Merge tag 'drm-intel-next-2017-05-29' of git://anongit.freedesktop.org/git/drm-intel...
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/debugfs.h>
30 #include <linux/sort.h>
31 #include "intel_drv.h"
32
33 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
34 {
35         return to_i915(node->minor->dev);
36 }
37
38 static __always_inline void seq_print_param(struct seq_file *m,
39                                             const char *name,
40                                             const char *type,
41                                             const void *x)
42 {
43         if (!__builtin_strcmp(type, "bool"))
44                 seq_printf(m, "i915.%s=%s\n", name, yesno(*(const bool *)x));
45         else if (!__builtin_strcmp(type, "int"))
46                 seq_printf(m, "i915.%s=%d\n", name, *(const int *)x);
47         else if (!__builtin_strcmp(type, "unsigned int"))
48                 seq_printf(m, "i915.%s=%u\n", name, *(const unsigned int *)x);
49         else if (!__builtin_strcmp(type, "char *"))
50                 seq_printf(m, "i915.%s=%s\n", name, *(const char **)x);
51         else
52                 BUILD_BUG();
53 }
54
55 static int i915_capabilities(struct seq_file *m, void *data)
56 {
57         struct drm_i915_private *dev_priv = node_to_i915(m->private);
58         const struct intel_device_info *info = INTEL_INFO(dev_priv);
59
60         seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
61         seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
62         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
63
64 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
65         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
66 #undef PRINT_FLAG
67
68         kernel_param_lock(THIS_MODULE);
69 #define PRINT_PARAM(T, x) seq_print_param(m, #x, #T, &i915.x);
70         I915_PARAMS_FOR_EACH(PRINT_PARAM);
71 #undef PRINT_PARAM
72         kernel_param_unlock(THIS_MODULE);
73
74         return 0;
75 }
76
77 static char get_active_flag(struct drm_i915_gem_object *obj)
78 {
79         return i915_gem_object_is_active(obj) ? '*' : ' ';
80 }
81
82 static char get_pin_flag(struct drm_i915_gem_object *obj)
83 {
84         return obj->pin_display ? 'p' : ' ';
85 }
86
87 static char get_tiling_flag(struct drm_i915_gem_object *obj)
88 {
89         switch (i915_gem_object_get_tiling(obj)) {
90         default:
91         case I915_TILING_NONE: return ' ';
92         case I915_TILING_X: return 'X';
93         case I915_TILING_Y: return 'Y';
94         }
95 }
96
97 static char get_global_flag(struct drm_i915_gem_object *obj)
98 {
99         return !list_empty(&obj->userfault_link) ? 'g' : ' ';
100 }
101
102 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
103 {
104         return obj->mm.mapping ? 'M' : ' ';
105 }
106
107 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
108 {
109         u64 size = 0;
110         struct i915_vma *vma;
111
112         list_for_each_entry(vma, &obj->vma_list, obj_link) {
113                 if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
114                         size += vma->node.size;
115         }
116
117         return size;
118 }
119
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
124         struct intel_engine_cs *engine;
125         struct i915_vma *vma;
126         unsigned int frontbuffer_bits;
127         int pin_count = 0;
128
129         lockdep_assert_held(&obj->base.dev->struct_mutex);
130
131         seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
132                    &obj->base,
133                    get_active_flag(obj),
134                    get_pin_flag(obj),
135                    get_tiling_flag(obj),
136                    get_global_flag(obj),
137                    get_pin_mapped_flag(obj),
138                    obj->base.size / 1024,
139                    obj->base.read_domains,
140                    obj->base.write_domain,
141                    i915_cache_level_str(dev_priv, obj->cache_level),
142                    obj->mm.dirty ? " dirty" : "",
143                    obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
144         if (obj->base.name)
145                 seq_printf(m, " (name: %d)", obj->base.name);
146         list_for_each_entry(vma, &obj->vma_list, obj_link) {
147                 if (i915_vma_is_pinned(vma))
148                         pin_count++;
149         }
150         seq_printf(m, " (pinned x %d)", pin_count);
151         if (obj->pin_display)
152                 seq_printf(m, " (display)");
153         list_for_each_entry(vma, &obj->vma_list, obj_link) {
154                 if (!drm_mm_node_allocated(&vma->node))
155                         continue;
156
157                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
158                            i915_vma_is_ggtt(vma) ? "g" : "pp",
159                            vma->node.start, vma->node.size);
160                 if (i915_vma_is_ggtt(vma)) {
161                         switch (vma->ggtt_view.type) {
162                         case I915_GGTT_VIEW_NORMAL:
163                                 seq_puts(m, ", normal");
164                                 break;
165
166                         case I915_GGTT_VIEW_PARTIAL:
167                                 seq_printf(m, ", partial [%08llx+%x]",
168                                            vma->ggtt_view.partial.offset << PAGE_SHIFT,
169                                            vma->ggtt_view.partial.size << PAGE_SHIFT);
170                                 break;
171
172                         case I915_GGTT_VIEW_ROTATED:
173                                 seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
174                                            vma->ggtt_view.rotated.plane[0].width,
175                                            vma->ggtt_view.rotated.plane[0].height,
176                                            vma->ggtt_view.rotated.plane[0].stride,
177                                            vma->ggtt_view.rotated.plane[0].offset,
178                                            vma->ggtt_view.rotated.plane[1].width,
179                                            vma->ggtt_view.rotated.plane[1].height,
180                                            vma->ggtt_view.rotated.plane[1].stride,
181                                            vma->ggtt_view.rotated.plane[1].offset);
182                                 break;
183
184                         default:
185                                 MISSING_CASE(vma->ggtt_view.type);
186                                 break;
187                         }
188                 }
189                 if (vma->fence)
190                         seq_printf(m, " , fence: %d%s",
191                                    vma->fence->id,
192                                    i915_gem_active_isset(&vma->last_fence) ? "*" : "");
193                 seq_puts(m, ")");
194         }
195         if (obj->stolen)
196                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
197
198         engine = i915_gem_object_last_write_engine(obj);
199         if (engine)
200                 seq_printf(m, " (%s)", engine->name);
201
202         frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
203         if (frontbuffer_bits)
204                 seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
205 }
206
207 static int obj_rank_by_stolen(const void *A, const void *B)
208 {
209         const struct drm_i915_gem_object *a =
210                 *(const struct drm_i915_gem_object **)A;
211         const struct drm_i915_gem_object *b =
212                 *(const struct drm_i915_gem_object **)B;
213
214         if (a->stolen->start < b->stolen->start)
215                 return -1;
216         if (a->stolen->start > b->stolen->start)
217                 return 1;
218         return 0;
219 }
220
221 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
222 {
223         struct drm_i915_private *dev_priv = node_to_i915(m->private);
224         struct drm_device *dev = &dev_priv->drm;
225         struct drm_i915_gem_object **objects;
226         struct drm_i915_gem_object *obj;
227         u64 total_obj_size, total_gtt_size;
228         unsigned long total, count, n;
229         int ret;
230
231         total = READ_ONCE(dev_priv->mm.object_count);
232         objects = kvmalloc_array(total, sizeof(*objects), GFP_KERNEL);
233         if (!objects)
234                 return -ENOMEM;
235
236         ret = mutex_lock_interruptible(&dev->struct_mutex);
237         if (ret)
238                 goto out;
239
240         total_obj_size = total_gtt_size = count = 0;
241         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
242                 if (count == total)
243                         break;
244
245                 if (obj->stolen == NULL)
246                         continue;
247
248                 objects[count++] = obj;
249                 total_obj_size += obj->base.size;
250                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
251
252         }
253         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
254                 if (count == total)
255                         break;
256
257                 if (obj->stolen == NULL)
258                         continue;
259
260                 objects[count++] = obj;
261                 total_obj_size += obj->base.size;
262         }
263
264         sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
265
266         seq_puts(m, "Stolen:\n");
267         for (n = 0; n < count; n++) {
268                 seq_puts(m, "   ");
269                 describe_obj(m, objects[n]);
270                 seq_putc(m, '\n');
271         }
272         seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
273                    count, total_obj_size, total_gtt_size);
274
275         mutex_unlock(&dev->struct_mutex);
276 out:
277         kvfree(objects);
278         return ret;
279 }
280
281 struct file_stats {
282         struct drm_i915_file_private *file_priv;
283         unsigned long count;
284         u64 total, unbound;
285         u64 global, shared;
286         u64 active, inactive;
287 };
288
289 static int per_file_stats(int id, void *ptr, void *data)
290 {
291         struct drm_i915_gem_object *obj = ptr;
292         struct file_stats *stats = data;
293         struct i915_vma *vma;
294
295         stats->count++;
296         stats->total += obj->base.size;
297         if (!obj->bind_count)
298                 stats->unbound += obj->base.size;
299         if (obj->base.name || obj->base.dma_buf)
300                 stats->shared += obj->base.size;
301
302         list_for_each_entry(vma, &obj->vma_list, obj_link) {
303                 if (!drm_mm_node_allocated(&vma->node))
304                         continue;
305
306                 if (i915_vma_is_ggtt(vma)) {
307                         stats->global += vma->node.size;
308                 } else {
309                         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
310
311                         if (ppgtt->base.file != stats->file_priv)
312                                 continue;
313                 }
314
315                 if (i915_vma_is_active(vma))
316                         stats->active += vma->node.size;
317                 else
318                         stats->inactive += vma->node.size;
319         }
320
321         return 0;
322 }
323
324 #define print_file_stats(m, name, stats) do { \
325         if (stats.count) \
326                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
327                            name, \
328                            stats.count, \
329                            stats.total, \
330                            stats.active, \
331                            stats.inactive, \
332                            stats.global, \
333                            stats.shared, \
334                            stats.unbound); \
335 } while (0)
336
337 static void print_batch_pool_stats(struct seq_file *m,
338                                    struct drm_i915_private *dev_priv)
339 {
340         struct drm_i915_gem_object *obj;
341         struct file_stats stats;
342         struct intel_engine_cs *engine;
343         enum intel_engine_id id;
344         int j;
345
346         memset(&stats, 0, sizeof(stats));
347
348         for_each_engine(engine, dev_priv, id) {
349                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
350                         list_for_each_entry(obj,
351                                             &engine->batch_pool.cache_list[j],
352                                             batch_pool_link)
353                                 per_file_stats(0, obj, &stats);
354                 }
355         }
356
357         print_file_stats(m, "[k]batch pool", stats);
358 }
359
360 static int per_file_ctx_stats(int id, void *ptr, void *data)
361 {
362         struct i915_gem_context *ctx = ptr;
363         int n;
364
365         for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
366                 if (ctx->engine[n].state)
367                         per_file_stats(0, ctx->engine[n].state->obj, data);
368                 if (ctx->engine[n].ring)
369                         per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
370         }
371
372         return 0;
373 }
374
375 static void print_context_stats(struct seq_file *m,
376                                 struct drm_i915_private *dev_priv)
377 {
378         struct drm_device *dev = &dev_priv->drm;
379         struct file_stats stats;
380         struct drm_file *file;
381
382         memset(&stats, 0, sizeof(stats));
383
384         mutex_lock(&dev->struct_mutex);
385         if (dev_priv->kernel_context)
386                 per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
387
388         list_for_each_entry(file, &dev->filelist, lhead) {
389                 struct drm_i915_file_private *fpriv = file->driver_priv;
390                 idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
391         }
392         mutex_unlock(&dev->struct_mutex);
393
394         print_file_stats(m, "[k]contexts", stats);
395 }
396
397 static int i915_gem_object_info(struct seq_file *m, void *data)
398 {
399         struct drm_i915_private *dev_priv = node_to_i915(m->private);
400         struct drm_device *dev = &dev_priv->drm;
401         struct i915_ggtt *ggtt = &dev_priv->ggtt;
402         u32 count, mapped_count, purgeable_count, dpy_count;
403         u64 size, mapped_size, purgeable_size, dpy_size;
404         struct drm_i915_gem_object *obj;
405         struct drm_file *file;
406         int ret;
407
408         ret = mutex_lock_interruptible(&dev->struct_mutex);
409         if (ret)
410                 return ret;
411
412         seq_printf(m, "%u objects, %llu bytes\n",
413                    dev_priv->mm.object_count,
414                    dev_priv->mm.object_memory);
415
416         size = count = 0;
417         mapped_size = mapped_count = 0;
418         purgeable_size = purgeable_count = 0;
419         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
420                 size += obj->base.size;
421                 ++count;
422
423                 if (obj->mm.madv == I915_MADV_DONTNEED) {
424                         purgeable_size += obj->base.size;
425                         ++purgeable_count;
426                 }
427
428                 if (obj->mm.mapping) {
429                         mapped_count++;
430                         mapped_size += obj->base.size;
431                 }
432         }
433         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
434
435         size = count = dpy_size = dpy_count = 0;
436         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
437                 size += obj->base.size;
438                 ++count;
439
440                 if (obj->pin_display) {
441                         dpy_size += obj->base.size;
442                         ++dpy_count;
443                 }
444
445                 if (obj->mm.madv == I915_MADV_DONTNEED) {
446                         purgeable_size += obj->base.size;
447                         ++purgeable_count;
448                 }
449
450                 if (obj->mm.mapping) {
451                         mapped_count++;
452                         mapped_size += obj->base.size;
453                 }
454         }
455         seq_printf(m, "%u bound objects, %llu bytes\n",
456                    count, size);
457         seq_printf(m, "%u purgeable objects, %llu bytes\n",
458                    purgeable_count, purgeable_size);
459         seq_printf(m, "%u mapped objects, %llu bytes\n",
460                    mapped_count, mapped_size);
461         seq_printf(m, "%u display objects (pinned), %llu bytes\n",
462                    dpy_count, dpy_size);
463
464         seq_printf(m, "%llu [%llu] gtt total\n",
465                    ggtt->base.total, ggtt->mappable_end);
466
467         seq_putc(m, '\n');
468         print_batch_pool_stats(m, dev_priv);
469         mutex_unlock(&dev->struct_mutex);
470
471         mutex_lock(&dev->filelist_mutex);
472         print_context_stats(m, dev_priv);
473         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
474                 struct file_stats stats;
475                 struct drm_i915_file_private *file_priv = file->driver_priv;
476                 struct drm_i915_gem_request *request;
477                 struct task_struct *task;
478
479                 memset(&stats, 0, sizeof(stats));
480                 stats.file_priv = file->driver_priv;
481                 spin_lock(&file->table_lock);
482                 idr_for_each(&file->object_idr, per_file_stats, &stats);
483                 spin_unlock(&file->table_lock);
484                 /*
485                  * Although we have a valid reference on file->pid, that does
486                  * not guarantee that the task_struct who called get_pid() is
487                  * still alive (e.g. get_pid(current) => fork() => exit()).
488                  * Therefore, we need to protect this ->comm access using RCU.
489                  */
490                 mutex_lock(&dev->struct_mutex);
491                 request = list_first_entry_or_null(&file_priv->mm.request_list,
492                                                    struct drm_i915_gem_request,
493                                                    client_link);
494                 rcu_read_lock();
495                 task = pid_task(request && request->ctx->pid ?
