8f4b24e84964b7eae692d8e2742b7e1e58730424
[linux-2.6-block.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32
33 #define MQD_SIZE_ALIGNED 768
34
35 /*
36  * kfd_locked is used to lock the kfd driver during suspend or reset
37  * once locked, kfd driver will stop any further GPU execution.
38  * create process (open) will return -EAGAIN.
39  */
40 static atomic_t kfd_locked = ATOMIC_INIT(0);
41
42 #ifdef CONFIG_DRM_AMDGPU_CIK
43 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
44 #endif
45 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
46 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
47 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
48 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
49
50 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
51 #ifdef KFD_SUPPORT_IOMMU_V2
52 #ifdef CONFIG_DRM_AMDGPU_CIK
53         [CHIP_KAVERI] = &gfx_v7_kfd2kgd,
54 #endif
55         [CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
56         [CHIP_RAVEN] = &gfx_v9_kfd2kgd,
57 #endif
58 #ifdef CONFIG_DRM_AMDGPU_CIK
59         [CHIP_HAWAII] = &gfx_v7_kfd2kgd,
60 #endif
61         [CHIP_TONGA] = &gfx_v8_kfd2kgd,
62         [CHIP_FIJI] = &gfx_v8_kfd2kgd,
63         [CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
64         [CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
65         [CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
66         [CHIP_VEGAM] = &gfx_v8_kfd2kgd,
67         [CHIP_VEGA10] = &gfx_v9_kfd2kgd,
68         [CHIP_VEGA12] = &gfx_v9_kfd2kgd,
69         [CHIP_VEGA20] = &gfx_v9_kfd2kgd,
70         [CHIP_RENOIR] = &gfx_v9_kfd2kgd,
71         [CHIP_ARCTURUS] = &arcturus_kfd2kgd,
72         [CHIP_NAVI10] = &gfx_v10_kfd2kgd,
73         [CHIP_NAVI12] = &gfx_v10_kfd2kgd,
74         [CHIP_NAVI14] = &gfx_v10_kfd2kgd,
75 };
76
77 #ifdef KFD_SUPPORT_IOMMU_V2
78 static const struct kfd_device_info kaveri_device_info = {
79         .asic_family = CHIP_KAVERI,
80         .asic_name = "kaveri",
81         .max_pasid_bits = 16,
82         /* max num of queues for KV.TODO should be a dynamic value */
83         .max_no_of_hqd  = 24,
84         .doorbell_size  = 4,
85         .ih_ring_entry_size = 4 * sizeof(uint32_t),
86         .event_interrupt_class = &event_interrupt_class_cik,
87         .num_of_watch_points = 4,
88         .mqd_size_aligned = MQD_SIZE_ALIGNED,
89         .supports_cwsr = false,
90         .needs_iommu_device = true,
91         .needs_pci_atomics = false,
92         .num_sdma_engines = 2,
93         .num_xgmi_sdma_engines = 0,
94         .num_sdma_queues_per_engine = 2,
95 };
96
97 static const struct kfd_device_info carrizo_device_info = {
98         .asic_family = CHIP_CARRIZO,
99         .asic_name = "carrizo",
100         .max_pasid_bits = 16,
101         /* max num of queues for CZ.TODO should be a dynamic value */
102         .max_no_of_hqd  = 24,
103         .doorbell_size  = 4,
104         .ih_ring_entry_size = 4 * sizeof(uint32_t),
105         .event_interrupt_class = &event_interrupt_class_cik,
106         .num_of_watch_points = 4,
107         .mqd_size_aligned = MQD_SIZE_ALIGNED,
108         .supports_cwsr = true,
109         .needs_iommu_device = true,
110         .needs_pci_atomics = false,
111         .num_sdma_engines = 2,
112         .num_xgmi_sdma_engines = 0,
113         .num_sdma_queues_per_engine = 2,
114 };
115
116 static const struct kfd_device_info raven_device_info = {
117         .asic_family = CHIP_RAVEN,
118         .asic_name = "raven",
119         .max_pasid_bits = 16,
120         .max_no_of_hqd  = 24,
121         .doorbell_size  = 8,
122         .ih_ring_entry_size = 8 * sizeof(uint32_t),
123         .event_interrupt_class = &event_interrupt_class_v9,
124         .num_of_watch_points = 4,
125         .mqd_size_aligned = MQD_SIZE_ALIGNED,
126         .supports_cwsr = true,
127         .needs_iommu_device = true,
128         .needs_pci_atomics = true,
129         .num_sdma_engines = 1,
130         .num_xgmi_sdma_engines = 0,
131         .num_sdma_queues_per_engine = 2,
132 };
133 #endif
134
135 static const struct kfd_device_info hawaii_device_info = {
136         .asic_family = CHIP_HAWAII,
137         .asic_name = "hawaii",
138         .max_pasid_bits = 16,
139         /* max num of queues for KV.TODO should be a dynamic value */
140         .max_no_of_hqd  = 24,
141         .doorbell_size  = 4,
142         .ih_ring_entry_size = 4 * sizeof(uint32_t),
143         .event_interrupt_class = &event_interrupt_class_cik,
144         .num_of_watch_points = 4,
145         .mqd_size_aligned = MQD_SIZE_ALIGNED,
146         .supports_cwsr = false,
147         .needs_iommu_device = false,
148         .needs_pci_atomics = false,
149         .num_sdma_engines = 2,
150         .num_xgmi_sdma_engines = 0,
151         .num_sdma_queues_per_engine = 2,
152 };
153
