x86/speculation: Fix redundant MDS mitigation message
[linux-2.6-block.git] / drivers / infiniband / hw / hfi1 / init.c
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/xarray.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <linux/bitmap.h>
57 #include <linux/numa.h>
58 #include <rdma/rdma_vt.h>
59
60 #include "hfi.h"
61 #include "device.h"
62 #include "common.h"
63 #include "trace.h"
64 #include "mad.h"
65 #include "sdma.h"
66 #include "debugfs.h"
67 #include "verbs.h"
68 #include "aspm.h"
69 #include "affinity.h"
70 #include "vnic.h"
71 #include "exp_rcv.h"
72
73 #undef pr_fmt
74 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
75
76 /*
77  * min buffers we want to have per context, after driver
78  */
79 #define HFI1_MIN_USER_CTXT_BUFCNT 7
80
81 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
82 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
83 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
84 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
85
86 #define NUM_IB_PORTS 1
87
88 /*
89  * Number of user receive contexts we are configured to use (to allow for more
90  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
91  */
92 int num_user_contexts = -1;
93 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
94 MODULE_PARM_DESC(
95         num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
96
97 uint krcvqs[RXE_NUM_DATA_VL];
98 int krcvqsset;
99 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
100 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
101
102 /* computed based on above array */
103 unsigned long n_krcvqs;
104
105 static unsigned hfi1_rcvarr_split = 25;
106 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
107 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
108
109 static uint eager_buffer_size = (8 << 20); /* 8MB */
110 module_param(eager_buffer_size, uint, S_IRUGO);
111 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
112
113 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
114 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
115 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
116
117 static uint hfi1_hdrq_entsize = 32;
118 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
119 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
120
121 unsigned int user_credit_return_threshold = 33; /* default is 33% */
122 module_param(user_credit_return_threshold, uint, S_IRUGO);
123 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
124
125 static inline u64 encode_rcv_header_entry_size(u16 size);
126
127 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
128
129 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
130                              struct hfi1_pportdata *ppd)
131 {
132         struct hfi1_ctxtdata *rcd;
133         int ret;
134
135         /* Control context has to be always 0 */
136         BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
137
138         ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
139         if (ret < 0) {
140                 dd_dev_err(dd, "Kernel receive context allocation failed\n");
141                 return ret;
142         }
143
144         /*
145          * Set up the kernel context flags here and now because they use
146          * default values for all receive side memories.  User contexts will
147          * be handled as they are created.
148          */
149         rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
150                 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
151                 HFI1_CAP_KGET(NODROP_EGR_FULL) |
152                 HFI1_CAP_KGET(DMA_RTAIL);
153
154         /* Control context must use DMA_RTAIL */
155         if (rcd->ctxt == HFI1_CTRL_CTXT)
156                 rcd->flags |= HFI1_CAP_DMA_RTAIL;
157         rcd->seq_cnt = 1;
158
159         rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
160         if (!rcd->sc) {
161                 dd_dev_err(dd, "Kernel send context allocation failed\n");
162                 return -ENOMEM;
163         }
164         hfi1_init_ctxt(rcd->sc);
165
166         return 0;
167 }
168
169 /*
170  * Create the receive context array and one or more kernel contexts
171  */
172 int hfi1_create_kctxts(struct hfi1_devdata *dd)
173 {
174         u16 i;
175         int ret;
176
177         dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
178                                GFP_KERNEL, dd->node);
179         if (!dd->rcd)
180                 return -ENOMEM;
181
182         for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
183                 ret = hfi1_create_kctxt(dd, dd->pport);
184                 if (ret)
185                         goto bail;
186         }
187
188         return 0;
189 bail:
190         for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
191                 hfi1_free_ctxt(dd->rcd[i]);
192
193         /* All the contexts should be freed, free the array */
194         kfree(dd->rcd);
195         dd->rcd = NULL;
196         return ret;
197 }
198
199 /*
200  * Helper routines for the receive context reference count (rcd and uctxt).
201  */
202 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
203 {
204         kref_init(&rcd->kref);
205 }
206
207 /**
208  * hfi1_rcd_free - When reference is zero clean up.
209  * @kref: pointer to an initialized rcd data structure
210  *
211  */
212 static void hfi1_rcd_free(struct kref *kref)
213 {
214         unsigned long flags;
215         struct hfi1_ctxtdata *rcd =
216                 container_of(kref, struct hfi1_ctxtdata, kref);
217
218         spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
219         rcd->dd->rcd[rcd->ctxt] = NULL;
220         spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
221
222         hfi1_free_ctxtdata(rcd->dd, rcd);
223
224         kfree(rcd);
225 }
226
227 /**
228  * hfi1_rcd_put - decrement reference for rcd
229  * @rcd: pointer to an initialized rcd data structure
230  *
231  * Use this to put a reference after the init.
232  */
233 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
234 {
235         if (rcd)
236                 return kref_put(&rcd->kref, hfi1_rcd_free);
237
238         return 0;
239 }
240
241 /**
242  * hfi1_rcd_get - increment reference for rcd
243  * @rcd: pointer to an initialized rcd data structure
244  *
245  * Use this to get a reference after the init.
246  *
247  * Return : reflect kref_get_unless_zero(), which returns non-zero on
248  * increment, otherwise 0.
249  */
250 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
251 {
252         return kref_get_unless_zero(&rcd->kref);
253 }
254
255 /**
256  * allocate_rcd_index - allocate an rcd index from the rcd array
257  * @dd: pointer to a valid devdata structure
258  * @rcd: rcd data structure to assign
259  * @index: pointer to index that is allocated
260  *
261  * Find an empty index in the rcd array, and assign the given rcd to it.
262  * If the array is full, we are EBUSY.
263  *
264  */
265 static int allocate_rcd_index(struct hfi1_devdata *dd,
266                               struct hfi1_ctxtdata *rcd, u16 *index)
267 {
268         unsigned long flags;
269         u16 ctxt;
270
271         spin_lock_irqsave(&dd->uctxt_lock, flags);
272         for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
273                 if (!dd->rcd[ctxt])
274                         break;
275
276         if (ctxt < dd->num_rcv_contexts) {
277                 rcd->ctxt = ctxt;
278                 dd->rcd[ctxt] = rcd;
279                 hfi1_rcd_init(rcd);
280         }
281         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
282
283         if (ctxt >= dd->num_rcv_contexts)
284                 return -EBUSY;
285
286         *index = ctxt;
287
288         return 0;
289 }
290
291 /**
292  * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
293  * array
294  * @dd: pointer to a valid devdata structure
295  * @ctxt: the index of an possilbe rcd
296  *
297  * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
298  * ctxt index is valid.
299  *
300  * The caller is responsible for making the _put().
301  *
302  */
303 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
304                                                  u16 ctxt)
305 {
306         if (ctxt < dd->num_rcv_contexts)
307                 return hfi1_rcd_get_by_index(dd, ctxt);
308
309         return NULL;
310 }
311
312 /**
313  * hfi1_rcd_get_by_index
314  * @dd: pointer to a valid devdata structure
315  * @ctxt: the index of an possilbe rcd
316  *
317  * We need to protect access to the rcd array.  If access is needed to
318  * one or more index, get the protecting spinlock and then increment the
319  * kref.
320  *
321  * The caller is responsible for making the _put().
322  *
323  */
324 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
325 {
326         unsigned long flags;
327         struct hfi1_ctxtdata *rcd = NULL;
328
329         spin_lock_irqsave(&dd->uctxt_lock, flags);
330         if (dd->rcd[ctxt]) {
331                 rcd = dd->rcd[ctxt];
332                 if (!hfi1_rcd_get(rcd))
333                         rcd = NULL;
334         }
335         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
336
337         return rcd;
338 }
339
340 /*
341  * Common code for user and kernel context create and setup.
342  * NOTE: the initial kref is done here (hf1_rcd_init()).
