Merge branch 'next-lockdown' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33
34 #include <asm/set_memory.h>
35 #include <asm/smp.h>
36
37 #include <drm/i915_drm.h>
38
39 #include "display/intel_frontbuffer.h"
40 #include "gt/intel_gt.h"
41
42 #include "i915_drv.h"
43 #include "i915_scatterlist.h"
44 #include "i915_trace.h"
45 #include "i915_vgpu.h"
46
47 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
48
49 #if IS_ENABLED(CONFIG_DRM_I915_TRACE_GTT)
50 #define DBG(...) trace_printk(__VA_ARGS__)
51 #else
52 #define DBG(...)
53 #endif
54
55 /**
56  * DOC: Global GTT views
57  *
58  * Background and previous state
59  *
60  * Historically objects could exists (be bound) in global GTT space only as
61  * singular instances with a view representing all of the object's backing pages
62  * in a linear fashion. This view will be called a normal view.
63  *
64  * To support multiple views of the same object, where the number of mapped
65  * pages is not equal to the backing store, or where the layout of the pages
66  * is not linear, concept of a GGTT view was added.
67  *
68  * One example of an alternative view is a stereo display driven by a single
69  * image. In this case we would have a framebuffer looking like this
70  * (2x2 pages):
71  *
72  *    12
73  *    34
74  *
75  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
76  * rendering. In contrast, fed to the display engine would be an alternative
77  * view which could look something like this:
78  *
79  *   1212
80  *   3434
81  *
82  * In this example both the size and layout of pages in the alternative view is
83  * different from the normal view.
84  *
85  * Implementation and usage
86  *
87  * GGTT views are implemented using VMAs and are distinguished via enum
88  * i915_ggtt_view_type and struct i915_ggtt_view.
89  *
90  * A new flavour of core GEM functions which work with GGTT bound objects were
91  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
92  * renaming  in large amounts of code. They take the struct i915_ggtt_view
93  * parameter encapsulating all metadata required to implement a view.
94  *
95  * As a helper for callers which are only interested in the normal view,
96  * globally const i915_ggtt_view_normal singleton instance exists. All old core
97  * GEM API functions, the ones not taking the view parameter, are operating on,
98  * or with the normal GGTT view.
99  *
100  * Code wanting to add or use a new GGTT view needs to:
101  *
102  * 1. Add a new enum with a suitable name.
103  * 2. Extend the metadata in the i915_ggtt_view structure if required.
104  * 3. Add support to i915_get_vma_pages().
105  *
106  * New views are required to build a scatter-gather table from within the
107  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
108  * exists for the lifetime of an VMA.
109  *
110  * Core API is designed to have copy semantics which means that passed in
111  * struct i915_ggtt_view does not need to be persistent (left around after
112  * calling the core API functions).
113  *
114  */
115
116 #define as_pd(x) container_of((x), typeof(struct i915_page_directory), pt)
117
118 static int
119 i915_get_ggtt_vma_pages(struct i915_vma *vma);
120
121 static void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
122 {
123         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
124
125         /*
126          * Note that as an uncached mmio write, this will flush the
127          * WCB of the writes into the GGTT before it triggers the invalidate.
128          */
129         intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
130 }
131
132 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
133 {
134         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
135
136         gen6_ggtt_invalidate(ggtt);
137         intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
138 }
139
140 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
141 {
142         intel_gtt_chipset_flush();
143 }
144
145 static int ppgtt_bind_vma(struct i915_vma *vma,
146                           enum i915_cache_level cache_level,
147                           u32 unused)
148 {
149         u32 pte_flags;
150         int err;
151
152         if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
153                 err = vma->vm->allocate_va_range(vma->vm,
154                                                  vma->node.start, vma->size);
155                 if (err)
156                         return err;
157         }
158
159         /* Applicable to VLV, and gen8+ */
160         pte_flags = 0;
161         if (i915_gem_object_is_readonly(vma->obj))
162                 pte_flags |= PTE_READ_ONLY;
163
164         vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
165
166         return 0;
167 }
168
169 static void ppgtt_unbind_vma(struct i915_vma *vma)
170 {
171         vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
172 }
173
174 static int ppgtt_set_pages(struct i915_vma *vma)
175 {
176         GEM_BUG_ON(vma->pages);
177
178         vma->pages = vma->obj->mm.pages;
179
180         vma->page_sizes = vma->obj->mm.page_sizes;
181
182         return 0;
183 }
184
185 static void clear_pages(struct i915_vma *vma)
186 {
187         GEM_BUG_ON(!vma->pages);
188
189         if (vma->pages != vma->obj->mm.pages) {
190                 sg_free_table(vma->pages);
191                 kfree(vma->pages);
192         }
193         vma->pages = NULL;
194
195         memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
196 }
197
198 static u64 gen8_pte_encode(dma_addr_t addr,
199                            enum i915_cache_level level,
200                            u32 flags)
201 {
202         gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
203
204         if (unlikely(flags & PTE_READ_ONLY))
205                 pte &= ~_PAGE_RW;
206
207         switch (level) {
208         case I915_CACHE_NONE:
209                 pte |= PPAT_UNCACHED;
210                 break;
211         case I915_CACHE_WT:
212                 pte |= PPAT_DISPLAY_ELLC;
213                 break;
214         default:
215                 pte |= PPAT_CACHED;
216                 break;
217         }
218
219         return pte;
220 }
221
222 static u64 gen8_pde_encode(const dma_addr_t addr,
223                            const enum i915_cache_level level)
224 {
225         u64 pde = _PAGE_PRESENT | _PAGE_RW;
226         pde |= addr;
227         if (level != I915_CACHE_NONE)
228                 pde |= PPAT_CACHED_PDE;
229         else
230                 pde |= PPAT_UNCACHED;
231         return pde;
232 }
233
234 static u64 snb_pte_encode(dma_addr_t addr,
235                           enum i915_cache_level level,
236                           u32 flags)
237 {
238         gen6_pte_t pte = GEN6_PTE_VALID;
239         pte |= GEN6_PTE_ADDR_ENCODE(addr);
240
241         switch (level) {
242         case I915_CACHE_L3_LLC:
243         case I915_CACHE_LLC:
244                 pte |= GEN6_PTE_CACHE_LLC;
245                 break;
246         case I915_CACHE_NONE:
247                 pte |= GEN6_PTE_UNCACHED;
248                 break;
249         default:
250                 MISSING_CASE(level);
251         }
252
253         return pte;
254 }
255
256 static u64 ivb_pte_encode(dma_addr_t addr,
257                           enum i915_cache_level level,
258                           u32 flags)
259 {
260         gen6_pte_t pte = GEN6_PTE_VALID;
261         pte |= GEN6_PTE_ADDR_ENCODE(addr);
262
263         switch (level) {
264         case I915_CACHE_L3_LLC:
265                 pte |= GEN7_PTE_CACHE_L3_LLC;
266                 break;
267         case I915_CACHE_LLC:
268                 pte |= GEN6_PTE_CACHE_LLC;
269                 break;
270         case I915_CACHE_NONE:
271                 pte |= GEN6_PTE_UNCACHED;
272                 break;
273         default:
274                 MISSING_CASE(level);
275         }
276
277         return pte;
278 }
279
280 static u64 byt_pte_encode(dma_addr_t addr,
281                           enum i915_cache_level level,
282                           u32 flags)
283 {
284         gen6_pte_t pte = GEN6_PTE_VALID;
285         pte |= GEN6_PTE_ADDR_ENCODE(addr);
286
287         if (!(flags & PTE_READ_ONLY))
288                 pte |= BYT_PTE_WRITEABLE;
289
290         if (level != I915_CACHE_NONE)
291                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
292
293         return pte;
294 }
295
296 static u64 hsw_pte_encode(dma_addr_t addr,
297                           enum i915_cache_level level,
298                           u32 flags)
299 {
300         gen6_pte_t pte = GEN6_PTE_VALID;
301         pte |= HSW_PTE_ADDR_ENCODE(addr);
302
303         if (level != I915_CACHE_NONE)
304                 pte |= HSW_WB_LLC_AGE3;
305
306         return pte;
307 }
308
309 static u64 iris_pte_encode(dma_addr_t addr,
310                            enum i915_cache_level level,
311                            u32 flags)
312 {
313         gen6_pte_t pte = GEN6_PTE_VALID;
314         pte |= HSW_PTE_ADDR_ENCODE(addr);
315
316         switch (level) {
317         case I915_CACHE_NONE:
318                 break;
319         case I915_CACHE_WT:
320                 pte |= HSW_WT_ELLC_LLC_AGE3;
321                 break;
322         default:
323                 pte |= HSW_WB_ELLC_LLC_AGE3;
324                 break;
325         }
326
327         return pte;
328 }
329
330 static void stash_init(struct pagestash *stash)
331 {
332         pagevec_init(&stash->pvec);
333         spin_lock_init(&stash->lock);
334 }
335
336 static struct page *stash_pop_page(struct pagestash *stash)
337 {
338         struct page *page = NULL;
339
340         spin_lock(&stash->lock);
341         if (likely(stash->pvec.nr))
342                 page = stash->pvec.pages[--stash->pvec.nr];
343         spin_unlock(&stash->lock);
344
345         return page;
346 }
347
348 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
349 {
350         unsigned int nr;
351
352         spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
353
354         nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
355         memcpy(stash->pvec.pages + stash->pvec.nr,
356                pvec->pages + pvec->nr - nr,
357                sizeof(pvec->pages[0]) * nr);
358         stash->pvec.nr += nr;
359
360         spin_unlock(&stash->lock);
361
362         pvec->nr -= nr;
363 }
364
365 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
366 {
367         struct pagevec stack;
368         struct page *page;
369
370         if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
371                 i915_gem_shrink_all(vm->i915);
372
373         page = stash_pop_page(&vm->free_pages);
374         if (page)
375                 return page;
376
377         if (!vm->pt_kmap_wc)
378                 return alloc_page(gfp);
379
380         /* Look in our global stash of WC pages... */
381         page = stash_pop_page(&vm->i915->mm.wc_stash);
382         if (page)
383                 return page;
384
385         /*
386          * Otherwise batch allocate pages to amortize cost of set_pages_wc.
387          *
388          * We have to be careful as page allocation may trigger the shrinker
389          * (via direct reclaim) which will fill up the WC stash underneath us.
390          * So we add our WB pages into a temporary pvec on the stack and merge
391          * them into the WC stash after all the allocations are complete.
392          */
393         pagevec_init(&stack);
394         do {
395                 struct page *page;
396
397                 page = alloc_page(gfp);
398                 if (unlikely(!page))
399                         break;
400
401                 stack.pages[stack.nr++] = page;
402         } while (pagevec_space(&stack));
403
404         if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
405                 page = stack.pages[--stack.nr];
406
407                 /* Merge spare WC pages to the global stash */
408                 if (stack.nr)
409                         stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
410
411                 /* Push any surplus WC pages onto the local VM stash */
412                 if (stack.nr)
413                         stash_push_pagevec(&vm->free_pages, &stack);
414         }
415
416         /* Return unwanted leftovers */
417         if (unlikely(stack.nr)) {
418                 WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
419                 __pagevec_release(&stack);
420         }
421
422         return page;
423 }
424
425 static void vm_free_pages_release(struct i915_address_space *vm,
426                                   bool immediate)
427 {
428         struct pagevec *pvec = &vm->free_pages.pvec;
429         struct pagevec stack;
430
431         lockdep_assert_held(&vm->free_pages.lock);
432         GEM_BUG_ON(!pagevec_count(pvec));
433
434         if (vm->pt_kmap_wc) {
435                 /*
436                  * When we use WC, first fill up the global stash and then
437                  * only if full immediately free the overflow.
438                  */
439                 stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
440
441                 /*
442                  * As we have made some room in the VM's free_pages,
443                  * we can wait for it to fill again. Unless we are
444                  * inside i915_address_space_fini() and must
445                  * immediately release the pages!
446                  */
447                 if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
448                         return;
449
450                 /*
451                  * We have to drop the lock to allow ourselves to sleep,
452                  * so take a copy of the pvec and clear the stash for
453                  * others to use it as we sleep.
454                  */
455                 stack = *pvec;
456                 pagevec_reinit(pvec);
457                 spin_unlock(&vm->free_pages.lock);
458
459                 pvec = &stack;
460                 set_pages_array_wb(pvec->pages, pvec->nr);
461
462                 spin_lock(&vm->free_pages.lock);
463         }
464
465         __pagevec_release(pvec);
466 }
467
468 static void vm_free_page(struct i915_address_space *vm, struct page *page)
469 {
470         /*
471          * On !llc, we need to change the pages back to WB. We only do so
472          * in bulk, so we rarely need to change the page attributes here,
473          * but doing so requires a stop_machine() from deep inside arch/x86/mm.
474          * To make detection of the possible sleep more likely, use an
475          * unconditional might_sleep() for everybody.
476          */
477         might_sleep();
478         spin_lock(&vm->free_pages.lock);
479         while (!pagevec_space(&vm->free_pages.pvec))
480                 vm_free_pages_release(vm, false);
481         GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
482         pagevec_add(&vm->free_pages.pvec, page);
483         spin_unlock(&vm->free_pages.lock);
484 }
485
486 static void i915_address_space_fini(struct i915_address_space *vm)
487 {
488         spin_lock(&vm->free_pages.lock);
489         if (pagevec_count(&vm->free_pages.pvec))
490                 vm_free_pages_release(vm, true);
491         GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
492         spin_unlock(&vm->free_pages.lock);
493
494         drm_mm_takedown(&vm->mm);
495
496         mutex_destroy(&vm->mutex);
497 }
498
499 static void ppgtt_destroy_vma(struct i915_address_space *vm)
500 {
501         struct list_head *phases[] = {
502                 &vm->bound_list,
503                 &vm->unbound_list,
504                 NULL,
505         }, **phase;
506
507         mutex_lock(&vm->i915->drm.struct_mutex);
508         for (phase = phases; *phase; phase++) {
509                 struct i915_vma *vma, *vn;
510
511                 list_for_each_entry_safe(vma, vn, *phase, vm_link)
512                         i915_vma_destroy(vma);
513         }
514         mutex_unlock(&vm->i915->drm.struct_mutex);
515 }
516
517 static void __i915_vm_release(struct work_struct *work)
518 {
519         struct i915_address_space *vm =
520                 container_of(work, struct i915_address_space, rcu.work);
521
522         ppgtt_destroy_vma(vm);
523
524         GEM_BUG_ON(!list_empty(&vm->bound_list));
525         GEM_BUG_ON(!list_empty(&vm->unbound_list));
526
527         vm->cleanup(vm);
528         i915_address_space_fini(vm);
529
530         kfree(vm);
531 }
532
533 void i915_vm_release(struct kref *kref)
534 {
535         struct i915_address_space *vm =
536                 container_of(kref, struct i915_address_space, ref);
537
538         GEM_BUG_ON(i915_is_ggtt(vm));
539         trace_i915_ppgtt_release(vm);
540
541         vm->closed = true;
542         queue_rcu_work(vm->i915->wq, &vm->rcu);
543 }
544
545 static void i915_address_space_init(struct i915_address_space *vm, int subclass)
546 {
547         kref_init(&vm->ref);
548         INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
549
550         /*
551          * The vm->mutex must be reclaim safe (for use in the shrinker).