154 static const struct kfd_device_info tonga_device_info = {
155         .asic_family = CHIP_TONGA,
156         .asic_name = "tonga",
157         .max_pasid_bits = 16,
158         .max_no_of_hqd  = 24,
159         .doorbell_size  = 4,
160         .ih_ring_entry_size = 4 * sizeof(uint32_t),
161         .event_interrupt_class = &event_interrupt_class_cik,
162         .num_of_watch_points = 4,
163         .mqd_size_aligned = MQD_SIZE_ALIGNED,
164         .supports_cwsr = false,
165         .needs_iommu_device = false,
166         .needs_pci_atomics = true,
167         .num_sdma_engines = 2,
168         .num_xgmi_sdma_engines = 0,
169         .num_sdma_queues_per_engine = 2,
170 };
171
172 static const struct kfd_device_info fiji_device_info = {
173         .asic_family = CHIP_FIJI,
174         .asic_name = "fiji",
175         .max_pasid_bits = 16,
176         .max_no_of_hqd  = 24,
177         .doorbell_size  = 4,
178         .ih_ring_entry_size = 4 * sizeof(uint32_t),
179         .event_interrupt_class = &event_interrupt_class_cik,
180         .num_of_watch_points = 4,
181         .mqd_size_aligned = MQD_SIZE_ALIGNED,
182         .supports_cwsr = true,
183         .needs_iommu_device = false,
184         .needs_pci_atomics = true,
185         .num_sdma_engines = 2,
186         .num_xgmi_sdma_engines = 0,
187         .num_sdma_queues_per_engine = 2,
188 };
189
190 static const struct kfd_device_info fiji_vf_device_info = {
191         .asic_family = CHIP_FIJI,
192         .asic_name = "fiji",
193         .max_pasid_bits = 16,
194         .max_no_of_hqd  = 24,
195         .doorbell_size  = 4,
196         .ih_ring_entry_size = 4 * sizeof(uint32_t),
197         .event_interrupt_class = &event_interrupt_class_cik,
198         .num_of_watch_points = 4,
199         .mqd_size_aligned = MQD_SIZE_ALIGNED,
200         .supports_cwsr = true,
201         .needs_iommu_device = false,
202         .needs_pci_atomics = false,
203         .num_sdma_engines = 2,
204         .num_xgmi_sdma_engines = 0,
205         .num_sdma_queues_per_engine = 2,
206 };
207
208
209 static const struct kfd_device_info polaris10_device_info = {
210         .asic_family = CHIP_POLARIS10,
211         .asic_name = "polaris10",
212         .max_pasid_bits = 16,
213         .max_no_of_hqd  = 24,
214         .doorbell_size  = 4,
215         .ih_ring_entry_size = 4 * sizeof(uint32_t),
216         .event_interrupt_class = &event_interrupt_class_cik,
217         .num_of_watch_points = 4,
218         .mqd_size_aligned = MQD_SIZE_ALIGNED,
219         .supports_cwsr = true,
220         .needs_iommu_device = false,
221         .needs_pci_atomics = true,
222         .num_sdma_engines = 2,
223         .num_xgmi_sdma_engines = 0,
224         .num_sdma_queues_per_engine = 2,
225 };
226
227 static const struct kfd_device_info polaris10_vf_device_info = {
228         .asic_family = CHIP_POLARIS10,
229         .asic_name = "polaris10",
230         .max_pasid_bits = 16,
231         .max_no_of_hqd  = 24,
232         .doorbell_size  = 4,
233         .ih_ring_entry_size = 4 * sizeof(uint32_t),
234         .event_interrupt_class = &event_interrupt_class_cik,
235         .num_of_watch_points = 4,
236         .mqd_size_aligned = MQD_SIZE_ALIGNED,
237         .supports_cwsr = true,
238         .needs_iommu_device = false,
239         .needs_pci_atomics = false,
240         .num_sdma_engines = 2,
241         .num_xgmi_sdma_engines = 0,
242         .num_sdma_queues_per_engine = 2,
243 };
244
245 static const struct kfd_device_info polaris11_device_info = {
246         .asic_family = CHIP_POLARIS11,
247         .asic_name = "polaris11",
248         .max_pasid_bits = 16,
249         .max_no_of_hqd  = 24,
250         .doorbell_size  = 4,
251         .ih_ring_entry_size = 4 * sizeof(uint32_t),
252         .event_interrupt_class = &event_interrupt_class_cik,
253         .num_of_watch_points = 4,
254         .mqd_size_aligned = MQD_SIZE_ALIGNED,
255         .supports_cwsr = true,
256         .needs_iommu_device = false,
257         .needs_pci_atomics = true,
258         .num_sdma_engines = 2,
259         .num_xgmi_sdma_engines = 0,
260         .num_sdma_queues_per_engine = 2,
261 };
262
263 static const struct kfd_device_info polaris12_device_info = {
264         .asic_family = CHIP_POLARIS12,
265         .asic_name = "polaris12",
266         .max_pasid_bits = 16,
267         .max_no_of_hqd  = 24,
268         .doorbell_size  = 4,
269         .ih_ring_entry_size = 4 * sizeof(uint32_t),
270         .event_interrupt_class = &event_interrupt_class_cik,
271         .num_of_watch_points = 4,
272         .mqd_size_aligned = MQD_SIZE_ALIGNED,
273         .supports_cwsr = true,
274         .needs_iommu_device = false,
275         .needs_pci_atomics = true,
276         .num_sdma_engines = 2,
277         .num_xgmi_sdma_engines = 0,
278         .num_sdma_queues_per_engine = 2,