496                                 request->ctx->pid : file->pid,
497                                 PIDTYPE_PID);
498                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
499                 rcu_read_unlock();
500                 mutex_unlock(&dev->struct_mutex);
501         }
502         mutex_unlock(&dev->filelist_mutex);
503
504         return 0;
505 }
506
507 static int i915_gem_gtt_info(struct seq_file *m, void *data)
508 {
509         struct drm_info_node *node = m->private;
510         struct drm_i915_private *dev_priv = node_to_i915(node);
511         struct drm_device *dev = &dev_priv->drm;
512         bool show_pin_display_only = !!node->info_ent->data;
513         struct drm_i915_gem_object *obj;
514         u64 total_obj_size, total_gtt_size;
515         int count, ret;
516
517         ret = mutex_lock_interruptible(&dev->struct_mutex);
518         if (ret)
519                 return ret;
520
521         total_obj_size = total_gtt_size = count = 0;
522         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
523                 if (show_pin_display_only && !obj->pin_display)
524                         continue;
525
526                 seq_puts(m, "   ");
527                 describe_obj(m, obj);
528                 seq_putc(m, '\n');
529                 total_obj_size += obj->base.size;
530                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
531                 count++;
532         }
533
534         mutex_unlock(&dev->struct_mutex);
535
536         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
537                    count, total_obj_size, total_gtt_size);
538
539         return 0;
540 }
541
542 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
543 {
544         struct drm_i915_private *dev_priv = node_to_i915(m->private);
545         struct drm_device *dev = &dev_priv->drm;
546         struct intel_crtc *crtc;
547         int ret;
548
549         ret = mutex_lock_interruptible(&dev->struct_mutex);
550         if (ret)
551                 return ret;
552
553         for_each_intel_crtc(dev, crtc) {
554                 const char pipe = pipe_name(crtc->pipe);
555                 const char plane = plane_name(crtc->plane);
556                 struct intel_flip_work *work;
557
558                 spin_lock_irq(&dev->event_lock);
559                 work = crtc->flip_work;
560                 if (work == NULL) {
561                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
562                                    pipe, plane);
563                 } else {
564                         u32 pending;
565                         u32 addr;
566
567                         pending = atomic_read(&work->pending);
568                         if (pending) {
569                                 seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
570                                            pipe, plane);
571                         } else {
572                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
573                                            pipe, plane);
574                         }
575                         if (work->flip_queued_req) {
576                                 struct intel_engine_cs *engine = work->flip_queued_req->engine;
577
578                                 seq_printf(m, "Flip queued on %s at seqno %x, last submitted seqno %x [current breadcrumb %x], completed? %d\n",
579                                            engine->name,
580                                            work->flip_queued_req->global_seqno,
581                                            intel_engine_last_submit(engine),
582                                            intel_engine_get_seqno(engine),
583                                            i915_gem_request_completed(work->flip_queued_req));
584                         } else
585                                 seq_printf(m, "Flip not associated with any ring\n");
586                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
587                                    work->flip_queued_vblank,
588                                    work->flip_ready_vblank,
589                                    intel_crtc_get_vblank_counter(crtc));
590                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
591
592                         if (INTEL_GEN(dev_priv) >= 4)
593                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
594                         else
595                                 addr = I915_READ(DSPADDR(crtc->plane));
596                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
597
598                         if (work->pending_flip_obj) {
599                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
600                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
601                         }
602                 }
603                 spin_unlock_irq(&dev->event_lock);
604         }
605
606         mutex_unlock(&dev->struct_mutex);
607
608         return 0;
609 }
610
611 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
612 {
613         struct drm_i915_private *dev_priv = node_to_i915(m->private);
614         struct drm_device *dev = &dev_priv->drm;
615         struct drm_i915_gem_object *obj;
616         struct intel_engine_cs *engine;
617         enum intel_engine_id id;
618         int total = 0;
619         int ret, j;
620
621         ret = mutex_lock_interruptible(&dev->struct_mutex);
622         if (ret)
623                 return ret;
624
625         for_each_engine(engine, dev_priv, id) {
626                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
627                         int count;
628
629                         count = 0;
630                         list_for_each_entry(obj,
631                                             &engine->batch_pool.cache_list[j],
632                                             batch_pool_link)
633                                 count++;
634                         seq_printf(m, "%s cache[%d]: %d objects\n",
635                                    engine->name, j, count);
636
637                         list_for_each_entry(obj,
638                                             &engine->batch_pool.cache_list[j],
639                                             batch_pool_link) {
640                                 seq_puts(m, "   ");
641                                 describe_obj(m, obj);
642                                 seq_putc(m, '\n');
643                         }
644
645                         total += count;
646                 }
647         }
648
649         seq_printf(m, "total: %d\n", total);
650
651         mutex_unlock(&dev->struct_mutex);
652
653         return 0;
654 }
655
656 static void print_request(struct seq_file *m,
657                           struct drm_i915_gem_request *rq,
658                           const char *prefix)
659 {
660         seq_printf(m, "%s%x [%x:%x] prio=%d @ %dms: %s\n", prefix,
661                    rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
662                    rq->priotree.priority,
663                    jiffies_to_msecs(jiffies - rq->emitted_jiffies),
664                    rq->timeline->common->name);
665 }
666
667 static int i915_gem_request_info(struct seq_file *m, void *data)
668 {
669         struct drm_i915_private *dev_priv = node_to_i915(m->private);
670         struct drm_device *dev = &dev_priv->drm;
671         struct drm_i915_gem_request *req;
672         struct intel_engine_cs *engine;
673         enum intel_engine_id id;
674         int ret, any;
675
676         ret = mutex_lock_interruptible(&dev->struct_mutex);
677         if (ret)
678                 return ret;
679
680         any = 0;
681         for_each_engine(engine, dev_priv, id) {
682                 int count;
683
684                 count = 0;
685                 list_for_each_entry(req, &engine->timeline->requests, link)
686                         count++;
687                 if (count == 0)
688                         continue;
689
690                 seq_printf(m, "%s requests: %d\n", engine->name, count);
691                 list_for_each_entry(req, &engine->timeline->requests, link)
692                         print_request(m, req, "    ");
693
694                 any++;
695         }
696         mutex_unlock(&dev->struct_mutex);
697
698         if (any == 0)
699                 seq_puts(m, "No requests\n");
700
701         return 0;
702 }
703
704 static void i915_ring_seqno_info(struct seq_file *m,
705                                  struct intel_engine_cs *engine)
706 {
707         struct intel_breadcrumbs *b = &engine->breadcrumbs;
708         struct rb_node *rb;
709
710         seq_printf(m, "Current sequence (%s): %x\n",
711                    engine->name, intel_engine_get_seqno(engine));
712
713         spin_lock_irq(&b->rb_lock);
714         for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
715                 struct intel_wait *w = rb_entry(rb, typeof(*w), node);
716
717                 seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
718                            engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
719         }
720         spin_unlock_irq(&b->rb_lock);
721 }
722
723 static int i915_gem_seqno_info(struct seq_file *m, void *data)
724 {
725         struct drm_i915_private *dev_priv = node_to_i915(m->private);
726         struct intel_engine_cs *engine;
727         enum intel_engine_id id;
728
729         for_each_engine(engine, dev_priv, id)
730                 i915_ring_seqno_info(m, engine);
731
732         return 0;
733 }
734
735
736 static int i915_interrupt_info(struct seq_file *m, void *data)
737 {
738         struct drm_i915_private *dev_priv = node_to_i915(m->private);
739         struct intel_engine_cs *engine;
740         enum intel_engine_id id;
741         int i, pipe;
742
743         intel_runtime_pm_get(dev_priv);
744
745         if (IS_CHERRYVIEW(dev_priv)) {
746                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
747                            I915_READ(GEN8_MASTER_IRQ));
748
749                 seq_printf(m, "Display IER:\t%08x\n",
750                            I915_READ(VLV_IER));
751                 seq_printf(m, "Display IIR:\t%08x\n",
752                            I915_READ(VLV_IIR));
753                 seq_printf(m, "Display IIR_RW:\t%08x\n",
754                            I915_READ(VLV_IIR_RW));
755                 seq_printf(m, "Display IMR:\t%08x\n",
756                            I915_READ(VLV_IMR));
757                 for_each_pipe(dev_priv, pipe) {
758                         enum intel_display_power_domain power_domain;
759
760                         power_domain = POWER_DOMAIN_PIPE(pipe);
761                         if (!intel_display_power_get_if_enabled(dev_priv,
762                                                                 power_domain)) {
763                                 seq_printf(m, "Pipe %c power disabled\n",
764                                            pipe_name(pipe));
765                                 continue;
766                         }
767
768                         seq_printf(m, "Pipe %c stat:\t%08x\n",
769                                    pipe_name(pipe),
770                                    I915_READ(PIPESTAT(pipe)));
771
772                         intel_display_power_put(dev_priv, power_domain);
773                 }
774
775                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
776                 seq_printf(m, "Port hotplug:\t%08x\n",
777                            I915_READ(PORT_HOTPLUG_EN));
778                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
779                            I915_READ(VLV_DPFLIPSTAT));
780                 seq_printf(m, "DPINVGTT:\t%08x\n",
781                            I915_READ(DPINVGTT));
782                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
783
784                 for (i = 0; i < 4; i++) {
785                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
786                                    i, I915_READ(GEN8_GT_IMR(i)));
787                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
788                                    i, I915_READ(GEN8_GT_IIR(i)));
789                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
790                                    i, I915_READ(GEN8_GT_IER(i)));
791                 }
792
793                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
794                            I915_READ(GEN8_PCU_IMR));
795                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
796                            I915_READ(GEN8_PCU_IIR));
797                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
798                            I915_READ(GEN8_PCU_IER));
799         } else if (INTEL_GEN(dev_priv) >= 8) {
800                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
801                            I915_READ(GEN8_MASTER_IRQ));
802
803                 for (i = 0; i < 4; i++) {
804                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
805                                    i, I915_READ(GEN8_GT_IMR(i)));
806                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
807                                    i, I915_READ(GEN8_GT_IIR(i)));
808                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
809                                    i, I915_READ(GEN8_GT_IER(i)));
810                 }
811
812                 for_each_pipe(dev_priv, pipe) {
813                         enum intel_display_power_domain power_domain;
814
815                         power_domain = POWER_DOMAIN_PIPE(pipe);
816                         if (!intel_display_power_get_if_enabled(dev_priv,
817                                                                 power_domain)) {
818                                 seq_printf(m, "Pipe %c power disabled\n",
819                                            pipe_name(pipe));
820                                 continue;
821                         }
822                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
823                                    pipe_name(pipe),
824                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
825                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
826                                    pipe_name(pipe),
827                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
828                         seq_printf(m, "Pipe %c IER:\t%08x\n",
829                                    pipe_name(pipe),
830                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
831
832                         intel_display_power_put(dev_priv, power_domain);
833                 }
834
835                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
836                            I915_READ(GEN8_DE_PORT_IMR));
837                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
838                            I915_READ(GEN8_DE_PORT_IIR));
839                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
840                            I915_READ(GEN8_DE_PORT_IER));
841
842                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
843                            I915_READ(GEN8_DE_MISC_IMR));
844                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
845                            I915_READ(GEN8_DE_MISC_IIR));
846                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
847                            I915_READ(GEN8_DE_MISC_IER));
848
849                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
850                            I915_READ(GEN8_PCU_IMR));
851                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
852                            I915_READ(GEN8_PCU_IIR));
853                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
854                            I915_READ(GEN8_PCU_IER));
855         } else if (IS_VALLEYVIEW(dev_priv)) {
856                 seq_printf(m, "Display IER:\t%08x\n",
857                            I915_READ(VLV_IER));
858                 seq_printf(m, "Display IIR:\t%08x\n",
859                            I915_READ(VLV_IIR));
860                 seq_printf(m, "Display IIR_RW:\t%08x\n",
861                            I915_READ(VLV_IIR_RW));
862                 seq_printf(m, "Display IMR:\t%08x\n",
863                            I915_READ(VLV_IMR));
864                 for_each_pipe(dev_priv, pipe) {
865                         enum intel_display_power_domain power_domain;
866
867                         power_domain = POWER_DOMAIN_PIPE(pipe);
868                         if (!intel_display_power_get_if_enabled(dev_priv,
869                                                                 power_domain)) {
870                                 seq_printf(m, "Pipe %c power disabled\n",
871                                            pipe_name(pipe));
872                                 continue;
873                         }
874
875                         seq_printf(m, "Pipe %c stat:\t%08x\n",
876                                    pipe_name(pipe),
877                                    I915_READ(PIPESTAT(pipe)));
878                         intel_display_power_put(dev_priv, power_domain);
879                 }
880
881                 seq_printf(m, "Master IER:\t%08x\n",
882                            I915_READ(VLV_MASTER_IER));
883
884                 seq_printf(m, "Render IER:\t%08x\n",
885                            I915_READ(GTIER));
886                 seq_printf(m, "Render IIR:\t%08x\n",
887                            I915_READ(GTIIR));
888                 seq_printf(m, "Render IMR:\t%08x\n",
889                            I915_READ(GTIMR));
890
891                 seq_printf(m, "PM IER:\t\t%08x\n",
892                            I915_READ(GEN6_PMIER));
893                 seq_printf(m, "PM IIR:\t\t%08x\n",
894                            I915_READ(GEN6_PMIIR));
895                 seq_printf(m, "PM IMR:\t\t%08x\n",
896                            I915_READ(GEN6_PMIMR));
897
898                 seq_printf(m, "Port hotplug:\t%08x\n",
899                            I915_READ(PORT_HOTPLUG_EN));
900                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
901                            I915_READ(VLV_DPFLIPSTAT));
902                 seq_printf(m, "DPINVGTT:\t%08x\n",
903                            I915_READ(DPINVGTT));
904
905         } else if (!HAS_PCH_SPLIT(dev_priv)) {
906                 seq_printf(m, "Interrupt enable:    %08x\n",
907                            I915_READ(IER));
908                 seq_printf(m, "Interrupt identity:  %08x\n",
909                            I915_READ(IIR));
910                 seq_printf(m, "Interrupt mask:      %08x\n",
911                            I915_READ(IMR));
912                 for_each_pipe(dev_priv, pipe)
913                         seq_printf(m, "Pipe %c stat:         %08x\n",
914                                    pipe_name(pipe),
915                                    I915_READ(PIPESTAT(pipe)));
916         } else {
917                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
918                            I915_READ(DEIER));
919                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
920                            I915_READ(DEIIR));
921                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
922                            I915_READ(DEIMR));
923                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
924                            I915_READ(SDEIER));
925                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
926                            I915_READ(SDEIIR));
927                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
928                            I915_READ(SDEIMR));
929                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
930                            I915_READ(GTIER));
931                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
932                            I915_READ(GTIIR));
933                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
934                            I915_READ(GTIMR));
935         }
936         for_each_engine(engine, dev_priv, id) {
937                 if (INTEL_GEN(dev_priv) >= 6) {
938                         seq_printf(m,
939                                    "Graphics Interrupt mask (%s):       %08x\n",
940                                    engine->name, I915_READ_IMR(engine));
941                 }
942                 i915_ring_seqno_info(m, engine);
943         }
944         intel_runtime_pm_put(dev_priv);
945
946         return 0;
947 }
948
949 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
950 {
951         struct drm_i915_private *dev_priv = node_to_i915(m->private);
952         struct drm_device *dev = &dev_priv->drm;
953         int i, ret;
954
955         ret = mutex_lock_interruptible(&dev->struct_mutex);
956         if (ret)
957                 return ret;
958
959         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
960         for (i = 0; i < dev_priv->num_fence_regs; i++) {
961                 struct i915_vma *vma = dev_priv->fence_regs[i].vma;
962
963                 seq_printf(m, "Fence %d, pin count = %d, object = ",
964                            i, dev_priv->fence_regs[i].pin_count);
965                 if (!vma)
966                         seq_puts(m, "unused");
967                 else
968                         describe_obj(m, vma->obj);
969                 seq_putc(m, '\n');
970         }
971
972         mutex_unlock(&dev->struct_mutex);
973         return 0;
974 }
975
976 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
977 static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
978                               size_t count, loff_t *pos)
979 {
980         struct i915_gpu_state *error = file->private_data;
981         struct drm_i915_error_state_buf str;
982         ssize_t ret;
983         loff_t tmp;
984
985         if (!error)
986                 return 0;
987
988         ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
989         if (ret)
990                 return ret;
991
992         ret = i915_error_state_to_str(&str, error);
993         if (ret)
994                 goto out;
995
996         tmp = 0;
997         ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
998         if (ret < 0)
999                 goto out;
1000
1001         *pos = str.start + ret;
1002 out:
1003         i915_error_state_buf_release(&str);
1004         return ret;
1005 }
1006
1007 static int gpu_state_release(struct inode *inode, struct file *file)
1008 {
1009         i915_gpu_state_put(file->private_data);
1010         return 0;
1011 }
1012
1013 static int i915_gpu_info_open(struct inode *inode, struct file *file)
1014 {
1015         struct drm_i915_private *i915 = inode->i_private;
1016         struct i915_gpu_state *gpu;
1017
1018         intel_runtime_pm_get(i915);
1019         gpu = i915_capture_gpu_state(i915);
1020         intel_runtime_pm_put(i915);
1021         if (!gpu)
1022                 return -ENOMEM;
1023
1024         file->private_data = gpu;
1025         return 0;
1026 }
1027
1028 static const struct file_operations i915_gpu_info_fops = {
1029         .owner = THIS_MODULE,
1030         .open = i915_gpu_info_open,
1031         .read = gpu_state_read,
1032         .llseek = default_llseek,
1033         .release = gpu_state_release,
1034 };
1035
1036 static ssize_t
1037 i915_error_state_write(struct file *filp,
1038                        const char __user *ubuf,
1039                        size_t cnt,
1040                        loff_t *ppos)
1041 {
1042         struct i915_gpu_state *error = filp->private_data;
1043
1044         if (!error)
1045                 return 0;
1046
1047         DRM_DEBUG_DRIVER("Resetting error state\n");
1048         i915_reset_error_state(error->i915);
1049
1050         return cnt;
1051 }
1052
1053 static int i915_error_state_open(struct inode *inode, struct file *file)
1054 {
1055         file->private_data = i915_first_error_state(inode->i_private);
1056         return 0;
1057 }
1058
1059 static const struct file_operations i915_error_state_fops = {
1060         .owner = THIS_MODULE,
1061         .open = i915_error_state_open,
1062         .read = gpu_state_read,
1063         .write = i915_error_state_write,
1064         .llseek = default_llseek,
1065         .release = gpu_state_release,
1066 };
1067 #endif
1068
1069 static int
1070 i915_next_seqno_set(void *data, u64 val)
1071 {
1072         struct drm_i915_private *dev_priv = data;
1073         struct drm_device *dev = &dev_priv->drm;
1074         int ret;
1075
1076         ret = mutex_lock_interruptible(&dev->struct_mutex);
1077         if (ret)
1078                 return ret;
1079
1080         ret = i915_gem_set_global_seqno(dev, val);
1081         mutex_unlock(&dev->struct_mutex);
1082
1083         return ret;
1084 }
1085
1086 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1087                         NULL, i915_next_seqno_set,
1088                         "0x%llx\n");
1089
1090 static int i915_frequency_info(struct seq_file *m, void *unused)
1091 {
1092         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1093         int ret = 0;
1094
1095         intel_runtime_pm_get(dev_priv);
1096
1097         if (IS_GEN5(dev_priv)) {
1098                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1099                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1100
1101                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1102                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1103                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1104                            MEMSTAT_VID_SHIFT);
1105                 seq_printf(m, "Current P-state: %d\n",
1106                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1107         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1108                 u32 freq_sts;
1109
1110                 mutex_lock(&dev_priv->rps.hw_lock);
1111                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1112                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1113                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1114
1115                 seq_printf(m, "actual GPU freq: %d MHz\n",
1116                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1117
1118                 seq_printf(m, "current GPU freq: %d MHz\n",
1119                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1120
1121                 seq_printf(m, "max GPU freq: %d MHz\n",
1122                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1123
1124                 seq_printf(m, "min GPU freq: %d MHz\n",
1125                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1126
1127                 seq_printf(m, "idle GPU freq: %d MHz\n",
1128                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1129
1130                 seq_printf(m,
1131                            "efficient (RPe) frequency: %d MHz\n",
1132                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1133                 mutex_unlock(&dev_priv->rps.hw_lock);
1134         } else if (INTEL_GEN(dev_priv) >= 6) {
1135                 u32 rp_state_limits;
1136                 u32 gt_perf_status;
1137                 u32 rp_state_cap;
1138                 u32 rpmodectl, rpinclimit, rpdeclimit;
1139                 u32 rpstat, cagf, reqf;
1140                 u32 rpupei, rpcurup, rpprevup;
1141                 u32 rpdownei, rpcurdown, rpprevdown;
1142                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1143                 int max_freq;
1144
1145                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1146                 if (IS_GEN9_LP(dev_priv)) {
1147                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1148                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1149                 } else {
1150                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1151                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1152                 }
1153
1154                 /* RPSTAT1 is in the GT power well */
1155                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1156
1157                 reqf = I915_READ(GEN6_RPNSWREQ);
1158                 if (IS_GEN9(dev_priv))
1159                         reqf >>= 23;
1160                 else {
1161                         reqf &= ~GEN6_TURBO_DISABLE;
1162                         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1163                                 reqf >>= 24;
1164                         else
1165                                 reqf >>= 25;
1166                 }
1167                 reqf = intel_gpu_freq(dev_priv, reqf);
1168
1169                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1170                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1171                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1172
1173                 rpstat = I915_READ(GEN6_RPSTAT1);
1174                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1175                 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1176                 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1177                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1178                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1179                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1180                 if (IS_GEN9(dev_priv))
1181                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1182                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1183                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1184                 else
