {
1999                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2000                 return -ENOMEM;
2001         }
2002
2003         for (i = 0; i < cfg->num_l1_ents; ++i) {
2004                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2005                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2006         }
2007
2008         return 0;
2009 }
2010
2011 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2012 {
2013         void *strtab;
2014         u64 reg;
2015         u32 size, l1size;
2016         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2017
2018         /*
2019          * If we can resolve everything with a single L2 table, then we
2020          * just need a single L1 descriptor. Otherwise, calculate the L1
2021          * size, capped to the SIDSIZE.
2022          */
2023         if (smmu->sid_bits < STRTAB_SPLIT) {
2024                 size = 0;
2025         } else {
2026                 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2027                 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2028         }
2029         cfg->num_l1_ents = 1 << size;
2030
2031         size += STRTAB_SPLIT;
2032         if (size < smmu->sid_bits)
2033                 dev_warn(smmu->dev,
2034                          "2-level strtab only covers %u/%u bits of SID\n",
2035                          size, smmu->sid_bits);
2036
2037         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2038         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2039                                      GFP_KERNEL | __GFP_ZERO);
2040         if (!strtab) {
2041                 dev_err(smmu->dev,
2042                         "failed to allocate l1 stream table (%u bytes)\n",
2043                         size);
2044                 return -ENOMEM;
2045         }
2046         cfg->strtab = strtab;
2047
2048         /* Configure strtab_base_cfg for 2 levels */
2049         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2050         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2051                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2052         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2053                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2054         cfg->strtab_base_cfg = reg;
2055
2056         return arm_smmu_init_l1_strtab(smmu);
2057 }
2058
2059 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2060 {
2061         void *strtab;
2062         u64 reg;
2063         u32 size;
2064         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2065
2066         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2067         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2068                                      GFP_KERNEL | __GFP_ZERO);
2069         if (!strtab) {
2070                 dev_err(smmu->dev,
2071                         "failed to allocate linear stream table (%u bytes)\n",
2072                         size);
2073                 return -ENOMEM;
2074         }
2075         cfg->strtab = strtab;
2076         cfg->num_l1_ents = 1 << smmu->sid_bits;
2077
2078         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2079         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2080         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2081                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2082         cfg->strtab_base_cfg = reg;
2083
2084         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2085         return 0;
2086 }
2087
2088 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2089 {
2090         u64 reg;
2091         int ret;
2092
2093         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2094                 ret = arm_smmu_init_strtab_2lvl(smmu);
2095         else
2096                 ret = arm_smmu_init_strtab_linear(smmu);
2097
2098         if (ret)
2099                 return ret;
2100
2101         /* Set the strtab base address */
2102         reg  = smmu->strtab_cfg.strtab_dma &
2103                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2104         reg |= STRTAB_BASE_RA;
2105         smmu->strtab_cfg.strtab_base = reg;
2106
2107         /* Allocate the first VMID for stage-2 bypass STEs */
2108         set_bit(0, smmu->vmid_map);
2109         return 0;
2110 }
2111
2112 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2113 {
2114         int ret;
2115
2116         ret = arm_smmu_init_queues(smmu);
2117         if (ret)
2118                 return ret;
2119
2120         return arm_smmu_init_strtab(smmu);
2121 }
2122
2123 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2124                                    unsigned int reg_off, unsigned int ack_off)
2125 {
2126         u32 reg;
2127
2128         writel_relaxed(val, smmu->base + reg_off);
2129         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2130                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2131 }
2132
2133 static void arm_smmu_free_msis(void *data)
2134 {
2135         struct device *dev = data;
2136         platform_msi_domain_free_irqs(dev);
2137 }
2138
2139 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2140 {
2141         phys_addr_t doorbell;
2142         struct device *dev = msi_desc_to_dev(desc);
2143         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2144         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2145
2146         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2147         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2148
2149         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2150         writel_relaxed(msg->data, smmu->base + cfg[1]);
2151         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2152 }
2153
2154 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2155 {
2156         struct msi_desc *desc;
2157         int ret, nvec = ARM_SMMU_MAX_MSIS;
2158         struct device *dev = smmu->dev;
2159
2160         /* Clear the MSI address regs */
2161         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2162         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2163
2164         if (smmu->features & ARM_SMMU_FEAT_PRI)
2165                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2166         else
2167                 nvec--;
2168
2169         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2170                 return;
2171
2172         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2173         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2174         if (ret) {