552          * Do a dummy acquire now under fs_reclaim so that any allocation
553          * attempt holding the lock is immediately reported by lockdep.
554          */
555         mutex_init(&vm->mutex);
556         lockdep_set_subclass(&vm->mutex, subclass);
557         i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
558
559         GEM_BUG_ON(!vm->total);
560         drm_mm_init(&vm->mm, 0, vm->total);
561         vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
562
563         stash_init(&vm->free_pages);
564
565         INIT_LIST_HEAD(&vm->unbound_list);
566         INIT_LIST_HEAD(&vm->bound_list);
567 }
568
569 static int __setup_page_dma(struct i915_address_space *vm,
570                             struct i915_page_dma *p,
571                             gfp_t gfp)
572 {
573         p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
574         if (unlikely(!p->page))
575                 return -ENOMEM;
576
577         p->daddr = dma_map_page_attrs(vm->dma,
578                                       p->page, 0, PAGE_SIZE,
579                                       PCI_DMA_BIDIRECTIONAL,
580                                       DMA_ATTR_SKIP_CPU_SYNC |
581                                       DMA_ATTR_NO_WARN);
582         if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
583                 vm_free_page(vm, p->page);
584                 return -ENOMEM;
585         }
586
587         return 0;
588 }
589
590 static int setup_page_dma(struct i915_address_space *vm,
591                           struct i915_page_dma *p)
592 {
593         return __setup_page_dma(vm, p, __GFP_HIGHMEM);
594 }
595
596 static void cleanup_page_dma(struct i915_address_space *vm,
597                              struct i915_page_dma *p)
598 {
599         dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
600         vm_free_page(vm, p->page);
601 }
602
603 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
604
605 static void
606 fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
607 {
608         kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
609 }
610
611 #define fill_px(px, v) fill_page_dma(px_base(px), (v), PAGE_SIZE / sizeof(u64))
612 #define fill32_px(px, v) do {                                           \
613         u64 v__ = lower_32_bits(v);                                     \
614         fill_px((px), v__ << 32 | v__);                                 \
615 } while (0)
616
617 static int
618 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
619 {
620         unsigned long size;
621
622         /*
623          * In order to utilize 64K pages for an object with a size < 2M, we will
624          * need to support a 64K scratch page, given that every 16th entry for a
625          * page-table operating in 64K mode must point to a properly aligned 64K
626          * region, including any PTEs which happen to point to scratch.
627          *
628          * This is only relevant for the 48b PPGTT where we support
629          * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
630          * scratch (read-only) between all vm, we create one 64k scratch page
631          * for all.
632          */
633         size = I915_GTT_PAGE_SIZE_4K;
634         if (i915_vm_is_4lvl(vm) &&
635             HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
636                 size = I915_GTT_PAGE_SIZE_64K;
637                 gfp |= __GFP_NOWARN;
638         }
639         gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
640
641         do {
642                 unsigned int order = get_order(size);
643                 struct page *page;
644                 dma_addr_t addr;
645
646                 page = alloc_pages(gfp, order);
647                 if (unlikely(!page))
648                         goto skip;
649
650                 addr = dma_map_page_attrs(vm->dma,
651                                           page, 0, size,
652                                           PCI_DMA_BIDIRECTIONAL,
653                                           DMA_ATTR_SKIP_CPU_SYNC |
654                                           DMA_ATTR_NO_WARN);
655                 if (unlikely(dma_mapping_error(vm->dma, addr)))
656                         goto free_page;
657
658                 if (unlikely(!IS_ALIGNED(addr, size)))
659                         goto unmap_page;
660
661                 vm->scratch[0].base.page = page;
662                 vm->scratch[0].base.daddr = addr;
663                 vm->scratch_order = order;
664                 return 0;
665
666 unmap_page:
667                 dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
668 free_page:
669                 __free_pages(page, order);
670 skip:
671                 if (size == I915_GTT_PAGE_SIZE_4K)
672                         return -ENOMEM;
673
674                 size = I915_GTT_PAGE_SIZE_4K;
675                 gfp &= ~__GFP_NOWARN;
676         } while (1);
677 }
678
679 static void cleanup_scratch_page(struct i915_address_space *vm)
680 {
681         struct i915_page_dma *p = px_base(&vm->scratch[0]);
682         unsigned int order = vm->scratch_order;
683
684         dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
685                        PCI_DMA_BIDIRECTIONAL);
686         __free_pages(p->page, order);
687 }
688
689 static void free_scratch(struct i915_address_space *vm)
690 {
691         int i;
692
693         if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
694                 return;
695
696         for (i = 1; i <= vm->top; i++) {
697                 if (!px_dma(&vm->scratch[i]))
698                         break;
699                 cleanup_page_dma(vm, px_base(&vm->scratch[i]));
700         }
701
702         cleanup_scratch_page(vm);
703 }
704
705 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
706 {
707         struct i915_page_table *pt;
708
709         pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
710         if (unlikely(!pt))
711                 return ERR_PTR(-ENOMEM);
712
713         if (unlikely(setup_page_dma(vm, &pt->base))) {
714                 kfree(pt);
715                 return ERR_PTR(-ENOMEM);
716         }
717
718         atomic_set(&pt->used, 0);
719         return pt;
720 }
721
722 static struct i915_page_directory *__alloc_pd(size_t sz)
723 {
724         struct i915_page_directory *pd;
725
726         pd = kzalloc(sz, I915_GFP_ALLOW_FAIL);
727         if (unlikely(!pd))
728                 return NULL;
729
730         spin_lock_init(&pd->lock);
731         return pd;
732 }
733
734 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
735 {
736         struct i915_page_directory *pd;
737
738         pd = __alloc_pd(sizeof(*pd));
739         if (unlikely(!pd))
740                 return ERR_PTR(-ENOMEM);
741
742         if (unlikely(setup_page_dma(vm, px_base(pd)))) {
743                 kfree(pd);
744                 return ERR_PTR(-ENOMEM);
745         }
746
747         return pd;
748 }
749
750 static void free_pd(struct i915_address_space *vm, struct i915_page_dma *pd)
751 {
752         cleanup_page_dma(vm, pd);
753         kfree(pd);
754 }
755
756 #define free_px(vm, px) free_pd(vm, px_base(px))
757
758 static inline void
759 write_dma_entry(struct i915_page_dma * const pdma,
760                 const unsigned short idx,
761                 const u64 encoded_entry)
762 {
763         u64 * const vaddr = kmap_atomic(pdma->page);
764
765         vaddr[idx] = encoded_entry;
766         kunmap_atomic(vaddr);
767 }
768
769 static inline void
770 __set_pd_entry(struct i915_page_directory * const pd,
771                const unsigned short idx,
772                struct i915_page_dma * const to,
773                u64 (*encode)(const dma_addr_t, const enum i915_cache_level))
774 {
775         /* Each thread pre-pins the pd, and we may have a thread per pde. */
776         GEM_BUG_ON(atomic_read(px_used(pd)) > 2 * ARRAY_SIZE(pd->entry));
777
778         atomic_inc(px_used(pd));
779         pd->entry[idx] = to;
780         write_dma_entry(px_base(pd), idx, encode(to->daddr, I915_CACHE_LLC));
781 }
782
783 #define set_pd_entry(pd, idx, to) \
784         __set_pd_entry((pd), (idx), px_base(to), gen8_pde_encode)
785
786 static inline void
787 clear_pd_entry(struct i915_page_directory * const pd,
788                const unsigned short idx,
789                const struct i915_page_scratch * const scratch)
790 {
791         GEM_BUG_ON(atomic_read(px_used(pd)) == 0);
792
793         write_dma_entry(px_base(pd), idx, scratch->encode);
794         pd->entry[idx] = NULL;
795         atomic_dec(px_used(pd));
796 }
797
798 static bool
799 release_pd_entry(struct i915_page_directory * const pd,
800                  const unsigned short idx,
801                  struct i915_page_table * const pt,
802                  const struct i915_page_scratch * const scratch)
803 {
804         bool free = false;
805
806         if (atomic_add_unless(&pt->used, -1, 1))
807                 return false;
808
809         spin_lock(&pd->lock);
810         if (atomic_dec_and_test(&pt->used)) {
811                 clear_pd_entry(pd, idx, scratch);
812                 free = true;
813         }
814         spin_unlock(&pd->lock);
815
816         return free;
817 }
818
819 /*
820  * PDE TLBs are a pain to invalidate on GEN8+. When we modify
821  * the page table structures, we mark them dirty so that
822  * context switching/execlist queuing code takes extra steps
823  * to ensure that tlbs are flushed.
824  */
825 static void mark_tlbs_dirty(struct i915_ppgtt *ppgtt)
826 {
827         ppgtt->pd_dirty_engines = ALL_ENGINES;
828 }
829
830 static void gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create)
831 {
832         struct drm_i915_private *dev_priv = ppgtt->vm.i915;
833         enum vgt_g2v_type msg;
834         int i;
835
836         if (create)
837                 atomic_inc(px_used(ppgtt->pd)); /* never remove */
838         else
839                 atomic_dec(px_used(ppgtt->pd));
840
841         mutex_lock(&dev_priv->vgpu.lock);
842
843         if (i915_vm_is_4lvl(&ppgtt->vm)) {
844                 const u64 daddr = px_dma(ppgtt->pd);
845
846                 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
847                 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
848
849                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
850                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
851         } else {
852                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
853                         const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
854
855                         I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
856                         I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
857                 }
858
859                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
860                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
861         }
862
863         /* g2v_notify atomically (via hv trap) consumes the message packet. */
864         I915_WRITE(vgtif_reg(g2v_notify), msg);
865
866         mutex_unlock(&dev_priv->vgpu.lock);
867 }
868
869 /* Index shifts into the pagetable are offset by GEN8_PTE_SHIFT [12] */
870 #define GEN8_PAGE_SIZE (SZ_4K) /* page and page-directory sizes are the same */
871 #define GEN8_PTE_SHIFT (ilog2(GEN8_PAGE_SIZE))
872 #define GEN8_PDES (GEN8_PAGE_SIZE / sizeof(u64))
873 #define gen8_pd_shift(lvl) ((lvl) * ilog2(GEN8_PDES))
874 #define gen8_pd_index(i, lvl) i915_pde_index((i), gen8_pd_shift(lvl))
875 #define __gen8_pte_shift(lvl) (GEN8_PTE_SHIFT + gen8_pd_shift(lvl))
876 #define __gen8_pte_index(a, lvl) i915_pde_index((a), __gen8_pte_shift(lvl))
877
878 static inline unsigned int
879 gen8_pd_range(u64 start, u64 end, int lvl, unsigned int *idx)
880 {
881         const int shift = gen8_pd_shift(lvl);
882         const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
883
884         GEM_BUG_ON(start >= end);
885         end += ~mask >> gen8_pd_shift(1);
886
887         *idx = i915_pde_index(start, shift);
888         if ((start ^ end) & mask)
889                 return GEN8_PDES - *idx;
890         else
891                 return i915_pde_index(end, shift) - *idx;
892 }
893
894 static inline bool gen8_pd_contains(u64 start, u64 end, int lvl)
895 {
896         const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
897
898         GEM_BUG_ON(start >= end);
899         return (start ^ end) & mask && (start & ~mask) == 0;
900 }
901
902 static inline unsigned int gen8_pt_count(u64 start, u64 end)
903 {
904         GEM_BUG_ON(start >= end);
905         if ((start ^ end) >> gen8_pd_shift(1))
906                 return GEN8_PDES - (start & (GEN8_PDES - 1));
907         else
908                 return end - start;
909 }
910
911 static inline unsigned int gen8_pd_top_count(const struct i915_address_space *vm)
912 {
913         unsigned int shift = __gen8_pte_shift(vm->top);
914         return (vm->total + (1ull << shift) - 1) >> shift;
915 }
916
917 static inline struct i915_page_directory *
918 gen8_pdp_for_page_index(struct i915_address_space * const vm, const u64 idx)
919 {
920         struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
921
922         if (vm->top == 2)
923                 return ppgtt->pd;
924         else
925                 return i915_pd_entry(ppgtt->pd, gen8_pd_index(idx, vm->top));
926 }
927
928 static inline struct i915_page_directory *
929 gen8_pdp_for_page_address(struct i915_address_space * const vm, const u64 addr)
930 {
931         return gen8_pdp_for_page_index(vm, addr >> GEN8_PTE_SHIFT);
932 }
933
934 static void __gen8_ppgtt_cleanup(struct i915_address_space *vm,
935                                  struct i915_page_directory *pd,
936                                  int count, int lvl)
937 {
938         if (lvl) {
939                 void **pde = pd->entry;
940
941                 do {
942                         if (!*pde)
943                                 continue;
944
945                         __gen8_ppgtt_cleanup(vm, *pde, GEN8_PDES, lvl - 1);
946                 } while (pde++, --count);
947         }
948
949         free_px(vm, pd);
950 }
951
952 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
953 {
954         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
955
956         if (intel_vgpu_active(vm->i915))
957                 gen8_ppgtt_notify_vgt(ppgtt, false);
958
959         __gen8_ppgtt_cleanup(vm, ppgtt->pd, gen8_pd_top_count(vm), vm->top);
960         free_scratch(vm);
961 }
962
963 static u64 __gen8_ppgtt_clear(struct i915_address_space * const vm,
964                               struct i915_page_directory * const pd,
965                               u64 start, const u64 end, int lvl)
966 {
967         const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
968         unsigned int idx, len;
969
970         GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);
971
972         len = gen8_pd_range(start, end, lvl--, &idx);
973         DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
974             __func__, vm, lvl + 1, start, end,
975             idx, len, atomic_read(px_used(pd)));
976         GEM_BUG_ON(!len || len >= atomic_read(px_used(pd)));
977
978         do {
979                 struct i915_page_table *pt = pd->entry[idx];
980
981                 if (atomic_fetch_inc(&pt->used) >> gen8_pd_shift(1) &&
982                     gen8_pd_contains(start, end, lvl)) {
983                         DBG("%s(%p):{ lvl:%d, idx:%d, start:%llx, end:%llx } removing pd\n",
984                             __func__, vm, lvl + 1, idx, start, end);
985                         clear_pd_entry(pd, idx, scratch);
986                         __gen8_ppgtt_cleanup(vm, as_pd(pt), I915_PDES, lvl);
987                         start += (u64)I915_PDES << gen8_pd_shift(lvl);
988                         continue;
989                 }
990
991                 if (lvl) {
992                         start = __gen8_ppgtt_clear(vm, as_pd(pt),
993                                                    start, end, lvl);
994                 } else {
995                         unsigned int count;
996                         u64 *vaddr;
997
998                         count = gen8_pt_count(start, end);
999                         DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } removing pte\n",
1000                             __func__, vm, lvl, start, end,