1185                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1186                 cagf = intel_gpu_freq(dev_priv, cagf);
1187
1188                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1189
1190                 if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1191                         pm_ier = I915_READ(GEN6_PMIER);
1192                         pm_imr = I915_READ(GEN6_PMIMR);
1193                         pm_isr = I915_READ(GEN6_PMISR);
1194                         pm_iir = I915_READ(GEN6_PMIIR);
1195                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1196                 } else {
1197                         pm_ier = I915_READ(GEN8_GT_IER(2));
1198                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1199                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1200                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1201                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1202                 }
1203                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1204                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1205                 seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
1206                            dev_priv->rps.pm_intrmsk_mbz);
1207                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1208                 seq_printf(m, "Render p-state ratio: %d\n",
1209                            (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
1210                 seq_printf(m, "Render p-state VID: %d\n",
1211                            gt_perf_status & 0xff);
1212                 seq_printf(m, "Render p-state limit: %d\n",
1213                            rp_state_limits & 0xff);
1214                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1215                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1216                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1217                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1218                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1219                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1220                 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1221                            rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1222                 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1223                            rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1224                 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1225                            rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1226                 seq_printf(m, "Up threshold: %d%%\n",
1227                            dev_priv->rps.up_threshold);
1228
1229                 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1230                            rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1231                 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1232                            rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1233                 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1234                            rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1235                 seq_printf(m, "Down threshold: %d%%\n",
1236                            dev_priv->rps.down_threshold);
1237
1238                 max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
1239                             rp_state_cap >> 16) & 0xff;
1240                 max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1241                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1242                            intel_gpu_freq(dev_priv, max_freq));
1243
1244                 max_freq = (rp_state_cap & 0xff00) >> 8;
1245                 max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1246                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1247                            intel_gpu_freq(dev_priv, max_freq));
1248
1249                 max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
1250                             rp_state_cap >> 0) & 0xff;
1251                 max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1252                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1253                            intel_gpu_freq(dev_priv, max_freq));
1254                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1255                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1256
1257                 seq_printf(m, "Current freq: %d MHz\n",
1258                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1259                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1260                 seq_printf(m, "Idle freq: %d MHz\n",
1261                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1262                 seq_printf(m, "Min freq: %d MHz\n",
1263                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1264                 seq_printf(m, "Boost freq: %d MHz\n",
1265                            intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1266                 seq_printf(m, "Max freq: %d MHz\n",
1267                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1268                 seq_printf(m,
1269                            "efficient (RPe) frequency: %d MHz\n",
1270                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1271         } else {
1272                 seq_puts(m, "no P-state info available\n");
1273         }
1274
1275         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
1276         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1277         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1278
1279         intel_runtime_pm_put(dev_priv);
1280         return ret;
1281 }
1282
1283 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1284                                struct seq_file *m,
1285                                struct intel_instdone *instdone)
1286 {
1287         int slice;
1288         int subslice;
1289
1290         seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1291                    instdone->instdone);
1292
1293         if (INTEL_GEN(dev_priv) <= 3)
1294                 return;
1295
1296         seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1297                    instdone->slice_common);
1298
1299         if (INTEL_GEN(dev_priv) <= 6)
1300                 return;
1301
1302         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1303                 seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1304                            slice, subslice, instdone->sampler[slice][subslice]);
1305
1306         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1307                 seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1308                            slice, subslice, instdone->row[slice][subslice]);
1309 }
1310
1311 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1312 {
1313         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1314         struct intel_engine_cs *engine;
1315         u64 acthd[I915_NUM_ENGINES];
1316         u32 seqno[I915_NUM_ENGINES];
1317         struct intel_instdone instdone;
1318         enum intel_engine_id id;
1319
1320         if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1321                 seq_puts(m, "Wedged\n");
1322         if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
1323                 seq_puts(m, "Reset in progress: struct_mutex backoff\n");
1324         if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
1325                 seq_puts(m, "Reset in progress: reset handoff to waiter\n");
1326         if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1327                 seq_puts(m, "Waiter holding struct mutex\n");
1328         if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1329                 seq_puts(m, "struct_mutex blocked for reset\n");
1330
1331         if (!i915.enable_hangcheck) {
1332                 seq_puts(m, "Hangcheck disabled\n");
1333                 return 0;
1334         }
1335
1336         intel_runtime_pm_get(dev_priv);
1337
1338         for_each_engine(engine, dev_priv, id) {
1339                 acthd[id] = intel_engine_get_active_head(engine);
1340                 seqno[id] = intel_engine_get_seqno(engine);
1341         }
1342
1343         intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1344
1345         intel_runtime_pm_put(dev_priv);
1346
1347         if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
1348                 seq_printf(m, "Hangcheck active, timer fires in %dms\n",
1349                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1350                                             jiffies));
1351         else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
1352                 seq_puts(m, "Hangcheck active, work pending\n");
1353         else
1354                 seq_puts(m, "Hangcheck inactive\n");
1355
1356         seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
1357
1358         for_each_engine(engine, dev_priv, id) {
1359                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
1360                 struct rb_node *rb;
1361
1362                 seq_printf(m, "%s:\n", engine->name);
1363                 seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
1364                            engine->hangcheck.seqno, seqno[id],
1365                            intel_engine_last_submit(engine),
1366                            engine->timeline->inflight_seqnos);
1367                 seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
1368                            yesno(intel_engine_has_waiter(engine)),
1369                            yesno(test_bit(engine->id,
1370                                           &dev_priv->gpu_error.missed_irq_rings)),
1371                            yesno(engine->hangcheck.stalled));
1372
1373                 spin_lock_irq(&b->rb_lock);
1374                 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1375                         struct intel_wait *w = rb_entry(rb, typeof(*w), node);
1376
1377                         seq_printf(m, "\t%s [%d] waiting for %x\n",
1378                                    w->tsk->comm, w->tsk->pid, w->seqno);
1379                 }
1380                 spin_unlock_irq(&b->rb_lock);
1381
1382                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1383                            (long long)engine->hangcheck.acthd,
1384                            (long long)acthd[id]);
1385                 seq_printf(m, "\taction = %s(%d) %d ms ago\n",
1386                            hangcheck_action_to_str(engine->hangcheck.action),
1387                            engine->hangcheck.action,
1388                            jiffies_to_msecs(jiffies -
1389                                             engine->hangcheck.action_timestamp));
1390
1391                 if (engine->id == RCS) {
1392                         seq_puts(m, "\tinstdone read =\n");
1393
1394                         i915_instdone_info(dev_priv, m, &instdone);
1395
1396                         seq_puts(m, "\tinstdone accu =\n");
1397
1398                         i915_instdone_info(dev_priv, m,
1399                                            &engine->hangcheck.instdone);
1400                 }
1401         }
1402
1403         return 0;
1404 }
1405
1406 static int ironlake_drpc_info(struct seq_file *m)
1407 {
1408         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1409         u32 rgvmodectl, rstdbyctl;
1410         u16 crstandvid;
1411
1412         rgvmodectl = I915_READ(MEMMODECTL);
1413         rstdbyctl = I915_READ(RSTDBYCTL);
1414         crstandvid = I915_READ16(CRSTANDVID);
1415
1416         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1417         seq_printf(m, "Boost freq: %d\n",
1418                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1419                    MEMMODE_BOOST_FREQ_SHIFT);
1420         seq_printf(m, "HW control enabled: %s\n",
1421                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1422         seq_printf(m, "SW control enabled: %s\n",
1423                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1424         seq_printf(m, "Gated voltage change: %s\n",
1425                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1426         seq_printf(m, "Starting frequency: P%d\n",
1427                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1428         seq_printf(m, "Max P-state: P%d\n",
1429                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1430         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1431         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1432         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1433         seq_printf(m, "Render standby enabled: %s\n",
1434                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1435         seq_puts(m, "Current RS state: ");
1436         switch (rstdbyctl & RSX_STATUS_MASK) {
1437         case RSX_STATUS_ON:
1438                 seq_puts(m, "on\n");
1439                 break;
1440         case RSX_STATUS_RC1:
1441                 seq_puts(m, "RC1\n");
1442                 break;
1443         case RSX_STATUS_RC1E:
1444                 seq_puts(m, "RC1E\n");
1445                 break;
1446         case RSX_STATUS_RS1:
1447                 seq_puts(m, "RS1\n");
1448                 break;
1449         case RSX_STATUS_RS2:
1450                 seq_puts(m, "RS2 (RC6)\n");
1451                 break;
1452         case RSX_STATUS_RS3:
1453                 seq_puts(m, "RC3 (RC6+)\n");
1454                 break;
1455         default:
1456                 seq_puts(m, "unknown\n");
1457                 break;
1458         }
1459
1460         return 0;
1461 }
1462
1463 static int i915_forcewake_domains(struct seq_file *m, void *data)
1464 {
1465         struct drm_i915_private *i915 = node_to_i915(m->private);
1466         struct intel_uncore_forcewake_domain *fw_domain;
1467         unsigned int tmp;
1468
1469         for_each_fw_domain(fw_domain, i915, tmp)
1470                 seq_printf(m, "%s.wake_count = %u\n",
1471                            intel_uncore_forcewake_domain_to_str(fw_domain->id),
1472                            READ_ONCE(fw_domain->wake_count));
1473
1474         return 0;
1475 }
1476
1477 static void print_rc6_res(struct seq_file *m,
1478                           const char *title,
1479                           const i915_reg_t reg)
1480 {
1481         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1482
1483         seq_printf(m, "%s %u (%llu us)\n",
1484                    title, I915_READ(reg),
1485                    intel_rc6_residency_us(dev_priv, reg));
1486 }
1487
1488 static int vlv_drpc_info(struct seq_file *m)
1489 {
1490         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1491         u32 rpmodectl1, rcctl1, pw_status;
1492
1493         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1494         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1495         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1496
1497         seq_printf(m, "Video Turbo Mode: %s\n",
1498                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1499         seq_printf(m, "Turbo enabled: %s\n",
1500                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1501         seq_printf(m, "HW control enabled: %s\n",
1502                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1503         seq_printf(m, "SW control enabled: %s\n",
1504                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1505                           GEN6_RP_MEDIA_SW_MODE));
1506         seq_printf(m, "RC6 Enabled: %s\n",
1507                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1508                                         GEN6_RC_CTL_EI_MODE(1))));
1509         seq_printf(m, "Render Power Well: %s\n",
1510                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1511         seq_printf(m, "Media Power Well: %s\n",
1512                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1513
1514         print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
1515         print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
1516
1517         return i915_forcewake_domains(m, NULL);
1518 }
1519
1520 static int gen6_drpc_info(struct seq_file *m)
1521 {
1522         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1523         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1524         u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1525         unsigned forcewake_count;
1526         int count = 0;
1527
1528         forcewake_count = READ_ONCE(dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count);
1529         if (forcewake_count) {
1530                 seq_puts(m, "RC information inaccurate because somebody "
1531                             "holds a forcewake reference \n");
1532         } else {
1533                 /* NB: we cannot use forcewake, else we read the wrong values */
1534                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1535                         udelay(10);
1536                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1537         }
1538
1539         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1540         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1541
1542         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1543         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1544         if (INTEL_GEN(dev_priv) >= 9) {
1545                 gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1546                 gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1547         }
1548
1549         mutex_lock(&dev_priv->rps.hw_lock);
1550         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1551         mutex_unlock(&dev_priv->rps.hw_lock);
1552
1553         seq_printf(m, "Video Turbo Mode: %s\n",
1554                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1555         seq_printf(m, "HW control enabled: %s\n",
1556                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1557         seq_printf(m, "SW control enabled: %s\n",
1558                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1559                           GEN6_RP_MEDIA_SW_MODE));
1560         seq_printf(m, "RC1e Enabled: %s\n",
1561                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1562         seq_printf(m, "RC6 Enabled: %s\n",
1563                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1564         if (INTEL_GEN(dev_priv) >= 9) {
1565                 seq_printf(m, "Render Well Gating Enabled: %s\n",
1566                         yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1567                 seq_printf(m, "Media Well Gating Enabled: %s\n",
1568                         yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1569         }
1570         seq_printf(m, "Deep RC6 Enabled: %s\n",
1571                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1572         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1573                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1574         seq_puts(m, "Current RC state: ");
1575         switch (gt_core_status & GEN6_RCn_MASK) {
1576         case GEN6_RC0:
1577                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1578                         seq_puts(m, "Core Power Down\n");
1579                 else
1580                         seq_puts(m, "on\n");
1581                 break;
1582         case GEN6_RC3:
1583                 seq_puts(m, "RC3\n");
1584                 break;
1585         case GEN6_RC6:
1586                 seq_puts(m, "RC6\n");
1587                 break;
1588         case GEN6_RC7:
1589                 seq_puts(m, "RC7\n");
1590                 break;
1591         default:
1592                 seq_puts(m, "Unknown\n");
1593                 break;
1594         }
1595
1596         seq_printf(m, "Core Power Down: %s\n",
1597                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1598         if (INTEL_GEN(dev_priv) >= 9) {
1599                 seq_printf(m, "Render Power Well: %s\n",
1600                         (gen9_powergate_status &
1601                          GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1602                 seq_printf(m, "Media Power Well: %s\n",
1603                         (gen9_powergate_status &
1604                          GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1605         }
1606
1607         /* Not exactly sure what this is */
1608         print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
1609                       GEN6_GT_GFX_RC6_LOCKED);
1610         print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
1611         print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
1612         print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
1613
1614         seq_printf(m, "RC6   voltage: %dmV\n",
1615                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1616         seq_printf(m, "RC6+  voltage: %dmV\n",
1617                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1618         seq_printf(m, "RC6++ voltage: %dmV\n",
1619                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1620         return i915_forcewake_domains(m, NULL);
1621 }
1622
1623 static int i915_drpc_info(struct seq_file *m, void *unused)
1624 {
1625         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1626         int err;
1627
1628         intel_runtime_pm_get(dev_priv);
1629
1630         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1631                 err = vlv_drpc_info(m);
1632         else if (INTEL_GEN(dev_priv) >= 6)
1633                 err = gen6_drpc_info(m);
1634         else
1635                 err = ironlake_drpc_info(m);
1636
1637         intel_runtime_pm_put(dev_priv);
1638
1639         return err;
1640 }
1641
1642 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1643 {
1644         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1645
1646         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1647                    dev_priv->fb_tracking.busy_bits);
1648
1649         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1650                    dev_priv->fb_tracking.flip_bits);
1651
1652         return 0;
1653 }
1654
1655 static int i915_fbc_status(struct seq_file *m, void *unused)
1656 {
1657         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1658
1659         if (!HAS_FBC(dev_priv)) {
1660                 seq_puts(m, "FBC unsupported on this chipset\n");
1661                 return 0;
1662         }
1663
1664         intel_runtime_pm_get(dev_priv);
1665         mutex_lock(&dev_priv->fbc.lock);
1666
1667         if (intel_fbc_is_active(dev_priv))
1668                 seq_puts(m, "FBC enabled\n");
1669         else
1670                 seq_printf(m, "FBC disabled: %s\n",
1671                            dev_priv->fbc.no_fbc_reason);
1672
1673         if (intel_fbc_is_active(dev_priv) && INTEL_GEN(dev_priv) >= 7) {
1674                 uint32_t mask = INTEL_GEN(dev_priv) >= 8 ?
1675                                 BDW_FBC_COMPRESSION_MASK :
1676                                 IVB_FBC_COMPRESSION_MASK;
1677                 seq_printf(m, "Compressing: %s\n",
1678                            yesno(I915_READ(FBC_STATUS2) & mask));
1679         }
1680
1681         mutex_unlock(&dev_priv->fbc.lock);
1682         intel_runtime_pm_put(dev_priv);
1683
1684         return 0;
1685 }
1686
1687 static int i915_fbc_fc_get(void *data, u64 *val)
1688 {
1689         struct drm_i915_private *dev_priv = data;
1690
1691         if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1692                 return -ENODEV;
1693
1694         *val = dev_priv->fbc.false_color;
1695
1696         return 0;
1697 }
1698
1699 static int i915_fbc_fc_set(void *data, u64 val)
1700 {
1701         struct drm_i915_private *dev_priv = data;
1702         u32 reg;
1703
1704         if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1705                 return -ENODEV;
1706
1707         mutex_lock(&dev_priv->fbc.lock);
1708
1709         reg = I915_READ(ILK_DPFC_CONTROL);
1710         dev_priv->fbc.false_color = val;
1711
1712         I915_WRITE(ILK_DPFC_CONTROL, val ?
1713                    (reg | FBC_CTL_FALSE_COLOR) :
1714                    (reg & ~FBC_CTL_FALSE_COLOR));
1715
1716         mutex_unlock(&dev_priv->fbc.lock);
1717         return 0;
1718 }
1719
1720 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1721                         i915_fbc_fc_get, i915_fbc_fc_set,
1722                         "%llu\n");
1723
1724 static int i915_ips_status(struct seq_file *m, void *unused)
1725 {
1726         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1727
1728         if (!HAS_IPS(dev_priv)) {
1729                 seq_puts(m, "not supported\n");
1730                 return 0;
1731         }
1732
1733         intel_runtime_pm_get(dev_priv);
1734
1735         seq_printf(m, "Enabled by kernel parameter: %s\n",
1736                    yesno(i915.enable_ips));
1737
1738         if (INTEL_GEN(dev_priv) >= 8) {
1739                 seq_puts(m, "Currently: unknown\n");
1740         } else {
1741                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1742                         seq_puts(m, "Currently: enabled\n");
1743                 else
1744                         seq_puts(m, "Currently: disabled\n");
1745         }
1746
1747         intel_runtime_pm_put(dev_priv);
1748
1749         return 0;
1750 }
1751
1752 static int i915_sr_status(struct seq_file *m, void *unused)
1753 {
1754         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1755         bool sr_enabled = false;
1756
1757         intel_runtime_pm_get(dev_priv);
1758         intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1759
1760         if (INTEL_GEN(dev_priv) >= 9)
1761                 /* no global SR status; inspect per-plane WM */;
1762         else if (HAS_PCH_SPLIT(dev_priv))
1763                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1764         else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
1765                  IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1766                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1767         else if (IS_I915GM(dev_priv))
1768                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1769         else if (IS_PINEVIEW(dev_priv))
1770                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1771         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1772                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1773
1774         intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1775         intel_runtime_pm_put(dev_priv);
1776
1777         seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
1778
1779         return 0;
1780 }
1781
1782 static int i915_emon_status(struct seq_file *m, void *unused)
1783 {
1784         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1785         struct drm_device *dev = &dev_priv->drm;
1786         unsigned long temp, chipset, gfx;
1787         int ret;
1788
1789         if (!IS_GEN5(dev_priv))
1790                 return -ENODEV;
1791
1792         ret = mutex_lock_interruptible(&dev->struct_mutex);
1793         if (ret)
1794                 return ret;
1795
1796         temp = i915_mch_val(dev_priv);
1797         chipset = i915_chipset_val(dev_priv);
1798         gfx = i915_gfx_val(dev_priv);
1799         mutex_unlock(&dev->struct_mutex);
1800
1801         seq_printf(m, "GMCH temp: %ld\n", temp);
1802         seq_printf(m, "Chipset power: %ld\n", chipset);
1803         seq_printf(m, "GFX power: %ld\n", gfx);
1804         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1805
1806         return 0;
1807 }
1808
1809 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1810 {
1811         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1812         int ret = 0;
1813         int gpu_freq, ia_freq;
1814         unsigned int max_gpu_freq, min_gpu_freq;
1815
1816         if (!HAS_LLC(dev_priv)) {
1817                 seq_puts(m, "unsupported on this chipset\n");
1818                 return 0;
1819         }
1820
1821         intel_runtime_pm_get(dev_priv);
1822
1823         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1824         if (ret)
1825                 goto out;
1826
1827         if (IS_GEN9_BC(dev_priv)) {
1828                 /* Convert GT frequency to 50 HZ units */
1829                 min_gpu_freq =
1830                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1831                 max_gpu_freq =
1832                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1833         } else {
1834                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1835                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1836         }
1837
1838         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1839
1840         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1841                 ia_freq = gpu_freq;
1842                 sandybridge_pcode_read(dev_priv,
1843                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1844                                        &ia_freq);
1845                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1846                            intel_gpu_freq(dev_priv, (gpu_freq *
1847                                                      (IS_GEN9_BC(dev_priv) ?
