Linux 6.10-rc3
[linux-2.6-block.git] / drivers / dma / amba-pl08x.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2006 ARM Ltd.
4  * Copyright (c) 2010 ST-Ericsson SA
5  * Copyirght (c) 2017 Linaro Ltd.
6  *
7  * Author: Peter Pearse <peter.pearse@arm.com>
8  * Author: Linus Walleij <linus.walleij@linaro.org>
9  *
10  * Documentation: ARM DDI 0196G == PL080
11  * Documentation: ARM DDI 0218E == PL081
12  * Documentation: S3C6410 User's Manual == PL080S
13  *
14  * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
15  * channel.
16  *
17  * The PL080 has 8 channels available for simultaneous use, and the PL081
18  * has only two channels. So on these DMA controllers the number of channels
19  * and the number of incoming DMA signals are two totally different things.
20  * It is usually not possible to theoretically handle all physical signals,
21  * so a multiplexing scheme with possible denial of use is necessary.
22  *
23  * The PL080 has a dual bus master, PL081 has a single master.
24  *
25  * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
26  * It differs in following aspects:
27  * - CH_CONFIG register at different offset,
28  * - separate CH_CONTROL2 register for transfer size,
29  * - bigger maximum transfer size,
30  * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
31  * - no support for peripheral flow control.
32  *
33  * Memory to peripheral transfer may be visualized as
34  *      Get data from memory to DMAC
35  *      Until no data left
36  *              On burst request from peripheral
37  *                      Destination burst from DMAC to peripheral
38  *                      Clear burst request
39  *      Raise terminal count interrupt
40  *
41  * For peripherals with a FIFO:
42  * Source      burst size == half the depth of the peripheral FIFO
43  * Destination burst size == the depth of the peripheral FIFO
44  *
45  * (Bursts are irrelevant for mem to mem transfers - there are no burst
46  * signals, the DMA controller will simply facilitate its AHB master.)
47  *
48  * ASSUMES default (little) endianness for DMA transfers
49  *
50  * The PL08x has two flow control settings:
51  *  - DMAC flow control: the transfer size defines the number of transfers
52  *    which occur for the current LLI entry, and the DMAC raises TC at the
53  *    end of every LLI entry.  Observed behaviour shows the DMAC listening
54  *    to both the BREQ and SREQ signals (contrary to documented),
55  *    transferring data if either is active.  The LBREQ and LSREQ signals
56  *    are ignored.
57  *
58  *  - Peripheral flow control: the transfer size is ignored (and should be
59  *    zero).  The data is transferred from the current LLI entry, until
60  *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
61  *    will then move to the next LLI entry. Unsupported by PL080S.
62  */
63 #include <linux/amba/bus.h>
64 #include <linux/amba/pl08x.h>
65 #include <linux/debugfs.h>
66 #include <linux/delay.h>
67 #include <linux/device.h>
68 #include <linux/dmaengine.h>
69 #include <linux/dmapool.h>
70 #include <linux/dma-mapping.h>
71 #include <linux/export.h>
72 #include <linux/init.h>
73 #include <linux/interrupt.h>
74 #include <linux/module.h>
75 #include <linux/of.h>
76 #include <linux/of_dma.h>
77 #include <linux/pm_runtime.h>
78 #include <linux/seq_file.h>
79 #include <linux/slab.h>
80 #include <linux/amba/pl080.h>
81
82 #include "dmaengine.h"
83 #include "virt-dma.h"
84
85 #define DRIVER_NAME     "pl08xdmac"
86
87 #define PL80X_DMA_BUSWIDTHS \
88         BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
89         BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
90         BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
91         BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
92
93 static struct amba_driver pl08x_amba_driver;
94 struct pl08x_driver_data;
95
96 /**
97  * struct vendor_data - vendor-specific config parameters for PL08x derivatives
98  * @config_offset: offset to the configuration register
99  * @channels: the number of channels available in this variant
100  * @signals: the number of request signals available from the hardware
101  * @dualmaster: whether this version supports dual AHB masters or not.
102  * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the
103  *      channels have Nomadik security extension bits that need to be checked
104  *      for permission before use and some registers are missing
105  * @pl080s: whether this variant is a Samsung PL080S, which has separate
106  *      register and LLI word for transfer size.
107  * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020
108  * @max_transfer_size: the maximum single element transfer size for this
109  *      PL08x variant.
110  */
111 struct vendor_data {
112         u8 config_offset;
113         u8 channels;
114         u8 signals;
115         bool dualmaster;
116         bool nomadik;
117         bool pl080s;
118         bool ftdmac020;
119         u32 max_transfer_size;
120 };
121
122 /**
123  * struct pl08x_bus_data - information of source or destination
124  * busses for a transfer
125  * @addr: current address
126  * @maxwidth: the maximum width of a transfer on this bus
127  * @buswidth: the width of this bus in bytes: 1, 2 or 4
128  */
129 struct pl08x_bus_data {
130         dma_addr_t addr;
131         u8 maxwidth;
132         u8 buswidth;
133 };
134
135 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
136
137 /**
138  * struct pl08x_phy_chan - holder for the physical channels
139  * @id: physical index to this channel
140  * @base: memory base address for this physical channel
141  * @reg_config: configuration address for this physical channel
142  * @reg_control: control address for this physical channel
143  * @reg_src: transfer source address register
144  * @reg_dst: transfer destination address register
145  * @reg_lli: transfer LLI address register
146  * @reg_busy: if the variant has a special per-channel busy register,
147  * this contains a pointer to it
148  * @lock: a lock to use when altering an instance of this struct
149  * @serving: the virtual channel currently being served by this physical
150  * channel
151  * @locked: channel unavailable for the system, e.g. dedicated to secure
152  * world
153  * @ftdmac020: channel is on a FTDMAC020
154  * @pl080s: channel is on a PL08s
155  */
156 struct pl08x_phy_chan {
157         unsigned int id;
158         void __iomem *base;
159         void __iomem *reg_config;
160         void __iomem *reg_control;
161         void __iomem *reg_src;
162         void __iomem *reg_dst;
163         void __iomem *reg_lli;
164         void __iomem *reg_busy;
165         spinlock_t lock;
166         struct pl08x_dma_chan *serving;
167         bool locked;
168         bool ftdmac020;
169         bool pl080s;
170 };
171
172 /**
173  * struct pl08x_sg - structure containing data per sg
174  * @src_addr: src address of sg
175  * @dst_addr: dst address of sg
176  * @len: transfer len in bytes
177  * @node: node for txd's dsg_list
178  */
179 struct pl08x_sg {
180         dma_addr_t src_addr;
181         dma_addr_t dst_addr;
182         size_t len;
183         struct list_head node;
184 };
185
186 /**
187  * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
188  * @vd: virtual DMA descriptor
189  * @dsg_list: list of children sg's
190  * @llis_bus: DMA memory address (physical) start for the LLIs
191  * @llis_va: virtual memory address start for the LLIs
192  * @cctl: control reg values for current txd
193  * @ccfg: config reg values for current txd
194  * @done: this marks completed descriptors, which should not have their
195  *   mux released.
196  * @cyclic: indicate cyclic transfers
197  */
198 struct pl08x_txd {
199         struct virt_dma_desc vd;
200         struct list_head dsg_list;
201         dma_addr_t llis_bus;
202         u32 *llis_va;
203         /* Default cctl value for LLIs */
204         u32 cctl;
205         /*
206          * Settings to be put into the physical channel when we
207          * trigger this txd.  Other registers are in llis_va[0].
208          */
209         u32 ccfg;
210         bool done;
211         bool cyclic;
212 };
213
214 /**
215  * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel
216  * states
217  * @PL08X_CHAN_IDLE: the channel is idle
218  * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
219  * channel and is running a transfer on it
220  * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
221  * channel, but the transfer is currently paused
222  * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
223  * channel to become available (only pertains to memcpy channels)
224  */
225 enum pl08x_dma_chan_state {
226         PL08X_CHAN_IDLE,
227         PL08X_CHAN_RUNNING,
228         PL08X_CHAN_PAUSED,
229         PL08X_CHAN_WAITING,
230 };
231
232 /**
233  * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
234  * @vc: wrapped virtual channel
235  * @phychan: the physical channel utilized by this channel, if there is one
236  * @name: name of channel
237  * @cd: channel platform data
238  * @cfg: slave configuration
239  * @at: active transaction on this channel
240  * @host: a pointer to the host (internal use)
241  * @state: whether the channel is idle, paused, running etc
242  * @slave: whether this channel is a device (slave) or for memcpy
243  * @signal: the physical DMA request signal which this channel is using
244  * @mux_use: count of descriptors using this DMA request signal setting
245  * @waiting_at: time in jiffies when this channel moved to waiting state
246  */
247 struct pl08x_dma_chan {
248         struct virt_dma_chan vc;
249         struct pl08x_phy_chan *phychan;
250         const char *name;
251         struct pl08x_channel_data *cd;
252         struct dma_slave_config cfg;
253         struct pl08x_txd *at;
254         struct pl08x_driver_data *host;
255         enum pl08x_dma_chan_state state;
256         bool slave;
257         int signal;
258         unsigned mux_use;
259         unsigned long waiting_at;
260 };
261
262 /**
263  * struct pl08x_driver_data - the local state holder for the PL08x
264  * @slave: optional slave engine for this instance
265  * @memcpy: memcpy engine for this instance
266  * @has_slave: the PL08x has a slave engine (routed signals)
267  * @base: virtual memory base (remapped) for the PL08x
268  * @adev: the corresponding AMBA (PrimeCell) bus entry
269  * @vd: vendor data for this PL08x variant
270  * @pd: platform data passed in from the platform/machine
271  * @phy_chans: array of data for the physical channels
272  * @pool: a pool for the LLI descriptors
273  * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
274  * fetches
275  * @mem_buses: set to indicate memory transfers on AHB2.
276  * @lli_words: how many words are used in each LLI item for this variant
277  */
278 struct pl08x_driver_data {
279         struct dma_device slave;
280         struct dma_device memcpy;
281         bool has_slave;
282         void __iomem *base;
283         struct amba_device *adev;
284         const struct vendor_data *vd;
285         struct pl08x_platform_data *pd;
286         struct pl08x_phy_chan *phy_chans;
287         struct dma_pool *pool;
288         u8 lli_buses;
289         u8 mem_buses;
290         u8 lli_words;
291 };
292
293 /*
294  * PL08X specific defines
295  */
296
297 /* The order of words in an LLI. */
298 #define PL080_LLI_SRC           0
299 #define PL080_LLI_DST           1
300 #define PL080_LLI_LLI           2
301 #define PL080_LLI_CCTL          3
302 #define PL080S_LLI_CCTL2        4
303
304 /* Total words in an LLI. */
305 #define PL080_LLI_WORDS         4
306 #define PL080S_LLI_WORDS        8
307
308 /*
309  * Number of LLIs in each LLI buffer allocated for one transfer
310  * (maximum times we call dma_pool_alloc on this pool without freeing)
311  */
312 #define MAX_NUM_TSFR_LLIS       512
313 #define PL08X_ALIGN             8
314
315 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
316 {
317         return container_of(chan, struct pl08x_dma_chan, vc.chan);
318 }
319
320 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
321 {
322         return container_of(tx, struct pl08x_txd, vd.tx);
323 }
324
325 /*
326  * Mux handling.
327  *
328  * This gives us the DMA request input to the PL08x primecell which the
329  * peripheral described by the channel data will be routed to, possibly
330  * via a board/SoC specific external MUX.  One important point to note
331  * here is that this does not depend on the physical channel.
332  */
333 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
334 {
335         const struct pl08x_platform_data *pd = plchan->host->pd;
336         int ret;
337
338         if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
339                 ret = pd->get_xfer_signal(plchan->cd);
340                 if (ret < 0) {
341                         plchan->mux_use = 0;
342                         return ret;
343                 }
344
345                 plchan->signal = ret;
346         }
347         return 0;
348 }
349
350 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
351 {
352         const struct pl08x_platform_data *pd = plchan->host->pd;
353
354         if (plchan->signal >= 0) {
355                 WARN_ON(plchan->mux_use == 0);
356
357                 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
358                         pd->put_xfer_signal(plchan->cd, plchan->signal);
359                         plchan->signal = -1;
360                 }
361         }
362 }
363
364 /*
365  * Physical channel handling
366  */
367
368 /* Whether a certain channel is busy or not */
369 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
370 {
371         unsigned int val;
372
373         /* If we have a special busy register, take a shortcut */
374         if (ch->reg_busy) {
375                 val = readl(ch->reg_busy);
376                 return !!(val & BIT(ch->id));
377         }
378         val = readl(ch->reg_config);
379         return val & PL080_CONFIG_ACTIVE;
380 }
381
382 /*
383  * pl08x_write_lli() - Write an LLI into the DMA controller.
