Merge branch 'pm-cpufreq'
[linux-2.6-block.git] / drivers / iio / magnetometer / bmc150_magn.c
1 /*
2  * Bosch BMC150 three-axis magnetic field sensor driver
3  *
4  * Copyright (c) 2015, Intel Corporation.
5  *
6  * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
7  *
8  * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms and conditions of the GNU General Public License,
12  * version 2, as published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  */
19
20 #include <linux/module.h>
21 #include <linux/i2c.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/acpi.h>
26 #include <linux/gpio/consumer.h>
27 #include <linux/pm.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/sysfs.h>
31 #include <linux/iio/buffer.h>
32 #include <linux/iio/events.h>
33 #include <linux/iio/trigger.h>
34 #include <linux/iio/trigger_consumer.h>
35 #include <linux/iio/triggered_buffer.h>
36 #include <linux/regmap.h>
37
38 #define BMC150_MAGN_DRV_NAME                    "bmc150_magn"
39 #define BMC150_MAGN_IRQ_NAME                    "bmc150_magn_event"
40 #define BMC150_MAGN_GPIO_INT                    "interrupt"
41
42 #define BMC150_MAGN_REG_CHIP_ID                 0x40
43 #define BMC150_MAGN_CHIP_ID_VAL                 0x32
44
45 #define BMC150_MAGN_REG_X_L                     0x42
46 #define BMC150_MAGN_REG_X_M                     0x43
47 #define BMC150_MAGN_REG_Y_L                     0x44
48 #define BMC150_MAGN_REG_Y_M                     0x45
49 #define BMC150_MAGN_SHIFT_XY_L                  3
50 #define BMC150_MAGN_REG_Z_L                     0x46
51 #define BMC150_MAGN_REG_Z_M                     0x47
52 #define BMC150_MAGN_SHIFT_Z_L                   1
53 #define BMC150_MAGN_REG_RHALL_L                 0x48
54 #define BMC150_MAGN_REG_RHALL_M                 0x49
55 #define BMC150_MAGN_SHIFT_RHALL_L               2
56
57 #define BMC150_MAGN_REG_INT_STATUS              0x4A
58
59 #define BMC150_MAGN_REG_POWER                   0x4B
60 #define BMC150_MAGN_MASK_POWER_CTL              BIT(0)
61
62 #define BMC150_MAGN_REG_OPMODE_ODR              0x4C
63 #define BMC150_MAGN_MASK_OPMODE                 GENMASK(2, 1)
64 #define BMC150_MAGN_SHIFT_OPMODE                1
65 #define BMC150_MAGN_MODE_NORMAL                 0x00
66 #define BMC150_MAGN_MODE_FORCED                 0x01
67 #define BMC150_MAGN_MODE_SLEEP                  0x03
68 #define BMC150_MAGN_MASK_ODR                    GENMASK(5, 3)
69 #define BMC150_MAGN_SHIFT_ODR                   3
70
71 #define BMC150_MAGN_REG_INT                     0x4D
72
73 #define BMC150_MAGN_REG_INT_DRDY                0x4E
74 #define BMC150_MAGN_MASK_DRDY_EN                BIT(7)
75 #define BMC150_MAGN_SHIFT_DRDY_EN               7
76 #define BMC150_MAGN_MASK_DRDY_INT3              BIT(6)
77 #define BMC150_MAGN_MASK_DRDY_Z_EN              BIT(5)
78 #define BMC150_MAGN_MASK_DRDY_Y_EN              BIT(4)
79 #define BMC150_MAGN_MASK_DRDY_X_EN              BIT(3)
80 #define BMC150_MAGN_MASK_DRDY_DR_POLARITY       BIT(2)
81 #define BMC150_MAGN_MASK_DRDY_LATCHING          BIT(1)
82 #define BMC150_MAGN_MASK_DRDY_INT3_POLARITY     BIT(0)
83
84 #define BMC150_MAGN_REG_LOW_THRESH              0x4F
85 #define BMC150_MAGN_REG_HIGH_THRESH             0x50
86 #define BMC150_MAGN_REG_REP_XY                  0x51
87 #define BMC150_MAGN_REG_REP_Z                   0x52
88 #define BMC150_MAGN_REG_REP_DATAMASK            GENMASK(7, 0)
89
90 #define BMC150_MAGN_REG_TRIM_START              0x5D
91 #define BMC150_MAGN_REG_TRIM_END                0x71
92
93 #define BMC150_MAGN_XY_OVERFLOW_VAL             -4096
94 #define BMC150_MAGN_Z_OVERFLOW_VAL              -16384
95
96 /* Time from SUSPEND to SLEEP */
97 #define BMC150_MAGN_START_UP_TIME_MS            3
98
99 #define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS       2000
100
101 #define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
102 #define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
103 #define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
104 #define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
105
106 enum bmc150_magn_axis {
107         AXIS_X,
108         AXIS_Y,
109         AXIS_Z,
110         RHALL,
111         AXIS_XYZ_MAX = RHALL,
112         AXIS_XYZR_MAX,
113 };
114
115 enum bmc150_magn_power_modes {
116         BMC150_MAGN_POWER_MODE_SUSPEND,
117         BMC150_MAGN_POWER_MODE_SLEEP,
118         BMC150_MAGN_POWER_MODE_NORMAL,
119 };
120
121 struct bmc150_magn_trim_regs {
122         s8 x1;
123         s8 y1;
124         __le16 reserved1;
125         u8 reserved2;
126         __le16 z4;
127         s8 x2;
128         s8 y2;
129         __le16 reserved3;
130         __le16 z2;
131         __le16 z1;
132         __le16 xyz1;
133         __le16 z3;
134         s8 xy2;
135         u8 xy1;
136 } __packed;
137
138 struct bmc150_magn_data {
139         struct i2c_client *client;
140         /*
141          * 1. Protect this structure.