1848                                                       GEN9_FREQ_SCALER : 1))),
1849                            ((ia_freq >> 0) & 0xff) * 100,
1850                            ((ia_freq >> 8) & 0xff) * 100);
1851         }
1852
1853         mutex_unlock(&dev_priv->rps.hw_lock);
1854
1855 out:
1856         intel_runtime_pm_put(dev_priv);
1857         return ret;
1858 }
1859
1860 static int i915_opregion(struct seq_file *m, void *unused)
1861 {
1862         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1863         struct drm_device *dev = &dev_priv->drm;
1864         struct intel_opregion *opregion = &dev_priv->opregion;
1865         int ret;
1866
1867         ret = mutex_lock_interruptible(&dev->struct_mutex);
1868         if (ret)
1869                 goto out;
1870
1871         if (opregion->header)
1872                 seq_write(m, opregion->header, OPREGION_SIZE);
1873
1874         mutex_unlock(&dev->struct_mutex);
1875
1876 out:
1877         return 0;
1878 }
1879
1880 static int i915_vbt(struct seq_file *m, void *unused)
1881 {
1882         struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1883
1884         if (opregion->vbt)
1885                 seq_write(m, opregion->vbt, opregion->vbt_size);
1886
1887         return 0;
1888 }
1889
1890 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1891 {
1892         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1893         struct drm_device *dev = &dev_priv->drm;
1894         struct intel_framebuffer *fbdev_fb = NULL;
1895         struct drm_framebuffer *drm_fb;
1896         int ret;
1897
1898         ret = mutex_lock_interruptible(&dev->struct_mutex);
1899         if (ret)
1900                 return ret;
1901
1902 #ifdef CONFIG_DRM_FBDEV_EMULATION
1903         if (dev_priv->fbdev) {
1904                 fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1905
1906                 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1907                            fbdev_fb->base.width,
1908                            fbdev_fb->base.height,
1909                            fbdev_fb->base.format->depth,
1910                            fbdev_fb->base.format->cpp[0] * 8,
1911                            fbdev_fb->base.modifier,
1912                            drm_framebuffer_read_refcount(&fbdev_fb->base));
1913                 describe_obj(m, fbdev_fb->obj);
1914                 seq_putc(m, '\n');
1915         }
1916 #endif
1917
1918         mutex_lock(&dev->mode_config.fb_lock);
1919         drm_for_each_fb(drm_fb, dev) {
1920                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1921                 if (fb == fbdev_fb)
1922                         continue;
1923
1924                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1925                            fb->base.width,
1926                            fb->base.height,
1927                            fb->base.format->depth,
1928                            fb->base.format->cpp[0] * 8,
1929                            fb->base.modifier,
1930                            drm_framebuffer_read_refcount(&fb->base));
1931                 describe_obj(m, fb->obj);
1932                 seq_putc(m, '\n');
1933         }
1934         mutex_unlock(&dev->mode_config.fb_lock);
1935         mutex_unlock(&dev->struct_mutex);
1936
1937         return 0;
1938 }
1939
1940 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1941 {
1942         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u)",
1943                    ring->space, ring->head, ring->tail);
1944 }
1945
1946 static int i915_context_status(struct seq_file *m, void *unused)
1947 {
1948         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1949         struct drm_device *dev = &dev_priv->drm;
1950         struct intel_engine_cs *engine;
1951         struct i915_gem_context *ctx;
1952         enum intel_engine_id id;
1953         int ret;
1954
1955         ret = mutex_lock_interruptible(&dev->struct_mutex);
1956         if (ret)
1957                 return ret;
1958
1959         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1960                 seq_printf(m, "HW context %u ", ctx->hw_id);
1961                 if (ctx->pid) {
1962                         struct task_struct *task;
1963
1964                         task = get_pid_task(ctx->pid, PIDTYPE_PID);
1965                         if (task) {
1966                                 seq_printf(m, "(%s [%d]) ",
1967                                            task->comm, task->pid);
1968                                 put_task_struct(task);
1969                         }
1970                 } else if (IS_ERR(ctx->file_priv)) {
1971                         seq_puts(m, "(deleted) ");
1972                 } else {
1973                         seq_puts(m, "(kernel) ");
1974                 }
1975
1976                 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1977                 seq_putc(m, '\n');
1978
1979                 for_each_engine(engine, dev_priv, id) {
1980                         struct intel_context *ce = &ctx->engine[engine->id];
1981
1982                         seq_printf(m, "%s: ", engine->name);
1983                         seq_putc(m, ce->initialised ? 'I' : 'i');
1984                         if (ce->state)
1985                                 describe_obj(m, ce->state->obj);
1986                         if (ce->ring)
1987                                 describe_ctx_ring(m, ce->ring);
1988                         seq_putc(m, '\n');
1989                 }
1990
1991                 seq_putc(m, '\n');
1992         }
1993
1994         mutex_unlock(&dev->struct_mutex);
1995
1996         return 0;
1997 }
1998
1999 static void i915_dump_lrc_obj(struct seq_file *m,
2000                               struct i915_gem_context *ctx,
2001                               struct intel_engine_cs *engine)
2002 {
2003         struct i915_vma *vma = ctx->engine[engine->id].state;
2004         struct page *page;
2005         int j;
2006
2007         seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2008
2009         if (!vma) {
2010                 seq_puts(m, "\tFake context\n");
2011                 return;
2012         }
2013
2014         if (vma->flags & I915_VMA_GLOBAL_BIND)
2015                 seq_printf(m, "\tBound in GGTT at 0x%08x\n",
2016                            i915_ggtt_offset(vma));
2017
2018         if (i915_gem_object_pin_pages(vma->obj)) {
2019                 seq_puts(m, "\tFailed to get pages for context object\n\n");
2020                 return;
2021         }
2022
2023         page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
2024         if (page) {
2025                 u32 *reg_state = kmap_atomic(page);
2026
2027                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2028                         seq_printf(m,
2029                                    "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2030                                    j * 4,
2031                                    reg_state[j], reg_state[j + 1],
2032                                    reg_state[j + 2], reg_state[j + 3]);
2033                 }
2034                 kunmap_atomic(reg_state);
2035         }
2036
2037         i915_gem_object_unpin_pages(vma->obj);
2038         seq_putc(m, '\n');
2039 }
2040
2041 static int i915_dump_lrc(struct seq_file *m, void *unused)
2042 {
2043         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2044         struct drm_device *dev = &dev_priv->drm;
2045         struct intel_engine_cs *engine;
2046         struct i915_gem_context *ctx;
2047         enum intel_engine_id id;
2048         int ret;
2049
2050         if (!i915.enable_execlists) {
2051                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2052                 return 0;
2053         }
2054
2055         ret = mutex_lock_interruptible(&dev->struct_mutex);
2056         if (ret)
2057                 return ret;
2058
2059         list_for_each_entry(ctx, &dev_priv->context_list, link)
2060                 for_each_engine(engine, dev_priv, id)
2061                         i915_dump_lrc_obj(m, ctx, engine);
2062
2063         mutex_unlock(&dev->struct_mutex);
2064
2065         return 0;
2066 }
2067
2068 static const char *swizzle_string(unsigned swizzle)
2069 {
2070         switch (swizzle) {
2071         case I915_BIT_6_SWIZZLE_NONE:
2072                 return "none";
2073         case I915_BIT_6_SWIZZLE_9:
2074                 return "bit9";
2075         case I915_BIT_6_SWIZZLE_9_10:
2076                 return "bit9/bit10";
2077         case I915_BIT_6_SWIZZLE_9_11:
2078                 return "bit9/bit11";
2079         case I915_BIT_6_SWIZZLE_9_10_11:
2080                 return "bit9/bit10/bit11";
2081         case I915_BIT_6_SWIZZLE_9_17:
2082                 return "bit9/bit17";
2083         case I915_BIT_6_SWIZZLE_9_10_17:
2084                 return "bit9/bit10/bit17";
2085         case I915_BIT_6_SWIZZLE_UNKNOWN:
2086                 return "unknown";
2087         }
2088
2089         return "bug";
2090 }
2091
2092 static int i915_swizzle_info(struct seq_file *m, void *data)
2093 {
2094         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2095
2096         intel_runtime_pm_get(dev_priv);
2097
2098         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2099                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2100         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2101                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2102
2103         if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2104                 seq_printf(m, "DDC = 0x%08x\n",
2105                            I915_READ(DCC));
2106                 seq_printf(m, "DDC2 = 0x%08x\n",
2107                            I915_READ(DCC2));
2108                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2109                            I915_READ16(C0DRB3));
2110                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2111                            I915_READ16(C1DRB3));
2112         } else if (INTEL_GEN(dev_priv) >= 6) {
2113                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2114                            I915_READ(MAD_DIMM_C0));
2115                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2116                            I915_READ(MAD_DIMM_C1));
2117                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2118                            I915_READ(MAD_DIMM_C2));
2119                 seq_printf(m, "TILECTL = 0x%08x\n",
2120                            I915_READ(TILECTL));
2121                 if (INTEL_GEN(dev_priv) >= 8)
2122                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2123                                    I915_READ(GAMTARBMODE));
2124                 else
2125                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2126                                    I915_READ(ARB_MODE));
2127                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2128                            I915_READ(DISP_ARB_CTL));
2129         }
2130
2131         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2132                 seq_puts(m, "L-shaped memory detected\n");
2133
2134         intel_runtime_pm_put(dev_priv);
2135
2136         return 0;
2137 }
2138
2139 static int per_file_ctx(int id, void *ptr, void *data)
2140 {
2141         struct i915_gem_context *ctx = ptr;
2142         struct seq_file *m = data;
2143         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2144
2145         if (!ppgtt) {
2146                 seq_printf(m, "  no ppgtt for context %d\n",
2147                            ctx->user_handle);
2148                 return 0;
2149         }
2150
2151         if (i915_gem_context_is_default(ctx))
2152                 seq_puts(m, "  default context:\n");
2153         else
2154                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2155         ppgtt->debug_dump(ppgtt, m);
2156
2157         return 0;
2158 }
2159
2160 static void gen8_ppgtt_info(struct seq_file *m,
2161                             struct drm_i915_private *dev_priv)
2162 {
2163         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2164         struct intel_engine_cs *engine;
2165         enum intel_engine_id id;
2166         int i;
2167
2168         if (!ppgtt)
2169                 return;
2170
2171         for_each_engine(engine, dev_priv, id) {
2172                 seq_printf(m, "%s\n", engine->name);
2173                 for (i = 0; i < 4; i++) {
2174                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2175                         pdp <<= 32;
2176                         pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2177                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2178                 }
2179         }
2180 }
2181
2182 static void gen6_ppgtt_info(struct seq_file *m,
2183                             struct drm_i915_private *dev_priv)
2184 {
2185         struct intel_engine_cs *engine;
2186         enum intel_engine_id id;
2187
2188         if (IS_GEN6(dev_priv))
2189                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2190
2191         for_each_engine(engine, dev_priv, id) {
2192                 seq_printf(m, "%s\n", engine->name);
2193                 if (IS_GEN7(dev_priv))
2194                         seq_printf(m, "GFX_MODE: 0x%08x\n",
2195                                    I915_READ(RING_MODE_GEN7(engine)));
2196                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2197                            I915_READ(RING_PP_DIR_BASE(engine)));
2198                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2199                            I915_READ(RING_PP_DIR_BASE_READ(engine)));
2200                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2201                            I915_READ(RING_PP_DIR_DCLV(engine)));
2202         }
2203         if (dev_priv->mm.aliasing_ppgtt) {
2204                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2205
2206                 seq_puts(m, "aliasing PPGTT:\n");
2207                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2208
2209                 ppgtt->debug_dump(ppgtt, m);
2210         }
2211
2212         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2213 }
2214
2215 static int i915_ppgtt_info(struct seq_file *m, void *data)
2216 {
2217         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2218         struct drm_device *dev = &dev_priv->drm;
2219         struct drm_file *file;
2220         int ret;
2221
2222         mutex_lock(&dev->filelist_mutex);
2223         ret = mutex_lock_interruptible(&dev->struct_mutex);
2224         if (ret)
2225                 goto out_unlock;
2226
2227         intel_runtime_pm_get(dev_priv);
2228
2229         if (INTEL_GEN(dev_priv) >= 8)
2230                 gen8_ppgtt_info(m, dev_priv);
2231         else if (INTEL_GEN(dev_priv) >= 6)
2232                 gen6_ppgtt_info(m, dev_priv);
2233
2234         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2235                 struct drm_i915_file_private *file_priv = file->driver_priv;
2236                 struct task_struct *task;
2237
2238                 task = get_pid_task(file->pid, PIDTYPE_PID);
2239                 if (!task) {
2240                         ret = -ESRCH;
2241                         goto out_rpm;
2242                 }
2243                 seq_printf(m, "\nproc: %s\n", task->comm);
2244                 put_task_struct(task);
2245                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2246                              (void *)(unsigned long)m);
2247         }
2248
2249 out_rpm:
2250         intel_runtime_pm_put(dev_priv);
2251         mutex_unlock(&dev->struct_mutex);
2252 out_unlock:
2253         mutex_unlock(&dev->filelist_mutex);
2254         return ret;
2255 }
2256
2257 static int count_irq_waiters(struct drm_i915_private *i915)
2258 {
2259         struct intel_engine_cs *engine;
2260         enum intel_engine_id id;
2261         int count = 0;
2262
2263         for_each_engine(engine, i915, id)
2264                 count += intel_engine_has_waiter(engine);
2265
2266         return count;
2267 }
2268
2269 static const char *rps_power_to_str(unsigned int power)
2270 {
2271         static const char * const strings[] = {
2272                 [LOW_POWER] = "low power",
2273                 [BETWEEN] = "mixed",
2274                 [HIGH_POWER] = "high power",
2275         };
2276
2277         if (power >= ARRAY_SIZE(strings) || !strings[power])
2278                 return "unknown";
2279
2280         return strings[power];
2281 }
2282
2283 static int i915_rps_boost_info(struct seq_file *m, void *data)
2284 {
2285         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2286         struct drm_device *dev = &dev_priv->drm;
2287         struct drm_file *file;
2288
2289         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2290         seq_printf(m, "GPU busy? %s [%d requests]\n",
2291                    yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
2292         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2293         seq_printf(m, "Frequency requested %d\n",
2294                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
2295         seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2296                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2297                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2298                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2299                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2300         seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2301                    intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
2302                    intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2303                    intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
2304
2305         mutex_lock(&dev->filelist_mutex);
2306         spin_lock(&dev_priv->rps.client_lock);
2307         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2308                 struct drm_i915_file_private *file_priv = file->driver_priv;
2309                 struct task_struct *task;
2310
2311                 rcu_read_lock();
2312                 task = pid_task(file->pid, PIDTYPE_PID);
2313                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2314                            task ? task->comm : "<unknown>",
2315                            task ? task->pid : -1,
2316                            file_priv->rps.boosts,
2317                            list_empty(&file_priv->rps.link) ? "" : ", active");
2318                 rcu_read_unlock();
2319         }
2320         seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2321         spin_unlock(&dev_priv->rps.client_lock);
2322         mutex_unlock(&dev->filelist_mutex);
2323
2324         if (INTEL_GEN(dev_priv) >= 6 &&
2325             dev_priv->rps.enabled &&
2326             dev_priv->gt.active_requests) {
2327                 u32 rpup, rpupei;
2328                 u32 rpdown, rpdownei;
2329
2330                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2331                 rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2332                 rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2333                 rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2334                 rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2335                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2336
2337                 seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2338                            rps_power_to_str(dev_priv->rps.power));
2339                 seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2340                            rpup && rpupei ? 100 * rpup / rpupei : 0,
2341                            dev_priv->rps.up_threshold);
2342                 seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2343                            rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
2344                            dev_priv->rps.down_threshold);
2345         } else {
2346                 seq_puts(m, "\nRPS Autotuning inactive\n");
2347         }
2348
2349         return 0;
2350 }
2351
2352 static int i915_llc(struct seq_file *m, void *data)
2353 {
2354         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2355         const bool edram = INTEL_GEN(dev_priv) > 8;
2356
2357         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2358         seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2359                    intel_uncore_edram_size(dev_priv)/1024/1024);
2360
2361         return 0;
2362 }
2363
2364 static int i915_huc_load_status_info(struct seq_file *m, void *data)
2365 {
2366         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2367         struct intel_uc_fw *huc_fw = &dev_priv->huc.fw;
2368
2369         if (!HAS_HUC_UCODE(dev_priv))
2370                 return 0;
2371
2372         seq_puts(m, "HuC firmware status:\n");
2373         seq_printf(m, "\tpath: %s\n", huc_fw->path);
2374         seq_printf(m, "\tfetch: %s\n",
2375                 intel_uc_fw_status_repr(huc_fw->fetch_status));
2376         seq_printf(m, "\tload: %s\n",
2377                 intel_uc_fw_status_repr(huc_fw->load_status));
2378         seq_printf(m, "\tversion wanted: %d.%d\n",
2379                 huc_fw->major_ver_wanted, huc_fw->minor_ver_wanted);
2380         seq_printf(m, "\tversion found: %d.%d\n",
2381                 huc_fw->major_ver_found, huc_fw->minor_ver_found);
2382         seq_printf(m, "\theader: offset is %d; size = %d\n",
2383                 huc_fw->header_offset, huc_fw->header_size);
2384         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2385                 huc_fw->ucode_offset, huc_fw->ucode_size);
2386         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2387                 huc_fw->rsa_offset, huc_fw->rsa_size);
2388
2389         intel_runtime_pm_get(dev_priv);
2390         seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
2391         intel_runtime_pm_put(dev_priv);
2392
2393         return 0;
2394 }
2395
2396 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2397 {
2398         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2399         struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
2400         u32 tmp, i;
2401
2402         if (!HAS_GUC_UCODE(dev_priv))
2403                 return 0;
2404
2405         seq_printf(m, "GuC firmware status:\n");
2406         seq_printf(m, "\tpath: %s\n",
2407                 guc_fw->path);
2408         seq_printf(m, "\tfetch: %s\n",
2409                 intel_uc_fw_status_repr(guc_fw->fetch_status));
2410         seq_printf(m, "\tload: %s\n",
2411                 intel_uc_fw_status_repr(guc_fw->load_status));
2412         seq_printf(m, "\tversion wanted: %d.%d\n",
2413                 guc_fw->major_ver_wanted, guc_fw->minor_ver_wanted);
2414         seq_printf(m, "\tversion found: %d.%d\n",
2415                 guc_fw->major_ver_found, guc_fw->minor_ver_found);
2416         seq_printf(m, "\theader: offset is %d; size = %d\n",
2417                 guc_fw->header_offset, guc_fw->header_size);
2418         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2419                 guc_fw->ucode_offset, guc_fw->ucode_size);
2420         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2421                 guc_fw->rsa_offset, guc_fw->rsa_size);
2422
2423         intel_runtime_pm_get(dev_priv);
2424
2425         tmp = I915_READ(GUC_STATUS);
2426
2427         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2428         seq_printf(m, "\tBootrom status = 0x%x\n",
2429                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2430         seq_printf(m, "\tuKernel status = 0x%x\n",
2431                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2432         seq_printf(m, "\tMIA Core status = 0x%x\n",
2433                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2434         seq_puts(m, "\nScratch registers:\n");
2435         for (i = 0; i < 16; i++)
2436                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2437
2438         intel_runtime_pm_put(dev_priv);
2439
2440         return 0;
2441 }
2442
2443 static void i915_guc_log_info(struct seq_file *m,
2444                               struct drm_i915_private *dev_priv)
2445 {
2446         struct intel_guc *guc = &dev_priv->guc;
2447
2448         seq_puts(m, "\nGuC logging stats:\n");
2449
2450         seq_printf(m, "\tISR:   flush count %10u, overflow count %10u\n",
2451                    guc->log.flush_count[GUC_ISR_LOG_BUFFER],
2452                    guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
2453
2454         seq_printf(m, "\tDPC:   flush count %10u, overflow count %10u\n",
2455                    guc->log.flush_count[GUC_DPC_LOG_BUFFER],
2456                    guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
2457
2458         seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
2459                    guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
2460                    guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
2461
2462         seq_printf(m, "\tTotal flush interrupt count: %u\n",
2463                    guc->log.flush_interrupt_count);
2464
2465         seq_printf(m, "\tCapture miss count: %u\n",
2466                    guc->log.capture_miss_count);
2467 }
2468
2469 static void i915_guc_client_info(struct seq_file *m,
2470                                  struct drm_i915_private *dev_priv,
2471                                  struct i915_guc_client *client)
2472 {
2473         struct intel_engine_cs *engine;
2474         enum intel_engine_id id;
2475         uint64_t tot = 0;
2476
2477         seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
2478                 client->priority, client->stage_id, client->proc_desc_offset);
2479         seq_printf(m, "\tDoorbell id %d, offset: 0x%lx, cookie 0x%x\n",
2480                 client->doorbell_id, client->doorbell_offset, client->doorbell_cookie);
2481         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2482                 client->wq_size, client->wq_offset, client->wq_tail);
2483
2484         seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2485
2486         for_each_engine(engine, dev_priv, id) {
2487                 u64 submissions = client->submissions[id];
2488                 tot += submissions;
2489                 seq_printf(m, "\tSubmissions: %llu %s\n",
2490                                 submissions, engine->name);
2491         }
2492         seq_printf(m, "\tTotal: %llu\n", tot);
2493 }
2494
2495 static bool check_guc_submission(struct seq_file *m)
2496 {
2497         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2498         const struct intel_guc *guc = &dev_priv->guc;