384  *
385  * The PL08x derivatives support linked lists, but the first item of the
386  * list containing the source, destination, control word and next LLI is
387  * ignored. Instead the driver has to write those values directly into the
388  * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE
389  * register need to be set up for the first transfer.
390  */
391 static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
392                 struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
393 {
394         if (pl08x->vd->pl080s)
395                 dev_vdbg(&pl08x->adev->dev,
396                         "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
397                         "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
398                         phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
399                         lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
400                         lli[PL080S_LLI_CCTL2], ccfg);
401         else
402                 dev_vdbg(&pl08x->adev->dev,
403                         "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
404                         "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
405                         phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
406                         lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
407
408         writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src);
409         writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst);
410         writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli);
411
412         /*
413          * The FTMAC020 has a different layout in the CCTL word of the LLI
414          * and the CCTL register which is split in CSR and SIZE registers.
415          * Convert the LLI item CCTL into the proper values to write into
416          * the CSR and SIZE registers.
417          */
418         if (phychan->ftdmac020) {
419                 u32 llictl = lli[PL080_LLI_CCTL];
420                 u32 val = 0;
421
422                 /* Write the transfer size (12 bits) to the size register */
423                 writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK,
424                                phychan->base + FTDMAC020_CH_SIZE);
425                 /*
426                  * Then write the control bits 28..16 to the control register
427                  * by shuffleing the bits around to where they are in the
428                  * main register. The mapping is as follows:
429                  * Bit 28: TC_MSK - mask on all except last LLI
430                  * Bit 27..25: SRC_WIDTH
431                  * Bit 24..22: DST_WIDTH
432                  * Bit 21..20: SRCAD_CTRL
433                  * Bit 19..17: DSTAD_CTRL
434                  * Bit 17: SRC_SEL
435                  * Bit 16: DST_SEL
436                  */
437                 if (llictl & FTDMAC020_LLI_TC_MSK)
438                         val |= FTDMAC020_CH_CSR_TC_MSK;
439                 val |= ((llictl  & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
440                         (FTDMAC020_LLI_SRC_WIDTH_SHIFT -
441                          FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT));
442                 val |= ((llictl  & FTDMAC020_LLI_DST_WIDTH_MSK) >>
443                         (FTDMAC020_LLI_DST_WIDTH_SHIFT -
444                          FTDMAC020_CH_CSR_DST_WIDTH_SHIFT));
445                 val |= ((llictl  & FTDMAC020_LLI_SRCAD_CTL_MSK) >>
446                         (FTDMAC020_LLI_SRCAD_CTL_SHIFT -
447                          FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT));
448                 val |= ((llictl  & FTDMAC020_LLI_DSTAD_CTL_MSK) >>
449                         (FTDMAC020_LLI_DSTAD_CTL_SHIFT -
450                          FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT));
451                 if (llictl & FTDMAC020_LLI_SRC_SEL)
452                         val |= FTDMAC020_CH_CSR_SRC_SEL;
453                 if (llictl & FTDMAC020_LLI_DST_SEL)
454                         val |= FTDMAC020_CH_CSR_DST_SEL;
455
456                 /*
457                  * Set up the bits that exist in the CSR but are not
458                  * part the LLI, i.e. only gets written to the control
459                  * register right here.
460                  *
461                  * FIXME: do not just handle memcpy, also handle slave DMA.
462                  */
463                 switch (pl08x->pd->memcpy_burst_size) {
464                 default:
465                 case PL08X_BURST_SZ_1:
466                         val |= PL080_BSIZE_1 <<
467                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
468                         break;
469                 case PL08X_BURST_SZ_4:
470                         val |= PL080_BSIZE_4 <<
471                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
472                         break;
473                 case PL08X_BURST_SZ_8:
474                         val |= PL080_BSIZE_8 <<
475                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
476                         break;
477                 case PL08X_BURST_SZ_16:
478                         val |= PL080_BSIZE_16 <<
479                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
480                         break;
481                 case PL08X_BURST_SZ_32:
482                         val |= PL080_BSIZE_32 <<
483                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
484                         break;
485                 case PL08X_BURST_SZ_64:
486                         val |= PL080_BSIZE_64 <<
487                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
488                         break;
489                 case PL08X_BURST_SZ_128:
490                         val |= PL080_BSIZE_128 <<
491                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
492                         break;
493                 case PL08X_BURST_SZ_256:
494                         val |= PL080_BSIZE_256 <<
495                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
496                         break;
497                 }
498
499                 /* Protection flags */
500                 if (pl08x->pd->memcpy_prot_buff)
501                         val |= FTDMAC020_CH_CSR_PROT2;
502                 if (pl08x->pd->memcpy_prot_cache)
503                         val |= FTDMAC020_CH_CSR_PROT3;
504                 /* We are the kernel, so we are in privileged mode */
505                 val |= FTDMAC020_CH_CSR_PROT1;
506
507                 writel_relaxed(val, phychan->reg_control);
508         } else {
509                 /* Bits are just identical */
510                 writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control);
511         }
512
513         /* Second control word on the PL080s */
514         if (pl08x->vd->pl080s)
515                 writel_relaxed(lli[PL080S_LLI_CCTL2],
516                                 phychan->base + PL080S_CH_CONTROL2);
517
518         writel(ccfg, phychan->reg_config);
519 }
520
521 /*
522  * Set the initial DMA register values i.e. those for the first LLI
523  * The next LLI pointer and the configuration interrupt bit have
524  * been set when the LLIs were constructed.  Poke them into the hardware
525  * and start the transfer.
526  */
527 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
528 {
529         struct pl08x_driver_data *pl08x = plchan->host;
530         struct pl08x_phy_chan *phychan = plchan->phychan;
531         struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
532         struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
533         u32 val;
534
535         list_del(&txd->vd.node);
536
537         plchan->at = txd;
538
539         /* Wait for channel inactive */
540         while (pl08x_phy_channel_busy(phychan))
541                 cpu_relax();
542
543         pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
544
545         /* Enable the DMA channel */
546         /* Do not access config register until channel shows as disabled */
547         while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id))
548                 cpu_relax();
549
550         /* Do not access config register until channel shows as inactive */
551         if (phychan->ftdmac020) {
552                 val = readl(phychan->reg_config);
553                 while (val & FTDMAC020_CH_CFG_BUSY)
554                         val = readl(phychan->reg_config);
555
556                 val = readl(phychan->reg_control);
557                 while (val & FTDMAC020_CH_CSR_EN)
558                         val = readl(phychan->reg_control);
559
560                 writel(val | FTDMAC020_CH_CSR_EN,
561                        phychan->reg_control);
562         } else {
563                 val = readl(phychan->reg_config);
564                 while ((val & PL080_CONFIG_ACTIVE) ||
565                        (val & PL080_CONFIG_ENABLE))
566                         val = readl(phychan->reg_config);
567
568                 writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
569         }
570 }
571
572 /*
573  * Pause the channel by setting the HALT bit.
574  *
575  * For M->P transfers, pause the DMAC first and then stop the peripheral -
576  * the FIFO can only drain if the peripheral is still requesting data.
577  * (note: this can still timeout if the DMAC FIFO never drains of data.)
578  *
579  * For P->M transfers, disable the peripheral first to stop it filling
580  * the DMAC FIFO, and then pause the DMAC.
581  */
582 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
583 {
584         u32 val;
585         int timeout;
586
587         if (ch->ftdmac020) {
588                 /* Use the enable bit on the FTDMAC020 */
589                 val = readl(ch->reg_control);
590                 val &= ~FTDMAC020_CH_CSR_EN;
591                 writel(val, ch->reg_control);
592                 return;
593         }
594
595         /* Set the HALT bit and wait for the FIFO to drain */
596         val = readl(ch->reg_config);
597         val |= PL080_CONFIG_HALT;
598         writel(val, ch->reg_config);
599
600         /* Wait for channel inactive */
601         for (timeout = 1000; timeout; timeout--) {
602                 if (!pl08x_phy_channel_busy(ch))
603                         break;
604                 udelay(1);
605         }
606         if (pl08x_phy_channel_busy(ch))
607                 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
608 }
609
610 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
611 {
612         u32 val;
613
614         /* Use the enable bit on the FTDMAC020 */
615         if (ch->ftdmac020) {
616                 val = readl(ch->reg_control);
617                 val |= FTDMAC020_CH_CSR_EN;
618                 writel(val, ch->reg_control);
619                 return;
620         }
621
622         /* Clear the HALT bit */
623         val = readl(ch->reg_config);
624         val &= ~PL080_CONFIG_HALT;
625         writel(val, ch->reg_config);
626 }
627
628 /*
629  * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
630  * clears any pending interrupt status.  This should not be used for
631  * an on-going transfer, but as a method of shutting down a channel
632  * (eg, when it's no longer used) or terminating a transfer.
633  */
634 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
635         struct pl08x_phy_chan *ch)
636 {
637         u32 val;
638
639         /* The layout for the FTDMAC020 is different */
640         if (ch->ftdmac020) {
641                 /* Disable all interrupts */
642                 val = readl(ch->reg_config);
643                 val |= (FTDMAC020_CH_CFG_INT_ABT_MASK |
644                         FTDMAC020_CH_CFG_INT_ERR_MASK |
645                         FTDMAC020_CH_CFG_INT_TC_MASK);
646                 writel(val, ch->reg_config);
647
648                 /* Abort and disable channel */
649                 val = readl(ch->reg_control);
650                 val &= ~FTDMAC020_CH_CSR_EN;
651                 val |= FTDMAC020_CH_CSR_ABT;
652                 writel(val, ch->reg_control);
653
654                 /* Clear ABT and ERR interrupt flags */
655                 writel(BIT(ch->id) | BIT(ch->id + 16),
656                        pl08x->base + PL080_ERR_CLEAR);
657                 writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
658
659                 return;
660         }
661
662         val = readl(ch->reg_config);
663         val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
664                  PL080_CONFIG_TC_IRQ_MASK);
665         writel(val, ch->reg_config);
666
667         writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR);
668         writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
669 }
670
671 static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch)
672 {
673         u32 val;
674         u32 bytes;
675
676         if (ch->ftdmac020) {
677                 bytes = readl(ch->base + FTDMAC020_CH_SIZE);
678
679                 val = readl(ch->reg_control);
680                 val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK;
681                 val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT;
682         } else if (ch->pl080s) {
683                 val = readl(ch->base + PL080S_CH_CONTROL2);
684                 bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
685
686                 val = readl(ch->reg_control);
687                 val &= PL080_CONTROL_SWIDTH_MASK;
688                 val >>= PL080_CONTROL_SWIDTH_SHIFT;
689         } else {
690                 /* Plain PL08x */
691                 val = readl(ch->reg_control);
692                 bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
693
694                 val &= PL080_CONTROL_SWIDTH_MASK;
695                 val >>= PL080_CONTROL_SWIDTH_SHIFT;
696         }
697
698         switch (val) {
699         case PL080_WIDTH_8BIT:
700                 break;
701         case PL080_WIDTH_16BIT:
702                 bytes *= 2;
703                 break;
704         case PL080_WIDTH_32BIT:
705                 bytes *= 4;
706                 break;
707         }
708         return bytes;
709 }
710
711 static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va)
712 {
713         u32 val;
714         u32 bytes;
715
716         if (ch->ftdmac020) {
717                 val = llis_va[PL080_LLI_CCTL];
718                 bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK;
719
720                 val = llis_va[PL080_LLI_CCTL];
721                 val &= FTDMAC020_LLI_SRC_WIDTH_MSK;
722                 val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT;
723         } else if (ch->pl080s) {
724                 val = llis_va[PL080S_LLI_CCTL2];
725                 bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
726
727                 val = llis_va[PL080_LLI_CCTL];
728                 val &= PL080_CONTROL_SWIDTH_MASK;
729                 val >>= PL080_CONTROL_SWIDTH_SHIFT;
730         } else {
731                 /* Plain PL08x */
732                 val = llis_va[PL080_LLI_CCTL];
733                 bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
734
735                 val &= PL080_CONTROL_SWIDTH_MASK;
736                 val >>= PL080_CONTROL_SWIDTH_SHIFT;
737         }
738
739         switch (val) {
740         case PL080_WIDTH_8BIT:
741                 break;
742         case PL080_WIDTH_16BIT:
743                 bytes *= 2;
744                 break;
745         case PL080_WIDTH_32BIT:
746                 bytes *= 4;
747                 break;
748         }
749         return bytes;
750 }
751
752 /* The channel should be paused when calling this */
753 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
754 {
755         struct pl08x_driver_data *pl08x = plchan->host;
756         const u32 *llis_va, *llis_va_limit;
757         struct pl08x_phy_chan *ch;
758         dma_addr_t llis_bus;
759         struct pl08x_txd *txd;
760         u32 llis_max_words;
761         size_t bytes;
762         u32 clli;
763
764         ch = plchan->phychan;
765         txd = plchan->at;
766
767         if (!ch || !txd)
768                 return 0;
769
770         /*
771          * Follow the LLIs to get the number of remaining
772          * bytes in the currently active transaction.