2175                 dev_warn(dev, "failed to allocate MSIs\n");
2176                 return;
2177         }
2178
2179         for_each_msi_entry(desc, dev) {
2180                 switch (desc->platform.msi_index) {
2181                 case EVTQ_MSI_INDEX:
2182                         smmu->evtq.q.irq = desc->irq;
2183                         break;
2184                 case GERROR_MSI_INDEX:
2185                         smmu->gerr_irq = desc->irq;
2186                         break;
2187                 case PRIQ_MSI_INDEX:
2188                         smmu->priq.q.irq = desc->irq;
2189                         break;
2190                 default:        /* Unknown */
2191                         continue;
2192                 }
2193         }
2194
2195         /* Add callback to free MSIs on teardown */
2196         devm_add_action(dev, arm_smmu_free_msis, dev);
2197 }
2198
2199 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2200 {
2201         int ret, irq;
2202         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2203
2204         /* Disable IRQs first */
2205         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2206                                       ARM_SMMU_IRQ_CTRLACK);
2207         if (ret) {
2208                 dev_err(smmu->dev, "failed to disable irqs\n");
2209                 return ret;
2210         }
2211
2212         arm_smmu_setup_msis(smmu);
2213
2214         /* Request interrupt lines */
2215         irq = smmu->evtq.q.irq;
2216         if (irq) {
2217                 ret = devm_request_threaded_irq(smmu->dev, irq,
2218                                                 arm_smmu_evtq_handler,
2219                                                 arm_smmu_evtq_thread,
2220                                                 0, "arm-smmu-v3-evtq", smmu);
2221                 if (IS_ERR_VALUE(ret))
2222                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2223         }
2224
2225         irq = smmu->cmdq.q.irq;
2226         if (irq) {
2227                 ret = devm_request_irq(smmu->dev, irq,
2228                                        arm_smmu_cmdq_sync_handler, 0,
2229                                        "arm-smmu-v3-cmdq-sync", smmu);
2230                 if (IS_ERR_VALUE(ret))
2231                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2232         }
2233
2234         irq = smmu->gerr_irq;
2235         if (irq) {
2236                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2237                                        0, "arm-smmu-v3-gerror", smmu);
2238                 if (IS_ERR_VALUE(ret))
2239                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2240         }
2241
2242         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2243                 irq = smmu->priq.q.irq;
2244                 if (irq) {
2245                         ret = devm_request_threaded_irq(smmu->dev, irq,
2246                                                         arm_smmu_priq_handler,
2247                                                         arm_smmu_priq_thread,
2248                                                         0, "arm-smmu-v3-priq",
2249                                                         smmu);
2250                         if (IS_ERR_VALUE(ret))
2251                                 dev_warn(smmu->dev,
2252                                          "failed to enable priq irq\n");
2253                         else
2254                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2255                 }
2256         }
2257
2258         /* Enable interrupt generation on the SMMU */
2259         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2260                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2261         if (ret)
2262                 dev_warn(smmu->dev, "failed to enable irqs\n");
2263
2264         return 0;
2265 }
2266
2267 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2268 {
2269         int ret;
2270
2271         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2272         if (ret)
2273                 dev_err(smmu->dev, "failed to clear cr0\n");
2274
2275         return ret;
2276 }
2277
2278 static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2279 {
2280         int ret;
2281         u32 reg, enables;
2282         struct arm_smmu_cmdq_ent cmd;
2283
2284         /* Clear CR0 and sync (disables SMMU and queue processing) */
2285         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2286         if (reg & CR0_SMMUEN)
2287                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2288
2289         ret = arm_smmu_device_disable(smmu);
2290         if (ret)
2291                 return ret;
2292
2293         /* CR1 (table and queue memory attributes) */
2294         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2295               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2296               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2297               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2298               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2299               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2300         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2301
2302         /* CR2 (random crap) */
2303         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2304         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2305
2306         /* Stream table */
2307         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2308                        smmu->base + ARM_SMMU_STRTAB_BASE);
2309         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2310                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2311
2312         /* Command queue */
2313         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2314         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2315         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2316
2317         enables = CR0_CMDQEN;
2318         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2319                                       ARM_SMMU_CR0ACK);
2320         if (ret) {
2321                 dev_err(smmu->dev, "failed to enable command queue\n");
2322                 return ret;
2323         }
2324
2325         /* Invalidate any cached configuration */
2326         cmd.opcode = CMDQ_OP_CFGI_ALL;
2327         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2328         cmd.opcode = CMDQ_OP_CMD_SYNC;