142          * 2. Serialize sequences that power on/off the device and access HW.
143          */
144         struct mutex mutex;
145         struct regmap *regmap;
146         /* 4 x 32 bits for x, y z, 4 bytes align, 64 bits timestamp */
147         s32 buffer[6];
148         struct iio_trigger *dready_trig;
149         bool dready_trigger_on;
150         int max_odr;
151 };
152
153 static const struct {
154         int freq;
155         u8 reg_val;
156 } bmc150_magn_samp_freq_table[] = { {2, 0x01},
157                                     {6, 0x02},
158                                     {8, 0x03},
159                                     {10, 0x00},
160                                     {15, 0x04},
161                                     {20, 0x05},
162                                     {25, 0x06},
163                                     {30, 0x07} };
164
165 enum bmc150_magn_presets {
166         LOW_POWER_PRESET,
167         REGULAR_PRESET,
168         ENHANCED_REGULAR_PRESET,
169         HIGH_ACCURACY_PRESET
170 };
171
172 static const struct bmc150_magn_preset {
173         u8 rep_xy;
174         u8 rep_z;
175         u8 odr;
176 } bmc150_magn_presets_table[] = {
177         [LOW_POWER_PRESET] = {3, 3, 10},
178         [REGULAR_PRESET] =  {9, 15, 10},
179         [ENHANCED_REGULAR_PRESET] =  {15, 27, 10},
180         [HIGH_ACCURACY_PRESET] =  {47, 83, 20},
181 };
182
183 #define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
184
185 static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg)
186 {
187         switch (reg) {
188         case BMC150_MAGN_REG_POWER:
189         case BMC150_MAGN_REG_OPMODE_ODR:
190         case BMC150_MAGN_REG_INT:
191         case BMC150_MAGN_REG_INT_DRDY:
192         case BMC150_MAGN_REG_LOW_THRESH:
193         case BMC150_MAGN_REG_HIGH_THRESH:
194         case BMC150_MAGN_REG_REP_XY:
195         case BMC150_MAGN_REG_REP_Z:
196                 return true;
197         default:
198                 return false;
199         };
200 }
201
202 static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg)
203 {
204         switch (reg) {
205         case BMC150_MAGN_REG_X_L:
206         case BMC150_MAGN_REG_X_M:
207         case BMC150_MAGN_REG_Y_L:
208         case BMC150_MAGN_REG_Y_M:
209         case BMC150_MAGN_REG_Z_L:
210         case BMC150_MAGN_REG_Z_M:
211         case BMC150_MAGN_REG_RHALL_L:
212         case BMC150_MAGN_REG_RHALL_M:
213         case BMC150_MAGN_REG_INT_STATUS:
214                 return true;
215         default:
216                 return false;
217         }
218 }
219
220 static const struct regmap_config bmc150_magn_regmap_config = {
221         .reg_bits = 8,
222         .val_bits = 8,
223
224         .max_register = BMC150_MAGN_REG_TRIM_END,
225         .cache_type = REGCACHE_RBTREE,
226
227         .writeable_reg = bmc150_magn_is_writeable_reg,
228         .volatile_reg = bmc150_magn_is_volatile_reg,
229 };
230
231 static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data,
232                                       enum bmc150_magn_power_modes mode,
233                                       bool state)
234 {
235         int ret;
236
237         switch (mode) {
238         case BMC150_MAGN_POWER_MODE_SUSPEND:
239                 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER,
240                                          BMC150_MAGN_MASK_POWER_CTL, !state);
241                 if (ret < 0)
242                         return ret;
243                 usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000);
244                 return 0;
245         case BMC150_MAGN_POWER_MODE_SLEEP:
246                 return regmap_update_bits(data->regmap,
247                                           BMC150_MAGN_REG_OPMODE_ODR,
248                                           BMC150_MAGN_MASK_OPMODE,
249                                           BMC150_MAGN_MODE_SLEEP <<
250                                           BMC150_MAGN_SHIFT_OPMODE);
251         case BMC150_MAGN_POWER_MODE_NORMAL:
252                 return regmap_update_bits(data->regmap,
253                                           BMC150_MAGN_REG_OPMODE_ODR,
254                                           BMC150_MAGN_MASK_OPMODE,
255                                           BMC150_MAGN_MODE_NORMAL <<
256                                           BMC150_MAGN_SHIFT_OPMODE);
257         }
258
259         return -EINVAL;
260 }
261
262 static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on)
263 {
264 #ifdef CONFIG_PM
265         int ret;
266
267         if (on) {
268                 ret = pm_runtime_get_sync(&data->client->dev);
269         } else {
270                 pm_runtime_mark_last_busy(&data->client->dev);
271                 ret = pm_runtime_put_autosuspend(&data->client->dev);
272         }
273
274         if (ret < 0) {
275                 dev_err(&data->client->dev,
276                         "failed to change power state to %d\n", on);
277                 if (on)
278                         pm_runtime_put_noidle(&data->client->dev);
279
280                 return ret;
281         }
282 #endif
283
284         return 0;
285 }
286
287 static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val)
288 {
289         int ret, reg_val;
290         u8 i, odr_val;
291