773          */
774         clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2;
775
776         /* First get the remaining bytes in the active transfer */
777         bytes = get_bytes_in_phy_channel(ch);
778
779         if (!clli)
780                 return bytes;
781
782         llis_va = txd->llis_va;
783         llis_bus = txd->llis_bus;
784
785         llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
786         BUG_ON(clli < llis_bus || clli >= llis_bus +
787                                                 sizeof(u32) * llis_max_words);
788
789         /*
790          * Locate the next LLI - as this is an array,
791          * it's simple maths to find.
792          */
793         llis_va += (clli - llis_bus) / sizeof(u32);
794
795         llis_va_limit = llis_va + llis_max_words;
796
797         for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
798                 bytes += get_bytes_in_lli(ch, llis_va);
799
800                 /*
801                  * A LLI pointer going backward terminates the LLI list
802                  */
803                 if (llis_va[PL080_LLI_LLI] <= clli)
804                         break;
805         }
806
807         return bytes;
808 }
809
810 /*
811  * Allocate a physical channel for a virtual channel
812  *
813  * Try to locate a physical channel to be used for this transfer. If all
814  * are taken return NULL and the requester will have to cope by using
815  * some fallback PIO mode or retrying later.
816  */
817 static struct pl08x_phy_chan *
818 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
819                       struct pl08x_dma_chan *virt_chan)
820 {
821         struct pl08x_phy_chan *ch = NULL;
822         unsigned long flags;
823         int i;
824
825         for (i = 0; i < pl08x->vd->channels; i++) {
826                 ch = &pl08x->phy_chans[i];
827
828                 spin_lock_irqsave(&ch->lock, flags);
829
830                 if (!ch->locked && !ch->serving) {
831                         ch->serving = virt_chan;
832                         spin_unlock_irqrestore(&ch->lock, flags);
833                         break;
834                 }
835
836                 spin_unlock_irqrestore(&ch->lock, flags);
837         }
838
839         if (i == pl08x->vd->channels) {
840                 /* No physical channel available, cope with it */
841                 return NULL;
842         }
843
844         return ch;
845 }
846
847 /* Mark the physical channel as free.  Note, this write is atomic. */
848 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
849                                          struct pl08x_phy_chan *ch)
850 {
851         ch->serving = NULL;
852 }
853
854 /*
855  * Try to allocate a physical channel.  When successful, assign it to
856  * this virtual channel, and initiate the next descriptor.  The
857  * virtual channel lock must be held at this point.
858  */
859 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
860 {
861         struct pl08x_driver_data *pl08x = plchan->host;
862         struct pl08x_phy_chan *ch;
863
864         ch = pl08x_get_phy_channel(pl08x, plchan);
865         if (!ch) {
866                 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
867                 plchan->state = PL08X_CHAN_WAITING;
868                 plchan->waiting_at = jiffies;
869                 return;
870         }
871
872         dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
873                 ch->id, plchan->name);
874
875         plchan->phychan = ch;
876         plchan->state = PL08X_CHAN_RUNNING;
877         pl08x_start_next_txd(plchan);
878 }
879
880 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
881         struct pl08x_dma_chan *plchan)
882 {
883         struct pl08x_driver_data *pl08x = plchan->host;
884
885         dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
886                 ch->id, plchan->name);
887
888         /*
889          * We do this without taking the lock; we're really only concerned
890          * about whether this pointer is NULL or not, and we're guaranteed
891          * that this will only be called when it _already_ is non-NULL.
892          */
893         ch->serving = plchan;
894         plchan->phychan = ch;
895         plchan->state = PL08X_CHAN_RUNNING;
896         pl08x_start_next_txd(plchan);
897 }
898
899 /*
900  * Free a physical DMA channel, potentially reallocating it to another
901  * virtual channel if we have any pending.
902  */
903 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
904 {
905         struct pl08x_driver_data *pl08x = plchan->host;
906         struct pl08x_dma_chan *p, *next;
907         unsigned long waiting_at;
908  retry:
909         next = NULL;
910         waiting_at = jiffies;
911
912         /*
913          * Find a waiting virtual channel for the next transfer.
914          * To be fair, time when each channel reached waiting state is compared
915          * to select channel that is waiting for the longest time.
916          */
917         list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
918                 if (p->state == PL08X_CHAN_WAITING &&
919                     p->waiting_at <= waiting_at) {
920                         next = p;
921                         waiting_at = p->waiting_at;
922                 }
923
924         if (!next && pl08x->has_slave) {
925                 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
926                         if (p->state == PL08X_CHAN_WAITING &&
927                             p->waiting_at <= waiting_at) {
928                                 next = p;
929                                 waiting_at = p->waiting_at;
930                         }
931         }
932
933         /* Ensure that the physical channel is stopped */
934         pl08x_terminate_phy_chan(pl08x, plchan->phychan);
935
936         if (next) {
937                 bool success;
938
939                 /*
940                  * Eww.  We know this isn't going to deadlock
941                  * but lockdep probably doesn't.
942                  */
943                 spin_lock(&next->vc.lock);
944                 /* Re-check the state now that we have the lock */
945                 success = next->state == PL08X_CHAN_WAITING;
946                 if (success)
947                         pl08x_phy_reassign_start(plchan->phychan, next);
948                 spin_unlock(&next->vc.lock);
949
950                 /* If the state changed, try to find another channel */
951                 if (!success)
952                         goto retry;
953         } else {
954                 /* No more jobs, so free up the physical channel */
955                 pl08x_put_phy_channel(pl08x, plchan->phychan);
956         }
957
958         plchan->phychan = NULL;
959         plchan->state = PL08X_CHAN_IDLE;
960 }
961
962 /*
963  * LLI handling
964  */
965
966 static inline unsigned int
967 pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x,
968                         u32 cctl,
969                         bool source)
970 {
971         u32 val;
972
973         if (pl08x->vd->ftdmac020) {
974                 if (source)
975                         val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
976                                 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
977                 else
978                         val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
979                                 FTDMAC020_LLI_DST_WIDTH_SHIFT;
980         } else {
981                 if (source)
982                         val = (cctl & PL080_CONTROL_SWIDTH_MASK) >>
983                                 PL080_CONTROL_SWIDTH_SHIFT;
984                 else
985                         val = (cctl & PL080_CONTROL_DWIDTH_MASK) >>
986                                 PL080_CONTROL_DWIDTH_SHIFT;
987         }
988
989         switch (val) {
990         case PL080_WIDTH_8BIT:
991                 return 1;
992         case PL080_WIDTH_16BIT:
993                 return 2;
994         case PL080_WIDTH_32BIT:
995                 return 4;
996         default:
997                 break;
998         }
999         BUG();
1000         return 0;
1001 }
1002
1003 static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x,
1004                                          u32 cctl,
1005                                          u8 srcwidth, u8 dstwidth,
1006                                          size_t tsize)
1007 {
1008         u32 retbits = cctl;
1009
1010         /*
1011          * Remove all src, dst and transfer size bits, then set the
1012          * width and size according to the parameters. The bit offsets
1013          * are different in the FTDMAC020 so we need to accound for this.
1014          */
1015         if (pl08x->vd->ftdmac020) {
1016                 retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK;
1017                 retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK;
1018                 retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1019
1020                 switch (srcwidth) {
1021                 case 1:
1022                         retbits |= PL080_WIDTH_8BIT <<
1023                                 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1024                         break;
1025                 case 2:
1026                         retbits |= PL080_WIDTH_16BIT <<
1027                                 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1028                         break;
1029                 case 4:
1030                         retbits |= PL080_WIDTH_32BIT <<
1031                                 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1032                         break;
1033                 default:
1034                         BUG();
1035                         break;
1036                 }
1037
1038                 switch (dstwidth) {
1039                 case 1:
1040                         retbits |= PL080_WIDTH_8BIT <<
1041                                 FTDMAC020_LLI_DST_WIDTH_SHIFT;
1042                         break;
1043                 case 2:
1044                         retbits |= PL080_WIDTH_16BIT <<
1045                                 FTDMAC020_LLI_DST_WIDTH_SHIFT;
1046                         break;
1047                 case 4:
1048                         retbits |= PL080_WIDTH_32BIT <<
1049                                 FTDMAC020_LLI_DST_WIDTH_SHIFT;
1050                         break;
1051                 default:
1052                         BUG();
1053                         break;
1054                 }
1055
1056                 tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1057                 retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT;
1058         } else {
1059                 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
1060                 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
1061                 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
1062
1063                 switch (srcwidth) {
1064                 case 1:
1065                         retbits |= PL080_WIDTH_8BIT <<
1066                                 PL080_CONTROL_SWIDTH_SHIFT;
1067                         break;
1068                 case 2:
1069                         retbits |= PL080_WIDTH_16BIT <<
1070                                 PL080_CONTROL_SWIDTH_SHIFT;
1071                         break;
1072                 case 4:
1073                         retbits |= PL080_WIDTH_32BIT <<
1074                                 PL080_CONTROL_SWIDTH_SHIFT;
1075                         break;
1076                 default:
1077                         BUG();
1078                         break;
1079                 }
1080
1081                 switch (dstwidth) {
1082                 case 1:
1083                         retbits |= PL080_WIDTH_8BIT <<
1084                                 PL080_CONTROL_DWIDTH_SHIFT;
1085                         break;
1086                 case 2:
1087                         retbits |= PL080_WIDTH_16BIT <<
1088                                 PL080_CONTROL_DWIDTH_SHIFT;
1089                         break;
1090                 case 4:
1091                         retbits |= PL080_WIDTH_32BIT <<
1092                                 PL080_CONTROL_DWIDTH_SHIFT;
1093                         break;
1094                 default:
1095                         BUG();
1096                         break;
1097                 }
1098
1099                 tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
1100                 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
1101         }
1102
1103         return retbits;
1104 }
1105
1106 struct pl08x_lli_build_data {
1107         struct pl08x_txd *txd;
1108         struct pl08x_bus_data srcbus;
1109         struct pl08x_bus_data dstbus;
1110         size_t remainder;
1111         u32 lli_bus;
1112 };
1113
1114 /*
1115  * Autoselect a master bus to use for the transfer. Slave will be the chosen as
1116  * victim in case src & dest are not similarly aligned. i.e. If after aligning
1117  * masters address with width requirements of transfer (by sending few byte by
1118  * byte data), slave is still not aligned, then its width will be reduced to
1119  * BYTE.
1120  * - prefers the destination bus if both available
1121  * - prefers bus with fixed address (i.e. peripheral)
1122  */
1123 static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x,
1124                                     struct pl08x_lli_build_data *bd,
1125                                     struct pl08x_bus_data **mbus,
1126                                     struct pl08x_bus_data **sbus,
1127                                     u32 cctl)
1128 {
1129         bool dst_incr;
1130         bool src_incr;
1131
1132         /*
1133          * The FTDMAC020 only supports memory-to-memory transfer, so
1134          * source and destination always increase.
