Merge branch 'pm-opp' into pm-cpufreq
[linux-2.6-block.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36
37 #define BYT_RATIOS              0x66a
38 #define BYT_VIDS                0x66b
39 #define BYT_TURBO_RATIOS        0x66c
40 #define BYT_TURBO_VIDS          0x66d
41
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45
46
47 static inline int32_t mul_fp(int32_t x, int32_t y)
48 {
49         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
50 }
51
52 static inline int32_t div_fp(s64 x, s64 y)
53 {
54         return div64_s64((int64_t)x << FRAC_BITS, y);
55 }
56
57 static inline int ceiling_fp(int32_t x)
58 {
59         int mask, ret;
60
61         ret = fp_toint(x);
62         mask = (1 << FRAC_BITS) - 1;
63         if (x & mask)
64                 ret += 1;
65         return ret;
66 }
67
68 struct sample {
69         int32_t core_pct_busy;
70         u64 aperf;
71         u64 mperf;
72         u64 tsc;
73         int freq;
74         ktime_t time;
75 };
76
77 struct pstate_data {
78         int     current_pstate;
79         int     min_pstate;
80         int     max_pstate;
81         int     scaling;
82         int     turbo_pstate;
83 };
84
85 struct vid_data {
86         int min;
87         int max;
88         int turbo;
89         int32_t ratio;
90 };
91
92 struct _pid {
93         int setpoint;
94         int32_t integral;
95         int32_t p_gain;
96         int32_t i_gain;
97         int32_t d_gain;
98         int deadband;
99         int32_t last_err;
100 };
101
102 struct cpudata {
103         int cpu;
104
105         struct timer_list timer;
106
107         struct pstate_data pstate;
108         struct vid_data vid;
109         struct _pid pid;
110
111         ktime_t last_sample_time;
112         u64     prev_aperf;
113         u64     prev_mperf;
114         u64     prev_tsc;
115         struct sample sample;
116 };
117
118 static struct cpudata **all_cpu_data;
119 struct pstate_adjust_policy {
120         int sample_rate_ms;
121         int deadband;
122         int setpoint;
123         int p_gain_pct;
124         int d_gain_pct;
125         int i_gain_pct;
126 };
127
128 struct pstate_funcs {
129         int (*get_max)(void);
130         int (*get_min)(void);
131         int (*get_turbo)(void);
132         int (*get_scaling)(void);
133         void (*set)(struct cpudata*, int pstate);
134         void (*get_vid)(struct cpudata *);
135 };
136
137 struct cpu_defaults {
138         struct pstate_adjust_policy pid_policy;
139         struct pstate_funcs funcs;
140 };
141
142 static struct pstate_adjust_policy pid_params;
143 static struct pstate_funcs pstate_funcs;
144 static int hwp_active;
145
146 struct perf_limits {
147         int no_turbo;
148         int turbo_disabled;
149         int max_perf_pct;
150         int min_perf_pct;
151         int32_t max_perf;
152         int32_t min_perf;
153         int max_policy_pct;
154         int max_sysfs_pct;
155         int min_policy_pct;
156         int min_sysfs_pct;
157 };
158
159 static struct perf_limits limits = {
160         .no_turbo = 0,
161         .turbo_disabled = 0,
162         .max_perf_pct = 100,
163         .max_perf = int_tofp(1),
164         .min_perf_pct = 0,
165         .min_perf = 0,
166         .max_policy_pct = 100,
167         .max_sysfs_pct = 100,
168         .min_policy_pct = 0,
169         .min_sysfs_pct = 0,
170 };
171
172 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
173                              int deadband, int integral) {
174         pid->setpoint = setpoint;
175         pid->deadband  = deadband;
176         pid->integral  = int_tofp(integral);
177         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
178 }
179
180 static inline void pid_p_gain_set(struct _pid *pid, int percent)
181 {
182         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
183 }
184
185 static inline void pid_i_gain_set(struct _pid *pid, int percent)
186 {
187         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
188 }
189
190 static inline void pid_d_gain_set(struct _pid *pid, int percent)
191 {
192         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
193 }
194
195 static signed int pid_calc(struct _pid *pid, int32_t busy)
196 {
197         signed int result;
198         int32_t pterm, dterm, fp_error;
199         int32_t integral_limit;
200
201         fp_error = int_tofp(pid->setpoint) - busy;
202
203         if (abs(fp_error) <= int_tofp(pid->deadband))
204                 return 0;
205
206         pterm = mul_fp(pid->p_gain, fp_error);
207
208         pid->integral += fp_error;
209
210         /*
211          * We limit the integral here so that it will never
212          * get higher than 30.  This prevents it from becoming
213          * too large an input over long periods of time and allows
214          * it to get factored out sooner.