343  */
344 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
345                          struct hfi1_ctxtdata **context)
346 {
347         struct hfi1_devdata *dd = ppd->dd;
348         struct hfi1_ctxtdata *rcd;
349         unsigned kctxt_ngroups = 0;
350         u32 base;
351
352         if (dd->rcv_entries.nctxt_extra >
353             dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
354                 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
355                          (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
356         rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
357         if (rcd) {
358                 u32 rcvtids, max_entries;
359                 u16 ctxt;
360                 int ret;
361
362                 ret = allocate_rcd_index(dd, rcd, &ctxt);
363                 if (ret) {
364                         *context = NULL;
365                         kfree(rcd);
366                         return ret;
367                 }
368
369                 INIT_LIST_HEAD(&rcd->qp_wait_list);
370                 hfi1_exp_tid_group_init(rcd);
371                 rcd->ppd = ppd;
372                 rcd->dd = dd;
373                 rcd->numa_id = numa;
374                 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
375                 rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
376
377                 mutex_init(&rcd->exp_mutex);
378                 spin_lock_init(&rcd->exp_lock);
379                 INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
380                 INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
381
382                 hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
383
384                 /*
385                  * Calculate the context's RcvArray entry starting point.
386                  * We do this here because we have to take into account all
387                  * the RcvArray entries that previous context would have
388                  * taken and we have to account for any extra groups assigned
389                  * to the static (kernel) or dynamic (vnic/user) contexts.
390                  */
391                 if (ctxt < dd->first_dyn_alloc_ctxt) {
392                         if (ctxt < kctxt_ngroups) {
393                                 base = ctxt * (dd->rcv_entries.ngroups + 1);
394                                 rcd->rcv_array_groups++;
395                         } else {
396                                 base = kctxt_ngroups +
397                                         (ctxt * dd->rcv_entries.ngroups);
398                         }
399                 } else {
400                         u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
401
402                         base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
403                                 kctxt_ngroups);
404                         if (ct < dd->rcv_entries.nctxt_extra) {
405                                 base += ct * (dd->rcv_entries.ngroups + 1);
406                                 rcd->rcv_array_groups++;
407                         } else {
408                                 base += dd->rcv_entries.nctxt_extra +
409                                         (ct * dd->rcv_entries.ngroups);
410                         }
411                 }
412                 rcd->eager_base = base * dd->rcv_entries.group_size;
413
414                 rcd->rcvhdrq_cnt = rcvhdrcnt;
415                 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
416                 rcd->rhf_offset =
417                         rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
418                 /*
419                  * Simple Eager buffer allocation: we have already pre-allocated
420                  * the number of RcvArray entry groups. Each ctxtdata structure
421                  * holds the number of groups for that context.
422                  *
423                  * To follow CSR requirements and maintain cacheline alignment,
424                  * make sure all sizes and bases are multiples of group_size.
425                  *
426                  * The expected entry count is what is left after assigning
427                  * eager.
428                  */
429                 max_entries = rcd->rcv_array_groups *
430                         dd->rcv_entries.group_size;
431                 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
432                 rcd->egrbufs.count = round_down(rcvtids,
433                                                 dd->rcv_entries.group_size);
434                 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
435                         dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
436                                    rcd->ctxt);
437                         rcd->egrbufs.count = MAX_EAGER_ENTRIES;
438                 }
439                 hfi1_cdbg(PROC,
440                           "ctxt%u: max Eager buffer RcvArray entries: %u\n",
441                           rcd->ctxt, rcd->egrbufs.count);
442
443                 /*
444                  * Allocate array that will hold the eager buffer accounting
445                  * data.
446                  * This will allocate the maximum possible buffer count based
447                  * on the value of the RcvArray split parameter.
448                  * The resulting value will be rounded down to the closest
449                  * multiple of dd->rcv_entries.group_size.
450                  */
451                 rcd->egrbufs.buffers =
452                         kcalloc_node(rcd->egrbufs.count,
453                                      sizeof(*rcd->egrbufs.buffers),
454                                      GFP_KERNEL, numa);
455                 if (!rcd->egrbufs.buffers)
456                         goto bail;
457                 rcd->egrbufs.rcvtids =
458                         kcalloc_node(rcd->egrbufs.count,
459                                      sizeof(*rcd->egrbufs.rcvtids),
460                                      GFP_KERNEL, numa);
461                 if (!rcd->egrbufs.rcvtids)
462                         goto bail;
463                 rcd->egrbufs.size = eager_buffer_size;
464                 /*
465                  * The size of the buffers programmed into the RcvArray
466                  * entries needs to be big enough to handle the highest
467                  * MTU supported.
468                  */
469                 if (rcd->egrbufs.size < hfi1_max_mtu) {
470                         rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
471                         hfi1_cdbg(PROC,
472                                   "ctxt%u: eager bufs size too small. Adjusting to %u\n",
473                                     rcd->ctxt, rcd->egrbufs.size);
474                 }
475                 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
476
477                 /* Applicable only for statically created kernel contexts */
478                 if (ctxt < dd->first_dyn_alloc_ctxt) {
479                         rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
480                                                     GFP_KERNEL, numa);
481                         if (!rcd->opstats)
482                                 goto bail;
483
484                         /* Initialize TID flow generations for the context */
485                         hfi1_kern_init_ctxt_generations(rcd);
486                 }
487
488                 *context = rcd;
489                 return 0;
490         }
491
492 bail:
493         *context = NULL;
494         hfi1_free_ctxt(rcd);
495         return -ENOMEM;
496 }
497
498 /**
499  * hfi1_free_ctxt
500  * @rcd: pointer to an initialized rcd data structure
501  *
502  * This wrapper is the free function that matches hfi1_create_ctxtdata().
503  * When a context is done being used (kernel or user), this function is called
504  * for the "final" put to match the kref init from hf1i_create_ctxtdata().
505  * Other users of the context do a get/put sequence to make sure that the
506  * structure isn't removed while in use.
507  */
508 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
509 {
510         hfi1_rcd_put(rcd);
511 }
512
513 /*
514  * Convert a receive header entry size that to the encoding used in the CSR.
515  *
516  * Return a zero if the given size is invalid.
517  */
518 static inline u64 encode_rcv_header_entry_size(u16 size)
519 {
520         /* there are only 3 valid receive header entry sizes */
521         if (size == 2)
522                 return 1;
523         if (size == 16)
524                 return 2;
525         else if (size == 32)
526                 return 4;
527         return 0; /* invalid */
528 }
529
530 /*
531  * Select the largest ccti value over all SLs to determine the intra-
532  * packet gap for the link.
533  *
534  * called with cca_timer_lock held (to protect access to cca_timer
535  * array), and rcu_read_lock() (to protect access to cc_state).
536  */
537 void set_link_ipg(struct hfi1_pportdata *ppd)
538 {
539         struct hfi1_devdata *dd = ppd->dd;
540         struct cc_state *cc_state;
541         int i;
542         u16 cce, ccti_limit, max_ccti = 0;
543         u16 shift, mult;
544         u64 src;
545         u32 current_egress_rate; /* Mbits /sec */
546         u32 max_pkt_time;
547         /*
548          * max_pkt_time is the maximum packet egress time in units
549          * of the fabric clock period 1/(805 MHz).
550          */
551
552         cc_state = get_cc_state(ppd);
553
554         if (!cc_state)
555                 /*
556                  * This should _never_ happen - rcu_read_lock() is held,
557                  * and set_link_ipg() should not be called if cc_state
558                  * is NULL.