1135          */
1136         if (pl08x->vd->ftdmac020) {
1137                 dst_incr = true;
1138                 src_incr = true;
1139         } else {
1140                 dst_incr = !!(cctl & PL080_CONTROL_DST_INCR);
1141                 src_incr = !!(cctl & PL080_CONTROL_SRC_INCR);
1142         }
1143
1144         /*
1145          * If either bus is not advancing, i.e. it is a peripheral, that
1146          * one becomes master
1147          */
1148         if (!dst_incr) {
1149                 *mbus = &bd->dstbus;
1150                 *sbus = &bd->srcbus;
1151         } else if (!src_incr) {
1152                 *mbus = &bd->srcbus;
1153                 *sbus = &bd->dstbus;
1154         } else {
1155                 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
1156                         *mbus = &bd->dstbus;
1157                         *sbus = &bd->srcbus;
1158                 } else {
1159                         *mbus = &bd->srcbus;
1160                         *sbus = &bd->dstbus;
1161                 }
1162         }
1163 }
1164
1165 /*
1166  * Fills in one LLI for a certain transfer descriptor and advance the counter
1167  */
1168 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
1169                                     struct pl08x_lli_build_data *bd,
1170                                     int num_llis, int len, u32 cctl, u32 cctl2)
1171 {
1172         u32 offset = num_llis * pl08x->lli_words;
1173         u32 *llis_va = bd->txd->llis_va + offset;
1174         dma_addr_t llis_bus = bd->txd->llis_bus;
1175
1176         BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
1177
1178         /* Advance the offset to next LLI. */
1179         offset += pl08x->lli_words;
1180
1181         llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
1182         llis_va[PL080_LLI_DST] = bd->dstbus.addr;
1183         llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
1184         llis_va[PL080_LLI_LLI] |= bd->lli_bus;
1185         llis_va[PL080_LLI_CCTL] = cctl;
1186         if (pl08x->vd->pl080s)
1187                 llis_va[PL080S_LLI_CCTL2] = cctl2;
1188
1189         if (pl08x->vd->ftdmac020) {
1190                 /* FIXME: only memcpy so far so both increase */
1191                 bd->srcbus.addr += len;
1192                 bd->dstbus.addr += len;
1193         } else {
1194                 if (cctl & PL080_CONTROL_SRC_INCR)
1195                         bd->srcbus.addr += len;
1196                 if (cctl & PL080_CONTROL_DST_INCR)
1197                         bd->dstbus.addr += len;
1198         }
1199
1200         BUG_ON(bd->remainder < len);
1201
1202         bd->remainder -= len;
1203 }
1204
1205 static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
1206                         struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
1207                         int num_llis, size_t *total_bytes)
1208 {
1209         *cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len);
1210         pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
1211         (*total_bytes) += len;
1212 }
1213
1214 #if 1
1215 static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1216                            const u32 *llis_va, int num_llis)
1217 {
1218         int i;
1219
1220         if (pl08x->vd->pl080s) {
1221                 dev_vdbg(&pl08x->adev->dev,
1222                         "%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
1223                         "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
1224                 for (i = 0; i < num_llis; i++) {
1225                         dev_vdbg(&pl08x->adev->dev,
1226                                 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
1227                                 i, llis_va, llis_va[PL080_LLI_SRC],
1228                                 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1229                                 llis_va[PL080_LLI_CCTL],
1230                                 llis_va[PL080S_LLI_CCTL2]);
1231                         llis_va += pl08x->lli_words;
1232                 }
1233         } else {
1234                 dev_vdbg(&pl08x->adev->dev,
1235                         "%-3s %-9s  %-10s %-10s %-10s %s\n",
1236                         "lli", "", "csrc", "cdst", "clli", "cctl");
1237                 for (i = 0; i < num_llis; i++) {
1238                         dev_vdbg(&pl08x->adev->dev,
1239                                 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1240                                 i, llis_va, llis_va[PL080_LLI_SRC],
1241                                 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1242                                 llis_va[PL080_LLI_CCTL]);
1243                         llis_va += pl08x->lli_words;
1244                 }
1245         }
1246 }
1247 #else
1248 static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1249                                   const u32 *llis_va, int num_llis) {}
1250 #endif
1251
1252 /*
1253  * This fills in the table of LLIs for the transfer descriptor
1254  * Note that we assume we never have to change the burst sizes
1255  * Return 0 for error
1256  */
1257 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
1258                               struct pl08x_txd *txd)
1259 {
1260         struct pl08x_bus_data *mbus, *sbus;
1261         struct pl08x_lli_build_data bd;
1262         int num_llis = 0;
1263         u32 cctl, early_bytes = 0;
1264         size_t max_bytes_per_lli, total_bytes;
1265         u32 *llis_va, *last_lli;
1266         struct pl08x_sg *dsg;
1267
1268         txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
1269         if (!txd->llis_va) {
1270                 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
1271                 return 0;
1272         }
1273
1274         bd.txd = txd;
1275         bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
1276         cctl = txd->cctl;
1277
1278         /* Find maximum width of the source bus */
1279         bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true);
1280
1281         /* Find maximum width of the destination bus */
1282         bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false);
1283
1284         list_for_each_entry(dsg, &txd->dsg_list, node) {
1285                 total_bytes = 0;
1286                 cctl = txd->cctl;
1287
1288                 bd.srcbus.addr = dsg->src_addr;
1289                 bd.dstbus.addr = dsg->dst_addr;
1290                 bd.remainder = dsg->len;
1291                 bd.srcbus.buswidth = bd.srcbus.maxwidth;
1292                 bd.dstbus.buswidth = bd.dstbus.maxwidth;
1293
1294                 pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl);
1295
1296                 dev_vdbg(&pl08x->adev->dev,
1297                         "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
1298                         (u64)bd.srcbus.addr,
1299                         cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
1300                         bd.srcbus.buswidth,
1301                         (u64)bd.dstbus.addr,
1302                         cctl & PL080_CONTROL_DST_INCR ? "+" : "",
1303                         bd.dstbus.buswidth,
1304                         bd.remainder);
1305                 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
1306                         mbus == &bd.srcbus ? "src" : "dst",
1307                         sbus == &bd.srcbus ? "src" : "dst");
1308
1309                 /*
1310                  * Zero length is only allowed if all these requirements are
1311                  * met:
1312                  * - flow controller is peripheral.
1313                  * - src.addr is aligned to src.width
1314                  * - dst.addr is aligned to dst.width
1315                  *
1316                  * sg_len == 1 should be true, as there can be two cases here:
1317                  *
1318                  * - Memory addresses are contiguous and are not scattered.
1319                  *   Here, Only one sg will be passed by user driver, with
1320                  *   memory address and zero length. We pass this to controller
1321                  *   and after the transfer it will receive the last burst
1322                  *   request from peripheral and so transfer finishes.
1323                  *
1324                  * - Memory addresses are scattered and are not contiguous.
1325                  *   Here, Obviously as DMA controller doesn't know when a lli's
1326                  *   transfer gets over, it can't load next lli. So in this
1327                  *   case, there has to be an assumption that only one lli is
1328                  *   supported. Thus, we can't have scattered addresses.
1329                  */
1330                 if (!bd.remainder) {
1331                         u32 fc;
1332
1333                         /* FTDMAC020 only does memory-to-memory */
1334                         if (pl08x->vd->ftdmac020)
1335                                 fc = PL080_FLOW_MEM2MEM;
1336                         else
1337                                 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1338                                         PL080_CONFIG_FLOW_CONTROL_SHIFT;
1339                         if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1340                                         (fc <= PL080_FLOW_SRC2DST_SRC))) {
1341                                 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1342                                         __func__);
1343                                 return 0;
1344                         }
1345
1346                         if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1347                                 !IS_BUS_ALIGNED(&bd.dstbus)) {
1348                                 dev_err(&pl08x->adev->dev,
1349                                         "%s src & dst address must be aligned to src"
1350                                         " & dst width if peripheral is flow controller",
1351                                         __func__);
1352                                 return 0;
1353                         }
1354
1355                         cctl = pl08x_lli_control_bits(pl08x, cctl,
1356                                         bd.srcbus.buswidth, bd.dstbus.buswidth,
1357                                         0);
1358                         pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1359                                         0, cctl, 0);
1360                         break;
1361                 }
1362
1363                 /*
1364                  * Send byte by byte for following cases
1365                  * - Less than a bus width available
1366                  * - until master bus is aligned
1367                  */
1368                 if (bd.remainder < mbus->buswidth)
1369                         early_bytes = bd.remainder;
1370                 else if (!IS_BUS_ALIGNED(mbus)) {
1371                         early_bytes = mbus->buswidth -
1372                                 (mbus->addr & (mbus->buswidth - 1));
1373                         if ((bd.remainder - early_bytes) < mbus->buswidth)
1374                                 early_bytes = bd.remainder;
1375                 }
1376
1377                 if (early_bytes) {
1378                         dev_vdbg(&pl08x->adev->dev,
1379                                 "%s byte width LLIs (remain 0x%08zx)\n",
1380                                 __func__, bd.remainder);
1381                         prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1382                                 num_llis++, &total_bytes);
1383                 }
1384
1385                 if (bd.remainder) {
1386                         /*
1387                          * Master now aligned
1388                          * - if slave is not then we must set its width down
1389                          */
1390                         if (!IS_BUS_ALIGNED(sbus)) {
1391                                 dev_dbg(&pl08x->adev->dev,
1392                                         "%s set down bus width to one byte\n",
1393                                         __func__);
1394
1395                                 sbus->buswidth = 1;
1396                         }
1397
1398                         /*
1399                          * Bytes transferred = tsize * src width, not
1400                          * MIN(buswidths)
1401                          */
1402                         max_bytes_per_lli = bd.srcbus.buswidth *
1403                                                 pl08x->vd->max_transfer_size;
1404                         dev_vdbg(&pl08x->adev->dev,
1405                                 "%s max bytes per lli = %zu\n",
1406                                 __func__, max_bytes_per_lli);
1407
1408                         /*
1409                          * Make largest possible LLIs until less than one bus
1410                          * width left
1411                          */
1412                         while (bd.remainder > (mbus->buswidth - 1)) {
1413                                 size_t lli_len, tsize, width;
1414
1415                                 /*
1416                                  * If enough left try to send max possible,
1417                                  * otherwise try to send the remainder
1418                                  */
1419                                 lli_len = min(bd.remainder, max_bytes_per_lli);
1420
1421                                 /*
1422                                  * Check against maximum bus alignment:
1423                                  * Calculate actual transfer size in relation to
1424                                  * bus width an get a maximum remainder of the
1425                                  * highest bus width - 1
1426                                  */
1427                                 width = max(mbus->buswidth, sbus->buswidth);
1428                                 lli_len = (lli_len / width) * width;
1429                                 tsize = lli_len / bd.srcbus.buswidth;
1430
1431                                 dev_vdbg(&pl08x->adev->dev,
1432                                         "%s fill lli with single lli chunk of "
1433                                         "size 0x%08zx (remainder 0x%08zx)\n",
1434                                         __func__, lli_len, bd.remainder);
1435
1436                                 cctl = pl08x_lli_control_bits(pl08x, cctl,
1437                                         bd.srcbus.buswidth, bd.dstbus.buswidth,
1438                                         tsize);
1439                                 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1440                                                 lli_len, cctl, tsize);
1441                                 total_bytes += lli_len;
1442                         }
1443
1444                         /*
1445                          * Send any odd bytes
1446                          */
1447                         if (bd.remainder) {
1448                                 dev_vdbg(&pl08x->adev->dev,
1449                                         "%s align with boundary, send odd bytes (remain %zu)\n",
1450                                         __func__, bd.remainder);
1451                                 prep_byte_width_lli(pl08x, &bd, &cctl,
1452                                         bd.remainder, num_llis++, &total_bytes);
1453                         }
1454                 }
1455
1456                 if (total_bytes != dsg->len) {
1457                         dev_err(&pl08x->adev->dev,
1458                                 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1459                                 __func__, total_bytes, dsg->len);
1460                         return 0;
1461                 }
1462
1463                 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1464                         dev_err(&pl08x->adev->dev,
1465                                 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1466                                 __func__, MAX_NUM_TSFR_LLIS);
1467                         return 0;
1468                 }
1469         }
1470
1471         llis_va = txd->llis_va;
1472         last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1473
1474         if (txd->cyclic) {
1475                 /* Link back to the first LLI. */
1476                 last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1477         } else {
1478                 /* The final LLI terminates the LLI. */
1479                 last_lli[PL080_LLI_LLI] = 0;
1480                 /* The final LLI element shall also fire an interrupt. */
1481                 if (pl08x->vd->ftdmac020)
1482                         last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK;
1483                 else
1484                         last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1485         }
1486
1487         pl08x_dump_lli(pl08x, llis_va, num_llis);
1488
1489         return num_llis;
1490 }
1491
1492 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1493                            struct pl08x_txd *txd)
1494 {
1495         struct pl08x_sg *dsg, *_dsg;
1496
1497         if (txd->llis_va)
1498                 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1499
1500         list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1501                 list_del(&dsg->node);
1502                 kfree(dsg);
1503         }
1504
1505         kfree(txd);
1506 }
1507
1508 static void pl08x_desc_free(struct virt_dma_desc *vd)
1509 {
1510         struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1511         struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1512
1513         dma_descriptor_unmap(&vd->tx);
1514         if (!txd->done)
1515                 pl08x_release_mux(plchan);
1516
1517         pl08x_free_txd(plchan->host, txd);
1518 }
1519
1520 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1521                                 struct pl08x_dma_chan *plchan)
1522 {
1523         LIST_HEAD(head);
1524
1525         vchan_get_all_descriptors(&plchan->vc, &head);
1526         vchan_dma_desc_free_list(&plchan->vc, &head);
1527 }
1528
1529 /*
1530  * The DMA ENGINE API
1531  */
1532 static void pl08x_free_chan_resources(struct dma_chan *chan)
1533 {
1534         /* Ensure all queued descriptors are freed */
1535         vchan_free_chan_resources(to_virt_chan(chan));
1536 }
1537
1538 /*
1539  * Code accessing dma_async_is_complete() in a tight loop may give problems.
