cpufreq: intel_pstate: Reuse refresh_frequency_limits()
[linux-2.6-block.git] / drivers / cpufreq / cpufreq.c
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *      Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *      Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/cpu_cooling.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/module.h>
28 #include <linux/mutex.h>
29 #include <linux/pm_qos.h>
30 #include <linux/slab.h>
31 #include <linux/suspend.h>
32 #include <linux/syscore_ops.h>
33 #include <linux/tick.h>
34 #include <trace/events/power.h>
35
36 static LIST_HEAD(cpufreq_policy_list);
37
38 /* Macros to iterate over CPU policies */
39 #define for_each_suitable_policy(__policy, __active)                     \
40         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
41                 if ((__active) == !policy_is_inactive(__policy))
42
43 #define for_each_active_policy(__policy)                \
44         for_each_suitable_policy(__policy, true)
45 #define for_each_inactive_policy(__policy)              \
46         for_each_suitable_policy(__policy, false)
47
48 #define for_each_policy(__policy)                       \
49         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
50
51 /* Iterate over governors */
52 static LIST_HEAD(cpufreq_governor_list);
53 #define for_each_governor(__governor)                           \
54         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
55
56 /**
57  * The "cpufreq driver" - the arch- or hardware-dependent low
58  * level driver of CPUFreq support, and its spinlock. This lock
59  * also protects the cpufreq_cpu_data array.
60  */
61 static struct cpufreq_driver *cpufreq_driver;
62 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
63 static DEFINE_RWLOCK(cpufreq_driver_lock);
64
65 /* Flag to suspend/resume CPUFreq governors */
66 static bool cpufreq_suspended;
67
68 static inline bool has_target(void)
69 {
70         return cpufreq_driver->target_index || cpufreq_driver->target;
71 }
72
73 /* internal prototypes */
74 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
75 static int cpufreq_init_governor(struct cpufreq_policy *policy);
76 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
77 static int cpufreq_start_governor(struct cpufreq_policy *policy);
78 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
79 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
80
81 /**
82  * Two notifier lists: the "policy" list is involved in the
83  * validation process for a new CPU frequency policy; the
84  * "transition" list for kernel code that needs to handle
85  * changes to devices when the CPU clock speed changes.
86  * The mutex locks both lists.
87  */
88 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
89 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
90
91 static int off __read_mostly;
92 static int cpufreq_disabled(void)
93 {
94         return off;
95 }
96 void disable_cpufreq(void)
97 {
98         off = 1;
99 }
100 static DEFINE_MUTEX(cpufreq_governor_mutex);
101
102 bool have_governor_per_policy(void)
103 {
104         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
105 }
106 EXPORT_SYMBOL_GPL(have_governor_per_policy);
107
108 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
109 {
110         if (have_governor_per_policy())
111                 return &policy->kobj;
112         else
113                 return cpufreq_global_kobject;
114 }
115 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
116
117 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
118 {
119         u64 idle_time;
120         u64 cur_wall_time;
121         u64 busy_time;
122
123         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
124
125         busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
126         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
127         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
128         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
129         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
130         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
131
132         idle_time = cur_wall_time - busy_time;
133         if (wall)
134                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
135
136         return div_u64(idle_time, NSEC_PER_USEC);
137 }
138
139 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
140 {
141         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
142
143         if (idle_time == -1ULL)
144                 return get_cpu_idle_time_jiffy(cpu, wall);
145         else if (!io_busy)
146                 idle_time += get_cpu_iowait_time_us(cpu, wall);
147
148         return idle_time;
149 }
150 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
151
152 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
153                 unsigned long max_freq)
154 {
155 }
156 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
157
158 /*
159  * This is a generic cpufreq init() routine which can be used by cpufreq
160  * drivers of SMP systems. It will do following:
161  * - validate & show freq table passed
162  * - set policies transition latency
163  * - policy->cpus with all possible CPUs
164  */
165 int cpufreq_generic_init(struct cpufreq_policy *policy,
166                 struct cpufreq_frequency_table *table,
167                 unsigned int transition_latency)
168 {
169         policy->freq_table = table;
170         policy->cpuinfo.transition_latency = transition_latency;
171
172         /*
173          * The driver only supports the SMP configuration where all processors
174          * share the clock and voltage and clock.
175          */
176         cpumask_setall(policy->cpus);
177
178         return 0;
179 }
180 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
181
182 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
183 {
184         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
185
186         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
187 }
188 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
189
190 unsigned int cpufreq_generic_get(unsigned int cpu)
191 {
192         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
193
194         if (!policy || IS_ERR(policy->clk)) {
195                 pr_err("%s: No %s associated to cpu: %d\n",
196                        __func__, policy ? "clk" : "policy", cpu);
197                 return 0;
198         }
199
200         return clk_get_rate(policy->clk) / 1000;
201 }
202 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
203
204 /**
205  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
206  * @cpu: CPU to find the policy for.
207  *
208  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
209  * the kobject reference counter of that policy.  Return a valid policy on
210  * success or NULL on failure.
211  *
212  * The policy returned by this function has to be released with the help of
213  * cpufreq_cpu_put() to balance its kobject reference counter properly.
214  */
215 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
216 {
217         struct cpufreq_policy *policy = NULL;
218         unsigned long flags;
219
220         if (WARN_ON(cpu >= nr_cpu_ids))
221                 return NULL;
222
223         /* get the cpufreq driver */
224         read_lock_irqsave(&cpufreq_driver_lock, flags);
225
226         if (cpufreq_driver) {
227                 /* get the CPU */
228                 policy = cpufreq_cpu_get_raw(cpu);
229                 if (policy)
230                         kobject_get(&policy->kobj);
231         }
232
233         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
234
235         return policy;
236 }
237 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
238
239 /**
240  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
241  * @policy: cpufreq policy returned by cpufreq_cpu_get().
242  */
243 void cpufreq_cpu_put(struct cpufreq_policy *policy)
244 {
245         kobject_put(&policy->kobj);
246 }
247 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
248
249 /**
250  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
251  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
252  */
253 void cpufreq_cpu_release(struct cpufreq_policy *policy)
254 {
255         if (WARN_ON(!policy))
256                 return;
257
258         lockdep_assert_held(&policy->rwsem);
259
260         up_write(&policy->rwsem);
261
262         cpufreq_cpu_put(policy);
263 }
264
265 /**
266  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
267  * @cpu: CPU to find the policy for.
268  *
269  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
270  * if the policy returned by it is not NULL, acquire its rwsem for writing.
271  * Return the policy if it is active or release it and return NULL otherwise.
272  *
273  * The policy returned by this function has to be released with the help of
274  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
275  * counter properly.
276  */
277 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
278 {
279         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
280
281         if (!policy)
282                 return NULL;
283
284         down_write(&policy->rwsem);
285
286         if (policy_is_inactive(policy)) {
287                 cpufreq_cpu_release(policy);
288                 return NULL;
289         }
290
291         return policy;
292 }
293
294 /*********************************************************************
295  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
296  *********************************************************************/
297
298 /**
299  * adjust_jiffies - adjust the system "loops_per_jiffy"
300  *
301  * This function alters the system "loops_per_jiffy" for the clock
302  * speed change. Note that loops_per_jiffy cannot be updated on SMP
303  * systems as each CPU might be scaled differently. So, use the arch
304  * per-CPU loops_per_jiffy value wherever possible.
305  */
306 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
307 {
308 #ifndef CONFIG_SMP
309         static unsigned long l_p_j_ref;
310         static unsigned int l_p_j_ref_freq;
311
312         if (ci->flags & CPUFREQ_CONST_LOOPS)
313                 return;
314
315         if (!l_p_j_ref_freq) {
316                 l_p_j_ref = loops_per_jiffy;
317                 l_p_j_ref_freq = ci->old;
318                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
319                          l_p_j_ref, l_p_j_ref_freq);
320         }
321         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
322                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
323                                                                 ci->new);
324                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
325                          loops_per_jiffy, ci->new);
326         }
327 #endif
328 }
329
330 /**
331  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
332  * @policy: cpufreq policy to enable fast frequency switching for.
333  * @freqs: contain details of the frequency update.
334  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
335  *
336  * This function calls the transition notifiers and the "adjust_jiffies"
337  * function. It is called twice on all CPU frequency changes that have
338  * external effects.
339  */
340 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
341                                       struct cpufreq_freqs *freqs,
342                                       unsigned int state)
343 {
344         int cpu;
345
346         BUG_ON(irqs_disabled());
347
348         if (cpufreq_disabled())
349                 return;
350
351         freqs->policy = policy;
352         freqs->flags = cpufreq_driver->flags;
353         pr_debug("notification %u of frequency transition to %u kHz\n",
354                  state, freqs->new);
355
356         switch (state) {
357         case CPUFREQ_PRECHANGE:
358                 /*
359                  * Detect if the driver reported a value as "old frequency"
360                  * which is not equal to what the cpufreq core thinks is
361                  * "old frequency".
362                  */
363                 if (policy->cur && policy->cur != freqs->old) {
364                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
365                                  freqs->old, policy->cur);
366                         freqs->old = policy->cur;
367                 }
368
369                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
370                                          CPUFREQ_PRECHANGE, freqs);
371
372                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
373                 break;
374
375         case CPUFREQ_POSTCHANGE:
376                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
377                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
378                          cpumask_pr_args(policy->cpus));
379
380                 for_each_cpu(cpu, policy->cpus)
381                         trace_cpu_frequency(freqs->new, cpu);
382
383                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
384                                          CPUFREQ_POSTCHANGE, freqs);
385
386                 cpufreq_stats_record_transition(policy, freqs->new);
387                 policy->cur = freqs->new;
388         }
389 }
390
391 /* Do post notifications when there are chances that transition has failed */
392 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
393                 struct cpufreq_freqs *freqs, int transition_failed)
394 {
395         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
396         if (!transition_failed)
397                 return;
398
399         swap(freqs->old, freqs->new);
400         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
401         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
402 }
403
404 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
405                 struct cpufreq_freqs *freqs)
406 {
407
408         /*
409          * Catch double invocations of _begin() which lead to self-deadlock.