559                  */
560                 return;
561
562         for (i = 0; i < OPA_MAX_SLS; i++) {
563                 u16 ccti = ppd->cca_timer[i].ccti;
564
565                 if (ccti > max_ccti)
566                         max_ccti = ccti;
567         }
568
569         ccti_limit = cc_state->cct.ccti_limit;
570         if (max_ccti > ccti_limit)
571                 max_ccti = ccti_limit;
572
573         cce = cc_state->cct.entries[max_ccti].entry;
574         shift = (cce & 0xc000) >> 14;
575         mult = (cce & 0x3fff);
576
577         current_egress_rate = active_egress_rate(ppd);
578
579         max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
580
581         src = (max_pkt_time >> shift) * mult;
582
583         src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
584         src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
585
586         write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
587 }
588
589 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
590 {
591         struct cca_timer *cca_timer;
592         struct hfi1_pportdata *ppd;
593         int sl;
594         u16 ccti_timer, ccti_min;
595         struct cc_state *cc_state;
596         unsigned long flags;
597         enum hrtimer_restart ret = HRTIMER_NORESTART;
598
599         cca_timer = container_of(t, struct cca_timer, hrtimer);
600         ppd = cca_timer->ppd;
601         sl = cca_timer->sl;
602
603         rcu_read_lock();
604
605         cc_state = get_cc_state(ppd);
606
607         if (!cc_state) {
608                 rcu_read_unlock();
609                 return HRTIMER_NORESTART;
610         }
611
612         /*
613          * 1) decrement ccti for SL
614          * 2) calculate IPG for link (set_link_ipg())
615          * 3) restart timer, unless ccti is at min value
616          */
617
618         ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
619         ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
620
621         spin_lock_irqsave(&ppd->cca_timer_lock, flags);
622
623         if (cca_timer->ccti > ccti_min) {
624                 cca_timer->ccti--;
625                 set_link_ipg(ppd);
626         }
627
628         if (cca_timer->ccti > ccti_min) {
629                 unsigned long nsec = 1024 * ccti_timer;
630                 /* ccti_timer is in units of 1.024 usec */
631                 hrtimer_forward_now(t, ns_to_ktime(nsec));
632                 ret = HRTIMER_RESTART;
633         }
634
635         spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
636         rcu_read_unlock();
637         return ret;
638 }
639
640 /*
641  * Common code for initializing the physical port structure.
642  */
643 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
644                          struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
645 {
646         int i;
647         uint default_pkey_idx;
648         struct cc_state *cc_state;
649
650         ppd->dd = dd;
651         ppd->hw_pidx = hw_pidx;
652         ppd->port = port; /* IB port number, not index */
653         ppd->prev_link_width = LINK_WIDTH_DEFAULT;
654         /*
655          * There are C_VL_COUNT number of PortVLXmitWait counters.
656          * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
657          */
658         for (i = 0; i < C_VL_COUNT + 1; i++) {
659                 ppd->port_vl_xmit_wait_last[i] = 0;
660                 ppd->vl_xmit_flit_cnt[i] = 0;
661         }
662
663         default_pkey_idx = 1;
664
665         ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
666         ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
667
668         if (loopback) {
669                 dd_dev_err(dd, "Faking data partition 0x8001 in idx %u\n",
670                            !default_pkey_idx);
671                 ppd->pkeys[!default_pkey_idx] = 0x8001;
672         }
673
674         INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
675         INIT_WORK(&ppd->link_up_work, handle_link_up);
676         INIT_WORK(&ppd->link_down_work, handle_link_down);
677         INIT_WORK(&ppd->freeze_work, handle_freeze);
678         INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
679         INIT_WORK(&ppd->sma_message_work, handle_sma_message);
680         INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
681         INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
682         INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
683         INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
684
685         mutex_init(&ppd->hls_lock);
686         spin_lock_init(&ppd->qsfp_info.qsfp_lock);
687
688         ppd->qsfp_info.ppd = ppd;
689         ppd->sm_trap_qp = 0x0;
690         ppd->sa_qp = 0x1;
691
692         ppd->hfi1_wq = NULL;
693
694         spin_lock_init(&ppd->cca_timer_lock);
695
696         for (i = 0; i < OPA_MAX_SLS; i++) {
697                 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
698                              HRTIMER_MODE_REL);
699                 ppd->cca_timer[i].ppd = ppd;
700                 ppd->cca_timer[i].sl = i;
701                 ppd->cca_timer[i].ccti = 0;
702                 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
703         }
704
705         ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
706
707         spin_lock_init(&ppd->cc_state_lock);
708         spin_lock_init(&ppd->cc_log_lock);
709         cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
710         RCU_INIT_POINTER(ppd->cc_state, cc_state);
711         if (!cc_state)
712                 goto bail;
713         return;
714
715 bail:
716         dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
717 }
718
719 /*
720  * Do initialization for device that is only needed on
721  * first detect, not on resets.
722  */
723 static int loadtime_init(struct hfi1_devdata *dd)
724 {
725         return 0;
726 }
727
728 /**
729  * init_after_reset - re-initialize after a reset
730  * @dd: the hfi1_ib device
731  *
732  * sanity check at least some of the values after reset, and
733  * ensure no receive or transmit (explicitly, in case reset
734  * failed
735  */
736 static int init_after_reset(struct hfi1_devdata *dd)
737 {
738         int i;
739         struct hfi1_ctxtdata *rcd;
740         /*
741          * Ensure chip does no sends or receives, tail updates, or
742          * pioavail updates while we re-initialize.  This is mostly
743          * for the driver data structures, not chip registers.
744          */
745         for (i = 0; i < dd->num_rcv_contexts; i++) {
746                 rcd = hfi1_rcd_get_by_index(dd, i);
747                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
748                              HFI1_RCVCTRL_INTRAVAIL_DIS |
749                              HFI1_RCVCTRL_TAILUPD_DIS, rcd);
750                 hfi1_rcd_put(rcd);
751         }
752         pio_send_control(dd, PSC_GLOBAL_DISABLE);
753         for (i = 0; i < dd->num_send_contexts; i++)
754                 sc_disable(dd->send_contexts[i].sc);
755
756         return 0;
757 }
758
759 static void enable_chip(struct hfi1_devdata *dd)
760 {
761         struct hfi1_ctxtdata *rcd;
762         u32 rcvmask;
763         u16 i;
764
765         /* enable PIO send */
766         pio_send_control(dd, PSC_GLOBAL_ENABLE);
767
768         /*
769          * Enable kernel ctxts' receive and receive interrupt.
770          * Other ctxts done as user opens and initializes them.
771          */
772         for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
773                 rcd = hfi1_rcd_get_by_index(dd, i);
774                 if (!rcd)
775                         continue;
776                 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
777                 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
778                         HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
779                 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
780                         rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
781                 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
782                         rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
783                 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
784                         rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
785                 if (HFI1_CAP_IS_KSET(TID_RDMA))
786                         rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
787                 hfi1_rcvctrl(dd, rcvmask, rcd);
788                 sc_enable(rcd->sc);
789                 hfi1_rcd_put(rcd);
790         }
791 }
792
793 /**
794  * create_workqueues - create per port workqueues
795  * @dd: the hfi1_ib device
796  */
797 static int create_workqueues(struct hfi1_devdata *dd)
798 {
799         int pidx;
800         struct hfi1_pportdata *ppd;
801
802         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
803                 ppd = dd->pport + pidx;
804                 if (!ppd->hfi1_wq) {
805                         ppd->hfi1_wq =
806                                 alloc_workqueue(
807                                     "hfi%d_%d",
808                                     WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
809                                     WQ_MEM_RECLAIM,
810                                     HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
811                                     dd->unit, pidx);
812                         if (!ppd->hfi1_wq)
813                                 goto wq_error;
814                 }
815                 if (!ppd->link_wq) {
816                         /*
817                          * Make the link workqueue single-threaded to enforce
818                          * serialization.
819                          */
820                         ppd->link_wq =
821                                 alloc_workqueue(
822                                     "hfi_link_%d_%d",
823                                     WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
824                                     1, /* max_active */
825                                     dd->unit, pidx);
826                         if (!ppd->link_wq)
827                                 goto wq_error;
828                 }
829         }
830         return 0;
831 wq_error:
832         pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
833         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
834                 ppd = dd->pport + pidx;
835                 if (ppd->hfi1_wq) {
836                         destroy_workqueue(ppd->hfi1_wq);
837                         ppd->hfi1_wq = NULL;
838                 }
839                 if (ppd->link_wq) {
840                         destroy_workqueue(ppd->link_wq);
841                         ppd->link_wq = NULL;
842                 }
843         }
844         return -ENOMEM;
845 }
846
847 /**
848  * enable_general_intr() - Enable the IRQs that will be handled by the
849  * general interrupt handler.
850  * @dd: valid devdata
851  *
852  */
853 static void enable_general_intr(struct hfi1_devdata *dd)
854 {
855         set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
856         set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
857         set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
858         set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
859         set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
860         set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
861         set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
862 }
863
864 /**
865  * hfi1_init - do the actual initialization sequence on the chip
866  * @dd: the hfi1_ib device
867  * @reinit: re-initializing, so don't allocate new memory
868  *
869  * Do the actual initialization sequence on the chip.  This is done
870  * both from the init routine called from the PCI infrastructure, and
871  * when we reset the chip, or detect that it was reset internally,
872  * or it's administratively re-enabled.