292         ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, &reg_val);
293         if (ret < 0)
294                 return ret;
295         odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
296
297         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++)
298                 if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
299                         *val = bmc150_magn_samp_freq_table[i].freq;
300                         return 0;
301                 }
302
303         return -EINVAL;
304 }
305
306 static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val)
307 {
308         int ret;
309         u8 i;
310
311         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
312                 if (bmc150_magn_samp_freq_table[i].freq == val) {
313                         ret = regmap_update_bits(data->regmap,
314                                                  BMC150_MAGN_REG_OPMODE_ODR,
315                                                  BMC150_MAGN_MASK_ODR,
316                                                  bmc150_magn_samp_freq_table[i].
317                                                  reg_val <<
318                                                  BMC150_MAGN_SHIFT_ODR);
319                         if (ret < 0)
320                                 return ret;
321                         return 0;
322                 }
323         }
324
325         return -EINVAL;
326 }
327
328 static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy,
329                                    int rep_z, int odr)
330 {
331         int ret, reg_val, max_odr;
332
333         if (rep_xy <= 0) {
334                 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
335                                   &reg_val);
336                 if (ret < 0)
337                         return ret;
338                 rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val);
339         }
340         if (rep_z <= 0) {
341                 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
342                                   &reg_val);
343                 if (ret < 0)
344                         return ret;
345                 rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val);
346         }
347         if (odr <= 0) {
348                 ret = bmc150_magn_get_odr(data, &odr);
349                 if (ret < 0)
350                         return ret;
351         }
352         /* the maximum selectable read-out frequency from datasheet */
353         max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980);
354         if (odr > max_odr) {
355                 dev_err(&data->client->dev,
356                         "Can't set oversampling with sampling freq %d\n",
357                         odr);
358                 return -EINVAL;
359         }
360         data->max_odr = max_odr;
361
362         return 0;
363 }
364
365 static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x,
366                                     u16 rhall)
367 {
368         s16 val;
369         u16 xyz1 = le16_to_cpu(tregs->xyz1);
370
371         if (x == BMC150_MAGN_XY_OVERFLOW_VAL)
372                 return S32_MIN;
373
374         if (!rhall)
375                 rhall = xyz1;
376
377         val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
378         val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) *
379               ((s32)val)) >> 7)) + (((s32)val) *
380               ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
381               ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) +
382               (((s16)tregs->x1) << 3);
383
384         return (s32)val;
385 }
386
387 static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y,
388                                     u16 rhall)
389 {
390         s16 val;
391         u16 xyz1 = le16_to_cpu(tregs->xyz1);
392
393         if (y == BMC150_MAGN_XY_OVERFLOW_VAL)
394                 return S32_MIN;
395
396         if (!rhall)
397                 rhall = xyz1;
398
399         val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
400         val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) *
401               ((s32)val)) >> 7)) + (((s32)val) *
402               ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
403               ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) +
404               (((s16)tregs->y1) << 3);
405
406         return (s32)val;
407 }
408
409 static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z,
410                                     u16 rhall)
411 {
412         s32 val;
413         u16 xyz1 = le16_to_cpu(tregs->xyz1);
414         u16 z1 = le16_to_cpu(tregs->z1);
415         s16 z2 = le16_to_cpu(tregs->z2);
416         s16 z3 = le16_to_cpu(tregs->z3);
417         s16 z4 = le16_to_cpu(tregs->z4);
418
419         if (z == BMC150_MAGN_Z_OVERFLOW_VAL)
420                 return S32_MIN;
421
422         val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) -
423               ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) *
424               ((((s16)rhall) << 1))) + (1 << 15)) >> 16))));
425
426         return val;
427 }
428
429 static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer)
430 {
431         int ret;
432         __le16 values[AXIS_XYZR_MAX];
433         s16 raw_x, raw_y, raw_z;
434         u16 rhall;