1001                             gen8_pd_index(start, 0), count,
1002                             atomic_read(&pt->used));
1003                         GEM_BUG_ON(!count || count >= atomic_read(&pt->used));
1004
1005                         vaddr = kmap_atomic_px(pt);
1006                         memset64(vaddr + gen8_pd_index(start, 0),
1007                                  vm->scratch[0].encode,
1008                                  count);
1009                         kunmap_atomic(vaddr);
1010
1011                         atomic_sub(count, &pt->used);
1012                         start += count;
1013                 }
1014
1015                 if (release_pd_entry(pd, idx, pt, scratch))
1016                         free_px(vm, pt);
1017         } while (idx++, --len);
1018
1019         return start;
1020 }
1021
1022 static void gen8_ppgtt_clear(struct i915_address_space *vm,
1023                              u64 start, u64 length)
1024 {
1025         GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
1026         GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1027         GEM_BUG_ON(range_overflows(start, length, vm->total));
1028
1029         start >>= GEN8_PTE_SHIFT;
1030         length >>= GEN8_PTE_SHIFT;
1031         GEM_BUG_ON(length == 0);
1032
1033         __gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
1034                            start, start + length, vm->top);
1035 }
1036
1037 static int __gen8_ppgtt_alloc(struct i915_address_space * const vm,
1038                               struct i915_page_directory * const pd,
1039                               u64 * const start, const u64 end, int lvl)
1040 {
1041         const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
1042         struct i915_page_table *alloc = NULL;
1043         unsigned int idx, len;
1044         int ret = 0;
1045
1046         GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);
1047
1048         len = gen8_pd_range(*start, end, lvl--, &idx);
1049         DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
1050             __func__, vm, lvl + 1, *start, end,
1051             idx, len, atomic_read(px_used(pd)));
1052         GEM_BUG_ON(!len || (idx + len - 1) >> gen8_pd_shift(1));
1053
1054         spin_lock(&pd->lock);
1055         GEM_BUG_ON(!atomic_read(px_used(pd))); /* Must be pinned! */
1056         do {
1057                 struct i915_page_table *pt = pd->entry[idx];
1058
1059                 if (!pt) {
1060                         spin_unlock(&pd->lock);
1061
1062                         DBG("%s(%p):{ lvl:%d, idx:%d } allocating new tree\n",
1063                             __func__, vm, lvl + 1, idx);
1064
1065                         pt = fetch_and_zero(&alloc);
1066                         if (lvl) {
1067                                 if (!pt) {
1068                                         pt = &alloc_pd(vm)->pt;
1069                                         if (IS_ERR(pt)) {
1070                                                 ret = PTR_ERR(pt);
1071                                                 goto out;
1072                                         }
1073                                 }
1074
1075                                 fill_px(pt, vm->scratch[lvl].encode);
1076                         } else {
1077                                 if (!pt) {
1078                                         pt = alloc_pt(vm);
1079                                         if (IS_ERR(pt)) {
1080                                                 ret = PTR_ERR(pt);
1081                                                 goto out;
1082                                         }
1083                                 }
1084
1085                                 if (intel_vgpu_active(vm->i915) ||
1086                                     gen8_pt_count(*start, end) < I915_PDES)
1087                                         fill_px(pt, vm->scratch[lvl].encode);
1088                         }
1089
1090                         spin_lock(&pd->lock);
1091                         if (likely(!pd->entry[idx]))
1092                                 set_pd_entry(pd, idx, pt);
1093                         else
1094                                 alloc = pt, pt = pd->entry[idx];
1095                 }
1096
1097                 if (lvl) {
1098                         atomic_inc(&pt->used);
1099                         spin_unlock(&pd->lock);
1100
1101                         ret = __gen8_ppgtt_alloc(vm, as_pd(pt),
1102                                                  start, end, lvl);
1103                         if (unlikely(ret)) {
1104                                 if (release_pd_entry(pd, idx, pt, scratch))
1105                                         free_px(vm, pt);
1106                                 goto out;
1107                         }
1108
1109                         spin_lock(&pd->lock);
1110                         atomic_dec(&pt->used);
1111                         GEM_BUG_ON(!atomic_read(&pt->used));
1112                 } else {
1113                         unsigned int count = gen8_pt_count(*start, end);
1114
1115                         DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } inserting pte\n",
1116                             __func__, vm, lvl, *start, end,
1117                             gen8_pd_index(*start, 0), count,
1118                             atomic_read(&pt->used));
1119
1120                         atomic_add(count, &pt->used);
1121                         /* All other pdes may be simultaneously removed */
1122                         GEM_BUG_ON(atomic_read(&pt->used) > 2 * I915_PDES);
1123                         *start += count;
1124                 }
1125         } while (idx++, --len);
1126         spin_unlock(&pd->lock);
1127 out:
1128         if (alloc)
1129                 free_px(vm, alloc);
1130         return ret;
1131 }
1132
1133 static int gen8_ppgtt_alloc(struct i915_address_space *vm,
1134                             u64 start, u64 length)
1135 {
1136         u64 from;
1137         int err;
1138
1139         GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
1140         GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1141         GEM_BUG_ON(range_overflows(start, length, vm->total));
1142
1143         start >>= GEN8_PTE_SHIFT;
1144         length >>= GEN8_PTE_SHIFT;
1145         GEM_BUG_ON(length == 0);
1146         from = start;
1147
1148         err = __gen8_ppgtt_alloc(vm, i915_vm_to_ppgtt(vm)->pd,
1149                                  &start, start + length, vm->top);
1150         if (unlikely(err && from != start))
1151                 __gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
1152                                    from, start, vm->top);
1153
1154         return err;
1155 }
1156
1157 static inline struct sgt_dma {
1158         struct scatterlist *sg;
1159         dma_addr_t dma, max;
1160 } sgt_dma(struct i915_vma *vma) {
1161         struct scatterlist *sg = vma->pages->sgl;
1162         dma_addr_t addr = sg_dma_address(sg);
1163         return (struct sgt_dma) { sg, addr, addr + sg->length };
1164 }
1165
1166 static __always_inline u64
1167 gen8_ppgtt_insert_pte(struct i915_ppgtt *ppgtt,
1168                       struct i915_page_directory *pdp,
1169                       struct sgt_dma *iter,
1170                       u64 idx,
1171                       enum i915_cache_level cache_level,
1172                       u32 flags)
1173 {
1174         struct i915_page_directory *pd;
1175         const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1176         gen8_pte_t *vaddr;
1177
1178         pd = i915_pd_entry(pdp, gen8_pd_index(idx, 2));
1179         vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1180         do {
1181                 vaddr[gen8_pd_index(idx, 0)] = pte_encode | iter->dma;
1182
1183                 iter->dma += I915_GTT_PAGE_SIZE;
1184                 if (iter->dma >= iter->max) {
1185                         iter->sg = __sg_next(iter->sg);
1186                         if (!iter->sg) {
1187                                 idx = 0;
1188                                 break;
1189                         }
1190
1191                         iter->dma = sg_dma_address(iter->sg);
1192                         iter->max = iter->dma + iter->sg->length;
1193                 }
1194
1195                 if (gen8_pd_index(++idx, 0) == 0) {
1196                         if (gen8_pd_index(idx, 1) == 0) {
1197                                 /* Limited by sg length for 3lvl */
1198                                 if (gen8_pd_index(idx, 2) == 0)
1199                                         break;
1200
1201                                 pd = pdp->entry[gen8_pd_index(idx, 2)];
1202                         }
1203
1204                         kunmap_atomic(vaddr);
1205                         vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1206                 }
1207         } while (1);
1208         kunmap_atomic(vaddr);
1209
1210         return idx;
1211 }
1212
1213 static void gen8_ppgtt_insert_huge(struct i915_vma *vma,
1214                                    struct sgt_dma *iter,
1215                                    enum i915_cache_level cache_level,
1216                                    u32 flags)
1217 {
1218         const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1219         u64 start = vma->node.start;
1220         dma_addr_t rem = iter->sg->length;
1221
1222         GEM_BUG_ON(!i915_vm_is_4lvl(vma->vm));
1223
1224         do {
1225                 struct i915_page_directory * const pdp =
1226                         gen8_pdp_for_page_address(vma->vm, start);
1227                 struct i915_page_directory * const pd =
1228                         i915_pd_entry(pdp, __gen8_pte_index(start, 2));
1229                 gen8_pte_t encode = pte_encode;
1230                 unsigned int maybe_64K = -1;
1231                 unsigned int page_size;
1232                 gen8_pte_t *vaddr;
1233                 u16 index;
1234
1235                 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1236                     IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1237                     rem >= I915_GTT_PAGE_SIZE_2M &&
1238                     !__gen8_pte_index(start, 0)) {
1239                         index = __gen8_pte_index(start, 1);
1240                         encode |= GEN8_PDE_PS_2M;
1241                         page_size = I915_GTT_PAGE_SIZE_2M;
1242
1243                         vaddr = kmap_atomic_px(pd);
1244                 } else {
1245                         struct i915_page_table *pt =
1246                                 i915_pt_entry(pd, __gen8_pte_index(start, 1));
1247
1248                         index = __gen8_pte_index(start, 0);
1249                         page_size = I915_GTT_PAGE_SIZE;
1250
1251                         if (!index &&
1252                             vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1253                             IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1254                             (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1255                              rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE))
1256                                 maybe_64K = __gen8_pte_index(start, 1);
1257
1258                         vaddr = kmap_atomic_px(pt);
1259                 }
1260
1261                 do {
1262                         GEM_BUG_ON(iter->sg->length < page_size);
1263                         vaddr[index++] = encode | iter->dma;
1264
1265                         start += page_size;
1266                         iter->dma += page_size;
1267                         rem -= page_size;
1268                         if (iter->dma >= iter->max) {
1269                                 iter->sg = __sg_next(iter->sg);
1270                                 if (!iter->sg)
1271                                         break;
1272
1273                                 rem = iter->sg->length;
1274                                 iter->dma = sg_dma_address(iter->sg);
1275                                 iter->max = iter->dma + rem;
1276
1277                                 if (maybe_64K != -1 && index < I915_PDES &&
1278                                     !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1279                                       (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1280                                        rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE)))
1281                                         maybe_64K = -1;
1282
1283                                 if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1284                                         break;
1285                         }
1286                 } while (rem >= page_size && index < I915_PDES);
1287
1288                 kunmap_atomic(vaddr);
1289
1290                 /*
1291                  * Is it safe to mark the 2M block as 64K? -- Either we have
1292                  * filled whole page-table with 64K entries, or filled part of
1293                  * it and have reached the end of the sg table and we have
1294                  * enough padding.
1295                  */
1296                 if (maybe_64K != -1 &&
1297                     (index == I915_PDES ||
1298                      (i915_vm_has_scratch_64K(vma->vm) &&
1299                       !iter->sg && IS_ALIGNED(vma->node.start +
1300                                               vma->node.size,
1301                                               I915_GTT_PAGE_SIZE_2M)))) {
1302                         vaddr = kmap_atomic_px(pd);
1303                         vaddr[maybe_64K] |= GEN8_PDE_IPS_64K;
1304                         kunmap_atomic(vaddr);
1305                         page_size = I915_GTT_PAGE_SIZE_64K;
1306
1307                         /*
1308                          * We write all 4K page entries, even when using 64K
1309                          * pages. In order to verify that the HW isn't cheating
1310                          * by using the 4K PTE instead of the 64K PTE, we want
1311                          * to remove all the surplus entries. If the HW skipped
1312                          * the 64K PTE, it will read/write into the scratch page
1313                          * instead - which we detect as missing results during
1314                          * selftests.
1315                          */
1316                         if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1317                                 u16 i;
1318
1319                                 encode = vma->vm->scratch[0].encode;
1320                                 vaddr = kmap_atomic_px(i915_pt_entry(pd, maybe_64K));
1321
1322                                 for (i = 1; i < index; i += 16)
1323                                         memset64(vaddr + i, encode, 15);
1324
1325                                 kunmap_atomic(vaddr);
1326                         }
1327                 }
1328
1329                 vma->page_sizes.gtt |= page_size;
1330         } while (iter->sg);
1331 }
1332
1333 static void gen8_ppgtt_insert(struct i915_address_space *vm,
1334                               struct i915_vma *vma,
1335                               enum i915_cache_level cache_level,
1336                               u32 flags)
1337 {
1338         struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
1339         struct sgt_dma iter = sgt_dma(vma);
1340
1341         if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1342                 gen8_ppgtt_insert_huge(vma, &iter, cache_level, flags);
1343         } else  {
1344                 u64 idx = vma->node.start >> GEN8_PTE_SHIFT;
1345
1346                 do {
1347                         struct i915_page_directory * const pdp =
1348                                 gen8_pdp_for_page_index(vm, idx);
1349
1350                         idx = gen8_ppgtt_insert_pte(ppgtt, pdp, &iter, idx,
1351                                                     cache_level, flags);
1352                 } while (idx);
1353
1354                 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1355         }
1356 }
1357
1358 static int gen8_init_scratch(struct i915_address_space *vm)
1359 {
1360         int ret;
1361         int i;
1362
1363         /*
1364          * If everybody agrees to not to write into the scratch page,
1365          * we can reuse it for all vm, keeping contexts and processes separate.