279 };
280
281 static const struct kfd_device_info vegam_device_info = {
282         .asic_family = CHIP_VEGAM,
283         .asic_name = "vegam",
284         .max_pasid_bits = 16,
285         .max_no_of_hqd  = 24,
286         .doorbell_size  = 4,
287         .ih_ring_entry_size = 4 * sizeof(uint32_t),
288         .event_interrupt_class = &event_interrupt_class_cik,
289         .num_of_watch_points = 4,
290         .mqd_size_aligned = MQD_SIZE_ALIGNED,
291         .supports_cwsr = true,
292         .needs_iommu_device = false,
293         .needs_pci_atomics = true,
294         .num_sdma_engines = 2,
295         .num_xgmi_sdma_engines = 0,
296         .num_sdma_queues_per_engine = 2,
297 };
298
299 static const struct kfd_device_info vega10_device_info = {
300         .asic_family = CHIP_VEGA10,
301         .asic_name = "vega10",
302         .max_pasid_bits = 16,
303         .max_no_of_hqd  = 24,
304         .doorbell_size  = 8,
305         .ih_ring_entry_size = 8 * sizeof(uint32_t),
306         .event_interrupt_class = &event_interrupt_class_v9,
307         .num_of_watch_points = 4,
308         .mqd_size_aligned = MQD_SIZE_ALIGNED,
309         .supports_cwsr = true,
310         .needs_iommu_device = false,
311         .needs_pci_atomics = false,
312         .num_sdma_engines = 2,
313         .num_xgmi_sdma_engines = 0,
314         .num_sdma_queues_per_engine = 2,
315 };
316
317 static const struct kfd_device_info vega10_vf_device_info = {
318         .asic_family = CHIP_VEGA10,
319         .asic_name = "vega10",
320         .max_pasid_bits = 16,
321         .max_no_of_hqd  = 24,
322         .doorbell_size  = 8,
323         .ih_ring_entry_size = 8 * sizeof(uint32_t),
324         .event_interrupt_class = &event_interrupt_class_v9,
325         .num_of_watch_points = 4,
326         .mqd_size_aligned = MQD_SIZE_ALIGNED,
327         .supports_cwsr = true,
328         .needs_iommu_device = false,
329         .needs_pci_atomics = false,
330         .num_sdma_engines = 2,
331         .num_xgmi_sdma_engines = 0,
332         .num_sdma_queues_per_engine = 2,
333 };
334
335 static const struct kfd_device_info vega12_device_info = {
336         .asic_family = CHIP_VEGA12,
337         .asic_name = "vega12",
338         .max_pasid_bits = 16,
339         .max_no_of_hqd  = 24,
340         .doorbell_size  = 8,
341         .ih_ring_entry_size = 8 * sizeof(uint32_t),
342         .event_interrupt_class = &event_interrupt_class_v9,
343         .num_of_watch_points = 4,
344         .mqd_size_aligned = MQD_SIZE_ALIGNED,
345         .supports_cwsr = true,
346         .needs_iommu_device = false,
347         .needs_pci_atomics = false,
348         .num_sdma_engines = 2,
349         .num_xgmi_sdma_engines = 0,
350         .num_sdma_queues_per_engine = 2,
351 };
352
353 static const struct kfd_device_info vega20_device_info = {
354         .asic_family = CHIP_VEGA20,
355         .asic_name = "vega20",
356         .max_pasid_bits = 16,
357         .max_no_of_hqd  = 24,
358         .doorbell_size  = 8,
359         .ih_ring_entry_size = 8 * sizeof(uint32_t),
360         .event_interrupt_class = &event_interrupt_class_v9,
361         .num_of_watch_points = 4,
362         .mqd_size_aligned = MQD_SIZE_ALIGNED,
363         .supports_cwsr = true,
364         .needs_iommu_device = false,
365         .needs_pci_atomics = false,
366         .num_sdma_engines = 2,
367         .num_xgmi_sdma_engines = 0,
368         .num_sdma_queues_per_engine = 8,
369 };
370
371 static const struct kfd_device_info arcturus_device_info = {
372         .asic_family = CHIP_ARCTURUS,
373         .asic_name = "arcturus",
374         .max_pasid_bits = 16,
375         .max_no_of_hqd  = 24,
376         .doorbell_size  = 8,
377         .ih_ring_entry_size = 8 * sizeof(uint32_t),
378         .event_interrupt_class = &event_interrupt_class_v9,
379         .num_of_watch_points = 4,
380         .mqd_size_aligned = MQD_SIZE_ALIGNED,
381         .supports_cwsr = true,
382         .needs_iommu_device = false,
383         .needs_pci_atomics = false,
384         .num_sdma_engines = 2,
385         .num_xgmi_sdma_engines = 6,
386         .num_sdma_queues_per_engine = 8,
387 };
388
389 static const struct kfd_device_info renoir_device_info = {
390         .asic_family = CHIP_RENOIR,
391         .asic_name = "renoir",
392         .max_pasid_bits = 16,
393         .max_no_of_hqd  = 24,
394         .doorbell_size  = 8,
395         .ih_ring_entry_size = 8 * sizeof(uint32_t),
396         .event_interrupt_class = &event_interrupt_class_v9,
397         .num_of_watch_points = 4,
398         .mqd_size_aligned = MQD_SIZE_ALIGNED,
399         .supports_cwsr = true,
400         .needs_iommu_device = false,
401         .needs_pci_atomics = false,
402         .num_sdma_engines = 1,
403         .num_xgmi_sdma_engines = 0,