435         struct bmc150_magn_trim_regs tregs;
436
437         ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L,
438                                values, sizeof(values));
439         if (ret < 0)
440                 return ret;
441
442         raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L;
443         raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L;
444         raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L;
445         rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L;
446
447         ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START,
448                                &tregs, sizeof(tregs));
449         if (ret < 0)
450                 return ret;
451
452         buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall);
453         buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall);
454         buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall);
455
456         return 0;
457 }
458
459 static int bmc150_magn_read_raw(struct iio_dev *indio_dev,
460                                 struct iio_chan_spec const *chan,
461                                 int *val, int *val2, long mask)
462 {
463         struct bmc150_magn_data *data = iio_priv(indio_dev);
464         int ret, tmp;
465         s32 values[AXIS_XYZ_MAX];
466
467         switch (mask) {
468         case IIO_CHAN_INFO_RAW:
469                 if (iio_buffer_enabled(indio_dev))
470                         return -EBUSY;
471                 mutex_lock(&data->mutex);
472
473                 ret = bmc150_magn_set_power_state(data, true);
474                 if (ret < 0) {
475                         mutex_unlock(&data->mutex);
476                         return ret;
477                 }
478
479                 ret = bmc150_magn_read_xyz(data, values);
480                 if (ret < 0) {
481                         bmc150_magn_set_power_state(data, false);
482                         mutex_unlock(&data->mutex);
483                         return ret;
484                 }
485                 *val = values[chan->scan_index];
486
487                 ret = bmc150_magn_set_power_state(data, false);
488                 if (ret < 0) {
489                         mutex_unlock(&data->mutex);
490                         return ret;
491                 }
492
493                 mutex_unlock(&data->mutex);
494                 return IIO_VAL_INT;
495         case IIO_CHAN_INFO_SCALE:
496                 /*
497                  * The API/driver performs an off-chip temperature
498                  * compensation and outputs x/y/z magnetic field data in
499                  * 16 LSB/uT to the upper application layer.
500                  */
501                 *val = 0;
502                 *val2 = 625;
503                 return IIO_VAL_INT_PLUS_MICRO;
504         case IIO_CHAN_INFO_SAMP_FREQ:
505                 ret = bmc150_magn_get_odr(data, val);
506                 if (ret < 0)
507                         return ret;
508                 return IIO_VAL_INT;
509         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
510                 switch (chan->channel2) {
511                 case IIO_MOD_X:
512                 case IIO_MOD_Y:
513                         ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
514                                           &tmp);
515                         if (ret < 0)
516                                 return ret;
517                         *val = BMC150_MAGN_REGVAL_TO_REPXY(tmp);
518                         return IIO_VAL_INT;
519                 case IIO_MOD_Z:
520                         ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
521                                           &tmp);
522                         if (ret < 0)
523                                 return ret;
524                         *val = BMC150_MAGN_REGVAL_TO_REPZ(tmp);
525                         return IIO_VAL_INT;
526                 default:
527                         return -EINVAL;
528                 }
529         default:
530                 return -EINVAL;
531         }
532 }
533
534 static int bmc150_magn_write_raw(struct iio_dev *indio_dev,
535                                  struct iio_chan_spec const *chan,
536                                  int val, int val2, long mask)
537 {
538         struct bmc150_magn_data *data = iio_priv(indio_dev);
539         int ret;
540
541         switch (mask) {
542         case IIO_CHAN_INFO_SAMP_FREQ:
543                 if (val > data->max_odr)
544                         return -EINVAL;
545                 mutex_lock(&data->mutex);
546                 ret = bmc150_magn_set_odr(data, val);
547                 mutex_unlock(&data->mutex);
548                 return ret;
549         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
550                 switch (chan->channel2) {
551                 case IIO_MOD_X:
552                 case IIO_MOD_Y:
553                         if (val < 1 || val > 511)
554                                 return -EINVAL;
555                         mutex_lock(&data->mutex);
556                         ret = bmc150_magn_set_max_odr(data, val, 0, 0);
557                         if (ret < 0) {
558                                 mutex_unlock(&data->mutex);
559                                 return ret;