1366          */
1367         if (vm->has_read_only &&
1368             vm->i915->kernel_context &&
1369             vm->i915->kernel_context->vm) {
1370                 struct i915_address_space *clone = vm->i915->kernel_context->vm;
1371
1372                 GEM_BUG_ON(!clone->has_read_only);
1373
1374                 vm->scratch_order = clone->scratch_order;
1375                 memcpy(vm->scratch, clone->scratch, sizeof(vm->scratch));
1376                 px_dma(&vm->scratch[0]) = 0; /* no xfer of ownership */
1377                 return 0;
1378         }
1379
1380         ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1381         if (ret)
1382                 return ret;
1383
1384         vm->scratch[0].encode =
1385                 gen8_pte_encode(px_dma(&vm->scratch[0]),
1386                                 I915_CACHE_LLC, vm->has_read_only);
1387
1388         for (i = 1; i <= vm->top; i++) {
1389                 if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[i]))))
1390                         goto free_scratch;
1391
1392                 fill_px(&vm->scratch[i], vm->scratch[i - 1].encode);
1393                 vm->scratch[i].encode =
1394                         gen8_pde_encode(px_dma(&vm->scratch[i]),
1395                                         I915_CACHE_LLC);
1396         }
1397
1398         return 0;
1399
1400 free_scratch:
1401         free_scratch(vm);
1402         return -ENOMEM;
1403 }
1404
1405 static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt)
1406 {
1407         struct i915_address_space *vm = &ppgtt->vm;
1408         struct i915_page_directory *pd = ppgtt->pd;
1409         unsigned int idx;
1410
1411         GEM_BUG_ON(vm->top != 2);
1412         GEM_BUG_ON(gen8_pd_top_count(vm) != GEN8_3LVL_PDPES);
1413
1414         for (idx = 0; idx < GEN8_3LVL_PDPES; idx++) {
1415                 struct i915_page_directory *pde;
1416
1417                 pde = alloc_pd(vm);
1418                 if (IS_ERR(pde))
1419                         return PTR_ERR(pde);
1420
1421                 fill_px(pde, vm->scratch[1].encode);
1422                 set_pd_entry(pd, idx, pde);
1423                 atomic_inc(px_used(pde)); /* keep pinned */
1424         }
1425
1426         return 0;
1427 }
1428
1429 static void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt)
1430 {
1431         struct drm_i915_private *i915 = gt->i915;
1432
1433         ppgtt->vm.gt = gt;
1434         ppgtt->vm.i915 = i915;
1435         ppgtt->vm.dma = &i915->drm.pdev->dev;
1436         ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);
1437
1438         i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
1439
1440         ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1441         ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
1442         ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
1443         ppgtt->vm.vma_ops.clear_pages = clear_pages;
1444 }
1445
1446 static struct i915_page_directory *
1447 gen8_alloc_top_pd(struct i915_address_space *vm)
1448 {
1449         const unsigned int count = gen8_pd_top_count(vm);
1450         struct i915_page_directory *pd;
1451
1452         GEM_BUG_ON(count > ARRAY_SIZE(pd->entry));
1453
1454         pd = __alloc_pd(offsetof(typeof(*pd), entry[count]));
1455         if (unlikely(!pd))
1456                 return ERR_PTR(-ENOMEM);
1457
1458         if (unlikely(setup_page_dma(vm, px_base(pd)))) {
1459                 kfree(pd);
1460                 return ERR_PTR(-ENOMEM);
1461         }
1462
1463         fill_page_dma(px_base(pd), vm->scratch[vm->top].encode, count);
1464         atomic_inc(px_used(pd)); /* mark as pinned */
1465         return pd;
1466 }
1467
1468 /*
1469  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1470  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1471  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1472  * space.
1473  *
1474  */
1475 static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1476 {
1477         struct i915_ppgtt *ppgtt;
1478         int err;
1479
1480         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1481         if (!ppgtt)
1482                 return ERR_PTR(-ENOMEM);
1483
1484         ppgtt_init(ppgtt, &i915->gt);
1485         ppgtt->vm.top = i915_vm_is_4lvl(&ppgtt->vm) ? 3 : 2;
1486
1487         /*
1488          * From bdw, there is hw support for read-only pages in the PPGTT.
1489          *
1490          * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
1491          * for now.
1492          */
1493         ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
1494
1495         /* There are only few exceptions for gen >=6. chv and bxt.
1496          * And we are not sure about the latter so play safe for now.
1497          */
1498         if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1499                 ppgtt->vm.pt_kmap_wc = true;
1500
1501         err = gen8_init_scratch(&ppgtt->vm);
1502         if (err)
1503                 goto err_free;
1504
1505         ppgtt->pd = gen8_alloc_top_pd(&ppgtt->vm);
1506         if (IS_ERR(ppgtt->pd)) {
1507                 err = PTR_ERR(ppgtt->pd);
1508                 goto err_free_scratch;
1509         }
1510
1511         if (!i915_vm_is_4lvl(&ppgtt->vm)) {
1512                 if (intel_vgpu_active(i915)) {
1513                         err = gen8_preallocate_top_level_pdp(ppgtt);
1514                         if (err)
1515                                 goto err_free_pd;
1516                 }
1517         }
1518
1519         ppgtt->vm.insert_entries = gen8_ppgtt_insert;
1520         ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc;
1521         ppgtt->vm.clear_range = gen8_ppgtt_clear;
1522
1523         if (intel_vgpu_active(i915))
1524                 gen8_ppgtt_notify_vgt(ppgtt, true);
1525
1526         ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1527
1528         return ppgtt;
1529
1530 err_free_pd:
1531         __gen8_ppgtt_cleanup(&ppgtt->vm, ppgtt->pd,
1532                              gen8_pd_top_count(&ppgtt->vm), ppgtt->vm.top);
1533 err_free_scratch:
1534         free_scratch(&ppgtt->vm);
1535 err_free:
1536         kfree(ppgtt);
1537         return ERR_PTR(err);
1538 }
1539
1540 /* Write pde (index) from the page directory @pd to the page table @pt */
1541 static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt,
1542                                   const unsigned int pde,
1543                                   const struct i915_page_table *pt)
1544 {
1545         /* Caller needs to make sure the write completes if necessary */
1546         iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1547                   ppgtt->pd_addr + pde);
1548 }
1549
1550 static void gen7_ppgtt_enable(struct intel_gt *gt)
1551 {
1552         struct drm_i915_private *i915 = gt->i915;
1553         struct intel_uncore *uncore = gt->uncore;
1554         struct intel_engine_cs *engine;
1555         enum intel_engine_id id;
1556         u32 ecochk;
1557
1558         intel_uncore_rmw(uncore, GAC_ECO_BITS, 0, ECOBITS_PPGTT_CACHE64B);
1559
1560         ecochk = intel_uncore_read(uncore, GAM_ECOCHK);
1561         if (IS_HASWELL(i915)) {
1562                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1563         } else {
1564                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1565                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1566         }
1567         intel_uncore_write(uncore, GAM_ECOCHK, ecochk);
1568
1569         for_each_engine(engine, i915, id) {
1570                 /* GFX_MODE is per-ring on gen7+ */
1571                 ENGINE_WRITE(engine,
1572                              RING_MODE_GEN7,
1573                              _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1574         }
1575 }
1576
1577 static void gen6_ppgtt_enable(struct intel_gt *gt)
1578 {
1579         struct intel_uncore *uncore = gt->uncore;
1580
1581         intel_uncore_rmw(uncore,
1582                          GAC_ECO_BITS,
1583                          0,
1584                          ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B);
1585
1586         intel_uncore_rmw(uncore,
1587                          GAB_CTL,
1588                          0,
1589                          GAB_CTL_CONT_AFTER_PAGEFAULT);
1590
1591         intel_uncore_rmw(uncore,
1592                          GAM_ECOCHK,
1593                          0,
1594                          ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1595
1596         if (HAS_PPGTT(uncore->i915)) /* may be disabled for VT-d */
1597                 intel_uncore_write(uncore,
1598                                    GFX_MODE,
1599                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1600 }
1601
1602 /* PPGTT support for Sandybdrige/Gen6 and later */
1603 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1604                                    u64 start, u64 length)
1605 {
1606         struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1607         const unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1608         const gen6_pte_t scratch_pte = vm->scratch[0].encode;
1609         unsigned int pde = first_entry / GEN6_PTES;
1610         unsigned int pte = first_entry % GEN6_PTES;
1611         unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1612
1613         while (num_entries) {
1614                 struct i915_page_table * const pt =
1615                         i915_pt_entry(ppgtt->base.pd, pde++);
1616                 const unsigned int count = min(num_entries, GEN6_PTES - pte);
1617                 gen6_pte_t *vaddr;
1618
1619                 GEM_BUG_ON(px_base(pt) == px_base(&vm->scratch[1]));
1620
1621                 num_entries -= count;
1622
1623                 GEM_BUG_ON(count > atomic_read(&pt->used));
1624                 if (!atomic_sub_return(count, &pt->used))
1625                         ppgtt->scan_for_unused_pt = true;
1626
1627                 /*
1628                  * Note that the hw doesn't support removing PDE on the fly
1629                  * (they are cached inside the context with no means to
1630                  * invalidate the cache), so we can only reset the PTE
1631                  * entries back to scratch.
1632                  */
1633
1634                 vaddr = kmap_atomic_px(pt);
1635                 memset32(vaddr + pte, scratch_pte, count);
1636                 kunmap_atomic(vaddr);
1637
1638                 pte = 0;
1639         }
1640 }
1641
1642 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1643                                       struct i915_vma *vma,
1644                                       enum i915_cache_level cache_level,
1645                                       u32 flags)
1646 {
1647         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1648         struct i915_page_directory * const pd = ppgtt->pd;
1649         unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1650         unsigned act_pt = first_entry / GEN6_PTES;
1651         unsigned act_pte = first_entry % GEN6_PTES;
1652         const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1653         struct sgt_dma iter = sgt_dma(vma);
1654         gen6_pte_t *vaddr;
1655
1656         GEM_BUG_ON(pd->entry[act_pt] == &vm->scratch[1]);
1657
1658         vaddr = kmap_atomic_px(i915_pt_entry(pd, act_pt));
1659         do {
1660                 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1661
1662                 iter.dma += I915_GTT_PAGE_SIZE;
1663                 if (iter.dma == iter.max) {
1664                         iter.sg = __sg_next(iter.sg);
1665                         if (!iter.sg)
1666                                 break;
1667
1668                         iter.dma = sg_dma_address(iter.sg);
1669                         iter.max = iter.dma + iter.sg->length;
1670                 }
1671
1672                 if (++act_pte == GEN6_PTES) {
1673                         kunmap_atomic(vaddr);
1674                         vaddr = kmap_atomic_px(i915_pt_entry(pd, ++act_pt));
1675                         act_pte = 0;
1676                 }
1677         } while (1);
1678         kunmap_atomic(vaddr);
1679
1680         vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1681 }
1682
1683 static int gen6_alloc_va_range(struct i915_address_space *vm,
1684                                u64 start, u64 length)
1685 {
1686         struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1687         struct i915_page_directory * const pd = ppgtt->base.pd;
1688         struct i915_page_table *pt, *alloc = NULL;
1689         intel_wakeref_t wakeref;
1690         u64 from = start;
1691         unsigned int pde;
1692         bool flush = false;
1693         int ret = 0;
1694
1695         wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
1696
1697         spin_lock(&pd->lock);
1698         gen6_for_each_pde(pt, pd, start, length, pde) {
1699                 const unsigned int count = gen6_pte_count(start, length);
1700
1701                 if (px_base(pt) == px_base(&vm->scratch[1])) {
1702                         spin_unlock(&pd->lock);
1703
1704                         pt = fetch_and_zero(&alloc);
1705                         if (!pt)
1706                                 pt = alloc_pt(vm);
1707                         if (IS_ERR(pt)) {
1708                                 ret = PTR_ERR(pt);
1709                                 goto unwind_out;
1710                         }
1711
1712                         fill32_px(pt, vm->scratch[0].encode);
1713
1714                         spin_lock(&pd->lock);
1715                         if (pd->entry[pde] == &vm->scratch[1]) {
1716                                 pd->entry[pde] = pt;
1717                                 if (i915_vma_is_bound(ppgtt->vma,
1718                                                       I915_VMA_GLOBAL_BIND)) {
1719                                         gen6_write_pde(ppgtt, pde, pt);
1720                                         flush = true;
1721                                 }
1722                         } else {
1723                                 alloc = pt;
1724                                 pt = pd->entry[pde];
1725                         }
1726                 }
1727
1728                 atomic_add(count, &pt->used);
1729         }
1730         spin_unlock(&pd->lock);
1731
1732         if (flush) {
1733                 mark_tlbs_dirty(&ppgtt->base);
1734                 gen6_ggtt_invalidate(vm->gt->ggtt);
1735         }
1736
1737         goto out;
1738
1739 unwind_out:
1740         gen6_ppgtt_clear_range(vm, from, start - from);
1741 out:
1742         if (alloc)
1743                 free_px(vm, alloc);
1744         intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
1745         return ret;
1746 }
1747
1748 static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt)
1749 {
1750         struct i915_address_space * const vm = &ppgtt->base.vm;
1751         struct i915_page_directory * const pd = ppgtt->base.pd;
1752         int ret;
1753
1754         ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1755         if (ret)
1756                 return ret;
1757
1758         vm->scratch[0].encode =
1759                 vm->pte_encode(px_dma(&vm->scratch[0]),
1760                                I915_CACHE_NONE, PTE_READ_ONLY);
1761
1762         if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[1])))) {
1763                 cleanup_scratch_page(vm);
1764                 return -ENOMEM;
1765         }
1766
1767         fill32_px(&vm->scratch[1], vm->scratch[0].encode);
1768         memset_p(pd->entry, &vm->scratch[1], I915_PDES);
1769
1770         return 0;
1771 }
1772
1773 static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt)
1774 {
1775         struct i915_page_directory * const pd = ppgtt->base.pd;
1776         struct i915_page_dma * const scratch =
1777                 px_base(&ppgtt->base.vm.scratch[1]);
1778         struct i915_page_table *pt;
1779         u32 pde;
1780
1781         gen6_for_all_pdes(pt, pd, pde)
1782                 if (px_base(pt) != scratch)
1783                         free_px(&ppgtt->base.vm, pt);
1784 }
1785
1786 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1787 {
1788         struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1789         struct drm_i915_private *i915 = vm->i915;
1790
1791         /* FIXME remove the struct_mutex to bring the locking under control */
1792         mutex_lock(&i915->drm.struct_mutex);
1793         i915_vma_destroy(ppgtt->vma);
1794         mutex_unlock(&i915->drm.struct_mutex);
1795
1796         gen6_ppgtt_free_pd(ppgtt);
1797         free_scratch(vm);
1798         kfree(ppgtt->base.pd);
1799 }
1800
1801 static int pd_vma_set_pages(struct i915_vma *vma)
1802 {
1803         vma->pages = ERR_PTR(-ENODEV);
1804         return 0;
1805 }
1806
1807 static void pd_vma_clear_pages(struct i915_vma *vma)
1808 {
1809         GEM_BUG_ON(!vma->pages);
1810
1811         vma->pages = NULL;
1812 }
1813
1814 static int pd_vma_bind(struct i915_vma *vma,
1815                        enum i915_cache_level cache_level,
1816                        u32 unused)
1817 {
1818         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1819         struct gen6_ppgtt *ppgtt = vma->private;
1820         u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1821         struct i915_page_table *pt;
1822         unsigned int pde;
1823
1824         px_base(ppgtt->base.pd)->ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
1825         ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1826
1827         gen6_for_all_pdes(pt, ppgtt->base.pd, pde)
1828                 gen6_write_pde(ppgtt, pde, pt);
1829
1830         mark_tlbs_dirty(&ppgtt->base);
1831         gen6_ggtt_invalidate(ggtt);
1832
1833         return 0;
1834 }
1835
1836 static void pd_vma_unbind(struct i915_vma *vma)
1837 {
1838         struct gen6_ppgtt *ppgtt = vma->private;
1839         struct i915_page_directory * const pd = ppgtt->base.pd;
1840         struct i915_page_dma * const scratch =
1841                 px_base(&ppgtt->base.vm.scratch[1]);
1842         struct i915_page_table *pt;
1843         unsigned int pde;
1844
1845         if (!ppgtt->scan_for_unused_pt)
1846                 return;
1847
1848         /* Free all no longer used page tables */
1849         gen6_for_all_pdes(pt, ppgtt->base.pd, pde) {
1850                 if (px_base(pt) == scratch || atomic_read(&pt->used))
1851                         continue;
1852
1853                 free_px(&ppgtt->base.vm, pt);
1854                 pd->entry[pde] = scratch;
1855         }
1856
1857         ppgtt->scan_for_unused_pt = false;
1858 }
1859
1860 static const struct i915_vma_ops pd_vma_ops = {
1861         .set_pages = pd_vma_set_pages,
1862         .clear_pages = pd_vma_clear_pages,
1863         .bind_vma = pd_vma_bind,
1864         .unbind_vma = pd_vma_unbind,
1865 };
1866
1867 static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size)
1868 {
1869         struct drm_i915_private *i915 = ppgtt->base.vm.i915;
1870         struct i915_ggtt *ggtt = ppgtt->base.vm.gt->ggtt;
1871         struct i915_vma *vma;
1872
1873         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
1874         GEM_BUG_ON(size > ggtt->vm.total);
1875
1876         vma = i915_vma_alloc();
1877         if (!vma)
1878                 return ERR_PTR(-ENOMEM);
1879
1880         i915_active_init(i915, &vma->active, NULL, NULL);
1881
1882         vma->vm = &ggtt->vm;
1883         vma->ops = &pd_vma_ops;
1884         vma->private = ppgtt;
1885
1886         vma->size = size;
1887         vma->fence_size = size;
1888         vma->flags = I915_VMA_GGTT;
1889         vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
1890
1891         INIT_LIST_HEAD(&vma->obj_link);
1892         INIT_LIST_HEAD(&vma->closed_link);
1893
1894         mutex_lock(&vma->vm->mutex);
1895         list_add(&vma->vm_link, &vma->vm->unbound_list);
1896         mutex_unlock(&vma->vm->mutex);
1897
1898         return vma;
1899 }
1900
1901 int gen6_ppgtt_pin(struct i915_ppgtt *base)
1902 {
1903         struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1904         int err;
1905
1906         GEM_BUG_ON(ppgtt->base.vm.closed);
1907
1908         /*
1909          * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
1910          * which will be pinned into every active context.
