sparc: Convert naked unsigned uses to unsigned int
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35  * RC6 is a special power stage which allows the GPU to enter an very
36  * low-voltage mode when idle, using down to 0V while at this stage.  This
37  * stage is entered automatically when the GPU is idle when RC6 support is
38  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39  *
40  * There are different RC6 modes available in Intel GPU, which differentiate
41  * among each other with the latency required to enter and leave RC6 and
42  * voltage consumed by the GPU in different states.
43  *
44  * The combination of the following flags define which states GPU is allowed
45  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46  * RC6pp is deepest RC6. Their support by hardware varies according to the
47  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48  * which brings the most power savings; deeper states save more power, but
49  * require higher latency to switch to and wake up.
50  */
51 #define INTEL_RC6_ENABLE                        (1<<0)
52 #define INTEL_RC6p_ENABLE                       (1<<1)
53 #define INTEL_RC6pp_ENABLE                      (1<<2)
54
55 static void bxt_init_clock_gating(struct drm_device *dev)
56 {
57         struct drm_i915_private *dev_priv = dev->dev_private;
58
59         /* WaDisableSDEUnitClockGating:bxt */
60         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
61                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
62
63         /*
64          * FIXME:
65          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
66          */
67         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
68                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
69
70         /*
71          * Wa: Backlight PWM may stop in the asserted state, causing backlight
72          * to stay fully on.
73          */
74         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
75                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
76                            PWM1_GATING_DIS | PWM2_GATING_DIS);
77 }
78
79 static void i915_pineview_get_mem_freq(struct drm_device *dev)
80 {
81         struct drm_i915_private *dev_priv = dev->dev_private;
82         u32 tmp;
83
84         tmp = I915_READ(CLKCFG);
85
86         switch (tmp & CLKCFG_FSB_MASK) {
87         case CLKCFG_FSB_533:
88                 dev_priv->fsb_freq = 533; /* 133*4 */
89                 break;
90         case CLKCFG_FSB_800:
91                 dev_priv->fsb_freq = 800; /* 200*4 */
92                 break;
93         case CLKCFG_FSB_667:
94                 dev_priv->fsb_freq =  667; /* 167*4 */
95                 break;
96         case CLKCFG_FSB_400:
97                 dev_priv->fsb_freq = 400; /* 100*4 */
98                 break;
99         }
100
101         switch (tmp & CLKCFG_MEM_MASK) {
102         case CLKCFG_MEM_533:
103                 dev_priv->mem_freq = 533;
104                 break;
105         case CLKCFG_MEM_667:
106                 dev_priv->mem_freq = 667;
107                 break;
108         case CLKCFG_MEM_800:
109                 dev_priv->mem_freq = 800;
110                 break;
111         }
112
113         /* detect pineview DDR3 setting */
114         tmp = I915_READ(CSHRDDR3CTL);
115         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
116 }
117
118 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
119 {
120         struct drm_i915_private *dev_priv = dev->dev_private;
121         u16 ddrpll, csipll;
122
123         ddrpll = I915_READ16(DDRMPLL1);
124         csipll = I915_READ16(CSIPLL0);
125
126         switch (ddrpll & 0xff) {
127         case 0xc:
128                 dev_priv->mem_freq = 800;
129                 break;
130         case 0x10:
131                 dev_priv->mem_freq = 1066;
132                 break;
133         case 0x14:
134                 dev_priv->mem_freq = 1333;
135                 break;
136         case 0x18:
137                 dev_priv->mem_freq = 1600;
138                 break;
139         default:
140                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
141                                  ddrpll & 0xff);
142                 dev_priv->mem_freq = 0;
143                 break;
144         }
145
146         dev_priv->ips.r_t = dev_priv->mem_freq;
147
148         switch (csipll & 0x3ff) {
149         case 0x00c:
150                 dev_priv->fsb_freq = 3200;
151                 break;
152         case 0x00e:
153                 dev_priv->fsb_freq = 3733;
154                 break;
155         case 0x010:
156                 dev_priv->fsb_freq = 4266;
157                 break;
158         case 0x012:
159                 dev_priv->fsb_freq = 4800;
160                 break;
161         case 0x014:
162                 dev_priv->fsb_freq = 5333;
163                 break;
164         case 0x016:
165                 dev_priv->fsb_freq = 5866;
166                 break;
167         case 0x018:
168                 dev_priv->fsb_freq = 6400;
169                 break;
170         default:
171                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
172                                  csipll & 0x3ff);
173                 dev_priv->fsb_freq = 0;
174                 break;
175         }
176
177         if (dev_priv->fsb_freq == 3200) {
178                 dev_priv->ips.c_m = 0;
179         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
180                 dev_priv->ips.c_m = 1;
181         } else {
182                 dev_priv->ips.c_m = 2;
183         }
184 }
185
186 static const struct cxsr_latency cxsr_latency_table[] = {
187         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
188         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
189         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
190         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
191         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
192
193         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
194         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
195         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
196         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
197         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
198
199         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
200         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
201         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
202         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
203         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
204
205         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
206         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
207         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
208         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
209         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
210
211         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
212         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
213         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
214         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
215         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
216
217         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
218         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
219         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
220         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
221         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
222 };
223
224 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
225                                                          int is_ddr3,
226                                                          int fsb,
227                                                          int mem)
228 {
229         const struct cxsr_latency *latency;
230         int i;
231
232         if (fsb == 0 || mem == 0)
233                 return NULL;
234
235         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
236                 latency = &cxsr_latency_table[i];
237                 if (is_desktop == latency->is_desktop &&
238                     is_ddr3 == latency->is_ddr3 &&
239                     fsb == latency->fsb_freq && mem == latency->mem_freq)
240                         return latency;
241         }
242
243         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
244
245         return NULL;
246 }
247
248 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
249 {
250         u32 val;
251
252         mutex_lock(&dev_priv->rps.hw_lock);
253
254         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
255         if (enable)
256                 val &= ~FORCE_DDR_HIGH_FREQ;
257         else
258                 val |= FORCE_DDR_HIGH_FREQ;
259         val &= ~FORCE_DDR_LOW_FREQ;
260         val |= FORCE_DDR_FREQ_REQ_ACK;
261         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
262
263         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
264                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
265                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
266
267         mutex_unlock(&dev_priv->rps.hw_lock);
268 }
269
270 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
271 {
272         u32 val;
273
274         mutex_lock(&dev_priv->rps.hw_lock);
275
276         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
277         if (enable)
278                 val |= DSP_MAXFIFO_PM5_ENABLE;
279         else
280                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
281         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
282
283         mutex_unlock(&dev_priv->rps.hw_lock);
284 }
285
286 #define FW_WM(value, plane) \
287         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
288
289 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
290 {
291         struct drm_device *dev = dev_priv->dev;
292         u32 val;
293
294         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
295                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
296                 POSTING_READ(FW_BLC_SELF_VLV);
297                 dev_priv->wm.vlv.cxsr = enable;
298         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
299                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
300                 POSTING_READ(FW_BLC_SELF);
301         } else if (IS_PINEVIEW(dev)) {
302                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
303                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
304                 I915_WRITE(DSPFW3, val);
305                 POSTING_READ(DSPFW3);
306         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
307                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
308                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
309                 I915_WRITE(FW_BLC_SELF, val);
310                 POSTING_READ(FW_BLC_SELF);
311         } else if (IS_I915GM(dev)) {
312                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
313                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
314                 I915_WRITE(INSTPM, val);
315                 POSTING_READ(INSTPM);
316         } else {
317                 return;
318         }
319
320         DRM_DEBUG_KMS("memory self-refresh is %s\n",
321                       enable ? "enabled" : "disabled");
322 }
323
324
325 /*
326  * Latency for FIFO fetches is dependent on several factors:
327  *   - memory configuration (speed, channels)
328  *   - chipset
329  *   - current MCH state
330  * It can be fairly high in some situations, so here we assume a fairly
331  * pessimal value.  It's a tradeoff between extra memory fetches (if we
332  * set this value too high, the FIFO will fetch frequently to stay full)
333  * and power consumption (set it too low to save power and we might see
334  * FIFO underruns and display "flicker").
335  *
336  * A value of 5us seems to be a good balance; safe for very low end
337  * platforms but not overly aggressive on lower latency configs.
338  */
339 static const int pessimal_latency_ns = 5000;
340
341 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
342         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
343
344 static int vlv_get_fifo_size(struct drm_device *dev,
345                               enum pipe pipe, int plane)
346 {
347         struct drm_i915_private *dev_priv = dev->dev_private;
348         int sprite0_start, sprite1_start, size;
349
350         switch (pipe) {
351                 uint32_t dsparb, dsparb2, dsparb3;
352         case PIPE_A:
353                 dsparb = I915_READ(DSPARB);
354                 dsparb2 = I915_READ(DSPARB2);
355                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
356                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
357                 break;
358         case PIPE_B:
359                 dsparb = I915_READ(DSPARB);
360                 dsparb2 = I915_READ(DSPARB2);
361                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
362                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
363                 break;
364         case PIPE_C:
365                 dsparb2 = I915_READ(DSPARB2);
366                 dsparb3 = I915_READ(DSPARB3);
367                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
368                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
369                 break;
370         default:
371                 return 0;
372         }
373
374         switch (plane) {
375         case 0:
376                 size = sprite0_start;
377                 break;
378         case 1:
379                 size = sprite1_start - sprite0_start;
380                 break;
381         case 2:
382                 size = 512 - 1 - sprite1_start;
383                 break;
384         default:
385                 return 0;
386         }
387
388         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
389                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
390                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
391                       size);
392
393         return size;
394 }
395
396 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
397 {
398         struct drm_i915_private *dev_priv = dev->dev_private;
399         uint32_t dsparb = I915_READ(DSPARB);
400         int size;
401
402         size = dsparb & 0x7f;
403         if (plane)
404                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
405
406         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
407                       plane ? "B" : "A", size);
408
409         return size;
410 }
411
412 static int i830_get_fifo_size(struct drm_device *dev, int plane)
413 {
414         struct drm_i915_private *dev_priv = dev->dev_private;
415         uint32_t dsparb = I915_READ(DSPARB);
416         int size;
417
418         size = dsparb & 0x1ff;
419         if (plane)
420                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
421         size >>= 1; /* Convert to cachelines */
422
423         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
424                       plane ? "B" : "A", size);
425
426         return size;
427 }
428
429 static int i845_get_fifo_size(struct drm_device *dev, int plane)
430 {
431         struct drm_i915_private *dev_priv = dev->dev_private;
432         uint32_t dsparb = I915_READ(DSPARB);
433         int size;
434
435         size = dsparb & 0x7f;
436         size >>= 2; /* Convert to cachelines */
437
438         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
439                       plane ? "B" : "A",
440                       size);
441
442         return size;
443 }
444
445 /* Pineview has different values for various configs */
446 static const struct intel_watermark_params pineview_display_wm = {
447         .fifo_size = PINEVIEW_DISPLAY_FIFO,
448         .max_wm = PINEVIEW_MAX_WM,
449         .default_wm = PINEVIEW_DFT_WM,
450         .guard_size = PINEVIEW_GUARD_WM,
451         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
452 };
453 static const struct intel_watermark_params pineview_display_hplloff_wm = {
454         .fifo_size = PINEVIEW_DISPLAY_FIFO,
455         .max_wm = PINEVIEW_MAX_WM,
456         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
457         .guard_size = PINEVIEW_GUARD_WM,
458         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
459 };
460 static const struct intel_watermark_params pineview_cursor_wm = {
461         .fifo_size = PINEVIEW_CURSOR_FIFO,
462         .max_wm = PINEVIEW_CURSOR_MAX_WM,
463         .default_wm = PINEVIEW_CURSOR_DFT_WM,
464         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
465         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
466 };
467 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
468         .fifo_size = PINEVIEW_CURSOR_FIFO,
469         .max_wm = PINEVIEW_CURSOR_MAX_WM,
470         .default_wm = PINEVIEW_CURSOR_DFT_WM,
471         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
472         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 };
474 static const struct intel_watermark_params g4x_wm_info = {
475         .fifo_size = G4X_FIFO_SIZE,
476         .max_wm = G4X_MAX_WM,
477         .default_wm = G4X_MAX_WM,
478         .guard_size = 2,
479         .cacheline_size = G4X_FIFO_LINE_SIZE,
480 };
481 static const struct intel_watermark_params g4x_cursor_wm_info = {
482         .fifo_size = I965_CURSOR_FIFO,
483         .max_wm = I965_CURSOR_MAX_WM,
484         .default_wm = I965_CURSOR_DFT_WM,
485         .guard_size = 2,
486         .cacheline_size = G4X_FIFO_LINE_SIZE,
487 };
488 static const struct intel_watermark_params valleyview_wm_info = {
489         .fifo_size = VALLEYVIEW_FIFO_SIZE,
490         .max_wm = VALLEYVIEW_MAX_WM,
491         .default_wm = VALLEYVIEW_MAX_WM,
492         .guard_size = 2,
493         .cacheline_size = G4X_FIFO_LINE_SIZE,
494 };
495 static const struct intel_watermark_params valleyview_cursor_wm_info = {
496         .fifo_size = I965_CURSOR_FIFO,
497         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
498         .default_wm = I965_CURSOR_DFT_WM,
499         .guard_size = 2,
500         .cacheline_size = G4X_FIFO_LINE_SIZE,
501 };
502 static const struct intel_watermark_params i965_cursor_wm_info = {
503         .fifo_size = I965_CURSOR_FIFO,
504         .max_wm = I965_CURSOR_MAX_WM,
505         .default_wm = I965_CURSOR_DFT_WM,
506         .guard_size = 2,
507         .cacheline_size = I915_FIFO_LINE_SIZE,
508 };
509 static const struct intel_watermark_params i945_wm_info = {
510         .fifo_size = I945_FIFO_SIZE,
511         .max_wm = I915_MAX_WM,
512         .default_wm = 1,
513         .guard_size = 2,
514         .cacheline_size = I915_FIFO_LINE_SIZE,
515 };
516 static const struct intel_watermark_params i915_wm_info = {
517         .fifo_size = I915_FIFO_SIZE,
518         .max_wm = I915_MAX_WM,
519         .default_wm = 1,
520         .guard_size = 2,
521         .cacheline_size = I915_FIFO_LINE_SIZE,
522 };
523 static const struct intel_watermark_params i830_a_wm_info = {
524         .fifo_size = I855GM_FIFO_SIZE,
525         .max_wm = I915_MAX_WM,
526         .default_wm = 1,
527         .guard_size = 2,
528         .cacheline_size = I830_FIFO_LINE_SIZE,
529 };
530 static const struct intel_watermark_params i830_bc_wm_info = {
531         .fifo_size = I855GM_FIFO_SIZE,
532         .max_wm = I915_MAX_WM/2,
533         .default_wm = 1,
534         .guard_size = 2,
535         .cacheline_size = I830_FIFO_LINE_SIZE,
536 };
537 static const struct intel_watermark_params i845_wm_info = {
538         .fifo_size = I830_FIFO_SIZE,
539         .max_wm = I915_MAX_WM,
540         .default_wm = 1,
541         .guard_size = 2,
542         .cacheline_size = I830_FIFO_LINE_SIZE,
543 };
544
545 /**
546  * intel_calculate_wm - calculate watermark level
547  * @clock_in_khz: pixel clock
548  * @wm: chip FIFO params
549  * @pixel_size: display pixel size
550  * @latency_ns: memory latency for the platform
551  *
552  * Calculate the watermark level (the level at which the display plane will
553  * start fetching from memory again).  Each chip has a different display
554  * FIFO size and allocation, so the caller needs to figure that out and pass
555  * in the correct intel_watermark_params structure.
556  *
557  * As the pixel clock runs, the FIFO will be drained at a rate that depends
558  * on the pixel size.  When it reaches the watermark level, it'll start
559  * fetching FIFO line sized based chunks from memory until the FIFO fills
560  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
561  * will occur, and a display engine hang could result.
562  */
563 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
564                                         const struct intel_watermark_params *wm,
565                                         int fifo_size,
566                                         int pixel_size,
567                                         unsigned long latency_ns)
568 {
569         long entries_required, wm_size;
570
571         /*
572          * Note: we need to make sure we don't overflow for various clock &
573          * latency values.
574          * clocks go from a few thousand to several hundred thousand.
575          * latency is usually a few thousand
576          */
577         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
578                 1000;
579         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
580
581         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
582
583         wm_size = fifo_size - (entries_required + wm->guard_size);
584
585         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
586
587         /* Don't promote wm_size to unsigned... */
588         if (wm_size > (long)wm->max_wm)
589                 wm_size = wm->max_wm;
590         if (wm_size <= 0)
591                 wm_size = wm->default_wm;
592
593         /*
594          * Bspec seems to indicate that the value shouldn't be lower than
595          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
596          * Lets go for 8 which is the burst size since certain platforms
597          * already use a hardcoded 8 (which is what the spec says should be
598          * done).
599          */
600         if (wm_size <= 8)
601                 wm_size = 8;
602
603         return wm_size;
604 }
605
606 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
607 {
608         struct drm_crtc *crtc, *enabled = NULL;
609
610         for_each_crtc(dev, crtc) {
611                 if (intel_crtc_active(crtc)) {
612                         if (enabled)
613                                 return NULL;
614                         enabled = crtc;
615                 }
616         }
617
618         return enabled;
619 }
620
621 static void pineview_update_wm(struct drm_crtc *unused_crtc)
622 {
623         struct drm_device *dev = unused_crtc->dev;
624         struct drm_i915_private *dev_priv = dev->dev_private;
625         struct drm_crtc *crtc;
626         const struct cxsr_latency *latency;
627         u32 reg;
628         unsigned long wm;
629
630         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
631                                          dev_priv->fsb_freq, dev_priv->mem_freq);
632         if (!latency) {
633                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
634                 intel_set_memory_cxsr(dev_priv, false);
635                 return;
636         }
637
638         crtc = single_enabled_crtc(dev);
639         if (crtc) {
640                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
641                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
642                 int clock = adjusted_mode->crtc_clock;
643
644                 /* Display SR */
645                 wm = intel_calculate_wm(clock, &pineview_display_wm,
646                                         pineview_display_wm.fifo_size,
647                                         pixel_size, latency->display_sr);
648                 reg = I915_READ(DSPFW1);
649                 reg &= ~DSPFW_SR_MASK;
650                 reg |= FW_WM(wm, SR);
651                 I915_WRITE(DSPFW1, reg);
652                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
653
654                 /* cursor SR */
655                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
656                                         pineview_display_wm.fifo_size,
657                                         pixel_size, latency->cursor_sr);
658                 reg = I915_READ(DSPFW3);
659                 reg &= ~DSPFW_CURSOR_SR_MASK;
660                 reg |= FW_WM(wm, CURSOR_SR);
661                 I915_WRITE(DSPFW3, reg);
662
663                 /* Display HPLL off SR */
664                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
665                                         pineview_display_hplloff_wm.fifo_size,
666                                         pixel_size, latency->display_hpll_disable);
667                 reg = I915_READ(DSPFW3);
668                 reg &= ~DSPFW_HPLL_SR_MASK;
669                 reg |= FW_WM(wm, HPLL_SR);
670                 I915_WRITE(DSPFW3, reg);
671
672                 /* cursor HPLL off SR */
673                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
674                                         pineview_display_hplloff_wm.fifo_size,
675                                         pixel_size, latency->cursor_hpll_disable);
676                 reg = I915_READ(DSPFW3);
677                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
678                 reg |= FW_WM(wm, HPLL_CURSOR);
679                 I915_WRITE(DSPFW3, reg);
680                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
681
682                 intel_set_memory_cxsr(dev_priv, true);
683         } else {
684                 intel_set_memory_cxsr(dev_priv, false);
685         }
686 }
687
688 static bool g4x_compute_wm0(struct drm_device *dev,
689                             int plane,
690                             const struct intel_watermark_params *display,
691                             int display_latency_ns,
692                             const struct intel_watermark_params *cursor,
693                             int cursor_latency_ns,
694                             int *plane_wm,
695                             int *cursor_wm)
696 {
697         struct drm_crtc *crtc;
698         const struct drm_display_mode *adjusted_mode;
699         int htotal, hdisplay, clock, pixel_size;
700         int line_time_us, line_count;
701         int entries, tlb_miss;
702
703         crtc = intel_get_crtc_for_plane(dev, plane);
704         if (!intel_crtc_active(crtc)) {
705                 *cursor_wm = cursor->guard_size;
706                 *plane_wm = display->guard_size;
707                 return false;
708         }
709
710         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
711         clock = adjusted_mode->crtc_clock;
712         htotal = adjusted_mode->crtc_htotal;
713         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
714         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
715
716         /* Use the small buffer method to calculate plane watermark */
717         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
718         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
719         if (tlb_miss > 0)
720                 entries += tlb_miss;
721         entries = DIV_ROUND_UP(entries, display->cacheline_size);
722         *plane_wm = entries + display->guard_size;
723         if (*plane_wm > (int)display->max_wm)
724                 *plane_wm = display->max_wm;
725
726         /* Use the large buffer method to calculate cursor watermark */
727         line_time_us = max(htotal * 1000 / clock, 1);
728         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
729         entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
730         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
731         if (tlb_miss > 0)
732                 entries += tlb_miss;
733         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
734         *cursor_wm = entries + cursor->guard_size;
735         if (*cursor_wm > (int)cursor->max_wm)
736                 *cursor_wm = (int)cursor->max_wm;
737
738         return true;
739 }
740
741 /*
742  * Check the wm result.
743  *
744  * If any calculated watermark values is larger than the maximum value that
745  * can be programmed into the associated watermark register, that watermark
746  * must be disabled.
747  */
748 static bool g4x_check_srwm(struct drm_device *dev,
749                            int display_wm, int cursor_wm,
750                            const struct intel_watermark_params *display,
751                            const struct intel_watermark_params *cursor)
752 {
753         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
754                       display_wm, cursor_wm);
755
756         if (display_wm > display->max_wm) {
757                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
758                               display_wm, display->max_wm);
759                 return false;
760         }
761
762         if (cursor_wm > cursor->max_wm) {
763                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
764                               cursor_wm, cursor->max_wm);
765                 return false;
766         }
767
768         if (!(display_wm || cursor_wm)) {
769                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
770                 return false;
771         }
772
773         return true;
774 }
775
776 static bool g4x_compute_srwm(struct drm_device *dev,
777                              int plane,
778                              int latency_ns,
779                              const struct intel_watermark_params *display,
780                              const struct intel_watermark_params *cursor,
781                              int *display_wm, int *cursor_wm)
782 {
783         struct drm_crtc *crtc;
784         const struct drm_display_mode *adjusted_mode;
785         int hdisplay, htotal, pixel_size, clock;
786         unsigned long line_time_us;
787         int line_count, line_size;
788         int small, large;
789         int entries;
790
791         if (!latency_ns) {
792                 *display_wm = *cursor_wm = 0;
793                 return false;
794         }
795
796         crtc = intel_get_crtc_for_plane(dev, plane);
797         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
798         clock = adjusted_mode->crtc_clock;
799         htotal = adjusted_mode->crtc_htotal;
800         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
801         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
802
803         line_time_us = max(htotal * 1000 / clock, 1);
804         line_count = (latency_ns / line_time_us + 1000) / 1000;
805         line_size = hdisplay * pixel_size;
806
807         /* Use the minimum of the small and large buffer method for primary */
808         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
809         large = line_count * line_size;
810
811         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
812         *display_wm = entries + display->guard_size;
813
814         /* calculate the self-refresh watermark for display cursor */
815         entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
816         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
817         *cursor_wm = entries + cursor->guard_size;
818
819         return g4x_check_srwm(dev,
820                               *display_wm, *cursor_wm,
821                               display, cursor);
822 }
823
824 #define FW_WM_VLV(value, plane) \
825         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
826
827 static void vlv_write_wm_values(struct intel_crtc *crtc,
828                                 const struct vlv_wm_values *wm)
829 {
830         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
831         enum pipe pipe = crtc->pipe;
832
833         I915_WRITE(VLV_DDL(pipe),
834                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
835                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
836                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
837                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
838
839         I915_WRITE(DSPFW1,
840                    FW_WM(wm->sr.plane, SR) |
841                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
842                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
843                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
844         I915_WRITE(DSPFW2,
845                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
846                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
847                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
848         I915_WRITE(DSPFW3,
849                    FW_WM(wm->sr.cursor, CURSOR_SR));
850
851         if (IS_CHERRYVIEW(dev_priv)) {
852                 I915_WRITE(DSPFW7_CHV,
853                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
854                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
855                 I915_WRITE(DSPFW8_CHV,
856                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
857                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
858                 I915_WRITE(DSPFW9_CHV,
859                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
860                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
861                 I915_WRITE(DSPHOWM,
862                            FW_WM(wm->sr.plane >> 9, SR_HI) |
863                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
864                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
865                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
866                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
867                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
868                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
869                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
870                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
871                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
872         } else {
873                 I915_WRITE(DSPFW7,
874                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
875                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876                 I915_WRITE(DSPHOWM,
877                            FW_WM(wm->sr.plane >> 9, SR_HI) |
878                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
879                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
880                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
881                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
882                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
883                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
884         }
885
886         /* zero (unused) WM1 watermarks */
887         I915_WRITE(DSPFW4, 0);
888         I915_WRITE(DSPFW5, 0);
889         I915_WRITE(DSPFW6, 0);
890         I915_WRITE(DSPHOWM1, 0);
891
892         POSTING_READ(DSPFW1);
893 }
894
895 #undef FW_WM_VLV
896
897 enum vlv_wm_level {
898         VLV_WM_LEVEL_PM2,
899         VLV_WM_LEVEL_PM5,
900         VLV_WM_LEVEL_DDR_DVFS,
901 };
902
903 /* latency must be in 0.1us units. */
904 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
905                                    unsigned int pipe_htotal,
906                                    unsigned int horiz_pixels,
907                                    unsigned int bytes_per_pixel,
908                                    unsigned int latency)
909 {
910         unsigned int ret;
911
912         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
913         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
914         ret = DIV_ROUND_UP(ret, 64);
915
916         return ret;
917 }
918
919 static void vlv_setup_wm_latency(struct drm_device *dev)
920 {
921         struct drm_i915_private *dev_priv = dev->dev_private;
922
923         /* all latencies in usec */
924         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
925
926         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
927
928         if (IS_CHERRYVIEW(dev_priv)) {
929                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
930                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
931
932                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
933         }
934 }
935
936 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
937                                      struct intel_crtc *crtc,
938                                      const struct intel_plane_state *state,
939                                      int level)
940 {
941         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
942         int clock, htotal, pixel_size, width, wm;
943
944         if (dev_priv->wm.pri_latency[level] == 0)
945                 return USHRT_MAX;
946
947         if (!state->visible)
948                 return 0;
949
950         pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
951         clock = crtc->config->base.adjusted_mode.crtc_clock;
952         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
953         width = crtc->config->pipe_src_w;
954         if (WARN_ON(htotal == 0))
955                 htotal = 1;
956
957         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
958                 /*
959                  * FIXME the formula gives values that are
960                  * too big for the cursor FIFO, and hence we
961                  * would never be able to use cursors. For
962                  * now just hardcode the watermark.