1540  * If slaves are relying on interrupts to signal completion this function
1541  * must not be called with interrupts disabled.
1542  */
1543 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1544                 dma_cookie_t cookie, struct dma_tx_state *txstate)
1545 {
1546         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1547         struct virt_dma_desc *vd;
1548         unsigned long flags;
1549         enum dma_status ret;
1550         size_t bytes = 0;
1551
1552         ret = dma_cookie_status(chan, cookie, txstate);
1553         if (ret == DMA_COMPLETE)
1554                 return ret;
1555
1556         /*
1557          * There's no point calculating the residue if there's
1558          * no txstate to store the value.
1559          */
1560         if (!txstate) {
1561                 if (plchan->state == PL08X_CHAN_PAUSED)
1562                         ret = DMA_PAUSED;
1563                 return ret;
1564         }
1565
1566         spin_lock_irqsave(&plchan->vc.lock, flags);
1567         ret = dma_cookie_status(chan, cookie, txstate);
1568         if (ret != DMA_COMPLETE) {
1569                 vd = vchan_find_desc(&plchan->vc, cookie);
1570                 if (vd) {
1571                         /* On the issued list, so hasn't been processed yet */
1572                         struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1573                         struct pl08x_sg *dsg;
1574
1575                         list_for_each_entry(dsg, &txd->dsg_list, node)
1576                                 bytes += dsg->len;
1577                 } else {
1578                         bytes = pl08x_getbytes_chan(plchan);
1579                 }
1580         }
1581         spin_unlock_irqrestore(&plchan->vc.lock, flags);
1582
1583         /*
1584          * This cookie not complete yet
1585          * Get number of bytes left in the active transactions and queue
1586          */
1587         dma_set_residue(txstate, bytes);
1588
1589         if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1590                 ret = DMA_PAUSED;
1591
1592         /* Whether waiting or running, we're in progress */
1593         return ret;
1594 }
1595
1596 /* PrimeCell DMA extension */
1597 struct burst_table {
1598         u32 burstwords;
1599         u32 reg;
1600 };
1601
1602 static const struct burst_table burst_sizes[] = {
1603         {
1604                 .burstwords = 256,
1605                 .reg = PL080_BSIZE_256,
1606         },
1607         {
1608                 .burstwords = 128,
1609                 .reg = PL080_BSIZE_128,
1610         },
1611         {
1612                 .burstwords = 64,
1613                 .reg = PL080_BSIZE_64,
1614         },
1615         {
1616                 .burstwords = 32,
1617                 .reg = PL080_BSIZE_32,
1618         },
1619         {
1620                 .burstwords = 16,
1621                 .reg = PL080_BSIZE_16,
1622         },
1623         {
1624                 .burstwords = 8,
1625                 .reg = PL080_BSIZE_8,
1626         },
1627         {
1628                 .burstwords = 4,
1629                 .reg = PL080_BSIZE_4,
1630         },
1631         {
1632                 .burstwords = 0,
1633                 .reg = PL080_BSIZE_1,
1634         },
1635 };
1636
1637 /*
1638  * Given the source and destination available bus masks, select which
1639  * will be routed to each port.  We try to have source and destination
1640  * on separate ports, but always respect the allowable settings.
1641  */
1642 static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst)
1643 {
1644         u32 cctl = 0;
1645         u32 dst_ahb2;
1646         u32 src_ahb2;
1647
1648         /* The FTDMAC020 use different bits to indicate src/dst bus */
1649         if (ftdmac020) {
1650                 dst_ahb2 = FTDMAC020_LLI_DST_SEL;
1651                 src_ahb2 = FTDMAC020_LLI_SRC_SEL;
1652         } else {
1653                 dst_ahb2 = PL080_CONTROL_DST_AHB2;
1654                 src_ahb2 = PL080_CONTROL_SRC_AHB2;
1655         }
1656
1657         if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1658                 cctl |= dst_ahb2;
1659         if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1660                 cctl |= src_ahb2;
1661
1662         return cctl;
1663 }
1664
1665 static u32 pl08x_cctl(u32 cctl)
1666 {
1667         cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1668                   PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1669                   PL080_CONTROL_PROT_MASK);
1670
1671         /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1672         return cctl | PL080_CONTROL_PROT_SYS;
1673 }
1674
1675 static u32 pl08x_width(enum dma_slave_buswidth width)
1676 {
1677         switch (width) {
1678         case DMA_SLAVE_BUSWIDTH_1_BYTE:
1679                 return PL080_WIDTH_8BIT;
1680         case DMA_SLAVE_BUSWIDTH_2_BYTES:
1681                 return PL080_WIDTH_16BIT;
1682         case DMA_SLAVE_BUSWIDTH_4_BYTES:
1683                 return PL080_WIDTH_32BIT;
1684         default:
1685                 return ~0;
1686         }
1687 }
1688
1689 static u32 pl08x_burst(u32 maxburst)
1690 {
1691         int i;
1692
1693         for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1694                 if (burst_sizes[i].burstwords <= maxburst)
1695                         break;
1696
1697         return burst_sizes[i].reg;
1698 }
1699
1700 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1701         enum dma_slave_buswidth addr_width, u32 maxburst)
1702 {
1703         u32 width, burst, cctl = 0;
1704
1705         width = pl08x_width(addr_width);
1706         if (width == ~0)
1707                 return ~0;
1708
1709         cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1710         cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1711
1712         /*
1713          * If this channel will only request single transfers, set this
1714          * down to ONE element.  Also select one element if no maxburst
1715          * is specified.
1716          */
1717         if (plchan->cd->single)
1718                 maxburst = 1;
1719
1720         burst = pl08x_burst(maxburst);
1721         cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1722         cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1723
1724         return pl08x_cctl(cctl);
1725 }
1726
1727 /*
1728  * Slave transactions callback to the slave device to allow
1729  * synchronization of slave DMA signals with the DMAC enable
1730  */
1731 static void pl08x_issue_pending(struct dma_chan *chan)
1732 {
1733         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1734         unsigned long flags;
1735
1736         spin_lock_irqsave(&plchan->vc.lock, flags);
1737         if (vchan_issue_pending(&plchan->vc)) {
1738                 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1739                         pl08x_phy_alloc_and_start(plchan);
1740         }
1741         spin_unlock_irqrestore(&plchan->vc.lock, flags);
1742 }
1743
1744 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1745 {
1746         struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1747
1748         if (txd)
1749                 INIT_LIST_HEAD(&txd->dsg_list);
1750         return txd;
1751 }
1752
1753 static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x)
1754 {
1755         u32 cctl = 0;
1756
1757         /* Conjure cctl */
1758         switch (pl08x->pd->memcpy_burst_size) {
1759         default:
1760                 dev_err(&pl08x->adev->dev,
1761                         "illegal burst size for memcpy, set to 1\n");
1762                 fallthrough;
1763         case PL08X_BURST_SZ_1:
1764                 cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
1765                         PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
1766                 break;
1767         case PL08X_BURST_SZ_4:
1768                 cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
1769                         PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
1770                 break;
1771         case PL08X_BURST_SZ_8:
1772                 cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
1773                         PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
1774                 break;
1775         case PL08X_BURST_SZ_16:
1776                 cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
1777                         PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
1778                 break;
1779         case PL08X_BURST_SZ_32:
1780                 cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
1781                         PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
1782                 break;
1783         case PL08X_BURST_SZ_64:
1784                 cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
1785                         PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
1786                 break;
1787         case PL08X_BURST_SZ_128:
1788                 cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
1789                         PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
1790                 break;
1791         case PL08X_BURST_SZ_256:
1792                 cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
1793                         PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
1794                 break;
1795         }
1796
1797         switch (pl08x->pd->memcpy_bus_width) {
1798         default:
1799                 dev_err(&pl08x->adev->dev,
1800                         "illegal bus width for memcpy, set to 8 bits\n");
1801                 fallthrough;
1802         case PL08X_BUS_WIDTH_8_BITS:
1803                 cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
1804                         PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
1805                 break;
1806         case PL08X_BUS_WIDTH_16_BITS:
1807                 cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
1808                         PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
1809                 break;
1810         case PL08X_BUS_WIDTH_32_BITS:
1811                 cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
1812                         PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
1813                 break;
1814         }
1815
1816         /* Protection flags */
1817         if (pl08x->pd->memcpy_prot_buff)
1818                 cctl |= PL080_CONTROL_PROT_BUFF;
1819         if (pl08x->pd->memcpy_prot_cache)
1820                 cctl |= PL080_CONTROL_PROT_CACHE;
1821
1822         /* We are the kernel, so we are in privileged mode */
1823         cctl |= PL080_CONTROL_PROT_SYS;
1824
1825         /* Both to be incremented or the code will break */
1826         cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1827
1828         if (pl08x->vd->dualmaster)
1829                 cctl |= pl08x_select_bus(false,
1830                                          pl08x->mem_buses,
1831                                          pl08x->mem_buses);
1832
1833         return cctl;
1834 }
1835
1836 static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x)
1837 {
1838         u32 cctl = 0;
1839
1840         /* Conjure cctl */
1841         switch (pl08x->pd->memcpy_bus_width) {
1842         default:
1843                 dev_err(&pl08x->adev->dev,
1844                         "illegal bus width for memcpy, set to 8 bits\n");
1845                 fallthrough;
1846         case PL08X_BUS_WIDTH_8_BITS:
1847                 cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1848                         PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1849                 break;
1850         case PL08X_BUS_WIDTH_16_BITS:
1851                 cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1852                         PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1853                 break;
1854         case PL08X_BUS_WIDTH_32_BITS:
1855                 cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1856                         PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1857                 break;
1858         }
1859
1860         /*
1861          * By default mask the TC IRQ on all LLIs, it will be unmasked on
1862          * the last LLI item by other code.
1863          */
1864         cctl |= FTDMAC020_LLI_TC_MSK;
1865
1866         /*
1867          * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL
1868          * and FTDMAC020_LLI_DSTAD_CTL as zero
1869          */
1870         if (pl08x->vd->dualmaster)
1871                 cctl |= pl08x_select_bus(true,
1872                                          pl08x->mem_buses,
1873                                          pl08x->mem_buses);
1874
1875         return cctl;
1876 }
1877
1878 /*
1879  * Initialize a descriptor to be used by memcpy submit
1880  */
1881 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1882                 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1883                 size_t len, unsigned long flags)
1884 {
1885         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1886         struct pl08x_driver_data *pl08x = plchan->host;
1887         struct pl08x_txd *txd;
1888         struct pl08x_sg *dsg;
1889         int ret;
1890
1891         txd = pl08x_get_txd(plchan);
1892         if (!txd) {
1893                 dev_err(&pl08x->adev->dev,
1894                         "%s no memory for descriptor\n", __func__);
1895                 return NULL;
1896         }
1897
1898         dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1899         if (!dsg) {
1900                 pl08x_free_txd(pl08x, txd);
1901                 return NULL;
1902         }
1903         list_add_tail(&dsg->node, &txd->dsg_list);
1904
1905         dsg->src_addr = src;
1906         dsg->dst_addr = dest;
1907         dsg->len = len;
1908         if (pl08x->vd->ftdmac020) {
1909                 /* Writing CCFG zero ENABLES all interrupts */
1910                 txd->ccfg = 0;
1911                 txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x);
1912         } else {
1913                 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1914                         PL080_CONFIG_TC_IRQ_MASK |
1915                         PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1916                 txd->cctl = pl08x_memcpy_cctl(pl08x);
1917         }
1918
1919         ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1920         if (!ret) {
1921                 pl08x_free_txd(pl08x, txd);
1922                 return NULL;
1923         }
1924
1925         return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1926 }
1927
1928 static struct pl08x_txd *pl08x_init_txd(
1929                 struct dma_chan *chan,
1930                 enum dma_transfer_direction direction,
1931                 dma_addr_t *slave_addr)
1932 {
1933         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1934         struct pl08x_driver_data *pl08x = plchan->host;
1935         struct pl08x_txd *txd;
1936         enum dma_slave_buswidth addr_width;
1937         int ret, tmp;
1938         u8 src_buses, dst_buses;
1939         u32 maxburst, cctl;
1940
1941         txd = pl08x_get_txd(plchan);
1942         if (!txd) {
1943                 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1944                 return NULL;
1945         }
1946
1947         /*
1948          * Set up addresses, the PrimeCell configured address
1949          * will take precedence since this may configure the
1950          * channel target address dynamically at runtime.