1911          * (When vma->pin_count becomes atomic, I expect we will naturally
1912          * need a larger, unpacked, type and kill this redundancy.)
1913          */
1914         if (ppgtt->pin_count++)
1915                 return 0;
1916
1917         /*
1918          * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1919          * allocator works in address space sizes, so it's multiplied by page
1920          * size. We allocate at the top of the GTT to avoid fragmentation.
1921          */
1922         err = i915_vma_pin(ppgtt->vma,
1923                            0, GEN6_PD_ALIGN,
1924                            PIN_GLOBAL | PIN_HIGH);
1925         if (err)
1926                 goto unpin;
1927
1928         return 0;
1929
1930 unpin:
1931         ppgtt->pin_count = 0;
1932         return err;
1933 }
1934
1935 void gen6_ppgtt_unpin(struct i915_ppgtt *base)
1936 {
1937         struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1938
1939         GEM_BUG_ON(!ppgtt->pin_count);
1940         if (--ppgtt->pin_count)
1941                 return;
1942
1943         i915_vma_unpin(ppgtt->vma);
1944 }
1945
1946 void gen6_ppgtt_unpin_all(struct i915_ppgtt *base)
1947 {
1948         struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1949
1950         if (!ppgtt->pin_count)
1951                 return;
1952
1953         ppgtt->pin_count = 0;
1954         i915_vma_unpin(ppgtt->vma);
1955 }
1956
1957 static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
1958 {
1959         struct i915_ggtt * const ggtt = &i915->ggtt;
1960         struct gen6_ppgtt *ppgtt;
1961         int err;
1962
1963         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1964         if (!ppgtt)
1965                 return ERR_PTR(-ENOMEM);
1966
1967         ppgtt_init(&ppgtt->base, &i915->gt);
1968         ppgtt->base.vm.top = 1;
1969
1970         ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
1971         ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
1972         ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
1973         ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
1974
1975         ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
1976
1977         ppgtt->base.pd = __alloc_pd(sizeof(*ppgtt->base.pd));
1978         if (!ppgtt->base.pd) {
1979                 err = -ENOMEM;
1980                 goto err_free;
1981         }
1982
1983         err = gen6_ppgtt_init_scratch(ppgtt);
1984         if (err)
1985                 goto err_pd;
1986
1987         ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
1988         if (IS_ERR(ppgtt->vma)) {
1989                 err = PTR_ERR(ppgtt->vma);
1990                 goto err_scratch;
1991         }
1992
1993         return &ppgtt->base;
1994
1995 err_scratch:
1996         free_scratch(&ppgtt->base.vm);
1997 err_pd:
1998         kfree(ppgtt->base.pd);
1999 err_free:
2000         kfree(ppgtt);
2001         return ERR_PTR(err);
2002 }
2003
2004 static void gtt_write_workarounds(struct intel_gt *gt)
2005 {
2006         struct drm_i915_private *i915 = gt->i915;
2007         struct intel_uncore *uncore = gt->uncore;
2008
2009         /* This function is for gtt related workarounds. This function is
2010          * called on driver load and after a GPU reset, so you can place
2011          * workarounds here even if they get overwritten by GPU reset.
2012          */
2013         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2014         if (IS_BROADWELL(i915))
2015                 intel_uncore_write(uncore,
2016                                    GEN8_L3_LRA_1_GPGPU,
2017                                    GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2018         else if (IS_CHERRYVIEW(i915))
2019                 intel_uncore_write(uncore,
2020                                    GEN8_L3_LRA_1_GPGPU,
2021                                    GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2022         else if (IS_GEN9_LP(i915))
2023                 intel_uncore_write(uncore,
2024                                    GEN8_L3_LRA_1_GPGPU,
2025                                    GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2026         else if (INTEL_GEN(i915) >= 9)
2027                 intel_uncore_write(uncore,
2028                                    GEN8_L3_LRA_1_GPGPU,
2029                                    GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2030
2031         /*
2032          * To support 64K PTEs we need to first enable the use of the
2033          * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2034          * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2035          * shouldn't be needed after GEN10.
2036          *
2037          * 64K pages were first introduced from BDW+, although technically they
2038          * only *work* from gen9+. For pre-BDW we instead have the option for
2039          * 32K pages, but we don't currently have any support for it in our
2040          * driver.
2041          */
2042         if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
2043             INTEL_GEN(i915) <= 10)
2044                 intel_uncore_rmw(uncore,
2045                                  GEN8_GAMW_ECO_DEV_RW_IA,
2046                                  0,
2047                                  GAMW_ECO_ENABLE_64K_IPS_FIELD);
2048
2049         if (IS_GEN_RANGE(i915, 8, 11)) {
2050                 bool can_use_gtt_cache = true;
2051
2052                 /*
2053                  * According to the BSpec if we use 2M/1G pages then we also
2054                  * need to disable the GTT cache. At least on BDW we can see
2055                  * visual corruption when using 2M pages, and not disabling the
2056                  * GTT cache.
2057                  */
2058                 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
2059                         can_use_gtt_cache = false;
2060
2061                 /* WaGttCachingOffByDefault */
2062                 intel_uncore_write(uncore,
2063                                    HSW_GTT_CACHE_EN,
2064                                    can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
2065                 WARN_ON_ONCE(can_use_gtt_cache &&
2066                              intel_uncore_read(uncore,
2067                                                HSW_GTT_CACHE_EN) == 0);
2068         }
2069 }
2070
2071 int i915_ppgtt_init_hw(struct intel_gt *gt)
2072 {
2073         struct drm_i915_private *i915 = gt->i915;
2074
2075         gtt_write_workarounds(gt);
2076
2077         if (IS_GEN(i915, 6))
2078                 gen6_ppgtt_enable(gt);
2079         else if (IS_GEN(i915, 7))
2080                 gen7_ppgtt_enable(gt);
2081
2082         return 0;
2083 }
2084
2085 static struct i915_ppgtt *
2086 __ppgtt_create(struct drm_i915_private *i915)
2087 {
2088         if (INTEL_GEN(i915) < 8)
2089                 return gen6_ppgtt_create(i915);
2090         else
2091                 return gen8_ppgtt_create(i915);
2092 }
2093
2094 struct i915_ppgtt *
2095 i915_ppgtt_create(struct drm_i915_private *i915)
2096 {
2097         struct i915_ppgtt *ppgtt;
2098
2099         ppgtt = __ppgtt_create(i915);
2100         if (IS_ERR(ppgtt))
2101                 return ppgtt;
2102
2103         trace_i915_ppgtt_create(&ppgtt->vm);
2104
2105         return ppgtt;
2106 }
2107
2108 /* Certain Gen5 chipsets require require idling the GPU before
2109  * unmapping anything from the GTT when VT-d is enabled.
2110  */
2111 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2112 {
2113         /* Query intel_iommu to see if we need the workaround. Presumably that
2114          * was loaded first.
2115          */
2116         return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2117 }
2118
2119 static void ggtt_suspend_mappings(struct i915_ggtt *ggtt)
2120 {
2121         struct drm_i915_private *i915 = ggtt->vm.i915;
2122
2123         /* Don't bother messing with faults pre GEN6 as we have little
2124          * documentation supporting that it's a good idea.
2125          */
2126         if (INTEL_GEN(i915) < 6)
2127                 return;
2128
2129         intel_gt_check_and_clear_faults(ggtt->vm.gt);
2130
2131         ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2132
2133         ggtt->invalidate(ggtt);
2134 }
2135
2136 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915)
2137 {
2138         ggtt_suspend_mappings(&i915->ggtt);
2139 }
2140
2141 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2142                                struct sg_table *pages)
2143 {
2144         do {
2145                 if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2146                                      pages->sgl, pages->nents,
2147                                      PCI_DMA_BIDIRECTIONAL,
2148                                      DMA_ATTR_NO_WARN))
2149                         return 0;
2150
2151                 /*
2152                  * If the DMA remap fails, one cause can be that we have
2153                  * too many objects pinned in a small remapping table,
2154                  * such as swiotlb. Incrementally purge all other objects and
2155                  * try again - if there are no more pages to remove from
2156                  * the DMA remapper, i915_gem_shrink will return 0.
2157                  */
2158                 GEM_BUG_ON(obj->mm.pages == pages);
2159         } while (i915_gem_shrink(to_i915(obj->base.dev),
2160                                  obj->base.size >> PAGE_SHIFT, NULL,
2161                                  I915_SHRINK_BOUND |
2162                                  I915_SHRINK_UNBOUND));
2163
2164         return -ENOSPC;
2165 }
2166
2167 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2168 {
2169         writeq(pte, addr);
2170 }
2171
2172 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2173                                   dma_addr_t addr,
2174                                   u64 offset,
2175                                   enum i915_cache_level level,
2176                                   u32 unused)
2177 {
2178         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2179         gen8_pte_t __iomem *pte =
2180                 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2181
2182         gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2183
2184         ggtt->invalidate(ggtt);
2185 }
2186
2187 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2188                                      struct i915_vma *vma,
2189                                      enum i915_cache_level level,
2190                                      u32 flags)
2191 {
2192         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2193         struct sgt_iter sgt_iter;
2194         gen8_pte_t __iomem *gtt_entries;
2195         const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2196         dma_addr_t addr;
2197
2198         /*
2199          * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2200          * not to allow the user to override access to a read only page.
2201          */
2202
2203         gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2204         gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2205         for_each_sgt_dma(addr, sgt_iter, vma->pages)
2206                 gen8_set_pte(gtt_entries++, pte_encode | addr);
2207
2208         /*
2209          * We want to flush the TLBs only after we're certain all the PTE
2210          * updates have finished.
2211          */
2212         ggtt->invalidate(ggtt);
2213 }
2214
2215 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2216                                   dma_addr_t addr,
2217                                   u64 offset,
2218                                   enum i915_cache_level level,
2219                                   u32 flags)
2220 {
2221         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2222         gen6_pte_t __iomem *pte =
2223                 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2224
2225         iowrite32(vm->pte_encode(addr, level, flags), pte);
2226
2227         ggtt->invalidate(ggtt);
2228 }
2229
2230 /*
2231  * Binds an object into the global gtt with the specified cache level. The object
2232  * will be accessible to the GPU via commands whose operands reference offsets
2233  * within the global GTT as well as accessible by the GPU through the GMADR
2234  * mapped BAR (dev_priv->mm.gtt->gtt).
2235  */
2236 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2237                                      struct i915_vma *vma,
2238                                      enum i915_cache_level level,
2239                                      u32 flags)
2240 {
2241         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2242         gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2243         unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2244         struct sgt_iter iter;
2245         dma_addr_t addr;
2246         for_each_sgt_dma(addr, iter, vma->pages)
2247                 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2248
2249         /*
2250          * We want to flush the TLBs only after we're certain all the PTE
2251          * updates have finished.
2252          */
2253         ggtt->invalidate(ggtt);
2254 }
2255
2256 static void nop_clear_range(struct i915_address_space *vm,
2257                             u64 start, u64 length)
2258 {
2259 }
2260
2261 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2262                                   u64 start, u64 length)
2263 {
2264         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2265         unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2266         unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2267         const gen8_pte_t scratch_pte = vm->scratch[0].encode;
2268         gen8_pte_t __iomem *gtt_base =
2269                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2270         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2271         int i;
2272
2273         if (WARN(num_entries > max_entries,
2274                  "First entry = %d; Num entries = %d (max=%d)\n",
2275                  first_entry, num_entries, max_entries))
2276                 num_entries = max_entries;
2277
2278         for (i = 0; i < num_entries; i++)
2279                 gen8_set_pte(&gtt_base[i], scratch_pte);
2280 }
2281
2282 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2283 {
2284         struct drm_i915_private *dev_priv = vm->i915;
2285
2286         /*
2287          * Make sure the internal GAM fifo has been cleared of all GTT
2288          * writes before exiting stop_machine(). This guarantees that
2289          * any aperture accesses waiting to start in another process
2290          * cannot back up behind the GTT writes causing a hang.
2291          * The register can be any arbitrary GAM register.