404         .num_sdma_queues_per_engine = 2,
405 };
406
407 static const struct kfd_device_info navi10_device_info = {
408         .asic_family = CHIP_NAVI10,
409         .asic_name = "navi10",
410         .max_pasid_bits = 16,
411         .max_no_of_hqd  = 24,
412         .doorbell_size  = 8,
413         .ih_ring_entry_size = 8 * sizeof(uint32_t),
414         .event_interrupt_class = &event_interrupt_class_v9,
415         .num_of_watch_points = 4,
416         .mqd_size_aligned = MQD_SIZE_ALIGNED,
417         .needs_iommu_device = false,
418         .supports_cwsr = true,
419         .needs_pci_atomics = false,
420         .num_sdma_engines = 2,
421         .num_xgmi_sdma_engines = 0,
422         .num_sdma_queues_per_engine = 8,
423 };
424
425 static const struct kfd_device_info navi12_device_info = {
426         .asic_family = CHIP_NAVI12,
427         .asic_name = "navi12",
428         .max_pasid_bits = 16,
429         .max_no_of_hqd  = 24,
430         .doorbell_size  = 8,
431         .ih_ring_entry_size = 8 * sizeof(uint32_t),
432         .event_interrupt_class = &event_interrupt_class_v9,
433         .num_of_watch_points = 4,
434         .mqd_size_aligned = MQD_SIZE_ALIGNED,
435         .needs_iommu_device = false,
436         .supports_cwsr = true,
437         .needs_pci_atomics = false,
438         .num_sdma_engines = 2,
439         .num_xgmi_sdma_engines = 0,
440         .num_sdma_queues_per_engine = 8,
441 };
442
443 static const struct kfd_device_info navi14_device_info = {
444         .asic_family = CHIP_NAVI14,
445         .asic_name = "navi14",
446         .max_pasid_bits = 16,
447         .max_no_of_hqd  = 24,
448         .doorbell_size  = 8,
449         .ih_ring_entry_size = 8 * sizeof(uint32_t),
450         .event_interrupt_class = &event_interrupt_class_v9,
451         .num_of_watch_points = 4,
452         .mqd_size_aligned = MQD_SIZE_ALIGNED,
453         .needs_iommu_device = false,
454         .supports_cwsr = true,
455         .needs_pci_atomics = false,
456         .num_sdma_engines = 2,
457         .num_xgmi_sdma_engines = 0,
458         .num_sdma_queues_per_engine = 8,
459 };
460
461 /* For each entry, [0] is regular and [1] is virtualisation device. */
462 static const struct kfd_device_info *kfd_supported_devices[][2] = {
463 #ifdef KFD_SUPPORT_IOMMU_V2
464         [CHIP_KAVERI] = {&kaveri_device_info, NULL},
465         [CHIP_CARRIZO] = {&carrizo_device_info, NULL},
466         [CHIP_RAVEN] = {&raven_device_info, NULL},
467 #endif
468         [CHIP_HAWAII] = {&hawaii_device_info, NULL},
469         [CHIP_TONGA] = {&tonga_device_info, NULL},
470         [CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
471         [CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
472         [CHIP_POLARIS11] = {&polaris11_device_info, NULL},
473         [CHIP_POLARIS12] = {&polaris12_device_info, NULL},
474         [CHIP_VEGAM] = {&vegam_device_info, NULL},
475         [CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
476         [CHIP_VEGA12] = {&vega12_device_info, NULL},
477         [CHIP_VEGA20] = {&vega20_device_info, NULL},
478         [CHIP_RENOIR] = {&renoir_device_info, NULL},
479         [CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
480         [CHIP_NAVI10] = {&navi10_device_info, NULL},
481         [CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
482         [CHIP_NAVI14] = {&navi14_device_info, NULL},
483 };
484
485 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
486                                 unsigned int chunk_size);
487 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
488
489 static int kfd_resume(struct kfd_dev *kfd);
490
491 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
492         struct pci_dev *pdev, unsigned int asic_type, bool vf)
493 {
494         struct kfd_dev *kfd;
495         const struct kfd_device_info *device_info;
496         const struct kfd2kgd_calls *f2g;
497
498         if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
499                 || asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
500                 dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
501                 return NULL; /* asic_type out of range */
502         }
503
504         device_info = kfd_supported_devices[asic_type][vf];
505         f2g = kfd2kgd_funcs[asic_type];
506
507         if (!device_info || !f2g) {
508                 dev_err(kfd_device, "%s %s not supported in kfd\n",
509                         amdgpu_asic_name[asic_type], vf ? "VF" : "");
510                 return NULL;
511         }
512
513         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
514         if (!kfd)
515                 return NULL;
516
517         /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
518          * 32 and 64-bit requests are possible and must be
519          * supported.