2499
2500         if (!guc->execbuf_client) {
2501                 seq_printf(m, "GuC submission %s\n",
2502                            HAS_GUC_SCHED(dev_priv) ?
2503                            "disabled" :
2504                            "not supported");
2505                 return false;
2506         }
2507
2508         return true;
2509 }
2510
2511 static int i915_guc_info(struct seq_file *m, void *data)
2512 {
2513         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2514         const struct intel_guc *guc = &dev_priv->guc;
2515
2516         if (!check_guc_submission(m))
2517                 return 0;
2518
2519         seq_printf(m, "Doorbell map:\n");
2520         seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
2521         seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
2522
2523         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
2524         i915_guc_client_info(m, dev_priv, guc->execbuf_client);
2525
2526         i915_guc_log_info(m, dev_priv);
2527
2528         /* Add more as required ... */
2529
2530         return 0;
2531 }
2532
2533 static int i915_guc_stage_pool(struct seq_file *m, void *data)
2534 {
2535         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2536         const struct intel_guc *guc = &dev_priv->guc;
2537         struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
2538         struct i915_guc_client *client = guc->execbuf_client;
2539         unsigned int tmp;
2540         int index;
2541
2542         if (!check_guc_submission(m))
2543                 return 0;
2544
2545         for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
2546                 struct intel_engine_cs *engine;
2547
2548                 if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
2549                         continue;
2550
2551                 seq_printf(m, "GuC stage descriptor %u:\n", index);
2552                 seq_printf(m, "\tIndex: %u\n", desc->stage_id);
2553                 seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
2554                 seq_printf(m, "\tPriority: %d\n", desc->priority);
2555                 seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
2556                 seq_printf(m, "\tEngines used: 0x%x\n",
2557                            desc->engines_used);
2558                 seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
2559                            desc->db_trigger_phy,
2560                            desc->db_trigger_cpu,
2561                            desc->db_trigger_uk);
2562                 seq_printf(m, "\tProcess descriptor: 0x%x\n",
2563                            desc->process_desc);
2564                 seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
2565                            desc->wq_addr, desc->wq_size);
2566                 seq_putc(m, '\n');
2567
2568                 for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
2569                         u32 guc_engine_id = engine->guc_id;
2570                         struct guc_execlist_context *lrc =
2571                                                 &desc->lrc[guc_engine_id];
2572
2573                         seq_printf(m, "\t%s LRC:\n", engine->name);
2574                         seq_printf(m, "\t\tContext desc: 0x%x\n",
2575                                    lrc->context_desc);
2576                         seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
2577                         seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
2578                         seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
2579                         seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
2580                         seq_putc(m, '\n');
2581                 }
2582         }
2583
2584         return 0;
2585 }
2586
2587 static int i915_guc_log_dump(struct seq_file *m, void *data)
2588 {
2589         struct drm_info_node *node = m->private;
2590         struct drm_i915_private *dev_priv = node_to_i915(node);
2591         bool dump_load_err = !!node->info_ent->data;
2592         struct drm_i915_gem_object *obj = NULL;
2593         u32 *log;
2594         int i = 0;
2595
2596         if (dump_load_err)
2597                 obj = dev_priv->guc.load_err_log;
2598         else if (dev_priv->guc.log.vma)
2599                 obj = dev_priv->guc.log.vma->obj;
2600
2601         if (!obj)
2602                 return 0;
2603
2604         log = i915_gem_object_pin_map(obj, I915_MAP_WC);
2605         if (IS_ERR(log)) {
2606                 DRM_DEBUG("Failed to pin object\n");
2607                 seq_puts(m, "(log data unaccessible)\n");
2608                 return PTR_ERR(log);
2609         }
2610
2611         for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
2612                 seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2613                            *(log + i), *(log + i + 1),
2614                            *(log + i + 2), *(log + i + 3));
2615
2616         seq_putc(m, '\n');
2617
2618         i915_gem_object_unpin_map(obj);
2619
2620         return 0;
2621 }
2622
2623 static int i915_guc_log_control_get(void *data, u64 *val)
2624 {
2625         struct drm_i915_private *dev_priv = data;
2626
2627         if (!dev_priv->guc.log.vma)
2628                 return -EINVAL;
2629
2630         *val = i915.guc_log_level;
2631
2632         return 0;
2633 }
2634
2635 static int i915_guc_log_control_set(void *data, u64 val)
2636 {
2637         struct drm_i915_private *dev_priv = data;
2638         int ret;
2639
2640         if (!dev_priv->guc.log.vma)
2641                 return -EINVAL;
2642
2643         ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
2644         if (ret)
2645                 return ret;
2646
2647         intel_runtime_pm_get(dev_priv);
2648         ret = i915_guc_log_control(dev_priv, val);
2649         intel_runtime_pm_put(dev_priv);
2650
2651         mutex_unlock(&dev_priv->drm.struct_mutex);
2652         return ret;
2653 }
2654
2655 DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
2656                         i915_guc_log_control_get, i915_guc_log_control_set,
2657                         "%lld\n");
2658
2659 static const char *psr2_live_status(u32 val)
2660 {
2661         static const char * const live_status[] = {
2662                 "IDLE",
2663                 "CAPTURE",
2664                 "CAPTURE_FS",
2665                 "SLEEP",
2666                 "BUFON_FW",
2667                 "ML_UP",
2668                 "SU_STANDBY",
2669                 "FAST_SLEEP",
2670                 "DEEP_SLEEP",
2671                 "BUF_ON",
2672                 "TG_ON"
2673         };
2674
2675         val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
2676         if (val < ARRAY_SIZE(live_status))
2677                 return live_status[val];
2678
2679         return "unknown";
2680 }
2681
2682 static int i915_edp_psr_status(struct seq_file *m, void *data)
2683 {
2684         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2685         u32 psrperf = 0;
2686         u32 stat[3];
2687         enum pipe pipe;
2688         bool enabled = false;
2689
2690         if (!HAS_PSR(dev_priv)) {
2691                 seq_puts(m, "PSR not supported\n");
2692                 return 0;
2693         }
2694
2695         intel_runtime_pm_get(dev_priv);
2696
2697         mutex_lock(&dev_priv->psr.lock);
2698         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2699         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2700         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2701         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2702         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2703                    dev_priv->psr.busy_frontbuffer_bits);
2704         seq_printf(m, "Re-enable work scheduled: %s\n",
2705                    yesno(work_busy(&dev_priv->psr.work.work)));
2706
2707         if (HAS_DDI(dev_priv)) {
2708                 if (dev_priv->psr.psr2_support)
2709                         enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
2710                 else
2711                         enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2712         } else {
2713                 for_each_pipe(dev_priv, pipe) {
2714                         enum transcoder cpu_transcoder =
2715                                 intel_pipe_to_cpu_transcoder(dev_priv, pipe);
2716                         enum intel_display_power_domain power_domain;
2717
2718                         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
2719                         if (!intel_display_power_get_if_enabled(dev_priv,
2720                                                                 power_domain))
2721                                 continue;
2722
2723                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2724                                 VLV_EDP_PSR_CURR_STATE_MASK;
2725                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2726                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2727                                 enabled = true;
2728
2729                         intel_display_power_put(dev_priv, power_domain);
2730                 }
2731         }
2732
2733         seq_printf(m, "Main link in standby mode: %s\n",
2734                    yesno(dev_priv->psr.link_standby));
2735
2736         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2737
2738         if (!HAS_DDI(dev_priv))
2739                 for_each_pipe(dev_priv, pipe) {
2740                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2741                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2742                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2743                 }
2744         seq_puts(m, "\n");
2745
2746         /*
2747          * VLV/CHV PSR has no kind of performance counter
2748          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2749          */
2750         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2751                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2752                         EDP_PSR_PERF_CNT_MASK;
2753
2754                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2755         }
2756         if (dev_priv->psr.psr2_support) {
2757                 u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
2758
2759                 seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
2760                            psr2, psr2_live_status(psr2));
2761         }
2762         mutex_unlock(&dev_priv->psr.lock);
2763
2764         intel_runtime_pm_put(dev_priv);
2765         return 0;
2766 }
2767
2768 static int i915_sink_crc(struct seq_file *m, void *data)
2769 {
2770         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2771         struct drm_device *dev = &dev_priv->drm;
2772         struct intel_connector *connector;
2773         struct drm_connector_list_iter conn_iter;
2774         struct intel_dp *intel_dp = NULL;
2775         int ret;
2776         u8 crc[6];
2777
2778         drm_modeset_lock_all(dev);
2779         drm_connector_list_iter_begin(dev, &conn_iter);
2780         for_each_intel_connector_iter(connector, &conn_iter) {
2781                 struct drm_crtc *crtc;
2782
2783                 if (!connector->base.state->best_encoder)
2784                         continue;
2785
2786                 crtc = connector->base.state->crtc;
2787                 if (!crtc->state->active)
2788                         continue;
2789
2790                 if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2791                         continue;
2792
2793                 intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2794
2795                 ret = intel_dp_sink_crc(intel_dp, crc);
2796                 if (ret)
2797                         goto out;
2798
2799                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2800                            crc[0], crc[1], crc[2],
2801                            crc[3], crc[4], crc[5]);
2802                 goto out;
2803         }
2804         ret = -ENODEV;
2805 out:
2806         drm_connector_list_iter_end(&conn_iter);
2807         drm_modeset_unlock_all(dev);
2808         return ret;
2809 }
2810
2811 static int i915_energy_uJ(struct seq_file *m, void *data)
2812 {
2813         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2814         u64 power;
2815         u32 units;
2816
2817         if (INTEL_GEN(dev_priv) < 6)
2818                 return -ENODEV;
2819
2820         intel_runtime_pm_get(dev_priv);
2821
2822         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2823         power = (power & 0x1f00) >> 8;
2824         units = 1000000 / (1 << power); /* convert to uJ */
2825         power = I915_READ(MCH_SECP_NRG_STTS);
2826         power *= units;
2827
2828         intel_runtime_pm_put(dev_priv);
2829
2830         seq_printf(m, "%llu", (long long unsigned)power);
2831
2832         return 0;
2833 }
2834
2835 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2836 {
2837         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2838         struct pci_dev *pdev = dev_priv->drm.pdev;
2839
2840         if (!HAS_RUNTIME_PM(dev_priv))
2841                 seq_puts(m, "Runtime power management not supported\n");
2842
2843         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2844         seq_printf(m, "IRQs disabled: %s\n",
2845                    yesno(!intel_irqs_enabled(dev_priv)));
2846 #ifdef CONFIG_PM
2847         seq_printf(m, "Usage count: %d\n",
2848                    atomic_read(&dev_priv->drm.dev->power.usage_count));
2849 #else
2850         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2851 #endif
2852         seq_printf(m, "PCI device power state: %s [%d]\n",
2853                    pci_power_name(pdev->current_state),
2854                    pdev->current_state);
2855
2856         return 0;
2857 }
2858
2859 static int i915_power_domain_info(struct seq_file *m, void *unused)
2860 {
2861         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2862         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2863         int i;
2864
2865         mutex_lock(&power_domains->lock);
2866
2867         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2868         for (i = 0; i < power_domains->power_well_count; i++) {
2869                 struct i915_power_well *power_well;
2870                 enum intel_display_power_domain power_domain;
2871
2872                 power_well = &power_domains->power_wells[i];
2873                 seq_printf(m, "%-25s %d\n", power_well->name,
2874                            power_well->count);
2875
2876                 for_each_power_domain(power_domain, power_well->domains)
2877                         seq_printf(m, "  %-23s %d\n",
2878                                  intel_display_power_domain_str(power_domain),
2879                                  power_domains->domain_use_count[power_domain]);
2880         }
2881
2882         mutex_unlock(&power_domains->lock);
2883
2884         return 0;
2885 }
2886
2887 static int i915_dmc_info(struct seq_file *m, void *unused)
2888 {
2889         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2890         struct intel_csr *csr;
2891
2892         if (!HAS_CSR(dev_priv)) {
2893                 seq_puts(m, "not supported\n");
2894                 return 0;
2895         }
2896
2897         csr = &dev_priv->csr;
2898
2899         intel_runtime_pm_get(dev_priv);
2900
2901         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2902         seq_printf(m, "path: %s\n", csr->fw_path);
2903
2904         if (!csr->dmc_payload)
2905                 goto out;
2906
2907         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2908                    CSR_VERSION_MINOR(csr->version));
2909
2910         if (IS_KABYLAKE(dev_priv) ||
2911             (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6))) {
2912                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2913                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2914                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2915                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2916         } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2917                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2918                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2919         }
2920
2921 out:
2922         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2923         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2924         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2925
2926         intel_runtime_pm_put(dev_priv);
2927
2928         return 0;
2929 }
2930
2931 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2932                                  struct drm_display_mode *mode)
2933 {
2934         int i;
2935
2936         for (i = 0; i < tabs; i++)
2937                 seq_putc(m, '\t');
2938
2939         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2940                    mode->base.id, mode->name,
2941                    mode->vrefresh, mode->clock,
2942                    mode->hdisplay, mode->hsync_start,
2943                    mode->hsync_end, mode->htotal,
2944                    mode->vdisplay, mode->vsync_start,
2945                    mode->vsync_end, mode->vtotal,
2946                    mode->type, mode->flags);
2947 }
2948
2949 static void intel_encoder_info(struct seq_file *m,
2950                                struct intel_crtc *intel_crtc,
2951                                struct intel_encoder *intel_encoder)
2952 {
2953         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2954         struct drm_device *dev = &dev_priv->drm;
2955         struct drm_crtc *crtc = &intel_crtc->base;
2956         struct intel_connector *intel_connector;
2957         struct drm_encoder *encoder;
2958
2959         encoder = &intel_encoder->base;
2960         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2961                    encoder->base.id, encoder->name);
2962         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2963                 struct drm_connector *connector = &intel_connector->base;
2964                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2965                            connector->base.id,
2966                            connector->name,
2967                            drm_get_connector_status_name(connector->status));
2968                 if (connector->status == connector_status_connected) {
2969                         struct drm_display_mode *mode = &crtc->mode;
2970                         seq_printf(m, ", mode:\n");
2971                         intel_seq_print_mode(m, 2, mode);
2972                 } else {
2973                         seq_putc(m, '\n');
2974                 }
2975         }
2976 }
2977
2978 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2979 {
2980         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2981         struct drm_device *dev = &dev_priv->drm;
2982         struct drm_crtc *crtc = &intel_crtc->base;
2983         struct intel_encoder *intel_encoder;
2984         struct drm_plane_state *plane_state = crtc->primary->state;
2985         struct drm_framebuffer *fb = plane_state->fb;
2986
2987         if (fb)
2988                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2989                            fb->base.id, plane_state->src_x >> 16,
2990                            plane_state->src_y >> 16, fb->width, fb->height);
2991         else
2992                 seq_puts(m, "\tprimary plane disabled\n");
2993         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2994                 intel_encoder_info(m, intel_crtc, intel_encoder);
2995 }
2996
2997 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2998 {
2999         struct drm_display_mode *mode = panel->fixed_mode;
3000
3001         seq_printf(m, "\tfixed mode:\n");
3002         intel_seq_print_mode(m, 2, mode);
3003 }
3004
3005 static void intel_dp_info(struct seq_file *m,
3006                           struct intel_connector *intel_connector)
3007 {
3008         struct intel_encoder *intel_encoder = intel_connector->encoder;
3009         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3010
3011         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
3012         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
3013         if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
3014                 intel_panel_info(m, &intel_connector->panel);
3015
3016         drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
3017                                 &intel_dp->aux);
3018 }
3019
3020 static void intel_dp_mst_info(struct seq_file *m,
3021                           struct intel_connector *intel_connector)
3022 {
3023         struct intel_encoder *intel_encoder = intel_connector->encoder;
3024         struct intel_dp_mst_encoder *intel_mst =
3025                 enc_to_mst(&intel_encoder->base);
3026         struct intel_digital_port *intel_dig_port = intel_mst->primary;
3027         struct intel_dp *intel_dp = &intel_dig_port->dp;
3028         bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
3029                                         intel_connector->port);
3030
3031         seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
3032 }
3033
3034 static void intel_hdmi_info(struct seq_file *m,
3035                             struct intel_connector *intel_connector)
3036 {
3037         struct intel_encoder *intel_encoder = intel_connector->encoder;
3038         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
3039
3040         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
3041 }
3042
3043 static void intel_lvds_info(struct seq_file *m,
3044                             struct intel_connector *intel_connector)
3045 {
3046         intel_panel_info(m, &intel_connector->panel);
3047 }
3048
3049 static void intel_connector_info(struct seq_file *m,
3050                                  struct drm_connector *connector)
3051 {
3052         struct intel_connector *intel_connector = to_intel_connector(connector);
3053         struct intel_encoder *intel_encoder = intel_connector->encoder;
3054         struct drm_display_mode *mode;
3055
3056         seq_printf(m, "connector %d: type %s, status: %s\n",
3057                    connector->base.id, connector->name,
3058                    drm_get_connector_status_name(connector->status));
3059         if (connector->status == connector_status_connected) {
3060                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
3061                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
3062                            connector->display_info.width_mm,
3063                            connector->display_info.height_mm);
3064                 seq_printf(m, "\tsubpixel order: %s\n",
3065                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
3066                 seq_printf(m, "\tCEA rev: %d\n",
3067                            connector->display_info.cea_rev);
3068         }
3069
3070         if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3071                 return;
3072
3073         switch (connector->connector_type) {
3074         case DRM_MODE_CONNECTOR_DisplayPort:
3075         case DRM_MODE_CONNECTOR_eDP:
3076                 if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
3077                         intel_dp_mst_info(m, intel_connector);
3078                 else
3079                         intel_dp_info(m, intel_connector);
3080                 break;
3081         case DRM_MODE_CONNECTOR_LVDS:
3082                 if (intel_encoder->type == INTEL_OUTPUT_LVDS)
3083                         intel_lvds_info(m, intel_connector);
3084                 break;
3085         case DRM_MODE_CONNECTOR_HDMIA:
3086                 if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
3087                     intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
3088                         intel_hdmi_info(m, intel_connector);
3089                 break;
3090         default:
3091                 break;
3092         }
3093
3094         seq_printf(m, "\tmodes:\n");
3095         list_for_each_entry(mode, &connector->modes, head)
3096                 intel_seq_print_mode(m, 2, mode);
3097 }
3098
3099 static const char *plane_type(enum drm_plane_type type)
3100 {
3101         switch (type) {
3102         case DRM_PLANE_TYPE_OVERLAY:
3103                 return "OVL";
3104         case DRM_PLANE_TYPE_PRIMARY:
3105                 return "PRI";
3106         case DRM_PLANE_TYPE_CURSOR:
3107                 return "CUR";
3108         /*
3109          * Deliberately omitting default: to generate compiler warnings
3110          * when a new drm_plane_type gets added.