963                  */
964                 wm = 63;
965         } else {
966                 wm = vlv_wm_method2(clock, htotal, width, pixel_size,
967                                     dev_priv->wm.pri_latency[level] * 10);
968         }
969
970         return min_t(int, wm, USHRT_MAX);
971 }
972
973 static void vlv_compute_fifo(struct intel_crtc *crtc)
974 {
975         struct drm_device *dev = crtc->base.dev;
976         struct vlv_wm_state *wm_state = &crtc->wm_state;
977         struct intel_plane *plane;
978         unsigned int total_rate = 0;
979         const int fifo_size = 512 - 1;
980         int fifo_extra, fifo_left = fifo_size;
981
982         for_each_intel_plane_on_crtc(dev, crtc, plane) {
983                 struct intel_plane_state *state =
984                         to_intel_plane_state(plane->base.state);
985
986                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
987                         continue;
988
989                 if (state->visible) {
990                         wm_state->num_active_planes++;
991                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
992                 }
993         }
994
995         for_each_intel_plane_on_crtc(dev, crtc, plane) {
996                 struct intel_plane_state *state =
997                         to_intel_plane_state(plane->base.state);
998                 unsigned int rate;
999
1000                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1001                         plane->wm.fifo_size = 63;
1002                         continue;
1003                 }
1004
1005                 if (!state->visible) {
1006                         plane->wm.fifo_size = 0;
1007                         continue;
1008                 }
1009
1010                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1011                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1012                 fifo_left -= plane->wm.fifo_size;
1013         }
1014
1015         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1016
1017         /* spread the remainder evenly */
1018         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1019                 int plane_extra;
1020
1021                 if (fifo_left == 0)
1022                         break;
1023
1024                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1025                         continue;
1026
1027                 /* give it all to the first plane if none are active */
1028                 if (plane->wm.fifo_size == 0 &&
1029                     wm_state->num_active_planes)
1030                         continue;
1031
1032                 plane_extra = min(fifo_extra, fifo_left);
1033                 plane->wm.fifo_size += plane_extra;
1034                 fifo_left -= plane_extra;
1035         }
1036
1037         WARN_ON(fifo_left != 0);
1038 }
1039
1040 static void vlv_invert_wms(struct intel_crtc *crtc)
1041 {
1042         struct vlv_wm_state *wm_state = &crtc->wm_state;
1043         int level;
1044
1045         for (level = 0; level < wm_state->num_levels; level++) {
1046                 struct drm_device *dev = crtc->base.dev;
1047                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1048                 struct intel_plane *plane;
1049
1050                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1051                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1052
1053                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1054                         switch (plane->base.type) {
1055                                 int sprite;
1056                         case DRM_PLANE_TYPE_CURSOR:
1057                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1058                                         wm_state->wm[level].cursor;
1059                                 break;
1060                         case DRM_PLANE_TYPE_PRIMARY:
1061                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1062                                         wm_state->wm[level].primary;
1063                                 break;
1064                         case DRM_PLANE_TYPE_OVERLAY:
1065                                 sprite = plane->plane;
1066                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1067                                         wm_state->wm[level].sprite[sprite];
1068                                 break;
1069                         }
1070                 }
1071         }
1072 }
1073
1074 static void vlv_compute_wm(struct intel_crtc *crtc)
1075 {
1076         struct drm_device *dev = crtc->base.dev;
1077         struct vlv_wm_state *wm_state = &crtc->wm_state;
1078         struct intel_plane *plane;
1079         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1080         int level;
1081
1082         memset(wm_state, 0, sizeof(*wm_state));
1083
1084         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1085         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1086
1087         wm_state->num_active_planes = 0;
1088
1089         vlv_compute_fifo(crtc);
1090
1091         if (wm_state->num_active_planes != 1)
1092                 wm_state->cxsr = false;
1093
1094         if (wm_state->cxsr) {
1095                 for (level = 0; level < wm_state->num_levels; level++) {
1096                         wm_state->sr[level].plane = sr_fifo_size;
1097                         wm_state->sr[level].cursor = 63;
1098                 }
1099         }
1100
1101         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1102                 struct intel_plane_state *state =
1103                         to_intel_plane_state(plane->base.state);
1104
1105                 if (!state->visible)
1106                         continue;
1107
1108                 /* normal watermarks */
1109                 for (level = 0; level < wm_state->num_levels; level++) {
1110                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1111                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1112
1113                         /* hack */
1114                         if (WARN_ON(level == 0 && wm > max_wm))
1115                                 wm = max_wm;
1116
1117                         if (wm > plane->wm.fifo_size)
1118                                 break;
1119
1120                         switch (plane->base.type) {
1121                                 int sprite;
1122                         case DRM_PLANE_TYPE_CURSOR:
1123                                 wm_state->wm[level].cursor = wm;
1124                                 break;
1125                         case DRM_PLANE_TYPE_PRIMARY:
1126                                 wm_state->wm[level].primary = wm;
1127                                 break;
1128                         case DRM_PLANE_TYPE_OVERLAY:
1129                                 sprite = plane->plane;
1130                                 wm_state->wm[level].sprite[sprite] = wm;
1131                                 break;
1132                         }
1133                 }
1134
1135                 wm_state->num_levels = level;
1136
1137                 if (!wm_state->cxsr)
1138                         continue;
1139
1140                 /* maxfifo watermarks */
1141                 switch (plane->base.type) {
1142                         int sprite, level;
1143                 case DRM_PLANE_TYPE_CURSOR:
1144                         for (level = 0; level < wm_state->num_levels; level++)
1145                                 wm_state->sr[level].cursor =
1146                                         wm_state->wm[level].cursor;
1147                         break;
1148                 case DRM_PLANE_TYPE_PRIMARY:
1149                         for (level = 0; level < wm_state->num_levels; level++)
1150                                 wm_state->sr[level].plane =
1151                                         min(wm_state->sr[level].plane,
1152                                             wm_state->wm[level].primary);
1153                         break;
1154                 case DRM_PLANE_TYPE_OVERLAY:
1155                         sprite = plane->plane;
1156                         for (level = 0; level < wm_state->num_levels; level++)
1157                                 wm_state->sr[level].plane =
1158                                         min(wm_state->sr[level].plane,
1159                                             wm_state->wm[level].sprite[sprite]);
1160                         break;
1161                 }
1162         }
1163
1164         /* clear any (partially) filled invalid levels */
1165         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1166                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1167                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1168         }
1169
1170         vlv_invert_wms(crtc);
1171 }
1172
1173 #define VLV_FIFO(plane, value) \
1174         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1175
1176 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1177 {
1178         struct drm_device *dev = crtc->base.dev;
1179         struct drm_i915_private *dev_priv = to_i915(dev);
1180         struct intel_plane *plane;
1181         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1182
1183         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1184                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1185                         WARN_ON(plane->wm.fifo_size != 63);
1186                         continue;
1187                 }
1188
1189                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1190                         sprite0_start = plane->wm.fifo_size;
1191                 else if (plane->plane == 0)
1192                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1193                 else
1194                         fifo_size = sprite1_start + plane->wm.fifo_size;
1195         }
1196
1197         WARN_ON(fifo_size != 512 - 1);
1198
1199         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1200                       pipe_name(crtc->pipe), sprite0_start,
1201                       sprite1_start, fifo_size);
1202
1203         switch (crtc->pipe) {
1204                 uint32_t dsparb, dsparb2, dsparb3;
1205         case PIPE_A:
1206                 dsparb = I915_READ(DSPARB);
1207                 dsparb2 = I915_READ(DSPARB2);
1208
1209                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1210                             VLV_FIFO(SPRITEB, 0xff));
1211                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1212                            VLV_FIFO(SPRITEB, sprite1_start));
1213
1214                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1215                              VLV_FIFO(SPRITEB_HI, 0x1));
1216                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1217                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1218
1219                 I915_WRITE(DSPARB, dsparb);
1220                 I915_WRITE(DSPARB2, dsparb2);
1221                 break;
1222         case PIPE_B:
1223                 dsparb = I915_READ(DSPARB);
1224                 dsparb2 = I915_READ(DSPARB2);
1225
1226                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1227                             VLV_FIFO(SPRITED, 0xff));
1228                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1229                            VLV_FIFO(SPRITED, sprite1_start));
1230
1231                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1232                              VLV_FIFO(SPRITED_HI, 0xff));
1233                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1234                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1235
1236                 I915_WRITE(DSPARB, dsparb);
1237                 I915_WRITE(DSPARB2, dsparb2);
1238                 break;
1239         case PIPE_C:
1240                 dsparb3 = I915_READ(DSPARB3);
1241                 dsparb2 = I915_READ(DSPARB2);
1242
1243                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1244                              VLV_FIFO(SPRITEF, 0xff));
1245                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1246                             VLV_FIFO(SPRITEF, sprite1_start));
1247
1248                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1249                              VLV_FIFO(SPRITEF_HI, 0xff));
1250                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1251                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1252
1253                 I915_WRITE(DSPARB3, dsparb3);
1254                 I915_WRITE(DSPARB2, dsparb2);
1255                 break;
1256         default:
1257                 break;
1258         }
1259 }
1260
1261 #undef VLV_FIFO
1262
1263 static void vlv_merge_wm(struct drm_device *dev,
1264                          struct vlv_wm_values *wm)
1265 {
1266         struct intel_crtc *crtc;
1267         int num_active_crtcs = 0;
1268
1269         wm->level = to_i915(dev)->wm.max_level;
1270         wm->cxsr = true;
1271
1272         for_each_intel_crtc(dev, crtc) {
1273                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1274
1275                 if (!crtc->active)
1276                         continue;
1277
1278                 if (!wm_state->cxsr)
1279                         wm->cxsr = false;
1280
1281                 num_active_crtcs++;
1282                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1283         }
1284
1285         if (num_active_crtcs != 1)
1286                 wm->cxsr = false;
1287
1288         if (num_active_crtcs > 1)
1289                 wm->level = VLV_WM_LEVEL_PM2;
1290
1291         for_each_intel_crtc(dev, crtc) {
1292                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1293                 enum pipe pipe = crtc->pipe;
1294
1295                 if (!crtc->active)
1296                         continue;
1297
1298                 wm->pipe[pipe] = wm_state->wm[wm->level];
1299                 if (wm->cxsr)
1300                         wm->sr = wm_state->sr[wm->level];
1301
1302                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1303                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1304                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1305                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1306         }
1307 }
1308
1309 static void vlv_update_wm(struct drm_crtc *crtc)
1310 {
1311         struct drm_device *dev = crtc->dev;
1312         struct drm_i915_private *dev_priv = dev->dev_private;
1313         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1314         enum pipe pipe = intel_crtc->pipe;
1315         struct vlv_wm_values wm = {};
1316
1317         vlv_compute_wm(intel_crtc);
1318         vlv_merge_wm(dev, &wm);
1319
1320         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1321                 /* FIXME should be part of crtc atomic commit */
1322                 vlv_pipe_set_fifo_size(intel_crtc);
1323                 return;
1324         }
1325
1326         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1327             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1328                 chv_set_memory_dvfs(dev_priv, false);
1329
1330         if (wm.level < VLV_WM_LEVEL_PM5 &&
1331             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1332                 chv_set_memory_pm5(dev_priv, false);
1333
1334         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1335                 intel_set_memory_cxsr(dev_priv, false);
1336
1337         /* FIXME should be part of crtc atomic commit */
1338         vlv_pipe_set_fifo_size(intel_crtc);
1339
1340         vlv_write_wm_values(intel_crtc, &wm);
1341
1342         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1343                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1344                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1345                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1346                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1347
1348         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1349                 intel_set_memory_cxsr(dev_priv, true);
1350
1351         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1352             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1353                 chv_set_memory_pm5(dev_priv, true);
1354
1355         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1356             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1357                 chv_set_memory_dvfs(dev_priv, true);
1358
1359         dev_priv->wm.vlv = wm;
1360 }
1361
1362 #define single_plane_enabled(mask) is_power_of_2(mask)
1363
1364 static void g4x_update_wm(struct drm_crtc *crtc)
1365 {
1366         struct drm_device *dev = crtc->dev;
1367         static const int sr_latency_ns = 12000;
1368         struct drm_i915_private *dev_priv = dev->dev_private;
1369         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1370         int plane_sr, cursor_sr;
1371         unsigned int enabled = 0;
1372         bool cxsr_enabled;
1373
1374         if (g4x_compute_wm0(dev, PIPE_A,
1375                             &g4x_wm_info, pessimal_latency_ns,
1376                             &g4x_cursor_wm_info, pessimal_latency_ns,
1377                             &planea_wm, &cursora_wm))
1378                 enabled |= 1 << PIPE_A;
1379
1380         if (g4x_compute_wm0(dev, PIPE_B,
1381                             &g4x_wm_info, pessimal_latency_ns,
1382                             &g4x_cursor_wm_info, pessimal_latency_ns,
1383                             &planeb_wm, &cursorb_wm))
1384                 enabled |= 1 << PIPE_B;
1385
1386         if (single_plane_enabled(enabled) &&
1387             g4x_compute_srwm(dev, ffs(enabled) - 1,
1388                              sr_latency_ns,
1389                              &g4x_wm_info,
1390                              &g4x_cursor_wm_info,
1391                              &plane_sr, &cursor_sr)) {
1392                 cxsr_enabled = true;
1393         } else {
1394                 cxsr_enabled = false;
1395                 intel_set_memory_cxsr(dev_priv, false);
1396                 plane_sr = cursor_sr = 0;
1397         }
1398
1399         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1400                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1401                       planea_wm, cursora_wm,
1402                       planeb_wm, cursorb_wm,
1403                       plane_sr, cursor_sr);
1404
1405         I915_WRITE(DSPFW1,
1406                    FW_WM(plane_sr, SR) |
1407                    FW_WM(cursorb_wm, CURSORB) |
1408                    FW_WM(planeb_wm, PLANEB) |
1409                    FW_WM(planea_wm, PLANEA));
1410         I915_WRITE(DSPFW2,
1411                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1412                    FW_WM(cursora_wm, CURSORA));
1413         /* HPLL off in SR has some issues on G4x... disable it */
1414         I915_WRITE(DSPFW3,
1415                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1416                    FW_WM(cursor_sr, CURSOR_SR));
1417
1418         if (cxsr_enabled)
1419                 intel_set_memory_cxsr(dev_priv, true);
1420 }
1421
1422 static void i965_update_wm(struct drm_crtc *unused_crtc)
1423 {
1424         struct drm_device *dev = unused_crtc->dev;
1425         struct drm_i915_private *dev_priv = dev->dev_private;
1426         struct drm_crtc *crtc;
1427         int srwm = 1;
1428         int cursor_sr = 16;
1429         bool cxsr_enabled;
1430
1431         /* Calc sr entries for one plane configs */
1432         crtc = single_enabled_crtc(dev);
1433         if (crtc) {
1434                 /* self-refresh has much higher latency */
1435                 static const int sr_latency_ns = 12000;
1436                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1437                 int clock = adjusted_mode->crtc_clock;
1438                 int htotal = adjusted_mode->crtc_htotal;
1439                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1440                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1441                 unsigned long line_time_us;
1442                 int entries;
1443
1444                 line_time_us = max(htotal * 1000 / clock, 1);
1445
1446                 /* Use ns/us then divide to preserve precision */
1447                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1448                         pixel_size * hdisplay;
1449                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1450                 srwm = I965_FIFO_SIZE - entries;
1451                 if (srwm < 0)
1452                         srwm = 1;
1453                 srwm &= 0x1ff;
1454                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1455                               entries, srwm);
1456
1457                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1458                         pixel_size * crtc->cursor->state->crtc_w;
1459                 entries = DIV_ROUND_UP(entries,
1460                                           i965_cursor_wm_info.cacheline_size);
1461                 cursor_sr = i965_cursor_wm_info.fifo_size -
1462                         (entries + i965_cursor_wm_info.guard_size);
1463
1464                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1465                         cursor_sr = i965_cursor_wm_info.max_wm;
1466
1467                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1468                               "cursor %d\n", srwm, cursor_sr);
1469
1470                 cxsr_enabled = true;
1471         } else {
1472                 cxsr_enabled = false;
1473                 /* Turn off self refresh if both pipes are enabled */
1474                 intel_set_memory_cxsr(dev_priv, false);
1475         }
1476
1477         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1478                       srwm);
1479
1480         /* 965 has limitations... */
1481         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1482                    FW_WM(8, CURSORB) |
1483                    FW_WM(8, PLANEB) |
1484                    FW_WM(8, PLANEA));
1485         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1486                    FW_WM(8, PLANEC_OLD));
1487         /* update cursor SR watermark */
1488         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1489
1490         if (cxsr_enabled)
1491                 intel_set_memory_cxsr(dev_priv, true);
1492 }
1493
1494 #undef FW_WM
1495
1496 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1497 {
1498         struct drm_device *dev = unused_crtc->dev;
1499         struct drm_i915_private *dev_priv = dev->dev_private;
1500         const struct intel_watermark_params *wm_info;
1501         uint32_t fwater_lo;
1502         uint32_t fwater_hi;
1503         int cwm, srwm = 1;
1504         int fifo_size;
1505         int planea_wm, planeb_wm;
1506         struct drm_crtc *crtc, *enabled = NULL;
1507
1508         if (IS_I945GM(dev))
1509                 wm_info = &i945_wm_info;
1510         else if (!IS_GEN2(dev))
1511                 wm_info = &i915_wm_info;
1512         else
1513                 wm_info = &i830_a_wm_info;
1514
1515         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1516         crtc = intel_get_crtc_for_plane(dev, 0);
1517         if (intel_crtc_active(crtc)) {
1518                 const struct drm_display_mode *adjusted_mode;
1519                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1520                 if (IS_GEN2(dev))
1521                         cpp = 4;
1522
1523                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1524                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1525                                                wm_info, fifo_size, cpp,
1526                                                pessimal_latency_ns);
1527                 enabled = crtc;
1528         } else {
1529                 planea_wm = fifo_size - wm_info->guard_size;
1530                 if (planea_wm > (long)wm_info->max_wm)
1531                         planea_wm = wm_info->max_wm;
1532         }
1533
1534         if (IS_GEN2(dev))
1535                 wm_info = &i830_bc_wm_info;
1536
1537         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1538         crtc = intel_get_crtc_for_plane(dev, 1);
1539         if (intel_crtc_active(crtc)) {
1540                 const struct drm_display_mode *adjusted_mode;
1541                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1542                 if (IS_GEN2(dev))
1543                         cpp = 4;
1544
1545                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1546                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1547                                                wm_info, fifo_size, cpp,
1548                                                pessimal_latency_ns);
1549                 if (enabled == NULL)
1550                         enabled = crtc;
1551                 else
1552                         enabled = NULL;
1553         } else {
1554                 planeb_wm = fifo_size - wm_info->guard_size;
1555                 if (planeb_wm > (long)wm_info->max_wm)
1556                         planeb_wm = wm_info->max_wm;
1557         }
1558
1559         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1560
1561         if (IS_I915GM(dev) && enabled) {
1562                 struct drm_i915_gem_object *obj;
1563
1564                 obj = intel_fb_obj(enabled->primary->state->fb);
1565
1566                 /* self-refresh seems busted with untiled */
1567                 if (obj->tiling_mode == I915_TILING_NONE)
1568                         enabled = NULL;
1569         }
1570
1571         /*
1572          * Overlay gets an aggressive default since video jitter is bad.
1573          */
1574         cwm = 2;
1575
1576         /* Play safe and disable self-refresh before adjusting watermarks. */
1577         intel_set_memory_cxsr(dev_priv, false);
1578
1579         /* Calc sr entries for one plane configs */
1580         if (HAS_FW_BLC(dev) && enabled) {
1581                 /* self-refresh has much higher latency */
1582                 static const int sr_latency_ns = 6000;
1583                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1584                 int clock = adjusted_mode->crtc_clock;
1585                 int htotal = adjusted_mode->crtc_htotal;
1586                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1587                 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1588                 unsigned long line_time_us;
1589                 int entries;
1590
1591                 line_time_us = max(htotal * 1000 / clock, 1);
1592
1593                 /* Use ns/us then divide to preserve precision */
1594                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1595                         pixel_size * hdisplay;
1596                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1597                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1598                 srwm = wm_info->fifo_size - entries;
1599                 if (srwm < 0)
1600                         srwm = 1;
1601
1602                 if (IS_I945G(dev) || IS_I945GM(dev))
1603                         I915_WRITE(FW_BLC_SELF,
1604                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1605                 else if (IS_I915GM(dev))
1606                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1607         }
1608
1609         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1610                       planea_wm, planeb_wm, cwm, srwm);
1611
1612         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1613         fwater_hi = (cwm & 0x1f);
1614
1615         /* Set request length to 8 cachelines per fetch */
1616         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1617         fwater_hi = fwater_hi | (1 << 8);
1618
1619         I915_WRITE(FW_BLC, fwater_lo);
1620         I915_WRITE(FW_BLC2, fwater_hi);
1621
1622         if (enabled)
1623                 intel_set_memory_cxsr(dev_priv, true);
1624 }
1625
1626 static void i845_update_wm(struct drm_crtc *unused_crtc)
1627 {
1628         struct drm_device *dev = unused_crtc->dev;
1629         struct drm_i915_private *dev_priv = dev->dev_private;
1630         struct drm_crtc *crtc;
1631         const struct drm_display_mode *adjusted_mode;
1632         uint32_t fwater_lo;
1633         int planea_wm;
1634
1635         crtc = single_enabled_crtc(dev);
1636         if (crtc == NULL)
1637                 return;
1638
1639         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1640         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641                                        &i845_wm_info,
1642                                        dev_priv->display.get_fifo_size(dev, 0),
1643                                        4, pessimal_latency_ns);
1644         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1645         fwater_lo |= (3<<8) | planea_wm;
1646
1647         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1648
1649         I915_WRITE(FW_BLC, fwater_lo);
1650 }
1651
1652 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1653 {
1654         uint32_t pixel_rate;
1655
1656         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1657
1658         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1659          * adjust the pixel_rate here. */
1660
1661         if (pipe_config->pch_pfit.enabled) {
1662                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1663                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1664
1665                 pipe_w = pipe_config->pipe_src_w;
1666                 pipe_h = pipe_config->pipe_src_h;
1667
1668                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1669                 pfit_h = pfit_size & 0xFFFF;
1670                 if (pipe_w < pfit_w)
1671                         pipe_w = pfit_w;
1672                 if (pipe_h < pfit_h)
1673                         pipe_h = pfit_h;
1674
1675                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1676                                      pfit_w * pfit_h);
1677         }
1678
1679         return pixel_rate;
1680 }
1681
1682 /* latency must be in 0.1us units. */
1683 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1684                                uint32_t latency)
1685 {
1686         uint64_t ret;
1687
1688         if (WARN(latency == 0, "Latency value missing\n"))
1689                 return UINT_MAX;
1690
1691         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1692         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1693
1694         return ret;
1695 }
1696
1697 /* latency must be in 0.1us units. */
1698 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1699                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1700                                uint32_t latency)
1701 {
1702         uint32_t ret;
1703
1704         if (WARN(latency == 0, "Latency value missing\n"))
1705                 return UINT_MAX;
1706
1707         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1708         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1709         ret = DIV_ROUND_UP(ret, 64) + 2;
1710         return ret;
1711 }
1712
1713 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1714                            uint8_t bytes_per_pixel)
1715 {
1716         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1717 }
1718
1719 struct ilk_wm_maximums {
1720         uint16_t pri;
1721         uint16_t spr;
1722         uint16_t cur;
1723         uint16_t fbc;
1724 };
1725
1726 /*
1727  * For both WM_PIPE and WM_LP.
1728  * mem_value must be in 0.1us units.
1729  */
1730 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1731                                    const struct intel_plane_state *pstate,
1732                                    uint32_t mem_value,
1733                                    bool is_lp)
1734 {
1735         int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1736         uint32_t method1, method2;
1737
1738         if (!cstate->base.active || !pstate->visible)
1739                 return 0;
1740
1741         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1742
1743         if (!is_lp)
1744                 return method1;
1745
1746         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1747                                  cstate->base.adjusted_mode.crtc_htotal,
1748                                  drm_rect_width(&pstate->dst),
1749                                  bpp,
1750                                  mem_value);
1751
1752         return min(method1, method2);
1753 }
1754
1755 /*
1756  * For both WM_PIPE and WM_LP.
1757  * mem_value must be in 0.1us units.
1758  */
1759 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1760                                    const struct intel_plane_state *pstate,
1761                                    uint32_t mem_value)
1762 {
1763         int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1764         uint32_t method1, method2;
1765
1766         if (!cstate->base.active || !pstate->visible)
1767                 return 0;
1768
1769         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1770         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1771                                  cstate->base.adjusted_mode.crtc_htotal,
1772                                  drm_rect_width(&pstate->dst),
1773                                  bpp,
1774                                  mem_value);
1775         return min(method1, method2);
1776 }
1777
1778 /*
1779  * For both WM_PIPE and WM_LP.
1780  * mem_value must be in 0.1us units.
1781  */
1782 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1783                                    const struct intel_plane_state *pstate,
1784                                    uint32_t mem_value)
1785 {
1786         /*
1787          * We treat the cursor plane as always-on for the purposes of watermark
1788          * calculation.  Until we have two-stage watermark programming merged,
1789          * this is necessary to avoid flickering.