410          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
411          * doesn't invoke _begin() on their behalf, and hence the chances of
412          * double invocations are very low. Moreover, there are scenarios
413          * where these checks can emit false-positive warnings in these
414          * drivers; so we avoid that by skipping them altogether.
415          */
416         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
417                                 && current == policy->transition_task);
418
419 wait:
420         wait_event(policy->transition_wait, !policy->transition_ongoing);
421
422         spin_lock(&policy->transition_lock);
423
424         if (unlikely(policy->transition_ongoing)) {
425                 spin_unlock(&policy->transition_lock);
426                 goto wait;
427         }
428
429         policy->transition_ongoing = true;
430         policy->transition_task = current;
431
432         spin_unlock(&policy->transition_lock);
433
434         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
435 }
436 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
437
438 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
439                 struct cpufreq_freqs *freqs, int transition_failed)
440 {
441         if (WARN_ON(!policy->transition_ongoing))
442                 return;
443
444         cpufreq_notify_post_transition(policy, freqs, transition_failed);
445
446         policy->transition_ongoing = false;
447         policy->transition_task = NULL;
448
449         wake_up(&policy->transition_wait);
450 }
451 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
452
453 /*
454  * Fast frequency switching status count.  Positive means "enabled", negative
455  * means "disabled" and 0 means "not decided yet".
456  */
457 static int cpufreq_fast_switch_count;
458 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
459
460 static void cpufreq_list_transition_notifiers(void)
461 {
462         struct notifier_block *nb;
463
464         pr_info("Registered transition notifiers:\n");
465
466         mutex_lock(&cpufreq_transition_notifier_list.mutex);
467
468         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
469                 pr_info("%pS\n", nb->notifier_call);
470
471         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
472 }
473
474 /**
475  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
476  * @policy: cpufreq policy to enable fast frequency switching for.
477  *
478  * Try to enable fast frequency switching for @policy.
479  *
480  * The attempt will fail if there is at least one transition notifier registered
481  * at this point, as fast frequency switching is quite fundamentally at odds
482  * with transition notifiers.  Thus if successful, it will make registration of
483  * transition notifiers fail going forward.
484  */
485 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
486 {
487         lockdep_assert_held(&policy->rwsem);
488
489         if (!policy->fast_switch_possible)
490                 return;
491
492         mutex_lock(&cpufreq_fast_switch_lock);
493         if (cpufreq_fast_switch_count >= 0) {
494                 cpufreq_fast_switch_count++;
495                 policy->fast_switch_enabled = true;
496         } else {
497                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
498                         policy->cpu);
499                 cpufreq_list_transition_notifiers();
500         }
501         mutex_unlock(&cpufreq_fast_switch_lock);
502 }
503 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
504
505 /**
506  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
507  * @policy: cpufreq policy to disable fast frequency switching for.
508  */
509 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
510 {
511         mutex_lock(&cpufreq_fast_switch_lock);
512         if (policy->fast_switch_enabled) {
513                 policy->fast_switch_enabled = false;
514                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
515                         cpufreq_fast_switch_count--;
516         }
517         mutex_unlock(&cpufreq_fast_switch_lock);
518 }
519 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
520
521 /**
522  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
523  * one.
524  * @target_freq: target frequency to resolve.
525  *
526  * The target to driver frequency mapping is cached in the policy.
527  *
528  * Return: Lowest driver-supported frequency greater than or equal to the
529  * given target_freq, subject to policy (min/max) and driver limitations.
530  */
531 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
532                                          unsigned int target_freq)
533 {
534         target_freq = clamp_val(target_freq, policy->min, policy->max);
535         policy->cached_target_freq = target_freq;
536
537         if (cpufreq_driver->target_index) {
538                 int idx;
539
540                 idx = cpufreq_frequency_table_target(policy, target_freq,
541                                                      CPUFREQ_RELATION_L);
542                 policy->cached_resolved_idx = idx;
543                 return policy->freq_table[idx].frequency;
544         }
545
546         if (cpufreq_driver->resolve_freq)
547                 return cpufreq_driver->resolve_freq(policy, target_freq);
548
549         return target_freq;
550 }
551 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
552
553 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
554 {
555         unsigned int latency;
556
557         if (policy->transition_delay_us)
558                 return policy->transition_delay_us;
559
560         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
561         if (latency) {
562                 /*
563                  * For platforms that can change the frequency very fast (< 10
564                  * us), the above formula gives a decent transition delay. But
565                  * for platforms where transition_latency is in milliseconds, it
566                  * ends up giving unrealistic values.
567                  *
568                  * Cap the default transition delay to 10 ms, which seems to be
569                  * a reasonable amount of time after which we should reevaluate
570                  * the frequency.
571                  */
572                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
573         }
574
575         return LATENCY_MULTIPLIER;
576 }
577 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
578
579 /*********************************************************************
580  *                          SYSFS INTERFACE                          *
581  *********************************************************************/
582 static ssize_t show_boost(struct kobject *kobj,
583                           struct kobj_attribute *attr, char *buf)
584 {
585         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
586 }
587
588 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
589                            const char *buf, size_t count)
590 {
591         int ret, enable;
592
593         ret = sscanf(buf, "%d", &enable);
594         if (ret != 1 || enable < 0 || enable > 1)
595                 return -EINVAL;
596
597         if (cpufreq_boost_trigger_state(enable)) {
598                 pr_err("%s: Cannot %s BOOST!\n",
599                        __func__, enable ? "enable" : "disable");
600                 return -EINVAL;
601         }
602
603         pr_debug("%s: cpufreq BOOST %s\n",
604                  __func__, enable ? "enabled" : "disabled");
605
606         return count;
607 }
608 define_one_global_rw(boost);
609
610 static struct cpufreq_governor *find_governor(const char *str_governor)
611 {
612         struct cpufreq_governor *t;
613
614         for_each_governor(t)
615                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
616                         return t;
617
618         return NULL;
619 }
620
621 static int cpufreq_parse_policy(char *str_governor,
622                                 struct cpufreq_policy *policy)
623 {
624         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
625                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
626                 return 0;
627         }
628         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
629                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
630                 return 0;
631         }
632         return -EINVAL;
633 }
634
635 /**
636  * cpufreq_parse_governor - parse a governor string only for has_target()
637  */
638 static int cpufreq_parse_governor(char *str_governor,
639                                   struct cpufreq_policy *policy)
640 {
641         struct cpufreq_governor *t;
642
643         mutex_lock(&cpufreq_governor_mutex);
644
645         t = find_governor(str_governor);
646         if (!t) {
647                 int ret;
648
649                 mutex_unlock(&cpufreq_governor_mutex);
650
651                 ret = request_module("cpufreq_%s", str_governor);
652                 if (ret)
653                         return -EINVAL;
654
655                 mutex_lock(&cpufreq_governor_mutex);
656
657                 t = find_governor(str_governor);
658         }
659         if (t && !try_module_get(t->owner))
660                 t = NULL;
661
662         mutex_unlock(&cpufreq_governor_mutex);
663
664         if (t) {
665                 policy->governor = t;
666                 return 0;
667         }
668
669         return -EINVAL;
670 }
671
672 /**
673  * cpufreq_per_cpu_attr_read() / show_##file_name() -
674  * print out cpufreq information
675  *
676  * Write out information from cpufreq_driver->policy[cpu]; object must be
677  * "unsigned int".