520          */
521         kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
522         if (device_info->needs_pci_atomics &&
523             !kfd->pci_atomic_requested) {
524                 dev_info(kfd_device,
525                          "skipped device %x:%x, PCI rejects atomics\n",
526                          pdev->vendor, pdev->device);
527                 kfree(kfd);
528                 return NULL;
529         }
530
531         kfd->kgd = kgd;
532         kfd->device_info = device_info;
533         kfd->pdev = pdev;
534         kfd->init_complete = false;
535         kfd->kfd2kgd = f2g;
536         atomic_set(&kfd->compute_profile, 0);
537
538         mutex_init(&kfd->doorbell_mutex);
539         memset(&kfd->doorbell_available_index, 0,
540                 sizeof(kfd->doorbell_available_index));
541
542         atomic_set(&kfd->sram_ecc_flag, 0);
543
544         return kfd;
545 }
546
547 static void kfd_cwsr_init(struct kfd_dev *kfd)
548 {
549         if (cwsr_enable && kfd->device_info->supports_cwsr) {
550                 if (kfd->device_info->asic_family < CHIP_VEGA10) {
551                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
552                         kfd->cwsr_isa = cwsr_trap_gfx8_hex;
553                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
554                 } else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
555                         BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
556                         kfd->cwsr_isa = cwsr_trap_arcturus_hex;
557                         kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
558                 } else if (kfd->device_info->asic_family < CHIP_NAVI10) {
559                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
560                         kfd->cwsr_isa = cwsr_trap_gfx9_hex;
561                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
562                 } else {
563                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
564                         kfd->cwsr_isa = cwsr_trap_gfx10_hex;
565                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
566                 }
567
568                 kfd->cwsr_enabled = true;
569         }
570 }
571
572 bool kgd2kfd_device_init(struct kfd_dev *kfd,
573                          struct drm_device *ddev,
574                          const struct kgd2kfd_shared_resources *gpu_resources)
575 {
576         unsigned int size;
577
578         kfd->ddev = ddev;
579         kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
580                         KGD_ENGINE_MEC1);
581         kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
582                         KGD_ENGINE_SDMA1);
583         kfd->shared_resources = *gpu_resources;
584
585         kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
586         kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
587         kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
588                         - kfd->vm_info.first_vmid_kfd + 1;
589
590         /* Verify module parameters regarding mapped process number*/
591         if ((hws_max_conc_proc < 0)
592                         || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
593                 dev_err(kfd_device,
594                         "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
595                         hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
596                         kfd->vm_info.vmid_num_kfd);
597                 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
598         } else
599                 kfd->max_proc_per_quantum = hws_max_conc_proc;
600
601         /* Allocate global GWS that is shared by all KFD processes */
602         if (hws_gws_support && amdgpu_amdkfd_alloc_gws(kfd->kgd,
603                         amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws)) {
604                 dev_err(kfd_device, "Could not allocate %d gws\n",
605                         amdgpu_amdkfd_get_num_gws(kfd->kgd));
606                 goto out;
607         }
608         /* calculate max size of mqds needed for queues */
609         size = max_num_of_queues_per_device *
610                         kfd->device_info->mqd_size_aligned;
611
612         /*
613          * calculate max size of runlist packet.