1790          */
1791         int cpp = 4;
1792         int width = pstate->visible ? pstate->base.crtc_w : 64;
1793
1794         if (!cstate->base.active)
1795                 return 0;
1796
1797         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1798                               cstate->base.adjusted_mode.crtc_htotal,
1799                               width, cpp, mem_value);
1800 }
1801
1802 /* Only for WM_LP. */
1803 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1804                                    const struct intel_plane_state *pstate,
1805                                    uint32_t pri_val)
1806 {
1807         int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1808
1809         if (!cstate->base.active || !pstate->visible)
1810                 return 0;
1811
1812         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1813 }
1814
1815 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1816 {
1817         if (INTEL_INFO(dev)->gen >= 8)
1818                 return 3072;
1819         else if (INTEL_INFO(dev)->gen >= 7)
1820                 return 768;
1821         else
1822                 return 512;
1823 }
1824
1825 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1826                                          int level, bool is_sprite)
1827 {
1828         if (INTEL_INFO(dev)->gen >= 8)
1829                 /* BDW primary/sprite plane watermarks */
1830                 return level == 0 ? 255 : 2047;
1831         else if (INTEL_INFO(dev)->gen >= 7)
1832                 /* IVB/HSW primary/sprite plane watermarks */
1833                 return level == 0 ? 127 : 1023;
1834         else if (!is_sprite)
1835                 /* ILK/SNB primary plane watermarks */
1836                 return level == 0 ? 127 : 511;
1837         else
1838                 /* ILK/SNB sprite plane watermarks */
1839                 return level == 0 ? 63 : 255;
1840 }
1841
1842 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1843                                           int level)
1844 {
1845         if (INTEL_INFO(dev)->gen >= 7)
1846                 return level == 0 ? 63 : 255;
1847         else
1848                 return level == 0 ? 31 : 63;
1849 }
1850
1851 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1852 {
1853         if (INTEL_INFO(dev)->gen >= 8)
1854                 return 31;
1855         else
1856                 return 15;
1857 }
1858
1859 /* Calculate the maximum primary/sprite plane watermark */
1860 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1861                                      int level,
1862                                      const struct intel_wm_config *config,
1863                                      enum intel_ddb_partitioning ddb_partitioning,
1864                                      bool is_sprite)
1865 {
1866         unsigned int fifo_size = ilk_display_fifo_size(dev);
1867
1868         /* if sprites aren't enabled, sprites get nothing */
1869         if (is_sprite && !config->sprites_enabled)
1870                 return 0;
1871
1872         /* HSW allows LP1+ watermarks even with multiple pipes */
1873         if (level == 0 || config->num_pipes_active > 1) {
1874                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1875
1876                 /*
1877                  * For some reason the non self refresh
1878                  * FIFO size is only half of the self
1879                  * refresh FIFO size on ILK/SNB.
1880                  */
1881                 if (INTEL_INFO(dev)->gen <= 6)
1882                         fifo_size /= 2;
1883         }
1884
1885         if (config->sprites_enabled) {
1886                 /* level 0 is always calculated with 1:1 split */
1887                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1888                         if (is_sprite)
1889                                 fifo_size *= 5;
1890                         fifo_size /= 6;
1891                 } else {
1892                         fifo_size /= 2;
1893                 }
1894         }
1895
1896         /* clamp to max that the registers can hold */
1897         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1898 }
1899
1900 /* Calculate the maximum cursor plane watermark */
1901 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1902                                       int level,
1903                                       const struct intel_wm_config *config)
1904 {
1905         /* HSW LP1+ watermarks w/ multiple pipes */
1906         if (level > 0 && config->num_pipes_active > 1)
1907                 return 64;
1908
1909         /* otherwise just report max that registers can hold */
1910         return ilk_cursor_wm_reg_max(dev, level);
1911 }
1912
1913 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1914                                     int level,
1915                                     const struct intel_wm_config *config,
1916                                     enum intel_ddb_partitioning ddb_partitioning,
1917                                     struct ilk_wm_maximums *max)
1918 {
1919         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1920         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1921         max->cur = ilk_cursor_wm_max(dev, level, config);
1922         max->fbc = ilk_fbc_wm_reg_max(dev);
1923 }
1924
1925 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1926                                         int level,
1927                                         struct ilk_wm_maximums *max)
1928 {
1929         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1930         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1931         max->cur = ilk_cursor_wm_reg_max(dev, level);
1932         max->fbc = ilk_fbc_wm_reg_max(dev);
1933 }
1934
1935 static bool ilk_validate_wm_level(int level,
1936                                   const struct ilk_wm_maximums *max,
1937                                   struct intel_wm_level *result)
1938 {
1939         bool ret;
1940
1941         /* already determined to be invalid? */
1942         if (!result->enable)
1943                 return false;
1944
1945         result->enable = result->pri_val <= max->pri &&
1946                          result->spr_val <= max->spr &&
1947                          result->cur_val <= max->cur;
1948
1949         ret = result->enable;
1950
1951         /*
1952          * HACK until we can pre-compute everything,
1953          * and thus fail gracefully if LP0 watermarks
1954          * are exceeded...
1955          */
1956         if (level == 0 && !result->enable) {
1957                 if (result->pri_val > max->pri)
1958                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1959                                       level, result->pri_val, max->pri);
1960                 if (result->spr_val > max->spr)
1961                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1962                                       level, result->spr_val, max->spr);
1963                 if (result->cur_val > max->cur)
1964                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1965                                       level, result->cur_val, max->cur);
1966
1967                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1968                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1969                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1970                 result->enable = true;
1971         }
1972
1973         return ret;
1974 }
1975
1976 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1977                                  const struct intel_crtc *intel_crtc,
1978                                  int level,
1979                                  struct intel_crtc_state *cstate,
1980                                  struct intel_plane_state *pristate,
1981                                  struct intel_plane_state *sprstate,
1982                                  struct intel_plane_state *curstate,
1983                                  struct intel_wm_level *result)
1984 {
1985         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1986         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1987         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1988
1989         /* WM1+ latency values stored in 0.5us units */
1990         if (level > 0) {
1991                 pri_latency *= 5;
1992                 spr_latency *= 5;
1993                 cur_latency *= 5;
1994         }
1995
1996         result->pri_val = ilk_compute_pri_wm(cstate, pristate,
1997                                              pri_latency, level);
1998         result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
1999         result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2000         result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2001         result->enable = true;
2002 }
2003
2004 static uint32_t
2005 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2006 {
2007         struct drm_i915_private *dev_priv = dev->dev_private;
2008         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2009         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2010         u32 linetime, ips_linetime;
2011
2012         if (!intel_crtc->active)
2013                 return 0;
2014
2015         /* The WM are computed with base on how long it takes to fill a single
2016          * row at the given clock rate, multiplied by 8.
2017          * */
2018         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2019                                      adjusted_mode->crtc_clock);
2020         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2021                                          dev_priv->cdclk_freq);
2022
2023         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2024                PIPE_WM_LINETIME_TIME(linetime);
2025 }
2026
2027 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2028 {
2029         struct drm_i915_private *dev_priv = dev->dev_private;
2030
2031         if (IS_GEN9(dev)) {
2032                 uint32_t val;
2033                 int ret, i;
2034                 int level, max_level = ilk_wm_max_level(dev);
2035
2036                 /* read the first set of memory latencies[0:3] */
2037                 val = 0; /* data0 to be programmed to 0 for first set */
2038                 mutex_lock(&dev_priv->rps.hw_lock);
2039                 ret = sandybridge_pcode_read(dev_priv,
2040                                              GEN9_PCODE_READ_MEM_LATENCY,
2041                                              &val);
2042                 mutex_unlock(&dev_priv->rps.hw_lock);
2043
2044                 if (ret) {
2045                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2046                         return;
2047                 }
2048
2049                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2050                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2051                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2052                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2053                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2054                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2055                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2056
2057                 /* read the second set of memory latencies[4:7] */
2058                 val = 1; /* data0 to be programmed to 1 for second set */
2059                 mutex_lock(&dev_priv->rps.hw_lock);
2060                 ret = sandybridge_pcode_read(dev_priv,
2061                                              GEN9_PCODE_READ_MEM_LATENCY,
2062                                              &val);
2063                 mutex_unlock(&dev_priv->rps.hw_lock);
2064                 if (ret) {
2065                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2066                         return;
2067                 }
2068
2069                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2070                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2071                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2072                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2073                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2074                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2075                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2076
2077                 /*
2078                  * WaWmMemoryReadLatency:skl
2079                  *
2080                  * punit doesn't take into account the read latency so we need
2081                  * to add 2us to the various latency levels we retrieve from
2082                  * the punit.
2083                  *   - W0 is a bit special in that it's the only level that
2084                  *   can't be disabled if we want to have display working, so
2085                  *   we always add 2us there.
2086                  *   - For levels >=1, punit returns 0us latency when they are
2087                  *   disabled, so we respect that and don't add 2us then
2088                  *
2089                  * Additionally, if a level n (n > 1) has a 0us latency, all
2090                  * levels m (m >= n) need to be disabled. We make sure to
2091                  * sanitize the values out of the punit to satisfy this
2092                  * requirement.
2093                  */
2094                 wm[0] += 2;
2095                 for (level = 1; level <= max_level; level++)
2096                         if (wm[level] != 0)
2097                                 wm[level] += 2;
2098                         else {
2099                                 for (i = level + 1; i <= max_level; i++)
2100                                         wm[i] = 0;
2101
2102                                 break;
2103                         }
2104         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2105                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2106
2107                 wm[0] = (sskpd >> 56) & 0xFF;
2108                 if (wm[0] == 0)
2109                         wm[0] = sskpd & 0xF;
2110                 wm[1] = (sskpd >> 4) & 0xFF;
2111                 wm[2] = (sskpd >> 12) & 0xFF;
2112                 wm[3] = (sskpd >> 20) & 0x1FF;
2113                 wm[4] = (sskpd >> 32) & 0x1FF;
2114         } else if (INTEL_INFO(dev)->gen >= 6) {
2115                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2116
2117                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2118                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2119                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2120                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2121         } else if (INTEL_INFO(dev)->gen >= 5) {
2122                 uint32_t mltr = I915_READ(MLTR_ILK);
2123
2124                 /* ILK primary LP0 latency is 700 ns */
2125                 wm[0] = 7;
2126                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2127                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2128         }
2129 }
2130
2131 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2132 {
2133         /* ILK sprite LP0 latency is 1300 ns */
2134         if (INTEL_INFO(dev)->gen == 5)
2135                 wm[0] = 13;
2136 }
2137
2138 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2139 {
2140         /* ILK cursor LP0 latency is 1300 ns */
2141         if (INTEL_INFO(dev)->gen == 5)
2142                 wm[0] = 13;
2143
2144         /* WaDoubleCursorLP3Latency:ivb */
2145         if (IS_IVYBRIDGE(dev))
2146                 wm[3] *= 2;
2147 }
2148
2149 int ilk_wm_max_level(const struct drm_device *dev)
2150 {
2151         /* how many WM levels are we expecting */
2152         if (INTEL_INFO(dev)->gen >= 9)
2153                 return 7;
2154         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2155                 return 4;
2156         else if (INTEL_INFO(dev)->gen >= 6)
2157                 return 3;
2158         else
2159                 return 2;
2160 }
2161
2162 static void intel_print_wm_latency(struct drm_device *dev,
2163                                    const char *name,
2164                                    const uint16_t wm[8])
2165 {
2166         int level, max_level = ilk_wm_max_level(dev);
2167
2168         for (level = 0; level <= max_level; level++) {
2169                 unsigned int latency = wm[level];
2170
2171                 if (latency == 0) {
2172                         DRM_ERROR("%s WM%d latency not provided\n",
2173                                   name, level);
2174                         continue;
2175                 }
2176
2177                 /*
2178                  * - latencies are in us on gen9.
2179                  * - before then, WM1+ latency values are in 0.5us units
2180                  */
2181                 if (IS_GEN9(dev))
2182                         latency *= 10;
2183                 else if (level > 0)
2184                         latency *= 5;
2185
2186                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2187                               name, level, wm[level],
2188                               latency / 10, latency % 10);
2189         }
2190 }
2191
2192 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2193                                     uint16_t wm[5], uint16_t min)
2194 {
2195         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2196
2197         if (wm[0] >= min)
2198                 return false;
2199
2200         wm[0] = max(wm[0], min);
2201         for (level = 1; level <= max_level; level++)
2202                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2203
2204         return true;
2205 }
2206
2207 static void snb_wm_latency_quirk(struct drm_device *dev)
2208 {
2209         struct drm_i915_private *dev_priv = dev->dev_private;
2210         bool changed;
2211
2212         /*
2213          * The BIOS provided WM memory latency values are often
2214          * inadequate for high resolution displays. Adjust them.
2215          */
2216         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2217                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2218                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2219
2220         if (!changed)
2221                 return;
2222
2223         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2224         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2225         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2226         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2227 }
2228
2229 static void ilk_setup_wm_latency(struct drm_device *dev)
2230 {
2231         struct drm_i915_private *dev_priv = dev->dev_private;
2232
2233         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2234
2235         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2236                sizeof(dev_priv->wm.pri_latency));
2237         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2238                sizeof(dev_priv->wm.pri_latency));
2239
2240         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2241         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2242
2243         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2244         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2245         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2246
2247         if (IS_GEN6(dev))
2248                 snb_wm_latency_quirk(dev);
2249 }
2250
2251 static void skl_setup_wm_latency(struct drm_device *dev)
2252 {
2253         struct drm_i915_private *dev_priv = dev->dev_private;
2254
2255         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2256         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2257 }
2258
2259 /* Compute new watermarks for the pipe */
2260 static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
2261                                struct drm_atomic_state *state)
2262 {
2263         struct intel_pipe_wm *pipe_wm;
2264         struct drm_device *dev = intel_crtc->base.dev;
2265         const struct drm_i915_private *dev_priv = dev->dev_private;
2266         struct intel_crtc_state *cstate = NULL;
2267         struct intel_plane *intel_plane;
2268         struct drm_plane_state *ps;
2269         struct intel_plane_state *pristate = NULL;
2270         struct intel_plane_state *sprstate = NULL;
2271         struct intel_plane_state *curstate = NULL;
2272         int level, max_level = ilk_wm_max_level(dev);
2273         /* LP0 watermark maximums depend on this pipe alone */
2274         struct intel_wm_config config = {
2275                 .num_pipes_active = 1,
2276         };
2277         struct ilk_wm_maximums max;
2278
2279         cstate = intel_atomic_get_crtc_state(state, intel_crtc);
2280         if (IS_ERR(cstate))
2281                 return PTR_ERR(cstate);
2282
2283         pipe_wm = &cstate->wm.optimal.ilk;
2284
2285         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2286                 ps = drm_atomic_get_plane_state(state,
2287                                                 &intel_plane->base);
2288                 if (IS_ERR(ps))
2289                         return PTR_ERR(ps);
2290
2291                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2292                         pristate = to_intel_plane_state(ps);
2293                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2294                         sprstate = to_intel_plane_state(ps);
2295                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2296                         curstate = to_intel_plane_state(ps);
2297         }
2298
2299         config.sprites_enabled = sprstate->visible;
2300         config.sprites_scaled = sprstate->visible &&
2301                 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2302                 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2303
2304         pipe_wm->pipe_enabled = cstate->base.active;
2305         pipe_wm->sprites_enabled = config.sprites_enabled;
2306         pipe_wm->sprites_scaled = config.sprites_scaled;
2307
2308         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2309         if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2310                 max_level = 1;
2311
2312         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2313         if (config.sprites_scaled)
2314                 max_level = 0;
2315
2316         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2317                              pristate, sprstate, curstate, &pipe_wm->wm[0]);
2318
2319         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2320                 pipe_wm->linetime = hsw_compute_linetime_wm(dev,
2321                                                             &intel_crtc->base);
2322
2323         /* LP0 watermarks always use 1/2 DDB partitioning */
2324         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2325
2326         /* At least LP0 must be valid */
2327         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2328                 return -EINVAL;
2329
2330         ilk_compute_wm_reg_maximums(dev, 1, &max);
2331
2332         for (level = 1; level <= max_level; level++) {
2333                 struct intel_wm_level wm = {};
2334
2335                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2336                                      pristate, sprstate, curstate, &wm);
2337
2338                 /*
2339                  * Disable any watermark level that exceeds the
2340                  * register maximums since such watermarks are
2341                  * always invalid.
2342                  */
2343                 if (!ilk_validate_wm_level(level, &max, &wm))
2344                         break;
2345
2346                 pipe_wm->wm[level] = wm;
2347         }
2348
2349         return 0;
2350 }
2351
2352 /*
2353  * Merge the watermarks from all active pipes for a specific level.
2354  */
2355 static void ilk_merge_wm_level(struct drm_device *dev,
2356                                int level,
2357                                struct intel_wm_level *ret_wm)
2358 {
2359         const struct intel_crtc *intel_crtc;
2360
2361         ret_wm->enable = true;
2362
2363         for_each_intel_crtc(dev, intel_crtc) {
2364                 const struct intel_crtc_state *cstate =
2365                         to_intel_crtc_state(intel_crtc->base.state);
2366                 const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2367                 const struct intel_wm_level *wm = &active->wm[level];
2368
2369                 if (!active->pipe_enabled)
2370                         continue;
2371
2372                 /*
2373                  * The watermark values may have been used in the past,
2374                  * so we must maintain them in the registers for some
2375                  * time even if the level is now disabled.
2376                  */
2377                 if (!wm->enable)
2378                         ret_wm->enable = false;
2379
2380                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2381                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2382                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2383                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2384         }
2385 }
2386
2387 /*
2388  * Merge all low power watermarks for all active pipes.
2389  */
2390 static void ilk_wm_merge(struct drm_device *dev,
2391                          const struct intel_wm_config *config,
2392                          const struct ilk_wm_maximums *max,
2393                          struct intel_pipe_wm *merged)
2394 {
2395         struct drm_i915_private *dev_priv = dev->dev_private;
2396         int level, max_level = ilk_wm_max_level(dev);
2397         int last_enabled_level = max_level;
2398
2399         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2400         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2401             config->num_pipes_active > 1)
2402                 return;
2403
2404         /* ILK: FBC WM must be disabled always */
2405         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2406
2407         /* merge each WM1+ level */
2408         for (level = 1; level <= max_level; level++) {
2409                 struct intel_wm_level *wm = &merged->wm[level];
2410
2411                 ilk_merge_wm_level(dev, level, wm);
2412
2413                 if (level > last_enabled_level)
2414                         wm->enable = false;
2415                 else if (!ilk_validate_wm_level(level, max, wm))
2416                         /* make sure all following levels get disabled */
2417                         last_enabled_level = level - 1;
2418
2419                 /*
2420                  * The spec says it is preferred to disable
2421                  * FBC WMs instead of disabling a WM level.
2422                  */
2423                 if (wm->fbc_val > max->fbc) {
2424                         if (wm->enable)
2425                                 merged->fbc_wm_enabled = false;
2426                         wm->fbc_val = 0;
2427                 }
2428         }
2429
2430         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2431         /*
2432          * FIXME this is racy. FBC might get enabled later.
2433          * What we should check here is whether FBC can be
2434          * enabled sometime later.
2435          */
2436         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2437             intel_fbc_is_active(dev_priv)) {
2438                 for (level = 2; level <= max_level; level++) {
2439                         struct intel_wm_level *wm = &merged->wm[level];
2440
2441                         wm->enable = false;
2442                 }
2443         }
2444 }
2445
2446 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2447 {
2448         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2449         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2450 }
2451
2452 /* The value we need to program into the WM_LPx latency field */
2453 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2454 {
2455         struct drm_i915_private *dev_priv = dev->dev_private;
2456
2457         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2458                 return 2 * level;
2459         else
2460                 return dev_priv->wm.pri_latency[level];
2461 }
2462
2463 static void ilk_compute_wm_results(struct drm_device *dev,
2464                                    const struct intel_pipe_wm *merged,
2465                                    enum intel_ddb_partitioning partitioning,
2466                                    struct ilk_wm_values *results)
2467 {
2468         struct intel_crtc *intel_crtc;
2469         int level, wm_lp;
2470
2471         results->enable_fbc_wm = merged->fbc_wm_enabled;
2472         results->partitioning = partitioning;
2473
2474         /* LP1+ register values */
2475         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2476                 const struct intel_wm_level *r;
2477
2478                 level = ilk_wm_lp_to_level(wm_lp, merged);
2479
2480                 r = &merged->wm[level];
2481
2482                 /*
2483                  * Maintain the watermark values even if the level is
2484                  * disabled. Doing otherwise could cause underruns.
2485                  */
2486                 results->wm_lp[wm_lp - 1] =
2487                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2488                         (r->pri_val << WM1_LP_SR_SHIFT) |
2489                         r->cur_val;
2490
2491                 if (r->enable)
2492                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2493
2494                 if (INTEL_INFO(dev)->gen >= 8)
2495                         results->wm_lp[wm_lp - 1] |=
2496                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2497                 else
2498                         results->wm_lp[wm_lp - 1] |=
2499                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2500
2501                 /*
2502                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2503                  * level is disabled. Doing otherwise could cause underruns.
2504                  */
2505                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2506                         WARN_ON(wm_lp != 1);
2507                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2508                 } else
2509                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2510         }
2511
2512         /* LP0 register values */
2513         for_each_intel_crtc(dev, intel_crtc) {
2514                 const struct intel_crtc_state *cstate =
2515                         to_intel_crtc_state(intel_crtc->base.state);
2516                 enum pipe pipe = intel_crtc->pipe;
2517                 const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
2518
2519                 if (WARN_ON(!r->enable))
2520                         continue;
2521
2522                 results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2523
2524                 results->wm_pipe[pipe] =
2525                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2526                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2527                         r->cur_val;
2528         }
2529 }
2530
2531 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2532  * case both are at the same level. Prefer r1 in case they're the same. */
2533 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2534                                                   struct intel_pipe_wm *r1,
2535                                                   struct intel_pipe_wm *r2)
2536 {
2537         int level, max_level = ilk_wm_max_level(dev);
2538         int level1 = 0, level2 = 0;
2539
2540         for (level = 1; level <= max_level; level++) {
2541                 if (r1->wm[level].enable)
2542                         level1 = level;
2543                 if (r2->wm[level].enable)
2544                         level2 = level;
2545         }
2546
2547         if (level1 == level2) {
2548                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2549                         return r2;
2550                 else
2551                         return r1;
2552         } else if (level1 > level2) {
2553                 return r1;
2554         } else {
2555                 return r2;
2556         }
2557 }
2558
2559 /* dirty bits used to track which watermarks need changes */
2560 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2561 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2562 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2563 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2564 #define WM_DIRTY_FBC (1 << 24)
2565 #define WM_DIRTY_DDB (1 << 25)
2566
2567 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2568                                          const struct ilk_wm_values *old,
2569                                          const struct ilk_wm_values *new)
2570 {
2571         unsigned int dirty = 0;
2572         enum pipe pipe;
2573         int wm_lp;
2574
2575         for_each_pipe(dev_priv, pipe) {
2576                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2577                         dirty |= WM_DIRTY_LINETIME(pipe);
2578                         /* Must disable LP1+ watermarks too */
2579                         dirty |= WM_DIRTY_LP_ALL;
2580                 }
2581
2582                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2583                         dirty |= WM_DIRTY_PIPE(pipe);
2584                         /* Must disable LP1+ watermarks too */
2585                         dirty |= WM_DIRTY_LP_ALL;
2586                 }
2587         }
2588
2589         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2590                 dirty |= WM_DIRTY_FBC;
2591                 /* Must disable LP1+ watermarks too */
2592                 dirty |= WM_DIRTY_LP_ALL;
2593         }
2594
2595         if (old->partitioning != new->partitioning) {
2596                 dirty |= WM_DIRTY_DDB;
2597                 /* Must disable LP1+ watermarks too */
2598                 dirty |= WM_DIRTY_LP_ALL;
2599         }
2600
2601         /* LP1+ watermarks already deemed dirty, no need to continue */
2602         if (dirty & WM_DIRTY_LP_ALL)
2603                 return dirty;
2604
2605         /* Find the lowest numbered LP1+ watermark in need of an update... */
2606         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2607                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2608                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2609                         break;
2610         }
2611
2612         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2613         for (; wm_lp <= 3; wm_lp++)
2614                 dirty |= WM_DIRTY_LP(wm_lp);
2615
2616         return dirty;
2617 }
2618
2619 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2620                                unsigned int dirty)
2621 {
2622         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2623         bool changed = false;
2624
2625         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2626                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2627                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2628                 changed = true;
2629         }
2630         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2631                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2632                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2633                 changed = true;
2634         }
2635         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2636                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2637                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2638                 changed = true;
2639         }
2640
2641         /*
2642          * Don't touch WM1S_LP_EN here.
2643          * Doing so could cause underruns.
2644          */
2645
2646         return changed;
2647 }
2648
2649 /*
2650  * The spec says we shouldn't write when we don't need, because every write
2651  * causes WMs to be re-evaluated, expending some power.
2652  */
2653 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2654                                 struct ilk_wm_values *results)
2655 {
2656         struct drm_device *dev = dev_priv->dev;
2657         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2658         unsigned int dirty;
2659         uint32_t val;
2660
2661         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2662         if (!dirty)
2663                 return;
2664
2665         _ilk_disable_lp_wm(dev_priv, dirty);
2666
2667         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2668                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2669         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2670                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2671         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2672                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2673
2674         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2675                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2676         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2677                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2678         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2679                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2680
2681         if (dirty & WM_DIRTY_DDB) {
2682                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2683                         val = I915_READ(WM_MISC);
2684                         if (results->partitioning == INTEL_DDB_PART_1_2)
2685                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2686                         else
2687                                 val |= WM_MISC_DATA_PARTITION_5_6;
2688                         I915_WRITE(WM_MISC, val);
2689                 } else {
2690                         val = I915_READ(DISP_ARB_CTL2);
2691                         if (results->partitioning == INTEL_DDB_PART_1_2)
2692                                 val &= ~DISP_DATA_PARTITION_5_6;
2693                         else
2694                                 val |= DISP_DATA_PARTITION_5_6;
2695                         I915_WRITE(DISP_ARB_CTL2, val);
2696                 }
2697         }
2698
2699         if (dirty & WM_DIRTY_FBC) {
2700                 val = I915_READ(DISP_ARB_CTL);
2701                 if (results->enable_fbc_wm)
2702                         val &= ~DISP_FBC_WM_DIS;
2703                 else
2704                         val |= DISP_FBC_WM_DIS;
2705                 I915_WRITE(DISP_ARB_CTL, val);
2706         }
2707
2708         if (dirty & WM_DIRTY_LP(1) &&
2709             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2710                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2711
2712         if (INTEL_INFO(dev)->gen >= 7) {
2713                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2714                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2715                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2716                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2717         }
2718
2719         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2720                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2721         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2722                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2723         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2724                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2725
2726         dev_priv->wm.hw = *results;
2727 }
2728
2729 static bool ilk_disable_lp_wm(struct drm_device *dev)
2730 {
2731         struct drm_i915_private *dev_priv = dev->dev_private;
2732
2733         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2734 }
2735
2736 /*
2737  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2738  * different active planes.