560                         }
561                         ret = regmap_update_bits(data->regmap,
562                                                  BMC150_MAGN_REG_REP_XY,
563                                                  BMC150_MAGN_REG_REP_DATAMASK,
564                                                  BMC150_MAGN_REPXY_TO_REGVAL
565                                                  (val));
566                         mutex_unlock(&data->mutex);
567                         return ret;
568                 case IIO_MOD_Z:
569                         if (val < 1 || val > 256)
570                                 return -EINVAL;
571                         mutex_lock(&data->mutex);
572                         ret = bmc150_magn_set_max_odr(data, 0, val, 0);
573                         if (ret < 0) {
574                                 mutex_unlock(&data->mutex);
575                                 return ret;
576                         }
577                         ret = regmap_update_bits(data->regmap,
578                                                  BMC150_MAGN_REG_REP_Z,
579                                                  BMC150_MAGN_REG_REP_DATAMASK,
580                                                  BMC150_MAGN_REPZ_TO_REGVAL
581                                                  (val));
582                         mutex_unlock(&data->mutex);
583                         return ret;
584                 default:
585                         return -EINVAL;
586                 }
587         default:
588                 return -EINVAL;
589         }
590 }
591
592 static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev,
593                                                 struct device_attribute *attr,
594                                                 char *buf)
595 {
596         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
597         struct bmc150_magn_data *data = iio_priv(indio_dev);
598         size_t len = 0;
599         u8 i;
600
601         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
602                 if (bmc150_magn_samp_freq_table[i].freq > data->max_odr)
603                         break;
604                 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
605                                  bmc150_magn_samp_freq_table[i].freq);
606         }
607         /* replace last space with a newline */
608         buf[len - 1] = '\n';
609
610         return len;
611 }
612
613 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail);
614
615 static struct attribute *bmc150_magn_attributes[] = {
616         &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
617         NULL,
618 };
619
620 static const struct attribute_group bmc150_magn_attrs_group = {
621         .attrs = bmc150_magn_attributes,
622 };
623
624 #define BMC150_MAGN_CHANNEL(_axis) {                                    \
625         .type = IIO_MAGN,                                               \
626         .modified = 1,                                                  \
627         .channel2 = IIO_MOD_##_axis,                                    \
628         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |                  \
629                               BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),    \
630         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) |      \
631                                     BIT(IIO_CHAN_INFO_SCALE),           \
632         .scan_index = AXIS_##_axis,                                     \
633         .scan_type = {                                                  \
634                 .sign = 's',                                            \
635                 .realbits = 32,                                         \
636                 .storagebits = 32,                                      \
637                 .endianness = IIO_LE                                    \
638         },                                                              \
639 }
640
641 static const struct iio_chan_spec bmc150_magn_channels[] = {
642         BMC150_MAGN_CHANNEL(X),
643         BMC150_MAGN_CHANNEL(Y),
644         BMC150_MAGN_CHANNEL(Z),
645         IIO_CHAN_SOFT_TIMESTAMP(3),
646 };
647
648 static const struct iio_info bmc150_magn_info = {
649         .attrs = &bmc150_magn_attrs_group,
650         .read_raw = bmc150_magn_read_raw,
651         .write_raw = bmc150_magn_write_raw,
652         .driver_module = THIS_MODULE,
653 };
654
655 static const unsigned long bmc150_magn_scan_masks[] = {
656                                         BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
657                                         0};
658
659 static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p)
660 {
661         struct iio_poll_func *pf = p;
662         struct iio_dev *indio_dev = pf->indio_dev;
663         struct bmc150_magn_data *data = iio_priv(indio_dev);
664         int ret;
665
666         mutex_lock(&data->mutex);
667         ret = bmc150_magn_read_xyz(data, data->buffer);
668         if (ret < 0)
669                 goto err;
670
671         iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
672                                            pf->timestamp);
673
674 err:
675         mutex_unlock(&data->mutex);
676         iio_trigger_notify_done(indio_dev->trig);