215          *
216          * The value of 30 was chosen through experimentation.
217          */
218         integral_limit = int_tofp(30);
219         if (pid->integral > integral_limit)
220                 pid->integral = integral_limit;
221         if (pid->integral < -integral_limit)
222                 pid->integral = -integral_limit;
223
224         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
225         pid->last_err = fp_error;
226
227         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
228         result = result + (1 << (FRAC_BITS-1));
229         return (signed int)fp_toint(result);
230 }
231
232 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
233 {
234         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
235         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
236         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
237
238         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
239 }
240
241 static inline void intel_pstate_reset_all_pid(void)
242 {
243         unsigned int cpu;
244
245         for_each_online_cpu(cpu) {
246                 if (all_cpu_data[cpu])
247                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
248         }
249 }
250
251 static inline void update_turbo_state(void)
252 {
253         u64 misc_en;
254         struct cpudata *cpu;
255
256         cpu = all_cpu_data[0];
257         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
258         limits.turbo_disabled =
259                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
260                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
261 }
262
263 #define PCT_TO_HWP(x) (x * 255 / 100)
264 static void intel_pstate_hwp_set(void)
265 {
266         int min, max, cpu;
267         u64 value, freq;
268
269         get_online_cpus();
270
271         for_each_online_cpu(cpu) {
272                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
273                 min = PCT_TO_HWP(limits.min_perf_pct);
274                 value &= ~HWP_MIN_PERF(~0L);
275                 value |= HWP_MIN_PERF(min);
276
277                 max = PCT_TO_HWP(limits.max_perf_pct);
278                 if (limits.no_turbo) {
279                         rdmsrl( MSR_HWP_CAPABILITIES, freq);
280                         max = HWP_GUARANTEED_PERF(freq);
281                 }
282
283                 value &= ~HWP_MAX_PERF(~0L);
284                 value |= HWP_MAX_PERF(max);
285                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
286         }
287
288         put_online_cpus();
289 }
290
291 /************************** debugfs begin ************************/
292 static int pid_param_set(void *data, u64 val)
293 {
294         *(u32 *)data = val;
295         intel_pstate_reset_all_pid();
296         return 0;
297 }
298
299 static int pid_param_get(void *data, u64 *val)
300 {
301         *val = *(u32 *)data;
302         return 0;
303 }
304 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
305
306 struct pid_param {
307         char *name;
308         void *value;
309 };
310
311 static struct pid_param pid_files[] = {
312         {"sample_rate_ms", &pid_params.sample_rate_ms},
313         {"d_gain_pct", &pid_params.d_gain_pct},
314         {"i_gain_pct", &pid_params.i_gain_pct},
315         {"deadband", &pid_params.deadband},
316         {"setpoint", &pid_params.setpoint},
317         {"p_gain_pct", &pid_params.p_gain_pct},
318         {NULL, NULL}
319 };
320
321 static void __init intel_pstate_debug_expose_params(void)
322 {
323         struct dentry *debugfs_parent;
324         int i = 0;
325
326         if (hwp_active)
327                 return;
328         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
329         if (IS_ERR_OR_NULL(debugfs_parent))
330                 return;
331         while (pid_files[i].name) {
332                 debugfs_create_file(pid_files[i].name, 0660,
333                                     debugfs_parent, pid_files[i].value,
334                                     &fops_pid_param);
335                 i++;
336         }
337 }
338
339 /************************** debugfs end ************************/
340
341 /************************** sysfs begin ************************/
342 #define show_one(file_name, object)                                     \
343         static ssize_t show_##file_name                                 \
344         (struct kobject *kobj, struct attribute *attr, char *buf)       \
345         {                                                               \
346                 return sprintf(buf, "%u\n", limits.object);             \
347         }
348
349 static ssize_t show_turbo_pct(struct kobject *kobj,
350                                 struct attribute *attr, char *buf)
351 {
352         struct cpudata *cpu;
353         int total, no_turbo, turbo_pct;
354         uint32_t turbo_fp;
355
356         cpu = all_cpu_data[0];
357
358         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
359         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