678  */
679
680 #define show_one(file_name, object)                     \
681 static ssize_t show_##file_name                         \
682 (struct cpufreq_policy *policy, char *buf)              \
683 {                                                       \
684         return sprintf(buf, "%u\n", policy->object);    \
685 }
686
687 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
688 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
689 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
690 show_one(scaling_min_freq, min);
691 show_one(scaling_max_freq, max);
692
693 __weak unsigned int arch_freq_get_on_cpu(int cpu)
694 {
695         return 0;
696 }
697
698 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
699 {
700         ssize_t ret;
701         unsigned int freq;
702
703         freq = arch_freq_get_on_cpu(policy->cpu);
704         if (freq)
705                 ret = sprintf(buf, "%u\n", freq);
706         else if (cpufreq_driver && cpufreq_driver->setpolicy &&
707                         cpufreq_driver->get)
708                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
709         else
710                 ret = sprintf(buf, "%u\n", policy->cur);
711         return ret;
712 }
713
714 /**
715  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
716  */
717 #define store_one(file_name, object)                    \
718 static ssize_t store_##file_name                                        \
719 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
720 {                                                                       \
721         int ret, temp;                                                  \
722         struct cpufreq_policy new_policy;                               \
723                                                                         \
724         memcpy(&new_policy, policy, sizeof(*policy));                   \
725         new_policy.min = policy->user_policy.min;                       \
726         new_policy.max = policy->user_policy.max;                       \
727                                                                         \
728         ret = sscanf(buf, "%u", &new_policy.object);                    \
729         if (ret != 1)                                                   \
730                 return -EINVAL;                                         \
731                                                                         \
732         temp = new_policy.object;                                       \
733         ret = cpufreq_set_policy(policy, &new_policy);          \
734         if (!ret)                                                       \
735                 policy->user_policy.object = temp;                      \
736                                                                         \
737         return ret ? ret : count;                                       \
738 }
739
740 store_one(scaling_min_freq, min);
741 store_one(scaling_max_freq, max);
742
743 /**
744  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
745  */
746 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
747                                         char *buf)
748 {
749         unsigned int cur_freq = __cpufreq_get(policy);
750
751         if (cur_freq)
752                 return sprintf(buf, "%u\n", cur_freq);
753
754         return sprintf(buf, "<unknown>\n");
755 }
756
757 /**
758  * show_scaling_governor - show the current policy for the specified CPU
759  */
760 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
761 {
762         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
763                 return sprintf(buf, "powersave\n");
764         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
765                 return sprintf(buf, "performance\n");
766         else if (policy->governor)
767                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
768                                 policy->governor->name);
769         return -EINVAL;
770 }
771
772 /**
773  * store_scaling_governor - store policy for the specified CPU
774  */
775 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
776                                         const char *buf, size_t count)
777 {
778         int ret;
779         char    str_governor[16];
780         struct cpufreq_policy new_policy;
781
782         memcpy(&new_policy, policy, sizeof(*policy));
783
784         ret = sscanf(buf, "%15s", str_governor);
785         if (ret != 1)
786                 return -EINVAL;
787
788         if (cpufreq_driver->setpolicy) {
789                 if (cpufreq_parse_policy(str_governor, &new_policy))
790                         return -EINVAL;
791         } else {
792                 if (cpufreq_parse_governor(str_governor, &new_policy))
793                         return -EINVAL;
794         }
795
796         ret = cpufreq_set_policy(policy, &new_policy);
797
798         if (new_policy.governor)
799                 module_put(new_policy.governor->owner);
800
801         return ret ? ret : count;
802 }
803
804 /**
805  * show_scaling_driver - show the cpufreq driver currently loaded
806  */
807 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
808 {
809         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
810 }
811
812 /**
813  * show_scaling_available_governors - show the available CPUfreq governors
814  */
815 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
816                                                 char *buf)
817 {
818         ssize_t i = 0;
819         struct cpufreq_governor *t;
820
821         if (!has_target()) {
822                 i += sprintf(buf, "performance powersave");
823                 goto out;
824         }
825
826         for_each_governor(t) {
827                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
828                     - (CPUFREQ_NAME_LEN + 2)))
829                         goto out;
830                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
831         }
832 out:
833         i += sprintf(&buf[i], "\n");
834         return i;
835 }
836
837 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
838 {
839         ssize_t i = 0;
840         unsigned int cpu;
841
842         for_each_cpu(cpu, mask) {
843                 if (i)
844                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
845                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
846                 if (i >= (PAGE_SIZE - 5))
847                         break;
848         }
849         i += sprintf(&buf[i], "\n");
850         return i;
851 }
852 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
853
854 /**
855  * show_related_cpus - show the CPUs affected by each transition even if
856  * hw coordination is in use
857  */
858 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
859 {
860         return cpufreq_show_cpus(policy->related_cpus, buf);
861 }
862
863 /**
864  * show_affected_cpus - show the CPUs affected by each transition
865  */
866 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
867 {
868         return cpufreq_show_cpus(policy->cpus, buf);
869 }
870
871 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
872                                         const char *buf, size_t count)
873 {
874         unsigned int freq = 0;
875         unsigned int ret;
876
877         if (!policy->governor || !policy->governor->store_setspeed)
878                 return -EINVAL;
879
880         ret = sscanf(buf, "%u", &freq);
881         if (ret != 1)
882                 return -EINVAL;
883
884         policy->governor->store_setspeed(policy, freq);
885
886         return count;
887 }
888
889 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
890 {
891         if (!policy->governor || !policy->governor->show_setspeed)
892                 return sprintf(buf, "<unsupported>\n");
893
894         return policy->governor->show_setspeed(policy, buf);
895 }
896
897 /**
898  * show_bios_limit - show the current cpufreq HW/BIOS limitation
899  */
900 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
901 {
902         unsigned int limit;
903         int ret;
904         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
905         if (!ret)
906                 return sprintf(buf, "%u\n", limit);
907         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
908 }
909
910 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
911 cpufreq_freq_attr_ro(cpuinfo_min_freq);
912 cpufreq_freq_attr_ro(cpuinfo_max_freq);
913 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
914 cpufreq_freq_attr_ro(scaling_available_governors);
915 cpufreq_freq_attr_ro(scaling_driver);
916 cpufreq_freq_attr_ro(scaling_cur_freq);
917 cpufreq_freq_attr_ro(bios_limit);
918 cpufreq_freq_attr_ro(related_cpus);
919 cpufreq_freq_attr_ro(affected_cpus);
920 cpufreq_freq_attr_rw(scaling_min_freq);
921 cpufreq_freq_attr_rw(scaling_max_freq);
922 cpufreq_freq_attr_rw(scaling_governor);
923 cpufreq_freq_attr_rw(scaling_setspeed);
924
925 static struct attribute *default_attrs[] = {
926         &cpuinfo_min_freq.attr,
927         &cpuinfo_max_freq.attr,
928         &cpuinfo_transition_latency.attr,
929         &scaling_min_freq.attr,
930         &scaling_max_freq.attr,
931         &affected_cpus.attr,
932         &related_cpus.attr,
933         &scaling_governor.attr,
934         &scaling_driver.attr,
935         &scaling_available_governors.attr,
936         &scaling_setspeed.attr,
937         NULL
938 };
939
940 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
941 #define to_attr(a) container_of(a, struct freq_attr, attr)
942
943 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
944 {
945         struct cpufreq_policy *policy = to_policy(kobj);
946         struct freq_attr *fattr = to_attr(attr);
947         ssize_t ret;
948
949         down_read(&policy->rwsem);
950         ret = fattr->show(policy, buf);
951         up_read(&policy->rwsem);
952
953         return ret;
954 }
955
956 static ssize_t store(struct kobject *kobj, struct attribute *attr,
957                      const char *buf, size_t count)
958 {
959         struct cpufreq_policy *policy = to_policy(kobj);
960         struct freq_attr *fattr = to_attr(attr);
961         ssize_t ret = -EINVAL;
962
963         /*
964          * cpus_read_trylock() is used here to work around a circular lock
965          * dependency problem with respect to the cpufreq_register_driver().
966          */
967         if (!cpus_read_trylock())
968                 return -EBUSY;
969
970         if (cpu_online(policy->cpu)) {
971                 down_write(&policy->rwsem);
972                 ret = fattr->store(policy, buf, count);
973                 up_write(&policy->rwsem);
974         }
975
976         cpus_read_unlock();
977
978         return ret;
979 }
980
981 static void cpufreq_sysfs_release(struct kobject *kobj)
982 {
983         struct cpufreq_policy *policy = to_policy(kobj);
984         pr_debug("last reference is dropped\n");
985         complete(&policy->kobj_unregister);
986 }
987
988 static const struct sysfs_ops sysfs_ops = {
989         .show   = show,
990         .store  = store,
991 };
992
993 static struct kobj_type ktype_cpufreq = {
994         .sysfs_ops      = &sysfs_ops,
995         .default_attrs  = default_attrs,
996         .release        = cpufreq_sysfs_release,
997 };
998
999 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1000 {
1001         struct device *dev = get_cpu_device(cpu);
1002
1003         if (unlikely(!dev))
1004                 return;
1005
1006         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1007                 return;
1008
1009         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1010         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1011                 dev_err(dev, "cpufreq symlink creation failed\n");
1012 }
1013
1014 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1015                                    struct device *dev)
1016 {
1017         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1018         sysfs_remove_link(&dev->kobj, "cpufreq");
1019 }
1020
1021 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1022 {
1023         struct freq_attr **drv_attr;
1024         int ret = 0;
1025
1026         /* set up files for this cpu device */
1027         drv_attr = cpufreq_driver->attr;
1028         while (drv_attr && *drv_attr) {
1029                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1030                 if (ret)
1031                         return ret;
1032                 drv_attr++;
1033         }
1034         if (cpufreq_driver->get) {
1035                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1036                 if (ret)
1037                         return ret;
1038         }
1039
1040         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1041         if (ret)
1042                 return ret;
1043
1044         if (cpufreq_driver->bios_limit) {
1045                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1046                 if (ret)
1047                         return ret;
1048         }
1049
1050         return 0;
1051 }
1052
1053 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1054 {
1055         return NULL;
1056 }
1057
1058 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1059 {
1060         struct cpufreq_governor *gov = NULL, *def_gov = NULL;
1061         struct cpufreq_policy new_policy;
1062
1063         memcpy(&new_policy, policy, sizeof(*policy));
1064
1065         def_gov = cpufreq_default_governor();
1066
1067         if (has_target()) {
1068                 /*
1069                  * Update governor of new_policy to the governor used before
1070                  * hotplug
1071                  */
1072                 gov = find_governor(policy->last_governor);
1073                 if (gov) {
1074                         pr_debug("Restoring governor %s for cpu %d\n",
1075                                 policy->governor->name, policy->cpu);
1076                 } else {
1077                         if (!def_gov)
1078                                 return -ENODATA;
1079                         gov = def_gov;
1080                 }
1081                 new_policy.governor = gov;
1082         } else {
1083                 /* Use the default policy if there is no last_policy. */
1084                 if (policy->last_policy) {
1085                         new_policy.policy = policy->last_policy;
1086                 } else {
1087                         if (!def_gov)
1088                                 return -ENODATA;
1089                         cpufreq_parse_policy(def_gov->name, &new_policy);
1090                 }
1091         }
1092
1093         return cpufreq_set_policy(policy, &new_policy);
1094 }
1095
1096 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1097 {
1098         int ret = 0;
1099
1100         /* Has this CPU been taken care of already? */
1101         if (cpumask_test_cpu(cpu, policy->cpus))
1102                 return 0;
1103
1104         down_write(&policy->rwsem);
1105         if (has_target())
1106                 cpufreq_stop_governor(policy);
1107
1108         cpumask_set_cpu(cpu, policy->cpus);
1109
1110         if (has_target()) {
1111                 ret = cpufreq_start_governor(policy);
1112                 if (ret)
1113                         pr_err("%s: Failed to start governor\n", __func__);
1114         }
1115         up_write(&policy->rwsem);
1116         return ret;
1117 }
1118
1119 void refresh_frequency_limits(struct cpufreq_policy *policy)
1120 {
1121         struct cpufreq_policy new_policy;
1122
1123         if (!policy_is_inactive(policy)) {
1124                 new_policy = *policy;
1125                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1126
1127                 new_policy.min = policy->user_policy.min;
1128                 new_policy.max = policy->user_policy.max;
1129                 cpufreq_set_policy(policy, &new_policy);
1130         }
1131 }
1132 EXPORT_SYMBOL(refresh_frequency_limits);
1133
1134 static void handle_update(struct work_struct *work)
1135 {
1136         struct cpufreq_policy *policy =
1137                 container_of(work, struct cpufreq_policy, update);
1138
1139         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1140         down_write(&policy->rwsem);
1141         refresh_frequency_limits(policy);
1142         up_write(&policy->rwsem);
1143 }
1144
1145 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1146                                 void *data)
1147 {
1148         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1149
1150         schedule_work(&policy->update);
1151         return 0;
1152 }
1153
1154 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1155                                 void *data)
1156 {
1157         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1158
1159         schedule_work(&policy->update);
1160         return 0;
1161 }
1162
1163 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1164 {
1165         struct kobject *kobj;
1166         struct completion *cmp;
1167
1168         down_write(&policy->rwsem);
1169         cpufreq_stats_free_table(policy);
1170         kobj = &policy->kobj;
1171         cmp = &policy->kobj_unregister;
1172         up_write(&policy->rwsem);
1173         kobject_put(kobj);
1174
1175         /*
1176          * We need to make sure that the underlying kobj is
1177          * actually not referenced anymore by anybody before we
1178          * proceed with unloading.