677
678         return IRQ_HANDLED;
679 }
680
681 static int bmc150_magn_init(struct bmc150_magn_data *data)
682 {
683         int ret, chip_id;
684         struct bmc150_magn_preset preset;
685
686         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND,
687                                          false);
688         if (ret < 0) {
689                 dev_err(&data->client->dev,
690                         "Failed to bring up device from suspend mode\n");
691                 return ret;
692         }
693
694         ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id);
695         if (ret < 0) {
696                 dev_err(&data->client->dev, "Failed reading chip id\n");
697                 goto err_poweroff;
698         }
699         if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
700                 dev_err(&data->client->dev, "Invalid chip id 0x%x\n", chip_id);
701                 ret = -ENODEV;
702                 goto err_poweroff;
703         }
704         dev_dbg(&data->client->dev, "Chip id %x\n", chip_id);
705
706         preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
707         ret = bmc150_magn_set_odr(data, preset.odr);
708         if (ret < 0) {
709                 dev_err(&data->client->dev, "Failed to set ODR to %d\n",
710                         preset.odr);
711                 goto err_poweroff;
712         }
713
714         ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY,
715                            BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy));
716         if (ret < 0) {
717                 dev_err(&data->client->dev, "Failed to set REP XY to %d\n",
718                         preset.rep_xy);
719                 goto err_poweroff;
720         }
721
722         ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z,
723                            BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z));
724         if (ret < 0) {
725                 dev_err(&data->client->dev, "Failed to set REP Z to %d\n",
726                         preset.rep_z);
727                 goto err_poweroff;
728         }
729
730         ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z,
731                                       preset.odr);
732         if (ret < 0)
733                 goto err_poweroff;
734
735         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
736                                          true);
737         if (ret < 0) {
738                 dev_err(&data->client->dev, "Failed to power on device\n");
739                 goto err_poweroff;
740         }
741
742         return 0;
743
744 err_poweroff:
745         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
746         return ret;
747 }
748
749 static int bmc150_magn_reset_intr(struct bmc150_magn_data *data)
750 {
751         int tmp;
752
753         /*
754          * Data Ready (DRDY) is always cleared after
755          * readout of data registers ends.
756          */
757         return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp);
758 }
759
760 static int bmc150_magn_trig_try_reen(struct iio_trigger *trig)
761 {
762         struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
763         struct bmc150_magn_data *data = iio_priv(indio_dev);
764         int ret;
765
766         if (!data->dready_trigger_on)
767                 return 0;
768
769         mutex_lock(&data->mutex);
770         ret = bmc150_magn_reset_intr(data);
771         mutex_unlock(&data->mutex);
772
773         return ret;
774 }
775
776 static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig,
777                                                   bool state)
778 {
779         struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
780         struct bmc150_magn_data *data = iio_priv(indio_dev);
781         int ret = 0;
782
783         mutex_lock(&data->mutex);
784         if (state == data->dready_trigger_on)
785                 goto err_unlock;
786
787         ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY,
788                                  BMC150_MAGN_MASK_DRDY_EN,
789                                  state << BMC150_MAGN_SHIFT_DRDY_EN);
790         if (ret < 0)
791                 goto err_unlock;
792
793         data->dready_trigger_on = state;
794
795         if (state) {
796                 ret = bmc150_magn_reset_intr(data);
797                 if (ret < 0)
798                         goto err_unlock;
799         }
800         mutex_unlock(&data->mutex);
801
802         return 0;
803
804 err_unlock:
805         mutex_unlock(&data->mutex);
806         return ret;
807 }
808
809 static const struct iio_trigger_ops bmc150_magn_trigger_ops = {
810         .set_trigger_state = bmc150_magn_data_rdy_trigger_set_state,
811         .try_reenable = bmc150_magn_trig_try_reen,
812         .owner = THIS_MODULE,
813 };
814
815 static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev)
816 {
817         struct bmc150_magn_data *data = iio_priv(indio_dev);
818
819         return bmc150_magn_set_power_state(data, true);
820 }
821
822 static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev)
823 {
824         struct bmc150_magn_data *data = iio_priv(indio_dev);
825
826         return bmc150_magn_set_power_state(data, false);
827 }
828
829 static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = {
830         .preenable = bmc150_magn_buffer_preenable,
831         .postenable = iio_triggered_buffer_postenable,
832         .predisable = iio_triggered_buffer_predisable,
833         .postdisable = bmc150_magn_buffer_postdisable,
834 };
835
836 static int bmc150_magn_gpio_probe(struct i2c_client *client)
837 {
838         struct device *dev;
839         struct gpio_desc *gpio;
840         int ret;
841
842         if (!client)
843                 return -EINVAL;
844
845         dev = &client->dev;
846
847         /* data ready GPIO interrupt pin */
848         gpio = devm_gpiod_get_index(dev, BMC150_MAGN_GPIO_INT, 0);
849         if (IS_ERR(gpio)) {
850                 dev_err(dev, "ACPI GPIO get index failed\n");
851                 return PTR_ERR(gpio);
852         }
853
854         ret = gpiod_direction_input(gpio);
855         if (ret)
856                 return ret;
857
858         ret = gpiod_to_irq(gpio);
859
860         dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret);
861
862         return ret;
863 }
864
865 static const char *bmc150_magn_match_acpi_device(struct device *dev)
866 {
867         const struct acpi_device_id *id;
868
869         id = acpi_match_device(dev->driver->acpi_match_table, dev);
870         if (!id)
871                 return NULL;
872
873         return dev_name(dev);
874 }
875
876 static int bmc150_magn_probe(struct i2c_client *client,
877                              const struct i2c_device_id *id)
878 {
879         struct bmc150_magn_data *data;
880         struct iio_dev *indio_dev;
881         const char *name = NULL;
882         int ret;
883
884         indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
885         if (!indio_dev)
886                 return -ENOMEM;
887
888         data = iio_priv(indio_dev);
889         i2c_set_clientdata(client, indio_dev);
890         data->client = client;
891
892         if (id)
893                 name = id->name;
894         else if (ACPI_HANDLE(&client->dev))
895                 name = bmc150_magn_match_acpi_device(&client->dev);
896         else
897                 return -ENOSYS;
898
899         mutex_init(&data->mutex);
900         data->regmap = devm_regmap_init_i2c(client, &bmc150_magn_regmap_config);
901         if (IS_ERR(data->regmap)) {
902                 dev_err(&client->dev, "Failed to allocate register map\n");
903                 return PTR_ERR(data->regmap);
904         }
905
906         ret = bmc150_magn_init(data);
907         if (ret < 0)
908                 return ret;
909
910         indio_dev->dev.parent = &client->dev;
911         indio_dev->channels = bmc150_magn_channels;
912         indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels);
913         indio_dev->available_scan_masks = bmc150_magn_scan_masks;
914         indio_dev->name = name;
915         indio_dev->modes = INDIO_DIRECT_MODE;
916         indio_dev->info = &bmc150_magn_info;
917
918         if (client->irq <= 0)
919                 client->irq = bmc150_magn_gpio_probe(client);
920
921         if (client->irq > 0) {
922                 data->dready_trig = devm_iio_trigger_alloc(&client->dev,
923                                                            "%s-dev%d",
924                                                            indio_dev->name,
925                                                            indio_dev->id);
926                 if (!data->dready_trig) {
927                         ret = -ENOMEM;
928                         dev_err(&client->dev, "iio trigger alloc failed\n");
929                         goto err_poweroff;
930                 }
931
932                 data->dready_trig->dev.parent = &client->dev;
933                 data->dready_trig->ops = &bmc150_magn_trigger_ops;
934                 iio_trigger_set_drvdata(data->dready_trig, indio_dev);
935                 ret = iio_trigger_register(data->dready_trig);
936                 if (ret) {
937                         dev_err(&client->dev, "iio trigger register failed\n");
938                         goto err_poweroff;
939                 }
940
941                 ret = request_threaded_irq(client->irq,
942                                            iio_trigger_generic_data_rdy_poll,
943                                            NULL,
944                                            IRQF_TRIGGER_RISING | IRQF_ONESHOT,
945                                            BMC150_MAGN_IRQ_NAME,
946                                            data->dready_trig);
947                 if (ret < 0) {
948                         dev_err(&client->dev, "request irq %d failed\n",
949                                 client->irq);
950                         goto err_trigger_unregister;
951                 }
952         }
953
954         ret = iio_triggered_buffer_setup(indio_dev,
955                                          iio_pollfunc_store_time,
956                                          bmc150_magn_trigger_handler,
957                                          &bmc150_magn_buffer_setup_ops);
958         if (ret < 0) {
959                 dev_err(&client->dev,
960                         "iio triggered buffer setup failed\n");
961                 goto err_free_irq;
962         }
963
964         ret = iio_device_register(indio_dev);
965         if (ret < 0) {