1951          */
1952         if (direction == DMA_MEM_TO_DEV) {
1953                 cctl = PL080_CONTROL_SRC_INCR;
1954                 *slave_addr = plchan->cfg.dst_addr;
1955                 addr_width = plchan->cfg.dst_addr_width;
1956                 maxburst = plchan->cfg.dst_maxburst;
1957                 src_buses = pl08x->mem_buses;
1958                 dst_buses = plchan->cd->periph_buses;
1959         } else if (direction == DMA_DEV_TO_MEM) {
1960                 cctl = PL080_CONTROL_DST_INCR;
1961                 *slave_addr = plchan->cfg.src_addr;
1962                 addr_width = plchan->cfg.src_addr_width;
1963                 maxburst = plchan->cfg.src_maxburst;
1964                 src_buses = plchan->cd->periph_buses;
1965                 dst_buses = pl08x->mem_buses;
1966         } else {
1967                 pl08x_free_txd(pl08x, txd);
1968                 dev_err(&pl08x->adev->dev,
1969                         "%s direction unsupported\n", __func__);
1970                 return NULL;
1971         }
1972
1973         cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1974         if (cctl == ~0) {
1975                 pl08x_free_txd(pl08x, txd);
1976                 dev_err(&pl08x->adev->dev,
1977                         "DMA slave configuration botched?\n");
1978                 return NULL;
1979         }
1980
1981         txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses);
1982
1983         if (plchan->cfg.device_fc)
1984                 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1985                         PL080_FLOW_PER2MEM_PER;
1986         else
1987                 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1988                         PL080_FLOW_PER2MEM;
1989
1990         txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1991                 PL080_CONFIG_TC_IRQ_MASK |
1992                 tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1993
1994         ret = pl08x_request_mux(plchan);
1995         if (ret < 0) {
1996                 pl08x_free_txd(pl08x, txd);
1997                 dev_dbg(&pl08x->adev->dev,
1998                         "unable to mux for transfer on %s due to platform restrictions\n",
1999                         plchan->name);
2000                 return NULL;
2001         }
2002
2003         dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
2004                  plchan->signal, plchan->name);
2005
2006         /* Assign the flow control signal to this channel */
2007         if (direction == DMA_MEM_TO_DEV)
2008                 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
2009         else
2010                 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
2011
2012         return txd;
2013 }
2014
2015 static int pl08x_tx_add_sg(struct pl08x_txd *txd,
2016                            enum dma_transfer_direction direction,
2017                            dma_addr_t slave_addr,
2018                            dma_addr_t buf_addr,
2019                            unsigned int len)
2020 {
2021         struct pl08x_sg *dsg;
2022
2023         dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
2024         if (!dsg)
2025                 return -ENOMEM;
2026
2027         list_add_tail(&dsg->node, &txd->dsg_list);
2028
2029         dsg->len = len;
2030         if (direction == DMA_MEM_TO_DEV) {
2031                 dsg->src_addr = buf_addr;
2032                 dsg->dst_addr = slave_addr;
2033         } else {
2034                 dsg->src_addr = slave_addr;
2035                 dsg->dst_addr = buf_addr;
2036         }
2037
2038         return 0;
2039 }
2040
2041 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
2042                 struct dma_chan *chan, struct scatterlist *sgl,
2043                 unsigned int sg_len, enum dma_transfer_direction direction,
2044                 unsigned long flags, void *context)
2045 {
2046         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2047         struct pl08x_driver_data *pl08x = plchan->host;
2048         struct pl08x_txd *txd;
2049         struct scatterlist *sg;
2050         int ret, tmp;
2051         dma_addr_t slave_addr;
2052
2053         dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
2054                         __func__, sg_dma_len(sgl), plchan->name);
2055
2056         txd = pl08x_init_txd(chan, direction, &slave_addr);
2057         if (!txd)
2058                 return NULL;
2059
2060         for_each_sg(sgl, sg, sg_len, tmp) {
2061                 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2062                                       sg_dma_address(sg),
2063                                       sg_dma_len(sg));
2064                 if (ret) {
2065                         pl08x_release_mux(plchan);
2066                         pl08x_free_txd(pl08x, txd);
2067                         dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
2068                                         __func__);
2069                         return NULL;
2070                 }
2071         }
2072
2073         ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2074         if (!ret) {
2075                 pl08x_release_mux(plchan);
2076                 pl08x_free_txd(pl08x, txd);
2077                 return NULL;
2078         }
2079
2080         return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2081 }
2082
2083 static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
2084                 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
2085                 size_t period_len, enum dma_transfer_direction direction,
2086                 unsigned long flags)
2087 {
2088         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2089         struct pl08x_driver_data *pl08x = plchan->host;
2090         struct pl08x_txd *txd;
2091         int ret, tmp;
2092         dma_addr_t slave_addr;
2093
2094         dev_dbg(&pl08x->adev->dev,
2095                 "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
2096                 __func__, period_len, buf_len,
2097                 direction == DMA_MEM_TO_DEV ? "to" : "from",
2098                 plchan->name);
2099
2100         txd = pl08x_init_txd(chan, direction, &slave_addr);
2101         if (!txd)
2102                 return NULL;
2103
2104         txd->cyclic = true;
2105         txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
2106         for (tmp = 0; tmp < buf_len; tmp += period_len) {
2107                 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2108                                       buf_addr + tmp, period_len);
2109                 if (ret) {
2110                         pl08x_release_mux(plchan);
2111                         pl08x_free_txd(pl08x, txd);
2112                         return NULL;
2113                 }
2114         }
2115
2116         ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2117         if (!ret) {
2118                 pl08x_release_mux(plchan);
2119                 pl08x_free_txd(pl08x, txd);
2120                 return NULL;
2121         }
2122
2123         return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2124 }
2125
2126 static int pl08x_config(struct dma_chan *chan,
2127                         struct dma_slave_config *config)
2128 {
2129         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2130         struct pl08x_driver_data *pl08x = plchan->host;
2131
2132         if (!plchan->slave)
2133                 return -EINVAL;
2134
2135         /* Reject definitely invalid configurations */
2136         if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
2137             config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
2138                 return -EINVAL;
2139
2140         if (config->device_fc && pl08x->vd->pl080s) {
2141                 dev_err(&pl08x->adev->dev,
2142                         "%s: PL080S does not support peripheral flow control\n",
2143                         __func__);
2144                 return -EINVAL;
2145         }
2146
2147         plchan->cfg = *config;
2148
2149         return 0;
2150 }
2151
2152 static int pl08x_terminate_all(struct dma_chan *chan)
2153 {
2154         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2155         struct pl08x_driver_data *pl08x = plchan->host;
2156         unsigned long flags;
2157
2158         spin_lock_irqsave(&plchan->vc.lock, flags);
2159         if (!plchan->phychan && !plchan->at) {
2160                 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2161                 return 0;
2162         }
2163
2164         plchan->state = PL08X_CHAN_IDLE;
2165
2166         if (plchan->phychan) {
2167                 /*
2168                  * Mark physical channel as free and free any slave
2169                  * signal
2170                  */
2171                 pl08x_phy_free(plchan);
2172         }
2173         /* Dequeue jobs and free LLIs */
2174         if (plchan->at) {
2175                 vchan_terminate_vdesc(&plchan->at->vd);
2176                 plchan->at = NULL;
2177         }
2178         /* Dequeue jobs not yet fired as well */
2179         pl08x_free_txd_list(pl08x, plchan);
2180
2181         spin_unlock_irqrestore(&plchan->vc.lock, flags);
2182
2183         return 0;
2184 }
2185
2186 static void pl08x_synchronize(struct dma_chan *chan)
2187 {
2188         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2189
2190         vchan_synchronize(&plchan->vc);
2191 }
2192
2193 static int pl08x_pause(struct dma_chan *chan)
2194 {
2195         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2196         unsigned long flags;
2197
2198         /*
2199          * Anything succeeds on channels with no physical allocation and
2200          * no queued transfers.
2201          */
2202         spin_lock_irqsave(&plchan->vc.lock, flags);
2203         if (!plchan->phychan && !plchan->at) {
2204                 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2205                 return 0;
2206         }
2207
2208         pl08x_pause_phy_chan(plchan->phychan);
2209         plchan->state = PL08X_CHAN_PAUSED;
2210
2211         spin_unlock_irqrestore(&plchan->vc.lock, flags);
2212
2213         return 0;
2214 }
2215
2216 static int pl08x_resume(struct dma_chan *chan)
2217 {
2218         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2219         unsigned long flags;
2220
2221         /*
2222          * Anything succeeds on channels with no physical allocation and
2223          * no queued transfers.
2224          */
2225         spin_lock_irqsave(&plchan->vc.lock, flags);
2226         if (!plchan->phychan && !plchan->at) {
2227                 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2228                 return 0;
2229         }
2230
2231         pl08x_resume_phy_chan(plchan->phychan);
2232         plchan->state = PL08X_CHAN_RUNNING;
2233
2234         spin_unlock_irqrestore(&plchan->vc.lock, flags);
2235
2236         return 0;
2237 }
2238
2239 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
2240 {
2241         struct pl08x_dma_chan *plchan;
2242         const char *name = chan_id;
2243
2244         /* Reject channels for devices not bound to this driver */
2245         if (chan->device->dev->driver != &pl08x_amba_driver.drv)
2246                 return false;
2247
2248         plchan = to_pl08x_chan(chan);
2249
2250         /* Check that the channel is not taken! */
2251         if (!strcmp(plchan->name, name))
2252                 return true;
2253
2254         return false;
2255 }
2256 EXPORT_SYMBOL_GPL(pl08x_filter_id);
2257
2258 static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id)
2259 {
2260         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2261
2262         return plchan->cd == chan_id;
2263 }
2264
2265 /*
2266  * Just check that the device is there and active
2267  * TODO: turn this bit on/off depending on the number of physical channels
2268  * actually used, if it is zero... well shut it off. That will save some
2269  * power. Cut the clock at the same time.
2270  */
2271 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
2272 {
2273         /* The Nomadik variant does not have the config register */
2274         if (pl08x->vd->nomadik)
2275                 return;
2276         /* The FTDMAC020 variant does this in another register */
2277         if (pl08x->vd->ftdmac020) {
2278                 writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR);
2279                 return;
2280         }
2281         writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
2282 }
2283
2284 static irqreturn_t pl08x_irq(int irq, void *dev)
2285 {
2286         struct pl08x_driver_data *pl08x = dev;
2287         u32 mask = 0, err, tc, i;
2288
2289         /* check & clear - ERR & TC interrupts */
2290         err = readl(pl08x->base + PL080_ERR_STATUS);
2291         if (err) {
2292                 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
2293                         __func__, err);
2294                 writel(err, pl08x->base + PL080_ERR_CLEAR);
2295         }
2296         tc = readl(pl08x->base + PL080_TC_STATUS);
2297         if (tc)
2298                 writel(tc, pl08x->base + PL080_TC_CLEAR);
2299
2300         if (!err && !tc)
2301                 return IRQ_NONE;
2302
2303         for (i = 0; i < pl08x->vd->channels; i++) {
2304                 if ((BIT(i) & err) || (BIT(i) & tc)) {
2305                         /* Locate physical channel */
2306                         struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
2307                         struct pl08x_dma_chan *plchan = phychan->serving;
2308                         struct pl08x_txd *tx;
2309
2310                         if (!plchan) {
2311                                 dev_err(&pl08x->adev->dev,
2312                                         "%s Error TC interrupt on unused channel: 0x%08x\n",
2313                                         __func__, i);
2314                                 continue;
2315                         }
2316
2317                         spin_lock(&plchan->vc.lock);
2318                         tx = plchan->at;
2319                         if (tx && tx->cyclic) {
2320                                 vchan_cyclic_callback(&tx->vd);
2321                         } else if (tx) {
2322                                 plchan->at = NULL;
2323                                 /*
2324                                  * This descriptor is done, release its mux
2325                                  * reservation.