1179          */
1180         pr_debug("waiting for dropping of refcount\n");
1181         wait_for_completion(cmp);
1182         pr_debug("wait complete\n");
1183 }
1184
1185 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1186 {
1187         struct cpufreq_policy *policy;
1188         struct device *dev = get_cpu_device(cpu);
1189         int ret;
1190
1191         if (!dev)
1192                 return NULL;
1193
1194         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1195         if (!policy)
1196                 return NULL;
1197
1198         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1199                 goto err_free_policy;
1200
1201         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1202                 goto err_free_cpumask;
1203
1204         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1205                 goto err_free_rcpumask;
1206
1207         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1208                                    cpufreq_global_kobject, "policy%u", cpu);
1209         if (ret) {
1210                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1211                 /*
1212                  * The entire policy object will be freed below, but the extra
1213                  * memory allocated for the kobject name needs to be freed by
1214                  * releasing the kobject.
1215                  */
1216                 kobject_put(&policy->kobj);
1217                 goto err_free_real_cpus;
1218         }
1219
1220         policy->nb_min.notifier_call = cpufreq_notifier_min;
1221         policy->nb_max.notifier_call = cpufreq_notifier_max;
1222
1223         ret = dev_pm_qos_add_notifier(dev, &policy->nb_min,
1224                                       DEV_PM_QOS_MIN_FREQUENCY);
1225         if (ret) {
1226                 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1227                         ret, cpumask_pr_args(policy->cpus));
1228                 goto err_kobj_remove;
1229         }
1230
1231         ret = dev_pm_qos_add_notifier(dev, &policy->nb_max,
1232                                       DEV_PM_QOS_MAX_FREQUENCY);
1233         if (ret) {
1234                 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1235                         ret, cpumask_pr_args(policy->cpus));
1236                 goto err_min_qos_notifier;
1237         }
1238
1239         INIT_LIST_HEAD(&policy->policy_list);
1240         init_rwsem(&policy->rwsem);
1241         spin_lock_init(&policy->transition_lock);
1242         init_waitqueue_head(&policy->transition_wait);
1243         init_completion(&policy->kobj_unregister);
1244         INIT_WORK(&policy->update, handle_update);
1245
1246         policy->cpu = cpu;
1247         return policy;
1248
1249 err_min_qos_notifier:
1250         dev_pm_qos_remove_notifier(dev, &policy->nb_min,
1251                                    DEV_PM_QOS_MIN_FREQUENCY);
1252 err_kobj_remove:
1253         cpufreq_policy_put_kobj(policy);
1254 err_free_real_cpus:
1255         free_cpumask_var(policy->real_cpus);
1256 err_free_rcpumask:
1257         free_cpumask_var(policy->related_cpus);
1258 err_free_cpumask:
1259         free_cpumask_var(policy->cpus);
1260 err_free_policy:
1261         kfree(policy);
1262
1263         return NULL;
1264 }
1265
1266 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1267 {
1268         struct device *dev = get_cpu_device(policy->cpu);
1269         unsigned long flags;
1270         int cpu;
1271
1272         /* Remove policy from list */
1273         write_lock_irqsave(&cpufreq_driver_lock, flags);
1274         list_del(&policy->policy_list);
1275
1276         for_each_cpu(cpu, policy->related_cpus)
1277                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1278         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1279
1280         dev_pm_qos_remove_notifier(dev, &policy->nb_max,
1281                                    DEV_PM_QOS_MAX_FREQUENCY);
1282         dev_pm_qos_remove_notifier(dev, &policy->nb_min,
1283                                    DEV_PM_QOS_MIN_FREQUENCY);
1284
1285         cpufreq_policy_put_kobj(policy);
1286         free_cpumask_var(policy->real_cpus);
1287         free_cpumask_var(policy->related_cpus);
1288         free_cpumask_var(policy->cpus);
1289         kfree(policy);
1290 }
1291
1292 static int cpufreq_online(unsigned int cpu)
1293 {
1294         struct cpufreq_policy *policy;
1295         bool new_policy;
1296         unsigned long flags;
1297         unsigned int j;
1298         int ret;
1299
1300         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1301
1302         /* Check if this CPU already has a policy to manage it */
1303         policy = per_cpu(cpufreq_cpu_data, cpu);
1304         if (policy) {
1305                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1306                 if (!policy_is_inactive(policy))
1307                         return cpufreq_add_policy_cpu(policy, cpu);
1308
1309                 /* This is the only online CPU for the policy.  Start over. */
1310                 new_policy = false;
1311                 down_write(&policy->rwsem);
1312                 policy->cpu = cpu;
1313                 policy->governor = NULL;
1314                 up_write(&policy->rwsem);
1315         } else {
1316                 new_policy = true;
1317                 policy = cpufreq_policy_alloc(cpu);
1318                 if (!policy)
1319                         return -ENOMEM;
1320         }
1321
1322         if (!new_policy && cpufreq_driver->online) {
1323                 ret = cpufreq_driver->online(policy);
1324                 if (ret) {
1325                         pr_debug("%s: %d: initialization failed\n", __func__,
1326                                  __LINE__);
1327                         goto out_exit_policy;
1328                 }
1329
1330                 /* Recover policy->cpus using related_cpus */
1331                 cpumask_copy(policy->cpus, policy->related_cpus);
1332         } else {
1333                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1334
1335                 /*
1336                  * Call driver. From then on the cpufreq must be able
1337                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1338                  */
1339                 ret = cpufreq_driver->init(policy);
1340                 if (ret) {
1341                         pr_debug("%s: %d: initialization failed\n", __func__,
1342                                  __LINE__);
1343                         goto out_free_policy;
1344                 }
1345
1346                 ret = cpufreq_table_validate_and_sort(policy);
1347                 if (ret)
1348                         goto out_exit_policy;
1349
1350                 /* related_cpus should at least include policy->cpus. */
1351                 cpumask_copy(policy->related_cpus, policy->cpus);
1352         }
1353
1354         down_write(&policy->rwsem);
1355         /*
1356          * affected cpus must always be the one, which are online. We aren't
1357          * managing offline cpus here.
1358          */
1359         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1360
1361         if (new_policy) {
1362                 policy->user_policy.min = policy->min;
1363                 policy->user_policy.max = policy->max;
1364
1365                 for_each_cpu(j, policy->related_cpus) {
1366                         per_cpu(cpufreq_cpu_data, j) = policy;
1367                         add_cpu_dev_symlink(policy, j);
1368                 }
1369         } else {
1370                 policy->min = policy->user_policy.min;
1371                 policy->max = policy->user_policy.max;
1372         }
1373
1374         if (cpufreq_driver->get && has_target()) {
1375                 policy->cur = cpufreq_driver->get(policy->cpu);
1376                 if (!policy->cur) {
1377                         pr_err("%s: ->get() failed\n", __func__);
1378                         goto out_destroy_policy;
1379                 }
1380         }
1381
1382         /*
1383          * Sometimes boot loaders set CPU frequency to a value outside of
1384          * frequency table present with cpufreq core. In such cases CPU might be
1385          * unstable if it has to run on that frequency for long duration of time
1386          * and so its better to set it to a frequency which is specified in
1387          * freq-table. This also makes cpufreq stats inconsistent as
1388          * cpufreq-stats would fail to register because current frequency of CPU
1389          * isn't found in freq-table.
1390          *
1391          * Because we don't want this change to effect boot process badly, we go
1392          * for the next freq which is >= policy->cur ('cur' must be set by now,
1393          * otherwise we will end up setting freq to lowest of the table as 'cur'
1394          * is initialized to zero).
1395          *
1396          * We are passing target-freq as "policy->cur - 1" otherwise
1397          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1398          * equal to target-freq.
1399          */
1400         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1401             && has_target()) {
1402                 /* Are we running at unknown frequency ? */
1403                 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1404                 if (ret == -EINVAL) {
1405                         /* Warn user and fix it */
1406                         pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1407                                 __func__, policy->cpu, policy->cur);
1408                         ret = __cpufreq_driver_target(policy, policy->cur - 1,
1409                                 CPUFREQ_RELATION_L);
1410
1411                         /*
1412                          * Reaching here after boot in a few seconds may not
1413                          * mean that system will remain stable at "unknown"
1414                          * frequency for longer duration. Hence, a BUG_ON().