2292          */
2293         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2294 }
2295
2296 struct insert_page {
2297         struct i915_address_space *vm;
2298         dma_addr_t addr;
2299         u64 offset;
2300         enum i915_cache_level level;
2301 };
2302
2303 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2304 {
2305         struct insert_page *arg = _arg;
2306
2307         gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2308         bxt_vtd_ggtt_wa(arg->vm);
2309
2310         return 0;
2311 }
2312
2313 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2314                                           dma_addr_t addr,
2315                                           u64 offset,
2316                                           enum i915_cache_level level,
2317                                           u32 unused)
2318 {
2319         struct insert_page arg = { vm, addr, offset, level };
2320
2321         stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2322 }
2323
2324 struct insert_entries {
2325         struct i915_address_space *vm;
2326         struct i915_vma *vma;
2327         enum i915_cache_level level;
2328         u32 flags;
2329 };
2330
2331 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2332 {
2333         struct insert_entries *arg = _arg;
2334
2335         gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2336         bxt_vtd_ggtt_wa(arg->vm);
2337
2338         return 0;
2339 }
2340
2341 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2342                                              struct i915_vma *vma,
2343                                              enum i915_cache_level level,
2344                                              u32 flags)
2345 {
2346         struct insert_entries arg = { vm, vma, level, flags };
2347
2348         stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2349 }
2350
2351 struct clear_range {
2352         struct i915_address_space *vm;
2353         u64 start;
2354         u64 length;
2355 };
2356
2357 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2358 {
2359         struct clear_range *arg = _arg;
2360
2361         gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2362         bxt_vtd_ggtt_wa(arg->vm);
2363
2364         return 0;
2365 }
2366
2367 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2368                                           u64 start,
2369                                           u64 length)
2370 {
2371         struct clear_range arg = { vm, start, length };
2372
2373         stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2374 }
2375
2376 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2377                                   u64 start, u64 length)
2378 {
2379         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2380         unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2381         unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2382         gen6_pte_t scratch_pte, __iomem *gtt_base =
2383                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2384         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2385         int i;
2386
2387         if (WARN(num_entries > max_entries,
2388                  "First entry = %d; Num entries = %d (max=%d)\n",
2389                  first_entry, num_entries, max_entries))
2390                 num_entries = max_entries;
2391
2392         scratch_pte = vm->scratch[0].encode;
2393         for (i = 0; i < num_entries; i++)
2394                 iowrite32(scratch_pte, &gtt_base[i]);
2395 }
2396
2397 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2398                                   dma_addr_t addr,
2399                                   u64 offset,
2400                                   enum i915_cache_level cache_level,
2401                                   u32 unused)
2402 {
2403         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2404                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2405
2406         intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2407 }
2408
2409 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2410                                      struct i915_vma *vma,
2411                                      enum i915_cache_level cache_level,
2412                                      u32 unused)
2413 {
2414         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2415                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2416
2417         intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2418                                     flags);
2419 }
2420
2421 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2422                                   u64 start, u64 length)
2423 {
2424         intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2425 }
2426
2427 static int ggtt_bind_vma(struct i915_vma *vma,
2428                          enum i915_cache_level cache_level,
2429                          u32 flags)
2430 {
2431         struct drm_i915_private *i915 = vma->vm->i915;
2432         struct drm_i915_gem_object *obj = vma->obj;
2433         intel_wakeref_t wakeref;
2434         u32 pte_flags;
2435
2436         /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2437         pte_flags = 0;
2438         if (i915_gem_object_is_readonly(obj))
2439                 pte_flags |= PTE_READ_ONLY;
2440
2441         with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2442                 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2443
2444         vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2445
2446         /*
2447          * Without aliasing PPGTT there's no difference between
2448          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2449          * upgrade to both bound if we bind either to avoid double-binding.
2450          */
2451         vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2452
2453         return 0;
2454 }
2455
2456 static void ggtt_unbind_vma(struct i915_vma *vma)
2457 {
2458         struct drm_i915_private *i915 = vma->vm->i915;
2459         intel_wakeref_t wakeref;
2460
2461         with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2462                 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2463 }
2464
2465 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2466                                  enum i915_cache_level cache_level,
2467                                  u32 flags)
2468 {
2469         struct drm_i915_private *i915 = vma->vm->i915;
2470         u32 pte_flags;
2471         int ret;
2472
2473         /* Currently applicable only to VLV */
2474         pte_flags = 0;
2475         if (i915_gem_object_is_readonly(vma->obj))
2476                 pte_flags |= PTE_READ_ONLY;
2477
2478         if (flags & I915_VMA_LOCAL_BIND) {
2479                 struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
2480
2481                 if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2482                         ret = alias->vm.allocate_va_range(&alias->vm,
2483                                                           vma->node.start,
2484                                                           vma->size);
2485                         if (ret)
2486                                 return ret;
2487                 }
2488
2489                 alias->vm.insert_entries(&alias->vm, vma,
2490                                          cache_level, pte_flags);
2491         }
2492
2493         if (flags & I915_VMA_GLOBAL_BIND) {
2494                 intel_wakeref_t wakeref;
2495
2496                 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2497                         vma->vm->insert_entries(vma->vm, vma,
2498                                                 cache_level, pte_flags);
2499                 }
2500         }
2501
2502         return 0;
2503 }
2504
2505 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2506 {
2507         struct drm_i915_private *i915 = vma->vm->i915;
2508
2509         if (vma->flags & I915_VMA_GLOBAL_BIND) {
2510                 struct i915_address_space *vm = vma->vm;
2511                 intel_wakeref_t wakeref;
2512
2513                 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2514                         vm->clear_range(vm, vma->node.start, vma->size);
2515         }
2516
2517         if (vma->flags & I915_VMA_LOCAL_BIND) {
2518                 struct i915_address_space *vm =
2519                         &i915_vm_to_ggtt(vma->vm)->alias->vm;
2520
2521                 vm->clear_range(vm, vma->node.start, vma->size);
2522         }
2523 }
2524
2525 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2526                                struct sg_table *pages)
2527 {
2528         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2529         struct device *kdev = &dev_priv->drm.pdev->dev;
2530         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2531
2532         if (unlikely(ggtt->do_idle_maps)) {
2533                 if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2534                         DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2535                         /* Wait a bit, in hopes it avoids the hang */
2536                         udelay(10);
2537                 }
2538         }
2539
2540         dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2541 }
2542
2543 static int ggtt_set_pages(struct i915_vma *vma)
2544 {
2545         int ret;
2546
2547         GEM_BUG_ON(vma->pages);
2548
2549         ret = i915_get_ggtt_vma_pages(vma);
2550         if (ret)
2551                 return ret;
2552
2553         vma->page_sizes = vma->obj->mm.page_sizes;
2554
2555         return 0;
2556 }
2557
2558 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2559                                   unsigned long color,
2560                                   u64 *start,
2561                                   u64 *end)
2562 {
2563         if (node->allocated && node->color != color)
2564                 *start += I915_GTT_PAGE_SIZE;
2565
2566         /* Also leave a space between the unallocated reserved node after the
2567          * GTT and any objects within the GTT, i.e. we use the color adjustment
2568          * to insert a guard page to prevent prefetches crossing over the
2569          * GTT boundary.
2570          */
2571         node = list_next_entry(node, node_list);
2572         if (node->color != color)
2573                 *end -= I915_GTT_PAGE_SIZE;
2574 }
2575
2576 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
2577 {
2578         struct i915_ppgtt *ppgtt;
2579         int err;
2580
2581         ppgtt = i915_ppgtt_create(ggtt->vm.i915);
2582         if (IS_ERR(ppgtt))
2583                 return PTR_ERR(ppgtt);
2584
2585         if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2586                 err = -ENODEV;
2587                 goto err_ppgtt;
2588         }
2589
2590         /*
2591          * Note we only pre-allocate as far as the end of the global
2592          * GTT. On 48b / 4-level page-tables, the difference is very,
2593          * very significant! We have to preallocate as GVT/vgpu does
2594          * not like the page directory disappearing.
2595          */
2596         err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2597         if (err)
2598                 goto err_ppgtt;
2599
2600         ggtt->alias = ppgtt;
2601
2602         GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2603         ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2604
2605         GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2606         ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2607
2608         return 0;
2609
2610 err_ppgtt:
2611         i915_vm_put(&ppgtt->vm);
2612         return err;
2613 }
2614
2615 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
2616 {
2617         struct drm_i915_private *i915 = ggtt->vm.i915;
2618         struct i915_ppgtt *ppgtt;
2619
2620         mutex_lock(&i915->drm.struct_mutex);
2621
2622         ppgtt = fetch_and_zero(&ggtt->alias);
2623         if (!ppgtt)
2624                 goto out;
2625
2626         i915_vm_put(&ppgtt->vm);
2627
2628         ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
2629         ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2630
2631 out:
2632         mutex_unlock(&i915->drm.struct_mutex);
2633 }
2634
2635 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
2636 {
2637         u64 size;
2638         int ret;
2639
2640         if (!USES_GUC(ggtt->vm.i915))
2641                 return 0;
2642
2643         GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
2644         size = ggtt->vm.total - GUC_GGTT_TOP;
2645
2646         ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
2647                                    GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
2648                                    PIN_NOEVICT);
2649         if (ret)
2650                 DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");
2651
2652         return ret;
2653 }
2654
2655 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
2656 {
2657         if (drm_mm_node_allocated(&ggtt->uc_fw))
2658                 drm_mm_remove_node(&ggtt->uc_fw);
2659 }
2660
2661 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
2662 {
2663         ggtt_release_guc_top(ggtt);
2664         drm_mm_remove_node(&ggtt->error_capture);
2665 }
2666
2667 static int init_ggtt(struct i915_ggtt *ggtt)
2668 {
2669         /* Let GEM Manage all of the aperture.
2670          *
2671          * However, leave one page at the end still bound to the scratch page.
2672          * There are a number of places where the hardware apparently prefetches
2673          * past the end of the object, and we've seen multiple hangs with the
2674          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2675          * aperture.  One page should be enough to keep any prefetching inside
2676          * of the aperture.
2677          */
2678         unsigned long hole_start, hole_end;
2679         struct drm_mm_node *entry;
2680         int ret;
2681
2682         /*
2683          * GuC requires all resources that we're sharing with it to be placed in
2684          * non-WOPCM memory. If GuC is not present or not in use we still need a
2685          * small bias as ring wraparound at offset 0 sometimes hangs. No idea
2686          * why.
2687          */
2688         ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2689                                intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
2690
2691         ret = intel_vgt_balloon(ggtt);
2692         if (ret)
2693                 return ret;
2694
2695         /* Reserve a mappable slot for our lockless error capture */
2696         ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2697                                           PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2698                                           0, ggtt->mappable_end,
2699                                           DRM_MM_INSERT_LOW);
2700         if (ret)
2701                 return ret;
2702
2703         /*
2704          * The upper portion of the GuC address space has a sizeable hole
2705          * (several MB) that is inaccessible by GuC. Reserve this range within
2706          * GGTT as it can comfortably hold GuC/HuC firmware images.
2707          */
2708         ret = ggtt_reserve_guc_top(ggtt);
2709         if (ret)
2710                 goto err;
2711
2712         /* Clear any non-preallocated blocks */
2713         drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2714                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2715                               hole_start, hole_end);
2716                 ggtt->vm.clear_range(&ggtt->vm, hole_start,
2717                                      hole_end - hole_start);
2718         }
2719
2720         /* And finally clear the reserved guard page */
2721         ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2722
2723         return 0;
2724
2725 err:
2726         cleanup_init_ggtt(ggtt);
2727         return ret;
2728 }
2729
2730 int i915_init_ggtt(struct drm_i915_private *i915)
2731 {
2732         int ret;
2733
2734         ret = init_ggtt(&i915->ggtt);
2735         if (ret)
2736                 return ret;
2737
2738         if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
2739                 ret = init_aliasing_ppgtt(&i915->ggtt);
2740                 if (ret)
2741                         cleanup_init_ggtt(&i915->ggtt);
2742         }
2743
2744         return 0;
2745 }
2746
2747 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
2748 {
2749         struct drm_i915_private *i915 = ggtt->vm.i915;
2750         struct i915_vma *vma, *vn;
2751
2752         ggtt->vm.closed = true;
2753
2754         rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
2755         flush_workqueue(i915->wq);
2756
2757         mutex_lock(&i915->drm.struct_mutex);
2758
2759         list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2760                 WARN_ON(i915_vma_unbind(vma));
2761
2762         if (drm_mm_node_allocated(&ggtt->error_capture))
2763                 drm_mm_remove_node(&ggtt->error_capture);
2764
2765         ggtt_release_guc_top(ggtt);
2766
2767         if (drm_mm_initialized(&ggtt->vm.mm)) {
2768                 intel_vgt_deballoon(ggtt);
2769                 i915_address_space_fini(&ggtt->vm);
2770         }
2771
2772         ggtt->vm.cleanup(&ggtt->vm);
2773
2774         mutex_unlock(&i915->drm.struct_mutex);
2775
2776         arch_phys_wc_del(ggtt->mtrr);
2777         io_mapping_fini(&ggtt->iomap);
2778 }
2779
2780 /**
2781  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
2782  * @i915: i915 device
2783  */
2784 void i915_ggtt_driver_release(struct drm_i915_private *i915)
2785 {
2786         struct pagevec *pvec;
2787
2788         fini_aliasing_ppgtt(&i915->ggtt);
2789
2790         ggtt_cleanup_hw(&i915->ggtt);
2791
2792         pvec = &i915->mm.wc_stash.pvec;
2793         if (pvec->nr) {
2794                 set_pages_array_wb(pvec->pages, pvec->nr);
2795                 __pagevec_release(pvec);
2796         }
2797
2798         i915_gem_cleanup_stolen(i915);
2799 }
2800
2801 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2802 {
2803         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2804         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2805         return snb_gmch_ctl << 20;
2806 }
2807
2808 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2809 {
2810         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2811         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2812         if (bdw_gmch_ctl)
2813                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2814
2815 #ifdef CONFIG_X86_32
2816         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2817         if (bdw_gmch_ctl > 4)
2818                 bdw_gmch_ctl = 4;
2819 #endif
2820
2821         return bdw_gmch_ctl << 20;
2822 }
2823
2824 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2825 {
2826         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2827         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2828
2829         if (gmch_ctrl)
2830                 return 1 << (20 + gmch_ctrl);
2831
2832         return 0;
2833 }
2834
2835 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2836 {
2837         struct drm_i915_private *dev_priv = ggtt->vm.i915;
2838         struct pci_dev *pdev = dev_priv->drm.pdev;
2839         phys_addr_t phys_addr;
2840         int ret;
2841
2842         /* For Modern GENs the PTEs and register space are split in the BAR */
2843         phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2844
2845         /*
2846          * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2847          * will be dropped. For WC mappings in general we have 64 byte burst
2848          * writes when the WC buffer is flushed, so we can't use it, but have to
2849          * resort to an uncached mapping. The WC issue is easily caught by the
2850          * readback check when writing GTT PTE entries.