614          * There can be only 2 packets at once
615          */
616         size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
617                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
618                 + sizeof(struct pm4_mes_runlist)) * 2;
619
620         /* Add size of HIQ & DIQ */
621         size += KFD_KERNEL_QUEUE_SIZE * 2;
622
623         /* add another 512KB for all other allocations on gart (HPD, fences) */
624         size += 512 * 1024;
625
626         if (amdgpu_amdkfd_alloc_gtt_mem(
627                         kfd->kgd, size, &kfd->gtt_mem,
628                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
629                         false)) {
630                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
631                 goto alloc_gtt_mem_failure;
632         }
633
634         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
635
636         /* Initialize GTT sa with 512 byte chunk size */
637         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
638                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
639                 goto kfd_gtt_sa_init_error;
640         }
641
642         if (kfd_doorbell_init(kfd)) {
643                 dev_err(kfd_device,
644                         "Error initializing doorbell aperture\n");
645                 goto kfd_doorbell_error;
646         }
647
648         if (kfd->kfd2kgd->get_hive_id)
649                 kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
650
651         if (kfd_interrupt_init(kfd)) {
652                 dev_err(kfd_device, "Error initializing interrupts\n");
653                 goto kfd_interrupt_error;
654         }
655
656         kfd->dqm = device_queue_manager_init(kfd);
657         if (!kfd->dqm) {
658                 dev_err(kfd_device, "Error initializing queue manager\n");
659                 goto device_queue_manager_error;
660         }
661
662         if (kfd_iommu_device_init(kfd)) {
663                 dev_err(kfd_device, "Error initializing iommuv2\n");
664                 goto device_iommu_error;
665         }
666
667         kfd_cwsr_init(kfd);
668
669         if (kfd_resume(kfd))
670                 goto kfd_resume_error;
671
672         kfd->dbgmgr = NULL;
673
674         if (kfd_topology_add_device(kfd)) {
675                 dev_err(kfd_device, "Error adding device to topology\n");
676                 goto kfd_topology_add_device_error;
677         }
678
679         kfd->init_complete = true;
680         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
681                  kfd->pdev->device);
682
683         pr_debug("Starting kfd with the following scheduling policy %d\n",
684                 kfd->dqm->sched_policy);
685
686         goto out;
687
688 kfd_topology_add_device_error:
689 kfd_resume_error:
690 device_iommu_error:
691         device_queue_manager_uninit(kfd->dqm);
692 device_queue_manager_error:
693         kfd_interrupt_exit(kfd);
694 kfd_interrupt_error:
695         kfd_doorbell_fini(kfd);
696 kfd_doorbell_error:
697         kfd_gtt_sa_fini(kfd);
698 kfd_gtt_sa_init_error:
699         amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
700 alloc_gtt_mem_failure:
701         if (hws_gws_support)
702                 amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
703         dev_err(kfd_device,
704                 "device %x:%x NOT added due to errors\n",
705                 kfd->pdev->vendor, kfd->pdev->device);
706 out:
707         return kfd->init_complete;
708 }
709
710 void kgd2kfd_device_exit(struct kfd_dev *kfd)
711 {
712         if (kfd->init_complete) {
713                 kgd2kfd_suspend(kfd);
714                 device_queue_manager_uninit(kfd->dqm);
715                 kfd_interrupt_exit(kfd);
716                 kfd_topology_remove_device(kfd);
717                 kfd_doorbell_fini(kfd);
718                 kfd_gtt_sa_fini(kfd);
719                 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
720                 if (hws_gws_support)
721                         amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
722         }
723
724         kfree(kfd);
725 }
726
727 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
728 {
729         if (!kfd->init_complete)
730                 return 0;
731         kgd2kfd_suspend(kfd);
732
733         /* hold dqm->lock to prevent further execution*/
734         dqm_lock(kfd->dqm);
735
736         kfd_signal_reset_event(kfd);
737         return 0;
738 }
739
740 /*
741  * Fix me. KFD won't be able to resume existing process for now.
742  * We will keep all existing process in a evicted state and
743  * wait the process to be terminated.
744  */
745
746 int kgd2kfd_post_reset(struct kfd_dev *kfd)
747 {
748         int ret, count;
749
750         if (!kfd->init_complete)
751                 return 0;
752
753         dqm_unlock(kfd->dqm);
754
755         ret = kfd_resume(kfd);
756         if (ret)
757                 return ret;
758         count = atomic_dec_return(&kfd_locked);
759
760         atomic_set(&kfd->sram_ecc_flag, 0);
761
762         return 0;
763 }
764
765 bool kfd_is_locked(void)
766 {
767         return  (atomic_read(&kfd_locked) > 0);
768 }
769
770 void kgd2kfd_suspend(struct kfd_dev *kfd)
771 {
772         if (!kfd->init_complete)
773                 return;
774
775         /* For first KFD device suspend all the KFD processes */
776         if (atomic_inc_return(&kfd_locked) == 1)
777                 kfd_suspend_all_processes();
778
779         kfd->dqm->ops.stop(kfd->dqm);
780
781         kfd_iommu_suspend(kfd);
782 }
783
784 int kgd2kfd_resume(struct kfd_dev *kfd)
785 {
786         int ret, count;
787
788         if (!kfd->init_complete)
789                 return 0;
790
791         ret = kfd_resume(kfd);
792         if (ret)
793                 return ret;
794
795         count = atomic_dec_return(&kfd_locked);
796         WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
797         if (count == 0)
798                 ret = kfd_resume_all_processes();
799
800         return ret;
801 }
802
803 static int kfd_resume(struct kfd_dev *kfd)
804 {
805         int err = 0;
806
807         err = kfd_iommu_resume(kfd);
808         if (err) {
809                 dev_err(kfd_device,
810                         "Failed to resume IOMMU for device %x:%x\n",
811                         kfd->pdev->vendor, kfd->pdev->device);
812                 return err;
813         }
814
815         err = kfd->dqm->ops.start(kfd->dqm);
816         if (err) {
817                 dev_err(kfd_device,
818                         "Error starting queue manager for device %x:%x\n",
819                         kfd->pdev->vendor, kfd->pdev->device);
820                 goto dqm_start_error;
821         }
822
823         return err;
824
825 dqm_start_error:
826         kfd_iommu_suspend(kfd);
827         return err;
828 }
829
830 /* This is called directly from KGD at ISR. */
831 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
832 {
833         uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
834         bool is_patched = false;
835         unsigned long flags;
836
837         if (!kfd->init_complete)
838                 return;
839
840         if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
841                 dev_err_once(kfd_device, "Ring entry too small\n");
842                 return;
843         }
844
845         spin_lock_irqsave(&kfd->interrupt_lock, flags);
846
847         if (kfd->interrupts_active
848             && interrupt_is_wanted(kfd, ih_ring_entry,
849                                    patched_ihre, &is_patched)
850             && enqueue_ih_ring_entry(kfd,
851                                      is_patched ? patched_ihre : ih_ring_entry))
852                 queue_work(kfd->ih_wq, &kfd->interrupt_work);
853
854         spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
855 }
856
857 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
858 {
859         struct kfd_process *p;
860         int r;
861
862         /* Because we are called from arbitrary context (workqueue) as opposed
863          * to process context, kfd_process could attempt to exit while we are
864          * running so the lookup function increments the process ref count.