1415                          */
1416                         BUG_ON(ret);
1417                         pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1418                                 __func__, policy->cpu, policy->cur);
1419                 }
1420         }
1421
1422         if (new_policy) {
1423                 ret = cpufreq_add_dev_interface(policy);
1424                 if (ret)
1425                         goto out_destroy_policy;
1426
1427                 cpufreq_stats_create_table(policy);
1428
1429                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1430                 list_add(&policy->policy_list, &cpufreq_policy_list);
1431                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1432         }
1433
1434         ret = cpufreq_init_policy(policy);
1435         if (ret) {
1436                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1437                        __func__, cpu, ret);
1438                 goto out_destroy_policy;
1439         }
1440
1441         up_write(&policy->rwsem);
1442
1443         kobject_uevent(&policy->kobj, KOBJ_ADD);
1444
1445         /* Callback for handling stuff after policy is ready */
1446         if (cpufreq_driver->ready)
1447                 cpufreq_driver->ready(policy);
1448
1449         if (cpufreq_thermal_control_enabled(cpufreq_driver))
1450                 policy->cdev = of_cpufreq_cooling_register(policy);
1451
1452         pr_debug("initialization complete\n");
1453
1454         return 0;
1455
1456 out_destroy_policy:
1457         for_each_cpu(j, policy->real_cpus)
1458                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1459
1460         up_write(&policy->rwsem);
1461
1462 out_exit_policy:
1463         if (cpufreq_driver->exit)
1464                 cpufreq_driver->exit(policy);
1465
1466 out_free_policy:
1467         cpufreq_policy_free(policy);
1468         return ret;
1469 }
1470
1471 /**
1472  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1473  * @dev: CPU device.
1474  * @sif: Subsystem interface structure pointer (not used)
1475  */
1476 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1477 {
1478         struct cpufreq_policy *policy;
1479         unsigned cpu = dev->id;
1480         int ret;
1481
1482         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1483
1484         if (cpu_online(cpu)) {
1485                 ret = cpufreq_online(cpu);
1486                 if (ret)
1487                         return ret;
1488         }
1489
1490         /* Create sysfs link on CPU registration */
1491         policy = per_cpu(cpufreq_cpu_data, cpu);
1492         if (policy)
1493                 add_cpu_dev_symlink(policy, cpu);
1494
1495         return 0;
1496 }
1497
1498 static int cpufreq_offline(unsigned int cpu)
1499 {
1500         struct cpufreq_policy *policy;
1501         int ret;
1502
1503         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1504
1505         policy = cpufreq_cpu_get_raw(cpu);
1506         if (!policy) {
1507                 pr_debug("%s: No cpu_data found\n", __func__);
1508                 return 0;
1509         }
1510
1511         down_write(&policy->rwsem);
1512         if (has_target())
1513                 cpufreq_stop_governor(policy);
1514
1515         cpumask_clear_cpu(cpu, policy->cpus);
1516
1517         if (policy_is_inactive(policy)) {
1518                 if (has_target())
1519                         strncpy(policy->last_governor, policy->governor->name,
1520                                 CPUFREQ_NAME_LEN);
1521                 else
1522                         policy->last_policy = policy->policy;
1523         } else if (cpu == policy->cpu) {
1524                 /* Nominate new CPU */
1525                 policy->cpu = cpumask_any(policy->cpus);
1526         }
1527
1528         /* Start governor again for active policy */
1529         if (!policy_is_inactive(policy)) {
1530                 if (has_target()) {
1531                         ret = cpufreq_start_governor(policy);
1532                         if (ret)
1533                                 pr_err("%s: Failed to start governor\n", __func__);
1534                 }
1535
1536                 goto unlock;
1537         }
1538
1539         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1540                 cpufreq_cooling_unregister(policy->cdev);
1541                 policy->cdev = NULL;
1542         }
1543
1544         if (cpufreq_driver->stop_cpu)
1545                 cpufreq_driver->stop_cpu(policy);
1546
1547         if (has_target())
1548                 cpufreq_exit_governor(policy);
1549
1550         /*
1551          * Perform the ->offline() during light-weight tear-down, as
1552          * that allows fast recovery when the CPU comes back.
1553          */
1554         if (cpufreq_driver->offline) {
1555                 cpufreq_driver->offline(policy);
1556         } else if (cpufreq_driver->exit) {
1557                 cpufreq_driver->exit(policy);
1558                 policy->freq_table = NULL;
1559         }
1560
1561 unlock:
1562         up_write(&policy->rwsem);
1563         return 0;
1564 }
1565
1566 /**
1567  * cpufreq_remove_dev - remove a CPU device
1568  *
1569  * Removes the cpufreq interface for a CPU device.
1570  */
1571 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1572 {
1573         unsigned int cpu = dev->id;
1574         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1575
1576         if (!policy)
1577                 return;
1578
1579         if (cpu_online(cpu))
1580                 cpufreq_offline(cpu);
1581
1582         cpumask_clear_cpu(cpu, policy->real_cpus);
1583         remove_cpu_dev_symlink(policy, dev);
1584
1585         if (cpumask_empty(policy->real_cpus)) {
1586                 /* We did light-weight exit earlier, do full tear down now */
1587                 if (cpufreq_driver->offline)
1588                         cpufreq_driver->exit(policy);
1589
1590                 cpufreq_policy_free(policy);
1591         }
1592 }
1593
1594 /**
1595  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1596  *      in deep trouble.
1597  *      @policy: policy managing CPUs
1598  *      @new_freq: CPU frequency the CPU actually runs at
1599  *
1600  *      We adjust to current frequency first, and need to clean up later.
1601  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1602  */
1603 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1604                                 unsigned int new_freq)
1605 {
1606         struct cpufreq_freqs freqs;
1607
1608         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1609                  policy->cur, new_freq);
1610
1611         freqs.old = policy->cur;
1612         freqs.new = new_freq;
1613
1614         cpufreq_freq_transition_begin(policy, &freqs);
1615         cpufreq_freq_transition_end(policy, &freqs, 0);
1616 }
1617
1618 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1619 {
1620         unsigned int new_freq;
1621
1622         new_freq = cpufreq_driver->get(policy->cpu);
1623         if (!new_freq)
1624                 return 0;
1625
1626         /*
1627          * If fast frequency switching is used with the given policy, the check
1628          * against policy->cur is pointless, so skip it in that case.
1629          */
1630         if (policy->fast_switch_enabled || !has_target())
1631                 return new_freq;
1632
1633         if (policy->cur != new_freq) {
1634                 cpufreq_out_of_sync(policy, new_freq);
1635                 if (update)
1636                         schedule_work(&policy->update);
1637         }
1638
1639         return new_freq;
1640 }
1641
1642 /**
1643  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1644  * @cpu: CPU number
1645  *
1646  * This is the last known freq, without actually getting it from the driver.
1647  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1648  */
1649 unsigned int cpufreq_quick_get(unsigned int cpu)
1650 {
1651         struct cpufreq_policy *policy;
1652         unsigned int ret_freq = 0;
1653         unsigned long flags;
1654
1655         read_lock_irqsave(&cpufreq_driver_lock, flags);
1656
1657         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1658                 ret_freq = cpufreq_driver->get(cpu);
1659                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1660                 return ret_freq;
1661         }
1662
1663         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1664
1665         policy = cpufreq_cpu_get(cpu);
1666         if (policy) {
1667                 ret_freq = policy->cur;
1668                 cpufreq_cpu_put(policy);
1669         }
1670
1671         return ret_freq;
1672 }
1673 EXPORT_SYMBOL(cpufreq_quick_get);
1674
1675 /**
1676  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1677  * @cpu: CPU number
1678  *
1679  * Just return the max possible frequency for a given CPU.
1680  */
1681 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1682 {
1683         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1684         unsigned int ret_freq = 0;
1685
1686         if (policy) {
1687                 ret_freq = policy->max;
1688                 cpufreq_cpu_put(policy);
1689         }
1690
1691         return ret_freq;
1692 }
1693 EXPORT_SYMBOL(cpufreq_quick_get_max);
1694
1695 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1696 {
1697         if (unlikely(policy_is_inactive(policy)))
1698                 return 0;
1699
1700         return cpufreq_verify_current_freq(policy, true);
1701 }
1702
1703 /**
1704  * cpufreq_get - get the current CPU frequency (in kHz)
1705  * @cpu: CPU number
1706  *
1707  * Get the CPU current (static) CPU frequency
1708  */
1709 unsigned int cpufreq_get(unsigned int cpu)
1710 {
1711         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1712         unsigned int ret_freq = 0;
1713
1714         if (policy) {
1715                 down_read(&policy->rwsem);
1716                 if (cpufreq_driver->get)
1717                         ret_freq = __cpufreq_get(policy);
1718                 up_read(&policy->rwsem);
1719
1720                 cpufreq_cpu_put(policy);
1721         }
1722
1723         return ret_freq;
1724 }
1725 EXPORT_SYMBOL(cpufreq_get);
1726
1727 static struct subsys_interface cpufreq_interface = {
1728         .name           = "cpufreq",
1729         .subsys         = &cpu_subsys,
1730         .add_dev        = cpufreq_add_dev,
1731         .remove_dev     = cpufreq_remove_dev,
1732 };
1733
1734 /*
1735  * In case platform wants some specific frequency to be configured
1736  * during suspend..
1737  */
1738 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1739 {
1740         int ret;
1741
1742         if (!policy->suspend_freq) {
1743                 pr_debug("%s: suspend_freq not defined\n", __func__);
1744                 return 0;
1745         }
1746
1747         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1748                         policy->suspend_freq);
1749
1750         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1751                         CPUFREQ_RELATION_H);
1752         if (ret)
1753                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1754                                 __func__, policy->suspend_freq, ret);
1755
1756         return ret;
1757 }
1758 EXPORT_SYMBOL(cpufreq_generic_suspend);
1759
1760 /**
1761  * cpufreq_suspend() - Suspend CPUFreq governors
1762  *
1763  * Called during system wide Suspend/Hibernate cycles for suspending governors
1764  * as some platforms can't change frequency after this point in suspend cycle.
1765  * Because some of the devices (like: i2c, regulators, etc) they use for
1766  * changing frequency are suspended quickly after this point.