2851          */
2852         if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2853                 ggtt->gsm = ioremap_nocache(phys_addr, size);
2854         else
2855                 ggtt->gsm = ioremap_wc(phys_addr, size);
2856         if (!ggtt->gsm) {
2857                 DRM_ERROR("Failed to map the ggtt page table\n");
2858                 return -ENOMEM;
2859         }
2860
2861         ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2862         if (ret) {
2863                 DRM_ERROR("Scratch setup failed\n");
2864                 /* iounmap will also get called at remove, but meh */
2865                 iounmap(ggtt->gsm);
2866                 return ret;
2867         }
2868
2869         ggtt->vm.scratch[0].encode =
2870                 ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
2871                                     I915_CACHE_NONE, 0);
2872
2873         return 0;
2874 }
2875
2876 static void tgl_setup_private_ppat(struct drm_i915_private *dev_priv)
2877 {
2878         /* TGL doesn't support LLC or AGE settings */
2879         I915_WRITE(GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
2880         I915_WRITE(GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
2881         I915_WRITE(GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
2882         I915_WRITE(GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
2883         I915_WRITE(GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
2884         I915_WRITE(GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
2885         I915_WRITE(GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
2886         I915_WRITE(GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
2887 }
2888
2889 static void cnl_setup_private_ppat(struct drm_i915_private *dev_priv)
2890 {
2891         I915_WRITE(GEN10_PAT_INDEX(0), GEN8_PPAT_WB | GEN8_PPAT_LLC);
2892         I915_WRITE(GEN10_PAT_INDEX(1), GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
2893         I915_WRITE(GEN10_PAT_INDEX(2), GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
2894         I915_WRITE(GEN10_PAT_INDEX(3), GEN8_PPAT_UC);
2895         I915_WRITE(GEN10_PAT_INDEX(4), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
2896         I915_WRITE(GEN10_PAT_INDEX(5), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
2897         I915_WRITE(GEN10_PAT_INDEX(6), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
2898         I915_WRITE(GEN10_PAT_INDEX(7), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2899 }
2900
2901 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2902  * bits. When using advanced contexts each context stores its own PAT, but
2903  * writing this data shouldn't be harmful even in those cases. */
2904 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2905 {
2906         u64 pat;
2907
2908         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |      /* for normal objects, no eLLC */
2909               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |  /* for something pointing to ptes? */
2910               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) |  /* for scanout with eLLC */
2911               GEN8_PPAT(3, GEN8_PPAT_UC) |                      /* Uncached objects, mostly for scanout */
2912               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2913               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2914               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2915               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2916
2917         I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
2918         I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
2919 }
2920
2921 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2922 {
2923         u64 pat;
2924
2925         /*
2926          * Map WB on BDW to snooped on CHV.
2927          *
2928          * Only the snoop bit has meaning for CHV, the rest is
2929          * ignored.
2930          *
2931          * The hardware will never snoop for certain types of accesses:
2932          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2933          * - PPGTT page tables
2934          * - some other special cycles
2935          *
2936          * As with BDW, we also need to consider the following for GT accesses:
2937          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2938          * so RTL will always use the value corresponding to
2939          * pat_sel = 000".
2940          * Which means we must set the snoop bit in PAT entry 0
2941          * in order to keep the global status page working.
2942          */
2943
2944         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2945               GEN8_PPAT(1, 0) |
2946               GEN8_PPAT(2, 0) |
2947               GEN8_PPAT(3, 0) |
2948               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2949               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2950               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2951               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2952
2953         I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
2954         I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
2955 }
2956
2957 static void gen6_gmch_remove(struct i915_address_space *vm)
2958 {
2959         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2960
2961         iounmap(ggtt->gsm);
2962         cleanup_scratch_page(vm);
2963 }
2964
2965 static void setup_private_pat(struct drm_i915_private *dev_priv)
2966 {
2967         GEM_BUG_ON(INTEL_GEN(dev_priv) < 8);
2968
2969         if (INTEL_GEN(dev_priv) >= 12)
2970                 tgl_setup_private_ppat(dev_priv);
2971         else if (INTEL_GEN(dev_priv) >= 10)
2972                 cnl_setup_private_ppat(dev_priv);
2973         else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
2974                 chv_setup_private_ppat(dev_priv);
2975         else
2976                 bdw_setup_private_ppat(dev_priv);
2977 }
2978
2979 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
2980 {
2981         struct drm_i915_private *dev_priv = ggtt->vm.i915;
2982         struct pci_dev *pdev = dev_priv->drm.pdev;
2983         unsigned int size;
2984         u16 snb_gmch_ctl;
2985         int err;
2986
2987         /* TODO: We're not aware of mappable constraints on gen8 yet */
2988         ggtt->gmadr =
2989                 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
2990                                                  pci_resource_len(pdev, 2));
2991         ggtt->mappable_end = resource_size(&ggtt->gmadr);
2992
2993         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
2994         if (!err)
2995                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
2996         if (err)
2997                 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2998
2999         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3000         if (IS_CHERRYVIEW(dev_priv))
3001                 size = chv_get_total_gtt_size(snb_gmch_ctl);
3002         else
3003                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3004
3005         ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3006         ggtt->vm.cleanup = gen6_gmch_remove;
3007         ggtt->vm.insert_page = gen8_ggtt_insert_page;
3008         ggtt->vm.clear_range = nop_clear_range;
3009         if (intel_scanout_needs_vtd_wa(dev_priv))
3010                 ggtt->vm.clear_range = gen8_ggtt_clear_range;
3011
3012         ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3013
3014         /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3015         if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
3016             IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3017                 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3018                 ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3019                 if (ggtt->vm.clear_range != nop_clear_range)
3020                         ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3021         }
3022
3023         ggtt->invalidate = gen6_ggtt_invalidate;
3024
3025         ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3026         ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3027         ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3028         ggtt->vm.vma_ops.clear_pages = clear_pages;
3029
3030         ggtt->vm.pte_encode = gen8_pte_encode;
3031
3032         setup_private_pat(dev_priv);
3033
3034         return ggtt_probe_common(ggtt, size);
3035 }
3036
3037 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3038 {
3039         struct drm_i915_private *dev_priv = ggtt->vm.i915;
3040         struct pci_dev *pdev = dev_priv->drm.pdev;
3041         unsigned int size;
3042         u16 snb_gmch_ctl;
3043         int err;
3044
3045         ggtt->gmadr =
3046                 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3047                                                  pci_resource_len(pdev, 2));
3048         ggtt->mappable_end = resource_size(&ggtt->gmadr);
3049
3050         /* 64/512MB is the current min/max we actually know of, but this is just
3051          * a coarse sanity check.
3052          */
3053         if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3054                 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3055                 return -ENXIO;
3056         }
3057
3058         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3059         if (!err)
3060                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3061         if (err)
3062                 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3063         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3064
3065         size = gen6_get_total_gtt_size(snb_gmch_ctl);
3066         ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3067
3068         ggtt->vm.clear_range = nop_clear_range;
3069         if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3070                 ggtt->vm.clear_range = gen6_ggtt_clear_range;
3071         ggtt->vm.insert_page = gen6_ggtt_insert_page;
3072         ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3073         ggtt->vm.cleanup = gen6_gmch_remove;
3074
3075         ggtt->invalidate = gen6_ggtt_invalidate;
3076
3077         if (HAS_EDRAM(dev_priv))
3078                 ggtt->vm.pte_encode = iris_pte_encode;
3079         else if (IS_HASWELL(dev_priv))
3080                 ggtt->vm.pte_encode = hsw_pte_encode;
3081         else if (IS_VALLEYVIEW(dev_priv))
3082                 ggtt->vm.pte_encode = byt_pte_encode;
3083         else if (INTEL_GEN(dev_priv) >= 7)
3084                 ggtt->vm.pte_encode = ivb_pte_encode;
3085         else
3086                 ggtt->vm.pte_encode = snb_pte_encode;
3087
3088         ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3089         ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3090         ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3091         ggtt->vm.vma_ops.clear_pages = clear_pages;
3092
3093         return ggtt_probe_common(ggtt, size);
3094 }
3095
3096 static void i915_gmch_remove(struct i915_address_space *vm)
3097 {
3098         intel_gmch_remove();
3099 }
3100
3101 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3102 {
3103         struct drm_i915_private *dev_priv = ggtt->vm.i915;
3104         phys_addr_t gmadr_base;
3105         int ret;
3106
3107         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3108         if (!ret) {
3109                 DRM_ERROR("failed to set up gmch\n");
3110                 return -EIO;
3111         }
3112
3113         intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3114
3115         ggtt->gmadr =
3116                 (struct resource) DEFINE_RES_MEM(gmadr_base,
3117                                                  ggtt->mappable_end);
3118
3119         ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3120         ggtt->vm.insert_page = i915_ggtt_insert_page;
3121         ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3122         ggtt->vm.clear_range = i915_ggtt_clear_range;
3123         ggtt->vm.cleanup = i915_gmch_remove;
3124
3125         ggtt->invalidate = gmch_ggtt_invalidate;
3126
3127         ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3128         ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3129         ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3130         ggtt->vm.vma_ops.clear_pages = clear_pages;
3131
3132         if (unlikely(ggtt->do_idle_maps))
3133                 dev_notice(dev_priv->drm.dev,
3134                            "Applying Ironlake quirks for intel_iommu\n");
3135
3136         return 0;
3137 }
3138
3139 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
3140 {
3141         struct drm_i915_private *i915 = gt->i915;
3142         int ret;
3143
3144         ggtt->vm.gt = gt;
3145         ggtt->vm.i915 = i915;
3146         ggtt->vm.dma = &i915->drm.pdev->dev;
3147
3148         if (INTEL_GEN(i915) <= 5)
3149                 ret = i915_gmch_probe(ggtt);
3150         else if (INTEL_GEN(i915) < 8)
3151                 ret = gen6_gmch_probe(ggtt);
3152         else
3153                 ret = gen8_gmch_probe(ggtt);
3154         if (ret)
3155                 return ret;
3156
3157         if ((ggtt->vm.total - 1) >> 32) {
3158                 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3159                           " of address space! Found %lldM!\n",
3160                           ggtt->vm.total >> 20);
3161                 ggtt->vm.total = 1ULL << 32;
3162                 ggtt->mappable_end =
3163                         min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3164         }
3165
3166         if (ggtt->mappable_end > ggtt->vm.total) {
3167                 DRM_ERROR("mappable aperture extends past end of GGTT,"
3168                           " aperture=%pa, total=%llx\n",
3169                           &ggtt->mappable_end, ggtt->vm.total);
3170                 ggtt->mappable_end = ggtt->vm.total;
3171         }
3172
3173         /* GMADR is the PCI mmio aperture into the global GTT. */
3174         DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3175         DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3176         DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3177                          (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3178
3179         return 0;
3180 }
3181
3182 /**
3183  * i915_ggtt_probe_hw - Probe GGTT hardware location
3184  * @i915: i915 device
3185  */
3186 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
3187 {
3188         int ret;
3189
3190         ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
3191         if (ret)
3192                 return ret;
3193
3194         if (intel_vtd_active())
3195                 dev_info(i915->drm.dev, "VT-d active for gfx access\n");
3196
3197         return 0;
3198 }
3199
3200 static int ggtt_init_hw(struct i915_ggtt *ggtt)
3201 {
3202         struct drm_i915_private *i915 = ggtt->vm.i915;
3203         int ret = 0;
3204
3205         mutex_lock(&i915->drm.struct_mutex);
3206
3207         i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3208
3209         ggtt->vm.is_ggtt = true;
3210
3211         /* Only VLV supports read-only GGTT mappings */
3212         ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
3213
3214         if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
3215                 ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3216
3217         if (!io_mapping_init_wc(&ggtt->iomap,
3218                                 ggtt->gmadr.start,
3219                                 ggtt->mappable_end)) {
3220                 ggtt->vm.cleanup(&ggtt->vm);
3221                 ret = -EIO;
3222                 goto out;
3223         }
3224
3225         ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3226
3227         i915_ggtt_init_fences(ggtt);
3228
3229 out:
3230         mutex_unlock(&i915->drm.struct_mutex);
3231
3232         return ret;
3233 }
3234
3235 /**
3236  * i915_ggtt_init_hw - Initialize GGTT hardware
3237  * @dev_priv: i915 device
3238  */
3239 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3240 {
3241         int ret;
3242
3243         stash_init(&dev_priv->mm.wc_stash);
3244
3245         /* Note that we use page colouring to enforce a guard page at the
3246          * end of the address space. This is required as the CS may prefetch
3247          * beyond the end of the batch buffer, across the page boundary,
3248          * and beyond the end of the GTT if we do not provide a guard.
3249          */
3250         ret = ggtt_init_hw(&dev_priv->ggtt);
3251         if (ret)
3252                 return ret;
3253
3254         /*
3255          * Initialise stolen early so that we may reserve preallocated
3256          * objects for the BIOS to KMS transition.
3257          */
3258         ret = i915_gem_init_stolen(dev_priv);
3259         if (ret)
3260                 goto out_gtt_cleanup;
3261
3262         return 0;
3263
3264 out_gtt_cleanup:
3265         dev_priv->ggtt.vm.cleanup(&dev_priv->ggtt.vm);
3266         return ret;
3267 }
3268
3269 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3270 {
3271         if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3272                 return -EIO;
3273
3274         return 0;
3275 }
3276
3277 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
3278 {
3279         GEM_BUG_ON(ggtt->invalidate != gen6_ggtt_invalidate);
3280
3281         ggtt->invalidate = guc_ggtt_invalidate;
3282
3283         ggtt->invalidate(ggtt);
3284 }
3285
3286 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
3287 {
3288         /* XXX Temporary pardon for error unload */
3289         if (ggtt->invalidate == gen6_ggtt_invalidate)
3290                 return;
3291
3292         /* We should only be called after i915_ggtt_enable_guc() */
3293         GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
3294
3295         ggtt->invalidate = gen6_ggtt_invalidate;
3296
3297         ggtt->invalidate(ggtt);
3298 }
3299
3300 static void ggtt_restore_mappings(struct i915_ggtt *ggtt)
3301 {
3302         struct i915_vma *vma, *vn;
3303         bool flush = false;
3304
3305         intel_gt_check_and_clear_faults(ggtt->vm.gt);
3306
3307         mutex_lock(&ggtt->vm.mutex);
3308
3309         /* First fill our portion of the GTT with scratch pages */
3310         ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3311         ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3312
3313         /* clflush objects bound into the GGTT and rebind them. */
3314         list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3315                 struct drm_i915_gem_object *obj = vma->obj;
3316
3317                 if (!(vma->flags & I915_VMA_GLOBAL_BIND))
3318                         continue;
3319
3320                 mutex_unlock(&ggtt->vm.mutex);
3321
3322                 if (!i915_vma_unbind(vma))
3323                         goto lock;
3324
3325                 WARN_ON(i915_vma_bind(vma,
3326                                       obj ? obj->cache_level : 0,
3327                                       PIN_UPDATE));
3328                 if (obj) { /* only used during resume => exclusive access */
3329                         flush |= fetch_and_zero(&obj->write_domain);
3330                         obj->read_domains |= I915_GEM_DOMAIN_GTT;
3331                 }
3332
3333 lock:
3334                 mutex_lock(&ggtt->vm.mutex);
3335         }
3336
3337         ggtt->vm.closed = false;
3338         ggtt->invalidate(ggtt);
3339
3340         mutex_unlock(&ggtt->vm.mutex);
3341
3342         if (flush)
3343                 wbinvd_on_all_cpus();
3344 }
3345
3346 void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915)
3347 {
3348         ggtt_restore_mappings(&i915->ggtt);
3349
3350         if (INTEL_GEN(i915) >= 8)
3351                 setup_private_pat(i915);
3352 }
3353
3354 static struct scatterlist *
3355 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3356              unsigned int width, unsigned int height,
3357              unsigned int stride,
3358              struct sg_table *st, struct scatterlist *sg)
3359 {
3360         unsigned int column, row;
3361         unsigned int src_idx;
3362
3363         for (column = 0; column < width; column++) {
3364                 src_idx = stride * (height - 1) + column + offset;
3365                 for (row = 0; row < height; row++) {
3366                         st->nents++;
3367                         /* We don't need the pages, but need to initialize
3368                          * the entries so the sg list can be happily traversed.