873  *
874  * Memory allocation here and in called routines is only done in
875  * the first case (reinit == 0).  We have to be careful, because even
876  * without memory allocation, we need to re-write all the chip registers
877  * TIDs, etc. after the reset or enable has completed.
878  */
879 int hfi1_init(struct hfi1_devdata *dd, int reinit)
880 {
881         int ret = 0, pidx, lastfail = 0;
882         unsigned long len;
883         u16 i;
884         struct hfi1_ctxtdata *rcd;
885         struct hfi1_pportdata *ppd;
886
887         /* Set up send low level handlers */
888         dd->process_pio_send = hfi1_verbs_send_pio;
889         dd->process_dma_send = hfi1_verbs_send_dma;
890         dd->pio_inline_send = pio_copy;
891         dd->process_vnic_dma_send = hfi1_vnic_send_dma;
892
893         if (is_ax(dd)) {
894                 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
895                 dd->do_drop = 1;
896         } else {
897                 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
898                 dd->do_drop = 0;
899         }
900
901         /* make sure the link is not "up" */
902         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
903                 ppd = dd->pport + pidx;
904                 ppd->linkup = 0;
905         }
906
907         if (reinit)
908                 ret = init_after_reset(dd);
909         else
910                 ret = loadtime_init(dd);
911         if (ret)
912                 goto done;
913
914         /* allocate dummy tail memory for all receive contexts */
915         dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
916                                                          sizeof(u64),
917                                                          &dd->rcvhdrtail_dummy_dma,
918                                                          GFP_KERNEL);
919
920         if (!dd->rcvhdrtail_dummy_kvaddr) {
921                 dd_dev_err(dd, "cannot allocate dummy tail memory\n");
922                 ret = -ENOMEM;
923                 goto done;
924         }
925
926         /* dd->rcd can be NULL if early initialization failed */
927         for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
928                 /*
929                  * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
930                  * re-init, the simplest way to handle this is to free
931                  * existing, and re-allocate.
932                  * Need to re-create rest of ctxt 0 ctxtdata as well.
933                  */
934                 rcd = hfi1_rcd_get_by_index(dd, i);
935                 if (!rcd)
936                         continue;
937
938                 rcd->do_interrupt = &handle_receive_interrupt;
939
940                 lastfail = hfi1_create_rcvhdrq(dd, rcd);
941                 if (!lastfail)
942                         lastfail = hfi1_setup_eagerbufs(rcd);
943                 if (!lastfail)
944                         lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
945                 if (lastfail) {
946                         dd_dev_err(dd,
947                                    "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
948                         ret = lastfail;
949                 }
950                 /* enable IRQ */
951                 hfi1_rcd_put(rcd);
952         }
953
954         /* Allocate enough memory for user event notification. */
955         len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
956                          sizeof(*dd->events));
957         dd->events = vmalloc_user(len);
958         if (!dd->events)
959                 dd_dev_err(dd, "Failed to allocate user events page\n");
960         /*
961          * Allocate a page for device and port status.
962          * Page will be shared amongst all user processes.
963          */
964         dd->status = vmalloc_user(PAGE_SIZE);
965         if (!dd->status)
966                 dd_dev_err(dd, "Failed to allocate dev status page\n");
967         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
968                 ppd = dd->pport + pidx;
969                 if (dd->status)
970                         /* Currently, we only have one port */
971                         ppd->statusp = &dd->status->port;
972
973                 set_mtu(ppd);
974         }
975
976         /* enable chip even if we have an error, so we can debug cause */
977         enable_chip(dd);
978
979 done:
980         /*
981          * Set status even if port serdes is not initialized
982          * so that diags will work.
983          */
984         if (dd->status)
985                 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
986                         HFI1_STATUS_INITTED;
987         if (!ret) {
988                 /* enable all interrupts from the chip */
989                 enable_general_intr(dd);
990                 init_qsfp_int(dd);
991
992                 /* chip is OK for user apps; mark it as initialized */
993                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
994                         ppd = dd->pport + pidx;
995
996                         /*
997                          * start the serdes - must be after interrupts are
998                          * enabled so we are notified when the link goes up
999                          */
1000                         lastfail = bringup_serdes(ppd);
1001                         if (lastfail)
1002                                 dd_dev_info(dd,
1003                                             "Failed to bring up port %u\n",
1004                                             ppd->port);
1005
1006                         /*
1007                          * Set status even if port serdes is not initialized
1008                          * so that diags will work.
1009                          */
1010                         if (ppd->statusp)
1011                                 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
1012                                                         HFI1_STATUS_INITTED;
1013                         if (!ppd->link_speed_enabled)
1014                                 continue;
1015                 }
1016         }
1017
1018         /* if ret is non-zero, we probably should do some cleanup here... */
1019         return ret;
1020 }
1021
1022 struct hfi1_devdata *hfi1_lookup(int unit)
1023 {
1024         return xa_load(&hfi1_dev_table, unit);
1025 }
1026
1027 /*
1028  * Stop the timers during unit shutdown, or after an error late
1029  * in initialization.
1030  */
1031 static void stop_timers(struct hfi1_devdata *dd)
1032 {
1033         struct hfi1_pportdata *ppd;
1034         int pidx;
1035
1036         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1037                 ppd = dd->pport + pidx;
1038                 if (ppd->led_override_timer.function) {
1039                         del_timer_sync(&ppd->led_override_timer);
1040                         atomic_set(&ppd->led_override_timer_active, 0);
1041                 }
1042         }
1043 }
1044
1045 /**
1046  * shutdown_device - shut down a device
1047  * @dd: the hfi1_ib device
1048  *
1049  * This is called to make the device quiet when we are about to
1050  * unload the driver, and also when the device is administratively
1051  * disabled.   It does not free any data structures.
1052  * Everything it does has to be setup again by hfi1_init(dd, 1)
1053  */
1054 static void shutdown_device(struct hfi1_devdata *dd)
1055 {
1056         struct hfi1_pportdata *ppd;
1057         struct hfi1_ctxtdata *rcd;
1058         unsigned pidx;
1059         int i;
1060
1061         if (dd->flags & HFI1_SHUTDOWN)
1062                 return;
1063         dd->flags |= HFI1_SHUTDOWN;
1064
1065         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1066                 ppd = dd->pport + pidx;
1067
1068                 ppd->linkup = 0;
1069                 if (ppd->statusp)
1070                         *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1071                                            HFI1_STATUS_IB_READY);
1072         }
1073         dd->flags &= ~HFI1_INITTED;
1074
1075         /* mask and clean up interrupts */
1076         set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1077         msix_clean_up_interrupts(dd);
1078
1079         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1080                 ppd = dd->pport + pidx;
1081                 for (i = 0; i < dd->num_rcv_contexts; i++) {
1082                         rcd = hfi1_rcd_get_by_index(dd, i);
1083                         hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1084                                      HFI1_RCVCTRL_CTXT_DIS |
1085                                      HFI1_RCVCTRL_INTRAVAIL_DIS |
1086                                      HFI1_RCVCTRL_PKEY_DIS |
1087                                      HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1088                         hfi1_rcd_put(rcd);
1089                 }
1090                 /*
1091                  * Gracefully stop all sends allowing any in progress to
1092                  * trickle out first.
1093                  */
1094                 for (i = 0; i < dd->num_send_contexts; i++)
1095                         sc_flush(dd->send_contexts[i].sc);
1096         }
1097
1098         /*
1099          * Enough for anything that's going to trickle out to have actually
1100          * done so.
1101          */
1102         udelay(20);
1103
1104         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1105                 ppd = dd->pport + pidx;
1106
1107                 /* disable all contexts */
1108                 for (i = 0; i < dd->num_send_contexts; i++)
1109                         sc_disable(dd->send_contexts[i].sc);
1110                 /* disable the send device */
1111                 pio_send_control(dd, PSC_GLOBAL_DISABLE);
1112
1113                 shutdown_led_override(ppd);
1114
1115                 /*
1116                  * Clear SerdesEnable.
1117                  * We can't count on interrupts since we are stopping.