1767  */
1768 void cpufreq_suspend(void)
1769 {
1770         struct cpufreq_policy *policy;
1771
1772         if (!cpufreq_driver)
1773                 return;
1774
1775         if (!has_target() && !cpufreq_driver->suspend)
1776                 goto suspend;
1777
1778         pr_debug("%s: Suspending Governors\n", __func__);
1779
1780         for_each_active_policy(policy) {
1781                 if (has_target()) {
1782                         down_write(&policy->rwsem);
1783                         cpufreq_stop_governor(policy);
1784                         up_write(&policy->rwsem);
1785                 }
1786
1787                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1788                         pr_err("%s: Failed to suspend driver: %p\n", __func__,
1789                                 policy);
1790         }
1791
1792 suspend:
1793         cpufreq_suspended = true;
1794 }
1795
1796 /**
1797  * cpufreq_resume() - Resume CPUFreq governors
1798  *
1799  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1800  * are suspended with cpufreq_suspend().
1801  */
1802 void cpufreq_resume(void)
1803 {
1804         struct cpufreq_policy *policy;
1805         int ret;
1806
1807         if (!cpufreq_driver)
1808                 return;
1809
1810         if (unlikely(!cpufreq_suspended))
1811                 return;
1812
1813         cpufreq_suspended = false;
1814
1815         if (!has_target() && !cpufreq_driver->resume)
1816                 return;
1817
1818         pr_debug("%s: Resuming Governors\n", __func__);
1819
1820         for_each_active_policy(policy) {
1821                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1822                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1823                                 policy);
1824                 } else if (has_target()) {
1825                         down_write(&policy->rwsem);
1826                         ret = cpufreq_start_governor(policy);
1827                         up_write(&policy->rwsem);
1828
1829                         if (ret)
1830                                 pr_err("%s: Failed to start governor for policy: %p\n",
1831                                        __func__, policy);
1832                 }
1833         }
1834 }
1835
1836 /**
1837  *      cpufreq_get_current_driver - return current driver's name
1838  *
1839  *      Return the name string of the currently loaded cpufreq driver
1840  *      or NULL, if none.
1841  */
1842 const char *cpufreq_get_current_driver(void)
1843 {
1844         if (cpufreq_driver)
1845                 return cpufreq_driver->name;
1846
1847         return NULL;
1848 }
1849 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1850
1851 /**
1852  *      cpufreq_get_driver_data - return current driver data
1853  *
1854  *      Return the private data of the currently loaded cpufreq
1855  *      driver, or NULL if no cpufreq driver is loaded.
1856  */
1857 void *cpufreq_get_driver_data(void)
1858 {
1859         if (cpufreq_driver)
1860                 return cpufreq_driver->driver_data;
1861
1862         return NULL;
1863 }
1864 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1865
1866 /*********************************************************************
1867  *                     NOTIFIER LISTS INTERFACE                      *
1868  *********************************************************************/
1869
1870 /**
1871  *      cpufreq_register_notifier - register a driver with cpufreq
1872  *      @nb: notifier function to register
1873  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1874  *
1875  *      Add a driver to one of two lists: either a list of drivers that
1876  *      are notified about clock rate changes (once before and once after
1877  *      the transition), or a list of drivers that are notified about
1878  *      changes in cpufreq policy.
1879  *
1880  *      This function may sleep, and has the same return conditions as
1881  *      blocking_notifier_chain_register.
1882  */
1883 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1884 {
1885         int ret;
1886
1887         if (cpufreq_disabled())
1888                 return -EINVAL;
1889
1890         switch (list) {
1891         case CPUFREQ_TRANSITION_NOTIFIER:
1892                 mutex_lock(&cpufreq_fast_switch_lock);
1893
1894                 if (cpufreq_fast_switch_count > 0) {
1895                         mutex_unlock(&cpufreq_fast_switch_lock);
1896                         return -EBUSY;
1897                 }
1898                 ret = srcu_notifier_chain_register(
1899                                 &cpufreq_transition_notifier_list, nb);
1900                 if (!ret)
1901                         cpufreq_fast_switch_count--;
1902
1903                 mutex_unlock(&cpufreq_fast_switch_lock);
1904                 break;
1905         case CPUFREQ_POLICY_NOTIFIER:
1906                 ret = blocking_notifier_chain_register(
1907                                 &cpufreq_policy_notifier_list, nb);
1908                 break;
1909         default:
1910                 ret = -EINVAL;
1911         }
1912
1913         return ret;
1914 }
1915 EXPORT_SYMBOL(cpufreq_register_notifier);
1916
1917 /**
1918  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1919  *      @nb: notifier block to be unregistered
1920  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1921  *
1922  *      Remove a driver from the CPU frequency notifier list.
1923  *
1924  *      This function may sleep, and has the same return conditions as
1925  *      blocking_notifier_chain_unregister.
1926  */
1927 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1928 {
1929         int ret;
1930
1931         if (cpufreq_disabled())
1932                 return -EINVAL;
1933
1934         switch (list) {
1935         case CPUFREQ_TRANSITION_NOTIFIER:
1936                 mutex_lock(&cpufreq_fast_switch_lock);
1937
1938                 ret = srcu_notifier_chain_unregister(
1939                                 &cpufreq_transition_notifier_list, nb);
1940                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1941                         cpufreq_fast_switch_count++;
1942
1943                 mutex_unlock(&cpufreq_fast_switch_lock);
1944                 break;
1945         case CPUFREQ_POLICY_NOTIFIER:
1946                 ret = blocking_notifier_chain_unregister(
1947                                 &cpufreq_policy_notifier_list, nb);
1948                 break;
1949         default:
1950                 ret = -EINVAL;
1951         }
1952
1953         return ret;
1954 }
1955 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1956
1957
1958 /*********************************************************************
1959  *                              GOVERNORS                            *
1960  *********************************************************************/
1961
1962 /**
1963  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1964  * @policy: cpufreq policy to switch the frequency for.
1965  * @target_freq: New frequency to set (may be approximate).
1966  *
1967  * Carry out a fast frequency switch without sleeping.
1968  *
1969  * The driver's ->fast_switch() callback invoked by this function must be
1970  * suitable for being called from within RCU-sched read-side critical sections
1971  * and it is expected to select the minimum available frequency greater than or
1972  * equal to @target_freq (CPUFREQ_RELATION_L).
1973  *
1974  * This function must not be called if policy->fast_switch_enabled is unset.
1975  *
1976  * Governors calling this function must guarantee that it will never be invoked
1977  * twice in parallel for the same policy and that it will never be called in
1978  * parallel with either ->target() or ->target_index() for the same policy.
1979  *
1980  * Returns the actual frequency set for the CPU.
1981  *
1982  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1983  * error condition, the hardware configuration must be preserved.
1984  */
1985 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1986                                         unsigned int target_freq)
1987 {
1988         target_freq = clamp_val(target_freq, policy->min, policy->max);
1989
1990         return cpufreq_driver->fast_switch(policy, target_freq);
1991 }
1992 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1993
1994 /* Must set freqs->new to intermediate frequency */
1995 static int __target_intermediate(struct cpufreq_policy *policy,
1996                                  struct cpufreq_freqs *freqs, int index)
1997 {
1998         int ret;
1999
2000         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2001
2002         /* We don't need to switch to intermediate freq */
2003         if (!freqs->new)
2004                 return 0;
2005
2006         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2007                  __func__, policy->cpu, freqs->old, freqs->new);
2008
2009         cpufreq_freq_transition_begin(policy, freqs);
2010         ret = cpufreq_driver->target_intermediate(policy, index);
2011         cpufreq_freq_transition_end(policy, freqs, ret);
2012
2013         if (ret)
2014                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2015                        __func__, ret);
2016
2017         return ret;
2018 }
2019
2020 static int __target_index(struct cpufreq_policy *policy, int index)
2021 {
2022         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2023         unsigned int intermediate_freq = 0;
2024         unsigned int newfreq = policy->freq_table[index].frequency;
2025         int retval = -EINVAL;
2026         bool notify;
2027
2028         if (newfreq == policy->cur)
2029                 return 0;
2030
2031         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2032         if (notify) {
2033                 /* Handle switching to intermediate frequency */
2034                 if (cpufreq_driver->get_intermediate) {
2035                         retval = __target_intermediate(policy, &freqs, index);
2036                         if (retval)
2037                                 return retval;
2038
2039                         intermediate_freq = freqs.new;
2040                         /* Set old freq to intermediate */
2041                         if (intermediate_freq)
2042                                 freqs.old = freqs.new;
2043                 }
2044
2045                 freqs.new = newfreq;
2046                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2047                          __func__, policy->cpu, freqs.old, freqs.new);
2048
2049                 cpufreq_freq_transition_begin(policy, &freqs);
2050         }
2051
2052         retval = cpufreq_driver->target_index(policy, index);
2053         if (retval)
2054                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2055                        retval);
2056
2057         if (notify) {
2058                 cpufreq_freq_transition_end(policy, &freqs, retval);
2059
2060                 /*
2061                  * Failed after setting to intermediate freq? Driver should have
2062                  * reverted back to initial frequency and so should we. Check
2063                  * here for intermediate_freq instead of get_intermediate, in
2064                  * case we haven't switched to intermediate freq at all.
2065                  */
2066                 if (unlikely(retval && intermediate_freq)) {
2067                         freqs.old = intermediate_freq;
2068                         freqs.new = policy->restore_freq;
2069                         cpufreq_freq_transition_begin(policy, &freqs);
2070                         cpufreq_freq_transition_end(policy, &freqs, 0);
2071                 }
2072         }
2073
2074         return retval;
2075 }
2076
2077 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2078                             unsigned int target_freq,
2079                             unsigned int relation)
2080 {
2081         unsigned int old_target_freq = target_freq;
2082         int index;
2083
2084         if (cpufreq_disabled())
2085                 return -ENODEV;
2086
2087         /* Make sure that target_freq is within supported range */
2088         target_freq = clamp_val(target_freq, policy->min, policy->max);
2089
2090         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2091                  policy->cpu, target_freq, relation, old_target_freq);
2092
2093         /*
2094          * This might look like a redundant call as we are checking it again
2095          * after finding index. But it is left intentionally for cases where
2096          * exactly same freq is called again and so we can save on few function
2097          * calls.