2739  */
2740
2741 #define SKL_DDB_SIZE            896     /* in blocks */
2742 #define BXT_DDB_SIZE            512
2743
2744 /*
2745  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2746  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2747  * other universal planes are in indices 1..n.  Note that this may leave unused
2748  * indices between the top "sprite" plane and the cursor.
2749  */
2750 static int
2751 skl_wm_plane_id(const struct intel_plane *plane)
2752 {
2753         switch (plane->base.type) {
2754         case DRM_PLANE_TYPE_PRIMARY:
2755                 return 0;
2756         case DRM_PLANE_TYPE_CURSOR:
2757                 return PLANE_CURSOR;
2758         case DRM_PLANE_TYPE_OVERLAY:
2759                 return plane->plane + 1;
2760         default:
2761                 MISSING_CASE(plane->base.type);
2762                 return plane->plane;
2763         }
2764 }
2765
2766 static void
2767 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2768                                    const struct intel_crtc_state *cstate,
2769                                    const struct intel_wm_config *config,
2770                                    struct skl_ddb_entry *alloc /* out */)
2771 {
2772         struct drm_crtc *for_crtc = cstate->base.crtc;
2773         struct drm_crtc *crtc;
2774         unsigned int pipe_size, ddb_size;
2775         int nth_active_pipe;
2776
2777         if (!cstate->base.active) {
2778                 alloc->start = 0;
2779                 alloc->end = 0;
2780                 return;
2781         }
2782
2783         if (IS_BROXTON(dev))
2784                 ddb_size = BXT_DDB_SIZE;
2785         else
2786                 ddb_size = SKL_DDB_SIZE;
2787
2788         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2789
2790         nth_active_pipe = 0;
2791         for_each_crtc(dev, crtc) {
2792                 if (!to_intel_crtc(crtc)->active)
2793                         continue;
2794
2795                 if (crtc == for_crtc)
2796                         break;
2797
2798                 nth_active_pipe++;
2799         }
2800
2801         pipe_size = ddb_size / config->num_pipes_active;
2802         alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2803         alloc->end = alloc->start + pipe_size;
2804 }
2805
2806 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2807 {
2808         if (config->num_pipes_active == 1)
2809                 return 32;
2810
2811         return 8;
2812 }
2813
2814 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2815 {
2816         entry->start = reg & 0x3ff;
2817         entry->end = (reg >> 16) & 0x3ff;
2818         if (entry->end)
2819                 entry->end += 1;
2820 }
2821
2822 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2823                           struct skl_ddb_allocation *ddb /* out */)
2824 {
2825         enum pipe pipe;
2826         int plane;
2827         u32 val;
2828
2829         memset(ddb, 0, sizeof(*ddb));
2830
2831         for_each_pipe(dev_priv, pipe) {
2832                 enum intel_display_power_domain power_domain;
2833
2834                 power_domain = POWER_DOMAIN_PIPE(pipe);
2835                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2836                         continue;
2837
2838                 for_each_plane(dev_priv, pipe, plane) {
2839                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2840                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2841                                                    val);
2842                 }
2843
2844                 val = I915_READ(CUR_BUF_CFG(pipe));
2845                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2846                                            val);
2847
2848                 intel_display_power_put(dev_priv, power_domain);
2849         }
2850 }
2851
2852 static unsigned int
2853 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2854                              const struct drm_plane_state *pstate,
2855                              int y)
2856 {
2857         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2858         struct drm_framebuffer *fb = pstate->fb;
2859
2860         /* for planar format */
2861         if (fb->pixel_format == DRM_FORMAT_NV12) {
2862                 if (y)  /* y-plane data rate */
2863                         return intel_crtc->config->pipe_src_w *
2864                                 intel_crtc->config->pipe_src_h *
2865                                 drm_format_plane_cpp(fb->pixel_format, 0);
2866                 else    /* uv-plane data rate */
2867                         return (intel_crtc->config->pipe_src_w/2) *
2868                                 (intel_crtc->config->pipe_src_h/2) *
2869                                 drm_format_plane_cpp(fb->pixel_format, 1);
2870         }
2871
2872         /* for packed formats */
2873         return intel_crtc->config->pipe_src_w *
2874                 intel_crtc->config->pipe_src_h *
2875                 drm_format_plane_cpp(fb->pixel_format, 0);
2876 }
2877
2878 /*
2879  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2880  * a 8192x4096@32bpp framebuffer:
2881  *   3 * 4096 * 8192  * 4 < 2^32
2882  */
2883 static unsigned int
2884 skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2885 {
2886         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2887         struct drm_device *dev = intel_crtc->base.dev;
2888         const struct intel_plane *intel_plane;
2889         unsigned int total_data_rate = 0;
2890
2891         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2892                 const struct drm_plane_state *pstate = intel_plane->base.state;
2893
2894                 if (pstate->fb == NULL)
2895                         continue;
2896
2897                 if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2898                         continue;
2899
2900                 /* packed/uv */
2901                 total_data_rate += skl_plane_relative_data_rate(cstate,
2902                                                                 pstate,
2903                                                                 0);
2904
2905                 if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
2906                         /* y-plane */
2907                         total_data_rate += skl_plane_relative_data_rate(cstate,
2908                                                                         pstate,
2909                                                                         1);
2910         }
2911
2912         return total_data_rate;
2913 }
2914
2915 static void
2916 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2917                       struct skl_ddb_allocation *ddb /* out */)
2918 {
2919         struct drm_crtc *crtc = cstate->base.crtc;
2920         struct drm_device *dev = crtc->dev;
2921         struct drm_i915_private *dev_priv = to_i915(dev);
2922         struct intel_wm_config *config = &dev_priv->wm.config;
2923         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2924         struct intel_plane *intel_plane;
2925         enum pipe pipe = intel_crtc->pipe;
2926         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2927         uint16_t alloc_size, start, cursor_blocks;
2928         uint16_t minimum[I915_MAX_PLANES];
2929         uint16_t y_minimum[I915_MAX_PLANES];
2930         unsigned int total_data_rate;
2931
2932         skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2933         alloc_size = skl_ddb_entry_size(alloc);
2934         if (alloc_size == 0) {
2935                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2936                 memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2937                        sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2938                 return;
2939         }
2940
2941         cursor_blocks = skl_cursor_allocation(config);
2942         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2943         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2944
2945         alloc_size -= cursor_blocks;
2946         alloc->end -= cursor_blocks;
2947
2948         /* 1. Allocate the mininum required blocks for each active plane */
2949         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2950                 struct drm_plane *plane = &intel_plane->base;
2951                 struct drm_framebuffer *fb = plane->state->fb;
2952                 int id = skl_wm_plane_id(intel_plane);
2953
2954                 if (fb == NULL)
2955                         continue;
2956                 if (plane->type == DRM_PLANE_TYPE_CURSOR)
2957                         continue;
2958
2959                 minimum[id] = 8;
2960                 alloc_size -= minimum[id];
2961                 y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
2962                 alloc_size -= y_minimum[id];
2963         }
2964
2965         /*
2966          * 2. Distribute the remaining space in proportion to the amount of
2967          * data each plane needs to fetch from memory.
2968          *
2969          * FIXME: we may not allocate every single block here.
2970          */
2971         total_data_rate = skl_get_total_relative_data_rate(cstate);
2972
2973         start = alloc->start;
2974         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2975                 struct drm_plane *plane = &intel_plane->base;
2976                 struct drm_plane_state *pstate = intel_plane->base.state;
2977                 unsigned int data_rate, y_data_rate;
2978                 uint16_t plane_blocks, y_plane_blocks = 0;
2979                 int id = skl_wm_plane_id(intel_plane);
2980
2981                 if (pstate->fb == NULL)
2982                         continue;
2983                 if (plane->type == DRM_PLANE_TYPE_CURSOR)
2984                         continue;
2985
2986                 data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
2987
2988                 /*
2989                  * allocation for (packed formats) or (uv-plane part of planar format):
2990                  * promote the expression to 64 bits to avoid overflowing, the
2991                  * result is < available as data_rate / total_data_rate < 1
2992                  */
2993                 plane_blocks = minimum[id];
2994                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2995                                         total_data_rate);
2996
2997                 ddb->plane[pipe][id].start = start;
2998                 ddb->plane[pipe][id].end = start + plane_blocks;
2999
3000                 start += plane_blocks;
3001
3002                 /*
3003                  * allocation for y_plane part of planar format:
3004                  */
3005                 if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
3006                         y_data_rate = skl_plane_relative_data_rate(cstate,
3007                                                                    pstate,
3008                                                                    1);
3009                         y_plane_blocks = y_minimum[id];
3010                         y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3011                                                 total_data_rate);
3012
3013                         ddb->y_plane[pipe][id].start = start;
3014                         ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3015
3016                         start += y_plane_blocks;
3017                 }
3018
3019         }
3020
3021 }
3022
3023 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3024 {
3025         /* TODO: Take into account the scalers once we support them */
3026         return config->base.adjusted_mode.crtc_clock;
3027 }
3028
3029 /*
3030  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3031  * for the read latency) and bytes_per_pixel should always be <= 8, so that
3032  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3033  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3034 */
3035 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3036                                uint32_t latency)
3037 {
3038         uint32_t wm_intermediate_val, ret;
3039
3040         if (latency == 0)
3041                 return UINT_MAX;
3042
3043         wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3044         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3045
3046         return ret;
3047 }
3048
3049 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3050                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3051                                uint64_t tiling, uint32_t latency)
3052 {
3053         uint32_t ret;
3054         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3055         uint32_t wm_intermediate_val;
3056
3057         if (latency == 0)
3058                 return UINT_MAX;
3059
3060         plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3061
3062         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3063             tiling == I915_FORMAT_MOD_Yf_TILED) {
3064                 plane_bytes_per_line *= 4;
3065                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3066                 plane_blocks_per_line /= 4;
3067         } else {
3068                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3069         }
3070
3071         wm_intermediate_val = latency * pixel_rate;
3072         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3073                                 plane_blocks_per_line;
3074
3075         return ret;
3076 }
3077
3078 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3079                                        const struct intel_crtc *intel_crtc)
3080 {
3081         struct drm_device *dev = intel_crtc->base.dev;
3082         struct drm_i915_private *dev_priv = dev->dev_private;
3083         const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3084
3085         /*
3086          * If ddb allocation of pipes changed, it may require recalculation of
3087          * watermarks
3088          */
3089         if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3090                 return true;
3091
3092         return false;
3093 }
3094
3095 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3096                                  struct intel_crtc_state *cstate,
3097                                  struct intel_plane *intel_plane,
3098                                  uint16_t ddb_allocation,
3099                                  int level,
3100                                  uint16_t *out_blocks, /* out */
3101                                  uint8_t *out_lines /* out */)
3102 {
3103         struct drm_plane *plane = &intel_plane->base;
3104         struct drm_framebuffer *fb = plane->state->fb;
3105         uint32_t latency = dev_priv->wm.skl_latency[level];
3106         uint32_t method1, method2;
3107         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3108         uint32_t res_blocks, res_lines;
3109         uint32_t selected_result;
3110         uint8_t bytes_per_pixel;
3111
3112         if (latency == 0 || !cstate->base.active || !fb)
3113                 return false;
3114
3115         bytes_per_pixel = drm_format_plane_cpp(fb->pixel_format, 0);
3116         method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3117                                  bytes_per_pixel,
3118                                  latency);
3119         method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3120                                  cstate->base.adjusted_mode.crtc_htotal,
3121                                  cstate->pipe_src_w,
3122                                  bytes_per_pixel,
3123                                  fb->modifier[0],
3124                                  latency);
3125
3126         plane_bytes_per_line = cstate->pipe_src_w * bytes_per_pixel;
3127         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3128
3129         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3130             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3131                 uint32_t min_scanlines = 4;
3132                 uint32_t y_tile_minimum;
3133                 if (intel_rotation_90_or_270(plane->state->rotation)) {
3134                         int bpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3135                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3136                                 drm_format_plane_cpp(fb->pixel_format, 0);
3137
3138                         switch (bpp) {
3139                         case 1:
3140                                 min_scanlines = 16;
3141                                 break;
3142                         case 2:
3143                                 min_scanlines = 8;
3144                                 break;
3145                         case 8:
3146                                 WARN(1, "Unsupported pixel depth for rotation");
3147                         }
3148                 }
3149                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3150                 selected_result = max(method2, y_tile_minimum);
3151         } else {
3152                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3153                         selected_result = min(method1, method2);
3154                 else
3155                         selected_result = method1;
3156         }
3157
3158         res_blocks = selected_result + 1;
3159         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3160
3161         if (level >= 1 && level <= 7) {
3162                 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3163                     fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3164                         res_lines += 4;
3165                 else
3166                         res_blocks++;
3167         }
3168
3169         if (res_blocks >= ddb_allocation || res_lines > 31)
3170                 return false;
3171
3172         *out_blocks = res_blocks;
3173         *out_lines = res_lines;
3174
3175         return true;
3176 }
3177
3178 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3179                                  struct skl_ddb_allocation *ddb,
3180                                  struct intel_crtc_state *cstate,
3181                                  int level,
3182                                  struct skl_wm_level *result)
3183 {
3184         struct drm_device *dev = dev_priv->dev;
3185         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3186         struct intel_plane *intel_plane;
3187         uint16_t ddb_blocks;
3188         enum pipe pipe = intel_crtc->pipe;
3189
3190         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3191                 int i = skl_wm_plane_id(intel_plane);
3192
3193                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3194
3195                 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3196                                                 cstate,
3197                                                 intel_plane,
3198                                                 ddb_blocks,
3199                                                 level,
3200                                                 &result->plane_res_b[i],
3201                                                 &result->plane_res_l[i]);
3202         }
3203 }
3204
3205 static uint32_t
3206 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3207 {
3208         if (!cstate->base.active)
3209                 return 0;
3210
3211         if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3212                 return 0;
3213
3214         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3215                             skl_pipe_pixel_rate(cstate));
3216 }
3217
3218 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3219                                       struct skl_wm_level *trans_wm /* out */)
3220 {
3221         struct drm_crtc *crtc = cstate->base.crtc;
3222         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3223         struct intel_plane *intel_plane;
3224
3225         if (!cstate->base.active)
3226                 return;
3227
3228         /* Until we know more, just disable transition WMs */
3229         for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3230                 int i = skl_wm_plane_id(intel_plane);
3231
3232                 trans_wm->plane_en[i] = false;
3233         }
3234 }
3235
3236 static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3237                                 struct skl_ddb_allocation *ddb,
3238                                 struct skl_pipe_wm *pipe_wm)
3239 {
3240         struct drm_device *dev = cstate->base.crtc->dev;
3241         const struct drm_i915_private *dev_priv = dev->dev_private;
3242         int level, max_level = ilk_wm_max_level(dev);
3243
3244         for (level = 0; level <= max_level; level++) {
3245                 skl_compute_wm_level(dev_priv, ddb, cstate,
3246                                      level, &pipe_wm->wm[level]);
3247         }
3248         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3249
3250         skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3251 }
3252
3253 static void skl_compute_wm_results(struct drm_device *dev,
3254                                    struct skl_pipe_wm *p_wm,
3255                                    struct skl_wm_values *r,
3256                                    struct intel_crtc *intel_crtc)
3257 {
3258         int level, max_level = ilk_wm_max_level(dev);
3259         enum pipe pipe = intel_crtc->pipe;
3260         uint32_t temp;
3261         int i;
3262
3263         for (level = 0; level <= max_level; level++) {
3264                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3265                         temp = 0;
3266
3267                         temp |= p_wm->wm[level].plane_res_l[i] <<
3268                                         PLANE_WM_LINES_SHIFT;
3269                         temp |= p_wm->wm[level].plane_res_b[i];
3270                         if (p_wm->wm[level].plane_en[i])
3271                                 temp |= PLANE_WM_EN;
3272
3273                         r->plane[pipe][i][level] = temp;
3274                 }
3275
3276                 temp = 0;
3277
3278                 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3279                 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3280
3281                 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3282                         temp |= PLANE_WM_EN;
3283
3284                 r->plane[pipe][PLANE_CURSOR][level] = temp;
3285
3286         }
3287
3288         /* transition WMs */
3289         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3290                 temp = 0;
3291                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3292                 temp |= p_wm->trans_wm.plane_res_b[i];
3293                 if (p_wm->trans_wm.plane_en[i])
3294                         temp |= PLANE_WM_EN;
3295
3296                 r->plane_trans[pipe][i] = temp;
3297         }
3298
3299         temp = 0;
3300         temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3301         temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3302         if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3303                 temp |= PLANE_WM_EN;
3304
3305         r->plane_trans[pipe][PLANE_CURSOR] = temp;
3306
3307         r->wm_linetime[pipe] = p_wm->linetime;
3308 }
3309
3310 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3311                                 i915_reg_t reg,
3312                                 const struct skl_ddb_entry *entry)
3313 {
3314         if (entry->end)
3315                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3316         else
3317                 I915_WRITE(reg, 0);
3318 }
3319
3320 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3321                                 const struct skl_wm_values *new)
3322 {
3323         struct drm_device *dev = dev_priv->dev;
3324         struct intel_crtc *crtc;
3325
3326         for_each_intel_crtc(dev, crtc) {
3327                 int i, level, max_level = ilk_wm_max_level(dev);
3328                 enum pipe pipe = crtc->pipe;
3329
3330                 if (!new->dirty[pipe])
3331                         continue;
3332
3333                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3334
3335                 for (level = 0; level <= max_level; level++) {
3336                         for (i = 0; i < intel_num_planes(crtc); i++)
3337                                 I915_WRITE(PLANE_WM(pipe, i, level),
3338                                            new->plane[pipe][i][level]);
3339                         I915_WRITE(CUR_WM(pipe, level),
3340                                    new->plane[pipe][PLANE_CURSOR][level]);
3341                 }
3342                 for (i = 0; i < intel_num_planes(crtc); i++)
3343                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3344                                    new->plane_trans[pipe][i]);
3345                 I915_WRITE(CUR_WM_TRANS(pipe),
3346                            new->plane_trans[pipe][PLANE_CURSOR]);
3347
3348                 for (i = 0; i < intel_num_planes(crtc); i++) {
3349                         skl_ddb_entry_write(dev_priv,
3350                                             PLANE_BUF_CFG(pipe, i),
3351                                             &new->ddb.plane[pipe][i]);
3352                         skl_ddb_entry_write(dev_priv,
3353                                             PLANE_NV12_BUF_CFG(pipe, i),
3354                                             &new->ddb.y_plane[pipe][i]);
3355                 }
3356
3357                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3358                                     &new->ddb.plane[pipe][PLANE_CURSOR]);
3359         }
3360 }
3361
3362 /*
3363  * When setting up a new DDB allocation arrangement, we need to correctly
3364  * sequence the times at which the new allocations for the pipes are taken into
3365  * account or we'll have pipes fetching from space previously allocated to
3366  * another pipe.
3367  *
3368  * Roughly the sequence looks like:
3369  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3370  *     overlapping with a previous light-up pipe (another way to put it is:
3371  *     pipes with their new allocation strickly included into their old ones).
3372  *  2. re-allocate the other pipes that get their allocation reduced
3373  *  3. allocate the pipes having their allocation increased
3374  *
3375  * Steps 1. and 2. are here to take care of the following case:
3376  * - Initially DDB looks like this:
3377  *     |   B    |   C    |
3378  * - enable pipe A.
3379  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3380  *   allocation
3381  *     |  A  |  B  |  C  |
3382  *
3383  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3384  */
3385
3386 static void
3387 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3388 {
3389         int plane;
3390
3391         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3392
3393         for_each_plane(dev_priv, pipe, plane) {
3394                 I915_WRITE(PLANE_SURF(pipe, plane),
3395                            I915_READ(PLANE_SURF(pipe, plane)));
3396         }
3397         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3398 }
3399
3400 static bool
3401 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3402                             const struct skl_ddb_allocation *new,
3403                             enum pipe pipe)
3404 {
3405         uint16_t old_size, new_size;
3406
3407         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3408         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3409
3410         return old_size != new_size &&
3411                new->pipe[pipe].start >= old->pipe[pipe].start &&
3412                new->pipe[pipe].end <= old->pipe[pipe].end;
3413 }
3414
3415 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3416                                 struct skl_wm_values *new_values)
3417 {
3418         struct drm_device *dev = dev_priv->dev;
3419         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3420         bool reallocated[I915_MAX_PIPES] = {};
3421         struct intel_crtc *crtc;
3422         enum pipe pipe;
3423
3424         new_ddb = &new_values->ddb;
3425         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3426
3427         /*
3428          * First pass: flush the pipes with the new allocation contained into
3429          * the old space.
3430          *
3431          * We'll wait for the vblank on those pipes to ensure we can safely
3432          * re-allocate the freed space without this pipe fetching from it.
3433          */
3434         for_each_intel_crtc(dev, crtc) {
3435                 if (!crtc->active)
3436                         continue;
3437
3438                 pipe = crtc->pipe;
3439
3440                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3441                         continue;
3442
3443                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3444                 intel_wait_for_vblank(dev, pipe);
3445
3446                 reallocated[pipe] = true;
3447         }
3448
3449
3450         /*
3451          * Second pass: flush the pipes that are having their allocation
3452          * reduced, but overlapping with a previous allocation.
3453          *
3454          * Here as well we need to wait for the vblank to make sure the freed
3455          * space is not used anymore.
3456          */
3457         for_each_intel_crtc(dev, crtc) {
3458                 if (!crtc->active)
3459                         continue;
3460
3461                 pipe = crtc->pipe;
3462
3463                 if (reallocated[pipe])
3464                         continue;
3465
3466                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3467                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3468                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3469                         intel_wait_for_vblank(dev, pipe);
3470                         reallocated[pipe] = true;
3471                 }
3472         }
3473
3474         /*
3475          * Third pass: flush the pipes that got more space allocated.
3476          *
3477          * We don't need to actively wait for the update here, next vblank
3478          * will just get more DDB space with the correct WM values.
3479          */
3480         for_each_intel_crtc(dev, crtc) {
3481                 if (!crtc->active)
3482                         continue;
3483
3484                 pipe = crtc->pipe;
3485
3486                 /*
3487                  * At this point, only the pipes more space than before are
3488                  * left to re-allocate.
3489                  */
3490                 if (reallocated[pipe])
3491                         continue;
3492
3493                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3494         }
3495 }
3496
3497 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3498                                struct skl_ddb_allocation *ddb, /* out */
3499                                struct skl_pipe_wm *pipe_wm /* out */)
3500 {
3501         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3502         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3503
3504         skl_allocate_pipe_ddb(cstate, ddb);
3505         skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3506
3507         if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3508                 return false;
3509
3510         intel_crtc->wm.active.skl = *pipe_wm;
3511
3512         return true;
3513 }
3514
3515 static void skl_update_other_pipe_wm(struct drm_device *dev,
3516                                      struct drm_crtc *crtc,
3517                                      struct skl_wm_values *r)
3518 {
3519         struct intel_crtc *intel_crtc;
3520         struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3521
3522         /*
3523          * If the WM update hasn't changed the allocation for this_crtc (the
3524          * crtc we are currently computing the new WM values for), other
3525          * enabled crtcs will keep the same allocation and we don't need to
3526          * recompute anything for them.
3527          */
3528         if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3529                 return;
3530
3531         /*
3532          * Otherwise, because of this_crtc being freshly enabled/disabled, the
3533          * other active pipes need new DDB allocation and WM values.
3534          */
3535         for_each_intel_crtc(dev, intel_crtc) {
3536                 struct skl_pipe_wm pipe_wm = {};
3537                 bool wm_changed;
3538
3539                 if (this_crtc->pipe == intel_crtc->pipe)
3540                         continue;
3541
3542                 if (!intel_crtc->active)
3543                         continue;
3544
3545                 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3546                                                 &r->ddb, &pipe_wm);
3547
3548                 /*
3549                  * If we end up re-computing the other pipe WM values, it's
3550                  * because it was really needed, so we expect the WM values to
3551                  * be different.
3552                  */
3553                 WARN_ON(!wm_changed);
3554
3555                 skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3556                 r->dirty[intel_crtc->pipe] = true;
3557         }
3558 }
3559
3560 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3561 {
3562         watermarks->wm_linetime[pipe] = 0;
3563         memset(watermarks->plane[pipe], 0,
3564                sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3565         memset(watermarks->plane_trans[pipe],
3566                0, sizeof(uint32_t) * I915_MAX_PLANES);
3567         watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3568
3569         /* Clear ddb entries for pipe */
3570         memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3571         memset(&watermarks->ddb.plane[pipe], 0,
3572                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3573         memset(&watermarks->ddb.y_plane[pipe], 0,
3574                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3575         memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3576                sizeof(struct skl_ddb_entry));
3577
3578 }
3579
3580 static void skl_update_wm(struct drm_crtc *crtc)
3581 {
3582         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3583         struct drm_device *dev = crtc->dev;
3584         struct drm_i915_private *dev_priv = dev->dev_private;
3585         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3586         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3587         struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3588
3589
3590         /* Clear all dirty flags */
3591         memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3592
3593         skl_clear_wm(results, intel_crtc->pipe);
3594
3595         if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3596                 return;
3597
3598         skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3599         results->dirty[intel_crtc->pipe] = true;
3600
3601         skl_update_other_pipe_wm(dev, crtc, results);
3602         skl_write_wm_values(dev_priv, results);
3603         skl_flush_wm_values(dev_priv, results);
3604
3605         /* store the new configuration */
3606         dev_priv->wm.skl_hw = *results;
3607 }
3608
3609 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3610 {
3611         struct drm_device *dev = dev_priv->dev;
3612         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3613         struct ilk_wm_maximums max;
3614         struct intel_wm_config *config = &dev_priv->wm.config;
3615         struct ilk_wm_values results = {};
3616         enum intel_ddb_partitioning partitioning;
3617
3618         ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_1_2, &max);
3619         ilk_wm_merge(dev, config, &max, &lp_wm_1_2);
3620
3621         /* 5/6 split only in single pipe config on IVB+ */
3622         if (INTEL_INFO(dev)->gen >= 7 &&
3623             config->num_pipes_active == 1 && config->sprites_enabled) {
3624                 ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_5_6, &max);
3625                 ilk_wm_merge(dev, config, &max, &lp_wm_5_6);
3626
3627                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3628         } else {
3629                 best_lp_wm = &lp_wm_1_2;
3630         }
3631
3632         partitioning = (best_lp_wm == &lp_wm_1_2) ?