360         turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
361         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
362         return sprintf(buf, "%u\n", turbo_pct);
363 }
364
365 static ssize_t show_num_pstates(struct kobject *kobj,
366                                 struct attribute *attr, char *buf)
367 {
368         struct cpudata *cpu;
369         int total;
370
371         cpu = all_cpu_data[0];
372         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
373         return sprintf(buf, "%u\n", total);
374 }
375
376 static ssize_t show_no_turbo(struct kobject *kobj,
377                              struct attribute *attr, char *buf)
378 {
379         ssize_t ret;
380
381         update_turbo_state();
382         if (limits.turbo_disabled)
383                 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
384         else
385                 ret = sprintf(buf, "%u\n", limits.no_turbo);
386
387         return ret;
388 }
389
390 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
391                               const char *buf, size_t count)
392 {
393         unsigned int input;
394         int ret;
395
396         ret = sscanf(buf, "%u", &input);
397         if (ret != 1)
398                 return -EINVAL;
399
400         update_turbo_state();
401         if (limits.turbo_disabled) {
402                 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
403                 return -EPERM;
404         }
405
406         limits.no_turbo = clamp_t(int, input, 0, 1);
407
408         if (hwp_active)
409                 intel_pstate_hwp_set();
410
411         return count;
412 }
413
414 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
415                                   const char *buf, size_t count)
416 {
417         unsigned int input;
418         int ret;
419
420         ret = sscanf(buf, "%u", &input);
421         if (ret != 1)
422                 return -EINVAL;
423
424         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
425         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
426         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
427
428         if (hwp_active)
429                 intel_pstate_hwp_set();
430         return count;
431 }
432
433 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
434                                   const char *buf, size_t count)
435 {
436         unsigned int input;
437         int ret;
438
439         ret = sscanf(buf, "%u", &input);
440         if (ret != 1)
441                 return -EINVAL;
442
443         limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
444         limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
445         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
446
447         if (hwp_active)
448                 intel_pstate_hwp_set();
449         return count;
450 }
451
452 show_one(max_perf_pct, max_perf_pct);
453 show_one(min_perf_pct, min_perf_pct);
454
455 define_one_global_rw(no_turbo);
456 define_one_global_rw(max_perf_pct);
457 define_one_global_rw(min_perf_pct);
458 define_one_global_ro(turbo_pct);
459 define_one_global_ro(num_pstates);
460
461 static struct attribute *intel_pstate_attributes[] = {
462         &no_turbo.attr,
463         &max_perf_pct.attr,
464         &min_perf_pct.attr,
465         &turbo_pct.attr,
466         &num_pstates.attr,
467         NULL
468 };
469
470 static struct attribute_group intel_pstate_attr_group = {
471         .attrs = intel_pstate_attributes,
472 };
473
474 static void __init intel_pstate_sysfs_expose_params(void)
475 {
476         struct kobject *intel_pstate_kobject;
477         int rc;
478
479         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
480                                                 &cpu_subsys.dev_root->kobj);
481         BUG_ON(!intel_pstate_kobject);
482         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
483         BUG_ON(rc);
484 }
485 /************************** sysfs end ************************/
486
487 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
488 {
489         pr_info("intel_pstate: HWP enabled\n");
490
491         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
492 }
493
494 static int byt_get_min_pstate(void)
495 {
496         u64 value;
497
498         rdmsrl(BYT_RATIOS, value);
499         return (value >> 8) & 0x7F;
500 }
501
502 static int byt_get_max_pstate(void)
503 {
504         u64 value;
505
506         rdmsrl(BYT_RATIOS, value);
507         return (value >> 16) & 0x7F;
508 }
509
510 static int byt_get_turbo_pstate(void)
511 {
512         u64 value;
513
514         rdmsrl(BYT_TURBO_RATIOS, value);
515         return value & 0x7F;
516 }
517
518 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
519 {
520         u64 val;
521         int32_t vid_fp;
522         u32 vid;
523
524         val = (u64)pstate << 8;
525         if (limits.no_turbo && !limits.turbo_disabled)
526                 val |= (u64)1 << 32;
527
528         vid_fp = cpudata->vid.min + mul_fp(
529                 int_tofp(pstate - cpudata->pstate.min_pstate),