3369                          * The only thing we need are DMA addresses.
3370                          */
3371                         sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3372                         sg_dma_address(sg) =
3373                                 i915_gem_object_get_dma_address(obj, src_idx);
3374                         sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3375                         sg = sg_next(sg);
3376                         src_idx -= stride;
3377                 }
3378         }
3379
3380         return sg;
3381 }
3382
3383 static noinline struct sg_table *
3384 intel_rotate_pages(struct intel_rotation_info *rot_info,
3385                    struct drm_i915_gem_object *obj)
3386 {
3387         unsigned int size = intel_rotation_info_size(rot_info);
3388         struct sg_table *st;
3389         struct scatterlist *sg;
3390         int ret = -ENOMEM;
3391         int i;
3392
3393         /* Allocate target SG list. */
3394         st = kmalloc(sizeof(*st), GFP_KERNEL);
3395         if (!st)
3396                 goto err_st_alloc;
3397
3398         ret = sg_alloc_table(st, size, GFP_KERNEL);
3399         if (ret)
3400                 goto err_sg_alloc;
3401
3402         st->nents = 0;
3403         sg = st->sgl;
3404
3405         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3406                 sg = rotate_pages(obj, rot_info->plane[i].offset,
3407                                   rot_info->plane[i].width, rot_info->plane[i].height,
3408                                   rot_info->plane[i].stride, st, sg);
3409         }
3410
3411         return st;
3412
3413 err_sg_alloc:
3414         kfree(st);
3415 err_st_alloc:
3416
3417         DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3418                          obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3419
3420         return ERR_PTR(ret);
3421 }
3422
3423 static struct scatterlist *
3424 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3425             unsigned int width, unsigned int height,
3426             unsigned int stride,
3427             struct sg_table *st, struct scatterlist *sg)
3428 {
3429         unsigned int row;
3430
3431         for (row = 0; row < height; row++) {
3432                 unsigned int left = width * I915_GTT_PAGE_SIZE;
3433
3434                 while (left) {
3435                         dma_addr_t addr;
3436                         unsigned int length;
3437
3438                         /* We don't need the pages, but need to initialize
3439                          * the entries so the sg list can be happily traversed.
3440                          * The only thing we need are DMA addresses.
3441                          */
3442
3443                         addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
3444
3445                         length = min(left, length);
3446
3447                         st->nents++;
3448
3449                         sg_set_page(sg, NULL, length, 0);
3450                         sg_dma_address(sg) = addr;
3451                         sg_dma_len(sg) = length;
3452                         sg = sg_next(sg);
3453
3454                         offset += length / I915_GTT_PAGE_SIZE;
3455                         left -= length;
3456                 }
3457
3458                 offset += stride - width;
3459         }
3460
3461         return sg;
3462 }
3463
3464 static noinline struct sg_table *
3465 intel_remap_pages(struct intel_remapped_info *rem_info,
3466                   struct drm_i915_gem_object *obj)
3467 {
3468         unsigned int size = intel_remapped_info_size(rem_info);
3469         struct sg_table *st;
3470         struct scatterlist *sg;
3471         int ret = -ENOMEM;
3472         int i;
3473
3474         /* Allocate target SG list. */
3475         st = kmalloc(sizeof(*st), GFP_KERNEL);
3476         if (!st)
3477                 goto err_st_alloc;
3478
3479         ret = sg_alloc_table(st, size, GFP_KERNEL);
3480         if (ret)
3481                 goto err_sg_alloc;
3482
3483         st->nents = 0;
3484         sg = st->sgl;
3485
3486         for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
3487                 sg = remap_pages(obj, rem_info->plane[i].offset,
3488                                  rem_info->plane[i].width, rem_info->plane[i].height,
3489                                  rem_info->plane[i].stride, st, sg);
3490         }
3491
3492         i915_sg_trim(st);
3493
3494         return st;
3495
3496 err_sg_alloc:
3497         kfree(st);
3498 err_st_alloc:
3499
3500         DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3501                          obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
3502
3503         return ERR_PTR(ret);
3504 }
3505
3506 static noinline struct sg_table *
3507 intel_partial_pages(const struct i915_ggtt_view *view,
3508                     struct drm_i915_gem_object *obj)
3509 {
3510         struct sg_table *st;
3511         struct scatterlist *sg, *iter;
3512         unsigned int count = view->partial.size;
3513         unsigned int offset;
3514         int ret = -ENOMEM;
3515
3516         st = kmalloc(sizeof(*st), GFP_KERNEL);
3517         if (!st)
3518                 goto err_st_alloc;
3519
3520         ret = sg_alloc_table(st, count, GFP_KERNEL);
3521         if (ret)
3522                 goto err_sg_alloc;
3523
3524         iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3525         GEM_BUG_ON(!iter);
3526
3527         sg = st->sgl;
3528         st->nents = 0;
3529         do {
3530                 unsigned int len;
3531
3532                 len = min(iter->length - (offset << PAGE_SHIFT),
3533                           count << PAGE_SHIFT);
3534                 sg_set_page(sg, NULL, len, 0);
3535                 sg_dma_address(sg) =
3536                         sg_dma_address(iter) + (offset << PAGE_SHIFT);
3537                 sg_dma_len(sg) = len;
3538
3539                 st->nents++;
3540                 count -= len >> PAGE_SHIFT;
3541                 if (count == 0) {
3542                         sg_mark_end(sg);
3543                         i915_sg_trim(st); /* Drop any unused tail entries. */
3544
3545                         return st;
3546                 }
3547
3548                 sg = __sg_next(sg);
3549                 iter = __sg_next(iter);
3550                 offset = 0;
3551         } while (1);
3552
3553 err_sg_alloc:
3554         kfree(st);
3555 err_st_alloc:
3556         return ERR_PTR(ret);
3557 }
3558
3559 static int
3560 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3561 {
3562         int ret;
3563
3564         /* The vma->pages are only valid within the lifespan of the borrowed
3565          * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3566          * must be the vma->pages. A simple rule is that vma->pages must only
3567          * be accessed when the obj->mm.pages are pinned.
3568          */
3569         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3570
3571         switch (vma->ggtt_view.type) {
3572         default:
3573                 GEM_BUG_ON(vma->ggtt_view.type);
3574                 /* fall through */
3575         case I915_GGTT_VIEW_NORMAL:
3576                 vma->pages = vma->obj->mm.pages;
3577                 return 0;
3578
3579         case I915_GGTT_VIEW_ROTATED:
3580                 vma->pages =
3581                         intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3582                 break;
3583
3584         case I915_GGTT_VIEW_REMAPPED:
3585                 vma->pages =
3586                         intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
3587                 break;
3588
3589         case I915_GGTT_VIEW_PARTIAL:
3590                 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3591                 break;
3592         }
3593
3594         ret = 0;
3595         if (IS_ERR(vma->pages)) {
3596                 ret = PTR_ERR(vma->pages);
3597                 vma->pages = NULL;
3598                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3599                           vma->ggtt_view.type, ret);
3600         }
3601         return ret;
3602 }
3603
3604 /**
3605  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3606  * @vm: the &struct i915_address_space
3607  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3608  * @size: how much space to allocate inside the GTT,
3609  *        must be #I915_GTT_PAGE_SIZE aligned
3610  * @offset: where to insert inside the GTT,
3611  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3612  *          (@offset + @size) must fit within the address space
3613  * @color: color to apply to node, if this node is not from a VMA,
3614  *         color must be #I915_COLOR_UNEVICTABLE
3615  * @flags: control search and eviction behaviour
3616  *
3617  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3618  * the address space (using @size and @color). If the @node does not fit, it
3619  * tries to evict any overlapping nodes from the GTT, including any
3620  * neighbouring nodes if the colors do not match (to ensure guard pages between
3621  * differing domains). See i915_gem_evict_for_node() for the gory details
3622  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3623  * evicting active overlapping objects, and any overlapping node that is pinned
3624  * or marked as unevictable will also result in failure.
3625  *
3626  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3627  * asked to wait for eviction and interrupted.
3628  */
3629 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3630                          struct drm_mm_node *node,
3631                          u64 size, u64 offset, unsigned long color,
3632                          unsigned int flags)
3633 {
3634         int err;
3635
3636         GEM_BUG_ON(!size);
3637         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3638         GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3639         GEM_BUG_ON(range_overflows(offset, size, vm->total));
3640         GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3641         GEM_BUG_ON(drm_mm_node_allocated(node));
3642
3643         node->size = size;
3644         node->start = offset;
3645         node->color = color;
3646
3647         err = drm_mm_reserve_node(&vm->mm, node);
3648         if (err != -ENOSPC)
3649                 return err;
3650
3651         if (flags & PIN_NOEVICT)
3652                 return -ENOSPC;
3653
3654         err = i915_gem_evict_for_node(vm, node, flags);
3655         if (err == 0)
3656                 err = drm_mm_reserve_node(&vm->mm, node);
3657
3658         return err;
3659 }
3660
3661 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3662 {
3663         u64 range, addr;
3664
3665         GEM_BUG_ON(range_overflows(start, len, end));
3666         GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3667
3668         range = round_down(end - len, align) - round_up(start, align);
3669         if (range) {
3670                 if (sizeof(unsigned long) == sizeof(u64)) {
3671                         addr = get_random_long();
3672                 } else {
3673                         addr = get_random_int();
3674                         if (range > U32_MAX) {
3675                                 addr <<= 32;
3676                                 addr |= get_random_int();
3677                         }
3678                 }
3679                 div64_u64_rem(addr, range, &addr);
3680                 start += addr;
3681         }
3682
3683         return round_up(start, align);
3684 }
3685
3686 /**
3687  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3688  * @vm: the &struct i915_address_space
3689  * @node: the &struct drm_mm_node (typically i915_vma.node)
3690  * @size: how much space to allocate inside the GTT,
3691  *        must be #I915_GTT_PAGE_SIZE aligned
3692  * @alignment: required alignment of starting offset, may be 0 but
3693  *             if specified, this must be a power-of-two and at least
3694  *             #I915_GTT_MIN_ALIGNMENT
3695  * @color: color to apply to node
3696  * @start: start of any range restriction inside GTT (0 for all),
3697  *         must be #I915_GTT_PAGE_SIZE aligned
3698  * @end: end of any range restriction inside GTT (U64_MAX for all),
3699  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3700  * @flags: control search and eviction behaviour
3701  *
3702  * i915_gem_gtt_insert() first searches for an available hole into which
3703  * is can insert the node. The hole address is aligned to @alignment and
3704  * its @size must then fit entirely within the [@start, @end] bounds. The
3705  * nodes on either side of the hole must match @color, or else a guard page
3706  * will be inserted between the two nodes (or the node evicted). If no
3707  * suitable hole is found, first a victim is randomly selected and tested
3708  * for eviction, otherwise then the LRU list of objects within the GTT
3709  * is scanned to find the first set of replacement nodes to create the hole.
3710  * Those old overlapping nodes are evicted from the GTT (and so must be
3711  * rebound before any future use). Any node that is currently pinned cannot
3712  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3713  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3714  * searching for an eviction candidate. See i915_gem_evict_something() for
3715  * the gory details on the eviction algorithm.
3716  *
3717  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3718  * asked to wait for eviction and interrupted.
3719  */
3720 int i915_gem_gtt_insert(struct i915_address_space *vm,
3721                         struct drm_mm_node *node,
3722                         u64 size, u64 alignment, unsigned long color,
3723                         u64 start, u64 end, unsigned int flags)
3724 {
3725         enum drm_mm_insert_mode mode;
3726         u64 offset;
3727         int err;
3728
3729         lockdep_assert_held(&vm->i915->drm.struct_mutex);
3730         GEM_BUG_ON(!size);
3731         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3732         GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3733         GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3734         GEM_BUG_ON(start >= end);
3735         GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3736         GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3737         GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3738         GEM_BUG_ON(drm_mm_node_allocated(node));
3739
3740         if (unlikely(range_overflows(start, size, end)))
3741                 return -ENOSPC;
3742
3743         if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3744                 return -ENOSPC;
3745
3746         mode = DRM_MM_INSERT_BEST;
3747         if (flags & PIN_HIGH)
3748                 mode = DRM_MM_INSERT_HIGHEST;
3749         if (flags & PIN_MAPPABLE)
3750                 mode = DRM_MM_INSERT_LOW;
3751
3752         /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3753          * so we know that we always have a minimum alignment of 4096.
3754          * The drm_mm range manager is optimised to return results
3755          * with zero alignment, so where possible use the optimal
3756          * path.
3757          */
3758         BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3759         if (alignment <= I915_GTT_MIN_ALIGNMENT)
3760                 alignment = 0;
3761
3762         err = drm_mm_insert_node_in_range(&vm->mm, node,
3763                                           size, alignment, color,
3764                                           start, end, mode);
3765         if (err != -ENOSPC)
3766                 return err;
3767
3768         if (mode & DRM_MM_INSERT_ONCE) {
3769                 err = drm_mm_insert_node_in_range(&vm->mm, node,
3770                                                   size, alignment, color,
3771                                                   start, end,
3772                                                   DRM_MM_INSERT_BEST);
3773                 if (err != -ENOSPC)
3774                         return err;
3775         }
3776
3777         if (flags & PIN_NOEVICT)
3778                 return -ENOSPC;
3779
3780         /*
3781          * No free space, pick a slot at random.
3782          *
3783          * There is a pathological case here using a GTT shared between
3784          * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3785          *
3786          *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3787          *         (64k objects)             (448k objects)
3788          *
3789          * Now imagine that the eviction LRU is ordered top-down (just because
3790          * pathology meets real life), and that we need to evict an object to
3791          * make room inside the aperture. The eviction scan then has to walk
3792          * the 448k list before it finds one within range. And now imagine that
3793          * it has to search for a new hole between every byte inside the memcpy,
3794          * for several simultaneous clients.
3795          *
3796          * On a full-ppgtt system, if we have run out of available space, there
3797          * will be lots and lots of objects in the eviction list! Again,
3798          * searching that LRU list may be slow if we are also applying any
3799          * range restrictions (e.g. restriction to low 4GiB) and so, for
3800          * simplicity and similarilty between different GTT, try the single
3801          * random replacement first.
3802          */
3803         offset = random_offset(start, end,
3804                                size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3805         err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3806         if (err != -ENOSPC)
3807                 return err;
3808
3809         if (flags & PIN_NOSEARCH)
3810                 return -ENOSPC;
3811
3812         /* Randomly selected placement is pinned, do a search */
3813         err = i915_gem_evict_something(vm, size, alignment, color,
3814                                        start, end, flags);
3815         if (err)
3816                 return err;
3817
3818         return drm_mm_insert_node_in_range(&vm->mm, node,
3819                                            size, alignment, color,
3820                                            start, end, DRM_MM_INSERT_EVICT);
3821 }
3822
3823 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3824 #include "selftests/mock_gtt.c"
3825 #include "selftests/i915_gem_gtt.c"
3826 #endif