3633                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3634
3635         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3636
3637         ilk_write_wm_values(dev_priv, &results);
3638 }
3639
3640 static void ilk_update_wm(struct drm_crtc *crtc)
3641 {
3642         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3643         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3644         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3645
3646         WARN_ON(cstate->base.active != intel_crtc->active);
3647
3648         /*
3649          * IVB workaround: must disable low power watermarks for at least
3650          * one frame before enabling scaling.  LP watermarks can be re-enabled
3651          * when scaling is disabled.
3652          *
3653          * WaCxSRDisabledForSpriteScaling:ivb
3654          */
3655         if (cstate->disable_lp_wm) {
3656                 ilk_disable_lp_wm(crtc->dev);
3657                 intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
3658         }
3659
3660         intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3661
3662         ilk_program_watermarks(dev_priv);
3663 }
3664
3665 static void skl_pipe_wm_active_state(uint32_t val,
3666                                      struct skl_pipe_wm *active,
3667                                      bool is_transwm,
3668                                      bool is_cursor,
3669                                      int i,
3670                                      int level)
3671 {
3672         bool is_enabled = (val & PLANE_WM_EN) != 0;
3673
3674         if (!is_transwm) {
3675                 if (!is_cursor) {
3676                         active->wm[level].plane_en[i] = is_enabled;
3677                         active->wm[level].plane_res_b[i] =
3678                                         val & PLANE_WM_BLOCKS_MASK;
3679                         active->wm[level].plane_res_l[i] =
3680                                         (val >> PLANE_WM_LINES_SHIFT) &
3681                                                 PLANE_WM_LINES_MASK;
3682                 } else {
3683                         active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3684                         active->wm[level].plane_res_b[PLANE_CURSOR] =
3685                                         val & PLANE_WM_BLOCKS_MASK;
3686                         active->wm[level].plane_res_l[PLANE_CURSOR] =
3687                                         (val >> PLANE_WM_LINES_SHIFT) &
3688                                                 PLANE_WM_LINES_MASK;
3689                 }
3690         } else {
3691                 if (!is_cursor) {
3692                         active->trans_wm.plane_en[i] = is_enabled;
3693                         active->trans_wm.plane_res_b[i] =
3694                                         val & PLANE_WM_BLOCKS_MASK;
3695                         active->trans_wm.plane_res_l[i] =
3696                                         (val >> PLANE_WM_LINES_SHIFT) &
3697                                                 PLANE_WM_LINES_MASK;
3698                 } else {
3699                         active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3700                         active->trans_wm.plane_res_b[PLANE_CURSOR] =
3701                                         val & PLANE_WM_BLOCKS_MASK;
3702                         active->trans_wm.plane_res_l[PLANE_CURSOR] =
3703                                         (val >> PLANE_WM_LINES_SHIFT) &
3704                                                 PLANE_WM_LINES_MASK;
3705                 }
3706         }
3707 }
3708
3709 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3710 {
3711         struct drm_device *dev = crtc->dev;
3712         struct drm_i915_private *dev_priv = dev->dev_private;
3713         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3714         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3715         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3716         struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3717         enum pipe pipe = intel_crtc->pipe;
3718         int level, i, max_level;
3719         uint32_t temp;
3720
3721         max_level = ilk_wm_max_level(dev);
3722
3723         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3724
3725         for (level = 0; level <= max_level; level++) {
3726                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3727                         hw->plane[pipe][i][level] =
3728                                         I915_READ(PLANE_WM(pipe, i, level));
3729                 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3730         }
3731
3732         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3733                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3734         hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3735
3736         if (!intel_crtc->active)
3737                 return;
3738
3739         hw->dirty[pipe] = true;
3740
3741         active->linetime = hw->wm_linetime[pipe];
3742
3743         for (level = 0; level <= max_level; level++) {
3744                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3745                         temp = hw->plane[pipe][i][level];
3746                         skl_pipe_wm_active_state(temp, active, false,
3747                                                 false, i, level);
3748                 }
3749                 temp = hw->plane[pipe][PLANE_CURSOR][level];
3750                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3751         }
3752
3753         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3754                 temp = hw->plane_trans[pipe][i];
3755                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3756         }
3757
3758         temp = hw->plane_trans[pipe][PLANE_CURSOR];
3759         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3760
3761         intel_crtc->wm.active.skl = *active;
3762 }
3763
3764 void skl_wm_get_hw_state(struct drm_device *dev)
3765 {
3766         struct drm_i915_private *dev_priv = dev->dev_private;
3767         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3768         struct drm_crtc *crtc;
3769
3770         skl_ddb_get_hw_state(dev_priv, ddb);
3771         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3772                 skl_pipe_wm_get_hw_state(crtc);
3773 }
3774
3775 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3776 {
3777         struct drm_device *dev = crtc->dev;
3778         struct drm_i915_private *dev_priv = dev->dev_private;
3779         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3780         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3781         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3782         struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3783         enum pipe pipe = intel_crtc->pipe;
3784         static const i915_reg_t wm0_pipe_reg[] = {
3785                 [PIPE_A] = WM0_PIPEA_ILK,
3786                 [PIPE_B] = WM0_PIPEB_ILK,
3787                 [PIPE_C] = WM0_PIPEC_IVB,
3788         };
3789
3790         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3791         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3792                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3793
3794         active->pipe_enabled = intel_crtc->active;
3795
3796         if (active->pipe_enabled) {
3797                 u32 tmp = hw->wm_pipe[pipe];
3798
3799                 /*
3800                  * For active pipes LP0 watermark is marked as
3801                  * enabled, and LP1+ watermaks as disabled since
3802                  * we can't really reverse compute them in case
3803                  * multiple pipes are active.
3804                  */
3805                 active->wm[0].enable = true;
3806                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3807                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3808                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3809                 active->linetime = hw->wm_linetime[pipe];
3810         } else {
3811                 int level, max_level = ilk_wm_max_level(dev);
3812
3813                 /*
3814                  * For inactive pipes, all watermark levels
3815                  * should be marked as enabled but zeroed,
3816                  * which is what we'd compute them to.
3817                  */
3818                 for (level = 0; level <= max_level; level++)
3819                         active->wm[level].enable = true;
3820         }
3821
3822         intel_crtc->wm.active.ilk = *active;
3823 }
3824
3825 #define _FW_WM(value, plane) \
3826         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3827 #define _FW_WM_VLV(value, plane) \
3828         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3829
3830 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3831                                struct vlv_wm_values *wm)
3832 {
3833         enum pipe pipe;
3834         uint32_t tmp;
3835
3836         for_each_pipe(dev_priv, pipe) {
3837                 tmp = I915_READ(VLV_DDL(pipe));
3838
3839                 wm->ddl[pipe].primary =
3840                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3841                 wm->ddl[pipe].cursor =
3842                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3843                 wm->ddl[pipe].sprite[0] =
3844                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3845                 wm->ddl[pipe].sprite[1] =
3846                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3847         }
3848
3849         tmp = I915_READ(DSPFW1);
3850         wm->sr.plane = _FW_WM(tmp, SR);
3851         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3852         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3853         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3854
3855         tmp = I915_READ(DSPFW2);
3856         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3857         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3858         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3859
3860         tmp = I915_READ(DSPFW3);
3861         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3862
3863         if (IS_CHERRYVIEW(dev_priv)) {
3864                 tmp = I915_READ(DSPFW7_CHV);
3865                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3866                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3867
3868                 tmp = I915_READ(DSPFW8_CHV);
3869                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3870                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3871
3872                 tmp = I915_READ(DSPFW9_CHV);
3873                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3874                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3875
3876                 tmp = I915_READ(DSPHOWM);
3877                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3878                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3879                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3880                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3881                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3882                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3883                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3884                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3885                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3886                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3887         } else {
3888                 tmp = I915_READ(DSPFW7);
3889                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3890                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3891
3892                 tmp = I915_READ(DSPHOWM);
3893                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3894                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3895                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3896                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3897                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3898                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3899                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3900         }
3901 }
3902
3903 #undef _FW_WM
3904 #undef _FW_WM_VLV
3905
3906 void vlv_wm_get_hw_state(struct drm_device *dev)
3907 {
3908         struct drm_i915_private *dev_priv = to_i915(dev);
3909         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3910         struct intel_plane *plane;
3911         enum pipe pipe;
3912         u32 val;
3913
3914         vlv_read_wm_values(dev_priv, wm);
3915
3916         for_each_intel_plane(dev, plane) {
3917                 switch (plane->base.type) {
3918                         int sprite;
3919                 case DRM_PLANE_TYPE_CURSOR:
3920                         plane->wm.fifo_size = 63;
3921                         break;
3922                 case DRM_PLANE_TYPE_PRIMARY:
3923                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
3924                         break;
3925                 case DRM_PLANE_TYPE_OVERLAY:
3926                         sprite = plane->plane;
3927                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
3928                         break;
3929                 }
3930         }
3931
3932         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3933         wm->level = VLV_WM_LEVEL_PM2;
3934
3935         if (IS_CHERRYVIEW(dev_priv)) {
3936                 mutex_lock(&dev_priv->rps.hw_lock);
3937
3938                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3939                 if (val & DSP_MAXFIFO_PM5_ENABLE)
3940                         wm->level = VLV_WM_LEVEL_PM5;
3941
3942                 /*
3943                  * If DDR DVFS is disabled in the BIOS, Punit
3944                  * will never ack the request. So if that happens
3945                  * assume we don't have to enable/disable DDR DVFS
3946                  * dynamically. To test that just set the REQ_ACK
3947                  * bit to poke the Punit, but don't change the
3948                  * HIGH/LOW bits so that we don't actually change
3949                  * the current state.
3950                  */
3951                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3952                 val |= FORCE_DDR_FREQ_REQ_ACK;
3953                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
3954
3955                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
3956                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
3957                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
3958                                       "assuming DDR DVFS is disabled\n");
3959                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
3960                 } else {
3961                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3962                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
3963                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
3964                 }
3965
3966                 mutex_unlock(&dev_priv->rps.hw_lock);
3967         }
3968
3969         for_each_pipe(dev_priv, pipe)
3970                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
3971                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
3972                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
3973
3974         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
3975                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
3976 }
3977
3978 void ilk_wm_get_hw_state(struct drm_device *dev)
3979 {
3980         struct drm_i915_private *dev_priv = dev->dev_private;
3981         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3982         struct drm_crtc *crtc;
3983
3984         for_each_crtc(dev, crtc)
3985                 ilk_pipe_wm_get_hw_state(crtc);
3986
3987         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3988         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3989         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3990
3991         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3992         if (INTEL_INFO(dev)->gen >= 7) {
3993                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3994                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3995         }
3996
3997         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3998                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3999                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4000         else if (IS_IVYBRIDGE(dev))
4001                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4002                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4003
4004         hw->enable_fbc_wm =
4005                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4006 }
4007
4008 /**
4009  * intel_update_watermarks - update FIFO watermark values based on current modes
4010  *
4011  * Calculate watermark values for the various WM regs based on current mode
4012  * and plane configuration.
4013  *
4014  * There are several cases to deal with here:
4015  *   - normal (i.e. non-self-refresh)
4016  *   - self-refresh (SR) mode
4017  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4018  *   - lines are small relative to FIFO size (buffer can hold more than 2
4019  *     lines), so need to account for TLB latency
4020  *
4021  *   The normal calculation is:
4022  *     watermark = dotclock * bytes per pixel * latency
4023  *   where latency is platform & configuration dependent (we assume pessimal
4024  *   values here).
4025  *
4026  *   The SR calculation is:
4027  *     watermark = (trunc(latency/line time)+1) * surface width *
4028  *       bytes per pixel
4029  *   where
4030  *     line time = htotal / dotclock
4031  *     surface width = hdisplay for normal plane and 64 for cursor
4032  *   and latency is assumed to be high, as above.
4033  *
4034  * The final value programmed to the register should always be rounded up,
4035  * and include an extra 2 entries to account for clock crossings.
4036  *
4037  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4038  * to set the non-SR watermarks to 8.
4039  */
4040 void intel_update_watermarks(struct drm_crtc *crtc)
4041 {
4042         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4043
4044         if (dev_priv->display.update_wm)
4045                 dev_priv->display.update_wm(crtc);
4046 }
4047
4048 /**
4049  * Lock protecting IPS related data structures
4050  */
4051 DEFINE_SPINLOCK(mchdev_lock);
4052
4053 /* Global for IPS driver to get at the current i915 device. Protected by
4054  * mchdev_lock. */
4055 static struct drm_i915_private *i915_mch_dev;
4056
4057 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4058 {
4059         struct drm_i915_private *dev_priv = dev->dev_private;
4060         u16 rgvswctl;
4061
4062         assert_spin_locked(&mchdev_lock);
4063
4064         rgvswctl = I915_READ16(MEMSWCTL);
4065         if (rgvswctl & MEMCTL_CMD_STS) {
4066                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4067                 return false; /* still busy with another command */
4068         }
4069
4070         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4071                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4072         I915_WRITE16(MEMSWCTL, rgvswctl);
4073         POSTING_READ16(MEMSWCTL);
4074
4075         rgvswctl |= MEMCTL_CMD_STS;
4076         I915_WRITE16(MEMSWCTL, rgvswctl);
4077
4078         return true;
4079 }
4080
4081 static void ironlake_enable_drps(struct drm_device *dev)
4082 {
4083         struct drm_i915_private *dev_priv = dev->dev_private;
4084         u32 rgvmodectl = I915_READ(MEMMODECTL);
4085         u8 fmax, fmin, fstart, vstart;
4086
4087         spin_lock_irq(&mchdev_lock);
4088
4089         /* Enable temp reporting */
4090         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4091         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4092
4093         /* 100ms RC evaluation intervals */
4094         I915_WRITE(RCUPEI, 100000);
4095         I915_WRITE(RCDNEI, 100000);
4096
4097         /* Set max/min thresholds to 90ms and 80ms respectively */
4098         I915_WRITE(RCBMAXAVG, 90000);
4099         I915_WRITE(RCBMINAVG, 80000);
4100
4101         I915_WRITE(MEMIHYST, 1);
4102
4103         /* Set up min, max, and cur for interrupt handling */
4104         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4105         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4106         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4107                 MEMMODE_FSTART_SHIFT;
4108
4109         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4110                 PXVFREQ_PX_SHIFT;
4111
4112         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4113         dev_priv->ips.fstart = fstart;
4114
4115         dev_priv->ips.max_delay = fstart;
4116         dev_priv->ips.min_delay = fmin;
4117         dev_priv->ips.cur_delay = fstart;
4118
4119         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4120                          fmax, fmin, fstart);
4121
4122         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4123
4124         /*
4125          * Interrupts will be enabled in ironlake_irq_postinstall
4126          */
4127
4128         I915_WRITE(VIDSTART, vstart);
4129         POSTING_READ(VIDSTART);
4130
4131         rgvmodectl |= MEMMODE_SWMODE_EN;
4132         I915_WRITE(MEMMODECTL, rgvmodectl);
4133
4134         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4135                 DRM_ERROR("stuck trying to change perf mode\n");
4136         mdelay(1);
4137
4138         ironlake_set_drps(dev, fstart);
4139
4140         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4141                 I915_READ(DDREC) + I915_READ(CSIEC);
4142         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4143         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4144         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4145
4146         spin_unlock_irq(&mchdev_lock);
4147 }
4148
4149 static void ironlake_disable_drps(struct drm_device *dev)
4150 {
4151         struct drm_i915_private *dev_priv = dev->dev_private;
4152         u16 rgvswctl;
4153
4154         spin_lock_irq(&mchdev_lock);
4155
4156         rgvswctl = I915_READ16(MEMSWCTL);
4157
4158         /* Ack interrupts, disable EFC interrupt */
4159         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4160         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4161         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4162         I915_WRITE(DEIIR, DE_PCU_EVENT);
4163         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4164
4165         /* Go back to the starting frequency */
4166         ironlake_set_drps(dev, dev_priv->ips.fstart);
4167         mdelay(1);
4168         rgvswctl |= MEMCTL_CMD_STS;
4169         I915_WRITE(MEMSWCTL, rgvswctl);
4170         mdelay(1);
4171
4172         spin_unlock_irq(&mchdev_lock);
4173 }
4174
4175 /* There's a funny hw issue where the hw returns all 0 when reading from
4176  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4177  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4178  * all limits and the gpu stuck at whatever frequency it is at atm).
4179  */
4180 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4181 {
4182         u32 limits;
4183
4184         /* Only set the down limit when we've reached the lowest level to avoid
4185          * getting more interrupts, otherwise leave this clear. This prevents a
4186          * race in the hw when coming out of rc6: There's a tiny window where
4187          * the hw runs at the minimal clock before selecting the desired
4188          * frequency, if the down threshold expires in that window we will not
4189          * receive a down interrupt. */
4190         if (IS_GEN9(dev_priv->dev)) {
4191                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4192                 if (val <= dev_priv->rps.min_freq_softlimit)
4193                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4194         } else {
4195                 limits = dev_priv->rps.max_freq_softlimit << 24;
4196                 if (val <= dev_priv->rps.min_freq_softlimit)
4197                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4198         }
4199
4200         return limits;
4201 }
4202
4203 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4204 {
4205         int new_power;
4206         u32 threshold_up = 0, threshold_down = 0; /* in % */
4207         u32 ei_up = 0, ei_down = 0;
4208
4209         new_power = dev_priv->rps.power;
4210         switch (dev_priv->rps.power) {
4211         case LOW_POWER:
4212                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4213                         new_power = BETWEEN;
4214                 break;
4215
4216         case BETWEEN:
4217                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4218                         new_power = LOW_POWER;
4219                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4220                         new_power = HIGH_POWER;
4221                 break;
4222
4223         case HIGH_POWER:
4224                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4225                         new_power = BETWEEN;
4226                 break;
4227         }
4228         /* Max/min bins are special */
4229         if (val <= dev_priv->rps.min_freq_softlimit)
4230                 new_power = LOW_POWER;
4231         if (val >= dev_priv->rps.max_freq_softlimit)
4232                 new_power = HIGH_POWER;
4233         if (new_power == dev_priv->rps.power)
4234                 return;
4235
4236         /* Note the units here are not exactly 1us, but 1280ns. */
4237         switch (new_power) {
4238         case LOW_POWER:
4239                 /* Upclock if more than 95% busy over 16ms */
4240                 ei_up = 16000;
4241                 threshold_up = 95;
4242
4243                 /* Downclock if less than 85% busy over 32ms */
4244                 ei_down = 32000;
4245                 threshold_down = 85;
4246                 break;
4247
4248         case BETWEEN:
4249                 /* Upclock if more than 90% busy over 13ms */
4250                 ei_up = 13000;
4251                 threshold_up = 90;
4252
4253                 /* Downclock if less than 75% busy over 32ms */
4254                 ei_down = 32000;
4255                 threshold_down = 75;
4256                 break;
4257
4258         case HIGH_POWER:
4259                 /* Upclock if more than 85% busy over 10ms */
4260                 ei_up = 10000;
4261                 threshold_up = 85;
4262
4263                 /* Downclock if less than 60% busy over 32ms */
4264                 ei_down = 32000;
4265                 threshold_down = 60;
4266                 break;
4267         }
4268
4269         I915_WRITE(GEN6_RP_UP_EI,
4270                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4271         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4272                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4273
4274         I915_WRITE(GEN6_RP_DOWN_EI,
4275                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4276         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4277                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4278
4279          I915_WRITE(GEN6_RP_CONTROL,
4280                     GEN6_RP_MEDIA_TURBO |
4281                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
4282                     GEN6_RP_MEDIA_IS_GFX |
4283                     GEN6_RP_ENABLE |
4284                     GEN6_RP_UP_BUSY_AVG |
4285                     GEN6_RP_DOWN_IDLE_AVG);
4286
4287         dev_priv->rps.power = new_power;
4288         dev_priv->rps.up_threshold = threshold_up;
4289         dev_priv->rps.down_threshold = threshold_down;
4290         dev_priv->rps.last_adj = 0;
4291 }
4292
4293 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4294 {
4295         u32 mask = 0;
4296
4297         if (val > dev_priv->rps.min_freq_softlimit)
4298                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4299         if (val < dev_priv->rps.max_freq_softlimit)
4300                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4301
4302         mask &= dev_priv->pm_rps_events;
4303
4304         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4305 }
4306
4307 /* gen6_set_rps is called to update the frequency request, but should also be
4308  * called when the range (min_delay and max_delay) is modified so that we can
4309  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4310 static void gen6_set_rps(struct drm_device *dev, u8 val)
4311 {
4312         struct drm_i915_private *dev_priv = dev->dev_private;
4313
4314         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4315         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4316                 return;
4317
4318         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4319         WARN_ON(val > dev_priv->rps.max_freq);
4320         WARN_ON(val < dev_priv->rps.min_freq);
4321
4322         /* min/max delay may still have been modified so be sure to
4323          * write the limits value.
4324          */
4325         if (val != dev_priv->rps.cur_freq) {
4326                 gen6_set_rps_thresholds(dev_priv, val);
4327
4328                 if (IS_GEN9(dev))
4329                         I915_WRITE(GEN6_RPNSWREQ,
4330                                    GEN9_FREQUENCY(val));
4331                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4332                         I915_WRITE(GEN6_RPNSWREQ,
4333                                    HSW_FREQUENCY(val));
4334                 else
4335                         I915_WRITE(GEN6_RPNSWREQ,
4336                                    GEN6_FREQUENCY(val) |
4337                                    GEN6_OFFSET(0) |
4338                                    GEN6_AGGRESSIVE_TURBO);
4339         }
4340
4341         /* Make sure we continue to get interrupts
4342          * until we hit the minimum or maximum frequencies.
4343          */
4344         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4345         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4346
4347         POSTING_READ(GEN6_RPNSWREQ);
4348
4349         dev_priv->rps.cur_freq = val;
4350         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4351 }
4352
4353 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4354 {
4355         struct drm_i915_private *dev_priv = dev->dev_private;
4356
4357         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4358         WARN_ON(val > dev_priv->rps.max_freq);
4359         WARN_ON(val < dev_priv->rps.min_freq);
4360
4361         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4362                       "Odd GPU freq value\n"))
4363                 val &= ~1;
4364
4365         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4366
4367         if (val != dev_priv->rps.cur_freq) {
4368                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4369                 if (!IS_CHERRYVIEW(dev_priv))
4370                         gen6_set_rps_thresholds(dev_priv, val);
4371         }
4372
4373         dev_priv->rps.cur_freq = val;
4374         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4375 }
4376
4377 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4378  *
4379  * * If Gfx is Idle, then
4380  * 1. Forcewake Media well.
4381  * 2. Request idle freq.
4382  * 3. Release Forcewake of Media well.
4383 */
4384 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4385 {
4386         u32 val = dev_priv->rps.idle_freq;
4387
4388         if (dev_priv->rps.cur_freq <= val)
4389                 return;
4390
4391         /* Wake up the media well, as that takes a lot less
4392          * power than the Render well. */
4393         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4394         valleyview_set_rps(dev_priv->dev, val);
4395         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4396 }
4397
4398 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4399 {
4400         mutex_lock(&dev_priv->rps.hw_lock);
4401         if (dev_priv->rps.enabled) {
4402                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4403                         gen6_rps_reset_ei(dev_priv);
4404                 I915_WRITE(GEN6_PMINTRMSK,
4405                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4406         }
4407         mutex_unlock(&dev_priv->rps.hw_lock);
4408 }
4409
4410 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4411 {
4412         struct drm_device *dev = dev_priv->dev;
4413
4414         mutex_lock(&dev_priv->rps.hw_lock);
4415         if (dev_priv->rps.enabled) {
4416                 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4417                         vlv_set_rps_idle(dev_priv);
4418                 else
4419                         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4420                 dev_priv->rps.last_adj = 0;
4421                 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4422         }
4423         mutex_unlock(&dev_priv->rps.hw_lock);
4424
4425         spin_lock(&dev_priv->rps.client_lock);
4426         while (!list_empty(&dev_priv->rps.clients))
4427                 list_del_init(dev_priv->rps.clients.next);
4428         spin_unlock(&dev_priv->rps.client_lock);
4429 }
4430
4431 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4432                     struct intel_rps_client *rps,
4433                     unsigned long submitted)
4434 {
4435         /* This is intentionally racy! We peek at the state here, then
4436          * validate inside the RPS worker.
4437          */
4438         if (!(dev_priv->mm.busy &&
4439               dev_priv->rps.enabled &&
4440               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4441                 return;
4442
4443         /* Force a RPS boost (and don't count it against the client) if
4444          * the GPU is severely congested.