530                 cpudata->vid.ratio);
531
532         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
533         vid = ceiling_fp(vid_fp);
534
535         if (pstate > cpudata->pstate.max_pstate)
536                 vid = cpudata->vid.turbo;
537
538         val |= vid;
539
540         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
541 }
542
543 #define BYT_BCLK_FREQS 5
544 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
545
546 static int byt_get_scaling(void)
547 {
548         u64 value;
549         int i;
550
551         rdmsrl(MSR_FSB_FREQ, value);
552         i = value & 0x3;
553
554         BUG_ON(i > BYT_BCLK_FREQS);
555
556         return byt_freq_table[i] * 100;
557 }
558
559 static void byt_get_vid(struct cpudata *cpudata)
560 {
561         u64 value;
562
563         rdmsrl(BYT_VIDS, value);
564         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
565         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
566         cpudata->vid.ratio = div_fp(
567                 cpudata->vid.max - cpudata->vid.min,
568                 int_tofp(cpudata->pstate.max_pstate -
569                         cpudata->pstate.min_pstate));
570
571         rdmsrl(BYT_TURBO_VIDS, value);
572         cpudata->vid.turbo = value & 0x7f;
573 }
574
575 static int core_get_min_pstate(void)
576 {
577         u64 value;
578
579         rdmsrl(MSR_PLATFORM_INFO, value);
580         return (value >> 40) & 0xFF;
581 }
582
583 static int core_get_max_pstate(void)
584 {
585         u64 value;
586
587         rdmsrl(MSR_PLATFORM_INFO, value);
588         return (value >> 8) & 0xFF;
589 }
590
591 static int core_get_turbo_pstate(void)
592 {
593         u64 value;
594         int nont, ret;
595
596         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
597         nont = core_get_max_pstate();
598         ret = (value) & 255;
599         if (ret <= nont)
600                 ret = nont;
601         return ret;
602 }
603
604 static inline int core_get_scaling(void)
605 {
606         return 100000;
607 }
608
609 static void core_set_pstate(struct cpudata *cpudata, int pstate)
610 {
611         u64 val;
612
613         val = (u64)pstate << 8;
614         if (limits.no_turbo && !limits.turbo_disabled)
615                 val |= (u64)1 << 32;
616
617         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
618 }
619
620 static int knl_get_turbo_pstate(void)
621 {
622         u64 value;
623         int nont, ret;
624
625         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
626         nont = core_get_max_pstate();
627         ret = (((value) >> 8) & 0xFF);
628         if (ret <= nont)
629                 ret = nont;
630         return ret;
631 }
632
633 static struct cpu_defaults core_params = {
634         .pid_policy = {
635                 .sample_rate_ms = 10,
636                 .deadband = 0,
637                 .setpoint = 97,
638                 .p_gain_pct = 20,
639                 .d_gain_pct = 0,
640                 .i_gain_pct = 0,
641         },
642         .funcs = {
643                 .get_max = core_get_max_pstate,
644                 .get_min = core_get_min_pstate,
645                 .get_turbo = core_get_turbo_pstate,
646                 .get_scaling = core_get_scaling,
647                 .set = core_set_pstate,
648         },
649 };
650
651 static struct cpu_defaults byt_params = {
652         .pid_policy = {
653                 .sample_rate_ms = 10,
654                 .deadband = 0,
655                 .setpoint = 60,
656                 .p_gain_pct = 14,
657                 .d_gain_pct = 0,
658                 .i_gain_pct = 4,
659         },
660         .funcs = {
661                 .get_max = byt_get_max_pstate,
662                 .get_min = byt_get_min_pstate,
663                 .get_turbo = byt_get_turbo_pstate,
664                 .set = byt_set_pstate,
665                 .get_scaling = byt_get_scaling,
666                 .get_vid = byt_get_vid,
667         },
668 };
669
670 static struct cpu_defaults knl_params = {
671         .pid_policy = {
672                 .sample_rate_ms = 10,
673                 .deadband = 0,
674                 .setpoint = 97,
675                 .p_gain_pct = 20,
676                 .d_gain_pct = 0,
677                 .i_gain_pct = 0,
678         },
679         .funcs = {
680                 .get_max = core_get_max_pstate,
681                 .get_min = core_get_min_pstate,
682                 .get_turbo = knl_get_turbo_pstate,
683                 .get_scaling = core_get_scaling,
684                 .set = core_set_pstate,
685         },
686 };
687
688 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
689 {
690         int max_perf = cpu->pstate.turbo_pstate;
691         int max_perf_adj;
692         int min_perf;
693
694         if (limits.no_turbo || limits.turbo_disabled)
695                 max_perf = cpu->pstate.max_pstate;
696
697         /*
698          * performance can be limited by user through sysfs, by cpufreq
699          * policy, or by cpu specific default values determined through
700          * experimentation.