966                 dev_err(&client->dev, "unable to register iio device\n");
967                 goto err_buffer_cleanup;
968         }
969
970         ret = pm_runtime_set_active(&client->dev);
971         if (ret)
972                 goto err_iio_unregister;
973
974         pm_runtime_enable(&client->dev);
975         pm_runtime_set_autosuspend_delay(&client->dev,
976                                          BMC150_MAGN_AUTO_SUSPEND_DELAY_MS);
977         pm_runtime_use_autosuspend(&client->dev);
978
979         dev_dbg(&indio_dev->dev, "Registered device %s\n", name);
980
981         return 0;
982
983 err_iio_unregister:
984         iio_device_unregister(indio_dev);
985 err_buffer_cleanup:
986         iio_triggered_buffer_cleanup(indio_dev);
987 err_free_irq:
988         if (client->irq > 0)
989                 free_irq(client->irq, data->dready_trig);
990 err_trigger_unregister:
991         if (data->dready_trig)
992                 iio_trigger_unregister(data->dready_trig);
993 err_poweroff:
994         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
995         return ret;
996 }
997
998 static int bmc150_magn_remove(struct i2c_client *client)
999 {
1000         struct iio_dev *indio_dev = i2c_get_clientdata(client);
1001         struct bmc150_magn_data *data = iio_priv(indio_dev);
1002
1003         pm_runtime_disable(&client->dev);
1004         pm_runtime_set_suspended(&client->dev);
1005         pm_runtime_put_noidle(&client->dev);
1006
1007         iio_device_unregister(indio_dev);
1008         iio_triggered_buffer_cleanup(indio_dev);
1009
1010         if (client->irq > 0)
1011                 free_irq(data->client->irq, data->dready_trig);
1012
1013         if (data->dready_trig)
1014                 iio_trigger_unregister(data->dready_trig);
1015
1016         mutex_lock(&data->mutex);
1017         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
1018         mutex_unlock(&data->mutex);
1019
1020         return 0;
1021 }
1022
1023 #ifdef CONFIG_PM
1024 static int bmc150_magn_runtime_suspend(struct device *dev)
1025 {
1026         struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1027         struct bmc150_magn_data *data = iio_priv(indio_dev);
1028         int ret;
1029
1030         mutex_lock(&data->mutex);
1031         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1032                                          true);
1033         mutex_unlock(&data->mutex);
1034         if (ret < 0) {
1035                 dev_err(&data->client->dev, "powering off device failed\n");
1036                 return ret;
1037         }
1038         return 0;
1039 }
1040
1041 /*
1042  * Should be called with data->mutex held.
1043  */
1044 static int bmc150_magn_runtime_resume(struct device *dev)
1045 {
1046         struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1047         struct bmc150_magn_data *data = iio_priv(indio_dev);
1048
1049         return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1050                                           true);
1051 }
1052 #endif
1053
1054 #ifdef CONFIG_PM_SLEEP
1055 static int bmc150_magn_suspend(struct device *dev)
1056 {
1057         struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1058         struct bmc150_magn_data *data = iio_priv(indio_dev);
1059         int ret;
1060
1061         mutex_lock(&data->mutex);
1062         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1063                                          true);
1064         mutex_unlock(&data->mutex);
1065
1066         return ret;
1067 }
1068
1069 static int bmc150_magn_resume(struct device *dev)
1070 {
1071         struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1072         struct bmc150_magn_data *data = iio_priv(indio_dev);
1073         int ret;
1074
1075         mutex_lock(&data->mutex);
1076         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1077                                          true);
1078         mutex_unlock(&data->mutex);
1079
1080         return ret;
1081 }
1082 #endif
1083
1084 static const struct dev_pm_ops bmc150_magn_pm_ops = {
1085         SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume)
1086         SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend,
1087                            bmc150_magn_runtime_resume, NULL)
1088 };
1089
1090 static const struct acpi_device_id bmc150_magn_acpi_match[] = {
1091         {"BMC150B", 0},
1092         {"BMC156B", 0},
1093         {},
1094 };
1095 MODULE_DEVICE_TABLE(acpi, bmc150_magn_acpi_match);
1096
1097 static const struct i2c_device_id bmc150_magn_id[] = {
1098         {"bmc150_magn", 0},
1099         {"bmc156_magn", 0},
1100         {},
1101 };
1102 MODULE_DEVICE_TABLE(i2c, bmc150_magn_id);
1103
1104 static struct i2c_driver bmc150_magn_driver = {
1105         .driver = {
1106                    .name = BMC150_MAGN_DRV_NAME,
1107                    .acpi_match_table = ACPI_PTR(bmc150_magn_acpi_match),
1108                    .pm = &bmc150_magn_pm_ops,
1109                    },
1110         .probe = bmc150_magn_probe,
1111         .remove = bmc150_magn_remove,
1112         .id_table = bmc150_magn_id,
1113 };
1114 module_i2c_driver(bmc150_magn_driver);
1115
1116 MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
1117 MODULE_LICENSE("GPL v2");
1118 MODULE_DESCRIPTION("BMC150 magnetometer driver");