4445          */
4446         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4447                 rps = NULL;
4448
4449         spin_lock(&dev_priv->rps.client_lock);
4450         if (rps == NULL || list_empty(&rps->link)) {
4451                 spin_lock_irq(&dev_priv->irq_lock);
4452                 if (dev_priv->rps.interrupts_enabled) {
4453                         dev_priv->rps.client_boost = true;
4454                         queue_work(dev_priv->wq, &dev_priv->rps.work);
4455                 }
4456                 spin_unlock_irq(&dev_priv->irq_lock);
4457
4458                 if (rps != NULL) {
4459                         list_add(&rps->link, &dev_priv->rps.clients);
4460                         rps->boosts++;
4461                 } else
4462                         dev_priv->rps.boosts++;
4463         }
4464         spin_unlock(&dev_priv->rps.client_lock);
4465 }
4466
4467 void intel_set_rps(struct drm_device *dev, u8 val)
4468 {
4469         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4470                 valleyview_set_rps(dev, val);
4471         else
4472                 gen6_set_rps(dev, val);
4473 }
4474
4475 static void gen9_disable_rps(struct drm_device *dev)
4476 {
4477         struct drm_i915_private *dev_priv = dev->dev_private;
4478
4479         I915_WRITE(GEN6_RC_CONTROL, 0);
4480         I915_WRITE(GEN9_PG_ENABLE, 0);
4481 }
4482
4483 static void gen6_disable_rps(struct drm_device *dev)
4484 {
4485         struct drm_i915_private *dev_priv = dev->dev_private;
4486
4487         I915_WRITE(GEN6_RC_CONTROL, 0);
4488         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4489 }
4490
4491 static void cherryview_disable_rps(struct drm_device *dev)
4492 {
4493         struct drm_i915_private *dev_priv = dev->dev_private;
4494
4495         I915_WRITE(GEN6_RC_CONTROL, 0);
4496 }
4497
4498 static void valleyview_disable_rps(struct drm_device *dev)
4499 {
4500         struct drm_i915_private *dev_priv = dev->dev_private;
4501
4502         /* we're doing forcewake before Disabling RC6,
4503          * This what the BIOS expects when going into suspend */
4504         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4505
4506         I915_WRITE(GEN6_RC_CONTROL, 0);
4507
4508         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4509 }
4510
4511 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4512 {
4513         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4514                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4515                         mode = GEN6_RC_CTL_RC6_ENABLE;
4516                 else
4517                         mode = 0;
4518         }
4519         if (HAS_RC6p(dev))
4520                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4521                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4522                               (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4523                               (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4524
4525         else
4526                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4527                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4528 }
4529
4530 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4531 {
4532         /* No RC6 before Ironlake and code is gone for ilk. */
4533         if (INTEL_INFO(dev)->gen < 6)
4534                 return 0;
4535
4536         /* Respect the kernel parameter if it is set */
4537         if (enable_rc6 >= 0) {
4538                 int mask;
4539
4540                 if (HAS_RC6p(dev))
4541                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4542                                INTEL_RC6pp_ENABLE;
4543                 else
4544                         mask = INTEL_RC6_ENABLE;
4545
4546                 if ((enable_rc6 & mask) != enable_rc6)
4547                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4548                                       enable_rc6 & mask, enable_rc6, mask);
4549
4550                 return enable_rc6 & mask;
4551         }
4552
4553         if (IS_IVYBRIDGE(dev))
4554                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4555
4556         return INTEL_RC6_ENABLE;
4557 }
4558
4559 int intel_enable_rc6(const struct drm_device *dev)
4560 {
4561         return i915.enable_rc6;
4562 }
4563
4564 static void gen6_init_rps_frequencies(struct drm_device *dev)
4565 {
4566         struct drm_i915_private *dev_priv = dev->dev_private;
4567         uint32_t rp_state_cap;
4568         u32 ddcc_status = 0;
4569         int ret;
4570
4571         /* All of these values are in units of 50MHz */
4572         dev_priv->rps.cur_freq          = 0;
4573         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4574         if (IS_BROXTON(dev)) {
4575                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4576                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4577                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4578                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4579         } else {
4580                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4581                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4582                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4583                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4584         }
4585
4586         /* hw_max = RP0 until we check for overclocking */
4587         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4588
4589         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4590         if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4591             IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4592                 ret = sandybridge_pcode_read(dev_priv,
4593                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4594                                         &ddcc_status);
4595                 if (0 == ret)
4596                         dev_priv->rps.efficient_freq =
4597                                 clamp_t(u8,
4598                                         ((ddcc_status >> 8) & 0xff),
4599                                         dev_priv->rps.min_freq,
4600                                         dev_priv->rps.max_freq);
4601         }
4602
4603         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4604                 /* Store the frequency values in 16.66 MHZ units, which is
4605                    the natural hardware unit for SKL */
4606                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4607                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4608                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4609                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4610                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4611         }
4612
4613         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4614
4615         /* Preserve min/max settings in case of re-init */
4616         if (dev_priv->rps.max_freq_softlimit == 0)
4617                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4618
4619         if (dev_priv->rps.min_freq_softlimit == 0) {
4620                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4621                         dev_priv->rps.min_freq_softlimit =
4622                                 max_t(int, dev_priv->rps.efficient_freq,
4623                                       intel_freq_opcode(dev_priv, 450));
4624                 else
4625                         dev_priv->rps.min_freq_softlimit =
4626                                 dev_priv->rps.min_freq;
4627         }
4628 }
4629
4630 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4631 static void gen9_enable_rps(struct drm_device *dev)
4632 {
4633         struct drm_i915_private *dev_priv = dev->dev_private;
4634
4635         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4636
4637         gen6_init_rps_frequencies(dev);
4638
4639         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4640         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4641                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4642                 return;
4643         }
4644
4645         /* Program defaults and thresholds for RPS*/
4646         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4647                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4648
4649         /* 1 second timeout*/
4650         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4651                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4652
4653         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4654
4655         /* Leaning on the below call to gen6_set_rps to program/setup the
4656          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4657          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4658         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4659         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4660
4661         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4662 }
4663
4664 static void gen9_enable_rc6(struct drm_device *dev)
4665 {
4666         struct drm_i915_private *dev_priv = dev->dev_private;
4667         struct intel_engine_cs *ring;
4668         uint32_t rc6_mask = 0;
4669         int unused;
4670
4671         /* 1a: Software RC state - RC0 */
4672         I915_WRITE(GEN6_RC_STATE, 0);
4673
4674         /* 1b: Get forcewake during program sequence. Although the driver
4675          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4676         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4677
4678         /* 2a: Disable RC states. */
4679         I915_WRITE(GEN6_RC_CONTROL, 0);
4680
4681         /* 2b: Program RC6 thresholds.*/
4682
4683         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4684         if (IS_SKYLAKE(dev))
4685                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4686         else
4687                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4688         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4689         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4690         for_each_ring(ring, dev_priv, unused)
4691                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4692
4693         if (HAS_GUC_UCODE(dev))
4694                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4695
4696         I915_WRITE(GEN6_RC_SLEEP, 0);
4697
4698         /* 2c: Program Coarse Power Gating Policies. */
4699         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4700         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4701
4702         /* 3a: Enable RC6 */
4703         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4704                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4705         DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4706                         "on" : "off");
4707         /* WaRsUseTimeoutMode */
4708         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4709             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4710                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4711                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4712                            GEN7_RC_CTL_TO_MODE |
4713                            rc6_mask);
4714         } else {
4715                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4716                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4717                            GEN6_RC_CTL_EI_MODE(1) |
4718                            rc6_mask);
4719         }
4720
4721         /*
4722          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4723          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4724          */
4725         if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4726             ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_F0)))
4727                 I915_WRITE(GEN9_PG_ENABLE, 0);
4728         else
4729                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4730                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4731
4732         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4733
4734 }
4735
4736 static void gen8_enable_rps(struct drm_device *dev)
4737 {
4738         struct drm_i915_private *dev_priv = dev->dev_private;
4739         struct intel_engine_cs *ring;
4740         uint32_t rc6_mask = 0;
4741         int unused;
4742
4743         /* 1a: Software RC state - RC0 */
4744         I915_WRITE(GEN6_RC_STATE, 0);
4745
4746         /* 1c & 1d: Get forcewake during program sequence. Although the driver
4747          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4748         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4749
4750         /* 2a: Disable RC states. */
4751         I915_WRITE(GEN6_RC_CONTROL, 0);
4752
4753         /* Initialize rps frequencies */
4754         gen6_init_rps_frequencies(dev);
4755
4756         /* 2b: Program RC6 thresholds.*/
4757         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4758         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4759         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4760         for_each_ring(ring, dev_priv, unused)
4761                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4762         I915_WRITE(GEN6_RC_SLEEP, 0);
4763         if (IS_BROADWELL(dev))
4764                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4765         else
4766                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4767
4768         /* 3: Enable RC6 */
4769         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4770                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4771         intel_print_rc6_info(dev, rc6_mask);
4772         if (IS_BROADWELL(dev))
4773                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4774                                 GEN7_RC_CTL_TO_MODE |
4775                                 rc6_mask);
4776         else
4777                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4778                                 GEN6_RC_CTL_EI_MODE(1) |
4779                                 rc6_mask);
4780
4781         /* 4 Program defaults and thresholds for RPS*/
4782         I915_WRITE(GEN6_RPNSWREQ,
4783                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4784         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4785                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4786         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4787         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4788
4789         /* Docs recommend 900MHz, and 300 MHz respectively */
4790         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4791                    dev_priv->rps.max_freq_softlimit << 24 |
4792                    dev_priv->rps.min_freq_softlimit << 16);
4793
4794         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4795         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4796         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4797         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4798
4799         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4800
4801         /* 5: Enable RPS */
4802         I915_WRITE(GEN6_RP_CONTROL,
4803                    GEN6_RP_MEDIA_TURBO |
4804                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4805                    GEN6_RP_MEDIA_IS_GFX |
4806                    GEN6_RP_ENABLE |
4807                    GEN6_RP_UP_BUSY_AVG |
4808                    GEN6_RP_DOWN_IDLE_AVG);
4809
4810         /* 6: Ring frequency + overclocking (our driver does this later */
4811
4812         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4813         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4814
4815         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4816 }
4817
4818 static void gen6_enable_rps(struct drm_device *dev)
4819 {
4820         struct drm_i915_private *dev_priv = dev->dev_private;
4821         struct intel_engine_cs *ring;
4822         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4823         u32 gtfifodbg;
4824         int rc6_mode;
4825         int i, ret;
4826
4827         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4828
4829         /* Here begins a magic sequence of register writes to enable
4830          * auto-downclocking.
4831          *
4832          * Perhaps there might be some value in exposing these to
4833          * userspace...
4834          */
4835         I915_WRITE(GEN6_RC_STATE, 0);
4836
4837         /* Clear the DBG now so we don't confuse earlier errors */
4838         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4839                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4840                 I915_WRITE(GTFIFODBG, gtfifodbg);
4841         }
4842
4843         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4844
4845         /* Initialize rps frequencies */
4846         gen6_init_rps_frequencies(dev);
4847
4848         /* disable the counters and set deterministic thresholds */
4849         I915_WRITE(GEN6_RC_CONTROL, 0);
4850
4851         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4852         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4853         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4854         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4855         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4856
4857         for_each_ring(ring, dev_priv, i)
4858                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4859
4860         I915_WRITE(GEN6_RC_SLEEP, 0);
4861         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4862         if (IS_IVYBRIDGE(dev))
4863                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4864         else
4865                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4866         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4867         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4868
4869         /* Check if we are enabling RC6 */
4870         rc6_mode = intel_enable_rc6(dev_priv->dev);
4871         if (rc6_mode & INTEL_RC6_ENABLE)
4872                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4873
4874         /* We don't use those on Haswell */
4875         if (!IS_HASWELL(dev)) {
4876                 if (rc6_mode & INTEL_RC6p_ENABLE)
4877                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4878
4879                 if (rc6_mode & INTEL_RC6pp_ENABLE)
4880                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4881         }
4882
4883         intel_print_rc6_info(dev, rc6_mask);
4884
4885         I915_WRITE(GEN6_RC_CONTROL,
4886                    rc6_mask |
4887                    GEN6_RC_CTL_EI_MODE(1) |
4888                    GEN6_RC_CTL_HW_ENABLE);
4889
4890         /* Power down if completely idle for over 50ms */
4891         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4892         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4893
4894         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4895         if (ret)
4896                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4897
4898         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4899         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4900                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4901                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4902                                  (pcu_mbox & 0xff) * 50);
4903                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4904         }
4905
4906         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4907         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4908
4909         rc6vids = 0;
4910         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4911         if (IS_GEN6(dev) && ret) {
4912                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4913         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4914                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4915                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4916                 rc6vids &= 0xffff00;
4917                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4918                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4919                 if (ret)
4920                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4921         }
4922
4923         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4924 }
4925
4926 static void __gen6_update_ring_freq(struct drm_device *dev)
4927 {
4928         struct drm_i915_private *dev_priv = dev->dev_private;
4929         int min_freq = 15;
4930         unsigned int gpu_freq;
4931         unsigned int max_ia_freq, min_ring_freq;
4932         unsigned int max_gpu_freq, min_gpu_freq;
4933         int scaling_factor = 180;
4934         struct cpufreq_policy *policy;
4935
4936         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4937
4938         policy = cpufreq_cpu_get(0);
4939         if (policy) {
4940                 max_ia_freq = policy->cpuinfo.max_freq;
4941                 cpufreq_cpu_put(policy);
4942         } else {
4943                 /*
4944                  * Default to measured freq if none found, PCU will ensure we
4945                  * don't go over
4946                  */
4947                 max_ia_freq = tsc_khz;
4948         }
4949
4950         /* Convert from kHz to MHz */
4951         max_ia_freq /= 1000;
4952
4953         min_ring_freq = I915_READ(DCLK) & 0xf;
4954         /* convert DDR frequency from units of 266.6MHz to bandwidth */
4955         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4956
4957         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4958                 /* Convert GT frequency to 50 HZ units */
4959                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
4960                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
4961         } else {
4962                 min_gpu_freq = dev_priv->rps.min_freq;
4963                 max_gpu_freq = dev_priv->rps.max_freq;
4964         }
4965
4966         /*
4967          * For each potential GPU frequency, load a ring frequency we'd like
4968          * to use for memory access.  We do this by specifying the IA frequency
4969          * the PCU should use as a reference to determine the ring frequency.
4970          */
4971         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
4972                 int diff = max_gpu_freq - gpu_freq;
4973                 unsigned int ia_freq = 0, ring_freq = 0;
4974
4975                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4976                         /*
4977                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
4978                          * No floor required for ring frequency on SKL.
4979                          */
4980                         ring_freq = gpu_freq;
4981                 } else if (INTEL_INFO(dev)->gen >= 8) {
4982                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
4983                         ring_freq = max(min_ring_freq, gpu_freq);
4984                 } else if (IS_HASWELL(dev)) {
4985                         ring_freq = mult_frac(gpu_freq, 5, 4);
4986                         ring_freq = max(min_ring_freq, ring_freq);
4987                         /* leave ia_freq as the default, chosen by cpufreq */
4988                 } else {
4989                         /* On older processors, there is no separate ring
4990                          * clock domain, so in order to boost the bandwidth
4991                          * of the ring, we need to upclock the CPU (ia_freq).
4992                          *
4993                          * For GPU frequencies less than 750MHz,
4994                          * just use the lowest ring freq.
4995                          */
4996                         if (gpu_freq < min_freq)
4997                                 ia_freq = 800;
4998                         else
4999                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5000                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5001                 }
5002
5003                 sandybridge_pcode_write(dev_priv,
5004                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5005                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5006                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5007                                         gpu_freq);
5008         }
5009 }
5010
5011 void gen6_update_ring_freq(struct drm_device *dev)
5012 {
5013         struct drm_i915_private *dev_priv = dev->dev_private;
5014
5015         if (!HAS_CORE_RING_FREQ(dev))
5016                 return;
5017
5018         mutex_lock(&dev_priv->rps.hw_lock);
5019         __gen6_update_ring_freq(dev);
5020         mutex_unlock(&dev_priv->rps.hw_lock);
5021 }
5022
5023 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5024 {
5025         struct drm_device *dev = dev_priv->dev;
5026         u32 val, rp0;
5027
5028         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5029
5030         switch (INTEL_INFO(dev)->eu_total) {
5031         case 8:
5032                 /* (2 * 4) config */
5033                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5034                 break;
5035         case 12:
5036                 /* (2 * 6) config */
5037                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5038                 break;
5039         case 16:
5040                 /* (2 * 8) config */
5041         default:
5042                 /* Setting (2 * 8) Min RP0 for any other combination */
5043                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5044                 break;
5045         }
5046
5047         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5048
5049         return rp0;
5050 }
5051
5052 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5053 {
5054         u32 val, rpe;
5055
5056         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5057         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5058
5059         return rpe;
5060 }
5061
5062 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5063 {
5064         u32 val, rp1;
5065
5066         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5067         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5068
5069         return rp1;
5070 }
5071
5072 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5073 {
5074         u32 val, rp1;
5075
5076         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5077
5078         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5079
5080         return rp1;
5081 }
5082
5083 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5084 {
5085         u32 val, rp0;
5086
5087         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5088
5089         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5090         /* Clamp to max */
5091         rp0 = min_t(u32, rp0, 0xea);
5092
5093         return rp0;
5094 }
5095
5096 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5097 {
5098         u32 val, rpe;
5099
5100         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5101         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5102         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5103         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5104
5105         return rpe;
5106 }
5107
5108 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5109 {
5110         u32 val;
5111
5112         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5113         /*
5114          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5115          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5116          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5117          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5118          * to make sure it matches what Punit accepts.
5119          */
5120         return max_t(u32, val, 0xc0);
5121 }
5122
5123 /* Check that the pctx buffer wasn't move under us. */
5124 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5125 {
5126         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5127
5128         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5129                              dev_priv->vlv_pctx->stolen->start);
5130 }
5131
5132
5133 /* Check that the pcbr address is not empty. */
5134 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5135 {
5136         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5137
5138         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5139 }
5140
5141 static void cherryview_setup_pctx(struct drm_device *dev)
5142 {
5143         struct drm_i915_private *dev_priv = dev->dev_private;
5144         unsigned long pctx_paddr, paddr;
5145         struct i915_gtt *gtt = &dev_priv->gtt;
5146         u32 pcbr;
5147         int pctx_size = 32*1024;
5148
5149         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5150
5151         pcbr = I915_READ(VLV_PCBR);
5152         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5153                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5154                 paddr = (dev_priv->mm.stolen_base +
5155                          (gtt->stolen_size - pctx_size));
5156
5157                 pctx_paddr = (paddr & (~4095));
5158                 I915_WRITE(VLV_PCBR, pctx_paddr);
5159         }
5160
5161         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5162 }
5163
5164 static void valleyview_setup_pctx(struct drm_device *dev)
5165 {
5166         struct drm_i915_private *dev_priv = dev->dev_private;
5167         struct drm_i915_gem_object *pctx;
5168         unsigned long pctx_paddr;
5169         u32 pcbr;
5170         int pctx_size = 24*1024;
5171
5172         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5173
5174         pcbr = I915_READ(VLV_PCBR);
5175         if (pcbr) {
5176                 /* BIOS set it up already, grab the pre-alloc'd space */
5177                 int pcbr_offset;
5178
5179                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5180                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5181                                                                       pcbr_offset,
5182                                                                       I915_GTT_OFFSET_NONE,
5183                                                                       pctx_size);
5184                 goto out;
5185         }
5186
5187         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5188
5189         /*
5190          * From the Gunit register HAS:
5191          * The Gfx driver is expected to program this register and ensure
5192          * proper allocation within Gfx stolen memory.  For example, this
5193          * register should be programmed such than the PCBR range does not
5194          * overlap with other ranges, such as the frame buffer, protected
5195          * memory, or any other relevant ranges.
5196          */
5197         pctx = i915_gem_object_create_stolen(dev, pctx_size);
5198         if (!pctx) {
5199                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5200                 return;
5201         }
5202
5203         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5204         I915_WRITE(VLV_PCBR, pctx_paddr);
5205
5206 out:
5207         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5208         dev_priv->vlv_pctx = pctx;
5209 }
5210
5211 static void valleyview_cleanup_pctx(struct drm_device *dev)
5212 {
5213         struct drm_i915_private *dev_priv = dev->dev_private;
5214
5215         if (WARN_ON(!dev_priv->vlv_pctx))
5216                 return;
5217
5218         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5219         dev_priv->vlv_pctx = NULL;
5220 }
5221
5222 static void valleyview_init_gt_powersave(struct drm_device *dev)
5223 {
5224         struct drm_i915_private *dev_priv = dev->dev_private;
5225         u32 val;
5226
5227         valleyview_setup_pctx(dev);
5228
5229         mutex_lock(&dev_priv->rps.hw_lock);
5230
5231         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5232         switch ((val >> 6) & 3) {
5233         case 0:
5234         case 1:
5235                 dev_priv->mem_freq = 800;
5236                 break;
5237         case 2:
5238                 dev_priv->mem_freq = 1066;
5239                 break;
5240         case 3:
5241                 dev_priv->mem_freq = 1333;
5242                 break;
5243         }
5244         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5245
5246         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5247         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5248         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5249                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5250                          dev_priv->rps.max_freq);
5251
5252         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5253         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5254                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5255                          dev_priv->rps.efficient_freq);
5256
5257         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5258         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5259                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5260                          dev_priv->rps.rp1_freq);
5261
5262         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5263         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5264                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5265                          dev_priv->rps.min_freq);
5266
5267         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5268
5269         /* Preserve min/max settings in case of re-init */
5270         if (dev_priv->rps.max_freq_softlimit == 0)
5271                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5272
5273         if (dev_priv->rps.min_freq_softlimit == 0)
5274                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5275
5276         mutex_unlock(&dev_priv->rps.hw_lock);
5277 }
5278
5279 static void cherryview_init_gt_powersave(struct drm_device *dev)
5280 {
5281         struct drm_i915_private *dev_priv = dev->dev_private;
5282         u32 val;
5283
5284         cherryview_setup_pctx(dev);
5285
5286         mutex_lock(&dev_priv->rps.hw_lock);
5287
5288         mutex_lock(&dev_priv->sb_lock);
5289         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5290         mutex_unlock(&dev_priv->sb_lock);
5291
5292         switch ((val >> 2) & 0x7) {
5293         case 3:
5294                 dev_priv->mem_freq = 2000;
5295                 break;
5296         default:
5297                 dev_priv->mem_freq = 1600;
5298                 break;
5299         }
5300         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5301
5302         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5303         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5304         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5305                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5306                          dev_priv->rps.max_freq);
5307
5308         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5309         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5310                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5311                          dev_priv->rps.efficient_freq);
5312
5313         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5314         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5315                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5316                          dev_priv->rps.rp1_freq);
5317
5318         /* PUnit validated range is only [RPe, RP0] */
5319         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5320         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5321                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5322                          dev_priv->rps.min_freq);
5323
5324         WARN_ONCE((dev_priv->rps.max_freq |
5325                    dev_priv->rps.efficient_freq |
5326                    dev_priv->rps.rp1_freq |
5327                    dev_priv->rps.min_freq) & 1,
5328                   "Odd GPU freq values\n");
5329
5330         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5331
5332         /* Preserve min/max settings in case of re-init */
5333         if (dev_priv->rps.max_freq_softlimit == 0)
5334                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5335
5336         if (dev_priv->rps.min_freq_softlimit == 0)
5337                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5338
5339         mutex_unlock(&dev_priv->rps.hw_lock);
5340 }
5341
5342 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5343 {
5344         valleyview_cleanup_pctx(dev);
5345 }
5346
5347 static void cherryview_enable_rps(struct drm_device *dev)
5348 {
5349         struct drm_i915_private *dev_priv = dev->dev_private;
5350         struct intel_engine_cs *ring;
5351         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5352         int i;
5353
5354         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5355
5356         gtfifodbg = I915_READ(GTFIFODBG);
5357         if (gtfifodbg) {
5358                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5359                                  gtfifodbg);
5360                 I915_WRITE(GTFIFODBG, gtfifodbg);
5361         }
5362
5363         cherryview_check_pctx(dev_priv);
5364
5365         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5366          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5367         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5368
5369         /*  Disable RC states. */
5370         I915_WRITE(GEN6_RC_CONTROL, 0);
5371
5372         /* 2a: Program RC6 thresholds.*/
5373         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5374         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5375         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5376
5377         for_each_ring(ring, dev_priv, i)
5378                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5379         I915_WRITE(GEN6_RC_SLEEP, 0);
5380
5381         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5382         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5383
5384         /* allows RC6 residency counter to work */
5385         I915_WRITE(VLV_COUNTER_CONTROL,
5386                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5387                                       VLV_MEDIA_RC6_COUNT_EN |
5388                                       VLV_RENDER_RC6_COUNT_EN));
5389
5390         /* For now we assume BIOS is allocating and populating the PCBR  */
5391         pcbr = I915_READ(VLV_PCBR);
5392
5393         /* 3: Enable RC6 */
5394         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5395                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5396                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5397
5398         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5399
5400         /* 4 Program defaults and thresholds for RPS*/
5401         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5402         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5403         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5404         I915_WRITE(GEN6_RP_UP_EI, 66000);
5405         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5406
5407         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5408
5409         /* 5: Enable RPS */
5410         I915_WRITE(GEN6_RP_CONTROL,
5411                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5412                    GEN6_RP_MEDIA_IS_GFX |
5413                    GEN6_RP_ENABLE |
5414                    GEN6_RP_UP_BUSY_AVG |
5415                    GEN6_RP_DOWN_IDLE_AVG);
5416
5417         /* Setting Fixed Bias */
5418         val = VLV_OVERRIDE_EN |
5419                   VLV_SOC_TDP_EN |
5420                   CHV_BIAS_CPU_50_SOC_50;
5421         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5422
5423         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5424
5425         /* RPS code assumes GPLL is used */
5426         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5427
5428         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5429         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5430
5431         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5432         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5433                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5434                          dev_priv->rps.cur_freq);
5435
5436         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5437                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5438                          dev_priv->rps.efficient_freq);
5439
5440         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5441
5442         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5443 }
5444
5445 static void valleyview_enable_rps(struct drm_device *dev)
5446 {
5447         struct drm_i915_private *dev_priv = dev->dev_private;
5448         struct intel_engine_cs *ring;
5449         u32 gtfifodbg, val, rc6_mode = 0;
5450         int i;
5451
5452         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5453
5454         valleyview_check_pctx(dev_priv);
5455
5456         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5457                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5458                                  gtfifodbg);
5459                 I915_WRITE(GTFIFODBG, gtfifodbg);
5460         }
5461
5462         /* If VLV, Forcewake all wells, else re-direct to regular path */
5463         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5464
5465         /*  Disable RC states. */
5466         I915_WRITE(GEN6_RC_CONTROL, 0);
5467
5468         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5469         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5470         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5471         I915_WRITE(GEN6_RP_UP_EI, 66000);
5472         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5473
5474         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5475
5476         I915_WRITE(GEN6_RP_CONTROL,
5477                    GEN6_RP_MEDIA_TURBO |
5478                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5479                    GEN6_RP_MEDIA_IS_GFX |
5480                    GEN6_RP_ENABLE |
5481                    GEN6_RP_UP_BUSY_AVG |
5482                    GEN6_RP_DOWN_IDLE_CONT);
5483
5484         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5485         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5486         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5487
5488         for_each_ring(ring, dev_priv, i)
5489                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5490
5491         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5492
5493         /* allows RC6 residency counter to work */
5494         I915_WRITE(VLV_COUNTER_CONTROL,
5495                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5496                                       VLV_RENDER_RC0_COUNT_EN |
5497                                       VLV_MEDIA_RC6_COUNT_EN |
5498                                       VLV_RENDER_RC6_COUNT_EN));
5499
5500         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5501                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5502
5503         intel_print_rc6_info(dev, rc6_mode);
5504
5505         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5506
5507         /* Setting Fixed Bias */
5508         val = VLV_OVERRIDE_EN |
5509                   VLV_SOC_TDP_EN |
5510                   VLV_BIAS_CPU_125_SOC_875;
5511         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5512
5513         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5514
5515         /* RPS code assumes GPLL is used */
5516         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5517
5518         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5519         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5520
5521         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5522         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5523                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5524                          dev_priv->rps.cur_freq);
5525
5526         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5527                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5528                          dev_priv->rps.efficient_freq);
5529
5530         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5531
5532         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5533 }
5534
5535 static unsigned long intel_pxfreq(u32 vidfreq)
5536 {
5537         unsigned long freq;
5538         int div = (vidfreq & 0x3f0000) >> 16;
5539         int post = (vidfreq & 0x3000) >> 12;
5540         int pre = (vidfreq & 0x7);
5541
5542         if (!pre)
5543                 return 0;
5544
5545         freq = ((div * 133333) / ((1<<post) * pre));
5546
5547         return freq;
5548 }
5549
5550 static const struct cparams {
5551         u16 i;
5552         u16 t;
5553         u16 m;
5554         u16 c;
5555 } cparams[] = {
5556         { 1, 1333, 301, 28664 },
5557         { 1, 1066, 294, 24460 },
5558         { 1, 800, 294, 25192 },
5559         { 0, 1333, 276, 27605 },
5560         { 0, 1066, 276, 27605 },
5561         { 0, 800, 231, 23784 },
5562 };
5563
5564 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5565 {
5566         u64 total_count, diff, ret;
5567         u32 count1, count2, count3, m = 0, c = 0;
5568         unsigned long now = jiffies_to_msecs(jiffies), diff1;
5569         int i;
5570
5571         assert_spin_locked(&mchdev_lock);
5572
5573         diff1 = now - dev_priv->ips.last_time1;
5574
5575         /* Prevent division-by-zero if we are asking too fast.