701          */
702         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
703         *max = clamp_t(int, max_perf_adj,
704                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
705
706         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
707         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
708 }
709
710 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
711 {
712         int max_perf, min_perf;
713
714         if (force) {
715                 update_turbo_state();
716
717                 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
718
719                 pstate = clamp_t(int, pstate, min_perf, max_perf);
720
721                 if (pstate == cpu->pstate.current_pstate)
722                         return;
723         }
724         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
725
726         cpu->pstate.current_pstate = pstate;
727
728         pstate_funcs.set(cpu, pstate);
729 }
730
731 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
732 {
733         cpu->pstate.min_pstate = pstate_funcs.get_min();
734         cpu->pstate.max_pstate = pstate_funcs.get_max();
735         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
736         cpu->pstate.scaling = pstate_funcs.get_scaling();
737
738         if (pstate_funcs.get_vid)
739                 pstate_funcs.get_vid(cpu);
740         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
741 }
742
743 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
744 {
745         struct sample *sample = &cpu->sample;
746         int64_t core_pct;
747
748         core_pct = int_tofp(sample->aperf) * int_tofp(100);
749         core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
750
751         sample->freq = fp_toint(
752                 mul_fp(int_tofp(
753                         cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
754                         core_pct));
755
756         sample->core_pct_busy = (int32_t)core_pct;
757 }
758
759 static inline void intel_pstate_sample(struct cpudata *cpu)
760 {
761         u64 aperf, mperf;
762         unsigned long flags;
763         u64 tsc;
764
765         local_irq_save(flags);
766         rdmsrl(MSR_IA32_APERF, aperf);
767         rdmsrl(MSR_IA32_MPERF, mperf);
768         tsc = native_read_tsc();
769         local_irq_restore(flags);
770
771         cpu->last_sample_time = cpu->sample.time;
772         cpu->sample.time = ktime_get();
773         cpu->sample.aperf = aperf;
774         cpu->sample.mperf = mperf;
775         cpu->sample.tsc =  tsc;
776         cpu->sample.aperf -= cpu->prev_aperf;
777         cpu->sample.mperf -= cpu->prev_mperf;
778         cpu->sample.tsc -= cpu->prev_tsc;
779
780         intel_pstate_calc_busy(cpu);
781
782         cpu->prev_aperf = aperf;
783         cpu->prev_mperf = mperf;
784         cpu->prev_tsc = tsc;
785 }
786
787 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
788 {
789         int delay;
790
791         delay = msecs_to_jiffies(50);
792         mod_timer_pinned(&cpu->timer, jiffies + delay);
793 }
794
795 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
796 {
797         int delay;
798
799         delay = msecs_to_jiffies(pid_params.sample_rate_ms);
800         mod_timer_pinned(&cpu->timer, jiffies + delay);
801 }
802
803 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
804 {
805         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
806         s64 duration_us;
807         u32 sample_time;
808
809         /*
810          * core_busy is the ratio of actual performance to max
811          * max_pstate is the max non turbo pstate available
812          * current_pstate was the pstate that was requested during
813          *      the last sample period.
814          *
815          * We normalize core_busy, which was our actual percent
816          * performance to what we requested during the last sample
817          * period. The result will be a percentage of busy at a
818          * specified pstate.
819          */
820         core_busy = cpu->sample.core_pct_busy;
821         max_pstate = int_tofp(cpu->pstate.max_pstate);
822         current_pstate = int_tofp(cpu->pstate.current_pstate);
823         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
824
825         /*
826          * Since we have a deferred timer, it will not fire unless
827          * we are in C0.  So, determine if the actual elapsed time
828          * is significantly greater (3x) than our sample interval.  If it
829          * is, then we were idle for a long enough period of time
830          * to adjust our busyness.