2326                                  */
2327                                 pl08x_release_mux(plchan);
2328                                 tx->done = true;
2329                                 vchan_cookie_complete(&tx->vd);
2330
2331                                 /*
2332                                  * And start the next descriptor (if any),
2333                                  * otherwise free this channel.
2334                                  */
2335                                 if (vchan_next_desc(&plchan->vc))
2336                                         pl08x_start_next_txd(plchan);
2337                                 else
2338                                         pl08x_phy_free(plchan);
2339                         }
2340                         spin_unlock(&plchan->vc.lock);
2341
2342                         mask |= BIT(i);
2343                 }
2344         }
2345
2346         return mask ? IRQ_HANDLED : IRQ_NONE;
2347 }
2348
2349 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
2350 {
2351         chan->slave = true;
2352         chan->name = chan->cd->bus_id;
2353         chan->cfg.src_addr = chan->cd->addr;
2354         chan->cfg.dst_addr = chan->cd->addr;
2355 }
2356
2357 /*
2358  * Initialise the DMAC memcpy/slave channels.
2359  * Make a local wrapper to hold required data
2360  */
2361 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
2362                 struct dma_device *dmadev, unsigned int channels, bool slave)
2363 {
2364         struct pl08x_dma_chan *chan;
2365         int i;
2366
2367         INIT_LIST_HEAD(&dmadev->channels);
2368
2369         /*
2370          * Register as many memcpy as we have physical channels,
2371          * we won't always be able to use all but the code will have
2372          * to cope with that situation.
2373          */
2374         for (i = 0; i < channels; i++) {
2375                 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
2376                 if (!chan)
2377                         return -ENOMEM;
2378
2379                 chan->host = pl08x;
2380                 chan->state = PL08X_CHAN_IDLE;
2381                 chan->signal = -1;
2382
2383                 if (slave) {
2384                         chan->cd = &pl08x->pd->slave_channels[i];
2385                         /*
2386                          * Some implementations have muxed signals, whereas some
2387                          * use a mux in front of the signals and need dynamic
2388                          * assignment of signals.
2389                          */
2390                         chan->signal = i;
2391                         pl08x_dma_slave_init(chan);
2392                 } else {
2393                         chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL);
2394                         if (!chan->cd) {
2395                                 kfree(chan);
2396                                 return -ENOMEM;
2397                         }
2398                         chan->cd->bus_id = "memcpy";
2399                         chan->cd->periph_buses = pl08x->pd->mem_buses;
2400                         chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
2401                         if (!chan->name) {
2402                                 kfree(chan->cd);
2403                                 kfree(chan);
2404                                 return -ENOMEM;
2405                         }
2406                 }
2407                 dev_dbg(&pl08x->adev->dev,
2408                          "initialize virtual channel \"%s\"\n",
2409                          chan->name);
2410
2411                 chan->vc.desc_free = pl08x_desc_free;
2412                 vchan_init(&chan->vc, dmadev);
2413         }
2414         dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
2415                  i, slave ? "slave" : "memcpy");
2416         return i;
2417 }
2418
2419 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
2420 {
2421         struct pl08x_dma_chan *chan = NULL;
2422         struct pl08x_dma_chan *next;
2423
2424         list_for_each_entry_safe(chan,
2425                                  next, &dmadev->channels, vc.chan.device_node) {
2426                 list_del(&chan->vc.chan.device_node);
2427                 kfree(chan);
2428         }
2429 }
2430
2431 #ifdef CONFIG_DEBUG_FS
2432 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
2433 {
2434         switch (state) {
2435         case PL08X_CHAN_IDLE:
2436                 return "idle";
2437         case PL08X_CHAN_RUNNING:
2438                 return "running";
2439         case PL08X_CHAN_PAUSED:
2440                 return "paused";
2441         case PL08X_CHAN_WAITING:
2442                 return "waiting";
2443         default:
2444                 break;
2445         }
2446         return "UNKNOWN STATE";
2447 }
2448
2449 static int pl08x_debugfs_show(struct seq_file *s, void *data)
2450 {
2451         struct pl08x_driver_data *pl08x = s->private;
2452         struct pl08x_dma_chan *chan;
2453         struct pl08x_phy_chan *ch;
2454         unsigned long flags;
2455         int i;
2456
2457         seq_printf(s, "PL08x physical channels:\n");
2458         seq_printf(s, "CHANNEL:\tUSER:\n");
2459         seq_printf(s, "--------\t-----\n");
2460         for (i = 0; i < pl08x->vd->channels; i++) {
2461                 struct pl08x_dma_chan *virt_chan;
2462
2463                 ch = &pl08x->phy_chans[i];
2464
2465                 spin_lock_irqsave(&ch->lock, flags);
2466                 virt_chan = ch->serving;
2467
2468                 seq_printf(s, "%d\t\t%s%s\n",
2469                            ch->id,
2470                            virt_chan ? virt_chan->name : "(none)",
2471                            ch->locked ? " LOCKED" : "");
2472
2473                 spin_unlock_irqrestore(&ch->lock, flags);
2474         }
2475
2476         seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2477         seq_printf(s, "CHANNEL:\tSTATE:\n");
2478         seq_printf(s, "--------\t------\n");
2479         list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2480                 seq_printf(s, "%s\t\t%s\n", chan->name,
2481                            pl08x_state_str(chan->state));
2482         }
2483
2484         if (pl08x->has_slave) {
2485                 seq_printf(s, "\nPL08x virtual slave channels:\n");
2486                 seq_printf(s, "CHANNEL:\tSTATE:\n");
2487                 seq_printf(s, "--------\t------\n");
2488                 list_for_each_entry(chan, &pl08x->slave.channels,
2489                                     vc.chan.device_node) {
2490                         seq_printf(s, "%s\t\t%s\n", chan->name,
2491                                    pl08x_state_str(chan->state));
2492                 }
2493         }
2494
2495         return 0;
2496 }
2497
2498 DEFINE_SHOW_ATTRIBUTE(pl08x_debugfs);
2499
2500 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2501 {
2502         /* Expose a simple debugfs interface to view all clocks */
2503         debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
2504                             NULL, pl08x, &pl08x_debugfs_fops);
2505 }
2506
2507 #else
2508 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2509 {
2510 }
2511 #endif
2512
2513 #ifdef CONFIG_OF
2514 static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2515                                          u32 id)
2516 {
2517         struct pl08x_dma_chan *chan;
2518
2519         /* Trying to get a slave channel from something with no slave support */
2520         if (!pl08x->has_slave)
2521                 return NULL;
2522
2523         list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2524                 if (chan->signal == id)
2525                         return &chan->vc.chan;
2526         }
2527
2528         return NULL;
2529 }
2530
2531 static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2532                                        struct of_dma *ofdma)
2533 {
2534         struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2535         struct dma_chan *dma_chan;
2536         struct pl08x_dma_chan *plchan;
2537
2538         if (!pl08x)
2539                 return NULL;
2540
2541         if (dma_spec->args_count != 2) {
2542                 dev_err(&pl08x->adev->dev,
2543                         "DMA channel translation requires two cells\n");
2544                 return NULL;
2545         }
2546
2547         dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2548         if (!dma_chan) {
2549                 dev_err(&pl08x->adev->dev,
2550                         "DMA slave channel not found\n");
2551                 return NULL;
2552         }
2553
2554         plchan = to_pl08x_chan(dma_chan);
2555         dev_dbg(&pl08x->adev->dev,
2556                 "translated channel for signal %d\n",
2557                 dma_spec->args[0]);
2558
2559         /* Augment channel data for applicable AHB buses */
2560         plchan->cd->periph_buses = dma_spec->args[1];
2561         return dma_get_slave_channel(dma_chan);
2562 }
2563
2564 static int pl08x_of_probe(struct amba_device *adev,
2565                           struct pl08x_driver_data *pl08x,
2566                           struct device_node *np)
2567 {
2568         struct pl08x_platform_data *pd;
2569         struct pl08x_channel_data *chanp = NULL;
2570         u32 val;
2571         int ret;
2572         int i;
2573
2574         pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2575         if (!pd)
2576                 return -ENOMEM;
2577
2578         /* Eligible bus masters for fetching LLIs */
2579         if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2580                 pd->lli_buses |= PL08X_AHB1;
2581         if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2582                 pd->lli_buses |= PL08X_AHB2;
2583         if (!pd->lli_buses) {
2584                 dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2585                 pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2586         }
2587
2588         /* Eligible bus masters for memory access */
2589         if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2590                 pd->mem_buses |= PL08X_AHB1;
2591         if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2592                 pd->mem_buses |= PL08X_AHB2;
2593         if (!pd->mem_buses) {
2594                 dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2595                 pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2596         }
2597
2598         /* Parse the memcpy channel properties */
2599         ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2600         if (ret) {
2601                 dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2602                 val = 1;
2603         }
2604         switch (val) {
2605         default:
2606                 dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2607                 fallthrough;
2608         case 1:
2609                 pd->memcpy_burst_size = PL08X_BURST_SZ_1;
2610                 break;
2611         case 4:
2612                 pd->memcpy_burst_size = PL08X_BURST_SZ_4;
2613                 break;
2614         case 8:
2615                 pd->memcpy_burst_size = PL08X_BURST_SZ_8;
2616                 break;
2617         case 16:
2618                 pd->memcpy_burst_size = PL08X_BURST_SZ_16;
2619                 break;
2620         case 32:
2621                 pd->memcpy_burst_size = PL08X_BURST_SZ_32;
2622                 break;
2623         case 64:
2624                 pd->memcpy_burst_size = PL08X_BURST_SZ_64;
2625                 break;
2626         case 128:
2627                 pd->memcpy_burst_size = PL08X_BURST_SZ_128;
2628                 break;
2629         case 256:
2630                 pd->memcpy_burst_size = PL08X_BURST_SZ_256;
2631                 break;
2632         }
2633
2634         ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2635         if (ret) {
2636                 dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2637                 val = 8;
2638         }
2639         switch (val) {
2640         default:
2641                 dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2642                 fallthrough;
2643         case 8:
2644                 pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS;
2645                 break;
2646         case 16:
2647                 pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS;
2648                 break;
2649         case 32:
2650                 pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS;
2651                 break;
2652         }
2653
2654         /*
2655          * Allocate channel data for all possible slave channels (one
2656          * for each possible signal), channels will then be allocated
2657          * for a device and have it's AHB interfaces set up at
2658          * translation time.