3111          */
3112         }
3113
3114         return "unknown";
3115 }
3116
3117 static const char *plane_rotation(unsigned int rotation)
3118 {
3119         static char buf[48];
3120         /*
3121          * According to doc only one DRM_MODE_ROTATE_ is allowed but this
3122          * will print them all to visualize if the values are misused
3123          */
3124         snprintf(buf, sizeof(buf),
3125                  "%s%s%s%s%s%s(0x%08x)",
3126                  (rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
3127                  (rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
3128                  (rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
3129                  (rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
3130                  (rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
3131                  (rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
3132                  rotation);
3133
3134         return buf;
3135 }
3136
3137 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3138 {
3139         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3140         struct drm_device *dev = &dev_priv->drm;
3141         struct intel_plane *intel_plane;
3142
3143         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3144                 struct drm_plane_state *state;
3145                 struct drm_plane *plane = &intel_plane->base;
3146                 struct drm_format_name_buf format_name;
3147
3148                 if (!plane->state) {
3149                         seq_puts(m, "plane->state is NULL!\n");
3150                         continue;
3151                 }
3152
3153                 state = plane->state;
3154
3155                 if (state->fb) {
3156                         drm_get_format_name(state->fb->format->format,
3157                                             &format_name);
3158                 } else {
3159                         sprintf(format_name.str, "N/A");
3160                 }
3161
3162                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3163                            plane->base.id,
3164                            plane_type(intel_plane->base.type),
3165                            state->crtc_x, state->crtc_y,
3166                            state->crtc_w, state->crtc_h,
3167                            (state->src_x >> 16),
3168                            ((state->src_x & 0xffff) * 15625) >> 10,
3169                            (state->src_y >> 16),
3170                            ((state->src_y & 0xffff) * 15625) >> 10,
3171                            (state->src_w >> 16),
3172                            ((state->src_w & 0xffff) * 15625) >> 10,
3173                            (state->src_h >> 16),
3174                            ((state->src_h & 0xffff) * 15625) >> 10,
3175                            format_name.str,
3176                            plane_rotation(state->rotation));
3177         }
3178 }
3179
3180 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3181 {
3182         struct intel_crtc_state *pipe_config;
3183         int num_scalers = intel_crtc->num_scalers;
3184         int i;
3185
3186         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3187
3188         /* Not all platformas have a scaler */
3189         if (num_scalers) {
3190                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3191                            num_scalers,
3192                            pipe_config->scaler_state.scaler_users,
3193                            pipe_config->scaler_state.scaler_id);
3194
3195                 for (i = 0; i < num_scalers; i++) {
3196                         struct intel_scaler *sc =
3197                                         &pipe_config->scaler_state.scalers[i];
3198
3199                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3200                                    i, yesno(sc->in_use), sc->mode);
3201                 }
3202                 seq_puts(m, "\n");
3203         } else {
3204                 seq_puts(m, "\tNo scalers available on this platform\n");
3205         }
3206 }
3207
3208 static int i915_display_info(struct seq_file *m, void *unused)
3209 {
3210         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3211         struct drm_device *dev = &dev_priv->drm;
3212         struct intel_crtc *crtc;
3213         struct drm_connector *connector;
3214         struct drm_connector_list_iter conn_iter;
3215
3216         intel_runtime_pm_get(dev_priv);
3217         seq_printf(m, "CRTC info\n");
3218         seq_printf(m, "---------\n");
3219         for_each_intel_crtc(dev, crtc) {
3220                 struct intel_crtc_state *pipe_config;
3221
3222                 drm_modeset_lock(&crtc->base.mutex, NULL);
3223                 pipe_config = to_intel_crtc_state(crtc->base.state);
3224
3225                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3226                            crtc->base.base.id, pipe_name(crtc->pipe),
3227                            yesno(pipe_config->base.active),
3228                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3229                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3230
3231                 if (pipe_config->base.active) {
3232                         struct intel_plane *cursor =
3233                                 to_intel_plane(crtc->base.cursor);
3234
3235                         intel_crtc_info(m, crtc);
3236
3237                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
3238                                    yesno(cursor->base.state->visible),
3239                                    cursor->base.state->crtc_x,
3240                                    cursor->base.state->crtc_y,
3241                                    cursor->base.state->crtc_w,
3242                                    cursor->base.state->crtc_h,
3243                                    cursor->cursor.base);
3244                         intel_scaler_info(m, crtc);
3245                         intel_plane_info(m, crtc);
3246                 }
3247
3248                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3249                            yesno(!crtc->cpu_fifo_underrun_disabled),
3250                            yesno(!crtc->pch_fifo_underrun_disabled));
3251                 drm_modeset_unlock(&crtc->base.mutex);
3252         }
3253
3254         seq_printf(m, "\n");
3255         seq_printf(m, "Connector info\n");
3256         seq_printf(m, "--------------\n");
3257         mutex_lock(&dev->mode_config.mutex);
3258         drm_connector_list_iter_begin(dev, &conn_iter);
3259         drm_for_each_connector_iter(connector, &conn_iter)
3260                 intel_connector_info(m, connector);
3261         drm_connector_list_iter_end(&conn_iter);
3262         mutex_unlock(&dev->mode_config.mutex);
3263
3264         intel_runtime_pm_put(dev_priv);
3265
3266         return 0;
3267 }
3268
3269 static int i915_engine_info(struct seq_file *m, void *unused)
3270 {
3271         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3272         struct intel_engine_cs *engine;
3273         enum intel_engine_id id;
3274
3275         intel_runtime_pm_get(dev_priv);
3276
3277         seq_printf(m, "GT awake? %s\n",
3278                    yesno(dev_priv->gt.awake));
3279         seq_printf(m, "Global active requests: %d\n",
3280                    dev_priv->gt.active_requests);
3281
3282         for_each_engine(engine, dev_priv, id) {
3283                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
3284                 struct drm_i915_gem_request *rq;
3285                 struct rb_node *rb;
3286                 u64 addr;
3287
3288                 seq_printf(m, "%s\n", engine->name);
3289                 seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms], inflight %d\n",
3290                            intel_engine_get_seqno(engine),
3291                            intel_engine_last_submit(engine),
3292                            engine->hangcheck.seqno,
3293                            jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp),
3294                            engine->timeline->inflight_seqnos);
3295
3296                 rcu_read_lock();
3297
3298                 seq_printf(m, "\tRequests:\n");
3299
3300                 rq = list_first_entry(&engine->timeline->requests,
3301                                       struct drm_i915_gem_request, link);
3302                 if (&rq->link != &engine->timeline->requests)
3303                         print_request(m, rq, "\t\tfirst  ");
3304
3305                 rq = list_last_entry(&engine->timeline->requests,
3306                                      struct drm_i915_gem_request, link);
3307                 if (&rq->link != &engine->timeline->requests)
3308                         print_request(m, rq, "\t\tlast   ");
3309
3310                 rq = i915_gem_find_active_request(engine);
3311                 if (rq) {
3312                         print_request(m, rq, "\t\tactive ");
3313                         seq_printf(m,
3314                                    "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
3315                                    rq->head, rq->postfix, rq->tail,
3316                                    rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
3317                                    rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
3318                 }
3319
3320                 seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
3321                            I915_READ(RING_START(engine->mmio_base)),
3322                            rq ? i915_ggtt_offset(rq->ring->vma) : 0);
3323                 seq_printf(m, "\tRING_HEAD:  0x%08x [0x%08x]\n",
3324                            I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
3325                            rq ? rq->ring->head : 0);
3326                 seq_printf(m, "\tRING_TAIL:  0x%08x [0x%08x]\n",
3327                            I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
3328                            rq ? rq->ring->tail : 0);
3329                 seq_printf(m, "\tRING_CTL:   0x%08x [%s]\n",
3330                            I915_READ(RING_CTL(engine->mmio_base)),
3331                            I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
3332
3333                 rcu_read_unlock();
3334
3335                 addr = intel_engine_get_active_head(engine);
3336                 seq_printf(m, "\tACTHD:  0x%08x_%08x\n",
3337                            upper_32_bits(addr), lower_32_bits(addr));
3338                 addr = intel_engine_get_last_batch_head(engine);
3339                 seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
3340                            upper_32_bits(addr), lower_32_bits(addr));
3341
3342                 if (i915.enable_execlists) {
3343                         u32 ptr, read, write;
3344                         unsigned int idx;
3345
3346                         seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
3347                                    I915_READ(RING_EXECLIST_STATUS_LO(engine)),
3348                                    I915_READ(RING_EXECLIST_STATUS_HI(engine)));
3349
3350                         ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
3351                         read = GEN8_CSB_READ_PTR(ptr);
3352                         write = GEN8_CSB_WRITE_PTR(ptr);
3353                         seq_printf(m, "\tExeclist CSB read %d, write %d\n",
3354                                    read, write);
3355                         if (read >= GEN8_CSB_ENTRIES)
3356                                 read = 0;
3357                         if (write >= GEN8_CSB_ENTRIES)
3358                                 write = 0;
3359                         if (read > write)
3360                                 write += GEN8_CSB_ENTRIES;
3361                         while (read < write) {
3362                                 idx = ++read % GEN8_CSB_ENTRIES;
3363                                 seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
3364                                            idx,
3365                                            I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
3366                                            I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
3367                         }
3368
3369                         rcu_read_lock();
3370                         for (idx = 0; idx < ARRAY_SIZE(engine->execlist_port); idx++) {
3371                                 unsigned int count;
3372
3373                                 rq = port_unpack(&engine->execlist_port[idx],
3374                                                  &count);
3375                                 if (rq) {
3376                                         seq_printf(m, "\t\tELSP[%d] count=%d, ",
3377                                                    idx, count);
3378                                         print_request(m, rq, "rq: ");
3379                                 } else {
3380                                         seq_printf(m, "\t\tELSP[%d] idle\n",
3381                                                    idx);
3382                                 }
3383                         }
3384                         rcu_read_unlock();
3385
3386                         spin_lock_irq(&engine->timeline->lock);
3387                         for (rb = engine->execlist_first; rb; rb = rb_next(rb)){
3388                                 struct i915_priolist *p =
3389                                         rb_entry(rb, typeof(*p), node);
3390
3391                                 list_for_each_entry(rq, &p->requests,
3392                                                     priotree.link)
3393                                         print_request(m, rq, "\t\tQ ");
3394                         }
3395                         spin_unlock_irq(&engine->timeline->lock);
3396                 } else if (INTEL_GEN(dev_priv) > 6) {
3397                         seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
3398                                    I915_READ(RING_PP_DIR_BASE(engine)));
3399                         seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
3400                                    I915_READ(RING_PP_DIR_BASE_READ(engine)));
3401                         seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
3402                                    I915_READ(RING_PP_DIR_DCLV(engine)));
3403                 }
3404
3405                 spin_lock_irq(&b->rb_lock);
3406                 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
3407                         struct intel_wait *w = rb_entry(rb, typeof(*w), node);
3408
3409                         seq_printf(m, "\t%s [%d] waiting for %x\n",
3410                                    w->tsk->comm, w->tsk->pid, w->seqno);
3411                 }
3412                 spin_unlock_irq(&b->rb_lock);
3413
3414                 seq_puts(m, "\n");
3415         }
3416
3417         intel_runtime_pm_put(dev_priv);
3418
3419         return 0;
3420 }
3421
3422 static int i915_semaphore_status(struct seq_file *m, void *unused)
3423 {
3424         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3425         struct drm_device *dev = &dev_priv->drm;
3426         struct intel_engine_cs *engine;
3427         int num_rings = INTEL_INFO(dev_priv)->num_rings;
3428         enum intel_engine_id id;
3429         int j, ret;
3430
3431         if (!i915.semaphores) {
3432                 seq_puts(m, "Semaphores are disabled\n");
3433                 return 0;
3434         }
3435
3436         ret = mutex_lock_interruptible(&dev->struct_mutex);
3437         if (ret)
3438                 return ret;
3439         intel_runtime_pm_get(dev_priv);
3440
3441         if (IS_BROADWELL(dev_priv)) {
3442                 struct page *page;
3443                 uint64_t *seqno;
3444
3445                 page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3446
3447                 seqno = (uint64_t *)kmap_atomic(page);
3448                 for_each_engine(engine, dev_priv, id) {
3449                         uint64_t offset;
3450
3451                         seq_printf(m, "%s\n", engine->name);
3452
3453                         seq_puts(m, "  Last signal:");
3454                         for (j = 0; j < num_rings; j++) {
3455                                 offset = id * I915_NUM_ENGINES + j;
3456                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3457                                            seqno[offset], offset * 8);
3458                         }
3459                         seq_putc(m, '\n');
3460
3461                         seq_puts(m, "  Last wait:  ");
3462                         for (j = 0; j < num_rings; j++) {
3463                                 offset = id + (j * I915_NUM_ENGINES);
3464                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3465                                            seqno[offset], offset * 8);
3466                         }
3467                         seq_putc(m, '\n');
3468
3469                 }
3470                 kunmap_atomic(seqno);
3471         } else {
3472                 seq_puts(m, "  Last signal:");
3473                 for_each_engine(engine, dev_priv, id)
3474                         for (j = 0; j < num_rings; j++)
3475                                 seq_printf(m, "0x%08x\n",
3476                                            I915_READ(engine->semaphore.mbox.signal[j]));
3477                 seq_putc(m, '\n');
3478         }
3479
3480         intel_runtime_pm_put(dev_priv);
3481         mutex_unlock(&dev->struct_mutex);
3482         return 0;
3483 }
3484
3485 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3486 {
3487         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3488         struct drm_device *dev = &dev_priv->drm;
3489         int i;
3490
3491         drm_modeset_lock_all(dev);
3492         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3493                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3494
3495                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3496                 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3497                            pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
3498                 seq_printf(m, " tracked hardware state:\n");
3499                 seq_printf(m, " dpll:    0x%08x\n", pll->state.hw_state.dpll);
3500                 seq_printf(m, " dpll_md: 0x%08x\n",
3501                            pll->state.hw_state.dpll_md);
3502                 seq_printf(m, " fp0:     0x%08x\n", pll->state.hw_state.fp0);
3503                 seq_printf(m, " fp1:     0x%08x\n", pll->state.hw_state.fp1);
3504                 seq_printf(m, " wrpll:   0x%08x\n", pll->state.hw_state.wrpll);
3505         }
3506         drm_modeset_unlock_all(dev);
3507
3508         return 0;
3509 }
3510
3511 static int i915_wa_registers(struct seq_file *m, void *unused)
3512 {
3513         int i;
3514         int ret;
3515         struct intel_engine_cs *engine;
3516         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3517         struct drm_device *dev = &dev_priv->drm;
3518         struct i915_workarounds *workarounds = &dev_priv->workarounds;
3519         enum intel_engine_id id;
3520
3521         ret = mutex_lock_interruptible(&dev->struct_mutex);
3522         if (ret)
3523                 return ret;
3524
3525         intel_runtime_pm_get(dev_priv);
3526
3527         seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3528         for_each_engine(engine, dev_priv, id)
3529                 seq_printf(m, "HW whitelist count for %s: %d\n",
3530                            engine->name, workarounds->hw_whitelist_count[id]);
3531         for (i = 0; i < workarounds->count; ++i) {
3532                 i915_reg_t addr;
3533                 u32 mask, value, read;
3534                 bool ok;
3535
3536                 addr = workarounds->reg[i].addr;
3537                 mask = workarounds->reg[i].mask;
3538                 value = workarounds->reg[i].value;
3539                 read = I915_READ(addr);
3540                 ok = (value & mask) == (read & mask);
3541                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3542                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3543         }
3544
3545         intel_runtime_pm_put(dev_priv);
3546         mutex_unlock(&dev->struct_mutex);
3547
3548         return 0;
3549 }
3550
3551 static int i915_ddb_info(struct seq_file *m, void *unused)
3552 {
3553         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3554         struct drm_device *dev = &dev_priv->drm;
3555         struct skl_ddb_allocation *ddb;
3556         struct skl_ddb_entry *entry;
3557         enum pipe pipe;
3558         int plane;
3559
3560         if (INTEL_GEN(dev_priv) < 9)
3561                 return 0;
3562
3563         drm_modeset_lock_all(dev);
3564
3565         ddb = &dev_priv->wm.skl_hw.ddb;
3566
3567         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3568
3569         for_each_pipe(dev_priv, pipe) {
3570                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3571
3572                 for_each_universal_plane(dev_priv, pipe, plane) {
3573                         entry = &ddb->plane[pipe][plane];
3574                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3575                                    entry->start, entry->end,
3576                                    skl_ddb_entry_size(entry));
3577                 }
3578
3579                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3580                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3581                            entry->end, skl_ddb_entry_size(entry));
3582         }
3583
3584         drm_modeset_unlock_all(dev);
3585
3586         return 0;
3587 }
3588
3589 static void drrs_status_per_crtc(struct seq_file *m,
3590                                  struct drm_device *dev,
3591                                  struct intel_crtc *intel_crtc)
3592 {
3593         struct drm_i915_private *dev_priv = to_i915(dev);
3594         struct i915_drrs *drrs = &dev_priv->drrs;
3595         int vrefresh = 0;
3596         struct drm_connector *connector;
3597         struct drm_connector_list_iter conn_iter;
3598
3599         drm_connector_list_iter_begin(dev, &conn_iter);
3600         drm_for_each_connector_iter(connector, &conn_iter) {
3601                 if (connector->state->crtc != &intel_crtc->base)
3602                         continue;
3603
3604                 seq_printf(m, "%s:\n", connector->name);
3605         }
3606         drm_connector_list_iter_end(&conn_iter);
3607
3608         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3609                 seq_puts(m, "\tVBT: DRRS_type: Static");
3610         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3611                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3612         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3613                 seq_puts(m, "\tVBT: DRRS_type: None");
3614         else
3615                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3616
3617         seq_puts(m, "\n\n");
3618
3619         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3620                 struct intel_panel *panel;
3621
3622                 mutex_lock(&drrs->mutex);
3623                 /* DRRS Supported */
3624                 seq_puts(m, "\tDRRS Supported: Yes\n");
3625
3626                 /* disable_drrs() will make drrs->dp NULL */
3627                 if (!drrs->dp) {
3628                         seq_puts(m, "Idleness DRRS: Disabled");
3629                         mutex_unlock(&drrs->mutex);
3630                         return;
3631                 }
3632
3633                 panel = &drrs->dp->attached_connector->panel;
3634                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3635                                         drrs->busy_frontbuffer_bits);
3636
3637                 seq_puts(m, "\n\t\t");
3638                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3639                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3640                         vrefresh = panel->fixed_mode->vrefresh;
3641                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3642                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3643                         vrefresh = panel->downclock_mode->vrefresh;
3644                 } else {
3645                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3646                                                 drrs->refresh_rate_type);
3647                         mutex_unlock(&drrs->mutex);
3648                         return;
3649                 }
3650                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3651
3652                 seq_puts(m, "\n\t\t");
3653                 mutex_unlock(&drrs->mutex);
3654         } else {
3655                 /* DRRS not supported. Print the VBT parameter*/
3656                 seq_puts(m, "\tDRRS Supported : No");
3657         }
3658         seq_puts(m, "\n");
3659 }
3660
3661 static int i915_drrs_status(struct seq_file *m, void *unused)
3662 {
3663         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3664         struct drm_device *dev = &dev_priv->drm;
3665         struct intel_crtc *intel_crtc;
3666         int active_crtc_cnt = 0;
3667
3668         drm_modeset_lock_all(dev);
3669         for_each_intel_crtc(dev, intel_crtc) {
3670                 if (intel_crtc->base.state->active) {
3671                         active_crtc_cnt++;
3672                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3673
3674                         drrs_status_per_crtc(m, dev, intel_crtc);
3675                 }
3676         }
3677         drm_modeset_unlock_all(dev);
3678
3679         if (!active_crtc_cnt)
3680                 seq_puts(m, "No active crtc found\n");
3681
3682         return 0;
3683 }
3684