2329         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2330
2331         /* Invalidate any stale TLB entries */
2332         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2333                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2334                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2335         }
2336
2337         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2338         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2339         cmd.opcode = CMDQ_OP_CMD_SYNC;
2340         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2341
2342         /* Event queue */
2343         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2344         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2345         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2346
2347         enables |= CR0_EVTQEN;
2348         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2349                                       ARM_SMMU_CR0ACK);
2350         if (ret) {
2351                 dev_err(smmu->dev, "failed to enable event queue\n");
2352                 return ret;
2353         }
2354
2355         /* PRI queue */
2356         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2357                 writeq_relaxed(smmu->priq.q.q_base,
2358                                smmu->base + ARM_SMMU_PRIQ_BASE);
2359                 writel_relaxed(smmu->priq.q.prod,
2360                                smmu->base + ARM_SMMU_PRIQ_PROD);
2361                 writel_relaxed(smmu->priq.q.cons,
2362                                smmu->base + ARM_SMMU_PRIQ_CONS);
2363
2364                 enables |= CR0_PRIQEN;
2365                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2366                                               ARM_SMMU_CR0ACK);
2367                 if (ret) {
2368                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2369                         return ret;
2370                 }
2371         }
2372
2373         ret = arm_smmu_setup_irqs(smmu);
2374         if (ret) {
2375                 dev_err(smmu->dev, "failed to setup irqs\n");
2376                 return ret;
2377         }
2378
2379         /* Enable the SMMU interface */
2380         enables |= CR0_SMMUEN;
2381         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2382                                       ARM_SMMU_CR0ACK);
2383         if (ret) {
2384                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2385                 return ret;
2386         }
2387
2388         return 0;
2389 }
2390
2391 static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2392 {
2393         u32 reg;
2394         bool coherent;
2395         unsigned long pgsize_bitmap = 0;
2396
2397         /* IDR0 */
2398         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2399
2400         /* 2-level structures */
2401         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2402                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2403
2404         if (reg & IDR0_CD2L)
2405                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2406
2407         /*
2408          * Translation table endianness.
2409          * We currently require the same endianness as the CPU, but this
2410          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2411          */
2412         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2413         case IDR0_TTENDIAN_MIXED:
2414                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2415                 break;
2416 #ifdef __BIG_ENDIAN
2417         case IDR0_TTENDIAN_BE:
2418                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2419                 break;
2420 #else
2421         case IDR0_TTENDIAN_LE:
2422                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2423                 break;
2424 #endif
2425         default:
2426                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2427                 return -ENXIO;
2428         }
2429
2430         /* Boolean feature flags */
2431         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2432                 smmu->features |= ARM_SMMU_FEAT_PRI;
2433
2434         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2435                 smmu->features |= ARM_SMMU_FEAT_ATS;
2436
2437         if (reg & IDR0_SEV)
2438                 smmu->features |= ARM_SMMU_FEAT_SEV;
2439
2440         if (reg & IDR0_MSI)
2441                 smmu->features |= ARM_SMMU_FEAT_MSI;
2442
2443         if (reg & IDR0_HYP)
2444                 smmu->features |= ARM_SMMU_FEAT_HYP;
2445
2446         /*
2447          * The dma-coherent property is used in preference to the ID
2448          * register, but warn on mismatch.
2449          */
2450         coherent = of_dma_is_coherent(smmu->dev->of_node);
2451         if (coherent)
2452                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2453
2454         if (!!(reg & IDR0_COHACC) != coherent)
2455                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2456                          coherent ? "true" : "false");
2457
2458         if (reg & IDR0_STALL_MODEL)
2459                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2460
2461         if (reg & IDR0_S1P)
2462                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2463
2464         if (reg & IDR0_S2P)
2465                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2466
2467         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2468                 dev_err(smmu->dev, "no translation support!\n");
2469                 return -ENXIO;
2470         }
2471
2472         /* We only support the AArch64 table format at present */
2473         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2474         case IDR0_TTF_AARCH32_64:
2475                 smmu->ias = 40;
2476                 /* Fallthrough */
2477         case IDR0_TTF_AARCH64:
2478                 break;
2479         default:
2480                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2481                 return -ENXIO;
2482         }
2483
2484         /* ASID/VMID sizes */
2485         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2486         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2487
2488         /* IDR1 */
2489         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2490         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2491                 dev_err(smmu->dev, "embedded implementation not supported\n");
2492                 return -ENXIO;