2098          */
2099         if (target_freq == policy->cur)
2100                 return 0;
2101
2102         /* Save last value to restore later on errors */
2103         policy->restore_freq = policy->cur;
2104
2105         if (cpufreq_driver->target)
2106                 return cpufreq_driver->target(policy, target_freq, relation);
2107
2108         if (!cpufreq_driver->target_index)
2109                 return -EINVAL;
2110
2111         index = cpufreq_frequency_table_target(policy, target_freq, relation);
2112
2113         return __target_index(policy, index);
2114 }
2115 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2116
2117 int cpufreq_driver_target(struct cpufreq_policy *policy,
2118                           unsigned int target_freq,
2119                           unsigned int relation)
2120 {
2121         int ret = -EINVAL;
2122
2123         down_write(&policy->rwsem);
2124
2125         ret = __cpufreq_driver_target(policy, target_freq, relation);
2126
2127         up_write(&policy->rwsem);
2128
2129         return ret;
2130 }
2131 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2132
2133 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2134 {
2135         return NULL;
2136 }
2137
2138 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2139 {
2140         int ret;
2141
2142         /* Don't start any governor operations if we are entering suspend */
2143         if (cpufreq_suspended)
2144                 return 0;
2145         /*
2146          * Governor might not be initiated here if ACPI _PPC changed
2147          * notification happened, so check it.
2148          */
2149         if (!policy->governor)
2150                 return -EINVAL;
2151
2152         /* Platform doesn't want dynamic frequency switching ? */
2153         if (policy->governor->dynamic_switching &&
2154             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2155                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2156
2157                 if (gov) {
2158                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2159                                 policy->governor->name, gov->name);
2160                         policy->governor = gov;
2161                 } else {
2162                         return -EINVAL;
2163                 }
2164         }
2165
2166         if (!try_module_get(policy->governor->owner))
2167                 return -EINVAL;
2168
2169         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2170
2171         if (policy->governor->init) {
2172                 ret = policy->governor->init(policy);
2173                 if (ret) {
2174                         module_put(policy->governor->owner);
2175                         return ret;
2176                 }
2177         }
2178
2179         return 0;
2180 }
2181
2182 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2183 {
2184         if (cpufreq_suspended || !policy->governor)
2185                 return;
2186
2187         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2188
2189         if (policy->governor->exit)
2190                 policy->governor->exit(policy);
2191
2192         module_put(policy->governor->owner);
2193 }
2194
2195 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2196 {
2197         int ret;
2198
2199         if (cpufreq_suspended)
2200                 return 0;
2201
2202         if (!policy->governor)
2203                 return -EINVAL;
2204
2205         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2206
2207         if (cpufreq_driver->get)
2208                 cpufreq_verify_current_freq(policy, false);
2209
2210         if (policy->governor->start) {
2211                 ret = policy->governor->start(policy);
2212                 if (ret)
2213                         return ret;
2214         }
2215
2216         if (policy->governor->limits)
2217                 policy->governor->limits(policy);
2218
2219         return 0;
2220 }
2221
2222 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2223 {
2224         if (cpufreq_suspended || !policy->governor)
2225                 return;
2226
2227         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2228
2229         if (policy->governor->stop)
2230                 policy->governor->stop(policy);
2231 }
2232
2233 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2234 {
2235         if (cpufreq_suspended || !policy->governor)
2236                 return;
2237
2238         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2239
2240         if (policy->governor->limits)
2241                 policy->governor->limits(policy);
2242 }
2243
2244 int cpufreq_register_governor(struct cpufreq_governor *governor)
2245 {
2246         int err;
2247
2248         if (!governor)
2249                 return -EINVAL;
2250
2251         if (cpufreq_disabled())
2252                 return -ENODEV;
2253
2254         mutex_lock(&cpufreq_governor_mutex);
2255
2256         err = -EBUSY;
2257         if (!find_governor(governor->name)) {
2258                 err = 0;
2259                 list_add(&governor->governor_list, &cpufreq_governor_list);
2260         }
2261
2262         mutex_unlock(&cpufreq_governor_mutex);
2263         return err;
2264 }
2265 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2266
2267 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2268 {
2269         struct cpufreq_policy *policy;
2270         unsigned long flags;
2271
2272         if (!governor)
2273                 return;
2274
2275         if (cpufreq_disabled())
2276                 return;
2277
2278         /* clear last_governor for all inactive policies */
2279         read_lock_irqsave(&cpufreq_driver_lock, flags);
2280         for_each_inactive_policy(policy) {
2281                 if (!strcmp(policy->last_governor, governor->name)) {
2282                         policy->governor = NULL;
2283                         strcpy(policy->last_governor, "\0");
2284                 }
2285         }
2286         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2287
2288         mutex_lock(&cpufreq_governor_mutex);
2289         list_del(&governor->governor_list);
2290         mutex_unlock(&cpufreq_governor_mutex);
2291 }
2292 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2293
2294
2295 /*********************************************************************
2296  *                          POLICY INTERFACE                         *
2297  *********************************************************************/
2298
2299 /**
2300  * cpufreq_get_policy - get the current cpufreq_policy
2301  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2302  *      is written
2303  *
2304  * Reads the current cpufreq policy.
2305  */
2306 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2307 {
2308         struct cpufreq_policy *cpu_policy;
2309         if (!policy)
2310                 return -EINVAL;
2311
2312         cpu_policy = cpufreq_cpu_get(cpu);
2313         if (!cpu_policy)
2314                 return -EINVAL;
2315
2316         memcpy(policy, cpu_policy, sizeof(*policy));
2317
2318         cpufreq_cpu_put(cpu_policy);
2319         return 0;
2320 }
2321 EXPORT_SYMBOL(cpufreq_get_policy);
2322
2323 /**
2324  * cpufreq_set_policy - Modify cpufreq policy parameters.
2325  * @policy: Policy object to modify.
2326  * @new_policy: New policy data.
2327  *
2328  * Pass @new_policy to the cpufreq driver's ->verify() callback, run the
2329  * installed policy notifiers for it with the CPUFREQ_ADJUST value, pass it to
2330  * the driver's ->verify() callback again and run the notifiers for it again
2331  * with the CPUFREQ_NOTIFY value.  Next, copy the min and max parameters
2332  * of @new_policy to @policy and either invoke the driver's ->setpolicy()
2333  * callback (if present) or carry out a governor update for @policy.  That is,
2334  * run the current governor's ->limits() callback (if the governor field in
2335  * @new_policy points to the same object as the one in @policy) or replace the
2336  * governor for @policy with the new one stored in @new_policy.
2337  *
2338  * The cpuinfo part of @policy is not updated by this function.
2339  */
2340 int cpufreq_set_policy(struct cpufreq_policy *policy,
2341                        struct cpufreq_policy *new_policy)
2342 {
2343         struct cpufreq_governor *old_gov;
2344         struct device *cpu_dev = get_cpu_device(policy->cpu);
2345         unsigned long min, max;
2346         int ret;
2347
2348         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2349                  new_policy->cpu, new_policy->min, new_policy->max);
2350
2351         memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2352
2353         /*
2354         * This check works well when we store new min/max freq attributes,
2355         * because new_policy is a copy of policy with one field updated.
2356         */
2357         if (new_policy->min > new_policy->max)
2358                 return -EINVAL;
2359
2360         /*
2361          * PM QoS framework collects all the requests from users and provide us
2362          * the final aggregated value here.
2363          */
2364         min = dev_pm_qos_read_value(cpu_dev, DEV_PM_QOS_MIN_FREQUENCY);
2365         max = dev_pm_qos_read_value(cpu_dev, DEV_PM_QOS_MAX_FREQUENCY);
2366
2367         if (min > new_policy->min)
2368                 new_policy->min = min;
2369         if (max < new_policy->max)
2370                 new_policy->max = max;
2371
2372         /* verify the cpu speed can be set within this limit */
2373         ret = cpufreq_driver->verify(new_policy);
2374         if (ret)
2375                 return ret;
2376
2377         /*
2378          * The notifier-chain shall be removed once all the users of
2379          * CPUFREQ_ADJUST are moved to use the QoS framework.
2380          */
2381         /* adjust if necessary - all reasons */
2382         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2383                         CPUFREQ_ADJUST, new_policy);
2384
2385         /*
2386          * verify the cpu speed can be set within this limit, which might be
2387          * different to the first one
2388          */
2389         ret = cpufreq_driver->verify(new_policy);
2390         if (ret)
2391                 return ret;
2392
2393         /* notification of the new policy */
2394         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2395                         CPUFREQ_NOTIFY, new_policy);
2396
2397         policy->min = new_policy->min;
2398         policy->max = new_policy->max;
2399         trace_cpu_frequency_limits(policy);
2400
2401         policy->cached_target_freq = UINT_MAX;
2402
2403         pr_debug("new min and max freqs are %u - %u kHz\n",
2404                  policy->min, policy->max);
2405
2406         if (cpufreq_driver->setpolicy) {
2407                 policy->policy = new_policy->policy;
2408                 pr_debug("setting range\n");
2409                 return cpufreq_driver->setpolicy(policy);
2410         }
2411
2412         if (new_policy->governor == policy->governor) {
2413                 pr_debug("governor limits update\n");
2414                 cpufreq_governor_limits(policy);
2415                 return 0;
2416         }
2417
2418         pr_debug("governor switch\n");
2419
2420         /* save old, working values */
2421         old_gov = policy->governor;
2422         /* end old governor */
2423         if (old_gov) {
2424                 cpufreq_stop_governor(policy);
2425                 cpufreq_exit_governor(policy);
2426         }
2427
2428         /* start new governor */
2429         policy->governor = new_policy->governor;
2430         ret = cpufreq_init_governor(policy);
2431         if (!ret) {
2432                 ret = cpufreq_start_governor(policy);
2433                 if (!ret) {
2434                         pr_debug("governor change\n");
2435                         sched_cpufreq_governor_change(policy, old_gov);
2436                         return 0;
2437                 }
2438                 cpufreq_exit_governor(policy);
2439         }
2440
2441         /* new governor failed, so re-start old one */
2442         pr_debug("starting governor %s failed\n", policy->governor->name);
2443         if (old_gov) {
2444                 policy->governor = old_gov;
2445                 if (cpufreq_init_governor(policy))
2446                         policy->governor = NULL;
2447                 else
2448                         cpufreq_start_governor(policy);
2449         }
2450
2451         return ret;
2452 }
2453
2454 /**
2455  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2456  * @cpu: CPU to re-evaluate the policy for.