1118                  */
1119                 hfi1_quiet_serdes(ppd);
1120
1121                 if (ppd->hfi1_wq) {
1122                         destroy_workqueue(ppd->hfi1_wq);
1123                         ppd->hfi1_wq = NULL;
1124                 }
1125                 if (ppd->link_wq) {
1126                         destroy_workqueue(ppd->link_wq);
1127                         ppd->link_wq = NULL;
1128                 }
1129         }
1130         sdma_exit(dd);
1131 }
1132
1133 /**
1134  * hfi1_free_ctxtdata - free a context's allocated data
1135  * @dd: the hfi1_ib device
1136  * @rcd: the ctxtdata structure
1137  *
1138  * free up any allocated data for a context
1139  * It should never change any chip state, or global driver state.
1140  */
1141 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1142 {
1143         u32 e;
1144
1145         if (!rcd)
1146                 return;
1147
1148         if (rcd->rcvhdrq) {
1149                 dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1150                                   rcd->rcvhdrq, rcd->rcvhdrq_dma);
1151                 rcd->rcvhdrq = NULL;
1152                 if (rcd->rcvhdrtail_kvaddr) {
1153                         dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1154                                           (void *)rcd->rcvhdrtail_kvaddr,
1155                                           rcd->rcvhdrqtailaddr_dma);
1156                         rcd->rcvhdrtail_kvaddr = NULL;
1157                 }
1158         }
1159
1160         /* all the RcvArray entries should have been cleared by now */
1161         kfree(rcd->egrbufs.rcvtids);
1162         rcd->egrbufs.rcvtids = NULL;
1163
1164         for (e = 0; e < rcd->egrbufs.alloced; e++) {
1165                 if (rcd->egrbufs.buffers[e].dma)
1166                         dma_free_coherent(&dd->pcidev->dev,
1167                                           rcd->egrbufs.buffers[e].len,
1168                                           rcd->egrbufs.buffers[e].addr,
1169                                           rcd->egrbufs.buffers[e].dma);
1170         }
1171         kfree(rcd->egrbufs.buffers);
1172         rcd->egrbufs.alloced = 0;
1173         rcd->egrbufs.buffers = NULL;
1174
1175         sc_free(rcd->sc);
1176         rcd->sc = NULL;
1177
1178         vfree(rcd->subctxt_uregbase);
1179         vfree(rcd->subctxt_rcvegrbuf);
1180         vfree(rcd->subctxt_rcvhdr_base);
1181         kfree(rcd->opstats);
1182
1183         rcd->subctxt_uregbase = NULL;
1184         rcd->subctxt_rcvegrbuf = NULL;
1185         rcd->subctxt_rcvhdr_base = NULL;
1186         rcd->opstats = NULL;
1187 }
1188
1189 /*
1190  * Release our hold on the shared asic data.  If we are the last one,
1191  * return the structure to be finalized outside the lock.  Must be
1192  * holding hfi1_dev_table lock.
1193  */
1194 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1195 {
1196         struct hfi1_asic_data *ad;
1197         int other;
1198
1199         if (!dd->asic_data)
1200                 return NULL;
1201         dd->asic_data->dds[dd->hfi1_id] = NULL;
1202         other = dd->hfi1_id ? 0 : 1;
1203         ad = dd->asic_data;
1204         dd->asic_data = NULL;
1205         /* return NULL if the other dd still has a link */
1206         return ad->dds[other] ? NULL : ad;
1207 }
1208
1209 static void finalize_asic_data(struct hfi1_devdata *dd,
1210                                struct hfi1_asic_data *ad)
1211 {
1212         clean_up_i2c(dd, ad);
1213         kfree(ad);
1214 }
1215
1216 /**
1217  * hfi1_clean_devdata - cleans up per-unit data structure
1218  * @dd: pointer to a valid devdata structure
1219  *
1220  * It cleans up all data structures set up by
1221  * by hfi1_alloc_devdata().
1222  */
1223 static void hfi1_clean_devdata(struct hfi1_devdata *dd)
1224 {
1225         struct hfi1_asic_data *ad;
1226         unsigned long flags;
1227
1228         xa_lock_irqsave(&hfi1_dev_table, flags);
1229         __xa_erase(&hfi1_dev_table, dd->unit);
1230         ad = release_asic_data(dd);
1231         xa_unlock_irqrestore(&hfi1_dev_table, flags);
1232
1233         finalize_asic_data(dd, ad);
1234         free_platform_config(dd);
1235         rcu_barrier(); /* wait for rcu callbacks to complete */
1236         free_percpu(dd->int_counter);
1237         free_percpu(dd->rcv_limit);
1238         free_percpu(dd->send_schedule);
1239         free_percpu(dd->tx_opstats);
1240         dd->int_counter   = NULL;
1241         dd->rcv_limit     = NULL;
1242         dd->send_schedule = NULL;
1243         dd->tx_opstats    = NULL;
1244         kfree(dd->comp_vect);
1245         dd->comp_vect = NULL;
1246         sdma_clean(dd, dd->num_sdma);
1247         rvt_dealloc_device(&dd->verbs_dev.rdi);
1248 }
1249
1250 static void __hfi1_free_devdata(struct kobject *kobj)
1251 {
1252         struct hfi1_devdata *dd =
1253                 container_of(kobj, struct hfi1_devdata, kobj);
1254
1255         hfi1_clean_devdata(dd);
1256 }
1257
1258 static struct kobj_type hfi1_devdata_type = {
1259         .release = __hfi1_free_devdata,
1260 };
1261
1262 void hfi1_free_devdata(struct hfi1_devdata *dd)
1263 {
1264         kobject_put(&dd->kobj);
1265 }
1266
1267 /**
1268  * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1269  * @pdev: Valid PCI device
1270  * @extra: How many bytes to alloc past the default
1271  *
1272  * Must be done via verbs allocator, because the verbs cleanup process
1273  * both does cleanup and free of the data structure.
1274  * "extra" is for chip-specific data.
1275  */
1276 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1277                                                size_t extra)
1278 {
1279         struct hfi1_devdata *dd;
1280         int ret, nports;
1281
1282         /* extra is * number of ports */
1283         nports = extra / sizeof(struct hfi1_pportdata);
1284
1285         dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1286                                                      nports);
1287         if (!dd)
1288                 return ERR_PTR(-ENOMEM);
1289         dd->num_pports = nports;
1290         dd->pport = (struct hfi1_pportdata *)(dd + 1);
1291         dd->pcidev = pdev;
1292         pci_set_drvdata(pdev, dd);
1293         dd->node = NUMA_NO_NODE;
1294
1295         ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1296                         GFP_KERNEL);
1297         if (ret < 0) {
1298                 dev_err(&pdev->dev,
1299                         "Could not allocate unit ID: error %d\n", -ret);
1300                 goto bail;
1301         }
1302         rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1303
1304         /*
1305          * Initialize all locks for the device. This needs to be as early as
1306          * possible so locks are usable.
1307          */
1308         spin_lock_init(&dd->sc_lock);
1309         spin_lock_init(&dd->sendctrl_lock);
1310         spin_lock_init(&dd->rcvctrl_lock);
1311         spin_lock_init(&dd->uctxt_lock);
1312         spin_lock_init(&dd->hfi1_diag_trans_lock);
1313         spin_lock_init(&dd->sc_init_lock);
1314         spin_lock_init(&dd->dc8051_memlock);
1315         seqlock_init(&dd->sc2vl_lock);
1316         spin_lock_init(&dd->sde_map_lock);
1317         spin_lock_init(&dd->pio_map_lock);
1318         mutex_init(&dd->dc8051_lock);
1319         init_waitqueue_head(&dd->event_queue);
1320         spin_lock_init(&dd->irq_src_lock);
1321
1322         dd->int_counter = alloc_percpu(u64);
1323         if (!dd->int_counter) {
1324                 ret = -ENOMEM;
1325                 goto bail;
1326         }
1327
1328         dd->rcv_limit = alloc_percpu(u64);
1329         if (!dd->rcv_limit) {
1330                 ret = -ENOMEM;
1331                 goto bail;
1332         }
1333
1334         dd->send_schedule = alloc_percpu(u64);
1335         if (!dd->send_schedule) {
1336                 ret = -ENOMEM;
1337                 goto bail;
1338         }
1339
1340         dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1341         if (!dd->tx_opstats) {
1342                 ret = -ENOMEM;
1343                 goto bail;
1344         }
1345
1346         dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1347         if (!dd->comp_vect) {
1348                 ret = -ENOMEM;
1349                 goto bail;
1350         }
1351
1352         kobject_init(&dd->kobj, &hfi1_devdata_type);
1353         return dd;
1354
1355 bail:
1356         hfi1_clean_devdata(dd);
1357         return ERR_PTR(ret);
1358 }
1359
1360 /*
1361  * Called from freeze mode handlers, and from PCI error
1362  * reporting code.  Should be paranoid about state of
1363  * system and data structures.