2659          */
2660         if (pl08x->vd->signals) {
2661                 chanp = devm_kcalloc(&adev->dev,
2662                                      pl08x->vd->signals,
2663                                      sizeof(struct pl08x_channel_data),
2664                                      GFP_KERNEL);
2665                 if (!chanp)
2666                         return -ENOMEM;
2667
2668                 pd->slave_channels = chanp;
2669                 for (i = 0; i < pl08x->vd->signals; i++) {
2670                         /*
2671                          * chanp->periph_buses will be assigned at translation
2672                          */
2673                         chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2674                         chanp++;
2675                 }
2676                 pd->num_slave_channels = pl08x->vd->signals;
2677         }
2678
2679         pl08x->pd = pd;
2680
2681         return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2682                                           pl08x);
2683 }
2684 #else
2685 static inline int pl08x_of_probe(struct amba_device *adev,
2686                                  struct pl08x_driver_data *pl08x,
2687                                  struct device_node *np)
2688 {
2689         return -EINVAL;
2690 }
2691 #endif
2692
2693 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2694 {
2695         struct pl08x_driver_data *pl08x;
2696         struct vendor_data *vd = id->data;
2697         struct device_node *np = adev->dev.of_node;
2698         u32 tsfr_size;
2699         int ret = 0;
2700         int i;
2701
2702         ret = amba_request_regions(adev, NULL);
2703         if (ret)
2704                 return ret;
2705
2706         /* Ensure that we can do DMA */
2707         ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2708         if (ret)
2709                 goto out_no_pl08x;
2710
2711         /* Create the driver state holder */
2712         pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2713         if (!pl08x) {
2714                 ret = -ENOMEM;
2715                 goto out_no_pl08x;
2716         }
2717
2718         /* Assign useful pointers to the driver state */
2719         pl08x->adev = adev;
2720         pl08x->vd = vd;
2721
2722         pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2723         if (!pl08x->base) {
2724                 ret = -ENOMEM;
2725                 goto out_no_ioremap;
2726         }
2727
2728         if (vd->ftdmac020) {
2729                 u32 val;
2730
2731                 val = readl(pl08x->base + FTDMAC020_REVISION);
2732                 dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n",
2733                          (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff);
2734                 val = readl(pl08x->base + FTDMAC020_FEATURE);
2735                 dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, "
2736                          "%s built-in bridge, %s, %s linked lists\n",
2737                          (val >> 12) & 0x0f,
2738                          (val & BIT(10)) ? "no" : "has",
2739                          (val & BIT(9)) ? "AHB0 and AHB1" : "AHB0",
2740                          (val & BIT(8)) ? "supports" : "does not support");
2741
2742                 /* Vendor data from feature register */
2743                 if (!(val & BIT(8)))
2744                         dev_warn(&pl08x->adev->dev,
2745                                  "linked lists not supported, required\n");
2746                 vd->channels = (val >> 12) & 0x0f;
2747                 vd->dualmaster = !!(val & BIT(9));
2748         }
2749
2750         /* Initialize memcpy engine */
2751         dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2752         pl08x->memcpy.dev = &adev->dev;
2753         pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2754         pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2755         pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2756         pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2757         pl08x->memcpy.device_config = pl08x_config;
2758         pl08x->memcpy.device_pause = pl08x_pause;
2759         pl08x->memcpy.device_resume = pl08x_resume;
2760         pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2761         pl08x->memcpy.device_synchronize = pl08x_synchronize;
2762         pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2763         pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2764         pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2765         pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2766         if (vd->ftdmac020)
2767                 pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES;
2768
2769
2770         /*
2771          * Initialize slave engine, if the block has no signals, that means
2772          * we have no slave support.
2773          */
2774         if (vd->signals) {
2775                 pl08x->has_slave = true;
2776                 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2777                 dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2778                 pl08x->slave.dev = &adev->dev;
2779                 pl08x->slave.device_free_chan_resources =
2780                         pl08x_free_chan_resources;
2781                 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2782                 pl08x->slave.device_issue_pending = pl08x_issue_pending;
2783                 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2784                 pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2785                 pl08x->slave.device_config = pl08x_config;
2786                 pl08x->slave.device_pause = pl08x_pause;
2787                 pl08x->slave.device_resume = pl08x_resume;
2788                 pl08x->slave.device_terminate_all = pl08x_terminate_all;
2789                 pl08x->slave.device_synchronize = pl08x_synchronize;
2790                 pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2791                 pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2792                 pl08x->slave.directions =
2793                         BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2794                 pl08x->slave.residue_granularity =
2795                         DMA_RESIDUE_GRANULARITY_SEGMENT;
2796         }
2797
2798         /* Get the platform data */
2799         pl08x->pd = dev_get_platdata(&adev->dev);
2800         if (!pl08x->pd) {
2801                 if (np) {
2802                         ret = pl08x_of_probe(adev, pl08x, np);
2803                         if (ret)
2804                                 goto out_no_platdata;
2805                 } else {
2806                         dev_err(&adev->dev, "no platform data supplied\n");
2807                         ret = -EINVAL;
2808                         goto out_no_platdata;
2809                 }
2810         } else {
2811                 pl08x->slave.filter.map = pl08x->pd->slave_map;
2812                 pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len;
2813                 pl08x->slave.filter.fn = pl08x_filter_fn;
2814         }
2815
2816         /* By default, AHB1 only.  If dualmaster, from platform */
2817         pl08x->lli_buses = PL08X_AHB1;
2818         pl08x->mem_buses = PL08X_AHB1;
2819         if (pl08x->vd->dualmaster) {
2820                 pl08x->lli_buses = pl08x->pd->lli_buses;
2821                 pl08x->mem_buses = pl08x->pd->mem_buses;
2822         }
2823
2824         if (vd->pl080s)
2825                 pl08x->lli_words = PL080S_LLI_WORDS;
2826         else
2827                 pl08x->lli_words = PL080_LLI_WORDS;
2828         tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2829
2830         /* A DMA memory pool for LLIs, align on 1-byte boundary */
2831         pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2832                                                 tsfr_size, PL08X_ALIGN, 0);
2833         if (!pl08x->pool) {
2834                 ret = -ENOMEM;
2835                 goto out_no_lli_pool;
2836         }
2837
2838         /* Turn on the PL08x */
2839         pl08x_ensure_on(pl08x);
2840
2841         /* Clear any pending interrupts */
2842         if (vd->ftdmac020)
2843                 /* This variant has error IRQs in bits 16-19 */
2844                 writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR);
2845         else
2846                 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2847         writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2848
2849         /* Attach the interrupt handler */
2850         ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2851         if (ret) {
2852                 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2853                         __func__, adev->irq[0]);
2854                 goto out_no_irq;
2855         }
2856
2857         /* Initialize physical channels */
2858         pl08x->phy_chans = kcalloc(vd->channels, sizeof(*pl08x->phy_chans),
2859                                    GFP_KERNEL);
2860         if (!pl08x->phy_chans) {
2861                 ret = -ENOMEM;
2862                 goto out_no_phychans;
2863         }
2864
2865         for (i = 0; i < vd->channels; i++) {
2866                 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2867
2868                 ch->id = i;
2869                 ch->base = pl08x->base + PL080_Cx_BASE(i);
2870                 if (vd->ftdmac020) {
2871                         /* FTDMA020 has a special channel busy register */
2872                         ch->reg_busy = ch->base + FTDMAC020_CH_BUSY;
2873                         ch->reg_config = ch->base + FTDMAC020_CH_CFG;
2874                         ch->reg_control = ch->base + FTDMAC020_CH_CSR;
2875                         ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR;
2876                         ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR;
2877                         ch->reg_lli = ch->base + FTDMAC020_CH_LLP;
2878                         ch->ftdmac020 = true;
2879                 } else {
2880                         ch->reg_config = ch->base + vd->config_offset;
2881                         ch->reg_control = ch->base + PL080_CH_CONTROL;
2882                         ch->reg_src = ch->base + PL080_CH_SRC_ADDR;
2883                         ch->reg_dst = ch->base + PL080_CH_DST_ADDR;
2884                         ch->reg_lli = ch->base + PL080_CH_LLI;
2885                 }
2886                 if (vd->pl080s)
2887                         ch->pl080s = true;
2888
2889                 spin_lock_init(&ch->lock);
2890
2891                 /*
2892                  * Nomadik variants can have channels that are locked
2893                  * down for the secure world only. Lock up these channels
2894                  * by perpetually serving a dummy virtual channel.
2895                  */
2896                 if (vd->nomadik) {
2897                         u32 val;
2898
2899                         val = readl(ch->reg_config);
2900                         if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2901                                 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2902                                 ch->locked = true;
2903                         }
2904                 }
2905
2906                 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2907                         i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2908         }
2909
2910         /* Register as many memcpy channels as there are physical channels */
2911         ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2912                                               pl08x->vd->channels, false);
2913         if (ret <= 0) {
2914                 dev_warn(&pl08x->adev->dev,
2915                          "%s failed to enumerate memcpy channels - %d\n",
2916                          __func__, ret);
2917                 goto out_no_memcpy;
2918         }
2919
2920         /* Register slave channels */
2921         if (pl08x->has_slave) {
2922                 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2923                                         pl08x->pd->num_slave_channels, true);
2924                 if (ret < 0) {
2925                         dev_warn(&pl08x->adev->dev,
2926                                  "%s failed to enumerate slave channels - %d\n",
2927                                  __func__, ret);
2928                         goto out_no_slave;
2929                 }
2930         }
2931
2932         ret = dma_async_device_register(&pl08x->memcpy);
2933         if (ret) {
2934                 dev_warn(&pl08x->adev->dev,
2935                         "%s failed to register memcpy as an async device - %d\n",
2936                         __func__, ret);
2937                 goto out_no_memcpy_reg;
2938         }
2939
2940         if (pl08x->has_slave) {
2941                 ret = dma_async_device_register(&pl08x->slave);
2942                 if (ret) {
2943                         dev_warn(&pl08x->adev->dev,
2944                         "%s failed to register slave as an async device - %d\n",
2945                         __func__, ret);
2946                         goto out_no_slave_reg;
2947                 }
2948         }
2949
2950         amba_set_drvdata(adev, pl08x);
2951         init_pl08x_debugfs(pl08x);
2952         dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2953                  amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2954                  (unsigned long long)adev->res.start, adev->irq[0]);
2955
2956         return 0;
2957
2958 out_no_slave_reg:
2959         dma_async_device_unregister(&pl08x->memcpy);
2960 out_no_memcpy_reg:
2961         if (pl08x->has_slave)
2962                 pl08x_free_virtual_channels(&pl08x->slave);
2963 out_no_slave:
2964         pl08x_free_virtual_channels(&pl08x->memcpy);
2965 out_no_memcpy:
2966         kfree(pl08x->phy_chans);
2967 out_no_phychans:
2968         free_irq(adev->irq[0], pl08x);
2969 out_no_irq:
2970         dma_pool_destroy(pl08x->pool);
2971 out_no_lli_pool:
2972 out_no_platdata:
2973         iounmap(pl08x->base);
2974 out_no_ioremap:
2975         kfree(pl08x);
2976 out_no_pl08x:
2977         amba_release_regions(adev);
2978         return ret;
2979 }
2980
2981 /* PL080 has 8 channels and the PL080 have just 2 */
2982 static struct vendor_data vendor_pl080 = {
2983         .config_offset = PL080_CH_CONFIG,
2984         .channels = 8,
2985         .signals = 16,
2986         .dualmaster = true,
2987         .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2988 };
2989
2990 static struct vendor_data vendor_nomadik = {
2991         .config_offset = PL080_CH_CONFIG,
2992         .channels = 8,
2993         .signals = 32,
2994         .dualmaster = true,
2995         .nomadik = true,
2996         .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2997 };
2998
2999 static struct vendor_data vendor_pl080s = {
3000         .config_offset = PL080S_CH_CONFIG,
3001         .channels = 8,
3002         .signals = 32,
3003         .pl080s = true,
3004         .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
3005 };
3006
3007 static struct vendor_data vendor_pl081 = {
3008         .config_offset = PL080_CH_CONFIG,
3009         .channels = 2,
3010         .signals = 16,
3011         .dualmaster = false,
3012         .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3013 };
3014
3015 static struct vendor_data vendor_ftdmac020 = {
3016         .config_offset = PL080_CH_CONFIG,
3017         .ftdmac020 = true,
3018         .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3019 };
3020
3021 static const struct amba_id pl08x_ids[] = {
3022         /* Samsung PL080S variant */
3023         {
3024                 .id     = 0x0a141080,
3025                 .mask   = 0xffffffff,
3026                 .data   = &vendor_pl080s,
3027         },
3028         /* PL080 */
3029         {
3030                 .id     = 0x00041080,
3031                 .mask   = 0x000fffff,
3032                 .data   = &vendor_pl080,
3033         },
3034         /* PL081 */
3035         {
3036                 .id     = 0x00041081,
3037                 .mask   = 0x000fffff,
3038                 .data   = &vendor_pl081,
3039         },
3040         /* Nomadik 8815 PL080 variant */
3041         {
3042                 .id     = 0x00280080,
3043                 .mask   = 0x00ffffff,
3044                 .data   = &vendor_nomadik,
3045         },
3046         /* Faraday Technology FTDMAC020 */
3047         {
3048                 .id     = 0x0003b080,
3049                 .mask   = 0x000fffff,
3050                 .data   = &vendor_ftdmac020,
3051         },
3052         { 0, 0 },
3053 };
3054
3055 MODULE_DEVICE_TABLE(amba, pl08x_ids);
3056
3057 static struct amba_driver pl08x_amba_driver = {
3058         .drv.name       = DRIVER_NAME,
3059         .id_table       = pl08x_ids,
3060         .probe          = pl08x_probe,
3061 };
3062
3063 static int __init pl08x_init(void)
3064 {
3065         int retval;
3066         retval = amba_driver_register(&pl08x_amba_driver);
3067         if (retval)
3068                 printk(KERN_WARNING DRIVER_NAME
3069                        "failed to register as an AMBA device (%d)\n",
3070                        retval);
3071         return retval;
3072 }
3073 subsys_initcall(pl08x_init);