2493         }
2494
2495         /* Queue sizes, capped at 4k */
2496         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2497                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2498         if (!smmu->cmdq.q.max_n_shift) {
2499                 /* Odd alignment restrictions on the base, so ignore for now */
2500                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2501                 return -ENXIO;
2502         }
2503
2504         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2505                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2506         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2507                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2508
2509         /* SID/SSID sizes */
2510         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2511         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2512
2513         /* IDR5 */
2514         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2515
2516         /* Maximum number of outstanding stalls */
2517         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2518                                 & IDR5_STALL_MAX_MASK;
2519
2520         /* Page sizes */
2521         if (reg & IDR5_GRAN64K)
2522                 pgsize_bitmap |= SZ_64K | SZ_512M;
2523         if (reg & IDR5_GRAN16K)
2524                 pgsize_bitmap |= SZ_16K | SZ_32M;
2525         if (reg & IDR5_GRAN4K)
2526                 pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2527
2528         arm_smmu_ops.pgsize_bitmap &= pgsize_bitmap;
2529
2530         /* Output address size */
2531         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2532         case IDR5_OAS_32_BIT:
2533                 smmu->oas = 32;
2534                 break;
2535         case IDR5_OAS_36_BIT:
2536                 smmu->oas = 36;
2537                 break;
2538         case IDR5_OAS_40_BIT:
2539                 smmu->oas = 40;
2540                 break;
2541         case IDR5_OAS_42_BIT:
2542                 smmu->oas = 42;
2543                 break;
2544         case IDR5_OAS_44_BIT:
2545                 smmu->oas = 44;
2546                 break;
2547         default:
2548                 dev_info(smmu->dev,
2549                         "unknown output address size. Truncating to 48-bit\n");
2550                 /* Fallthrough */
2551         case IDR5_OAS_48_BIT:
2552                 smmu->oas = 48;
2553         }
2554
2555         /* Set the DMA mask for our table walker */
2556         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2557                 dev_warn(smmu->dev,
2558                          "failed to set DMA mask for table walker\n");
2559
2560         smmu->ias = max(smmu->ias, smmu->oas);
2561
2562         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2563                  smmu->ias, smmu->oas, smmu->features);
2564         return 0;
2565 }
2566
2567 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2568 {
2569         int irq, ret;
2570         struct resource *res;
2571         struct arm_smmu_device *smmu;
2572         struct device *dev = &pdev->dev;
2573
2574         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2575         if (!smmu) {
2576                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2577                 return -ENOMEM;
2578         }
2579         smmu->dev = dev;
2580
2581         /* Base address */
2582         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2583         if (resource_size(res) + 1 < SZ_128K) {
2584                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2585                 return -EINVAL;
2586         }
2587
2588         smmu->base = devm_ioremap_resource(dev, res);
2589         if (IS_ERR(smmu->base))
2590                 return PTR_ERR(smmu->base);
2591
2592         /* Interrupt lines */
2593         irq = platform_get_irq_byname(pdev, "eventq");
2594         if (irq > 0)
2595                 smmu->evtq.q.irq = irq;
2596
2597         irq = platform_get_irq_byname(pdev, "priq");
2598         if (irq > 0)
2599                 smmu->priq.q.irq = irq;
2600
2601         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2602         if (irq > 0)
2603                 smmu->cmdq.q.irq = irq;
2604
2605         irq = platform_get_irq_byname(pdev, "gerror");
2606         if (irq > 0)
2607                 smmu->gerr_irq = irq;
2608
2609         parse_driver_options(smmu);
2610
2611         /* Probe the h/w */
2612         ret = arm_smmu_device_probe(smmu);
2613         if (ret)
2614                 return ret;
2615
2616         /* Initialise in-memory data structures */
2617         ret = arm_smmu_init_structures(smmu);
2618         if (ret)
2619                 return ret;
2620
2621         /* Record our private device structure */
2622         platform_set_drvdata(pdev, smmu);
2623
2624         /* Reset the device */
2625         return arm_smmu_device_reset(smmu);
2626 }
2627
2628 static int arm_smmu_device_remove(struct platform_device *pdev)
2629 {
2630         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2631
2632         arm_smmu_device_disable(smmu);
2633         return 0;
2634 }
2635
2636 static struct of_device_id arm_smmu_of_match[] = {
2637         { .compatible = "arm,smmu-v3", },
2638         { },
2639 };
2640 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2641
2642 static struct platform_driver arm_smmu_driver = {
2643         .driver = {
2644                 .name           = "arm-smmu-v3",
2645                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2646         },
2647         .probe  = arm_smmu_device_dt_probe,
2648         .remove = arm_smmu_device_remove,
2649 };
2650
2651 static int __init arm_smmu_init(void)
2652 {
2653         struct device_node *np;
2654         int ret;
2655
2656         np = of_find_matching_node(NULL, arm_smmu_of_match);
2657         if (!np)
2658                 return 0;
2659
2660         of_node_put(np);
2661
2662         ret = platform_driver_register(&arm_smmu_driver);
2663         if (ret)
2664                 return ret;
2665
2666         return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2667 }
2668
2669 static void __exit arm_smmu_exit(void)
2670 {
2671         return platform_driver_unregister(&arm_smmu_driver);
2672 }
2673
2674 subsys_initcall(arm_smmu_init);
2675 module_exit(arm_smmu_exit);
2676
2677 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2678 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2679 MODULE_LICENSE("GPL v2");