3685 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3686 {
3687         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3688         struct drm_device *dev = &dev_priv->drm;
3689         struct intel_encoder *intel_encoder;
3690         struct intel_digital_port *intel_dig_port;
3691         struct drm_connector *connector;
3692         struct drm_connector_list_iter conn_iter;
3693
3694         drm_connector_list_iter_begin(dev, &conn_iter);
3695         drm_for_each_connector_iter(connector, &conn_iter) {
3696                 if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3697                         continue;
3698
3699                 intel_encoder = intel_attached_encoder(connector);
3700                 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3701                         continue;
3702
3703                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3704                 if (!intel_dig_port->dp.can_mst)
3705                         continue;
3706
3707                 seq_printf(m, "MST Source Port %c\n",
3708                            port_name(intel_dig_port->port));
3709                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3710         }
3711         drm_connector_list_iter_end(&conn_iter);
3712
3713         return 0;
3714 }
3715
3716 static ssize_t i915_displayport_test_active_write(struct file *file,
3717                                                   const char __user *ubuf,
3718                                                   size_t len, loff_t *offp)
3719 {
3720         char *input_buffer;
3721         int status = 0;
3722         struct drm_device *dev;
3723         struct drm_connector *connector;
3724         struct drm_connector_list_iter conn_iter;
3725         struct intel_dp *intel_dp;
3726         int val = 0;
3727
3728         dev = ((struct seq_file *)file->private_data)->private;
3729
3730         if (len == 0)
3731                 return 0;
3732
3733         input_buffer = memdup_user_nul(ubuf, len);
3734         if (IS_ERR(input_buffer))
3735                 return PTR_ERR(input_buffer);
3736
3737         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
3738
3739         drm_connector_list_iter_begin(dev, &conn_iter);
3740         drm_for_each_connector_iter(connector, &conn_iter) {
3741                 if (connector->connector_type !=
3742                     DRM_MODE_CONNECTOR_DisplayPort)
3743                         continue;
3744
3745                 if (connector->status == connector_status_connected &&
3746                     connector->encoder != NULL) {
3747                         intel_dp = enc_to_intel_dp(connector->encoder);
3748                         status = kstrtoint(input_buffer, 10, &val);
3749                         if (status < 0)
3750                                 break;
3751                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
3752                         /* To prevent erroneous activation of the compliance
3753                          * testing code, only accept an actual value of 1 here
3754                          */
3755                         if (val == 1)
3756                                 intel_dp->compliance.test_active = 1;
3757                         else
3758                                 intel_dp->compliance.test_active = 0;
3759                 }
3760         }
3761         drm_connector_list_iter_end(&conn_iter);
3762         kfree(input_buffer);
3763         if (status < 0)
3764                 return status;
3765
3766         *offp += len;
3767         return len;
3768 }
3769
3770 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
3771 {
3772         struct drm_device *dev = m->private;
3773         struct drm_connector *connector;
3774         struct drm_connector_list_iter conn_iter;
3775         struct intel_dp *intel_dp;
3776
3777         drm_connector_list_iter_begin(dev, &conn_iter);
3778         drm_for_each_connector_iter(connector, &conn_iter) {
3779                 if (connector->connector_type !=
3780                     DRM_MODE_CONNECTOR_DisplayPort)
3781                         continue;
3782
3783                 if (connector->status == connector_status_connected &&
3784                     connector->encoder != NULL) {
3785                         intel_dp = enc_to_intel_dp(connector->encoder);
3786                         if (intel_dp->compliance.test_active)
3787                                 seq_puts(m, "1");
3788                         else
3789                                 seq_puts(m, "0");
3790                 } else
3791                         seq_puts(m, "0");
3792         }
3793         drm_connector_list_iter_end(&conn_iter);
3794
3795         return 0;
3796 }
3797
3798 static int i915_displayport_test_active_open(struct inode *inode,
3799                                              struct file *file)
3800 {
3801         struct drm_i915_private *dev_priv = inode->i_private;
3802
3803         return single_open(file, i915_displayport_test_active_show,
3804                            &dev_priv->drm);
3805 }
3806
3807 static const struct file_operations i915_displayport_test_active_fops = {
3808         .owner = THIS_MODULE,
3809         .open = i915_displayport_test_active_open,
3810         .read = seq_read,
3811         .llseek = seq_lseek,
3812         .release = single_release,
3813         .write = i915_displayport_test_active_write
3814 };
3815
3816 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
3817 {
3818         struct drm_device *dev = m->private;
3819         struct drm_connector *connector;
3820         struct drm_connector_list_iter conn_iter;
3821         struct intel_dp *intel_dp;
3822
3823         drm_connector_list_iter_begin(dev, &conn_iter);
3824         drm_for_each_connector_iter(connector, &conn_iter) {
3825                 if (connector->connector_type !=
3826                     DRM_MODE_CONNECTOR_DisplayPort)
3827                         continue;
3828
3829                 if (connector->status == connector_status_connected &&
3830                     connector->encoder != NULL) {
3831                         intel_dp = enc_to_intel_dp(connector->encoder);
3832                         if (intel_dp->compliance.test_type ==
3833                             DP_TEST_LINK_EDID_READ)
3834                                 seq_printf(m, "%lx",
3835                                            intel_dp->compliance.test_data.edid);
3836                         else if (intel_dp->compliance.test_type ==
3837                                  DP_TEST_LINK_VIDEO_PATTERN) {
3838                                 seq_printf(m, "hdisplay: %d\n",
3839                                            intel_dp->compliance.test_data.hdisplay);
3840                                 seq_printf(m, "vdisplay: %d\n",
3841                                            intel_dp->compliance.test_data.vdisplay);
3842                                 seq_printf(m, "bpc: %u\n",
3843                                            intel_dp->compliance.test_data.bpc);
3844                         }
3845                 } else
3846                         seq_puts(m, "0");
3847         }
3848         drm_connector_list_iter_end(&conn_iter);
3849
3850         return 0;
3851 }
3852 static int i915_displayport_test_data_open(struct inode *inode,
3853                                            struct file *file)
3854 {
3855         struct drm_i915_private *dev_priv = inode->i_private;
3856
3857         return single_open(file, i915_displayport_test_data_show,
3858                            &dev_priv->drm);
3859 }
3860
3861 static const struct file_operations i915_displayport_test_data_fops = {
3862         .owner = THIS_MODULE,
3863         .open = i915_displayport_test_data_open,
3864         .read = seq_read,
3865         .llseek = seq_lseek,
3866         .release = single_release
3867 };
3868
3869 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
3870 {
3871         struct drm_device *dev = m->private;
3872         struct drm_connector *connector;
3873         struct drm_connector_list_iter conn_iter;
3874         struct intel_dp *intel_dp;
3875
3876         drm_connector_list_iter_begin(dev, &conn_iter);
3877         drm_for_each_connector_iter(connector, &conn_iter) {
3878                 if (connector->connector_type !=
3879                     DRM_MODE_CONNECTOR_DisplayPort)
3880                         continue;
3881
3882                 if (connector->status == connector_status_connected &&
3883                     connector->encoder != NULL) {
3884                         intel_dp = enc_to_intel_dp(connector->encoder);
3885                         seq_printf(m, "%02lx", intel_dp->compliance.test_type);
3886                 } else
3887                         seq_puts(m, "0");
3888         }
3889         drm_connector_list_iter_end(&conn_iter);
3890
3891         return 0;
3892 }
3893
3894 static int i915_displayport_test_type_open(struct inode *inode,
3895                                        struct file *file)
3896 {
3897         struct drm_i915_private *dev_priv = inode->i_private;
3898
3899         return single_open(file, i915_displayport_test_type_show,
3900                            &dev_priv->drm);
3901 }
3902
3903 static const struct file_operations i915_displayport_test_type_fops = {
3904         .owner = THIS_MODULE,
3905         .open = i915_displayport_test_type_open,
3906         .read = seq_read,
3907         .llseek = seq_lseek,
3908         .release = single_release
3909 };
3910
3911 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3912 {
3913         struct drm_i915_private *dev_priv = m->private;
3914         struct drm_device *dev = &dev_priv->drm;
3915         int level;
3916         int num_levels;
3917
3918         if (IS_CHERRYVIEW(dev_priv))
3919                 num_levels = 3;
3920         else if (IS_VALLEYVIEW(dev_priv))
3921                 num_levels = 1;
3922         else if (IS_G4X(dev_priv))
3923                 num_levels = 3;
3924         else
3925                 num_levels = ilk_wm_max_level(dev_priv) + 1;
3926
3927         drm_modeset_lock_all(dev);
3928
3929         for (level = 0; level < num_levels; level++) {
3930                 unsigned int latency = wm[level];
3931
3932                 /*
3933                  * - WM1+ latency values in 0.5us units
3934                  * - latencies are in us on gen9/vlv/chv
3935                  */
3936                 if (INTEL_GEN(dev_priv) >= 9 ||
3937                     IS_VALLEYVIEW(dev_priv) ||
3938                     IS_CHERRYVIEW(dev_priv) ||
3939                     IS_G4X(dev_priv))
3940                         latency *= 10;
3941                 else if (level > 0)
3942                         latency *= 5;
3943
3944                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3945                            level, wm[level], latency / 10, latency % 10);
3946         }
3947
3948         drm_modeset_unlock_all(dev);
3949 }
3950
3951 static int pri_wm_latency_show(struct seq_file *m, void *data)
3952 {
3953         struct drm_i915_private *dev_priv = m->private;
3954         const uint16_t *latencies;
3955
3956         if (INTEL_GEN(dev_priv) >= 9)
3957                 latencies = dev_priv->wm.skl_latency;
3958         else
3959                 latencies = dev_priv->wm.pri_latency;
3960
3961         wm_latency_show(m, latencies);
3962
3963         return 0;
3964 }
3965
3966 static int spr_wm_latency_show(struct seq_file *m, void *data)
3967 {
3968         struct drm_i915_private *dev_priv = m->private;
3969         const uint16_t *latencies;
3970
3971         if (INTEL_GEN(dev_priv) >= 9)
3972                 latencies = dev_priv->wm.skl_latency;
3973         else
3974                 latencies = dev_priv->wm.spr_latency;
3975
3976         wm_latency_show(m, latencies);
3977
3978         return 0;
3979 }
3980
3981 static int cur_wm_latency_show(struct seq_file *m, void *data)
3982 {
3983         struct drm_i915_private *dev_priv = m->private;
3984         const uint16_t *latencies;
3985
3986         if (INTEL_GEN(dev_priv) >= 9)
3987                 latencies = dev_priv->wm.skl_latency;
3988         else
3989                 latencies = dev_priv->wm.cur_latency;
3990
3991         wm_latency_show(m, latencies);
3992
3993         return 0;
3994 }
3995
3996 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3997 {
3998         struct drm_i915_private *dev_priv = inode->i_private;
3999
4000         if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
4001                 return -ENODEV;
4002
4003         return single_open(file, pri_wm_latency_show, dev_priv);
4004 }
4005
4006 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4007 {
4008         struct drm_i915_private *dev_priv = inode->i_private;
4009
4010         if (HAS_GMCH_DISPLAY(dev_priv))
4011                 return -ENODEV;
4012
4013         return single_open(file, spr_wm_latency_show, dev_priv);
4014 }
4015
4016 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4017 {
4018         struct drm_i915_private *dev_priv = inode->i_private;
4019
4020         if (HAS_GMCH_DISPLAY(dev_priv))
4021                 return -ENODEV;
4022
4023         return single_open(file, cur_wm_latency_show, dev_priv);
4024 }
4025
4026 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4027                                 size_t len, loff_t *offp, uint16_t wm[8])
4028 {
4029         struct seq_file *m = file->private_data;
4030         struct drm_i915_private *dev_priv = m->private;
4031         struct drm_device *dev = &dev_priv->drm;
4032         uint16_t new[8] = { 0 };
4033         int num_levels;
4034         int level;
4035         int ret;
4036         char tmp[32];
4037
4038         if (IS_CHERRYVIEW(dev_priv))
4039                 num_levels = 3;
4040         else if (IS_VALLEYVIEW(dev_priv))
4041                 num_levels = 1;
4042         else if (IS_G4X(dev_priv))
4043                 num_levels = 3;
4044         else
4045                 num_levels = ilk_wm_max_level(dev_priv) + 1;
4046
4047         if (len >= sizeof(tmp))
4048                 return -EINVAL;
4049
4050         if (copy_from_user(tmp, ubuf, len))
4051                 return -EFAULT;
4052
4053         tmp[len] = '\0';
4054
4055         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4056                      &new[0], &new[1], &new[2], &new[3],
4057                      &new[4], &new[5], &new[6], &new[7]);
4058         if (ret != num_levels)
4059                 return -EINVAL;
4060
4061         drm_modeset_lock_all(dev);
4062
4063         for (level = 0; level < num_levels; level++)
4064                 wm[level] = new[level];
4065
4066         drm_modeset_unlock_all(dev);
4067
4068         return len;
4069 }
4070
4071
4072 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4073                                     size_t len, loff_t *offp)
4074 {
4075         struct seq_file *m = file->private_data;
4076         struct drm_i915_private *dev_priv = m->private;
4077         uint16_t *latencies;
4078
4079         if (INTEL_GEN(dev_priv) >= 9)
4080                 latencies = dev_priv->wm.skl_latency;
4081         else
4082                 latencies = dev_priv->wm.pri_latency;
4083
4084         return wm_latency_write(file, ubuf, len, offp, latencies);
4085 }
4086
4087 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4088                                     size_t len, loff_t *offp)
4089 {
4090         struct seq_file *m = file->private_data;
4091         struct drm_i915_private *dev_priv = m->private;
4092         uint16_t *latencies;
4093
4094         if (INTEL_GEN(dev_priv) >= 9)
4095                 latencies = dev_priv->wm.skl_latency;
4096         else
4097                 latencies = dev_priv->wm.spr_latency;
4098
4099         return wm_latency_write(file, ubuf, len, offp, latencies);
4100 }
4101
4102 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4103                                     size_t len, loff_t *offp)
4104 {
4105         struct seq_file *m = file->private_data;
4106         struct drm_i915_private *dev_priv = m->private;
4107         uint16_t *latencies;
4108
4109         if (INTEL_GEN(dev_priv) >= 9)
4110                 latencies = dev_priv->wm.skl_latency;
4111         else
4112                 latencies = dev_priv->wm.cur_latency;
4113
4114         return wm_latency_write(file, ubuf, len, offp, latencies);
4115 }
4116
4117 static const struct file_operations i915_pri_wm_latency_fops = {
4118         .owner = THIS_MODULE,
4119         .open = pri_wm_latency_open,
4120         .read = seq_read,
4121         .llseek = seq_lseek,
4122         .release = single_release,
4123         .write = pri_wm_latency_write
4124 };
4125
4126 static const struct file_operations i915_spr_wm_latency_fops = {
4127         .owner = THIS_MODULE,
4128         .open = spr_wm_latency_open,
4129         .read = seq_read,
4130         .llseek = seq_lseek,
4131         .release = single_release,
4132         .write = spr_wm_latency_write
4133 };
4134
4135 static const struct file_operations i915_cur_wm_latency_fops = {
4136         .owner = THIS_MODULE,
4137         .open = cur_wm_latency_open,
4138         .read = seq_read,
4139         .llseek = seq_lseek,
4140         .release = single_release,
4141         .write = cur_wm_latency_write
4142 };
4143
4144 static int
4145 i915_wedged_get(void *data, u64 *val)
4146 {
4147         struct drm_i915_private *dev_priv = data;
4148
4149         *val = i915_terminally_wedged(&dev_priv->gpu_error);
4150
4151         return 0;
4152 }
4153
4154 static int
4155 i915_wedged_set(void *data, u64 val)
4156 {
4157         struct drm_i915_private *i915 = data;
4158         struct intel_engine_cs *engine;
4159         unsigned int tmp;
4160
4161         /*
4162          * There is no safeguard against this debugfs entry colliding
4163          * with the hangcheck calling same i915_handle_error() in
4164          * parallel, causing an explosion. For now we assume that the
4165          * test harness is responsible enough not to inject gpu hangs
4166          * while it is writing to 'i915_wedged'
4167          */
4168
4169         if (i915_reset_backoff(&i915->gpu_error))
4170                 return -EAGAIN;
4171
4172         for_each_engine_masked(engine, i915, val, tmp) {
4173                 engine->hangcheck.seqno = intel_engine_get_seqno(engine);
4174                 engine->hangcheck.stalled = true;
4175         }
4176
4177         i915_handle_error(i915, val, "Manually setting wedged to %llu", val);
4178
4179         wait_on_bit(&i915->gpu_error.flags,
4180                     I915_RESET_HANDOFF,
4181                     TASK_UNINTERRUPTIBLE);
4182
4183         return 0;
4184 }
4185
4186 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4187                         i915_wedged_get, i915_wedged_set,
4188                         "%llu\n");
4189
4190 static int
4191 fault_irq_set(struct drm_i915_private *i915,
4192               unsigned long *irq,
4193               unsigned long val)
4194 {
4195         int err;
4196
4197         err = mutex_lock_interruptible(&i915->drm.struct_mutex);
4198         if (err)
4199                 return err;
4200
4201         err = i915_gem_wait_for_idle(i915,
4202                                      I915_WAIT_LOCKED |
4203                                      I915_WAIT_INTERRUPTIBLE);
4204         if (err)
4205                 goto err_unlock;
4206
4207         *irq = val;
4208         mutex_unlock(&i915->drm.struct_mutex);
4209
4210         /* Flush idle worker to disarm irq */
4211         while (flush_delayed_work(&i915->gt.idle_work))
4212                 ;
4213
4214         return 0;
4215
4216 err_unlock:
4217         mutex_unlock(&i915->drm.struct_mutex);
4218         return err;
4219 }
4220
4221 static int
4222 i915_ring_missed_irq_get(void *data, u64 *val)
4223 {
4224         struct drm_i915_private *dev_priv = data;
4225
4226         *val = dev_priv->gpu_error.missed_irq_rings;
4227         return 0;
4228 }
4229
4230 static int
4231 i915_ring_missed_irq_set(void *data, u64 val)
4232 {
4233         struct drm_i915_private *i915 = data;
4234
4235         return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
4236 }
4237
4238 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4239                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4240                         "0x%08llx\n");
4241
4242 static int
4243 i915_ring_test_irq_get(void *data, u64 *val)
4244 {
4245         struct drm_i915_private *dev_priv = data;
4246
4247         *val = dev_priv->gpu_error.test_irq_rings;
4248
4249         return 0;
4250 }
4251
4252 static int
4253 i915_ring_test_irq_set(void *data, u64 val)
4254 {
4255         struct drm_i915_private *i915 = data;
4256
4257         val &= INTEL_INFO(i915)->ring_mask;
4258         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4259
4260         return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
4261 }
4262
4263 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4264                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4265                         "0x%08llx\n");
4266
4267 #define DROP_UNBOUND 0x1
4268 #define DROP_BOUND 0x2
4269 #define DROP_RETIRE 0x4
4270 #define DROP_ACTIVE 0x8
4271 #define DROP_FREED 0x10
4272 #define DROP_SHRINK_ALL 0x20
4273 #define DROP_ALL (DROP_UNBOUND  | \
4274                   DROP_BOUND    | \
4275                   DROP_RETIRE   | \
4276                   DROP_ACTIVE   | \
4277                   DROP_FREED    | \
4278                   DROP_SHRINK_ALL)
4279 static int
4280 i915_drop_caches_get(void *data, u64 *val)
4281 {
4282         *val = DROP_ALL;
4283
4284         return 0;
4285 }
4286
4287 static int
4288 i915_drop_caches_set(void *data, u64 val)
4289 {
4290         struct drm_i915_private *dev_priv = data;
4291         struct drm_device *dev = &dev_priv->drm;
4292         int ret;
4293
4294         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4295
4296         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4297          * on ioctls on -EAGAIN. */
4298         ret = mutex_lock_interruptible(&dev->struct_mutex);
4299         if (ret)
4300                 return ret;
4301
4302         if (val & DROP_ACTIVE) {
4303                 ret = i915_gem_wait_for_idle(dev_priv,
4304                                              I915_WAIT_INTERRUPTIBLE |
4305                                              I915_WAIT_LOCKED);
4306                 if (ret)
4307                         goto unlock;
4308         }
4309
4310         if (val & DROP_RETIRE)
4311                 i915_gem_retire_requests(dev_priv);
4312
4313         lockdep_set_current_reclaim_state(GFP_KERNEL);
4314         if (val & DROP_BOUND)
4315                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4316
4317         if (val & DROP_UNBOUND)
4318                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4319
4320         if (val & DROP_SHRINK_ALL)
4321                 i915_gem_shrink_all(dev_priv);
4322         lockdep_clear_current_reclaim_state();
4323
4324 unlock:
4325         mutex_unlock(&dev->struct_mutex);
4326
4327         if (val & DROP_FREED) {
4328                 synchronize_rcu();
4329                 i915_gem_drain_freed_objects(dev_priv);
4330         }
4331
4332         return ret;
4333 }
4334
4335 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4336                         i915_drop_caches_get, i915_drop_caches_set,
4337                         "0x%08llx\n");
4338
4339 static int
4340 i915_max_freq_get(void *data, u64 *val)
4341 {
4342         struct drm_i915_private *dev_priv = data;
4343
4344         if (INTEL_GEN(dev_priv) < 6)
4345                 return -ENODEV;
4346
4347         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4348         return 0;
4349 }
4350
4351 static int
4352 i915_max_freq_set(void *data, u64 val)
4353 {
4354         struct drm_i915_private *dev_priv = data;
4355         u32 hw_max, hw_min;
4356         int ret;
4357
4358         if (INTEL_GEN(dev_priv) < 6)
4359                 return -ENODEV;
4360
4361         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4362
4363         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4364         if (ret)
4365                 return ret;
4366
4367         /*
4368          * Turbo will still be enabled, but won't go above the set value.
4369          */
4370         val = intel_freq_opcode(dev_priv, val);
4371
4372         hw_max = dev_priv->rps.max_freq;
4373         hw_min = dev_priv->rps.min_freq;
4374
4375         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4376                 mutex_unlock(&dev_priv->rps.hw_lock);
4377                 return -EINVAL;
4378         }
4379
4380         dev_priv->rps.max_freq_softlimit = val;
4381
4382         if (intel_set_rps(dev_priv, val))
4383                 DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4384
4385         mutex_unlock(&dev_priv->rps.hw_lock);
4386
4387         return 0;
4388 }
4389
4390 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4391                         i915_max_freq_get, i915_max_freq_set,
4392                         "%llu\n");
4393
4394 static int
4395 i915_min_freq_get(void *data, u64 *val)
4396 {
4397         struct drm_i915_private *dev_priv = data;
4398
4399         if (INTEL_GEN(dev_priv) < 6)
4400                 return -ENODEV;
4401
4402         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4403         return 0;
4404 }
4405
4406 static int
4407 i915_min_freq_set(void *data, u64 val)
4408 {
4409         struct drm_i915_private *dev_priv = data;
4410         u32 hw_max, hw_min;
4411         int ret;
4412
4413         if (INTEL_GEN(dev_priv) < 6)
4414                 return -ENODEV;
4415
4416         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4417
4418         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4419         if (ret)
4420                 return ret;
4421
4422         /*
4423          * Turbo will still be enabled, but won't go below the set value.