865          */
866         p = kfd_lookup_process_by_mm(mm);
867         if (!p)
868                 return -ESRCH;
869
870         r = kfd_process_evict_queues(p);
871
872         kfd_unref_process(p);
873         return r;
874 }
875
876 int kgd2kfd_resume_mm(struct mm_struct *mm)
877 {
878         struct kfd_process *p;
879         int r;
880
881         /* Because we are called from arbitrary context (workqueue) as opposed
882          * to process context, kfd_process could attempt to exit while we are
883          * running so the lookup function increments the process ref count.
884          */
885         p = kfd_lookup_process_by_mm(mm);
886         if (!p)
887                 return -ESRCH;
888
889         r = kfd_process_restore_queues(p);
890
891         kfd_unref_process(p);
892         return r;
893 }
894
895 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
896  *   prepare for safe eviction of KFD BOs that belong to the specified
897  *   process.
898  *
899  * @mm: mm_struct that identifies the specified KFD process
900  * @fence: eviction fence attached to KFD process BOs
901  *
902  */
903 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
904                                                struct dma_fence *fence)
905 {
906         struct kfd_process *p;
907         unsigned long active_time;
908         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
909
910         if (!fence)
911                 return -EINVAL;
912
913         if (dma_fence_is_signaled(fence))
914                 return 0;
915
916         p = kfd_lookup_process_by_mm(mm);
917         if (!p)
918                 return -ENODEV;
919
920         if (fence->seqno == p->last_eviction_seqno)
921                 goto out;
922
923         p->last_eviction_seqno = fence->seqno;
924
925         /* Avoid KFD process starvation. Wait for at least
926          * PROCESS_ACTIVE_TIME_MS before evicting the process again
927          */
928         active_time = get_jiffies_64() - p->last_restore_timestamp;
929         if (delay_jiffies > active_time)
930                 delay_jiffies -= active_time;
931         else
932                 delay_jiffies = 0;
933
934         /* During process initialization eviction_work.dwork is initialized
935          * to kfd_evict_bo_worker
936          */
937         schedule_delayed_work(&p->eviction_work, delay_jiffies);
938 out:
939         kfd_unref_process(p);
940         return 0;
941 }
942
943 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
944                                 unsigned int chunk_size)
945 {
946         unsigned int num_of_longs;
947
948         if (WARN_ON(buf_size < chunk_size))
949                 return -EINVAL;
950         if (WARN_ON(buf_size == 0))
951                 return -EINVAL;
952         if (WARN_ON(chunk_size == 0))
953                 return -EINVAL;
954
955         kfd->gtt_sa_chunk_size = chunk_size;
956         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
957
958         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
959                 BITS_PER_LONG;
960
961         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
962
963         if (!kfd->gtt_sa_bitmap)
964                 return -ENOMEM;
965
966         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
967                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
968
969         mutex_init(&kfd->gtt_sa_lock);
970
971         return 0;
972
973 }
974
975 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
976 {
977         mutex_destroy(&kfd->gtt_sa_lock);
978         kfree(kfd->gtt_sa_bitmap);
979 }
980
981 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
982                                                 unsigned int bit_num,
983                                                 unsigned int chunk_size)
984 {
985         return start_addr + bit_num * chunk_size;
986 }
987
988 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
989                                                 unsigned int bit_num,
990                                                 unsigned int chunk_size)
991 {
992         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
993 }
994
995 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
996                         struct kfd_mem_obj **mem_obj)
997 {
998         unsigned int found, start_search, cur_size;
999
1000         if (size == 0)
1001                 return -EINVAL;
1002
1003         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1004                 return -ENOMEM;
1005
1006         *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1007         if (!(*mem_obj))
1008                 return -ENOMEM;
1009
1010         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1011
1012         start_search = 0;
1013
1014         mutex_lock(&kfd->gtt_sa_lock);
1015
1016 kfd_gtt_restart_search:
1017         /* Find the first chunk that is free */
1018         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1019                                         kfd->gtt_sa_num_of_chunks,
1020                                         start_search);
1021
1022         pr_debug("Found = %d\n", found);
1023
1024         /* If there wasn't any free chunk, bail out */
1025         if (found == kfd->gtt_sa_num_of_chunks)