2457  *
2458  * Update the current frequency for the cpufreq policy of @cpu and use
2459  * cpufreq_set_policy() to re-apply the min and max limits saved in the
2460  * user_policy sub-structure of that policy, which triggers the evaluation
2461  * of policy notifiers and the cpufreq driver's ->verify() callback for the
2462  * policy in question, among other things.
2463  */
2464 void cpufreq_update_policy(unsigned int cpu)
2465 {
2466         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2467
2468         if (!policy)
2469                 return;
2470
2471         /*
2472          * BIOS might change freq behind our back
2473          * -> ask driver for current freq and notify governors about a change
2474          */
2475         if (cpufreq_driver->get && has_target() &&
2476             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2477                 goto unlock;
2478
2479         refresh_frequency_limits(policy);
2480
2481 unlock:
2482         cpufreq_cpu_release(policy);
2483 }
2484 EXPORT_SYMBOL(cpufreq_update_policy);
2485
2486 /**
2487  * cpufreq_update_limits - Update policy limits for a given CPU.
2488  * @cpu: CPU to update the policy limits for.
2489  *
2490  * Invoke the driver's ->update_limits callback if present or call
2491  * cpufreq_update_policy() for @cpu.
2492  */
2493 void cpufreq_update_limits(unsigned int cpu)
2494 {
2495         if (cpufreq_driver->update_limits)
2496                 cpufreq_driver->update_limits(cpu);
2497         else
2498                 cpufreq_update_policy(cpu);
2499 }
2500 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2501
2502 /*********************************************************************
2503  *               BOOST                                               *
2504  *********************************************************************/
2505 static int cpufreq_boost_set_sw(int state)
2506 {
2507         struct cpufreq_policy *policy;
2508         int ret = -EINVAL;
2509
2510         for_each_active_policy(policy) {
2511                 if (!policy->freq_table)
2512                         continue;
2513
2514                 ret = cpufreq_frequency_table_cpuinfo(policy,
2515                                                       policy->freq_table);
2516                 if (ret) {
2517                         pr_err("%s: Policy frequency update failed\n",
2518                                __func__);
2519                         break;
2520                 }
2521
2522                 down_write(&policy->rwsem);
2523                 policy->user_policy.max = policy->max;
2524                 cpufreq_governor_limits(policy);
2525                 up_write(&policy->rwsem);
2526         }
2527
2528         return ret;
2529 }
2530
2531 int cpufreq_boost_trigger_state(int state)
2532 {
2533         unsigned long flags;
2534         int ret = 0;
2535
2536         if (cpufreq_driver->boost_enabled == state)
2537                 return 0;
2538
2539         write_lock_irqsave(&cpufreq_driver_lock, flags);
2540         cpufreq_driver->boost_enabled = state;
2541         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2542
2543         ret = cpufreq_driver->set_boost(state);
2544         if (ret) {
2545                 write_lock_irqsave(&cpufreq_driver_lock, flags);
2546                 cpufreq_driver->boost_enabled = !state;
2547                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2548
2549                 pr_err("%s: Cannot %s BOOST\n",
2550                        __func__, state ? "enable" : "disable");
2551         }
2552
2553         return ret;
2554 }
2555
2556 static bool cpufreq_boost_supported(void)
2557 {
2558         return cpufreq_driver->set_boost;
2559 }
2560
2561 static int create_boost_sysfs_file(void)
2562 {
2563         int ret;
2564
2565         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2566         if (ret)
2567                 pr_err("%s: cannot register global BOOST sysfs file\n",
2568                        __func__);
2569
2570         return ret;
2571 }
2572
2573 static void remove_boost_sysfs_file(void)
2574 {
2575         if (cpufreq_boost_supported())
2576                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2577 }
2578
2579 int cpufreq_enable_boost_support(void)
2580 {
2581         if (!cpufreq_driver)
2582                 return -EINVAL;
2583
2584         if (cpufreq_boost_supported())
2585                 return 0;
2586
2587         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2588
2589         /* This will get removed on driver unregister */
2590         return create_boost_sysfs_file();
2591 }
2592 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2593
2594 int cpufreq_boost_enabled(void)
2595 {
2596         return cpufreq_driver->boost_enabled;
2597 }
2598 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2599
2600 /*********************************************************************
2601  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2602  *********************************************************************/
2603 static enum cpuhp_state hp_online;
2604
2605 static int cpuhp_cpufreq_online(unsigned int cpu)
2606 {
2607         cpufreq_online(cpu);
2608
2609         return 0;
2610 }
2611
2612 static int cpuhp_cpufreq_offline(unsigned int cpu)
2613 {
2614         cpufreq_offline(cpu);
2615
2616         return 0;
2617 }
2618
2619 /**
2620  * cpufreq_register_driver - register a CPU Frequency driver
2621  * @driver_data: A struct cpufreq_driver containing the values#
2622  * submitted by the CPU Frequency driver.
2623  *
2624  * Registers a CPU Frequency driver to this core code. This code
2625  * returns zero on success, -EEXIST when another driver got here first
2626  * (and isn't unregistered in the meantime).
2627  *
2628  */
2629 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2630 {
2631         unsigned long flags;
2632         int ret;
2633
2634         if (cpufreq_disabled())
2635                 return -ENODEV;
2636
2637         if (!driver_data || !driver_data->verify || !driver_data->init ||
2638             !(driver_data->setpolicy || driver_data->target_index ||
2639                     driver_data->target) ||
2640              (driver_data->setpolicy && (driver_data->target_index ||
2641                     driver_data->target)) ||
2642              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2643              (!driver_data->online != !driver_data->offline))
2644                 return -EINVAL;
2645
2646         pr_debug("trying to register driver %s\n", driver_data->name);
2647
2648         /* Protect against concurrent CPU online/offline. */
2649         cpus_read_lock();
2650
2651         write_lock_irqsave(&cpufreq_driver_lock, flags);
2652         if (cpufreq_driver) {
2653                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2654                 ret = -EEXIST;
2655                 goto out;
2656         }
2657         cpufreq_driver = driver_data;
2658         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2659
2660         if (driver_data->setpolicy)
2661                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2662
2663         if (cpufreq_boost_supported()) {
2664                 ret = create_boost_sysfs_file();
2665                 if (ret)
2666                         goto err_null_driver;
2667         }
2668
2669         ret = subsys_interface_register(&cpufreq_interface);
2670         if (ret)
2671                 goto err_boost_unreg;
2672
2673         if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2674             list_empty(&cpufreq_policy_list)) {
2675                 /* if all ->init() calls failed, unregister */
2676                 ret = -ENODEV;
2677                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2678                          driver_data->name);
2679                 goto err_if_unreg;
2680         }
2681
2682         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2683                                                    "cpufreq:online",
2684                                                    cpuhp_cpufreq_online,
2685                                                    cpuhp_cpufreq_offline);
2686         if (ret < 0)
2687                 goto err_if_unreg;
2688         hp_online = ret;
2689         ret = 0;
2690
2691         pr_debug("driver %s up and running\n", driver_data->name);
2692         goto out;
2693
2694 err_if_unreg:
2695         subsys_interface_unregister(&cpufreq_interface);
2696 err_boost_unreg:
2697         remove_boost_sysfs_file();
2698 err_null_driver:
2699         write_lock_irqsave(&cpufreq_driver_lock, flags);
2700         cpufreq_driver = NULL;
2701         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2702 out:
2703         cpus_read_unlock();
2704         return ret;
2705 }
2706 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2707
2708 /**
2709  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2710  *
2711  * Unregister the current CPUFreq driver. Only call this if you have
2712  * the right to do so, i.e. if you have succeeded in initialising before!
2713  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2714  * currently not initialised.
2715  */
2716 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2717 {
2718         unsigned long flags;
2719
2720         if (!cpufreq_driver || (driver != cpufreq_driver))
2721                 return -EINVAL;
2722
2723         pr_debug("unregistering driver %s\n", driver->name);
2724
2725         /* Protect against concurrent cpu hotplug */
2726         cpus_read_lock();
2727         subsys_interface_unregister(&cpufreq_interface);
2728         remove_boost_sysfs_file();
2729         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2730
2731         write_lock_irqsave(&cpufreq_driver_lock, flags);
2732
2733         cpufreq_driver = NULL;
2734
2735         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2736         cpus_read_unlock();
2737
2738         return 0;
2739 }
2740 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2741
2742 /*
2743  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2744  * or mutexes when secondary CPUs are halted.
2745  */
2746 static struct syscore_ops cpufreq_syscore_ops = {
2747         .shutdown = cpufreq_suspend,
2748 };
2749
2750 struct kobject *cpufreq_global_kobject;
2751 EXPORT_SYMBOL(cpufreq_global_kobject);
2752
2753 static int __init cpufreq_core_init(void)
2754 {
2755         if (cpufreq_disabled())
2756                 return -ENODEV;
2757
2758         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2759         BUG_ON(!cpufreq_global_kobject);
2760
2761         register_syscore_ops(&cpufreq_syscore_ops);
2762
2763         return 0;
2764 }
2765 module_param(off, int, 0444);
2766 core_initcall(cpufreq_core_init);