4424          */
4425         val = intel_freq_opcode(dev_priv, val);
4426
4427         hw_max = dev_priv->rps.max_freq;
4428         hw_min = dev_priv->rps.min_freq;
4429
4430         if (val < hw_min ||
4431             val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4432                 mutex_unlock(&dev_priv->rps.hw_lock);
4433                 return -EINVAL;
4434         }
4435
4436         dev_priv->rps.min_freq_softlimit = val;
4437
4438         if (intel_set_rps(dev_priv, val))
4439                 DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4440
4441         mutex_unlock(&dev_priv->rps.hw_lock);
4442
4443         return 0;
4444 }
4445
4446 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4447                         i915_min_freq_get, i915_min_freq_set,
4448                         "%llu\n");
4449
4450 static int
4451 i915_cache_sharing_get(void *data, u64 *val)
4452 {
4453         struct drm_i915_private *dev_priv = data;
4454         u32 snpcr;
4455
4456         if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4457                 return -ENODEV;
4458
4459         intel_runtime_pm_get(dev_priv);
4460
4461         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4462
4463         intel_runtime_pm_put(dev_priv);
4464
4465         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4466
4467         return 0;
4468 }
4469
4470 static int
4471 i915_cache_sharing_set(void *data, u64 val)
4472 {
4473         struct drm_i915_private *dev_priv = data;
4474         u32 snpcr;
4475
4476         if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4477                 return -ENODEV;
4478
4479         if (val > 3)
4480                 return -EINVAL;
4481
4482         intel_runtime_pm_get(dev_priv);
4483         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4484
4485         /* Update the cache sharing policy here as well */
4486         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4487         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4488         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4489         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4490
4491         intel_runtime_pm_put(dev_priv);
4492         return 0;
4493 }
4494
4495 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4496                         i915_cache_sharing_get, i915_cache_sharing_set,
4497                         "%llu\n");
4498
4499 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
4500                                           struct sseu_dev_info *sseu)
4501 {
4502         int ss_max = 2;
4503         int ss;
4504         u32 sig1[ss_max], sig2[ss_max];
4505
4506         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4507         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4508         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4509         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4510
4511         for (ss = 0; ss < ss_max; ss++) {
4512                 unsigned int eu_cnt;
4513
4514                 if (sig1[ss] & CHV_SS_PG_ENABLE)
4515                         /* skip disabled subslice */
4516                         continue;
4517
4518                 sseu->slice_mask = BIT(0);
4519                 sseu->subslice_mask |= BIT(ss);
4520                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4521                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4522                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4523                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4524                 sseu->eu_total += eu_cnt;
4525                 sseu->eu_per_subslice = max_t(unsigned int,
4526                                               sseu->eu_per_subslice, eu_cnt);
4527         }
4528 }
4529
4530 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
4531                                     struct sseu_dev_info *sseu)
4532 {
4533         int s_max = 3, ss_max = 4;
4534         int s, ss;
4535         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4536
4537         /* BXT has a single slice and at most 3 subslices. */
4538         if (IS_GEN9_LP(dev_priv)) {
4539                 s_max = 1;
4540                 ss_max = 3;
4541         }
4542
4543         for (s = 0; s < s_max; s++) {
4544                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4545                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4546                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4547         }
4548
4549         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4550                      GEN9_PGCTL_SSA_EU19_ACK |
4551                      GEN9_PGCTL_SSA_EU210_ACK |
4552                      GEN9_PGCTL_SSA_EU311_ACK;
4553         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4554                      GEN9_PGCTL_SSB_EU19_ACK |
4555                      GEN9_PGCTL_SSB_EU210_ACK |
4556                      GEN9_PGCTL_SSB_EU311_ACK;
4557
4558         for (s = 0; s < s_max; s++) {
4559                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4560                         /* skip disabled slice */
4561                         continue;
4562
4563                 sseu->slice_mask |= BIT(s);
4564
4565                 if (IS_GEN9_BC(dev_priv))
4566                         sseu->subslice_mask =
4567                                 INTEL_INFO(dev_priv)->sseu.subslice_mask;
4568
4569                 for (ss = 0; ss < ss_max; ss++) {
4570                         unsigned int eu_cnt;
4571
4572                         if (IS_GEN9_LP(dev_priv)) {
4573                                 if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4574                                         /* skip disabled subslice */
4575                                         continue;
4576
4577                                 sseu->subslice_mask |= BIT(ss);
4578                         }
4579
4580                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4581                                                eu_mask[ss%2]);
4582                         sseu->eu_total += eu_cnt;
4583                         sseu->eu_per_subslice = max_t(unsigned int,
4584                                                       sseu->eu_per_subslice,
4585                                                       eu_cnt);
4586                 }
4587         }
4588 }
4589
4590 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
4591                                          struct sseu_dev_info *sseu)
4592 {
4593         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
4594         int s;
4595
4596         sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
4597
4598         if (sseu->slice_mask) {
4599                 sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
4600                 sseu->eu_per_subslice =
4601                                 INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
4602                 sseu->eu_total = sseu->eu_per_subslice *
4603                                  sseu_subslice_total(sseu);
4604
4605                 /* subtract fused off EU(s) from enabled slice(s) */
4606                 for (s = 0; s < fls(sseu->slice_mask); s++) {
4607                         u8 subslice_7eu =
4608                                 INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
4609
4610                         sseu->eu_total -= hweight8(subslice_7eu);
4611                 }
4612         }
4613 }
4614
4615 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
4616                                  const struct sseu_dev_info *sseu)
4617 {
4618         struct drm_i915_private *dev_priv = node_to_i915(m->private);
4619         const char *type = is_available_info ? "Available" : "Enabled";
4620
4621         seq_printf(m, "  %s Slice Mask: %04x\n", type,
4622                    sseu->slice_mask);
4623         seq_printf(m, "  %s Slice Total: %u\n", type,
4624                    hweight8(sseu->slice_mask));
4625         seq_printf(m, "  %s Subslice Total: %u\n", type,
4626                    sseu_subslice_total(sseu));
4627         seq_printf(m, "  %s Subslice Mask: %04x\n", type,
4628                    sseu->subslice_mask);
4629         seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
4630                    hweight8(sseu->subslice_mask));
4631         seq_printf(m, "  %s EU Total: %u\n", type,
4632                    sseu->eu_total);
4633         seq_printf(m, "  %s EU Per Subslice: %u\n", type,
4634                    sseu->eu_per_subslice);
4635
4636         if (!is_available_info)
4637                 return;
4638
4639         seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
4640         if (HAS_POOLED_EU(dev_priv))
4641                 seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
4642
4643         seq_printf(m, "  Has Slice Power Gating: %s\n",
4644                    yesno(sseu->has_slice_pg));
4645         seq_printf(m, "  Has Subslice Power Gating: %s\n",
4646                    yesno(sseu->has_subslice_pg));
4647         seq_printf(m, "  Has EU Power Gating: %s\n",
4648                    yesno(sseu->has_eu_pg));
4649 }
4650
4651 static int i915_sseu_status(struct seq_file *m, void *unused)
4652 {
4653         struct drm_i915_private *dev_priv = node_to_i915(m->private);
4654         struct sseu_dev_info sseu;
4655
4656         if (INTEL_GEN(dev_priv) < 8)
4657                 return -ENODEV;
4658
4659         seq_puts(m, "SSEU Device Info\n");
4660         i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
4661
4662         seq_puts(m, "SSEU Device Status\n");
4663         memset(&sseu, 0, sizeof(sseu));
4664
4665         intel_runtime_pm_get(dev_priv);
4666
4667         if (IS_CHERRYVIEW(dev_priv)) {
4668                 cherryview_sseu_device_status(dev_priv, &sseu);
4669         } else if (IS_BROADWELL(dev_priv)) {
4670                 broadwell_sseu_device_status(dev_priv, &sseu);
4671         } else if (INTEL_GEN(dev_priv) >= 9) {
4672                 gen9_sseu_device_status(dev_priv, &sseu);
4673         }
4674
4675         intel_runtime_pm_put(dev_priv);
4676
4677         i915_print_sseu_info(m, false, &sseu);
4678
4679         return 0;
4680 }
4681
4682 static int i915_forcewake_open(struct inode *inode, struct file *file)
4683 {
4684         struct drm_i915_private *dev_priv = inode->i_private;
4685
4686         if (INTEL_GEN(dev_priv) < 6)
4687                 return 0;
4688
4689         intel_runtime_pm_get(dev_priv);
4690         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4691
4692         return 0;
4693 }
4694
4695 static int i915_forcewake_release(struct inode *inode, struct file *file)
4696 {
4697         struct drm_i915_private *dev_priv = inode->i_private;
4698
4699         if (INTEL_GEN(dev_priv) < 6)
4700                 return 0;
4701
4702         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4703         intel_runtime_pm_put(dev_priv);
4704
4705         return 0;
4706 }
4707
4708 static const struct file_operations i915_forcewake_fops = {
4709         .owner = THIS_MODULE,
4710         .open = i915_forcewake_open,
4711         .release = i915_forcewake_release,
4712 };
4713
4714 static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
4715 {
4716         struct drm_i915_private *dev_priv = m->private;
4717         struct i915_hotplug *hotplug = &dev_priv->hotplug;
4718
4719         seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
4720         seq_printf(m, "Detected: %s\n",
4721                    yesno(delayed_work_pending(&hotplug->reenable_work)));
4722
4723         return 0;
4724 }
4725
4726 static ssize_t i915_hpd_storm_ctl_write(struct file *file,
4727                                         const char __user *ubuf, size_t len,
4728                                         loff_t *offp)
4729 {
4730         struct seq_file *m = file->private_data;
4731         struct drm_i915_private *dev_priv = m->private;
4732         struct i915_hotplug *hotplug = &dev_priv->hotplug;
4733         unsigned int new_threshold;
4734         int i;
4735         char *newline;
4736         char tmp[16];
4737
4738         if (len >= sizeof(tmp))
4739                 return -EINVAL;
4740
4741         if (copy_from_user(tmp, ubuf, len))
4742                 return -EFAULT;
4743
4744         tmp[len] = '\0';
4745
4746         /* Strip newline, if any */
4747         newline = strchr(tmp, '\n');
4748         if (newline)
4749                 *newline = '\0';
4750
4751         if (strcmp(tmp, "reset") == 0)
4752                 new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4753         else if (kstrtouint(tmp, 10, &new_threshold) != 0)
4754                 return -EINVAL;
4755
4756         if (new_threshold > 0)
4757                 DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
4758                               new_threshold);
4759         else
4760                 DRM_DEBUG_KMS("Disabling HPD storm detection\n");
4761
4762         spin_lock_irq(&dev_priv->irq_lock);
4763         hotplug->hpd_storm_threshold = new_threshold;
4764         /* Reset the HPD storm stats so we don't accidentally trigger a storm */
4765         for_each_hpd_pin(i)
4766                 hotplug->stats[i].count = 0;
4767         spin_unlock_irq(&dev_priv->irq_lock);
4768
4769         /* Re-enable hpd immediately if we were in an irq storm */
4770         flush_delayed_work(&dev_priv->hotplug.reenable_work);
4771
4772         return len;
4773 }
4774
4775 static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
4776 {
4777         return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
4778 }
4779
4780 static const struct file_operations i915_hpd_storm_ctl_fops = {
4781         .owner = THIS_MODULE,
4782         .open = i915_hpd_storm_ctl_open,
4783         .read = seq_read,
4784         .llseek = seq_lseek,
4785         .release = single_release,
4786         .write = i915_hpd_storm_ctl_write
4787 };
4788
4789 static const struct drm_info_list i915_debugfs_list[] = {
4790         {"i915_capabilities", i915_capabilities, 0},
4791         {"i915_gem_objects", i915_gem_object_info, 0},
4792         {"i915_gem_gtt", i915_gem_gtt_info, 0},
4793         {"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
4794         {"i915_gem_stolen", i915_gem_stolen_list_info },
4795         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4796         {"i915_gem_request", i915_gem_request_info, 0},
4797         {"i915_gem_seqno", i915_gem_seqno_info, 0},
4798         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4799         {"i915_gem_interrupt", i915_interrupt_info, 0},
4800         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4801         {"i915_guc_info", i915_guc_info, 0},
4802         {"i915_guc_load_status", i915_guc_load_status_info, 0},
4803         {"i915_guc_log_dump", i915_guc_log_dump, 0},
4804         {"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
4805         {"i915_guc_stage_pool", i915_guc_stage_pool, 0},
4806         {"i915_huc_load_status", i915_huc_load_status_info, 0},
4807         {"i915_frequency_info", i915_frequency_info, 0},
4808         {"i915_hangcheck_info", i915_hangcheck_info, 0},
4809         {"i915_drpc_info", i915_drpc_info, 0},
4810         {"i915_emon_status", i915_emon_status, 0},
4811         {"i915_ring_freq_table", i915_ring_freq_table, 0},
4812         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
4813         {"i915_fbc_status", i915_fbc_status, 0},
4814         {"i915_ips_status", i915_ips_status, 0},
4815         {"i915_sr_status", i915_sr_status, 0},
4816         {"i915_opregion", i915_opregion, 0},
4817         {"i915_vbt", i915_vbt, 0},
4818         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4819         {"i915_context_status", i915_context_status, 0},
4820         {"i915_dump_lrc", i915_dump_lrc, 0},
4821         {"i915_forcewake_domains", i915_forcewake_domains, 0},
4822         {"i915_swizzle_info", i915_swizzle_info, 0},
4823         {"i915_ppgtt_info", i915_ppgtt_info, 0},
4824         {"i915_llc", i915_llc, 0},
4825         {"i915_edp_psr_status", i915_edp_psr_status, 0},
4826         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4827         {"i915_energy_uJ", i915_energy_uJ, 0},
4828         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
4829         {"i915_power_domain_info", i915_power_domain_info, 0},
4830         {"i915_dmc_info", i915_dmc_info, 0},
4831         {"i915_display_info", i915_display_info, 0},
4832         {"i915_engine_info", i915_engine_info, 0},
4833         {"i915_semaphore_status", i915_semaphore_status, 0},
4834         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4835         {"i915_dp_mst_info", i915_dp_mst_info, 0},
4836         {"i915_wa_registers", i915_wa_registers, 0},
4837         {"i915_ddb_info", i915_ddb_info, 0},
4838         {"i915_sseu_status", i915_sseu_status, 0},
4839         {"i915_drrs_status", i915_drrs_status, 0},
4840         {"i915_rps_boost_info", i915_rps_boost_info, 0},
4841 };
4842 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4843
4844 static const struct i915_debugfs_files {
4845         const char *name;
4846         const struct file_operations *fops;
4847 } i915_debugfs_files[] = {
4848         {"i915_wedged", &i915_wedged_fops},
4849         {"i915_max_freq", &i915_max_freq_fops},
4850         {"i915_min_freq", &i915_min_freq_fops},
4851         {"i915_cache_sharing", &i915_cache_sharing_fops},
4852         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4853         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4854         {"i915_gem_drop_caches", &i915_drop_caches_fops},
4855 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
4856         {"i915_error_state", &i915_error_state_fops},
4857         {"i915_gpu_info", &i915_gpu_info_fops},
4858 #endif
4859         {"i915_next_seqno", &i915_next_seqno_fops},
4860         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4861         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4862         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4863         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4864         {"i915_fbc_false_color", &i915_fbc_fc_fops},
4865         {"i915_dp_test_data", &i915_displayport_test_data_fops},
4866         {"i915_dp_test_type", &i915_displayport_test_type_fops},
4867         {"i915_dp_test_active", &i915_displayport_test_active_fops},
4868         {"i915_guc_log_control", &i915_guc_log_control_fops},
4869         {"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops}
4870 };
4871
4872 int i915_debugfs_register(struct drm_i915_private *dev_priv)
4873 {
4874         struct drm_minor *minor = dev_priv->drm.primary;
4875         struct dentry *ent;
4876         int ret, i;
4877
4878         ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
4879                                   minor->debugfs_root, to_i915(minor->dev),
4880                                   &i915_forcewake_fops);
4881         if (!ent)
4882                 return -ENOMEM;
4883
4884         ret = intel_pipe_crc_create(minor);
4885         if (ret)
4886                 return ret;
4887
4888         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4889                 ent = debugfs_create_file(i915_debugfs_files[i].name,
4890                                           S_IRUGO | S_IWUSR,
4891                                           minor->debugfs_root,
4892                                           to_i915(minor->dev),
4893                                           i915_debugfs_files[i].fops);
4894                 if (!ent)
4895                         return -ENOMEM;
4896         }
4897
4898         return drm_debugfs_create_files(i915_debugfs_list,
4899                                         I915_DEBUGFS_ENTRIES,
4900                                         minor->debugfs_root, minor);
4901 }
4902
4903 struct dpcd_block {
4904         /* DPCD dump start address. */
4905         unsigned int offset;
4906         /* DPCD dump end address, inclusive. If unset, .size will be used. */
4907         unsigned int end;
4908         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
4909         size_t size;
4910         /* Only valid for eDP. */
4911         bool edp;
4912 };
4913
4914 static const struct dpcd_block i915_dpcd_debug[] = {
4915         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
4916         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
4917         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
4918         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
4919         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
4920         { .offset = DP_SET_POWER },
4921         { .offset = DP_EDP_DPCD_REV },
4922         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
4923         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
4924         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
4925 };
4926
4927 static int i915_dpcd_show(struct seq_file *m, void *data)
4928 {
4929         struct drm_connector *connector = m->private;
4930         struct intel_dp *intel_dp =
4931                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4932         uint8_t buf[16];
4933         ssize_t err;
4934         int i;
4935
4936         if (connector->status != connector_status_connected)
4937                 return -ENODEV;
4938
4939         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
4940                 const struct dpcd_block *b = &i915_dpcd_debug[i];
4941                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
4942
4943                 if (b->edp &&
4944                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
4945                         continue;
4946
4947                 /* low tech for now */
4948                 if (WARN_ON(size > sizeof(buf)))
4949                         continue;
4950
4951                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
4952                 if (err <= 0) {
4953                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
4954                                   size, b->offset, err);
4955                         continue;
4956                 }
4957
4958                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
4959         }
4960
4961         return 0;
4962 }
4963
4964 static int i915_dpcd_open(struct inode *inode, struct file *file)
4965 {
4966         return single_open(file, i915_dpcd_show, inode->i_private);
4967 }
4968
4969 static const struct file_operations i915_dpcd_fops = {
4970         .owner = THIS_MODULE,
4971         .open = i915_dpcd_open,
4972         .read = seq_read,
4973         .llseek = seq_lseek,
4974         .release = single_release,
4975 };
4976
4977 static int i915_panel_show(struct seq_file *m, void *data)
4978 {
4979         struct drm_connector *connector = m->private;
4980         struct intel_dp *intel_dp =
4981                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4982
4983         if (connector->status != connector_status_connected)
4984                 return -ENODEV;
4985
4986         seq_printf(m, "Panel power up delay: %d\n",
4987                    intel_dp->panel_power_up_delay);
4988         seq_printf(m, "Panel power down delay: %d\n",
4989                    intel_dp->panel_power_down_delay);
4990         seq_printf(m, "Backlight on delay: %d\n",
4991                    intel_dp->backlight_on_delay);
4992         seq_printf(m, "Backlight off delay: %d\n",
4993                    intel_dp->backlight_off_delay);
4994
4995         return 0;
4996 }
4997
4998 static int i915_panel_open(struct inode *inode, struct file *file)
4999 {
5000         return single_open(file, i915_panel_show, inode->i_private);
5001 }
5002
5003 static const struct file_operations i915_panel_fops = {
5004         .owner = THIS_MODULE,
5005         .open = i915_panel_open,
5006         .read = seq_read,
5007         .llseek = seq_lseek,
5008         .release = single_release,
5009 };
5010
5011 /**
5012  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5013  * @connector: pointer to a registered drm_connector
5014  *
5015  * Cleanup will be done by drm_connector_unregister() through a call to
5016  * drm_debugfs_connector_remove().
5017  *
5018  * Returns 0 on success, negative error codes on error.
5019  */
5020 int i915_debugfs_connector_add(struct drm_connector *connector)
5021 {
5022         struct dentry *root = connector->debugfs_entry;
5023
5024         /* The connector must have been registered beforehands. */
5025         if (!root)
5026                 return -ENODEV;
5027
5028         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5029             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5030                 debugfs_create_file("i915_dpcd", S_IRUGO, root,
5031                                     connector, &i915_dpcd_fops);
5032
5033         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5034                 debugfs_create_file("i915_panel_timings", S_IRUGO, root,
5035                                     connector, &i915_panel_fops);
5036
5037         return 0;
5038 }