831          */
832         sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
833         duration_us = ktime_us_delta(cpu->sample.time,
834                                      cpu->last_sample_time);
835         if (duration_us > sample_time * 3) {
836                 sample_ratio = div_fp(int_tofp(sample_time),
837                                       int_tofp(duration_us));
838                 core_busy = mul_fp(core_busy, sample_ratio);
839         }
840
841         return core_busy;
842 }
843
844 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
845 {
846         int32_t busy_scaled;
847         struct _pid *pid;
848         signed int ctl;
849         int from;
850         struct sample *sample;
851
852         from = cpu->pstate.current_pstate;
853
854         pid = &cpu->pid;
855         busy_scaled = intel_pstate_get_scaled_busy(cpu);
856
857         ctl = pid_calc(pid, busy_scaled);
858
859         /* Negative values of ctl increase the pstate and vice versa */
860         intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
861
862         sample = &cpu->sample;
863         trace_pstate_sample(fp_toint(sample->core_pct_busy),
864                 fp_toint(busy_scaled),
865                 from,
866                 cpu->pstate.current_pstate,
867                 sample->mperf,
868                 sample->aperf,
869                 sample->tsc,
870                 sample->freq);
871 }
872
873 static void intel_hwp_timer_func(unsigned long __data)
874 {
875         struct cpudata *cpu = (struct cpudata *) __data;
876
877         intel_pstate_sample(cpu);
878         intel_hwp_set_sample_time(cpu);
879 }
880
881 static void intel_pstate_timer_func(unsigned long __data)
882 {
883         struct cpudata *cpu = (struct cpudata *) __data;
884
885         intel_pstate_sample(cpu);
886
887         intel_pstate_adjust_busy_pstate(cpu);
888
889         intel_pstate_set_sample_time(cpu);
890 }
891
892 #define ICPU(model, policy) \
893         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
894                         (unsigned long)&policy }
895
896 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
897         ICPU(0x2a, core_params),
898         ICPU(0x2d, core_params),
899         ICPU(0x37, byt_params),
900         ICPU(0x3a, core_params),
901         ICPU(0x3c, core_params),
902         ICPU(0x3d, core_params),
903         ICPU(0x3e, core_params),
904         ICPU(0x3f, core_params),
905         ICPU(0x45, core_params),
906         ICPU(0x46, core_params),
907         ICPU(0x47, core_params),
908         ICPU(0x4c, byt_params),
909         ICPU(0x4e, core_params),
910         ICPU(0x4f, core_params),
911         ICPU(0x5e, core_params),
912         ICPU(0x56, core_params),
913         ICPU(0x57, knl_params),
914         {}
915 };
916 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
917
918 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
919         ICPU(0x56, core_params),
920         {}
921 };
922
923 static int intel_pstate_init_cpu(unsigned int cpunum)
924 {
925         struct cpudata *cpu;
926
927         if (!all_cpu_data[cpunum])
928                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
929                                                GFP_KERNEL);
930         if (!all_cpu_data[cpunum])
931                 return -ENOMEM;
932
933         cpu = all_cpu_data[cpunum];
934
935         cpu->cpu = cpunum;
936
937         if (hwp_active)
938                 intel_pstate_hwp_enable(cpu);
939
940         intel_pstate_get_cpu_pstates(cpu);
941
942         init_timer_deferrable(&cpu->timer);
943         cpu->timer.data = (unsigned long)cpu;
944         cpu->timer.expires = jiffies + HZ/100;
945
946         if (!hwp_active)
947                 cpu->timer.function = intel_pstate_timer_func;
948         else
949                 cpu->timer.function = intel_hwp_timer_func;
950
951         intel_pstate_busy_pid_reset(cpu);
952         intel_pstate_sample(cpu);
953
954         add_timer_on(&cpu->timer, cpunum);
955
956         pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
957
958         return 0;
959 }
960
961 static unsigned int intel_pstate_get(unsigned int cpu_num)
962 {
963         struct sample *sample;
964         struct cpudata *cpu;
965
966         cpu = all_cpu_data[cpu_num];
967         if (!cpu)
968                 return 0;
969         sample = &cpu->sample;
970         return sample->freq;
971 }
972
973 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
974 {
975         if (!policy->cpuinfo.max_freq)
976                 return -ENODEV;
977
978         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
979             policy->max >= policy->cpuinfo.max_freq) {
980                 limits.min_policy_pct = 100;
981                 limits.min_perf_pct = 100;
982                 limits.min_perf = int_tofp(1);
983                 limits.max_policy_pct = 100;
984                 limits.max_perf_pct = 100;
985                 limits.max_perf = int_tofp(1);
986                 limits.no_turbo = 0;
987                 return 0;
988         }
989
990         limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
991         limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
992         limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