1364  */
1365 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1366 {
1367         if (dd->flags & HFI1_INITTED) {
1368                 u32 pidx;
1369
1370                 dd->flags &= ~HFI1_INITTED;
1371                 if (dd->pport)
1372                         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1373                                 struct hfi1_pportdata *ppd;
1374
1375                                 ppd = dd->pport + pidx;
1376                                 if (dd->flags & HFI1_PRESENT)
1377                                         set_link_state(ppd, HLS_DN_DISABLE);
1378
1379                                 if (ppd->statusp)
1380                                         *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1381                         }
1382         }
1383
1384         /*
1385          * Mark as having had an error for driver, and also
1386          * for /sys and status word mapped to user programs.
1387          * This marks unit as not usable, until reset.
1388          */
1389         if (dd->status)
1390                 dd->status->dev |= HFI1_STATUS_HWERROR;
1391 }
1392
1393 static void remove_one(struct pci_dev *);
1394 static int init_one(struct pci_dev *, const struct pci_device_id *);
1395 static void shutdown_one(struct pci_dev *);
1396
1397 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1398 #define PFX DRIVER_NAME ": "
1399
1400 const struct pci_device_id hfi1_pci_tbl[] = {
1401         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1402         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1403         { 0, }
1404 };
1405
1406 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1407
1408 static struct pci_driver hfi1_pci_driver = {
1409         .name = DRIVER_NAME,
1410         .probe = init_one,
1411         .remove = remove_one,
1412         .shutdown = shutdown_one,
1413         .id_table = hfi1_pci_tbl,
1414         .err_handler = &hfi1_pci_err_handler,
1415 };
1416
1417 static void __init compute_krcvqs(void)
1418 {
1419         int i;
1420
1421         for (i = 0; i < krcvqsset; i++)
1422                 n_krcvqs += krcvqs[i];
1423 }
1424
1425 /*
1426  * Do all the generic driver unit- and chip-independent memory
1427  * allocation and initialization.
1428  */
1429 static int __init hfi1_mod_init(void)
1430 {
1431         int ret;
1432
1433         ret = dev_init();
1434         if (ret)
1435                 goto bail;
1436
1437         ret = node_affinity_init();
1438         if (ret)
1439                 goto bail;
1440
1441         /* validate max MTU before any devices start */
1442         if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1443                 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1444                        hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1445                 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1446         }
1447         /* valid CUs run from 1-128 in powers of 2 */
1448         if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1449                 hfi1_cu = 1;
1450         /* valid credit return threshold is 0-100, variable is unsigned */
1451         if (user_credit_return_threshold > 100)
1452                 user_credit_return_threshold = 100;
1453
1454         compute_krcvqs();
1455         /*
1456          * sanitize receive interrupt count, time must wait until after
1457          * the hardware type is known
1458          */
1459         if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1460                 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1461         /* reject invalid combinations */
1462         if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1463                 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1464                 rcv_intr_count = 1;
1465         }
1466         if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1467                 /*
1468                  * Avoid indefinite packet delivery by requiring a timeout
1469                  * if count is > 1.
1470                  */
1471                 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1472                 rcv_intr_timeout = 1;
1473         }
1474         if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1475                 /*
1476                  * The dynamic algorithm expects a non-zero timeout
1477                  * and a count > 1.
1478                  */
1479                 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1480                 rcv_intr_dynamic = 0;
1481         }
1482
1483         /* sanitize link CRC options */
1484         link_crc_mask &= SUPPORTED_CRCS;
1485
1486         ret = opfn_init();
1487         if (ret < 0) {
1488                 pr_err("Failed to allocate opfn_wq");
1489                 goto bail_dev;
1490         }
1491
1492         hfi1_compute_tid_rdma_flow_wt();
1493         /*
1494          * These must be called before the driver is registered with
1495          * the PCI subsystem.
1496          */
1497         hfi1_dbg_init();
1498         ret = pci_register_driver(&hfi1_pci_driver);
1499         if (ret < 0) {
1500                 pr_err("Unable to register driver: error %d\n", -ret);
1501                 goto bail_dev;
1502         }
1503         goto bail; /* all OK */
1504
1505 bail_dev:
1506         hfi1_dbg_exit();
1507         dev_cleanup();
1508 bail:
1509         return ret;
1510 }
1511
1512 module_init(hfi1_mod_init);
1513
1514 /*
1515  * Do the non-unit driver cleanup, memory free, etc. at unload.
1516  */
1517 static void __exit hfi1_mod_cleanup(void)
1518 {
1519         pci_unregister_driver(&hfi1_pci_driver);
1520         opfn_exit();
1521         node_affinity_destroy_all();
1522         hfi1_dbg_exit();
1523
1524         WARN_ON(!xa_empty(&hfi1_dev_table));
1525         dispose_firmware();     /* asymmetric with obtain_firmware() */
1526         dev_cleanup();
1527 }
1528
1529 module_exit(hfi1_mod_cleanup);
1530
1531 /* this can only be called after a successful initialization */
1532 static void cleanup_device_data(struct hfi1_devdata *dd)
1533 {
1534         int ctxt;
1535         int pidx;
1536
1537         /* users can't do anything more with chip */
1538         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1539                 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1540                 struct cc_state *cc_state;
1541                 int i;
1542
1543                 if (ppd->statusp)
1544                         *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1545
1546                 for (i = 0; i < OPA_MAX_SLS; i++)
1547                         hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1548
1549                 spin_lock(&ppd->cc_state_lock);
1550                 cc_state = get_cc_state_protected(ppd);
1551                 RCU_INIT_POINTER(ppd->cc_state, NULL);
1552                 spin_unlock(&ppd->cc_state_lock);
1553
1554                 if (cc_state)
1555                         kfree_rcu(cc_state, rcu);
1556         }
1557
1558         free_credit_return(dd);
1559
1560         if (dd->rcvhdrtail_dummy_kvaddr) {
1561                 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1562                                   (void *)dd->rcvhdrtail_dummy_kvaddr,
1563                                   dd->rcvhdrtail_dummy_dma);
1564                 dd->rcvhdrtail_dummy_kvaddr = NULL;
1565         }
1566
1567         /*
1568          * Free any resources still in use (usually just kernel contexts)
1569          * at unload; we do for ctxtcnt, because that's what we allocate.
1570          */
1571         for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1572                 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1573
1574                 if (rcd) {
1575                         hfi1_free_ctxt_rcv_groups(rcd);
1576                         hfi1_free_ctxt(rcd);
1577                 }
1578         }
1579
1580         kfree(dd->rcd);
1581         dd->rcd = NULL;
1582
1583         free_pio_map(dd);
1584         /* must follow rcv context free - need to remove rcv's hooks */
1585         for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1586                 sc_free(dd->send_contexts[ctxt].sc);
1587         dd->num_send_contexts = 0;
1588         kfree(dd->send_contexts);
1589         dd->send_contexts = NULL;
1590         kfree(dd->hw_to_sw);
1591         dd->hw_to_sw = NULL;
1592         kfree(dd->boardname);
1593         vfree(dd->events);
1594         vfree(dd->status);
1595 }
1596
1597 /*
1598  * Clean up on unit shutdown, or error during unit load after
1599  * successful initialization.