5576          * Also, we don't get interesting results if we are polling
5577          * faster than once in 10ms, so just return the saved value
5578          * in such cases.
5579          */
5580         if (diff1 <= 10)
5581                 return dev_priv->ips.chipset_power;
5582
5583         count1 = I915_READ(DMIEC);
5584         count2 = I915_READ(DDREC);
5585         count3 = I915_READ(CSIEC);
5586
5587         total_count = count1 + count2 + count3;
5588
5589         /* FIXME: handle per-counter overflow */
5590         if (total_count < dev_priv->ips.last_count1) {
5591                 diff = ~0UL - dev_priv->ips.last_count1;
5592                 diff += total_count;
5593         } else {
5594                 diff = total_count - dev_priv->ips.last_count1;
5595         }
5596
5597         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5598                 if (cparams[i].i == dev_priv->ips.c_m &&
5599                     cparams[i].t == dev_priv->ips.r_t) {
5600                         m = cparams[i].m;
5601                         c = cparams[i].c;
5602                         break;
5603                 }
5604         }
5605
5606         diff = div_u64(diff, diff1);
5607         ret = ((m * diff) + c);
5608         ret = div_u64(ret, 10);
5609
5610         dev_priv->ips.last_count1 = total_count;
5611         dev_priv->ips.last_time1 = now;
5612
5613         dev_priv->ips.chipset_power = ret;
5614
5615         return ret;
5616 }
5617
5618 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5619 {
5620         struct drm_device *dev = dev_priv->dev;
5621         unsigned long val;
5622
5623         if (INTEL_INFO(dev)->gen != 5)
5624                 return 0;
5625
5626         spin_lock_irq(&mchdev_lock);
5627
5628         val = __i915_chipset_val(dev_priv);
5629
5630         spin_unlock_irq(&mchdev_lock);
5631
5632         return val;
5633 }
5634
5635 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5636 {
5637         unsigned long m, x, b;
5638         u32 tsfs;
5639
5640         tsfs = I915_READ(TSFS);
5641
5642         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5643         x = I915_READ8(TR1);
5644
5645         b = tsfs & TSFS_INTR_MASK;
5646
5647         return ((m * x) / 127) - b;
5648 }
5649
5650 static int _pxvid_to_vd(u8 pxvid)
5651 {
5652         if (pxvid == 0)
5653                 return 0;
5654
5655         if (pxvid >= 8 && pxvid < 31)
5656                 pxvid = 31;
5657
5658         return (pxvid + 2) * 125;
5659 }
5660
5661 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5662 {
5663         struct drm_device *dev = dev_priv->dev;
5664         const int vd = _pxvid_to_vd(pxvid);
5665         const int vm = vd - 1125;
5666
5667         if (INTEL_INFO(dev)->is_mobile)
5668                 return vm > 0 ? vm : 0;
5669
5670         return vd;
5671 }
5672
5673 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5674 {
5675         u64 now, diff, diffms;
5676         u32 count;
5677
5678         assert_spin_locked(&mchdev_lock);
5679
5680         now = ktime_get_raw_ns();
5681         diffms = now - dev_priv->ips.last_time2;
5682         do_div(diffms, NSEC_PER_MSEC);
5683
5684         /* Don't divide by 0 */
5685         if (!diffms)
5686                 return;
5687
5688         count = I915_READ(GFXEC);
5689
5690         if (count < dev_priv->ips.last_count2) {
5691                 diff = ~0UL - dev_priv->ips.last_count2;
5692                 diff += count;
5693         } else {
5694                 diff = count - dev_priv->ips.last_count2;
5695         }
5696
5697         dev_priv->ips.last_count2 = count;
5698         dev_priv->ips.last_time2 = now;
5699
5700         /* More magic constants... */
5701         diff = diff * 1181;
5702         diff = div_u64(diff, diffms * 10);
5703         dev_priv->ips.gfx_power = diff;
5704 }
5705
5706 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5707 {
5708         struct drm_device *dev = dev_priv->dev;
5709
5710         if (INTEL_INFO(dev)->gen != 5)
5711                 return;
5712
5713         spin_lock_irq(&mchdev_lock);
5714
5715         __i915_update_gfx_val(dev_priv);
5716
5717         spin_unlock_irq(&mchdev_lock);
5718 }
5719
5720 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5721 {
5722         unsigned long t, corr, state1, corr2, state2;
5723         u32 pxvid, ext_v;
5724
5725         assert_spin_locked(&mchdev_lock);
5726
5727         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5728         pxvid = (pxvid >> 24) & 0x7f;
5729         ext_v = pvid_to_extvid(dev_priv, pxvid);
5730
5731         state1 = ext_v;
5732
5733         t = i915_mch_val(dev_priv);
5734
5735         /* Revel in the empirically derived constants */
5736
5737         /* Correction factor in 1/100000 units */
5738         if (t > 80)
5739                 corr = ((t * 2349) + 135940);
5740         else if (t >= 50)
5741                 corr = ((t * 964) + 29317);
5742         else /* < 50 */
5743                 corr = ((t * 301) + 1004);
5744
5745         corr = corr * ((150142 * state1) / 10000 - 78642);
5746         corr /= 100000;
5747         corr2 = (corr * dev_priv->ips.corr);
5748
5749         state2 = (corr2 * state1) / 10000;
5750         state2 /= 100; /* convert to mW */
5751
5752         __i915_update_gfx_val(dev_priv);
5753
5754         return dev_priv->ips.gfx_power + state2;
5755 }
5756
5757 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5758 {
5759         struct drm_device *dev = dev_priv->dev;
5760         unsigned long val;
5761
5762         if (INTEL_INFO(dev)->gen != 5)
5763                 return 0;
5764
5765         spin_lock_irq(&mchdev_lock);
5766
5767         val = __i915_gfx_val(dev_priv);
5768
5769         spin_unlock_irq(&mchdev_lock);
5770
5771         return val;
5772 }
5773
5774 /**
5775  * i915_read_mch_val - return value for IPS use
5776  *
5777  * Calculate and return a value for the IPS driver to use when deciding whether
5778  * we have thermal and power headroom to increase CPU or GPU power budget.
5779  */
5780 unsigned long i915_read_mch_val(void)
5781 {
5782         struct drm_i915_private *dev_priv;
5783         unsigned long chipset_val, graphics_val, ret = 0;
5784
5785         spin_lock_irq(&mchdev_lock);
5786         if (!i915_mch_dev)
5787                 goto out_unlock;
5788         dev_priv = i915_mch_dev;
5789
5790         chipset_val = __i915_chipset_val(dev_priv);
5791         graphics_val = __i915_gfx_val(dev_priv);
5792
5793         ret = chipset_val + graphics_val;
5794
5795 out_unlock:
5796         spin_unlock_irq(&mchdev_lock);
5797
5798         return ret;
5799 }
5800 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5801
5802 /**
5803  * i915_gpu_raise - raise GPU frequency limit
5804  *
5805  * Raise the limit; IPS indicates we have thermal headroom.
5806  */
5807 bool i915_gpu_raise(void)
5808 {
5809         struct drm_i915_private *dev_priv;
5810         bool ret = true;
5811
5812         spin_lock_irq(&mchdev_lock);
5813         if (!i915_mch_dev) {
5814                 ret = false;
5815                 goto out_unlock;
5816         }
5817         dev_priv = i915_mch_dev;
5818
5819         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5820                 dev_priv->ips.max_delay--;
5821
5822 out_unlock:
5823         spin_unlock_irq(&mchdev_lock);
5824
5825         return ret;
5826 }
5827 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5828
5829 /**
5830  * i915_gpu_lower - lower GPU frequency limit
5831  *
5832  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5833  * frequency maximum.
5834  */
5835 bool i915_gpu_lower(void)
5836 {
5837         struct drm_i915_private *dev_priv;
5838         bool ret = true;
5839
5840         spin_lock_irq(&mchdev_lock);
5841         if (!i915_mch_dev) {
5842                 ret = false;
5843                 goto out_unlock;
5844         }
5845         dev_priv = i915_mch_dev;
5846
5847         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5848                 dev_priv->ips.max_delay++;
5849
5850 out_unlock:
5851         spin_unlock_irq(&mchdev_lock);
5852
5853         return ret;
5854 }
5855 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5856
5857 /**
5858  * i915_gpu_busy - indicate GPU business to IPS
5859  *
5860  * Tell the IPS driver whether or not the GPU is busy.
5861  */
5862 bool i915_gpu_busy(void)
5863 {
5864         struct drm_i915_private *dev_priv;
5865         struct intel_engine_cs *ring;
5866         bool ret = false;
5867         int i;
5868
5869         spin_lock_irq(&mchdev_lock);
5870         if (!i915_mch_dev)
5871                 goto out_unlock;
5872         dev_priv = i915_mch_dev;
5873
5874         for_each_ring(ring, dev_priv, i)
5875                 ret |= !list_empty(&ring->request_list);
5876
5877 out_unlock:
5878         spin_unlock_irq(&mchdev_lock);
5879
5880         return ret;
5881 }
5882 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5883
5884 /**
5885  * i915_gpu_turbo_disable - disable graphics turbo
5886  *
5887  * Disable graphics turbo by resetting the max frequency and setting the
5888  * current frequency to the default.
5889  */
5890 bool i915_gpu_turbo_disable(void)
5891 {
5892         struct drm_i915_private *dev_priv;
5893         bool ret = true;
5894
5895         spin_lock_irq(&mchdev_lock);
5896         if (!i915_mch_dev) {
5897                 ret = false;
5898                 goto out_unlock;
5899         }
5900         dev_priv = i915_mch_dev;
5901
5902         dev_priv->ips.max_delay = dev_priv->ips.fstart;
5903
5904         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5905                 ret = false;
5906
5907 out_unlock:
5908         spin_unlock_irq(&mchdev_lock);
5909
5910         return ret;
5911 }
5912 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5913
5914 /**
5915  * Tells the intel_ips driver that the i915 driver is now loaded, if
5916  * IPS got loaded first.
5917  *
5918  * This awkward dance is so that neither module has to depend on the
5919  * other in order for IPS to do the appropriate communication of
5920  * GPU turbo limits to i915.
5921  */
5922 static void
5923 ips_ping_for_i915_load(void)
5924 {
5925         void (*link)(void);
5926
5927         link = symbol_get(ips_link_to_i915_driver);
5928         if (link) {
5929                 link();
5930                 symbol_put(ips_link_to_i915_driver);
5931         }
5932 }
5933
5934 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5935 {
5936         /* We only register the i915 ips part with intel-ips once everything is
5937          * set up, to avoid intel-ips sneaking in and reading bogus values. */
5938         spin_lock_irq(&mchdev_lock);
5939         i915_mch_dev = dev_priv;
5940         spin_unlock_irq(&mchdev_lock);
5941
5942         ips_ping_for_i915_load();
5943 }
5944
5945 void intel_gpu_ips_teardown(void)
5946 {
5947         spin_lock_irq(&mchdev_lock);
5948         i915_mch_dev = NULL;
5949         spin_unlock_irq(&mchdev_lock);
5950 }
5951
5952 static void intel_init_emon(struct drm_device *dev)
5953 {
5954         struct drm_i915_private *dev_priv = dev->dev_private;
5955         u32 lcfuse;
5956         u8 pxw[16];
5957         int i;
5958
5959         /* Disable to program */
5960         I915_WRITE(ECR, 0);
5961         POSTING_READ(ECR);
5962
5963         /* Program energy weights for various events */
5964         I915_WRITE(SDEW, 0x15040d00);
5965         I915_WRITE(CSIEW0, 0x007f0000);
5966         I915_WRITE(CSIEW1, 0x1e220004);
5967         I915_WRITE(CSIEW2, 0x04000004);
5968
5969         for (i = 0; i < 5; i++)
5970                 I915_WRITE(PEW(i), 0);
5971         for (i = 0; i < 3; i++)
5972                 I915_WRITE(DEW(i), 0);
5973
5974         /* Program P-state weights to account for frequency power adjustment */
5975         for (i = 0; i < 16; i++) {
5976                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
5977                 unsigned long freq = intel_pxfreq(pxvidfreq);
5978                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5979                         PXVFREQ_PX_SHIFT;
5980                 unsigned long val;
5981
5982                 val = vid * vid;
5983                 val *= (freq / 1000);
5984                 val *= 255;
5985                 val /= (127*127*900);
5986                 if (val > 0xff)
5987                         DRM_ERROR("bad pxval: %ld\n", val);
5988                 pxw[i] = val;
5989         }
5990         /* Render standby states get 0 weight */
5991         pxw[14] = 0;
5992         pxw[15] = 0;
5993
5994         for (i = 0; i < 4; i++) {
5995                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5996                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5997                 I915_WRITE(PXW(i), val);
5998         }
5999
6000         /* Adjust magic regs to magic values (more experimental results) */
6001         I915_WRITE(OGW0, 0);
6002         I915_WRITE(OGW1, 0);
6003         I915_WRITE(EG0, 0x00007f00);
6004         I915_WRITE(EG1, 0x0000000e);
6005         I915_WRITE(EG2, 0x000e0000);
6006         I915_WRITE(EG3, 0x68000300);
6007         I915_WRITE(EG4, 0x42000000);
6008         I915_WRITE(EG5, 0x00140031);
6009         I915_WRITE(EG6, 0);
6010         I915_WRITE(EG7, 0);
6011
6012         for (i = 0; i < 8; i++)
6013                 I915_WRITE(PXWL(i), 0);
6014
6015         /* Enable PMON + select events */
6016         I915_WRITE(ECR, 0x80000019);
6017
6018         lcfuse = I915_READ(LCFUSE02);
6019
6020         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6021 }
6022
6023 void intel_init_gt_powersave(struct drm_device *dev)
6024 {
6025         struct drm_i915_private *dev_priv = dev->dev_private;
6026
6027         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6028         /*
6029          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6030          * requirement.
6031          */
6032         if (!i915.enable_rc6) {
6033                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6034                 intel_runtime_pm_get(dev_priv);
6035         }
6036
6037         if (IS_CHERRYVIEW(dev))
6038                 cherryview_init_gt_powersave(dev);
6039         else if (IS_VALLEYVIEW(dev))
6040                 valleyview_init_gt_powersave(dev);
6041 }
6042
6043 void intel_cleanup_gt_powersave(struct drm_device *dev)
6044 {
6045         struct drm_i915_private *dev_priv = dev->dev_private;
6046
6047         if (IS_CHERRYVIEW(dev))
6048                 return;
6049         else if (IS_VALLEYVIEW(dev))
6050                 valleyview_cleanup_gt_powersave(dev);
6051
6052         if (!i915.enable_rc6)
6053                 intel_runtime_pm_put(dev_priv);
6054 }
6055
6056 static void gen6_suspend_rps(struct drm_device *dev)
6057 {
6058         struct drm_i915_private *dev_priv = dev->dev_private;
6059
6060         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6061
6062         gen6_disable_rps_interrupts(dev);
6063 }
6064
6065 /**
6066  * intel_suspend_gt_powersave - suspend PM work and helper threads
6067  * @dev: drm device
6068  *
6069  * We don't want to disable RC6 or other features here, we just want
6070  * to make sure any work we've queued has finished and won't bother
6071  * us while we're suspended.
6072  */
6073 void intel_suspend_gt_powersave(struct drm_device *dev)
6074 {
6075         struct drm_i915_private *dev_priv = dev->dev_private;
6076
6077         if (INTEL_INFO(dev)->gen < 6)
6078                 return;
6079
6080         gen6_suspend_rps(dev);
6081
6082         /* Force GPU to min freq during suspend */
6083         gen6_rps_idle(dev_priv);
6084 }
6085
6086 void intel_disable_gt_powersave(struct drm_device *dev)
6087 {
6088         struct drm_i915_private *dev_priv = dev->dev_private;
6089
6090         if (IS_IRONLAKE_M(dev)) {
6091                 ironlake_disable_drps(dev);
6092         } else if (INTEL_INFO(dev)->gen >= 6) {
6093                 intel_suspend_gt_powersave(dev);
6094
6095                 mutex_lock(&dev_priv->rps.hw_lock);
6096                 if (INTEL_INFO(dev)->gen >= 9)
6097                         gen9_disable_rps(dev);
6098                 else if (IS_CHERRYVIEW(dev))
6099                         cherryview_disable_rps(dev);
6100                 else if (IS_VALLEYVIEW(dev))
6101                         valleyview_disable_rps(dev);
6102                 else
6103                         gen6_disable_rps(dev);
6104
6105                 dev_priv->rps.enabled = false;
6106                 mutex_unlock(&dev_priv->rps.hw_lock);
6107         }
6108 }
6109
6110 static void intel_gen6_powersave_work(struct work_struct *work)
6111 {
6112         struct drm_i915_private *dev_priv =
6113                 container_of(work, struct drm_i915_private,
6114                              rps.delayed_resume_work.work);
6115         struct drm_device *dev = dev_priv->dev;
6116
6117         mutex_lock(&dev_priv->rps.hw_lock);
6118
6119         gen6_reset_rps_interrupts(dev);
6120
6121         if (IS_CHERRYVIEW(dev)) {
6122                 cherryview_enable_rps(dev);
6123         } else if (IS_VALLEYVIEW(dev)) {
6124                 valleyview_enable_rps(dev);
6125         } else if (INTEL_INFO(dev)->gen >= 9) {
6126                 gen9_enable_rc6(dev);
6127                 gen9_enable_rps(dev);
6128                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6129                         __gen6_update_ring_freq(dev);
6130         } else if (IS_BROADWELL(dev)) {
6131                 gen8_enable_rps(dev);
6132                 __gen6_update_ring_freq(dev);
6133         } else {
6134                 gen6_enable_rps(dev);
6135                 __gen6_update_ring_freq(dev);
6136         }
6137
6138         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6139         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6140
6141         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6142         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6143
6144         dev_priv->rps.enabled = true;
6145
6146         gen6_enable_rps_interrupts(dev);
6147
6148         mutex_unlock(&dev_priv->rps.hw_lock);
6149
6150         intel_runtime_pm_put(dev_priv);
6151 }
6152
6153 void intel_enable_gt_powersave(struct drm_device *dev)
6154 {
6155         struct drm_i915_private *dev_priv = dev->dev_private;
6156
6157         /* Powersaving is controlled by the host when inside a VM */
6158         if (intel_vgpu_active(dev))
6159                 return;
6160
6161         if (IS_IRONLAKE_M(dev)) {
6162                 mutex_lock(&dev->struct_mutex);
6163                 ironlake_enable_drps(dev);
6164                 intel_init_emon(dev);
6165                 mutex_unlock(&dev->struct_mutex);
6166         } else if (INTEL_INFO(dev)->gen >= 6) {
6167                 /*
6168                  * PCU communication is slow and this doesn't need to be
6169                  * done at any specific time, so do this out of our fast path
6170                  * to make resume and init faster.
6171                  *
6172                  * We depend on the HW RC6 power context save/restore
6173                  * mechanism when entering D3 through runtime PM suspend. So
6174                  * disable RPM until RPS/RC6 is properly setup. We can only
6175                  * get here via the driver load/system resume/runtime resume
6176                  * paths, so the _noresume version is enough (and in case of
6177                  * runtime resume it's necessary).
6178                  */
6179                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6180                                            round_jiffies_up_relative(HZ)))
6181                         intel_runtime_pm_get_noresume(dev_priv);
6182         }
6183 }
6184
6185 void intel_reset_gt_powersave(struct drm_device *dev)
6186 {
6187         struct drm_i915_private *dev_priv = dev->dev_private;
6188
6189         if (INTEL_INFO(dev)->gen < 6)
6190                 return;
6191
6192         gen6_suspend_rps(dev);
6193         dev_priv->rps.enabled = false;
6194 }
6195
6196 static void ibx_init_clock_gating(struct drm_device *dev)
6197 {
6198         struct drm_i915_private *dev_priv = dev->dev_private;
6199
6200         /*
6201          * On Ibex Peak and Cougar Point, we need to disable clock
6202          * gating for the panel power sequencer or it will fail to
6203          * start up when no ports are active.
6204          */
6205         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6206 }
6207
6208 static void g4x_disable_trickle_feed(struct drm_device *dev)
6209 {
6210         struct drm_i915_private *dev_priv = dev->dev_private;
6211         enum pipe pipe;
6212
6213         for_each_pipe(dev_priv, pipe) {
6214                 I915_WRITE(DSPCNTR(pipe),
6215                            I915_READ(DSPCNTR(pipe)) |
6216                            DISPPLANE_TRICKLE_FEED_DISABLE);
6217
6218                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6219                 POSTING_READ(DSPSURF(pipe));
6220         }
6221 }
6222
6223 static void ilk_init_lp_watermarks(struct drm_device *dev)
6224 {
6225         struct drm_i915_private *dev_priv = dev->dev_private;
6226
6227         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6228         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6229         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6230
6231         /*
6232          * Don't touch WM1S_LP_EN here.
6233          * Doing so could cause underruns.
6234          */
6235 }
6236
6237 static void ironlake_init_clock_gating(struct drm_device *dev)
6238 {
6239         struct drm_i915_private *dev_priv = dev->dev_private;
6240         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6241
6242         /*
6243          * Required for FBC
6244          * WaFbcDisableDpfcClockGating:ilk
6245          */
6246         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6247                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6248                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6249
6250         I915_WRITE(PCH_3DCGDIS0,
6251                    MARIUNIT_CLOCK_GATE_DISABLE |
6252                    SVSMUNIT_CLOCK_GATE_DISABLE);
6253         I915_WRITE(PCH_3DCGDIS1,
6254                    VFMUNIT_CLOCK_GATE_DISABLE);
6255
6256         /*
6257          * According to the spec the following bits should be set in
6258          * order to enable memory self-refresh
6259          * The bit 22/21 of 0x42004
6260          * The bit 5 of 0x42020
6261          * The bit 15 of 0x45000
6262          */
6263         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6264                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6265                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6266         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6267         I915_WRITE(DISP_ARB_CTL,
6268                    (I915_READ(DISP_ARB_CTL) |
6269                     DISP_FBC_WM_DIS));
6270
6271         ilk_init_lp_watermarks(dev);
6272
6273         /*
6274          * Based on the document from hardware guys the following bits
6275          * should be set unconditionally in order to enable FBC.
6276          * The bit 22 of 0x42000
6277          * The bit 22 of 0x42004
6278          * The bit 7,8,9 of 0x42020.
6279          */
6280         if (IS_IRONLAKE_M(dev)) {
6281                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6282                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6283                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6284                            ILK_FBCQ_DIS);
6285                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6286                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6287                            ILK_DPARB_GATE);
6288         }
6289
6290         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6291
6292         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6293                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6294                    ILK_ELPIN_409_SELECT);
6295         I915_WRITE(_3D_CHICKEN2,
6296                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6297                    _3D_CHICKEN2_WM_READ_PIPELINED);
6298
6299         /* WaDisableRenderCachePipelinedFlush:ilk */
6300         I915_WRITE(CACHE_MODE_0,
6301                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6302
6303         /* WaDisable_RenderCache_OperationalFlush:ilk */
6304         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6305
6306         g4x_disable_trickle_feed(dev);
6307
6308         ibx_init_clock_gating(dev);
6309 }
6310
6311 static void cpt_init_clock_gating(struct drm_device *dev)
6312 {
6313         struct drm_i915_private *dev_priv = dev->dev_private;
6314         int pipe;
6315         uint32_t val;
6316
6317         /*
6318          * On Ibex Peak and Cougar Point, we need to disable clock
6319          * gating for the panel power sequencer or it will fail to
6320          * start up when no ports are active.
6321          */
6322         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6323                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6324                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6325         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6326                    DPLS_EDP_PPS_FIX_DIS);
6327         /* The below fixes the weird display corruption, a few pixels shifted
6328          * downward, on (only) LVDS of some HP laptops with IVY.
6329          */
6330         for_each_pipe(dev_priv, pipe) {
6331                 val = I915_READ(TRANS_CHICKEN2(pipe));
6332                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6333                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6334                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6335                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6336                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6337                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6338                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6339                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6340         }
6341         /* WADP0ClockGatingDisable */
6342         for_each_pipe(dev_priv, pipe) {
6343                 I915_WRITE(TRANS_CHICKEN1(pipe),
6344                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6345         }
6346 }
6347
6348 static void gen6_check_mch_setup(struct drm_device *dev)
6349 {
6350         struct drm_i915_private *dev_priv = dev->dev_private;
6351         uint32_t tmp;
6352
6353         tmp = I915_READ(MCH_SSKPD);
6354         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6355                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6356                               tmp);
6357 }
6358
6359 static void gen6_init_clock_gating(struct drm_device *dev)
6360 {
6361         struct drm_i915_private *dev_priv = dev->dev_private;
6362         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6363
6364         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6365
6366         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6367                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6368                    ILK_ELPIN_409_SELECT);
6369
6370         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6371         I915_WRITE(_3D_CHICKEN,
6372                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6373
6374         /* WaDisable_RenderCache_OperationalFlush:snb */
6375         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6376
6377         /*
6378          * BSpec recoomends 8x4 when MSAA is used,
6379          * however in practice 16x4 seems fastest.