993         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
994
995         limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
996         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
997         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
998         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
999
1000         if (hwp_active)
1001                 intel_pstate_hwp_set();
1002
1003         return 0;
1004 }
1005
1006 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1007 {
1008         cpufreq_verify_within_cpu_limits(policy);
1009
1010         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1011             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1012                 return -EINVAL;
1013
1014         return 0;
1015 }
1016
1017 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1018 {
1019         int cpu_num = policy->cpu;
1020         struct cpudata *cpu = all_cpu_data[cpu_num];
1021
1022         pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1023
1024         del_timer_sync(&all_cpu_data[cpu_num]->timer);
1025         if (hwp_active)
1026                 return;
1027
1028         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1029 }
1030
1031 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1032 {
1033         struct cpudata *cpu;
1034         int rc;
1035
1036         rc = intel_pstate_init_cpu(policy->cpu);
1037         if (rc)
1038                 return rc;
1039
1040         cpu = all_cpu_data[policy->cpu];
1041
1042         if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1043                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1044         else
1045                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1046
1047         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1048         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1049
1050         /* cpuinfo and default policy values */
1051         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1052         policy->cpuinfo.max_freq =
1053                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1054         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1055         cpumask_set_cpu(policy->cpu, policy->cpus);
1056
1057         return 0;
1058 }
1059
1060 static struct cpufreq_driver intel_pstate_driver = {
1061         .flags          = CPUFREQ_CONST_LOOPS,
1062         .verify         = intel_pstate_verify_policy,
1063         .setpolicy      = intel_pstate_set_policy,
1064         .get            = intel_pstate_get,
1065         .init           = intel_pstate_cpu_init,
1066         .stop_cpu       = intel_pstate_stop_cpu,
1067         .name           = "intel_pstate",
1068 };
1069
1070 static int __initdata no_load;
1071 static int __initdata no_hwp;
1072 static int __initdata hwp_only;
1073 static unsigned int force_load;
1074
1075 static int intel_pstate_msrs_not_valid(void)
1076 {
1077         if (!pstate_funcs.get_max() ||
1078             !pstate_funcs.get_min() ||
1079             !pstate_funcs.get_turbo())
1080                 return -ENODEV;
1081
1082         return 0;
1083 }
1084
1085 static void copy_pid_params(struct pstate_adjust_policy *policy)
1086 {
1087         pid_params.sample_rate_ms = policy->sample_rate_ms;
1088         pid_params.p_gain_pct = policy->p_gain_pct;
1089         pid_params.i_gain_pct = policy->i_gain_pct;
1090         pid_params.d_gain_pct = policy->d_gain_pct;
1091         pid_params.deadband = policy->deadband;
1092         pid_params.setpoint = policy->setpoint;
1093 }
1094
1095 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1096 {
1097         pstate_funcs.get_max   = funcs->get_max;
1098         pstate_funcs.get_min   = funcs->get_min;
1099         pstate_funcs.get_turbo = funcs->get_turbo;
1100         pstate_funcs.get_scaling = funcs->get_scaling;
1101         pstate_funcs.set       = funcs->set;
1102         pstate_funcs.get_vid   = funcs->get_vid;
1103 }
1104
1105 #if IS_ENABLED(CONFIG_ACPI)
1106 #include <acpi/processor.h>
1107
1108 static bool intel_pstate_no_acpi_pss(void)
1109 {
1110         int i;
1111
1112         for_each_possible_cpu(i) {
1113                 acpi_status status;
1114                 union acpi_object *pss;
1115                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1116                 struct acpi_processor *pr = per_cpu(processors, i);
1117
1118                 if (!pr)
1119                         continue;
1120
1121                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1122                 if (ACPI_FAILURE(status))
1123                         continue;
1124
1125                 pss = buffer.pointer;
1126                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1127                         kfree(pss);
1128                         return false;
1129                 }
1130
1131                 kfree(pss);
1132         }
1133
1134         return true;
1135 }
1136
1137 static bool intel_pstate_has_acpi_ppc(void)
1138 {
1139         int i;
1140
1141         for_each_possible_cpu(i) {
1142                 struct acpi_processor *pr = per_cpu(processors, i);
1143
1144                 if (!pr)
1145                         continue;
1146                 if (acpi_has_method(pr->handle, "_PPC"))
1147                         return true;
1148         }