1600  */
1601 static void postinit_cleanup(struct hfi1_devdata *dd)
1602 {
1603         hfi1_start_cleanup(dd);
1604         hfi1_comp_vectors_clean_up(dd);
1605         hfi1_dev_affinity_clean_up(dd);
1606
1607         hfi1_pcie_ddcleanup(dd);
1608         hfi1_pcie_cleanup(dd->pcidev);
1609
1610         cleanup_device_data(dd);
1611
1612         hfi1_free_devdata(dd);
1613 }
1614
1615 static int init_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
1616 {
1617         if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1618                 dd_dev_err(dd, "Receive header queue count too small\n");
1619                 return -EINVAL;
1620         }
1621
1622         if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1623                 dd_dev_err(dd,
1624                            "Receive header queue count cannot be greater than %u\n",
1625                            HFI1_MAX_HDRQ_EGRBUF_CNT);
1626                 return -EINVAL;
1627         }
1628
1629         if (thecnt % HDRQ_INCREMENT) {
1630                 dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
1631                            thecnt, HDRQ_INCREMENT);
1632                 return -EINVAL;
1633         }
1634
1635         return 0;
1636 }
1637
1638 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1639 {
1640         int ret = 0, j, pidx, initfail;
1641         struct hfi1_devdata *dd;
1642         struct hfi1_pportdata *ppd;
1643
1644         /* First, lock the non-writable module parameters */
1645         HFI1_CAP_LOCK();
1646
1647         /* Validate dev ids */
1648         if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1649               ent->device == PCI_DEVICE_ID_INTEL1)) {
1650                 dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1651                         ent->device);
1652                 ret = -ENODEV;
1653                 goto bail;
1654         }
1655
1656         /* Allocate the dd so we can get to work */
1657         dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1658                                 sizeof(struct hfi1_pportdata));
1659         if (IS_ERR(dd)) {
1660                 ret = PTR_ERR(dd);
1661                 goto bail;
1662         }
1663
1664         /* Validate some global module parameters */
1665         ret = init_validate_rcvhdrcnt(dd, rcvhdrcnt);
1666         if (ret)
1667                 goto bail;
1668
1669         /* use the encoding function as a sanitization check */
1670         if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1671                 dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1672                            hfi1_hdrq_entsize);
1673                 ret = -EINVAL;
1674                 goto bail;
1675         }
1676
1677         /* The receive eager buffer size must be set before the receive
1678          * contexts are created.
1679          *
1680          * Set the eager buffer size.  Validate that it falls in a range
1681          * allowed by the hardware - all powers of 2 between the min and
1682          * max.  The maximum valid MTU is within the eager buffer range
1683          * so we do not need to cap the max_mtu by an eager buffer size
1684          * setting.
1685          */
1686         if (eager_buffer_size) {
1687                 if (!is_power_of_2(eager_buffer_size))
1688                         eager_buffer_size =
1689                                 roundup_pow_of_two(eager_buffer_size);
1690                 eager_buffer_size =
1691                         clamp_val(eager_buffer_size,
1692                                   MIN_EAGER_BUFFER * 8,
1693                                   MAX_EAGER_BUFFER_TOTAL);
1694                 dd_dev_info(dd, "Eager buffer size %u\n",
1695                             eager_buffer_size);
1696         } else {
1697                 dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1698                 ret = -EINVAL;
1699                 goto bail;
1700         }
1701
1702         /* restrict value of hfi1_rcvarr_split */
1703         hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1704
1705         ret = hfi1_pcie_init(dd);
1706         if (ret)
1707                 goto bail;
1708
1709         /*
1710          * Do device-specific initialization, function table setup, dd
1711          * allocation, etc.
1712          */
1713         ret = hfi1_init_dd(dd);
1714         if (ret)
1715                 goto clean_bail; /* error already printed */
1716
1717         ret = create_workqueues(dd);
1718         if (ret)
1719                 goto clean_bail;
1720
1721         /* do the generic initialization */
1722         initfail = hfi1_init(dd, 0);
1723
1724         /* setup vnic */
1725         hfi1_vnic_setup(dd);
1726
1727         ret = hfi1_register_ib_device(dd);
1728
1729         /*
1730          * Now ready for use.  this should be cleared whenever we
1731          * detect a reset, or initiate one.  If earlier failure,
1732          * we still create devices, so diags, etc. can be used
1733          * to determine cause of problem.
1734          */
1735         if (!initfail && !ret) {
1736                 dd->flags |= HFI1_INITTED;
1737                 /* create debufs files after init and ib register */
1738                 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1739         }
1740
1741         j = hfi1_device_create(dd);
1742         if (j)
1743                 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1744
1745         if (initfail || ret) {
1746                 msix_clean_up_interrupts(dd);
1747                 stop_timers(dd);
1748                 flush_workqueue(ib_wq);
1749                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1750                         hfi1_quiet_serdes(dd->pport + pidx);
1751                         ppd = dd->pport + pidx;
1752                         if (ppd->hfi1_wq) {
1753                                 destroy_workqueue(ppd->hfi1_wq);
1754                                 ppd->hfi1_wq = NULL;
1755                         }
1756                         if (ppd->link_wq) {
1757                                 destroy_workqueue(ppd->link_wq);
1758                                 ppd->link_wq = NULL;
1759                         }
1760                 }
1761                 if (!j)
1762                         hfi1_device_remove(dd);
1763                 if (!ret)
1764                         hfi1_unregister_ib_device(dd);
1765                 hfi1_vnic_cleanup(dd);
1766                 postinit_cleanup(dd);
1767                 if (initfail)
1768                         ret = initfail;
1769                 goto bail;      /* everything already cleaned */
1770         }
1771
1772         sdma_start(dd);
1773
1774         return 0;
1775
1776 clean_bail:
1777         hfi1_pcie_cleanup(pdev);
1778 bail:
1779         return ret;
1780 }
1781
1782 static void wait_for_clients(struct hfi1_devdata *dd)
1783 {
1784         /*
1785          * Remove the device init value and complete the device if there is
1786          * no clients or wait for active clients to finish.
1787          */
1788         if (atomic_dec_and_test(&dd->user_refcount))
1789                 complete(&dd->user_comp);
1790
1791         wait_for_completion(&dd->user_comp);
1792 }
1793
1794 static void remove_one(struct pci_dev *pdev)
1795 {
1796         struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1797
1798         /* close debugfs files before ib unregister */
1799         hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1800
1801         /* remove the /dev hfi1 interface */
1802         hfi1_device_remove(dd);
1803
1804         /* wait for existing user space clients to finish */
1805         wait_for_clients(dd);
1806
1807         /* unregister from IB core */
1808         hfi1_unregister_ib_device(dd);
1809
1810         /* cleanup vnic */
1811         hfi1_vnic_cleanup(dd);
1812
1813         /*
1814          * Disable the IB link, disable interrupts on the device,
1815          * clear dma engines, etc.
1816          */
1817         shutdown_device(dd);
1818
1819         stop_timers(dd);
1820
1821         /* wait until all of our (qsfp) queue_work() calls complete */
1822         flush_workqueue(ib_wq);
1823
1824         postinit_cleanup(dd);
1825 }
1826
1827 static void shutdown_one(struct pci_dev *pdev)
1828 {
1829         struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1830
1831         shutdown_device(dd);
1832 }
1833
1834 /**
1835  * hfi1_create_rcvhdrq - create a receive header queue
1836  * @dd: the hfi1_ib device
1837  * @rcd: the context data
1838  *
1839  * This must be contiguous memory (from an i/o perspective), and must be
1840  * DMA'able (which means for some systems, it will go through an IOMMU,
1841  * or be forced into a low address range).