1026                 goto kfd_gtt_no_free_chunk;
1027
1028         /* Update fields of mem_obj */
1029         (*mem_obj)->range_start = found;
1030         (*mem_obj)->range_end = found;
1031         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1032                                         kfd->gtt_start_gpu_addr,
1033                                         found,
1034                                         kfd->gtt_sa_chunk_size);
1035         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1036                                         kfd->gtt_start_cpu_ptr,
1037                                         found,
1038                                         kfd->gtt_sa_chunk_size);
1039
1040         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1041                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1042
1043         /* If we need only one chunk, mark it as allocated and get out */
1044         if (size <= kfd->gtt_sa_chunk_size) {
1045                 pr_debug("Single bit\n");
1046                 set_bit(found, kfd->gtt_sa_bitmap);
1047                 goto kfd_gtt_out;
1048         }
1049
1050         /* Otherwise, try to see if we have enough contiguous chunks */
1051         cur_size = size - kfd->gtt_sa_chunk_size;
1052         do {
1053                 (*mem_obj)->range_end =
1054                         find_next_zero_bit(kfd->gtt_sa_bitmap,
1055                                         kfd->gtt_sa_num_of_chunks, ++found);
1056                 /*
1057                  * If next free chunk is not contiguous than we need to
1058                  * restart our search from the last free chunk we found (which
1059                  * wasn't contiguous to the previous ones
1060                  */
1061                 if ((*mem_obj)->range_end != found) {
1062                         start_search = found;
1063                         goto kfd_gtt_restart_search;
1064                 }
1065
1066                 /*
1067                  * If we reached end of buffer, bail out with error
1068                  */
1069                 if (found == kfd->gtt_sa_num_of_chunks)
1070                         goto kfd_gtt_no_free_chunk;
1071
1072                 /* Check if we don't need another chunk */
1073                 if (cur_size <= kfd->gtt_sa_chunk_size)
1074                         cur_size = 0;
1075                 else
1076                         cur_size -= kfd->gtt_sa_chunk_size;
1077
1078         } while (cur_size > 0);
1079
1080         pr_debug("range_start = %d, range_end = %d\n",
1081                 (*mem_obj)->range_start, (*mem_obj)->range_end);
1082
1083         /* Mark the chunks as allocated */
1084         for (found = (*mem_obj)->range_start;
1085                 found <= (*mem_obj)->range_end;
1086                 found++)
1087                 set_bit(found, kfd->gtt_sa_bitmap);
1088
1089 kfd_gtt_out:
1090         mutex_unlock(&kfd->gtt_sa_lock);
1091         return 0;
1092
1093 kfd_gtt_no_free_chunk:
1094         pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
1095         mutex_unlock(&kfd->gtt_sa_lock);
1096         kfree(mem_obj);
1097         return -ENOMEM;
1098 }
1099
1100 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1101 {
1102         unsigned int bit;
1103
1104         /* Act like kfree when trying to free a NULL object */
1105         if (!mem_obj)
1106                 return 0;
1107
1108         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1109                         mem_obj, mem_obj->range_start, mem_obj->range_end);
1110
1111         mutex_lock(&kfd->gtt_sa_lock);
1112
1113         /* Mark the chunks as free */
1114         for (bit = mem_obj->range_start;
1115                 bit <= mem_obj->range_end;
1116                 bit++)
1117                 clear_bit(bit, kfd->gtt_sa_bitmap);
1118
1119         mutex_unlock(&kfd->gtt_sa_lock);
1120
1121         kfree(mem_obj);
1122         return 0;
1123 }
1124
1125 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1126 {
1127         if (kfd)
1128                 atomic_inc(&kfd->sram_ecc_flag);
1129 }
1130
1131 void kfd_inc_compute_active(struct kfd_dev *kfd)
1132 {
1133         if (atomic_inc_return(&kfd->compute_profile) == 1)
1134                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1135 }
1136
1137 void kfd_dec_compute_active(struct kfd_dev *kfd)
1138 {
1139         int count = atomic_dec_return(&kfd->compute_profile);
1140
1141         if (count == 0)
1142                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1143         WARN_ONCE(count < 0, "Compute profile ref. count error");
1144 }
1145
1146 #if defined(CONFIG_DEBUG_FS)
1147
1148 /* This function will send a package to HIQ to hang the HWS
1149  * which will trigger a GPU reset and bring the HWS back to normal state
1150  */
1151 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1152 {
1153         int r = 0;
1154
1155         if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1156                 pr_err("HWS is not enabled");
1157                 return -EINVAL;
1158         }
1159
1160         r = pm_debugfs_hang_hws(&dev->dqm->packets);
1161         if (!r)
1162                 r = dqm_debugfs_execute_queues(dev->dqm);
1163
1164         return r;
1165 }
1166
1167 #endif