1149         return false;
1150 }
1151
1152 enum {
1153         PSS,
1154         PPC,
1155 };
1156
1157 struct hw_vendor_info {
1158         u16  valid;
1159         char oem_id[ACPI_OEM_ID_SIZE];
1160         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1161         int  oem_pwr_table;
1162 };
1163
1164 /* Hardware vendor-specific info that has its own power management modes */
1165 static struct hw_vendor_info vendor_info[] = {
1166         {1, "HP    ", "ProLiant", PSS},
1167         {1, "ORACLE", "X4-2    ", PPC},
1168         {1, "ORACLE", "X4-2L   ", PPC},
1169         {1, "ORACLE", "X4-2B   ", PPC},
1170         {1, "ORACLE", "X3-2    ", PPC},
1171         {1, "ORACLE", "X3-2L   ", PPC},
1172         {1, "ORACLE", "X3-2B   ", PPC},
1173         {1, "ORACLE", "X4470M2 ", PPC},
1174         {1, "ORACLE", "X4270M3 ", PPC},
1175         {1, "ORACLE", "X4270M2 ", PPC},
1176         {1, "ORACLE", "X4170M2 ", PPC},
1177         {1, "ORACLE", "X4170 M3", PPC},
1178         {1, "ORACLE", "X4275 M3", PPC},
1179         {1, "ORACLE", "X6-2    ", PPC},
1180         {1, "ORACLE", "Sudbury ", PPC},
1181         {0, "", ""},
1182 };
1183
1184 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1185 {
1186         struct acpi_table_header hdr;
1187         struct hw_vendor_info *v_info;
1188         const struct x86_cpu_id *id;
1189         u64 misc_pwr;
1190
1191         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1192         if (id) {
1193                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1194                 if ( misc_pwr & (1 << 8))
1195                         return true;
1196         }
1197
1198         if (acpi_disabled ||
1199             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1200                 return false;
1201
1202         for (v_info = vendor_info; v_info->valid; v_info++) {
1203                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1204                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1205                                                 ACPI_OEM_TABLE_ID_SIZE))
1206                         switch (v_info->oem_pwr_table) {
1207                         case PSS:
1208                                 return intel_pstate_no_acpi_pss();
1209                         case PPC:
1210                                 return intel_pstate_has_acpi_ppc() &&
1211                                         (!force_load);
1212                         }
1213         }
1214
1215         return false;
1216 }
1217 #else /* CONFIG_ACPI not enabled */
1218 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1219 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1220 #endif /* CONFIG_ACPI */
1221
1222 static int __init intel_pstate_init(void)
1223 {
1224         int cpu, rc = 0;
1225         const struct x86_cpu_id *id;
1226         struct cpu_defaults *cpu_def;
1227
1228         if (no_load)
1229                 return -ENODEV;
1230
1231         id = x86_match_cpu(intel_pstate_cpu_ids);
1232         if (!id)
1233                 return -ENODEV;
1234
1235         /*
1236          * The Intel pstate driver will be ignored if the platform
1237          * firmware has its own power management modes.
1238          */
1239         if (intel_pstate_platform_pwr_mgmt_exists())
1240                 return -ENODEV;
1241
1242         cpu_def = (struct cpu_defaults *)id->driver_data;
1243
1244         copy_pid_params(&cpu_def->pid_policy);
1245         copy_cpu_funcs(&cpu_def->funcs);
1246
1247         if (intel_pstate_msrs_not_valid())
1248                 return -ENODEV;
1249
1250         pr_info("Intel P-state driver initializing.\n");
1251
1252         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1253         if (!all_cpu_data)
1254                 return -ENOMEM;
1255
1256         if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1257                 hwp_active++;
1258
1259         if (!hwp_active && hwp_only)
1260                 goto out;
1261
1262         rc = cpufreq_register_driver(&intel_pstate_driver);
1263         if (rc)
1264                 goto out;
1265
1266         intel_pstate_debug_expose_params();
1267         intel_pstate_sysfs_expose_params();
1268
1269         return rc;
1270 out:
1271         get_online_cpus();
1272         for_each_online_cpu(cpu) {
1273                 if (all_cpu_data[cpu]) {
1274                         del_timer_sync(&all_cpu_data[cpu]->timer);
1275                         kfree(all_cpu_data[cpu]);
1276                 }
1277         }
1278
1279         put_online_cpus();
1280         vfree(all_cpu_data);
1281         return -ENODEV;
1282 }
1283 device_initcall(intel_pstate_init);
1284
1285 static int __init intel_pstate_setup(char *str)
1286 {
1287         if (!str)
1288                 return -EINVAL;
1289
1290         if (!strcmp(str, "disable"))
1291                 no_load = 1;
1292         if (!strcmp(str, "no_hwp"))
1293                 no_hwp = 1;
1294         if (!strcmp(str, "force"))
1295                 force_load = 1;
1296         if (!strcmp(str, "hwp_only"))
1297                 hwp_only = 1;
1298         return 0;
1299 }
1300 early_param("intel_pstate", intel_pstate_setup);
1301
1302 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1303 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1304 MODULE_LICENSE("GPL");