6380          *
6381          * Note that PS/WM thread counts depend on the WIZ hashing
6382          * disable bit, which we don't touch here, but it's good
6383          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6384          */
6385         I915_WRITE(GEN6_GT_MODE,
6386                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6387
6388         ilk_init_lp_watermarks(dev);
6389
6390         I915_WRITE(CACHE_MODE_0,
6391                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6392
6393         I915_WRITE(GEN6_UCGCTL1,
6394                    I915_READ(GEN6_UCGCTL1) |
6395                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6396                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6397
6398         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6399          * gating disable must be set.  Failure to set it results in
6400          * flickering pixels due to Z write ordering failures after
6401          * some amount of runtime in the Mesa "fire" demo, and Unigine
6402          * Sanctuary and Tropics, and apparently anything else with
6403          * alpha test or pixel discard.
6404          *
6405          * According to the spec, bit 11 (RCCUNIT) must also be set,
6406          * but we didn't debug actual testcases to find it out.
6407          *
6408          * WaDisableRCCUnitClockGating:snb
6409          * WaDisableRCPBUnitClockGating:snb
6410          */
6411         I915_WRITE(GEN6_UCGCTL2,
6412                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6413                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6414
6415         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6416         I915_WRITE(_3D_CHICKEN3,
6417                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6418
6419         /*
6420          * Bspec says:
6421          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6422          * 3DSTATE_SF number of SF output attributes is more than 16."
6423          */
6424         I915_WRITE(_3D_CHICKEN3,
6425                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6426
6427         /*
6428          * According to the spec the following bits should be
6429          * set in order to enable memory self-refresh and fbc:
6430          * The bit21 and bit22 of 0x42000
6431          * The bit21 and bit22 of 0x42004
6432          * The bit5 and bit7 of 0x42020
6433          * The bit14 of 0x70180
6434          * The bit14 of 0x71180
6435          *
6436          * WaFbcAsynchFlipDisableFbcQueue:snb
6437          */
6438         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6439                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6440                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6441         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6442                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6443                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6444         I915_WRITE(ILK_DSPCLK_GATE_D,
6445                    I915_READ(ILK_DSPCLK_GATE_D) |
6446                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6447                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6448
6449         g4x_disable_trickle_feed(dev);
6450
6451         cpt_init_clock_gating(dev);
6452
6453         gen6_check_mch_setup(dev);
6454 }
6455
6456 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6457 {
6458         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6459
6460         /*
6461          * WaVSThreadDispatchOverride:ivb,vlv
6462          *
6463          * This actually overrides the dispatch
6464          * mode for all thread types.
6465          */
6466         reg &= ~GEN7_FF_SCHED_MASK;
6467         reg |= GEN7_FF_TS_SCHED_HW;
6468         reg |= GEN7_FF_VS_SCHED_HW;
6469         reg |= GEN7_FF_DS_SCHED_HW;
6470
6471         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6472 }
6473
6474 static void lpt_init_clock_gating(struct drm_device *dev)
6475 {
6476         struct drm_i915_private *dev_priv = dev->dev_private;
6477
6478         /*
6479          * TODO: this bit should only be enabled when really needed, then
6480          * disabled when not needed anymore in order to save power.
6481          */
6482         if (HAS_PCH_LPT_LP(dev))
6483                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6484                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6485                            PCH_LP_PARTITION_LEVEL_DISABLE);
6486
6487         /* WADPOClockGatingDisable:hsw */
6488         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6489                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6490                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6491 }
6492
6493 static void lpt_suspend_hw(struct drm_device *dev)
6494 {
6495         struct drm_i915_private *dev_priv = dev->dev_private;
6496
6497         if (HAS_PCH_LPT_LP(dev)) {
6498                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6499
6500                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6501                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6502         }
6503 }
6504
6505 static void broadwell_init_clock_gating(struct drm_device *dev)
6506 {
6507         struct drm_i915_private *dev_priv = dev->dev_private;
6508         enum pipe pipe;
6509         uint32_t misccpctl;
6510
6511         ilk_init_lp_watermarks(dev);
6512
6513         /* WaSwitchSolVfFArbitrationPriority:bdw */
6514         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6515
6516         /* WaPsrDPAMaskVBlankInSRD:bdw */
6517         I915_WRITE(CHICKEN_PAR1_1,
6518                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6519
6520         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6521         for_each_pipe(dev_priv, pipe) {
6522                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6523                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6524                            BDW_DPRS_MASK_VBLANK_SRD);
6525         }
6526
6527         /* WaVSRefCountFullforceMissDisable:bdw */
6528         /* WaDSRefCountFullforceMissDisable:bdw */
6529         I915_WRITE(GEN7_FF_THREAD_MODE,
6530                    I915_READ(GEN7_FF_THREAD_MODE) &
6531                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6532
6533         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6534                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6535
6536         /* WaDisableSDEUnitClockGating:bdw */
6537         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6538                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6539
6540         /*
6541          * WaProgramL3SqcReg1Default:bdw
6542          * WaTempDisableDOPClkGating:bdw
6543          */
6544         misccpctl = I915_READ(GEN7_MISCCPCTL);
6545         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6546         I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6547         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6548
6549         /*
6550          * WaGttCachingOffByDefault:bdw
6551          * GTT cache may not work with big pages, so if those
6552          * are ever enabled GTT cache may need to be disabled.
6553          */
6554         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6555
6556         lpt_init_clock_gating(dev);
6557 }
6558
6559 static void haswell_init_clock_gating(struct drm_device *dev)
6560 {
6561         struct drm_i915_private *dev_priv = dev->dev_private;
6562
6563         ilk_init_lp_watermarks(dev);
6564
6565         /* L3 caching of data atomics doesn't work -- disable it. */
6566         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6567         I915_WRITE(HSW_ROW_CHICKEN3,
6568                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6569
6570         /* This is required by WaCatErrorRejectionIssue:hsw */
6571         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6572                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6573                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6574
6575         /* WaVSRefCountFullforceMissDisable:hsw */
6576         I915_WRITE(GEN7_FF_THREAD_MODE,
6577                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6578
6579         /* WaDisable_RenderCache_OperationalFlush:hsw */
6580         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6581
6582         /* enable HiZ Raw Stall Optimization */
6583         I915_WRITE(CACHE_MODE_0_GEN7,
6584                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6585
6586         /* WaDisable4x2SubspanOptimization:hsw */
6587         I915_WRITE(CACHE_MODE_1,
6588                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6589
6590         /*
6591          * BSpec recommends 8x4 when MSAA is used,
6592          * however in practice 16x4 seems fastest.
6593          *
6594          * Note that PS/WM thread counts depend on the WIZ hashing
6595          * disable bit, which we don't touch here, but it's good
6596          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6597          */
6598         I915_WRITE(GEN7_GT_MODE,
6599                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6600
6601         /* WaSampleCChickenBitEnable:hsw */
6602         I915_WRITE(HALF_SLICE_CHICKEN3,
6603                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6604
6605         /* WaSwitchSolVfFArbitrationPriority:hsw */
6606         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6607
6608         /* WaRsPkgCStateDisplayPMReq:hsw */
6609         I915_WRITE(CHICKEN_PAR1_1,
6610                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6611
6612         lpt_init_clock_gating(dev);
6613 }
6614
6615 static void ivybridge_init_clock_gating(struct drm_device *dev)
6616 {
6617         struct drm_i915_private *dev_priv = dev->dev_private;
6618         uint32_t snpcr;
6619
6620         ilk_init_lp_watermarks(dev);
6621
6622         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6623
6624         /* WaDisableEarlyCull:ivb */
6625         I915_WRITE(_3D_CHICKEN3,
6626                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6627
6628         /* WaDisableBackToBackFlipFix:ivb */
6629         I915_WRITE(IVB_CHICKEN3,
6630                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6631                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6632
6633         /* WaDisablePSDDualDispatchEnable:ivb */
6634         if (IS_IVB_GT1(dev))
6635                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6636                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6637
6638         /* WaDisable_RenderCache_OperationalFlush:ivb */
6639         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6640
6641         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6642         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6643                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6644
6645         /* WaApplyL3ControlAndL3ChickenMode:ivb */
6646         I915_WRITE(GEN7_L3CNTLREG1,
6647                         GEN7_WA_FOR_GEN7_L3_CONTROL);
6648         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6649                    GEN7_WA_L3_CHICKEN_MODE);
6650         if (IS_IVB_GT1(dev))
6651                 I915_WRITE(GEN7_ROW_CHICKEN2,
6652                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6653         else {
6654                 /* must write both registers */
6655                 I915_WRITE(GEN7_ROW_CHICKEN2,
6656                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6657                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6658                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6659         }
6660
6661         /* WaForceL3Serialization:ivb */
6662         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6663                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6664
6665         /*
6666          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6667          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6668          */
6669         I915_WRITE(GEN6_UCGCTL2,
6670                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6671
6672         /* This is required by WaCatErrorRejectionIssue:ivb */
6673         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6674                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6675                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6676
6677         g4x_disable_trickle_feed(dev);
6678
6679         gen7_setup_fixed_func_scheduler(dev_priv);
6680
6681         if (0) { /* causes HiZ corruption on ivb:gt1 */
6682                 /* enable HiZ Raw Stall Optimization */
6683                 I915_WRITE(CACHE_MODE_0_GEN7,
6684                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6685         }
6686
6687         /* WaDisable4x2SubspanOptimization:ivb */
6688         I915_WRITE(CACHE_MODE_1,
6689                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6690
6691         /*
6692          * BSpec recommends 8x4 when MSAA is used,
6693          * however in practice 16x4 seems fastest.
6694          *
6695          * Note that PS/WM thread counts depend on the WIZ hashing
6696          * disable bit, which we don't touch here, but it's good
6697          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6698          */
6699         I915_WRITE(GEN7_GT_MODE,
6700                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6701
6702         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6703         snpcr &= ~GEN6_MBC_SNPCR_MASK;
6704         snpcr |= GEN6_MBC_SNPCR_MED;
6705         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6706
6707         if (!HAS_PCH_NOP(dev))
6708                 cpt_init_clock_gating(dev);
6709
6710         gen6_check_mch_setup(dev);
6711 }
6712
6713 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6714 {
6715         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6716
6717         /*
6718          * Disable trickle feed and enable pnd deadline calculation
6719          */
6720         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6721         I915_WRITE(CBR1_VLV, 0);
6722 }
6723
6724 static void valleyview_init_clock_gating(struct drm_device *dev)
6725 {
6726         struct drm_i915_private *dev_priv = dev->dev_private;
6727
6728         vlv_init_display_clock_gating(dev_priv);
6729
6730         /* WaDisableEarlyCull:vlv */
6731         I915_WRITE(_3D_CHICKEN3,
6732                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6733
6734         /* WaDisableBackToBackFlipFix:vlv */
6735         I915_WRITE(IVB_CHICKEN3,
6736                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6737                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6738
6739         /* WaPsdDispatchEnable:vlv */
6740         /* WaDisablePSDDualDispatchEnable:vlv */
6741         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6742                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6743                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6744
6745         /* WaDisable_RenderCache_OperationalFlush:vlv */
6746         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6747
6748         /* WaForceL3Serialization:vlv */
6749         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6750                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6751
6752         /* WaDisableDopClockGating:vlv */
6753         I915_WRITE(GEN7_ROW_CHICKEN2,
6754                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6755
6756         /* This is required by WaCatErrorRejectionIssue:vlv */
6757         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6758                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6759                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6760
6761         gen7_setup_fixed_func_scheduler(dev_priv);
6762
6763         /*
6764          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6765          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6766          */
6767         I915_WRITE(GEN6_UCGCTL2,
6768                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6769
6770         /* WaDisableL3Bank2xClockGate:vlv
6771          * Disabling L3 clock gating- MMIO 940c[25] = 1
6772          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6773         I915_WRITE(GEN7_UCGCTL4,
6774                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6775
6776         /*
6777          * BSpec says this must be set, even though
6778          * WaDisable4x2SubspanOptimization isn't listed for VLV.
6779          */
6780         I915_WRITE(CACHE_MODE_1,
6781                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6782
6783         /*
6784          * BSpec recommends 8x4 when MSAA is used,
6785          * however in practice 16x4 seems fastest.
6786          *
6787          * Note that PS/WM thread counts depend on the WIZ hashing
6788          * disable bit, which we don't touch here, but it's good
6789          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6790          */
6791         I915_WRITE(GEN7_GT_MODE,
6792                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6793
6794         /*
6795          * WaIncreaseL3CreditsForVLVB0:vlv
6796          * This is the hardware default actually.
6797          */
6798         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6799
6800         /*
6801          * WaDisableVLVClockGating_VBIIssue:vlv
6802          * Disable clock gating on th GCFG unit to prevent a delay
6803          * in the reporting of vblank events.
6804          */
6805         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6806 }
6807
6808 static void cherryview_init_clock_gating(struct drm_device *dev)
6809 {
6810         struct drm_i915_private *dev_priv = dev->dev_private;
6811
6812         vlv_init_display_clock_gating(dev_priv);
6813
6814         /* WaVSRefCountFullforceMissDisable:chv */
6815         /* WaDSRefCountFullforceMissDisable:chv */
6816         I915_WRITE(GEN7_FF_THREAD_MODE,
6817                    I915_READ(GEN7_FF_THREAD_MODE) &
6818                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6819
6820         /* WaDisableSemaphoreAndSyncFlipWait:chv */
6821         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6822                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6823
6824         /* WaDisableCSUnitClockGating:chv */
6825         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6826                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6827
6828         /* WaDisableSDEUnitClockGating:chv */
6829         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6830                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6831
6832         /*
6833          * GTT cache may not work with big pages, so if those
6834          * are ever enabled GTT cache may need to be disabled.
6835          */
6836         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6837 }
6838
6839 static void g4x_init_clock_gating(struct drm_device *dev)
6840 {
6841         struct drm_i915_private *dev_priv = dev->dev_private;
6842         uint32_t dspclk_gate;
6843
6844         I915_WRITE(RENCLK_GATE_D1, 0);
6845         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6846                    GS_UNIT_CLOCK_GATE_DISABLE |
6847                    CL_UNIT_CLOCK_GATE_DISABLE);
6848         I915_WRITE(RAMCLK_GATE_D, 0);
6849         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6850                 OVRUNIT_CLOCK_GATE_DISABLE |
6851                 OVCUNIT_CLOCK_GATE_DISABLE;
6852         if (IS_GM45(dev))
6853                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6854         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6855
6856         /* WaDisableRenderCachePipelinedFlush */
6857         I915_WRITE(CACHE_MODE_0,
6858                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6859
6860         /* WaDisable_RenderCache_OperationalFlush:g4x */
6861         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6862
6863         g4x_disable_trickle_feed(dev);
6864 }
6865
6866 static void crestline_init_clock_gating(struct drm_device *dev)
6867 {
6868         struct drm_i915_private *dev_priv = dev->dev_private;
6869
6870         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6871         I915_WRITE(RENCLK_GATE_D2, 0);
6872         I915_WRITE(DSPCLK_GATE_D, 0);
6873         I915_WRITE(RAMCLK_GATE_D, 0);
6874         I915_WRITE16(DEUC, 0);
6875         I915_WRITE(MI_ARB_STATE,
6876                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6877
6878         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6879         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6880 }
6881
6882 static void broadwater_init_clock_gating(struct drm_device *dev)
6883 {
6884         struct drm_i915_private *dev_priv = dev->dev_private;
6885
6886         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6887                    I965_RCC_CLOCK_GATE_DISABLE |
6888                    I965_RCPB_CLOCK_GATE_DISABLE |
6889                    I965_ISC_CLOCK_GATE_DISABLE |
6890                    I965_FBC_CLOCK_GATE_DISABLE);
6891         I915_WRITE(RENCLK_GATE_D2, 0);
6892         I915_WRITE(MI_ARB_STATE,
6893                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6894
6895         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6896         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6897 }
6898
6899 static void gen3_init_clock_gating(struct drm_device *dev)
6900 {
6901         struct drm_i915_private *dev_priv = dev->dev_private;
6902         u32 dstate = I915_READ(D_STATE);
6903
6904         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6905                 DSTATE_DOT_CLOCK_GATING;
6906         I915_WRITE(D_STATE, dstate);
6907
6908         if (IS_PINEVIEW(dev))
6909                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6910
6911         /* IIR "flip pending" means done if this bit is set */
6912         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6913
6914         /* interrupts should cause a wake up from C3 */
6915         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6916
6917         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6918         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6919
6920         I915_WRITE(MI_ARB_STATE,
6921                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6922 }
6923
6924 static void i85x_init_clock_gating(struct drm_device *dev)
6925 {
6926         struct drm_i915_private *dev_priv = dev->dev_private;
6927
6928         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6929
6930         /* interrupts should cause a wake up from C3 */
6931         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6932                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6933
6934         I915_WRITE(MEM_MODE,
6935                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6936 }
6937
6938 static void i830_init_clock_gating(struct drm_device *dev)
6939 {
6940         struct drm_i915_private *dev_priv = dev->dev_private;
6941
6942         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6943
6944         I915_WRITE(MEM_MODE,
6945                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6946                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6947 }
6948
6949 void intel_init_clock_gating(struct drm_device *dev)
6950 {
6951         struct drm_i915_private *dev_priv = dev->dev_private;
6952
6953         if (dev_priv->display.init_clock_gating)
6954                 dev_priv->display.init_clock_gating(dev);
6955 }
6956
6957 void intel_suspend_hw(struct drm_device *dev)
6958 {
6959         if (HAS_PCH_LPT(dev))
6960                 lpt_suspend_hw(dev);
6961 }
6962
6963 /* Set up chip specific power management-related functions */
6964 void intel_init_pm(struct drm_device *dev)
6965 {
6966         struct drm_i915_private *dev_priv = dev->dev_private;
6967
6968         intel_fbc_init(dev_priv);
6969
6970         /* For cxsr */
6971         if (IS_PINEVIEW(dev))
6972                 i915_pineview_get_mem_freq(dev);
6973         else if (IS_GEN5(dev))
6974                 i915_ironlake_get_mem_freq(dev);
6975
6976         /* For FIFO watermark updates */
6977         if (INTEL_INFO(dev)->gen >= 9) {
6978                 skl_setup_wm_latency(dev);
6979
6980                 if (IS_BROXTON(dev))
6981                         dev_priv->display.init_clock_gating =
6982                                 bxt_init_clock_gating;
6983                 dev_priv->display.update_wm = skl_update_wm;
6984         } else if (HAS_PCH_SPLIT(dev)) {
6985                 ilk_setup_wm_latency(dev);
6986
6987                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6988                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6989                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6990                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6991                         dev_priv->display.update_wm = ilk_update_wm;
6992                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
6993                 } else {
6994                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6995                                       "Disable CxSR\n");
6996                 }
6997
6998                 if (IS_GEN5(dev))
6999                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7000                 else if (IS_GEN6(dev))
7001                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7002                 else if (IS_IVYBRIDGE(dev))
7003                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7004                 else if (IS_HASWELL(dev))
7005                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7006                 else if (INTEL_INFO(dev)->gen == 8)
7007                         dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7008         } else if (IS_CHERRYVIEW(dev)) {
7009                 vlv_setup_wm_latency(dev);
7010
7011                 dev_priv->display.update_wm = vlv_update_wm;
7012                 dev_priv->display.init_clock_gating =
7013                         cherryview_init_clock_gating;
7014         } else if (IS_VALLEYVIEW(dev)) {
7015                 vlv_setup_wm_latency(dev);
7016
7017                 dev_priv->display.update_wm = vlv_update_wm;
7018                 dev_priv->display.init_clock_gating =
7019                         valleyview_init_clock_gating;
7020         } else if (IS_PINEVIEW(dev)) {
7021                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7022                                             dev_priv->is_ddr3,
7023                                             dev_priv->fsb_freq,
7024                                             dev_priv->mem_freq)) {
7025                         DRM_INFO("failed to find known CxSR latency "
7026                                  "(found ddr%s fsb freq %d, mem freq %d), "
7027                                  "disabling CxSR\n",
7028                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7029                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7030                         /* Disable CxSR and never update its watermark again */
7031                         intel_set_memory_cxsr(dev_priv, false);
7032                         dev_priv->display.update_wm = NULL;
7033                 } else
7034                         dev_priv->display.update_wm = pineview_update_wm;
7035                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7036         } else if (IS_G4X(dev)) {
7037                 dev_priv->display.update_wm = g4x_update_wm;
7038                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7039         } else if (IS_GEN4(dev)) {
7040                 dev_priv->display.update_wm = i965_update_wm;
7041                 if (IS_CRESTLINE(dev))
7042                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7043                 else if (IS_BROADWATER(dev))
7044                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7045         } else if (IS_GEN3(dev)) {
7046                 dev_priv->display.update_wm = i9xx_update_wm;
7047                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7048                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7049         } else if (IS_GEN2(dev)) {
7050                 if (INTEL_INFO(dev)->num_pipes == 1) {
7051                         dev_priv->display.update_wm = i845_update_wm;
7052                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7053                 } else {
7054                         dev_priv->display.update_wm = i9xx_update_wm;
7055                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7056                 }
7057
7058                 if (IS_I85X(dev) || IS_I865G(dev))
7059                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7060                 else
7061                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
7062         } else {
7063                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7064         }
7065 }
7066
7067 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7068 {
7069         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7070
7071         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7072                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7073                 return -EAGAIN;
7074         }
7075
7076         I915_WRITE(GEN6_PCODE_DATA, *val);
7077         I915_WRITE(GEN6_PCODE_DATA1, 0);
7078         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7079
7080         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7081                      500)) {
7082                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7083                 return -ETIMEDOUT;
7084         }
7085
7086         *val = I915_READ(GEN6_PCODE_DATA);
7087         I915_WRITE(GEN6_PCODE_DATA, 0);
7088
7089         return 0;
7090 }
7091
7092 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7093 {
7094         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7095
7096         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7097                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7098                 return -EAGAIN;
7099         }
7100
7101         I915_WRITE(GEN6_PCODE_DATA, val);
7102         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7103
7104         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7105                      500)) {
7106                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7107                 return -ETIMEDOUT;
7108         }
7109
7110         I915_WRITE(GEN6_PCODE_DATA, 0);
7111
7112         return 0;
7113 }
7114
7115 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7116 {
7117         switch (czclk_freq) {
7118         case 200:
7119                 return 10;
7120         case 267:
7121                 return 12;
7122         case 320:
7123         case 333:
7124                 return 16;
7125         case 400:
7126                 return 20;
7127         default:
7128                 return -1;
7129         }
7130 }
7131
7132 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7133 {
7134         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7135
7136         div = vlv_gpu_freq_div(czclk_freq);
7137         if (div < 0)
7138                 return div;
7139
7140         return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7141 }
7142
7143 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7144 {
7145         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7146
7147         mul = vlv_gpu_freq_div(czclk_freq);
7148         if (mul < 0)
7149                 return mul;
7150
7151         return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7152 }
7153
7154 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7155 {
7156         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7157
7158         div = vlv_gpu_freq_div(czclk_freq) / 2;
7159         if (div < 0)
7160                 return div;
7161
7162         return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7163 }
7164
7165 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7166 {
7167         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7168
7169         mul = vlv_gpu_freq_div(czclk_freq) / 2;
7170         if (mul < 0)
7171                 return mul;
7172
7173         /* CHV needs even values */
7174         return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7175 }
7176
7177 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7178 {
7179         if (IS_GEN9(dev_priv->dev))
7180                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7181                                          GEN9_FREQ_SCALER);
7182         else if (IS_CHERRYVIEW(dev_priv->dev))
7183                 return chv_gpu_freq(dev_priv, val);
7184         else if (IS_VALLEYVIEW(dev_priv->dev))
7185                 return byt_gpu_freq(dev_priv, val);
7186         else
7187                 return val * GT_FREQUENCY_MULTIPLIER;
7188 }
7189
7190 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7191 {
7192         if (IS_GEN9(dev_priv->dev))
7193                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7194                                          GT_FREQUENCY_MULTIPLIER);
7195         else if (IS_CHERRYVIEW(dev_priv->dev))
7196                 return chv_freq_opcode(dev_priv, val);
7197         else if (IS_VALLEYVIEW(dev_priv->dev))
7198                 return byt_freq_opcode(dev_priv, val);
7199         else
7200                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7201 }
7202
7203 struct request_boost {
7204         struct work_struct work;
7205         struct drm_i915_gem_request *req;
7206 };
7207
7208 static void __intel_rps_boost_work(struct work_struct *work)
7209 {
7210         struct request_boost *boost = container_of(work, struct request_boost, work);
7211         struct drm_i915_gem_request *req = boost->req;
7212
7213         if (!i915_gem_request_completed(req, true))
7214                 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7215                                req->emitted_jiffies);
7216
7217         i915_gem_request_unreference__unlocked(req);
7218         kfree(boost);
7219 }
7220
7221 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7222                                        struct drm_i915_gem_request *req)
7223 {
7224         struct request_boost *boost;
7225
7226         if (req == NULL || INTEL_INFO(dev)->gen < 6)
7227                 return;
7228
7229         if (i915_gem_request_completed(req, true))
7230                 return;
7231
7232         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7233         if (boost == NULL)
7234                 return;
7235
7236         i915_gem_request_reference(req);
7237         boost->req = req;
7238
7239         INIT_WORK(&boost->work, __intel_rps_boost_work);
7240         queue_work(to_i915(dev)->wq, &boost->work);
7241 }
7242
7243 void intel_pm_setup(struct drm_device *dev)
7244 {
7245         struct drm_i915_private *dev_priv = dev->dev_private;
7246
7247         mutex_init(&dev_priv->rps.hw_lock);
7248         spin_lock_init(&dev_priv->rps.client_lock);
7249
7250         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7251                           intel_gen6_powersave_work);
7252         INIT_LIST_HEAD(&dev_priv->rps.clients);
7253         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7254         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7255
7256         dev_priv->pm.suspended = false;
7257         atomic_set(&dev_priv->pm.wakeref_count, 0);
7258         atomic_set(&dev_priv->pm.atomic_seq, 0);
7259 }