1842  */
1843 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1844 {
1845         unsigned amt;
1846         u64 reg;
1847
1848         if (!rcd->rcvhdrq) {
1849                 gfp_t gfp_flags;
1850
1851                 amt = rcvhdrq_size(rcd);
1852
1853                 if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1854                         gfp_flags = GFP_KERNEL;
1855                 else
1856                         gfp_flags = GFP_USER;
1857                 rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1858                                                   &rcd->rcvhdrq_dma,
1859                                                   gfp_flags | __GFP_COMP);
1860
1861                 if (!rcd->rcvhdrq) {
1862                         dd_dev_err(dd,
1863                                    "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1864                                    amt, rcd->ctxt);
1865                         goto bail;
1866                 }
1867
1868                 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1869                     HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1870                         rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1871                                                                     PAGE_SIZE,
1872                                                                     &rcd->rcvhdrqtailaddr_dma,
1873                                                                     gfp_flags);
1874                         if (!rcd->rcvhdrtail_kvaddr)
1875                                 goto bail_free;
1876                 }
1877         }
1878         /*
1879          * These values are per-context:
1880          *      RcvHdrCnt
1881          *      RcvHdrEntSize
1882          *      RcvHdrSize
1883          */
1884         reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1885                         & RCV_HDR_CNT_CNT_MASK)
1886                 << RCV_HDR_CNT_CNT_SHIFT;
1887         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1888         reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1889                         & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1890                 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1891         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1892         reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK)
1893                 << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1894         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1895
1896         /*
1897          * Program dummy tail address for every receive context
1898          * before enabling any receive context
1899          */
1900         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1901                         dd->rcvhdrtail_dummy_dma);
1902
1903         return 0;
1904
1905 bail_free:
1906         dd_dev_err(dd,
1907                    "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1908                    rcd->ctxt);
1909         dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1910                           rcd->rcvhdrq_dma);
1911         rcd->rcvhdrq = NULL;
1912 bail:
1913         return -ENOMEM;
1914 }
1915
1916 /**
1917  * allocate eager buffers, both kernel and user contexts.
1918  * @rcd: the context we are setting up.
1919  *
1920  * Allocate the eager TID buffers and program them into hip.
1921  * They are no longer completely contiguous, we do multiple allocation
1922  * calls.  Otherwise we get the OOM code involved, by asking for too
1923  * much per call, with disastrous results on some kernels.
1924  */
1925 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1926 {
1927         struct hfi1_devdata *dd = rcd->dd;
1928         u32 max_entries, egrtop, alloced_bytes = 0;
1929         gfp_t gfp_flags;
1930         u16 order, idx = 0;
1931         int ret = 0;
1932         u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1933
1934         /*
1935          * GFP_USER, but without GFP_FS, so buffer cache can be
1936          * coalesced (we hope); otherwise, even at order 4,
1937          * heavy filesystem activity makes these fail, and we can
1938          * use compound pages.
1939          */
1940         gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1941
1942         /*
1943          * The minimum size of the eager buffers is a groups of MTU-sized
1944          * buffers.
1945          * The global eager_buffer_size parameter is checked against the
1946          * theoretical lower limit of the value. Here, we check against the
1947          * MTU.
1948          */
1949         if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1950                 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1951         /*
1952          * If using one-pkt-per-egr-buffer, lower the eager buffer
1953          * size to the max MTU (page-aligned).
1954          */
1955         if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1956                 rcd->egrbufs.rcvtid_size = round_mtu;
1957
1958         /*
1959          * Eager buffers sizes of 1MB or less require smaller TID sizes
1960          * to satisfy the "multiple of 8 RcvArray entries" requirement.
1961          */
1962         if (rcd->egrbufs.size <= (1 << 20))
1963                 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1964                         rounddown_pow_of_two(rcd->egrbufs.size / 8));
1965
1966         while (alloced_bytes < rcd->egrbufs.size &&
1967                rcd->egrbufs.alloced < rcd->egrbufs.count) {
1968                 rcd->egrbufs.buffers[idx].addr =
1969                         dma_alloc_coherent(&dd->pcidev->dev,
1970                                            rcd->egrbufs.rcvtid_size,
1971                                            &rcd->egrbufs.buffers[idx].dma,
1972                                            gfp_flags);
1973                 if (rcd->egrbufs.buffers[idx].addr) {
1974                         rcd->egrbufs.buffers[idx].len =
1975                                 rcd->egrbufs.rcvtid_size;
1976                         rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1977                                 rcd->egrbufs.buffers[idx].addr;
1978                         rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1979                                 rcd->egrbufs.buffers[idx].dma;
1980                         rcd->egrbufs.alloced++;
1981                         alloced_bytes += rcd->egrbufs.rcvtid_size;
1982                         idx++;
1983                 } else {
1984                         u32 new_size, i, j;
1985                         u64 offset = 0;
1986
1987                         /*
1988                          * Fail the eager buffer allocation if:
1989                          *   - we are already using the lowest acceptable size
1990                          *   - we are using one-pkt-per-egr-buffer (this implies
1991                          *     that we are accepting only one size)
1992                          */
1993                         if (rcd->egrbufs.rcvtid_size == round_mtu ||
1994                             !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1995                                 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1996                                            rcd->ctxt);
1997                                 ret = -ENOMEM;
1998                                 goto bail_rcvegrbuf_phys;
1999                         }
2000
2001                         new_size = rcd->egrbufs.rcvtid_size / 2;
2002
2003                         /*
2004                          * If the first attempt to allocate memory failed, don't
2005                          * fail everything but continue with the next lower
2006                          * size.
2007                          */
2008                         if (idx == 0) {
2009                                 rcd->egrbufs.rcvtid_size = new_size;
2010                                 continue;
2011                         }
2012
2013                         /*
2014                          * Re-partition already allocated buffers to a smaller
2015                          * size.
2016                          */
2017                         rcd->egrbufs.alloced = 0;
2018                         for (i = 0, j = 0, offset = 0; j < idx; i++) {
2019                                 if (i >= rcd->egrbufs.count)
2020                                         break;
2021                                 rcd->egrbufs.rcvtids[i].dma =
2022                                         rcd->egrbufs.buffers[j].dma + offset;
2023                                 rcd->egrbufs.rcvtids[i].addr =
2024                                         rcd->egrbufs.buffers[j].addr + offset;
2025                                 rcd->egrbufs.alloced++;
2026                                 if ((rcd->egrbufs.buffers[j].dma + offset +
2027                                      new_size) ==
2028                                     (rcd->egrbufs.buffers[j].dma +
2029                                      rcd->egrbufs.buffers[j].len)) {
2030                                         j++;
2031                                         offset = 0;
2032                                 } else {
2033                                         offset += new_size;
2034                                 }
2035                         }
2036                         rcd->egrbufs.rcvtid_size = new_size;
2037                 }
2038         }
2039         rcd->egrbufs.numbufs = idx;
2040         rcd->egrbufs.size = alloced_bytes;
2041
2042         hfi1_cdbg(PROC,
2043                   "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n",
2044                   rcd->ctxt, rcd->egrbufs.alloced,
2045                   rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
2046
2047         /*
2048          * Set the contexts rcv array head update threshold to the closest
2049          * power of 2 (so we can use a mask instead of modulo) below half
2050          * the allocated entries.
2051          */
2052         rcd->egrbufs.threshold =
2053                 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
2054         /*
2055          * Compute the expected RcvArray entry base. This is done after
2056          * allocating the eager buffers in order to maximize the
2057          * expected RcvArray entries for the context.
2058          */
2059         max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
2060         egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
2061         rcd->expected_count = max_entries - egrtop;
2062         if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
2063                 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
2064
2065         rcd->expected_base = rcd->eager_base + egrtop;
2066         hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
2067                   rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
2068                   rcd->eager_base, rcd->expected_base);
2069
2070         if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
2071                 hfi1_cdbg(PROC,
2072                           "ctxt%u: current Eager buffer size is invalid %u\n",
2073                           rcd->ctxt, rcd->egrbufs.rcvtid_size);
2074                 ret = -EINVAL;
2075                 goto bail_rcvegrbuf_phys;
2076         }
2077
2078         for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
2079                 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
2080                              rcd->egrbufs.rcvtids[idx].dma, order);
2081                 cond_resched();
2082         }
2083
2084         return 0;
2085
2086 bail_rcvegrbuf_phys:
2087         for (idx = 0; idx < rcd->egrbufs.alloced &&
2088              rcd->egrbufs.buffers[idx].addr;
2089              idx++) {
2090                 dma_free_coherent(&dd->pcidev->dev,
2091                                   rcd->egrbufs.buffers[idx].len,
2092                                   rcd->egrbufs.buffers[idx].addr,
2093                                   rcd->egrbufs.buffers[idx].dma);
2094                 rcd->egrbufs.buffers[idx].addr = NULL;
2095                 rcd->egrbufs.buffers[idx].dma = 0;
2096                 rcd->egrbufs.buffers[idx].len = 0;
2097         }
2098
2099         return ret;
2100 }